mm: oom_kill: remove unnecessary locking in exit_oom_victim()
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
ee6f509c 238void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 239{
5d0f3f72
KM
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
242 migratetype = MIGRATE_UNMOVABLE;
243
b2a0ac88
MG
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246}
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
c0a32fc5
SG
383#ifdef CONFIG_DEBUG_PAGEALLOC
384unsigned int _debug_guardpage_minorder;
031bc574 385bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
386bool _debug_guardpage_enabled __read_mostly;
387
031bc574
JK
388static int __init early_debug_pagealloc(char *buf)
389{
390 if (!buf)
391 return -EINVAL;
392
393 if (strcmp(buf, "on") == 0)
394 _debug_pagealloc_enabled = true;
395
396 return 0;
397}
398early_param("debug_pagealloc", early_debug_pagealloc);
399
e30825f1
JK
400static bool need_debug_guardpage(void)
401{
031bc574
JK
402 /* If we don't use debug_pagealloc, we don't need guard page */
403 if (!debug_pagealloc_enabled())
404 return false;
405
e30825f1
JK
406 return true;
407}
408
409static void init_debug_guardpage(void)
410{
031bc574
JK
411 if (!debug_pagealloc_enabled())
412 return;
413
e30825f1
JK
414 _debug_guardpage_enabled = true;
415}
416
417struct page_ext_operations debug_guardpage_ops = {
418 .need = need_debug_guardpage,
419 .init = init_debug_guardpage,
420};
c0a32fc5
SG
421
422static int __init debug_guardpage_minorder_setup(char *buf)
423{
424 unsigned long res;
425
426 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
427 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
428 return 0;
429 }
430 _debug_guardpage_minorder = res;
431 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
432 return 0;
433}
434__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
435
2847cf95
JK
436static inline void set_page_guard(struct zone *zone, struct page *page,
437 unsigned int order, int migratetype)
c0a32fc5 438{
e30825f1
JK
439 struct page_ext *page_ext;
440
441 if (!debug_guardpage_enabled())
442 return;
443
444 page_ext = lookup_page_ext(page);
445 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
446
2847cf95
JK
447 INIT_LIST_HEAD(&page->lru);
448 set_page_private(page, order);
449 /* Guard pages are not available for any usage */
450 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
451}
452
2847cf95
JK
453static inline void clear_page_guard(struct zone *zone, struct page *page,
454 unsigned int order, int migratetype)
c0a32fc5 455{
e30825f1
JK
456 struct page_ext *page_ext;
457
458 if (!debug_guardpage_enabled())
459 return;
460
461 page_ext = lookup_page_ext(page);
462 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
463
2847cf95
JK
464 set_page_private(page, 0);
465 if (!is_migrate_isolate(migratetype))
466 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
467}
468#else
e30825f1 469struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
470static inline void set_page_guard(struct zone *zone, struct page *page,
471 unsigned int order, int migratetype) {}
472static inline void clear_page_guard(struct zone *zone, struct page *page,
473 unsigned int order, int migratetype) {}
c0a32fc5
SG
474#endif
475
7aeb09f9 476static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 477{
4c21e2f2 478 set_page_private(page, order);
676165a8 479 __SetPageBuddy(page);
1da177e4
LT
480}
481
482static inline void rmv_page_order(struct page *page)
483{
676165a8 484 __ClearPageBuddy(page);
4c21e2f2 485 set_page_private(page, 0);
1da177e4
LT
486}
487
1da177e4
LT
488/*
489 * This function checks whether a page is free && is the buddy
490 * we can do coalesce a page and its buddy if
13e7444b 491 * (a) the buddy is not in a hole &&
676165a8 492 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
493 * (c) a page and its buddy have the same order &&
494 * (d) a page and its buddy are in the same zone.
676165a8 495 *
cf6fe945
WSH
496 * For recording whether a page is in the buddy system, we set ->_mapcount
497 * PAGE_BUDDY_MAPCOUNT_VALUE.
498 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
499 * serialized by zone->lock.
1da177e4 500 *
676165a8 501 * For recording page's order, we use page_private(page).
1da177e4 502 */
cb2b95e1 503static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 504 unsigned int order)
1da177e4 505{
14e07298 506 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 507 return 0;
13e7444b 508
c0a32fc5 509 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
4c5018ce
WY
513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
514
c0a32fc5
SG
515 return 1;
516 }
517
cb2b95e1 518 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
519 /*
520 * zone check is done late to avoid uselessly
521 * calculating zone/node ids for pages that could
522 * never merge.
523 */
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
4c5018ce
WY
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
6aa3001b 529 return 1;
676165a8 530 }
6aa3001b 531 return 0;
1da177e4
LT
532}
533
534/*
535 * Freeing function for a buddy system allocator.
536 *
537 * The concept of a buddy system is to maintain direct-mapped table
538 * (containing bit values) for memory blocks of various "orders".
539 * The bottom level table contains the map for the smallest allocatable
540 * units of memory (here, pages), and each level above it describes
541 * pairs of units from the levels below, hence, "buddies".
542 * At a high level, all that happens here is marking the table entry
543 * at the bottom level available, and propagating the changes upward
544 * as necessary, plus some accounting needed to play nicely with other
545 * parts of the VM system.
546 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
547 * free pages of length of (1 << order) and marked with _mapcount
548 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
549 * field.
1da177e4 550 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
551 * other. That is, if we allocate a small block, and both were
552 * free, the remainder of the region must be split into blocks.
1da177e4 553 * If a block is freed, and its buddy is also free, then this
5f63b720 554 * triggers coalescing into a block of larger size.
1da177e4 555 *
6d49e352 556 * -- nyc
1da177e4
LT
557 */
558
48db57f8 559static inline void __free_one_page(struct page *page,
dc4b0caf 560 unsigned long pfn,
ed0ae21d
MG
561 struct zone *zone, unsigned int order,
562 int migratetype)
1da177e4
LT
563{
564 unsigned long page_idx;
6dda9d55 565 unsigned long combined_idx;
43506fad 566 unsigned long uninitialized_var(buddy_idx);
6dda9d55 567 struct page *buddy;
3c605096 568 int max_order = MAX_ORDER;
1da177e4 569
d29bb978 570 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 571 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 572
ed0ae21d 573 VM_BUG_ON(migratetype == -1);
3c605096
JK
574 if (is_migrate_isolate(migratetype)) {
575 /*
576 * We restrict max order of merging to prevent merge
577 * between freepages on isolate pageblock and normal
578 * pageblock. Without this, pageblock isolation
579 * could cause incorrect freepage accounting.
580 */
581 max_order = min(MAX_ORDER, pageblock_order + 1);
582 } else {
8f82b55d 583 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 584 }
ed0ae21d 585
3c605096 586 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 587
309381fe
SL
588 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
589 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 590
3c605096 591 while (order < max_order - 1) {
43506fad
KC
592 buddy_idx = __find_buddy_index(page_idx, order);
593 buddy = page + (buddy_idx - page_idx);
cb2b95e1 594 if (!page_is_buddy(page, buddy, order))
3c82d0ce 595 break;
c0a32fc5
SG
596 /*
597 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
598 * merge with it and move up one order.
599 */
600 if (page_is_guard(buddy)) {
2847cf95 601 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
43506fad 607 combined_idx = buddy_idx & page_idx;
1da177e4
LT
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
6dda9d55
CZ
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
b7f50cfa 622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 623 struct page *higher_page, *higher_buddy;
43506fad
KC
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 627 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636out:
1da177e4
LT
637 zone->free_area[order].nr_free++;
638}
639
224abf92 640static inline int free_pages_check(struct page *page)
1da177e4 641{
d230dec1 642 const char *bad_reason = NULL;
f0b791a3
DH
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
9edad6ea
JW
655#ifdef CONFIG_MEMCG
656 if (unlikely(page->mem_cgroup))
657 bad_reason = "page still charged to cgroup";
658#endif
f0b791a3
DH
659 if (unlikely(bad_reason)) {
660 bad_page(page, bad_reason, bad_flags);
79f4b7bf 661 return 1;
8cc3b392 662 }
90572890 663 page_cpupid_reset_last(page);
79f4b7bf
HD
664 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
665 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
666 return 0;
1da177e4
LT
667}
668
669/*
5f8dcc21 670 * Frees a number of pages from the PCP lists
1da177e4 671 * Assumes all pages on list are in same zone, and of same order.
207f36ee 672 * count is the number of pages to free.
1da177e4
LT
673 *
674 * If the zone was previously in an "all pages pinned" state then look to
675 * see if this freeing clears that state.
676 *
677 * And clear the zone's pages_scanned counter, to hold off the "all pages are
678 * pinned" detection logic.
679 */
5f8dcc21
MG
680static void free_pcppages_bulk(struct zone *zone, int count,
681 struct per_cpu_pages *pcp)
1da177e4 682{
5f8dcc21 683 int migratetype = 0;
a6f9edd6 684 int batch_free = 0;
72853e29 685 int to_free = count;
0d5d823a 686 unsigned long nr_scanned;
5f8dcc21 687
c54ad30c 688 spin_lock(&zone->lock);
0d5d823a
MG
689 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
690 if (nr_scanned)
691 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 692
72853e29 693 while (to_free) {
48db57f8 694 struct page *page;
5f8dcc21
MG
695 struct list_head *list;
696
697 /*
a6f9edd6
MG
698 * Remove pages from lists in a round-robin fashion. A
699 * batch_free count is maintained that is incremented when an
700 * empty list is encountered. This is so more pages are freed
701 * off fuller lists instead of spinning excessively around empty
702 * lists
5f8dcc21
MG
703 */
704 do {
a6f9edd6 705 batch_free++;
5f8dcc21
MG
706 if (++migratetype == MIGRATE_PCPTYPES)
707 migratetype = 0;
708 list = &pcp->lists[migratetype];
709 } while (list_empty(list));
48db57f8 710
1d16871d
NK
711 /* This is the only non-empty list. Free them all. */
712 if (batch_free == MIGRATE_PCPTYPES)
713 batch_free = to_free;
714
a6f9edd6 715 do {
770c8aaa
BZ
716 int mt; /* migratetype of the to-be-freed page */
717
a6f9edd6
MG
718 page = list_entry(list->prev, struct page, lru);
719 /* must delete as __free_one_page list manipulates */
720 list_del(&page->lru);
b12c4ad1 721 mt = get_freepage_migratetype(page);
8f82b55d 722 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 723 mt = get_pageblock_migratetype(page);
51bb1a40 724
a7016235 725 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 726 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 727 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 728 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 729 }
c54ad30c 730 spin_unlock(&zone->lock);
1da177e4
LT
731}
732
dc4b0caf
MG
733static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
7aeb09f9 735 unsigned int order,
ed0ae21d 736 int migratetype)
1da177e4 737{
0d5d823a 738 unsigned long nr_scanned;
006d22d9 739 spin_lock(&zone->lock);
0d5d823a
MG
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 743
ad53f92e
JK
744 if (unlikely(has_isolate_pageblock(zone) ||
745 is_migrate_isolate(migratetype))) {
746 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 747 }
dc4b0caf 748 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 749 spin_unlock(&zone->lock);
48db57f8
NP
750}
751
81422f29
KS
752static int free_tail_pages_check(struct page *head_page, struct page *page)
753{
754 if (!IS_ENABLED(CONFIG_DEBUG_VM))
755 return 0;
756 if (unlikely(!PageTail(page))) {
757 bad_page(page, "PageTail not set", 0);
758 return 1;
759 }
760 if (unlikely(page->first_page != head_page)) {
761 bad_page(page, "first_page not consistent", 0);
762 return 1;
763 }
764 return 0;
765}
766
ec95f53a 767static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 768{
81422f29
KS
769 bool compound = PageCompound(page);
770 int i, bad = 0;
1da177e4 771
ab1f306f 772 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 773 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 774
b413d48a 775 trace_mm_page_free(page, order);
b1eeab67 776 kmemcheck_free_shadow(page, order);
b8c73fc2 777 kasan_free_pages(page, order);
b1eeab67 778
8dd60a3a
AA
779 if (PageAnon(page))
780 page->mapping = NULL;
81422f29
KS
781 bad += free_pages_check(page);
782 for (i = 1; i < (1 << order); i++) {
783 if (compound)
784 bad += free_tail_pages_check(page, page + i);
8dd60a3a 785 bad += free_pages_check(page + i);
81422f29 786 }
8cc3b392 787 if (bad)
ec95f53a 788 return false;
689bcebf 789
48c96a36
JK
790 reset_page_owner(page, order);
791
3ac7fe5a 792 if (!PageHighMem(page)) {
b8af2941
PK
793 debug_check_no_locks_freed(page_address(page),
794 PAGE_SIZE << order);
3ac7fe5a
TG
795 debug_check_no_obj_freed(page_address(page),
796 PAGE_SIZE << order);
797 }
dafb1367 798 arch_free_page(page, order);
48db57f8 799 kernel_map_pages(page, 1 << order, 0);
dafb1367 800
ec95f53a
KM
801 return true;
802}
803
804static void __free_pages_ok(struct page *page, unsigned int order)
805{
806 unsigned long flags;
95e34412 807 int migratetype;
dc4b0caf 808 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
809
810 if (!free_pages_prepare(page, order))
811 return;
812
cfc47a28 813 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 814 local_irq_save(flags);
f8891e5e 815 __count_vm_events(PGFREE, 1 << order);
95e34412 816 set_freepage_migratetype(page, migratetype);
dc4b0caf 817 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 818 local_irq_restore(flags);
1da177e4
LT
819}
820
170a5a7e 821void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 822{
c3993076 823 unsigned int nr_pages = 1 << order;
e2d0bd2b 824 struct page *p = page;
c3993076 825 unsigned int loop;
a226f6c8 826
e2d0bd2b
YL
827 prefetchw(p);
828 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
829 prefetchw(p + 1);
c3993076
JW
830 __ClearPageReserved(p);
831 set_page_count(p, 0);
a226f6c8 832 }
e2d0bd2b
YL
833 __ClearPageReserved(p);
834 set_page_count(p, 0);
c3993076 835
e2d0bd2b 836 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
837 set_page_refcounted(page);
838 __free_pages(page, order);
a226f6c8
DH
839}
840
47118af0 841#ifdef CONFIG_CMA
9cf510a5 842/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
843void __init init_cma_reserved_pageblock(struct page *page)
844{
845 unsigned i = pageblock_nr_pages;
846 struct page *p = page;
847
848 do {
849 __ClearPageReserved(p);
850 set_page_count(p, 0);
851 } while (++p, --i);
852
47118af0 853 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
854
855 if (pageblock_order >= MAX_ORDER) {
856 i = pageblock_nr_pages;
857 p = page;
858 do {
859 set_page_refcounted(p);
860 __free_pages(p, MAX_ORDER - 1);
861 p += MAX_ORDER_NR_PAGES;
862 } while (i -= MAX_ORDER_NR_PAGES);
863 } else {
864 set_page_refcounted(page);
865 __free_pages(page, pageblock_order);
866 }
867
3dcc0571 868 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
869}
870#endif
1da177e4
LT
871
872/*
873 * The order of subdivision here is critical for the IO subsystem.
874 * Please do not alter this order without good reasons and regression
875 * testing. Specifically, as large blocks of memory are subdivided,
876 * the order in which smaller blocks are delivered depends on the order
877 * they're subdivided in this function. This is the primary factor
878 * influencing the order in which pages are delivered to the IO
879 * subsystem according to empirical testing, and this is also justified
880 * by considering the behavior of a buddy system containing a single
881 * large block of memory acted on by a series of small allocations.
882 * This behavior is a critical factor in sglist merging's success.
883 *
6d49e352 884 * -- nyc
1da177e4 885 */
085cc7d5 886static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
887 int low, int high, struct free_area *area,
888 int migratetype)
1da177e4
LT
889{
890 unsigned long size = 1 << high;
891
892 while (high > low) {
893 area--;
894 high--;
895 size >>= 1;
309381fe 896 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 897
2847cf95 898 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 899 debug_guardpage_enabled() &&
2847cf95 900 high < debug_guardpage_minorder()) {
c0a32fc5
SG
901 /*
902 * Mark as guard pages (or page), that will allow to
903 * merge back to allocator when buddy will be freed.
904 * Corresponding page table entries will not be touched,
905 * pages will stay not present in virtual address space
906 */
2847cf95 907 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
908 continue;
909 }
b2a0ac88 910 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
911 area->nr_free++;
912 set_page_order(&page[size], high);
913 }
1da177e4
LT
914}
915
1da177e4
LT
916/*
917 * This page is about to be returned from the page allocator
918 */
2a7684a2 919static inline int check_new_page(struct page *page)
1da177e4 920{
d230dec1 921 const char *bad_reason = NULL;
f0b791a3
DH
922 unsigned long bad_flags = 0;
923
924 if (unlikely(page_mapcount(page)))
925 bad_reason = "nonzero mapcount";
926 if (unlikely(page->mapping != NULL))
927 bad_reason = "non-NULL mapping";
928 if (unlikely(atomic_read(&page->_count) != 0))
929 bad_reason = "nonzero _count";
930 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
931 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
932 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
933 }
9edad6ea
JW
934#ifdef CONFIG_MEMCG
935 if (unlikely(page->mem_cgroup))
936 bad_reason = "page still charged to cgroup";
937#endif
f0b791a3
DH
938 if (unlikely(bad_reason)) {
939 bad_page(page, bad_reason, bad_flags);
689bcebf 940 return 1;
8cc3b392 941 }
2a7684a2
WF
942 return 0;
943}
944
75379191
VB
945static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
946 int alloc_flags)
2a7684a2
WF
947{
948 int i;
949
950 for (i = 0; i < (1 << order); i++) {
951 struct page *p = page + i;
952 if (unlikely(check_new_page(p)))
953 return 1;
954 }
689bcebf 955
4c21e2f2 956 set_page_private(page, 0);
7835e98b 957 set_page_refcounted(page);
cc102509
NP
958
959 arch_alloc_page(page, order);
1da177e4 960 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 961 kasan_alloc_pages(page, order);
17cf4406
NP
962
963 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
964 for (i = 0; i < (1 << order); i++)
965 clear_highpage(page + i);
17cf4406
NP
966
967 if (order && (gfp_flags & __GFP_COMP))
968 prep_compound_page(page, order);
969
48c96a36
JK
970 set_page_owner(page, order, gfp_flags);
971
75379191
VB
972 /*
973 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
974 * allocate the page. The expectation is that the caller is taking
975 * steps that will free more memory. The caller should avoid the page
976 * being used for !PFMEMALLOC purposes.
977 */
978 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
979
689bcebf 980 return 0;
1da177e4
LT
981}
982
56fd56b8
MG
983/*
984 * Go through the free lists for the given migratetype and remove
985 * the smallest available page from the freelists
986 */
728ec980
MG
987static inline
988struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
989 int migratetype)
990{
991 unsigned int current_order;
b8af2941 992 struct free_area *area;
56fd56b8
MG
993 struct page *page;
994
995 /* Find a page of the appropriate size in the preferred list */
996 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
997 area = &(zone->free_area[current_order]);
998 if (list_empty(&area->free_list[migratetype]))
999 continue;
1000
1001 page = list_entry(area->free_list[migratetype].next,
1002 struct page, lru);
1003 list_del(&page->lru);
1004 rmv_page_order(page);
1005 area->nr_free--;
56fd56b8 1006 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1007 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1008 return page;
1009 }
1010
1011 return NULL;
1012}
1013
1014
b2a0ac88
MG
1015/*
1016 * This array describes the order lists are fallen back to when
1017 * the free lists for the desirable migrate type are depleted
1018 */
47118af0
MN
1019static int fallbacks[MIGRATE_TYPES][4] = {
1020 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1021 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1022 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1023#ifdef CONFIG_CMA
47118af0 1024 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1025#endif
6d4a4916 1026 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1027#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1028 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1029#endif
b2a0ac88
MG
1030};
1031
dc67647b
JK
1032#ifdef CONFIG_CMA
1033static struct page *__rmqueue_cma_fallback(struct zone *zone,
1034 unsigned int order)
1035{
1036 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1037}
1038#else
1039static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1040 unsigned int order) { return NULL; }
1041#endif
1042
c361be55
MG
1043/*
1044 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1045 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1046 * boundary. If alignment is required, use move_freepages_block()
1047 */
435b405c 1048int move_freepages(struct zone *zone,
b69a7288
AB
1049 struct page *start_page, struct page *end_page,
1050 int migratetype)
c361be55
MG
1051{
1052 struct page *page;
1053 unsigned long order;
d100313f 1054 int pages_moved = 0;
c361be55
MG
1055
1056#ifndef CONFIG_HOLES_IN_ZONE
1057 /*
1058 * page_zone is not safe to call in this context when
1059 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1060 * anyway as we check zone boundaries in move_freepages_block().
1061 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1062 * grouping pages by mobility
c361be55 1063 */
97ee4ba7 1064 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1065#endif
1066
1067 for (page = start_page; page <= end_page;) {
344c790e 1068 /* Make sure we are not inadvertently changing nodes */
309381fe 1069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1070
c361be55
MG
1071 if (!pfn_valid_within(page_to_pfn(page))) {
1072 page++;
1073 continue;
1074 }
1075
1076 if (!PageBuddy(page)) {
1077 page++;
1078 continue;
1079 }
1080
1081 order = page_order(page);
84be48d8
KS
1082 list_move(&page->lru,
1083 &zone->free_area[order].free_list[migratetype]);
95e34412 1084 set_freepage_migratetype(page, migratetype);
c361be55 1085 page += 1 << order;
d100313f 1086 pages_moved += 1 << order;
c361be55
MG
1087 }
1088
d100313f 1089 return pages_moved;
c361be55
MG
1090}
1091
ee6f509c 1092int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1093 int migratetype)
c361be55
MG
1094{
1095 unsigned long start_pfn, end_pfn;
1096 struct page *start_page, *end_page;
1097
1098 start_pfn = page_to_pfn(page);
d9c23400 1099 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1100 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1101 end_page = start_page + pageblock_nr_pages - 1;
1102 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1103
1104 /* Do not cross zone boundaries */
108bcc96 1105 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1106 start_page = page;
108bcc96 1107 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1108 return 0;
1109
1110 return move_freepages(zone, start_page, end_page, migratetype);
1111}
1112
2f66a68f
MG
1113static void change_pageblock_range(struct page *pageblock_page,
1114 int start_order, int migratetype)
1115{
1116 int nr_pageblocks = 1 << (start_order - pageblock_order);
1117
1118 while (nr_pageblocks--) {
1119 set_pageblock_migratetype(pageblock_page, migratetype);
1120 pageblock_page += pageblock_nr_pages;
1121 }
1122}
1123
fef903ef 1124/*
9c0415eb
VB
1125 * When we are falling back to another migratetype during allocation, try to
1126 * steal extra free pages from the same pageblocks to satisfy further
1127 * allocations, instead of polluting multiple pageblocks.
1128 *
1129 * If we are stealing a relatively large buddy page, it is likely there will
1130 * be more free pages in the pageblock, so try to steal them all. For
1131 * reclaimable and unmovable allocations, we steal regardless of page size,
1132 * as fragmentation caused by those allocations polluting movable pageblocks
1133 * is worse than movable allocations stealing from unmovable and reclaimable
1134 * pageblocks.
fef903ef 1135 */
4eb7dce6
JK
1136static bool can_steal_fallback(unsigned int order, int start_mt)
1137{
1138 /*
1139 * Leaving this order check is intended, although there is
1140 * relaxed order check in next check. The reason is that
1141 * we can actually steal whole pageblock if this condition met,
1142 * but, below check doesn't guarantee it and that is just heuristic
1143 * so could be changed anytime.
1144 */
1145 if (order >= pageblock_order)
1146 return true;
1147
1148 if (order >= pageblock_order / 2 ||
1149 start_mt == MIGRATE_RECLAIMABLE ||
1150 start_mt == MIGRATE_UNMOVABLE ||
1151 page_group_by_mobility_disabled)
1152 return true;
1153
1154 return false;
1155}
1156
1157/*
1158 * This function implements actual steal behaviour. If order is large enough,
1159 * we can steal whole pageblock. If not, we first move freepages in this
1160 * pageblock and check whether half of pages are moved or not. If half of
1161 * pages are moved, we can change migratetype of pageblock and permanently
1162 * use it's pages as requested migratetype in the future.
1163 */
1164static void steal_suitable_fallback(struct zone *zone, struct page *page,
1165 int start_type)
fef903ef
SB
1166{
1167 int current_order = page_order(page);
4eb7dce6 1168 int pages;
fef903ef 1169
fef903ef
SB
1170 /* Take ownership for orders >= pageblock_order */
1171 if (current_order >= pageblock_order) {
1172 change_pageblock_range(page, current_order, start_type);
3a1086fb 1173 return;
fef903ef
SB
1174 }
1175
4eb7dce6 1176 pages = move_freepages_block(zone, page, start_type);
fef903ef 1177
4eb7dce6
JK
1178 /* Claim the whole block if over half of it is free */
1179 if (pages >= (1 << (pageblock_order-1)) ||
1180 page_group_by_mobility_disabled)
1181 set_pageblock_migratetype(page, start_type);
1182}
1183
2149cdae
JK
1184/*
1185 * Check whether there is a suitable fallback freepage with requested order.
1186 * If only_stealable is true, this function returns fallback_mt only if
1187 * we can steal other freepages all together. This would help to reduce
1188 * fragmentation due to mixed migratetype pages in one pageblock.
1189 */
1190int find_suitable_fallback(struct free_area *area, unsigned int order,
1191 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1192{
1193 int i;
1194 int fallback_mt;
1195
1196 if (area->nr_free == 0)
1197 return -1;
1198
1199 *can_steal = false;
1200 for (i = 0;; i++) {
1201 fallback_mt = fallbacks[migratetype][i];
1202 if (fallback_mt == MIGRATE_RESERVE)
1203 break;
1204
1205 if (list_empty(&area->free_list[fallback_mt]))
1206 continue;
fef903ef 1207
4eb7dce6
JK
1208 if (can_steal_fallback(order, migratetype))
1209 *can_steal = true;
1210
2149cdae
JK
1211 if (!only_stealable)
1212 return fallback_mt;
1213
1214 if (*can_steal)
1215 return fallback_mt;
fef903ef 1216 }
4eb7dce6
JK
1217
1218 return -1;
fef903ef
SB
1219}
1220
b2a0ac88 1221/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1222static inline struct page *
7aeb09f9 1223__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1224{
b8af2941 1225 struct free_area *area;
7aeb09f9 1226 unsigned int current_order;
b2a0ac88 1227 struct page *page;
4eb7dce6
JK
1228 int fallback_mt;
1229 bool can_steal;
b2a0ac88
MG
1230
1231 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1232 for (current_order = MAX_ORDER-1;
1233 current_order >= order && current_order <= MAX_ORDER-1;
1234 --current_order) {
4eb7dce6
JK
1235 area = &(zone->free_area[current_order]);
1236 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1237 start_migratetype, false, &can_steal);
4eb7dce6
JK
1238 if (fallback_mt == -1)
1239 continue;
b2a0ac88 1240
4eb7dce6
JK
1241 page = list_entry(area->free_list[fallback_mt].next,
1242 struct page, lru);
1243 if (can_steal)
1244 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1245
4eb7dce6
JK
1246 /* Remove the page from the freelists */
1247 area->nr_free--;
1248 list_del(&page->lru);
1249 rmv_page_order(page);
3a1086fb 1250
4eb7dce6
JK
1251 expand(zone, page, order, current_order, area,
1252 start_migratetype);
1253 /*
1254 * The freepage_migratetype may differ from pageblock's
1255 * migratetype depending on the decisions in
1256 * try_to_steal_freepages(). This is OK as long as it
1257 * does not differ for MIGRATE_CMA pageblocks. For CMA
1258 * we need to make sure unallocated pages flushed from
1259 * pcp lists are returned to the correct freelist.
1260 */
1261 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1262
4eb7dce6
JK
1263 trace_mm_page_alloc_extfrag(page, order, current_order,
1264 start_migratetype, fallback_mt);
e0fff1bd 1265
4eb7dce6 1266 return page;
b2a0ac88
MG
1267 }
1268
728ec980 1269 return NULL;
b2a0ac88
MG
1270}
1271
56fd56b8 1272/*
1da177e4
LT
1273 * Do the hard work of removing an element from the buddy allocator.
1274 * Call me with the zone->lock already held.
1275 */
b2a0ac88
MG
1276static struct page *__rmqueue(struct zone *zone, unsigned int order,
1277 int migratetype)
1da177e4 1278{
1da177e4
LT
1279 struct page *page;
1280
728ec980 1281retry_reserve:
56fd56b8 1282 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1283
728ec980 1284 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1285 if (migratetype == MIGRATE_MOVABLE)
1286 page = __rmqueue_cma_fallback(zone, order);
1287
1288 if (!page)
1289 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1290
728ec980
MG
1291 /*
1292 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1293 * is used because __rmqueue_smallest is an inline function
1294 * and we want just one call site
1295 */
1296 if (!page) {
1297 migratetype = MIGRATE_RESERVE;
1298 goto retry_reserve;
1299 }
1300 }
1301
0d3d062a 1302 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1303 return page;
1da177e4
LT
1304}
1305
5f63b720 1306/*
1da177e4
LT
1307 * Obtain a specified number of elements from the buddy allocator, all under
1308 * a single hold of the lock, for efficiency. Add them to the supplied list.
1309 * Returns the number of new pages which were placed at *list.
1310 */
5f63b720 1311static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1312 unsigned long count, struct list_head *list,
b745bc85 1313 int migratetype, bool cold)
1da177e4 1314{
5bcc9f86 1315 int i;
5f63b720 1316
c54ad30c 1317 spin_lock(&zone->lock);
1da177e4 1318 for (i = 0; i < count; ++i) {
b2a0ac88 1319 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1320 if (unlikely(page == NULL))
1da177e4 1321 break;
81eabcbe
MG
1322
1323 /*
1324 * Split buddy pages returned by expand() are received here
1325 * in physical page order. The page is added to the callers and
1326 * list and the list head then moves forward. From the callers
1327 * perspective, the linked list is ordered by page number in
1328 * some conditions. This is useful for IO devices that can
1329 * merge IO requests if the physical pages are ordered
1330 * properly.
1331 */
b745bc85 1332 if (likely(!cold))
e084b2d9
MG
1333 list_add(&page->lru, list);
1334 else
1335 list_add_tail(&page->lru, list);
81eabcbe 1336 list = &page->lru;
5bcc9f86 1337 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1338 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1339 -(1 << order));
1da177e4 1340 }
f2260e6b 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1342 spin_unlock(&zone->lock);
085cc7d5 1343 return i;
1da177e4
LT
1344}
1345
4ae7c039 1346#ifdef CONFIG_NUMA
8fce4d8e 1347/*
4037d452
CL
1348 * Called from the vmstat counter updater to drain pagesets of this
1349 * currently executing processor on remote nodes after they have
1350 * expired.
1351 *
879336c3
CL
1352 * Note that this function must be called with the thread pinned to
1353 * a single processor.
8fce4d8e 1354 */
4037d452 1355void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1356{
4ae7c039 1357 unsigned long flags;
7be12fc9 1358 int to_drain, batch;
4ae7c039 1359
4037d452 1360 local_irq_save(flags);
4db0c3c2 1361 batch = READ_ONCE(pcp->batch);
7be12fc9 1362 to_drain = min(pcp->count, batch);
2a13515c
KM
1363 if (to_drain > 0) {
1364 free_pcppages_bulk(zone, to_drain, pcp);
1365 pcp->count -= to_drain;
1366 }
4037d452 1367 local_irq_restore(flags);
4ae7c039
CL
1368}
1369#endif
1370
9f8f2172 1371/*
93481ff0 1372 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1373 *
1374 * The processor must either be the current processor and the
1375 * thread pinned to the current processor or a processor that
1376 * is not online.
1377 */
93481ff0 1378static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1379{
c54ad30c 1380 unsigned long flags;
93481ff0
VB
1381 struct per_cpu_pageset *pset;
1382 struct per_cpu_pages *pcp;
1da177e4 1383
93481ff0
VB
1384 local_irq_save(flags);
1385 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1386
93481ff0
VB
1387 pcp = &pset->pcp;
1388 if (pcp->count) {
1389 free_pcppages_bulk(zone, pcp->count, pcp);
1390 pcp->count = 0;
1391 }
1392 local_irq_restore(flags);
1393}
3dfa5721 1394
93481ff0
VB
1395/*
1396 * Drain pcplists of all zones on the indicated processor.
1397 *
1398 * The processor must either be the current processor and the
1399 * thread pinned to the current processor or a processor that
1400 * is not online.
1401 */
1402static void drain_pages(unsigned int cpu)
1403{
1404 struct zone *zone;
1405
1406 for_each_populated_zone(zone) {
1407 drain_pages_zone(cpu, zone);
1da177e4
LT
1408 }
1409}
1da177e4 1410
9f8f2172
CL
1411/*
1412 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1413 *
1414 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1415 * the single zone's pages.
9f8f2172 1416 */
93481ff0 1417void drain_local_pages(struct zone *zone)
9f8f2172 1418{
93481ff0
VB
1419 int cpu = smp_processor_id();
1420
1421 if (zone)
1422 drain_pages_zone(cpu, zone);
1423 else
1424 drain_pages(cpu);
9f8f2172
CL
1425}
1426
1427/*
74046494
GBY
1428 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1429 *
93481ff0
VB
1430 * When zone parameter is non-NULL, spill just the single zone's pages.
1431 *
74046494
GBY
1432 * Note that this code is protected against sending an IPI to an offline
1433 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1434 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1435 * nothing keeps CPUs from showing up after we populated the cpumask and
1436 * before the call to on_each_cpu_mask().
9f8f2172 1437 */
93481ff0 1438void drain_all_pages(struct zone *zone)
9f8f2172 1439{
74046494 1440 int cpu;
74046494
GBY
1441
1442 /*
1443 * Allocate in the BSS so we wont require allocation in
1444 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1445 */
1446 static cpumask_t cpus_with_pcps;
1447
1448 /*
1449 * We don't care about racing with CPU hotplug event
1450 * as offline notification will cause the notified
1451 * cpu to drain that CPU pcps and on_each_cpu_mask
1452 * disables preemption as part of its processing
1453 */
1454 for_each_online_cpu(cpu) {
93481ff0
VB
1455 struct per_cpu_pageset *pcp;
1456 struct zone *z;
74046494 1457 bool has_pcps = false;
93481ff0
VB
1458
1459 if (zone) {
74046494 1460 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1461 if (pcp->pcp.count)
74046494 1462 has_pcps = true;
93481ff0
VB
1463 } else {
1464 for_each_populated_zone(z) {
1465 pcp = per_cpu_ptr(z->pageset, cpu);
1466 if (pcp->pcp.count) {
1467 has_pcps = true;
1468 break;
1469 }
74046494
GBY
1470 }
1471 }
93481ff0 1472
74046494
GBY
1473 if (has_pcps)
1474 cpumask_set_cpu(cpu, &cpus_with_pcps);
1475 else
1476 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1477 }
93481ff0
VB
1478 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1479 zone, 1);
9f8f2172
CL
1480}
1481
296699de 1482#ifdef CONFIG_HIBERNATION
1da177e4
LT
1483
1484void mark_free_pages(struct zone *zone)
1485{
f623f0db
RW
1486 unsigned long pfn, max_zone_pfn;
1487 unsigned long flags;
7aeb09f9 1488 unsigned int order, t;
1da177e4
LT
1489 struct list_head *curr;
1490
8080fc03 1491 if (zone_is_empty(zone))
1da177e4
LT
1492 return;
1493
1494 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1495
108bcc96 1496 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1497 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1498 if (pfn_valid(pfn)) {
1499 struct page *page = pfn_to_page(pfn);
1500
7be98234
RW
1501 if (!swsusp_page_is_forbidden(page))
1502 swsusp_unset_page_free(page);
f623f0db 1503 }
1da177e4 1504
b2a0ac88
MG
1505 for_each_migratetype_order(order, t) {
1506 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1507 unsigned long i;
1da177e4 1508
f623f0db
RW
1509 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1510 for (i = 0; i < (1UL << order); i++)
7be98234 1511 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1512 }
b2a0ac88 1513 }
1da177e4
LT
1514 spin_unlock_irqrestore(&zone->lock, flags);
1515}
e2c55dc8 1516#endif /* CONFIG_PM */
1da177e4 1517
1da177e4
LT
1518/*
1519 * Free a 0-order page
b745bc85 1520 * cold == true ? free a cold page : free a hot page
1da177e4 1521 */
b745bc85 1522void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1523{
1524 struct zone *zone = page_zone(page);
1525 struct per_cpu_pages *pcp;
1526 unsigned long flags;
dc4b0caf 1527 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1528 int migratetype;
1da177e4 1529
ec95f53a 1530 if (!free_pages_prepare(page, 0))
689bcebf
HD
1531 return;
1532
dc4b0caf 1533 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1534 set_freepage_migratetype(page, migratetype);
1da177e4 1535 local_irq_save(flags);
f8891e5e 1536 __count_vm_event(PGFREE);
da456f14 1537
5f8dcc21
MG
1538 /*
1539 * We only track unmovable, reclaimable and movable on pcp lists.
1540 * Free ISOLATE pages back to the allocator because they are being
1541 * offlined but treat RESERVE as movable pages so we can get those
1542 * areas back if necessary. Otherwise, we may have to free
1543 * excessively into the page allocator
1544 */
1545 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1546 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1547 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1548 goto out;
1549 }
1550 migratetype = MIGRATE_MOVABLE;
1551 }
1552
99dcc3e5 1553 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1554 if (!cold)
5f8dcc21 1555 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1556 else
1557 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1558 pcp->count++;
48db57f8 1559 if (pcp->count >= pcp->high) {
4db0c3c2 1560 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1561 free_pcppages_bulk(zone, batch, pcp);
1562 pcp->count -= batch;
48db57f8 1563 }
5f8dcc21
MG
1564
1565out:
1da177e4 1566 local_irq_restore(flags);
1da177e4
LT
1567}
1568
cc59850e
KK
1569/*
1570 * Free a list of 0-order pages
1571 */
b745bc85 1572void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1573{
1574 struct page *page, *next;
1575
1576 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1577 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1578 free_hot_cold_page(page, cold);
1579 }
1580}
1581
8dfcc9ba
NP
1582/*
1583 * split_page takes a non-compound higher-order page, and splits it into
1584 * n (1<<order) sub-pages: page[0..n]
1585 * Each sub-page must be freed individually.
1586 *
1587 * Note: this is probably too low level an operation for use in drivers.
1588 * Please consult with lkml before using this in your driver.
1589 */
1590void split_page(struct page *page, unsigned int order)
1591{
1592 int i;
1593
309381fe
SL
1594 VM_BUG_ON_PAGE(PageCompound(page), page);
1595 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1596
1597#ifdef CONFIG_KMEMCHECK
1598 /*
1599 * Split shadow pages too, because free(page[0]) would
1600 * otherwise free the whole shadow.
1601 */
1602 if (kmemcheck_page_is_tracked(page))
1603 split_page(virt_to_page(page[0].shadow), order);
1604#endif
1605
48c96a36
JK
1606 set_page_owner(page, 0, 0);
1607 for (i = 1; i < (1 << order); i++) {
7835e98b 1608 set_page_refcounted(page + i);
48c96a36
JK
1609 set_page_owner(page + i, 0, 0);
1610 }
8dfcc9ba 1611}
5853ff23 1612EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1613
3c605096 1614int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1615{
748446bb
MG
1616 unsigned long watermark;
1617 struct zone *zone;
2139cbe6 1618 int mt;
748446bb
MG
1619
1620 BUG_ON(!PageBuddy(page));
1621
1622 zone = page_zone(page);
2e30abd1 1623 mt = get_pageblock_migratetype(page);
748446bb 1624
194159fb 1625 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1626 /* Obey watermarks as if the page was being allocated */
1627 watermark = low_wmark_pages(zone) + (1 << order);
1628 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1629 return 0;
1630
8fb74b9f 1631 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1632 }
748446bb
MG
1633
1634 /* Remove page from free list */
1635 list_del(&page->lru);
1636 zone->free_area[order].nr_free--;
1637 rmv_page_order(page);
2139cbe6 1638
8fb74b9f 1639 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1640 if (order >= pageblock_order - 1) {
1641 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1642 for (; page < endpage; page += pageblock_nr_pages) {
1643 int mt = get_pageblock_migratetype(page);
194159fb 1644 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1645 set_pageblock_migratetype(page,
1646 MIGRATE_MOVABLE);
1647 }
748446bb
MG
1648 }
1649
48c96a36 1650 set_page_owner(page, order, 0);
8fb74b9f 1651 return 1UL << order;
1fb3f8ca
MG
1652}
1653
1654/*
1655 * Similar to split_page except the page is already free. As this is only
1656 * being used for migration, the migratetype of the block also changes.
1657 * As this is called with interrupts disabled, the caller is responsible
1658 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1659 * are enabled.
1660 *
1661 * Note: this is probably too low level an operation for use in drivers.
1662 * Please consult with lkml before using this in your driver.
1663 */
1664int split_free_page(struct page *page)
1665{
1666 unsigned int order;
1667 int nr_pages;
1668
1fb3f8ca
MG
1669 order = page_order(page);
1670
8fb74b9f 1671 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1672 if (!nr_pages)
1673 return 0;
1674
1675 /* Split into individual pages */
1676 set_page_refcounted(page);
1677 split_page(page, order);
1678 return nr_pages;
748446bb
MG
1679}
1680
1da177e4 1681/*
75379191 1682 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1683 */
0a15c3e9
MG
1684static inline
1685struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1686 struct zone *zone, unsigned int order,
1687 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1688{
1689 unsigned long flags;
689bcebf 1690 struct page *page;
b745bc85 1691 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1692
48db57f8 1693 if (likely(order == 0)) {
1da177e4 1694 struct per_cpu_pages *pcp;
5f8dcc21 1695 struct list_head *list;
1da177e4 1696
1da177e4 1697 local_irq_save(flags);
99dcc3e5
CL
1698 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1699 list = &pcp->lists[migratetype];
5f8dcc21 1700 if (list_empty(list)) {
535131e6 1701 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1702 pcp->batch, list,
e084b2d9 1703 migratetype, cold);
5f8dcc21 1704 if (unlikely(list_empty(list)))
6fb332fa 1705 goto failed;
535131e6 1706 }
b92a6edd 1707
5f8dcc21
MG
1708 if (cold)
1709 page = list_entry(list->prev, struct page, lru);
1710 else
1711 page = list_entry(list->next, struct page, lru);
1712
b92a6edd
MG
1713 list_del(&page->lru);
1714 pcp->count--;
7fb1d9fc 1715 } else {
dab48dab
AM
1716 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1717 /*
1718 * __GFP_NOFAIL is not to be used in new code.
1719 *
1720 * All __GFP_NOFAIL callers should be fixed so that they
1721 * properly detect and handle allocation failures.
1722 *
1723 * We most definitely don't want callers attempting to
4923abf9 1724 * allocate greater than order-1 page units with
dab48dab
AM
1725 * __GFP_NOFAIL.
1726 */
4923abf9 1727 WARN_ON_ONCE(order > 1);
dab48dab 1728 }
1da177e4 1729 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1730 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1731 spin_unlock(&zone->lock);
1732 if (!page)
1733 goto failed;
d1ce749a 1734 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1735 get_freepage_migratetype(page));
1da177e4
LT
1736 }
1737
3a025760 1738 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1739 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1740 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1741 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1742
f8891e5e 1743 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1744 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1745 local_irq_restore(flags);
1da177e4 1746
309381fe 1747 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1748 return page;
a74609fa
NP
1749
1750failed:
1751 local_irq_restore(flags);
a74609fa 1752 return NULL;
1da177e4
LT
1753}
1754
933e312e
AM
1755#ifdef CONFIG_FAIL_PAGE_ALLOC
1756
b2588c4b 1757static struct {
933e312e
AM
1758 struct fault_attr attr;
1759
1760 u32 ignore_gfp_highmem;
1761 u32 ignore_gfp_wait;
54114994 1762 u32 min_order;
933e312e
AM
1763} fail_page_alloc = {
1764 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1765 .ignore_gfp_wait = 1,
1766 .ignore_gfp_highmem = 1,
54114994 1767 .min_order = 1,
933e312e
AM
1768};
1769
1770static int __init setup_fail_page_alloc(char *str)
1771{
1772 return setup_fault_attr(&fail_page_alloc.attr, str);
1773}
1774__setup("fail_page_alloc=", setup_fail_page_alloc);
1775
deaf386e 1776static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1777{
54114994 1778 if (order < fail_page_alloc.min_order)
deaf386e 1779 return false;
933e312e 1780 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1781 return false;
933e312e 1782 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1783 return false;
933e312e 1784 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1785 return false;
933e312e
AM
1786
1787 return should_fail(&fail_page_alloc.attr, 1 << order);
1788}
1789
1790#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1791
1792static int __init fail_page_alloc_debugfs(void)
1793{
f4ae40a6 1794 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1795 struct dentry *dir;
933e312e 1796
dd48c085
AM
1797 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1798 &fail_page_alloc.attr);
1799 if (IS_ERR(dir))
1800 return PTR_ERR(dir);
933e312e 1801
b2588c4b
AM
1802 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1803 &fail_page_alloc.ignore_gfp_wait))
1804 goto fail;
1805 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1806 &fail_page_alloc.ignore_gfp_highmem))
1807 goto fail;
1808 if (!debugfs_create_u32("min-order", mode, dir,
1809 &fail_page_alloc.min_order))
1810 goto fail;
1811
1812 return 0;
1813fail:
dd48c085 1814 debugfs_remove_recursive(dir);
933e312e 1815
b2588c4b 1816 return -ENOMEM;
933e312e
AM
1817}
1818
1819late_initcall(fail_page_alloc_debugfs);
1820
1821#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1822
1823#else /* CONFIG_FAIL_PAGE_ALLOC */
1824
deaf386e 1825static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1826{
deaf386e 1827 return false;
933e312e
AM
1828}
1829
1830#endif /* CONFIG_FAIL_PAGE_ALLOC */
1831
1da177e4 1832/*
88f5acf8 1833 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1834 * of the allocation.
1835 */
7aeb09f9
MG
1836static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1837 unsigned long mark, int classzone_idx, int alloc_flags,
1838 long free_pages)
1da177e4 1839{
26086de3 1840 /* free_pages may go negative - that's OK */
d23ad423 1841 long min = mark;
1da177e4 1842 int o;
026b0814 1843 long free_cma = 0;
1da177e4 1844
df0a6daa 1845 free_pages -= (1 << order) - 1;
7fb1d9fc 1846 if (alloc_flags & ALLOC_HIGH)
1da177e4 1847 min -= min / 2;
7fb1d9fc 1848 if (alloc_flags & ALLOC_HARDER)
1da177e4 1849 min -= min / 4;
d95ea5d1
BZ
1850#ifdef CONFIG_CMA
1851 /* If allocation can't use CMA areas don't use free CMA pages */
1852 if (!(alloc_flags & ALLOC_CMA))
026b0814 1853 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1854#endif
026b0814 1855
3484b2de 1856 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1857 return false;
1da177e4
LT
1858 for (o = 0; o < order; o++) {
1859 /* At the next order, this order's pages become unavailable */
1860 free_pages -= z->free_area[o].nr_free << o;
1861
1862 /* Require fewer higher order pages to be free */
1863 min >>= 1;
1864
1865 if (free_pages <= min)
88f5acf8 1866 return false;
1da177e4 1867 }
88f5acf8
MG
1868 return true;
1869}
1870
7aeb09f9 1871bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1872 int classzone_idx, int alloc_flags)
1873{
1874 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1875 zone_page_state(z, NR_FREE_PAGES));
1876}
1877
7aeb09f9
MG
1878bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1879 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1880{
1881 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1882
1883 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1884 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1885
1886 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1887 free_pages);
1da177e4
LT
1888}
1889
9276b1bc
PJ
1890#ifdef CONFIG_NUMA
1891/*
1892 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1893 * skip over zones that are not allowed by the cpuset, or that have
1894 * been recently (in last second) found to be nearly full. See further
1895 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1896 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1897 *
a1aeb65a 1898 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1899 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1900 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1901 *
1902 * If the zonelist cache is not available for this zonelist, does
1903 * nothing and returns NULL.
1904 *
1905 * If the fullzones BITMAP in the zonelist cache is stale (more than
1906 * a second since last zap'd) then we zap it out (clear its bits.)
1907 *
1908 * We hold off even calling zlc_setup, until after we've checked the
1909 * first zone in the zonelist, on the theory that most allocations will
1910 * be satisfied from that first zone, so best to examine that zone as
1911 * quickly as we can.
1912 */
1913static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1914{
1915 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1916 nodemask_t *allowednodes; /* zonelist_cache approximation */
1917
1918 zlc = zonelist->zlcache_ptr;
1919 if (!zlc)
1920 return NULL;
1921
f05111f5 1922 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1923 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1924 zlc->last_full_zap = jiffies;
1925 }
1926
1927 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1928 &cpuset_current_mems_allowed :
4b0ef1fe 1929 &node_states[N_MEMORY];
9276b1bc
PJ
1930 return allowednodes;
1931}
1932
1933/*
1934 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1935 * if it is worth looking at further for free memory:
1936 * 1) Check that the zone isn't thought to be full (doesn't have its
1937 * bit set in the zonelist_cache fullzones BITMAP).
1938 * 2) Check that the zones node (obtained from the zonelist_cache
1939 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1940 * Return true (non-zero) if zone is worth looking at further, or
1941 * else return false (zero) if it is not.
1942 *
1943 * This check -ignores- the distinction between various watermarks,
1944 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1945 * found to be full for any variation of these watermarks, it will
1946 * be considered full for up to one second by all requests, unless
1947 * we are so low on memory on all allowed nodes that we are forced
1948 * into the second scan of the zonelist.
1949 *
1950 * In the second scan we ignore this zonelist cache and exactly
1951 * apply the watermarks to all zones, even it is slower to do so.
1952 * We are low on memory in the second scan, and should leave no stone
1953 * unturned looking for a free page.
1954 */
dd1a239f 1955static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1956 nodemask_t *allowednodes)
1957{
1958 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1959 int i; /* index of *z in zonelist zones */
1960 int n; /* node that zone *z is on */
1961
1962 zlc = zonelist->zlcache_ptr;
1963 if (!zlc)
1964 return 1;
1965
dd1a239f 1966 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1967 n = zlc->z_to_n[i];
1968
1969 /* This zone is worth trying if it is allowed but not full */
1970 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1971}
1972
1973/*
1974 * Given 'z' scanning a zonelist, set the corresponding bit in
1975 * zlc->fullzones, so that subsequent attempts to allocate a page
1976 * from that zone don't waste time re-examining it.
1977 */
dd1a239f 1978static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1979{
1980 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1981 int i; /* index of *z in zonelist zones */
1982
1983 zlc = zonelist->zlcache_ptr;
1984 if (!zlc)
1985 return;
1986
dd1a239f 1987 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1988
1989 set_bit(i, zlc->fullzones);
1990}
1991
76d3fbf8
MG
1992/*
1993 * clear all zones full, called after direct reclaim makes progress so that
1994 * a zone that was recently full is not skipped over for up to a second
1995 */
1996static void zlc_clear_zones_full(struct zonelist *zonelist)
1997{
1998 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1999
2000 zlc = zonelist->zlcache_ptr;
2001 if (!zlc)
2002 return;
2003
2004 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2005}
2006
81c0a2bb
JW
2007static bool zone_local(struct zone *local_zone, struct zone *zone)
2008{
fff4068c 2009 return local_zone->node == zone->node;
81c0a2bb
JW
2010}
2011
957f822a
DR
2012static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2013{
5f7a75ac
MG
2014 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2015 RECLAIM_DISTANCE;
957f822a
DR
2016}
2017
9276b1bc
PJ
2018#else /* CONFIG_NUMA */
2019
2020static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2021{
2022 return NULL;
2023}
2024
dd1a239f 2025static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2026 nodemask_t *allowednodes)
2027{
2028 return 1;
2029}
2030
dd1a239f 2031static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2032{
2033}
76d3fbf8
MG
2034
2035static void zlc_clear_zones_full(struct zonelist *zonelist)
2036{
2037}
957f822a 2038
81c0a2bb
JW
2039static bool zone_local(struct zone *local_zone, struct zone *zone)
2040{
2041 return true;
2042}
2043
957f822a
DR
2044static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2045{
2046 return true;
2047}
2048
9276b1bc
PJ
2049#endif /* CONFIG_NUMA */
2050
4ffeaf35
MG
2051static void reset_alloc_batches(struct zone *preferred_zone)
2052{
2053 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2054
2055 do {
2056 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2057 high_wmark_pages(zone) - low_wmark_pages(zone) -
2058 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2059 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2060 } while (zone++ != preferred_zone);
2061}
2062
7fb1d9fc 2063/*
0798e519 2064 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2065 * a page.
2066 */
2067static struct page *
a9263751
VB
2068get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2069 const struct alloc_context *ac)
753ee728 2070{
a9263751 2071 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2072 struct zoneref *z;
7fb1d9fc 2073 struct page *page = NULL;
5117f45d 2074 struct zone *zone;
9276b1bc
PJ
2075 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2076 int zlc_active = 0; /* set if using zonelist_cache */
2077 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2078 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2079 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2080 int nr_fair_skipped = 0;
2081 bool zonelist_rescan;
54a6eb5c 2082
9276b1bc 2083zonelist_scan:
4ffeaf35
MG
2084 zonelist_rescan = false;
2085
7fb1d9fc 2086 /*
9276b1bc 2087 * Scan zonelist, looking for a zone with enough free.
344736f2 2088 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2089 */
a9263751
VB
2090 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2091 ac->nodemask) {
e085dbc5
JW
2092 unsigned long mark;
2093
e5adfffc 2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2095 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2096 continue;
664eedde
MG
2097 if (cpusets_enabled() &&
2098 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2099 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2100 continue;
81c0a2bb
JW
2101 /*
2102 * Distribute pages in proportion to the individual
2103 * zone size to ensure fair page aging. The zone a
2104 * page was allocated in should have no effect on the
2105 * time the page has in memory before being reclaimed.
81c0a2bb 2106 */
3a025760 2107 if (alloc_flags & ALLOC_FAIR) {
a9263751 2108 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2109 break;
57054651 2110 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2111 nr_fair_skipped++;
3a025760 2112 continue;
4ffeaf35 2113 }
81c0a2bb 2114 }
a756cf59
JW
2115 /*
2116 * When allocating a page cache page for writing, we
2117 * want to get it from a zone that is within its dirty
2118 * limit, such that no single zone holds more than its
2119 * proportional share of globally allowed dirty pages.
2120 * The dirty limits take into account the zone's
2121 * lowmem reserves and high watermark so that kswapd
2122 * should be able to balance it without having to
2123 * write pages from its LRU list.
2124 *
2125 * This may look like it could increase pressure on
2126 * lower zones by failing allocations in higher zones
2127 * before they are full. But the pages that do spill
2128 * over are limited as the lower zones are protected
2129 * by this very same mechanism. It should not become
2130 * a practical burden to them.
2131 *
2132 * XXX: For now, allow allocations to potentially
2133 * exceed the per-zone dirty limit in the slowpath
2134 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2135 * which is important when on a NUMA setup the allowed
2136 * zones are together not big enough to reach the
2137 * global limit. The proper fix for these situations
2138 * will require awareness of zones in the
2139 * dirty-throttling and the flusher threads.
2140 */
a6e21b14 2141 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2142 continue;
7fb1d9fc 2143
e085dbc5
JW
2144 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2145 if (!zone_watermark_ok(zone, order, mark,
a9263751 2146 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2147 int ret;
2148
5dab2911
MG
2149 /* Checked here to keep the fast path fast */
2150 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2151 if (alloc_flags & ALLOC_NO_WATERMARKS)
2152 goto try_this_zone;
2153
e5adfffc
KS
2154 if (IS_ENABLED(CONFIG_NUMA) &&
2155 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2156 /*
2157 * we do zlc_setup if there are multiple nodes
2158 * and before considering the first zone allowed
2159 * by the cpuset.
2160 */
2161 allowednodes = zlc_setup(zonelist, alloc_flags);
2162 zlc_active = 1;
2163 did_zlc_setup = 1;
2164 }
2165
957f822a 2166 if (zone_reclaim_mode == 0 ||
a9263751 2167 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2168 goto this_zone_full;
2169
cd38b115
MG
2170 /*
2171 * As we may have just activated ZLC, check if the first
2172 * eligible zone has failed zone_reclaim recently.
2173 */
e5adfffc 2174 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2175 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2176 continue;
2177
fa5e084e
MG
2178 ret = zone_reclaim(zone, gfp_mask, order);
2179 switch (ret) {
2180 case ZONE_RECLAIM_NOSCAN:
2181 /* did not scan */
cd38b115 2182 continue;
fa5e084e
MG
2183 case ZONE_RECLAIM_FULL:
2184 /* scanned but unreclaimable */
cd38b115 2185 continue;
fa5e084e
MG
2186 default:
2187 /* did we reclaim enough */
fed2719e 2188 if (zone_watermark_ok(zone, order, mark,
a9263751 2189 ac->classzone_idx, alloc_flags))
fed2719e
MG
2190 goto try_this_zone;
2191
2192 /*
2193 * Failed to reclaim enough to meet watermark.
2194 * Only mark the zone full if checking the min
2195 * watermark or if we failed to reclaim just
2196 * 1<<order pages or else the page allocator
2197 * fastpath will prematurely mark zones full
2198 * when the watermark is between the low and
2199 * min watermarks.
2200 */
2201 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2202 ret == ZONE_RECLAIM_SOME)
9276b1bc 2203 goto this_zone_full;
fed2719e
MG
2204
2205 continue;
0798e519 2206 }
7fb1d9fc
RS
2207 }
2208
fa5e084e 2209try_this_zone:
a9263751
VB
2210 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2211 gfp_mask, ac->migratetype);
75379191
VB
2212 if (page) {
2213 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2214 goto try_this_zone;
2215 return page;
2216 }
9276b1bc 2217this_zone_full:
65bb3719 2218 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2219 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2220 }
9276b1bc 2221
4ffeaf35
MG
2222 /*
2223 * The first pass makes sure allocations are spread fairly within the
2224 * local node. However, the local node might have free pages left
2225 * after the fairness batches are exhausted, and remote zones haven't
2226 * even been considered yet. Try once more without fairness, and
2227 * include remote zones now, before entering the slowpath and waking
2228 * kswapd: prefer spilling to a remote zone over swapping locally.
2229 */
2230 if (alloc_flags & ALLOC_FAIR) {
2231 alloc_flags &= ~ALLOC_FAIR;
2232 if (nr_fair_skipped) {
2233 zonelist_rescan = true;
a9263751 2234 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2235 }
2236 if (nr_online_nodes > 1)
2237 zonelist_rescan = true;
2238 }
2239
2240 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2241 /* Disable zlc cache for second zonelist scan */
2242 zlc_active = 0;
2243 zonelist_rescan = true;
2244 }
2245
2246 if (zonelist_rescan)
2247 goto zonelist_scan;
2248
2249 return NULL;
753ee728
MH
2250}
2251
29423e77
DR
2252/*
2253 * Large machines with many possible nodes should not always dump per-node
2254 * meminfo in irq context.
2255 */
2256static inline bool should_suppress_show_mem(void)
2257{
2258 bool ret = false;
2259
2260#if NODES_SHIFT > 8
2261 ret = in_interrupt();
2262#endif
2263 return ret;
2264}
2265
a238ab5b
DH
2266static DEFINE_RATELIMIT_STATE(nopage_rs,
2267 DEFAULT_RATELIMIT_INTERVAL,
2268 DEFAULT_RATELIMIT_BURST);
2269
2270void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2271{
a238ab5b
DH
2272 unsigned int filter = SHOW_MEM_FILTER_NODES;
2273
c0a32fc5
SG
2274 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2275 debug_guardpage_minorder() > 0)
a238ab5b
DH
2276 return;
2277
2278 /*
2279 * This documents exceptions given to allocations in certain
2280 * contexts that are allowed to allocate outside current's set
2281 * of allowed nodes.
2282 */
2283 if (!(gfp_mask & __GFP_NOMEMALLOC))
2284 if (test_thread_flag(TIF_MEMDIE) ||
2285 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2286 filter &= ~SHOW_MEM_FILTER_NODES;
2287 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2288 filter &= ~SHOW_MEM_FILTER_NODES;
2289
2290 if (fmt) {
3ee9a4f0
JP
2291 struct va_format vaf;
2292 va_list args;
2293
a238ab5b 2294 va_start(args, fmt);
3ee9a4f0
JP
2295
2296 vaf.fmt = fmt;
2297 vaf.va = &args;
2298
2299 pr_warn("%pV", &vaf);
2300
a238ab5b
DH
2301 va_end(args);
2302 }
2303
3ee9a4f0
JP
2304 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2305 current->comm, order, gfp_mask);
a238ab5b
DH
2306
2307 dump_stack();
2308 if (!should_suppress_show_mem())
2309 show_mem(filter);
2310}
2311
11e33f6a
MG
2312static inline int
2313should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2314 unsigned long did_some_progress,
11e33f6a 2315 unsigned long pages_reclaimed)
1da177e4 2316{
11e33f6a
MG
2317 /* Do not loop if specifically requested */
2318 if (gfp_mask & __GFP_NORETRY)
2319 return 0;
1da177e4 2320
f90ac398
MG
2321 /* Always retry if specifically requested */
2322 if (gfp_mask & __GFP_NOFAIL)
2323 return 1;
2324
2325 /*
2326 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2327 * making forward progress without invoking OOM. Suspend also disables
2328 * storage devices so kswapd will not help. Bail if we are suspending.
2329 */
2330 if (!did_some_progress && pm_suspended_storage())
2331 return 0;
2332
11e33f6a
MG
2333 /*
2334 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2335 * means __GFP_NOFAIL, but that may not be true in other
2336 * implementations.
2337 */
2338 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2339 return 1;
2340
2341 /*
2342 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2343 * specified, then we retry until we no longer reclaim any pages
2344 * (above), or we've reclaimed an order of pages at least as
2345 * large as the allocation's order. In both cases, if the
2346 * allocation still fails, we stop retrying.
2347 */
2348 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2349 return 1;
cf40bd16 2350
11e33f6a
MG
2351 return 0;
2352}
933e312e 2353
11e33f6a
MG
2354static inline struct page *
2355__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2356 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2357{
2358 struct page *page;
2359
9879de73
JW
2360 *did_some_progress = 0;
2361
9879de73
JW
2362 /*
2363 * Acquire the per-zone oom lock for each zone. If that
2364 * fails, somebody else is making progress for us.
2365 */
a9263751 2366 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2367 *did_some_progress = 1;
11e33f6a 2368 schedule_timeout_uninterruptible(1);
1da177e4
LT
2369 return NULL;
2370 }
6b1de916 2371
11e33f6a
MG
2372 /*
2373 * Go through the zonelist yet one more time, keep very high watermark
2374 * here, this is only to catch a parallel oom killing, we must fail if
2375 * we're still under heavy pressure.
2376 */
a9263751
VB
2377 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2378 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2379 if (page)
11e33f6a
MG
2380 goto out;
2381
4365a567 2382 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2383 /* Coredumps can quickly deplete all memory reserves */
2384 if (current->flags & PF_DUMPCORE)
2385 goto out;
4365a567
KH
2386 /* The OOM killer will not help higher order allocs */
2387 if (order > PAGE_ALLOC_COSTLY_ORDER)
2388 goto out;
03668b3c 2389 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2390 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2391 goto out;
9879de73 2392 /* The OOM killer does not compensate for light reclaim */
cc873177
JW
2393 if (!(gfp_mask & __GFP_FS)) {
2394 /*
2395 * XXX: Page reclaim didn't yield anything,
2396 * and the OOM killer can't be invoked, but
2397 * keep looping as per should_alloc_retry().
2398 */
2399 *did_some_progress = 1;
9879de73 2400 goto out;
cc873177 2401 }
4167e9b2 2402 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2403 if (gfp_mask & __GFP_THISNODE)
2404 goto out;
2405 }
11e33f6a 2406 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2407 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2408 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2409 *did_some_progress = 1;
11e33f6a 2410out:
a9263751 2411 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2412 return page;
2413}
2414
56de7263
MG
2415#ifdef CONFIG_COMPACTION
2416/* Try memory compaction for high-order allocations before reclaim */
2417static struct page *
2418__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2419 int alloc_flags, const struct alloc_context *ac,
2420 enum migrate_mode mode, int *contended_compaction,
2421 bool *deferred_compaction)
56de7263 2422{
53853e2d 2423 unsigned long compact_result;
98dd3b48 2424 struct page *page;
53853e2d
VB
2425
2426 if (!order)
66199712 2427 return NULL;
66199712 2428
c06b1fca 2429 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2430 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2431 mode, contended_compaction);
c06b1fca 2432 current->flags &= ~PF_MEMALLOC;
56de7263 2433
98dd3b48
VB
2434 switch (compact_result) {
2435 case COMPACT_DEFERRED:
53853e2d 2436 *deferred_compaction = true;
98dd3b48
VB
2437 /* fall-through */
2438 case COMPACT_SKIPPED:
2439 return NULL;
2440 default:
2441 break;
2442 }
53853e2d 2443
98dd3b48
VB
2444 /*
2445 * At least in one zone compaction wasn't deferred or skipped, so let's
2446 * count a compaction stall
2447 */
2448 count_vm_event(COMPACTSTALL);
8fb74b9f 2449
a9263751
VB
2450 page = get_page_from_freelist(gfp_mask, order,
2451 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2452
98dd3b48
VB
2453 if (page) {
2454 struct zone *zone = page_zone(page);
53853e2d 2455
98dd3b48
VB
2456 zone->compact_blockskip_flush = false;
2457 compaction_defer_reset(zone, order, true);
2458 count_vm_event(COMPACTSUCCESS);
2459 return page;
2460 }
56de7263 2461
98dd3b48
VB
2462 /*
2463 * It's bad if compaction run occurs and fails. The most likely reason
2464 * is that pages exist, but not enough to satisfy watermarks.
2465 */
2466 count_vm_event(COMPACTFAIL);
66199712 2467
98dd3b48 2468 cond_resched();
56de7263
MG
2469
2470 return NULL;
2471}
2472#else
2473static inline struct page *
2474__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2475 int alloc_flags, const struct alloc_context *ac,
2476 enum migrate_mode mode, int *contended_compaction,
2477 bool *deferred_compaction)
56de7263
MG
2478{
2479 return NULL;
2480}
2481#endif /* CONFIG_COMPACTION */
2482
bba90710
MS
2483/* Perform direct synchronous page reclaim */
2484static int
a9263751
VB
2485__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2486 const struct alloc_context *ac)
11e33f6a 2487{
11e33f6a 2488 struct reclaim_state reclaim_state;
bba90710 2489 int progress;
11e33f6a
MG
2490
2491 cond_resched();
2492
2493 /* We now go into synchronous reclaim */
2494 cpuset_memory_pressure_bump();
c06b1fca 2495 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2496 lockdep_set_current_reclaim_state(gfp_mask);
2497 reclaim_state.reclaimed_slab = 0;
c06b1fca 2498 current->reclaim_state = &reclaim_state;
11e33f6a 2499
a9263751
VB
2500 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2501 ac->nodemask);
11e33f6a 2502
c06b1fca 2503 current->reclaim_state = NULL;
11e33f6a 2504 lockdep_clear_current_reclaim_state();
c06b1fca 2505 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2506
2507 cond_resched();
2508
bba90710
MS
2509 return progress;
2510}
2511
2512/* The really slow allocator path where we enter direct reclaim */
2513static inline struct page *
2514__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2515 int alloc_flags, const struct alloc_context *ac,
2516 unsigned long *did_some_progress)
bba90710
MS
2517{
2518 struct page *page = NULL;
2519 bool drained = false;
2520
a9263751 2521 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2522 if (unlikely(!(*did_some_progress)))
2523 return NULL;
11e33f6a 2524
76d3fbf8 2525 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2526 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2527 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2528
9ee493ce 2529retry:
a9263751
VB
2530 page = get_page_from_freelist(gfp_mask, order,
2531 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2532
2533 /*
2534 * If an allocation failed after direct reclaim, it could be because
2535 * pages are pinned on the per-cpu lists. Drain them and try again
2536 */
2537 if (!page && !drained) {
93481ff0 2538 drain_all_pages(NULL);
9ee493ce
MG
2539 drained = true;
2540 goto retry;
2541 }
2542
11e33f6a
MG
2543 return page;
2544}
2545
1da177e4 2546/*
11e33f6a
MG
2547 * This is called in the allocator slow-path if the allocation request is of
2548 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2549 */
11e33f6a
MG
2550static inline struct page *
2551__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2552 const struct alloc_context *ac)
11e33f6a
MG
2553{
2554 struct page *page;
2555
2556 do {
a9263751
VB
2557 page = get_page_from_freelist(gfp_mask, order,
2558 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2559
2560 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2561 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2562 HZ/50);
11e33f6a
MG
2563 } while (!page && (gfp_mask & __GFP_NOFAIL));
2564
2565 return page;
2566}
2567
a9263751 2568static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2569{
2570 struct zoneref *z;
2571 struct zone *zone;
2572
a9263751
VB
2573 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2574 ac->high_zoneidx, ac->nodemask)
2575 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2576}
2577
341ce06f
PZ
2578static inline int
2579gfp_to_alloc_flags(gfp_t gfp_mask)
2580{
341ce06f 2581 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2582 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2583
a56f57ff 2584 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2585 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2586
341ce06f
PZ
2587 /*
2588 * The caller may dip into page reserves a bit more if the caller
2589 * cannot run direct reclaim, or if the caller has realtime scheduling
2590 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2591 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2592 */
e6223a3b 2593 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2594
b104a35d 2595 if (atomic) {
5c3240d9 2596 /*
b104a35d
DR
2597 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2598 * if it can't schedule.
5c3240d9 2599 */
b104a35d 2600 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2601 alloc_flags |= ALLOC_HARDER;
523b9458 2602 /*
b104a35d 2603 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2604 * comment for __cpuset_node_allowed().
523b9458 2605 */
341ce06f 2606 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2607 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2608 alloc_flags |= ALLOC_HARDER;
2609
b37f1dd0
MG
2610 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2611 if (gfp_mask & __GFP_MEMALLOC)
2612 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2613 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2614 alloc_flags |= ALLOC_NO_WATERMARKS;
2615 else if (!in_interrupt() &&
2616 ((current->flags & PF_MEMALLOC) ||
2617 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2618 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2619 }
d95ea5d1 2620#ifdef CONFIG_CMA
43e7a34d 2621 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2622 alloc_flags |= ALLOC_CMA;
2623#endif
341ce06f
PZ
2624 return alloc_flags;
2625}
2626
072bb0aa
MG
2627bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2628{
b37f1dd0 2629 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2630}
2631
11e33f6a
MG
2632static inline struct page *
2633__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2634 struct alloc_context *ac)
11e33f6a
MG
2635{
2636 const gfp_t wait = gfp_mask & __GFP_WAIT;
2637 struct page *page = NULL;
2638 int alloc_flags;
2639 unsigned long pages_reclaimed = 0;
2640 unsigned long did_some_progress;
e0b9daeb 2641 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2642 bool deferred_compaction = false;
1f9efdef 2643 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2644
72807a74
MG
2645 /*
2646 * In the slowpath, we sanity check order to avoid ever trying to
2647 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2648 * be using allocators in order of preference for an area that is
2649 * too large.
2650 */
1fc28b70
MG
2651 if (order >= MAX_ORDER) {
2652 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2653 return NULL;
1fc28b70 2654 }
1da177e4 2655
952f3b51 2656 /*
4167e9b2
DR
2657 * If this allocation cannot block and it is for a specific node, then
2658 * fail early. There's no need to wakeup kswapd or retry for a
2659 * speculative node-specific allocation.
952f3b51 2660 */
4167e9b2 2661 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2662 goto nopage;
2663
9879de73 2664retry:
3a025760 2665 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2666 wake_all_kswapds(order, ac);
1da177e4 2667
9bf2229f 2668 /*
7fb1d9fc
RS
2669 * OK, we're below the kswapd watermark and have kicked background
2670 * reclaim. Now things get more complex, so set up alloc_flags according
2671 * to how we want to proceed.
9bf2229f 2672 */
341ce06f 2673 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2674
f33261d7
DR
2675 /*
2676 * Find the true preferred zone if the allocation is unconstrained by
2677 * cpusets.
2678 */
a9263751 2679 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2680 struct zoneref *preferred_zoneref;
a9263751
VB
2681 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2682 ac->high_zoneidx, NULL, &ac->preferred_zone);
2683 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2684 }
f33261d7 2685
341ce06f 2686 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2687 page = get_page_from_freelist(gfp_mask, order,
2688 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2689 if (page)
2690 goto got_pg;
1da177e4 2691
11e33f6a 2692 /* Allocate without watermarks if the context allows */
341ce06f 2693 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2694 /*
2695 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2696 * the allocation is high priority and these type of
2697 * allocations are system rather than user orientated
2698 */
a9263751
VB
2699 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2700
2701 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2702
cfd19c5a 2703 if (page) {
341ce06f 2704 goto got_pg;
cfd19c5a 2705 }
1da177e4
LT
2706 }
2707
2708 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2709 if (!wait) {
2710 /*
2711 * All existing users of the deprecated __GFP_NOFAIL are
2712 * blockable, so warn of any new users that actually allow this
2713 * type of allocation to fail.
2714 */
2715 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2716 goto nopage;
aed0a0e3 2717 }
1da177e4 2718
341ce06f 2719 /* Avoid recursion of direct reclaim */
c06b1fca 2720 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2721 goto nopage;
2722
6583bb64
DR
2723 /* Avoid allocations with no watermarks from looping endlessly */
2724 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2725 goto nopage;
2726
77f1fe6b
MG
2727 /*
2728 * Try direct compaction. The first pass is asynchronous. Subsequent
2729 * attempts after direct reclaim are synchronous
2730 */
a9263751
VB
2731 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2732 migration_mode,
2733 &contended_compaction,
53853e2d 2734 &deferred_compaction);
56de7263
MG
2735 if (page)
2736 goto got_pg;
75f30861 2737
1f9efdef
VB
2738 /* Checks for THP-specific high-order allocations */
2739 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2740 /*
2741 * If compaction is deferred for high-order allocations, it is
2742 * because sync compaction recently failed. If this is the case
2743 * and the caller requested a THP allocation, we do not want
2744 * to heavily disrupt the system, so we fail the allocation
2745 * instead of entering direct reclaim.
2746 */
2747 if (deferred_compaction)
2748 goto nopage;
2749
2750 /*
2751 * In all zones where compaction was attempted (and not
2752 * deferred or skipped), lock contention has been detected.
2753 * For THP allocation we do not want to disrupt the others
2754 * so we fallback to base pages instead.
2755 */
2756 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2757 goto nopage;
2758
2759 /*
2760 * If compaction was aborted due to need_resched(), we do not
2761 * want to further increase allocation latency, unless it is
2762 * khugepaged trying to collapse.
2763 */
2764 if (contended_compaction == COMPACT_CONTENDED_SCHED
2765 && !(current->flags & PF_KTHREAD))
2766 goto nopage;
2767 }
66199712 2768
8fe78048
DR
2769 /*
2770 * It can become very expensive to allocate transparent hugepages at
2771 * fault, so use asynchronous memory compaction for THP unless it is
2772 * khugepaged trying to collapse.
2773 */
2774 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2775 (current->flags & PF_KTHREAD))
2776 migration_mode = MIGRATE_SYNC_LIGHT;
2777
11e33f6a 2778 /* Try direct reclaim and then allocating */
a9263751
VB
2779 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2780 &did_some_progress);
11e33f6a
MG
2781 if (page)
2782 goto got_pg;
1da177e4 2783
11e33f6a 2784 /* Check if we should retry the allocation */
a41f24ea 2785 pages_reclaimed += did_some_progress;
f90ac398
MG
2786 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2787 pages_reclaimed)) {
9879de73
JW
2788 /*
2789 * If we fail to make progress by freeing individual
2790 * pages, but the allocation wants us to keep going,
2791 * start OOM killing tasks.
2792 */
2793 if (!did_some_progress) {
a9263751
VB
2794 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2795 &did_some_progress);
9879de73
JW
2796 if (page)
2797 goto got_pg;
2798 if (!did_some_progress)
2799 goto nopage;
2800 }
11e33f6a 2801 /* Wait for some write requests to complete then retry */
a9263751 2802 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2803 goto retry;
3e7d3449
MG
2804 } else {
2805 /*
2806 * High-order allocations do not necessarily loop after
2807 * direct reclaim and reclaim/compaction depends on compaction
2808 * being called after reclaim so call directly if necessary
2809 */
a9263751
VB
2810 page = __alloc_pages_direct_compact(gfp_mask, order,
2811 alloc_flags, ac, migration_mode,
2812 &contended_compaction,
53853e2d 2813 &deferred_compaction);
3e7d3449
MG
2814 if (page)
2815 goto got_pg;
1da177e4
LT
2816 }
2817
2818nopage:
a238ab5b 2819 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2820got_pg:
072bb0aa 2821 return page;
1da177e4 2822}
11e33f6a
MG
2823
2824/*
2825 * This is the 'heart' of the zoned buddy allocator.
2826 */
2827struct page *
2828__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2829 struct zonelist *zonelist, nodemask_t *nodemask)
2830{
d8846374 2831 struct zoneref *preferred_zoneref;
cc9a6c87 2832 struct page *page = NULL;
cc9a6c87 2833 unsigned int cpuset_mems_cookie;
3a025760 2834 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2835 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2836 struct alloc_context ac = {
2837 .high_zoneidx = gfp_zone(gfp_mask),
2838 .nodemask = nodemask,
2839 .migratetype = gfpflags_to_migratetype(gfp_mask),
2840 };
11e33f6a 2841
dcce284a
BH
2842 gfp_mask &= gfp_allowed_mask;
2843
11e33f6a
MG
2844 lockdep_trace_alloc(gfp_mask);
2845
2846 might_sleep_if(gfp_mask & __GFP_WAIT);
2847
2848 if (should_fail_alloc_page(gfp_mask, order))
2849 return NULL;
2850
2851 /*
2852 * Check the zones suitable for the gfp_mask contain at least one
2853 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 2854 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
2855 */
2856 if (unlikely(!zonelist->_zonerefs->zone))
2857 return NULL;
2858
a9263751 2859 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2860 alloc_flags |= ALLOC_CMA;
2861
cc9a6c87 2862retry_cpuset:
d26914d1 2863 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2864
a9263751
VB
2865 /* We set it here, as __alloc_pages_slowpath might have changed it */
2866 ac.zonelist = zonelist;
5117f45d 2867 /* The preferred zone is used for statistics later */
a9263751
VB
2868 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2869 ac.nodemask ? : &cpuset_current_mems_allowed,
2870 &ac.preferred_zone);
2871 if (!ac.preferred_zone)
cc9a6c87 2872 goto out;
a9263751 2873 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2874
2875 /* First allocation attempt */
91fbdc0f 2876 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2877 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2878 if (unlikely(!page)) {
2879 /*
2880 * Runtime PM, block IO and its error handling path
2881 * can deadlock because I/O on the device might not
2882 * complete.
2883 */
91fbdc0f
AM
2884 alloc_mask = memalloc_noio_flags(gfp_mask);
2885
a9263751 2886 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2887 }
11e33f6a 2888
23f086f9
XQ
2889 if (kmemcheck_enabled && page)
2890 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2891
a9263751 2892 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2893
2894out:
2895 /*
2896 * When updating a task's mems_allowed, it is possible to race with
2897 * parallel threads in such a way that an allocation can fail while
2898 * the mask is being updated. If a page allocation is about to fail,
2899 * check if the cpuset changed during allocation and if so, retry.
2900 */
d26914d1 2901 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2902 goto retry_cpuset;
2903
11e33f6a 2904 return page;
1da177e4 2905}
d239171e 2906EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2907
2908/*
2909 * Common helper functions.
2910 */
920c7a5d 2911unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2912{
945a1113
AM
2913 struct page *page;
2914
2915 /*
2916 * __get_free_pages() returns a 32-bit address, which cannot represent
2917 * a highmem page
2918 */
2919 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2920
1da177e4
LT
2921 page = alloc_pages(gfp_mask, order);
2922 if (!page)
2923 return 0;
2924 return (unsigned long) page_address(page);
2925}
1da177e4
LT
2926EXPORT_SYMBOL(__get_free_pages);
2927
920c7a5d 2928unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2929{
945a1113 2930 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2931}
1da177e4
LT
2932EXPORT_SYMBOL(get_zeroed_page);
2933
920c7a5d 2934void __free_pages(struct page *page, unsigned int order)
1da177e4 2935{
b5810039 2936 if (put_page_testzero(page)) {
1da177e4 2937 if (order == 0)
b745bc85 2938 free_hot_cold_page(page, false);
1da177e4
LT
2939 else
2940 __free_pages_ok(page, order);
2941 }
2942}
2943
2944EXPORT_SYMBOL(__free_pages);
2945
920c7a5d 2946void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2947{
2948 if (addr != 0) {
725d704e 2949 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2950 __free_pages(virt_to_page((void *)addr), order);
2951 }
2952}
2953
2954EXPORT_SYMBOL(free_pages);
2955
6a1a0d3b 2956/*
52383431
VD
2957 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2958 * of the current memory cgroup.
6a1a0d3b 2959 *
52383431
VD
2960 * It should be used when the caller would like to use kmalloc, but since the
2961 * allocation is large, it has to fall back to the page allocator.
2962 */
2963struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2964{
2965 struct page *page;
2966 struct mem_cgroup *memcg = NULL;
2967
2968 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2969 return NULL;
2970 page = alloc_pages(gfp_mask, order);
2971 memcg_kmem_commit_charge(page, memcg, order);
2972 return page;
2973}
2974
2975struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2976{
2977 struct page *page;
2978 struct mem_cgroup *memcg = NULL;
2979
2980 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2981 return NULL;
2982 page = alloc_pages_node(nid, gfp_mask, order);
2983 memcg_kmem_commit_charge(page, memcg, order);
2984 return page;
2985}
2986
2987/*
2988 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2989 * alloc_kmem_pages.
6a1a0d3b 2990 */
52383431 2991void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2992{
2993 memcg_kmem_uncharge_pages(page, order);
2994 __free_pages(page, order);
2995}
2996
52383431 2997void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2998{
2999 if (addr != 0) {
3000 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3001 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3002 }
3003}
3004
ee85c2e1
AK
3005static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3006{
3007 if (addr) {
3008 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3009 unsigned long used = addr + PAGE_ALIGN(size);
3010
3011 split_page(virt_to_page((void *)addr), order);
3012 while (used < alloc_end) {
3013 free_page(used);
3014 used += PAGE_SIZE;
3015 }
3016 }
3017 return (void *)addr;
3018}
3019
2be0ffe2
TT
3020/**
3021 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3022 * @size: the number of bytes to allocate
3023 * @gfp_mask: GFP flags for the allocation
3024 *
3025 * This function is similar to alloc_pages(), except that it allocates the
3026 * minimum number of pages to satisfy the request. alloc_pages() can only
3027 * allocate memory in power-of-two pages.
3028 *
3029 * This function is also limited by MAX_ORDER.
3030 *
3031 * Memory allocated by this function must be released by free_pages_exact().
3032 */
3033void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3034{
3035 unsigned int order = get_order(size);
3036 unsigned long addr;
3037
3038 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3039 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3040}
3041EXPORT_SYMBOL(alloc_pages_exact);
3042
ee85c2e1
AK
3043/**
3044 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3045 * pages on a node.
b5e6ab58 3046 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3047 * @size: the number of bytes to allocate
3048 * @gfp_mask: GFP flags for the allocation
3049 *
3050 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3051 * back.
3052 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3053 * but is not exact.
3054 */
e1931811 3055void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3056{
3057 unsigned order = get_order(size);
3058 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3059 if (!p)
3060 return NULL;
3061 return make_alloc_exact((unsigned long)page_address(p), order, size);
3062}
ee85c2e1 3063
2be0ffe2
TT
3064/**
3065 * free_pages_exact - release memory allocated via alloc_pages_exact()
3066 * @virt: the value returned by alloc_pages_exact.
3067 * @size: size of allocation, same value as passed to alloc_pages_exact().
3068 *
3069 * Release the memory allocated by a previous call to alloc_pages_exact.
3070 */
3071void free_pages_exact(void *virt, size_t size)
3072{
3073 unsigned long addr = (unsigned long)virt;
3074 unsigned long end = addr + PAGE_ALIGN(size);
3075
3076 while (addr < end) {
3077 free_page(addr);
3078 addr += PAGE_SIZE;
3079 }
3080}
3081EXPORT_SYMBOL(free_pages_exact);
3082
e0fb5815
ZY
3083/**
3084 * nr_free_zone_pages - count number of pages beyond high watermark
3085 * @offset: The zone index of the highest zone
3086 *
3087 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3088 * high watermark within all zones at or below a given zone index. For each
3089 * zone, the number of pages is calculated as:
834405c3 3090 * managed_pages - high_pages
e0fb5815 3091 */
ebec3862 3092static unsigned long nr_free_zone_pages(int offset)
1da177e4 3093{
dd1a239f 3094 struct zoneref *z;
54a6eb5c
MG
3095 struct zone *zone;
3096
e310fd43 3097 /* Just pick one node, since fallback list is circular */
ebec3862 3098 unsigned long sum = 0;
1da177e4 3099
0e88460d 3100 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3101
54a6eb5c 3102 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3103 unsigned long size = zone->managed_pages;
41858966 3104 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3105 if (size > high)
3106 sum += size - high;
1da177e4
LT
3107 }
3108
3109 return sum;
3110}
3111
e0fb5815
ZY
3112/**
3113 * nr_free_buffer_pages - count number of pages beyond high watermark
3114 *
3115 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3116 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3117 */
ebec3862 3118unsigned long nr_free_buffer_pages(void)
1da177e4 3119{
af4ca457 3120 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3121}
c2f1a551 3122EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3123
e0fb5815
ZY
3124/**
3125 * nr_free_pagecache_pages - count number of pages beyond high watermark
3126 *
3127 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3128 * high watermark within all zones.
1da177e4 3129 */
ebec3862 3130unsigned long nr_free_pagecache_pages(void)
1da177e4 3131{
2a1e274a 3132 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3133}
08e0f6a9
CL
3134
3135static inline void show_node(struct zone *zone)
1da177e4 3136{
e5adfffc 3137 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3138 printk("Node %d ", zone_to_nid(zone));
1da177e4 3139}
1da177e4 3140
1da177e4
LT
3141void si_meminfo(struct sysinfo *val)
3142{
3143 val->totalram = totalram_pages;
cc7452b6 3144 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3145 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3146 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3147 val->totalhigh = totalhigh_pages;
3148 val->freehigh = nr_free_highpages();
1da177e4
LT
3149 val->mem_unit = PAGE_SIZE;
3150}
3151
3152EXPORT_SYMBOL(si_meminfo);
3153
3154#ifdef CONFIG_NUMA
3155void si_meminfo_node(struct sysinfo *val, int nid)
3156{
cdd91a77
JL
3157 int zone_type; /* needs to be signed */
3158 unsigned long managed_pages = 0;
1da177e4
LT
3159 pg_data_t *pgdat = NODE_DATA(nid);
3160
cdd91a77
JL
3161 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3162 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3163 val->totalram = managed_pages;
cc7452b6 3164 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3165 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3166#ifdef CONFIG_HIGHMEM
b40da049 3167 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3168 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3169 NR_FREE_PAGES);
98d2b0eb
CL
3170#else
3171 val->totalhigh = 0;
3172 val->freehigh = 0;
3173#endif
1da177e4
LT
3174 val->mem_unit = PAGE_SIZE;
3175}
3176#endif
3177
ddd588b5 3178/*
7bf02ea2
DR
3179 * Determine whether the node should be displayed or not, depending on whether
3180 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3181 */
7bf02ea2 3182bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3183{
3184 bool ret = false;
cc9a6c87 3185 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3186
3187 if (!(flags & SHOW_MEM_FILTER_NODES))
3188 goto out;
3189
cc9a6c87 3190 do {
d26914d1 3191 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3192 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3193 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3194out:
3195 return ret;
3196}
3197
1da177e4
LT
3198#define K(x) ((x) << (PAGE_SHIFT-10))
3199
377e4f16
RV
3200static void show_migration_types(unsigned char type)
3201{
3202 static const char types[MIGRATE_TYPES] = {
3203 [MIGRATE_UNMOVABLE] = 'U',
3204 [MIGRATE_RECLAIMABLE] = 'E',
3205 [MIGRATE_MOVABLE] = 'M',
3206 [MIGRATE_RESERVE] = 'R',
3207#ifdef CONFIG_CMA
3208 [MIGRATE_CMA] = 'C',
3209#endif
194159fb 3210#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3211 [MIGRATE_ISOLATE] = 'I',
194159fb 3212#endif
377e4f16
RV
3213 };
3214 char tmp[MIGRATE_TYPES + 1];
3215 char *p = tmp;
3216 int i;
3217
3218 for (i = 0; i < MIGRATE_TYPES; i++) {
3219 if (type & (1 << i))
3220 *p++ = types[i];
3221 }
3222
3223 *p = '\0';
3224 printk("(%s) ", tmp);
3225}
3226
1da177e4
LT
3227/*
3228 * Show free area list (used inside shift_scroll-lock stuff)
3229 * We also calculate the percentage fragmentation. We do this by counting the
3230 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3231 *
3232 * Bits in @filter:
3233 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3234 * cpuset.
1da177e4 3235 */
7bf02ea2 3236void show_free_areas(unsigned int filter)
1da177e4 3237{
d1bfcdb8 3238 unsigned long free_pcp = 0;
c7241913 3239 int cpu;
1da177e4
LT
3240 struct zone *zone;
3241
ee99c71c 3242 for_each_populated_zone(zone) {
7bf02ea2 3243 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3244 continue;
d1bfcdb8 3245
761b0677
KK
3246 for_each_online_cpu(cpu)
3247 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3248 }
3249
a731286d
KM
3250 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3251 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3252 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3253 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3254 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3255 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3256 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3257 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3258 global_page_state(NR_ISOLATED_ANON),
3259 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3260 global_page_state(NR_INACTIVE_FILE),
a731286d 3261 global_page_state(NR_ISOLATED_FILE),
7b854121 3262 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3263 global_page_state(NR_FILE_DIRTY),
ce866b34 3264 global_page_state(NR_WRITEBACK),
fd39fc85 3265 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3266 global_page_state(NR_SLAB_RECLAIMABLE),
3267 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3268 global_page_state(NR_FILE_MAPPED),
4b02108a 3269 global_page_state(NR_SHMEM),
a25700a5 3270 global_page_state(NR_PAGETABLE),
d1ce749a 3271 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3272 global_page_state(NR_FREE_PAGES),
3273 free_pcp,
d1ce749a 3274 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3275
ee99c71c 3276 for_each_populated_zone(zone) {
1da177e4
LT
3277 int i;
3278
7bf02ea2 3279 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3280 continue;
d1bfcdb8
KK
3281
3282 free_pcp = 0;
3283 for_each_online_cpu(cpu)
3284 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3285
1da177e4
LT
3286 show_node(zone);
3287 printk("%s"
3288 " free:%lukB"
3289 " min:%lukB"
3290 " low:%lukB"
3291 " high:%lukB"
4f98a2fe
RR
3292 " active_anon:%lukB"
3293 " inactive_anon:%lukB"
3294 " active_file:%lukB"
3295 " inactive_file:%lukB"
7b854121 3296 " unevictable:%lukB"
a731286d
KM
3297 " isolated(anon):%lukB"
3298 " isolated(file):%lukB"
1da177e4 3299 " present:%lukB"
9feedc9d 3300 " managed:%lukB"
4a0aa73f
KM
3301 " mlocked:%lukB"
3302 " dirty:%lukB"
3303 " writeback:%lukB"
3304 " mapped:%lukB"
4b02108a 3305 " shmem:%lukB"
4a0aa73f
KM
3306 " slab_reclaimable:%lukB"
3307 " slab_unreclaimable:%lukB"
c6a7f572 3308 " kernel_stack:%lukB"
4a0aa73f
KM
3309 " pagetables:%lukB"
3310 " unstable:%lukB"
3311 " bounce:%lukB"
d1bfcdb8
KK
3312 " free_pcp:%lukB"
3313 " local_pcp:%ukB"
d1ce749a 3314 " free_cma:%lukB"
4a0aa73f 3315 " writeback_tmp:%lukB"
1da177e4
LT
3316 " pages_scanned:%lu"
3317 " all_unreclaimable? %s"
3318 "\n",
3319 zone->name,
88f5acf8 3320 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3321 K(min_wmark_pages(zone)),
3322 K(low_wmark_pages(zone)),
3323 K(high_wmark_pages(zone)),
4f98a2fe
RR
3324 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3325 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3326 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3327 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3328 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3329 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3330 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3331 K(zone->present_pages),
9feedc9d 3332 K(zone->managed_pages),
4a0aa73f
KM
3333 K(zone_page_state(zone, NR_MLOCK)),
3334 K(zone_page_state(zone, NR_FILE_DIRTY)),
3335 K(zone_page_state(zone, NR_WRITEBACK)),
3336 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3337 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3338 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3339 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3340 zone_page_state(zone, NR_KERNEL_STACK) *
3341 THREAD_SIZE / 1024,
4a0aa73f
KM
3342 K(zone_page_state(zone, NR_PAGETABLE)),
3343 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3344 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3345 K(free_pcp),
3346 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3347 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3348 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3349 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3350 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3351 );
3352 printk("lowmem_reserve[]:");
3353 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3354 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3355 printk("\n");
3356 }
3357
ee99c71c 3358 for_each_populated_zone(zone) {
b8af2941 3359 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3360 unsigned char types[MAX_ORDER];
1da177e4 3361
7bf02ea2 3362 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3363 continue;
1da177e4
LT
3364 show_node(zone);
3365 printk("%s: ", zone->name);
1da177e4
LT
3366
3367 spin_lock_irqsave(&zone->lock, flags);
3368 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3369 struct free_area *area = &zone->free_area[order];
3370 int type;
3371
3372 nr[order] = area->nr_free;
8f9de51a 3373 total += nr[order] << order;
377e4f16
RV
3374
3375 types[order] = 0;
3376 for (type = 0; type < MIGRATE_TYPES; type++) {
3377 if (!list_empty(&area->free_list[type]))
3378 types[order] |= 1 << type;
3379 }
1da177e4
LT
3380 }
3381 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3382 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3383 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3384 if (nr[order])
3385 show_migration_types(types[order]);
3386 }
1da177e4
LT
3387 printk("= %lukB\n", K(total));
3388 }
3389
949f7ec5
DR
3390 hugetlb_show_meminfo();
3391
e6f3602d
LW
3392 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3393
1da177e4
LT
3394 show_swap_cache_info();
3395}
3396
19770b32
MG
3397static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3398{
3399 zoneref->zone = zone;
3400 zoneref->zone_idx = zone_idx(zone);
3401}
3402
1da177e4
LT
3403/*
3404 * Builds allocation fallback zone lists.
1a93205b
CL
3405 *
3406 * Add all populated zones of a node to the zonelist.
1da177e4 3407 */
f0c0b2b8 3408static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3409 int nr_zones)
1da177e4 3410{
1a93205b 3411 struct zone *zone;
bc732f1d 3412 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3413
3414 do {
2f6726e5 3415 zone_type--;
070f8032 3416 zone = pgdat->node_zones + zone_type;
1a93205b 3417 if (populated_zone(zone)) {
dd1a239f
MG
3418 zoneref_set_zone(zone,
3419 &zonelist->_zonerefs[nr_zones++]);
070f8032 3420 check_highest_zone(zone_type);
1da177e4 3421 }
2f6726e5 3422 } while (zone_type);
bc732f1d 3423
070f8032 3424 return nr_zones;
1da177e4
LT
3425}
3426
f0c0b2b8
KH
3427
3428/*
3429 * zonelist_order:
3430 * 0 = automatic detection of better ordering.
3431 * 1 = order by ([node] distance, -zonetype)
3432 * 2 = order by (-zonetype, [node] distance)
3433 *
3434 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3435 * the same zonelist. So only NUMA can configure this param.
3436 */
3437#define ZONELIST_ORDER_DEFAULT 0
3438#define ZONELIST_ORDER_NODE 1
3439#define ZONELIST_ORDER_ZONE 2
3440
3441/* zonelist order in the kernel.
3442 * set_zonelist_order() will set this to NODE or ZONE.
3443 */
3444static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3445static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3446
3447
1da177e4 3448#ifdef CONFIG_NUMA
f0c0b2b8
KH
3449/* The value user specified ....changed by config */
3450static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3451/* string for sysctl */
3452#define NUMA_ZONELIST_ORDER_LEN 16
3453char numa_zonelist_order[16] = "default";
3454
3455/*
3456 * interface for configure zonelist ordering.
3457 * command line option "numa_zonelist_order"
3458 * = "[dD]efault - default, automatic configuration.
3459 * = "[nN]ode - order by node locality, then by zone within node
3460 * = "[zZ]one - order by zone, then by locality within zone
3461 */
3462
3463static int __parse_numa_zonelist_order(char *s)
3464{
3465 if (*s == 'd' || *s == 'D') {
3466 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3467 } else if (*s == 'n' || *s == 'N') {
3468 user_zonelist_order = ZONELIST_ORDER_NODE;
3469 } else if (*s == 'z' || *s == 'Z') {
3470 user_zonelist_order = ZONELIST_ORDER_ZONE;
3471 } else {
3472 printk(KERN_WARNING
3473 "Ignoring invalid numa_zonelist_order value: "
3474 "%s\n", s);
3475 return -EINVAL;
3476 }
3477 return 0;
3478}
3479
3480static __init int setup_numa_zonelist_order(char *s)
3481{
ecb256f8
VL
3482 int ret;
3483
3484 if (!s)
3485 return 0;
3486
3487 ret = __parse_numa_zonelist_order(s);
3488 if (ret == 0)
3489 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3490
3491 return ret;
f0c0b2b8
KH
3492}
3493early_param("numa_zonelist_order", setup_numa_zonelist_order);
3494
3495/*
3496 * sysctl handler for numa_zonelist_order
3497 */
cccad5b9 3498int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3499 void __user *buffer, size_t *length,
f0c0b2b8
KH
3500 loff_t *ppos)
3501{
3502 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3503 int ret;
443c6f14 3504 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3505
443c6f14 3506 mutex_lock(&zl_order_mutex);
dacbde09
CG
3507 if (write) {
3508 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3509 ret = -EINVAL;
3510 goto out;
3511 }
3512 strcpy(saved_string, (char *)table->data);
3513 }
8d65af78 3514 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3515 if (ret)
443c6f14 3516 goto out;
f0c0b2b8
KH
3517 if (write) {
3518 int oldval = user_zonelist_order;
dacbde09
CG
3519
3520 ret = __parse_numa_zonelist_order((char *)table->data);
3521 if (ret) {
f0c0b2b8
KH
3522 /*
3523 * bogus value. restore saved string
3524 */
dacbde09 3525 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3526 NUMA_ZONELIST_ORDER_LEN);
3527 user_zonelist_order = oldval;
4eaf3f64
HL
3528 } else if (oldval != user_zonelist_order) {
3529 mutex_lock(&zonelists_mutex);
9adb62a5 3530 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3531 mutex_unlock(&zonelists_mutex);
3532 }
f0c0b2b8 3533 }
443c6f14
AK
3534out:
3535 mutex_unlock(&zl_order_mutex);
3536 return ret;
f0c0b2b8
KH
3537}
3538
3539
62bc62a8 3540#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3541static int node_load[MAX_NUMNODES];
3542
1da177e4 3543/**
4dc3b16b 3544 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3545 * @node: node whose fallback list we're appending
3546 * @used_node_mask: nodemask_t of already used nodes
3547 *
3548 * We use a number of factors to determine which is the next node that should
3549 * appear on a given node's fallback list. The node should not have appeared
3550 * already in @node's fallback list, and it should be the next closest node
3551 * according to the distance array (which contains arbitrary distance values
3552 * from each node to each node in the system), and should also prefer nodes
3553 * with no CPUs, since presumably they'll have very little allocation pressure
3554 * on them otherwise.
3555 * It returns -1 if no node is found.
3556 */
f0c0b2b8 3557static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3558{
4cf808eb 3559 int n, val;
1da177e4 3560 int min_val = INT_MAX;
00ef2d2f 3561 int best_node = NUMA_NO_NODE;
a70f7302 3562 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3563
4cf808eb
LT
3564 /* Use the local node if we haven't already */
3565 if (!node_isset(node, *used_node_mask)) {
3566 node_set(node, *used_node_mask);
3567 return node;
3568 }
1da177e4 3569
4b0ef1fe 3570 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3571
3572 /* Don't want a node to appear more than once */
3573 if (node_isset(n, *used_node_mask))
3574 continue;
3575
1da177e4
LT
3576 /* Use the distance array to find the distance */
3577 val = node_distance(node, n);
3578
4cf808eb
LT
3579 /* Penalize nodes under us ("prefer the next node") */
3580 val += (n < node);
3581
1da177e4 3582 /* Give preference to headless and unused nodes */
a70f7302
RR
3583 tmp = cpumask_of_node(n);
3584 if (!cpumask_empty(tmp))
1da177e4
LT
3585 val += PENALTY_FOR_NODE_WITH_CPUS;
3586
3587 /* Slight preference for less loaded node */
3588 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3589 val += node_load[n];
3590
3591 if (val < min_val) {
3592 min_val = val;
3593 best_node = n;
3594 }
3595 }
3596
3597 if (best_node >= 0)
3598 node_set(best_node, *used_node_mask);
3599
3600 return best_node;
3601}
3602
f0c0b2b8
KH
3603
3604/*
3605 * Build zonelists ordered by node and zones within node.
3606 * This results in maximum locality--normal zone overflows into local
3607 * DMA zone, if any--but risks exhausting DMA zone.
3608 */
3609static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3610{
f0c0b2b8 3611 int j;
1da177e4 3612 struct zonelist *zonelist;
f0c0b2b8 3613
54a6eb5c 3614 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3615 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3616 ;
bc732f1d 3617 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3618 zonelist->_zonerefs[j].zone = NULL;
3619 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3620}
3621
523b9458
CL
3622/*
3623 * Build gfp_thisnode zonelists
3624 */
3625static void build_thisnode_zonelists(pg_data_t *pgdat)
3626{
523b9458
CL
3627 int j;
3628 struct zonelist *zonelist;
3629
54a6eb5c 3630 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3631 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3632 zonelist->_zonerefs[j].zone = NULL;
3633 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3634}
3635
f0c0b2b8
KH
3636/*
3637 * Build zonelists ordered by zone and nodes within zones.
3638 * This results in conserving DMA zone[s] until all Normal memory is
3639 * exhausted, but results in overflowing to remote node while memory
3640 * may still exist in local DMA zone.
3641 */
3642static int node_order[MAX_NUMNODES];
3643
3644static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3645{
f0c0b2b8
KH
3646 int pos, j, node;
3647 int zone_type; /* needs to be signed */
3648 struct zone *z;
3649 struct zonelist *zonelist;
3650
54a6eb5c
MG
3651 zonelist = &pgdat->node_zonelists[0];
3652 pos = 0;
3653 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3654 for (j = 0; j < nr_nodes; j++) {
3655 node = node_order[j];
3656 z = &NODE_DATA(node)->node_zones[zone_type];
3657 if (populated_zone(z)) {
dd1a239f
MG
3658 zoneref_set_zone(z,
3659 &zonelist->_zonerefs[pos++]);
54a6eb5c 3660 check_highest_zone(zone_type);
f0c0b2b8
KH
3661 }
3662 }
f0c0b2b8 3663 }
dd1a239f
MG
3664 zonelist->_zonerefs[pos].zone = NULL;
3665 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3666}
3667
3193913c
MG
3668#if defined(CONFIG_64BIT)
3669/*
3670 * Devices that require DMA32/DMA are relatively rare and do not justify a
3671 * penalty to every machine in case the specialised case applies. Default
3672 * to Node-ordering on 64-bit NUMA machines
3673 */
3674static int default_zonelist_order(void)
3675{
3676 return ZONELIST_ORDER_NODE;
3677}
3678#else
3679/*
3680 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3681 * by the kernel. If processes running on node 0 deplete the low memory zone
3682 * then reclaim will occur more frequency increasing stalls and potentially
3683 * be easier to OOM if a large percentage of the zone is under writeback or
3684 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3685 * Hence, default to zone ordering on 32-bit.
3686 */
f0c0b2b8
KH
3687static int default_zonelist_order(void)
3688{
f0c0b2b8
KH
3689 return ZONELIST_ORDER_ZONE;
3690}
3193913c 3691#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3692
3693static void set_zonelist_order(void)
3694{
3695 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3696 current_zonelist_order = default_zonelist_order();
3697 else
3698 current_zonelist_order = user_zonelist_order;
3699}
3700
3701static void build_zonelists(pg_data_t *pgdat)
3702{
3703 int j, node, load;
3704 enum zone_type i;
1da177e4 3705 nodemask_t used_mask;
f0c0b2b8
KH
3706 int local_node, prev_node;
3707 struct zonelist *zonelist;
3708 int order = current_zonelist_order;
1da177e4
LT
3709
3710 /* initialize zonelists */
523b9458 3711 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3712 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3713 zonelist->_zonerefs[0].zone = NULL;
3714 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3715 }
3716
3717 /* NUMA-aware ordering of nodes */
3718 local_node = pgdat->node_id;
62bc62a8 3719 load = nr_online_nodes;
1da177e4
LT
3720 prev_node = local_node;
3721 nodes_clear(used_mask);
f0c0b2b8 3722
f0c0b2b8
KH
3723 memset(node_order, 0, sizeof(node_order));
3724 j = 0;
3725
1da177e4
LT
3726 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3727 /*
3728 * We don't want to pressure a particular node.
3729 * So adding penalty to the first node in same
3730 * distance group to make it round-robin.
3731 */
957f822a
DR
3732 if (node_distance(local_node, node) !=
3733 node_distance(local_node, prev_node))
f0c0b2b8
KH
3734 node_load[node] = load;
3735
1da177e4
LT
3736 prev_node = node;
3737 load--;
f0c0b2b8
KH
3738 if (order == ZONELIST_ORDER_NODE)
3739 build_zonelists_in_node_order(pgdat, node);
3740 else
3741 node_order[j++] = node; /* remember order */
3742 }
1da177e4 3743
f0c0b2b8
KH
3744 if (order == ZONELIST_ORDER_ZONE) {
3745 /* calculate node order -- i.e., DMA last! */
3746 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3747 }
523b9458
CL
3748
3749 build_thisnode_zonelists(pgdat);
1da177e4
LT
3750}
3751
9276b1bc 3752/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3753static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3754{
54a6eb5c
MG
3755 struct zonelist *zonelist;
3756 struct zonelist_cache *zlc;
dd1a239f 3757 struct zoneref *z;
9276b1bc 3758
54a6eb5c
MG
3759 zonelist = &pgdat->node_zonelists[0];
3760 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3761 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3762 for (z = zonelist->_zonerefs; z->zone; z++)
3763 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3764}
3765
7aac7898
LS
3766#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3767/*
3768 * Return node id of node used for "local" allocations.
3769 * I.e., first node id of first zone in arg node's generic zonelist.
3770 * Used for initializing percpu 'numa_mem', which is used primarily
3771 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3772 */
3773int local_memory_node(int node)
3774{
3775 struct zone *zone;
3776
3777 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3778 gfp_zone(GFP_KERNEL),
3779 NULL,
3780 &zone);
3781 return zone->node;
3782}
3783#endif
f0c0b2b8 3784
1da177e4
LT
3785#else /* CONFIG_NUMA */
3786
f0c0b2b8
KH
3787static void set_zonelist_order(void)
3788{
3789 current_zonelist_order = ZONELIST_ORDER_ZONE;
3790}
3791
3792static void build_zonelists(pg_data_t *pgdat)
1da177e4 3793{
19655d34 3794 int node, local_node;
54a6eb5c
MG
3795 enum zone_type j;
3796 struct zonelist *zonelist;
1da177e4
LT
3797
3798 local_node = pgdat->node_id;
1da177e4 3799
54a6eb5c 3800 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3801 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3802
54a6eb5c
MG
3803 /*
3804 * Now we build the zonelist so that it contains the zones
3805 * of all the other nodes.
3806 * We don't want to pressure a particular node, so when
3807 * building the zones for node N, we make sure that the
3808 * zones coming right after the local ones are those from
3809 * node N+1 (modulo N)
3810 */
3811 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3812 if (!node_online(node))
3813 continue;
bc732f1d 3814 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3815 }
54a6eb5c
MG
3816 for (node = 0; node < local_node; node++) {
3817 if (!node_online(node))
3818 continue;
bc732f1d 3819 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3820 }
3821
dd1a239f
MG
3822 zonelist->_zonerefs[j].zone = NULL;
3823 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3824}
3825
9276b1bc 3826/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3827static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3828{
54a6eb5c 3829 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3830}
3831
1da177e4
LT
3832#endif /* CONFIG_NUMA */
3833
99dcc3e5
CL
3834/*
3835 * Boot pageset table. One per cpu which is going to be used for all
3836 * zones and all nodes. The parameters will be set in such a way
3837 * that an item put on a list will immediately be handed over to
3838 * the buddy list. This is safe since pageset manipulation is done
3839 * with interrupts disabled.
3840 *
3841 * The boot_pagesets must be kept even after bootup is complete for
3842 * unused processors and/or zones. They do play a role for bootstrapping
3843 * hotplugged processors.
3844 *
3845 * zoneinfo_show() and maybe other functions do
3846 * not check if the processor is online before following the pageset pointer.
3847 * Other parts of the kernel may not check if the zone is available.
3848 */
3849static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3850static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3851static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3852
4eaf3f64
HL
3853/*
3854 * Global mutex to protect against size modification of zonelists
3855 * as well as to serialize pageset setup for the new populated zone.
3856 */
3857DEFINE_MUTEX(zonelists_mutex);
3858
9b1a4d38 3859/* return values int ....just for stop_machine() */
4ed7e022 3860static int __build_all_zonelists(void *data)
1da177e4 3861{
6811378e 3862 int nid;
99dcc3e5 3863 int cpu;
9adb62a5 3864 pg_data_t *self = data;
9276b1bc 3865
7f9cfb31
BL
3866#ifdef CONFIG_NUMA
3867 memset(node_load, 0, sizeof(node_load));
3868#endif
9adb62a5
JL
3869
3870 if (self && !node_online(self->node_id)) {
3871 build_zonelists(self);
3872 build_zonelist_cache(self);
3873 }
3874
9276b1bc 3875 for_each_online_node(nid) {
7ea1530a
CL
3876 pg_data_t *pgdat = NODE_DATA(nid);
3877
3878 build_zonelists(pgdat);
3879 build_zonelist_cache(pgdat);
9276b1bc 3880 }
99dcc3e5
CL
3881
3882 /*
3883 * Initialize the boot_pagesets that are going to be used
3884 * for bootstrapping processors. The real pagesets for
3885 * each zone will be allocated later when the per cpu
3886 * allocator is available.
3887 *
3888 * boot_pagesets are used also for bootstrapping offline
3889 * cpus if the system is already booted because the pagesets
3890 * are needed to initialize allocators on a specific cpu too.
3891 * F.e. the percpu allocator needs the page allocator which
3892 * needs the percpu allocator in order to allocate its pagesets
3893 * (a chicken-egg dilemma).
3894 */
7aac7898 3895 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3896 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3897
7aac7898
LS
3898#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3899 /*
3900 * We now know the "local memory node" for each node--
3901 * i.e., the node of the first zone in the generic zonelist.
3902 * Set up numa_mem percpu variable for on-line cpus. During
3903 * boot, only the boot cpu should be on-line; we'll init the
3904 * secondary cpus' numa_mem as they come on-line. During
3905 * node/memory hotplug, we'll fixup all on-line cpus.
3906 */
3907 if (cpu_online(cpu))
3908 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3909#endif
3910 }
3911
6811378e
YG
3912 return 0;
3913}
3914
061f67bc
RV
3915static noinline void __init
3916build_all_zonelists_init(void)
3917{
3918 __build_all_zonelists(NULL);
3919 mminit_verify_zonelist();
3920 cpuset_init_current_mems_allowed();
3921}
3922
4eaf3f64
HL
3923/*
3924 * Called with zonelists_mutex held always
3925 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
3926 *
3927 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3928 * [we're only called with non-NULL zone through __meminit paths] and
3929 * (2) call of __init annotated helper build_all_zonelists_init
3930 * [protected by SYSTEM_BOOTING].
4eaf3f64 3931 */
9adb62a5 3932void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3933{
f0c0b2b8
KH
3934 set_zonelist_order();
3935
6811378e 3936 if (system_state == SYSTEM_BOOTING) {
061f67bc 3937 build_all_zonelists_init();
6811378e 3938 } else {
e9959f0f 3939#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3940 if (zone)
3941 setup_zone_pageset(zone);
e9959f0f 3942#endif
dd1895e2
CS
3943 /* we have to stop all cpus to guarantee there is no user
3944 of zonelist */
9adb62a5 3945 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3946 /* cpuset refresh routine should be here */
3947 }
bd1e22b8 3948 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3949 /*
3950 * Disable grouping by mobility if the number of pages in the
3951 * system is too low to allow the mechanism to work. It would be
3952 * more accurate, but expensive to check per-zone. This check is
3953 * made on memory-hotadd so a system can start with mobility
3954 * disabled and enable it later
3955 */
d9c23400 3956 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3957 page_group_by_mobility_disabled = 1;
3958 else
3959 page_group_by_mobility_disabled = 0;
3960
f88dfff5 3961 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3962 "Total pages: %ld\n",
62bc62a8 3963 nr_online_nodes,
f0c0b2b8 3964 zonelist_order_name[current_zonelist_order],
9ef9acb0 3965 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3966 vm_total_pages);
3967#ifdef CONFIG_NUMA
f88dfff5 3968 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3969#endif
1da177e4
LT
3970}
3971
3972/*
3973 * Helper functions to size the waitqueue hash table.
3974 * Essentially these want to choose hash table sizes sufficiently
3975 * large so that collisions trying to wait on pages are rare.
3976 * But in fact, the number of active page waitqueues on typical
3977 * systems is ridiculously low, less than 200. So this is even
3978 * conservative, even though it seems large.
3979 *
3980 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3981 * waitqueues, i.e. the size of the waitq table given the number of pages.
3982 */
3983#define PAGES_PER_WAITQUEUE 256
3984
cca448fe 3985#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3986static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3987{
3988 unsigned long size = 1;
3989
3990 pages /= PAGES_PER_WAITQUEUE;
3991
3992 while (size < pages)
3993 size <<= 1;
3994
3995 /*
3996 * Once we have dozens or even hundreds of threads sleeping
3997 * on IO we've got bigger problems than wait queue collision.
3998 * Limit the size of the wait table to a reasonable size.
3999 */
4000 size = min(size, 4096UL);
4001
4002 return max(size, 4UL);
4003}
cca448fe
YG
4004#else
4005/*
4006 * A zone's size might be changed by hot-add, so it is not possible to determine
4007 * a suitable size for its wait_table. So we use the maximum size now.
4008 *
4009 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4010 *
4011 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4012 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4013 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4014 *
4015 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4016 * or more by the traditional way. (See above). It equals:
4017 *
4018 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4019 * ia64(16K page size) : = ( 8G + 4M)byte.
4020 * powerpc (64K page size) : = (32G +16M)byte.
4021 */
4022static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4023{
4024 return 4096UL;
4025}
4026#endif
1da177e4
LT
4027
4028/*
4029 * This is an integer logarithm so that shifts can be used later
4030 * to extract the more random high bits from the multiplicative
4031 * hash function before the remainder is taken.
4032 */
4033static inline unsigned long wait_table_bits(unsigned long size)
4034{
4035 return ffz(~size);
4036}
4037
6d3163ce
AH
4038/*
4039 * Check if a pageblock contains reserved pages
4040 */
4041static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4042{
4043 unsigned long pfn;
4044
4045 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4046 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4047 return 1;
4048 }
4049 return 0;
4050}
4051
56fd56b8 4052/*
d9c23400 4053 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4054 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4055 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4056 * higher will lead to a bigger reserve which will get freed as contiguous
4057 * blocks as reclaim kicks in
4058 */
4059static void setup_zone_migrate_reserve(struct zone *zone)
4060{
6d3163ce 4061 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4062 struct page *page;
78986a67
MG
4063 unsigned long block_migratetype;
4064 int reserve;
943dca1a 4065 int old_reserve;
56fd56b8 4066
d0215638
MH
4067 /*
4068 * Get the start pfn, end pfn and the number of blocks to reserve
4069 * We have to be careful to be aligned to pageblock_nr_pages to
4070 * make sure that we always check pfn_valid for the first page in
4071 * the block.
4072 */
56fd56b8 4073 start_pfn = zone->zone_start_pfn;
108bcc96 4074 end_pfn = zone_end_pfn(zone);
d0215638 4075 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4076 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4077 pageblock_order;
56fd56b8 4078
78986a67
MG
4079 /*
4080 * Reserve blocks are generally in place to help high-order atomic
4081 * allocations that are short-lived. A min_free_kbytes value that
4082 * would result in more than 2 reserve blocks for atomic allocations
4083 * is assumed to be in place to help anti-fragmentation for the
4084 * future allocation of hugepages at runtime.
4085 */
4086 reserve = min(2, reserve);
943dca1a
YI
4087 old_reserve = zone->nr_migrate_reserve_block;
4088
4089 /* When memory hot-add, we almost always need to do nothing */
4090 if (reserve == old_reserve)
4091 return;
4092 zone->nr_migrate_reserve_block = reserve;
78986a67 4093
d9c23400 4094 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4095 if (!pfn_valid(pfn))
4096 continue;
4097 page = pfn_to_page(pfn);
4098
344c790e
AL
4099 /* Watch out for overlapping nodes */
4100 if (page_to_nid(page) != zone_to_nid(zone))
4101 continue;
4102
56fd56b8
MG
4103 block_migratetype = get_pageblock_migratetype(page);
4104
938929f1
MG
4105 /* Only test what is necessary when the reserves are not met */
4106 if (reserve > 0) {
4107 /*
4108 * Blocks with reserved pages will never free, skip
4109 * them.
4110 */
4111 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4112 if (pageblock_is_reserved(pfn, block_end_pfn))
4113 continue;
56fd56b8 4114
938929f1
MG
4115 /* If this block is reserved, account for it */
4116 if (block_migratetype == MIGRATE_RESERVE) {
4117 reserve--;
4118 continue;
4119 }
4120
4121 /* Suitable for reserving if this block is movable */
4122 if (block_migratetype == MIGRATE_MOVABLE) {
4123 set_pageblock_migratetype(page,
4124 MIGRATE_RESERVE);
4125 move_freepages_block(zone, page,
4126 MIGRATE_RESERVE);
4127 reserve--;
4128 continue;
4129 }
943dca1a
YI
4130 } else if (!old_reserve) {
4131 /*
4132 * At boot time we don't need to scan the whole zone
4133 * for turning off MIGRATE_RESERVE.
4134 */
4135 break;
56fd56b8
MG
4136 }
4137
4138 /*
4139 * If the reserve is met and this is a previous reserved block,
4140 * take it back
4141 */
4142 if (block_migratetype == MIGRATE_RESERVE) {
4143 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4144 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4145 }
4146 }
4147}
ac0e5b7a 4148
1da177e4
LT
4149/*
4150 * Initially all pages are reserved - free ones are freed
4151 * up by free_all_bootmem() once the early boot process is
4152 * done. Non-atomic initialization, single-pass.
4153 */
c09b4240 4154void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4155 unsigned long start_pfn, enum memmap_context context)
1da177e4 4156{
1da177e4 4157 struct page *page;
29751f69
AW
4158 unsigned long end_pfn = start_pfn + size;
4159 unsigned long pfn;
86051ca5 4160 struct zone *z;
1da177e4 4161
22b31eec
HD
4162 if (highest_memmap_pfn < end_pfn - 1)
4163 highest_memmap_pfn = end_pfn - 1;
4164
86051ca5 4165 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4166 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4167 /*
4168 * There can be holes in boot-time mem_map[]s
4169 * handed to this function. They do not
4170 * exist on hotplugged memory.
4171 */
4172 if (context == MEMMAP_EARLY) {
4173 if (!early_pfn_valid(pfn))
4174 continue;
4175 if (!early_pfn_in_nid(pfn, nid))
4176 continue;
4177 }
d41dee36
AW
4178 page = pfn_to_page(pfn);
4179 set_page_links(page, zone, nid, pfn);
708614e6 4180 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4181 init_page_count(page);
22b751c3 4182 page_mapcount_reset(page);
90572890 4183 page_cpupid_reset_last(page);
1da177e4 4184 SetPageReserved(page);
b2a0ac88
MG
4185 /*
4186 * Mark the block movable so that blocks are reserved for
4187 * movable at startup. This will force kernel allocations
4188 * to reserve their blocks rather than leaking throughout
4189 * the address space during boot when many long-lived
56fd56b8
MG
4190 * kernel allocations are made. Later some blocks near
4191 * the start are marked MIGRATE_RESERVE by
4192 * setup_zone_migrate_reserve()
86051ca5
KH
4193 *
4194 * bitmap is created for zone's valid pfn range. but memmap
4195 * can be created for invalid pages (for alignment)
4196 * check here not to call set_pageblock_migratetype() against
4197 * pfn out of zone.
b2a0ac88 4198 */
86051ca5 4199 if ((z->zone_start_pfn <= pfn)
108bcc96 4200 && (pfn < zone_end_pfn(z))
86051ca5 4201 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4202 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4203
1da177e4
LT
4204 INIT_LIST_HEAD(&page->lru);
4205#ifdef WANT_PAGE_VIRTUAL
4206 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4207 if (!is_highmem_idx(zone))
3212c6be 4208 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4209#endif
1da177e4
LT
4210 }
4211}
4212
1e548deb 4213static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4214{
7aeb09f9 4215 unsigned int order, t;
b2a0ac88
MG
4216 for_each_migratetype_order(order, t) {
4217 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4218 zone->free_area[order].nr_free = 0;
4219 }
4220}
4221
4222#ifndef __HAVE_ARCH_MEMMAP_INIT
4223#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4224 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4225#endif
4226
7cd2b0a3 4227static int zone_batchsize(struct zone *zone)
e7c8d5c9 4228{
3a6be87f 4229#ifdef CONFIG_MMU
e7c8d5c9
CL
4230 int batch;
4231
4232 /*
4233 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4234 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4235 *
4236 * OK, so we don't know how big the cache is. So guess.
4237 */
b40da049 4238 batch = zone->managed_pages / 1024;
ba56e91c
SR
4239 if (batch * PAGE_SIZE > 512 * 1024)
4240 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4241 batch /= 4; /* We effectively *= 4 below */
4242 if (batch < 1)
4243 batch = 1;
4244
4245 /*
0ceaacc9
NP
4246 * Clamp the batch to a 2^n - 1 value. Having a power
4247 * of 2 value was found to be more likely to have
4248 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4249 *
0ceaacc9
NP
4250 * For example if 2 tasks are alternately allocating
4251 * batches of pages, one task can end up with a lot
4252 * of pages of one half of the possible page colors
4253 * and the other with pages of the other colors.
e7c8d5c9 4254 */
9155203a 4255 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4256
e7c8d5c9 4257 return batch;
3a6be87f
DH
4258
4259#else
4260 /* The deferral and batching of frees should be suppressed under NOMMU
4261 * conditions.
4262 *
4263 * The problem is that NOMMU needs to be able to allocate large chunks
4264 * of contiguous memory as there's no hardware page translation to
4265 * assemble apparent contiguous memory from discontiguous pages.
4266 *
4267 * Queueing large contiguous runs of pages for batching, however,
4268 * causes the pages to actually be freed in smaller chunks. As there
4269 * can be a significant delay between the individual batches being
4270 * recycled, this leads to the once large chunks of space being
4271 * fragmented and becoming unavailable for high-order allocations.
4272 */
4273 return 0;
4274#endif
e7c8d5c9
CL
4275}
4276
8d7a8fa9
CS
4277/*
4278 * pcp->high and pcp->batch values are related and dependent on one another:
4279 * ->batch must never be higher then ->high.
4280 * The following function updates them in a safe manner without read side
4281 * locking.
4282 *
4283 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4284 * those fields changing asynchronously (acording the the above rule).
4285 *
4286 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4287 * outside of boot time (or some other assurance that no concurrent updaters
4288 * exist).
4289 */
4290static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4291 unsigned long batch)
4292{
4293 /* start with a fail safe value for batch */
4294 pcp->batch = 1;
4295 smp_wmb();
4296
4297 /* Update high, then batch, in order */
4298 pcp->high = high;
4299 smp_wmb();
4300
4301 pcp->batch = batch;
4302}
4303
3664033c 4304/* a companion to pageset_set_high() */
4008bab7
CS
4305static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4306{
8d7a8fa9 4307 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4308}
4309
88c90dbc 4310static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4311{
4312 struct per_cpu_pages *pcp;
5f8dcc21 4313 int migratetype;
2caaad41 4314
1c6fe946
MD
4315 memset(p, 0, sizeof(*p));
4316
3dfa5721 4317 pcp = &p->pcp;
2caaad41 4318 pcp->count = 0;
5f8dcc21
MG
4319 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4320 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4321}
4322
88c90dbc
CS
4323static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4324{
4325 pageset_init(p);
4326 pageset_set_batch(p, batch);
4327}
4328
8ad4b1fb 4329/*
3664033c 4330 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4331 * to the value high for the pageset p.
4332 */
3664033c 4333static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4334 unsigned long high)
4335{
8d7a8fa9
CS
4336 unsigned long batch = max(1UL, high / 4);
4337 if ((high / 4) > (PAGE_SHIFT * 8))
4338 batch = PAGE_SHIFT * 8;
8ad4b1fb 4339
8d7a8fa9 4340 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4341}
4342
7cd2b0a3
DR
4343static void pageset_set_high_and_batch(struct zone *zone,
4344 struct per_cpu_pageset *pcp)
56cef2b8 4345{
56cef2b8 4346 if (percpu_pagelist_fraction)
3664033c 4347 pageset_set_high(pcp,
56cef2b8
CS
4348 (zone->managed_pages /
4349 percpu_pagelist_fraction));
4350 else
4351 pageset_set_batch(pcp, zone_batchsize(zone));
4352}
4353
169f6c19
CS
4354static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4355{
4356 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4357
4358 pageset_init(pcp);
4359 pageset_set_high_and_batch(zone, pcp);
4360}
4361
4ed7e022 4362static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4363{
4364 int cpu;
319774e2 4365 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4366 for_each_possible_cpu(cpu)
4367 zone_pageset_init(zone, cpu);
319774e2
WF
4368}
4369
2caaad41 4370/*
99dcc3e5
CL
4371 * Allocate per cpu pagesets and initialize them.
4372 * Before this call only boot pagesets were available.
e7c8d5c9 4373 */
99dcc3e5 4374void __init setup_per_cpu_pageset(void)
e7c8d5c9 4375{
99dcc3e5 4376 struct zone *zone;
e7c8d5c9 4377
319774e2
WF
4378 for_each_populated_zone(zone)
4379 setup_zone_pageset(zone);
e7c8d5c9
CL
4380}
4381
577a32f6 4382static noinline __init_refok
cca448fe 4383int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4384{
4385 int i;
cca448fe 4386 size_t alloc_size;
ed8ece2e
DH
4387
4388 /*
4389 * The per-page waitqueue mechanism uses hashed waitqueues
4390 * per zone.
4391 */
02b694de
YG
4392 zone->wait_table_hash_nr_entries =
4393 wait_table_hash_nr_entries(zone_size_pages);
4394 zone->wait_table_bits =
4395 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4396 alloc_size = zone->wait_table_hash_nr_entries
4397 * sizeof(wait_queue_head_t);
4398
cd94b9db 4399 if (!slab_is_available()) {
cca448fe 4400 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4401 memblock_virt_alloc_node_nopanic(
4402 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4403 } else {
4404 /*
4405 * This case means that a zone whose size was 0 gets new memory
4406 * via memory hot-add.
4407 * But it may be the case that a new node was hot-added. In
4408 * this case vmalloc() will not be able to use this new node's
4409 * memory - this wait_table must be initialized to use this new
4410 * node itself as well.
4411 * To use this new node's memory, further consideration will be
4412 * necessary.
4413 */
8691f3a7 4414 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4415 }
4416 if (!zone->wait_table)
4417 return -ENOMEM;
ed8ece2e 4418
b8af2941 4419 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4420 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4421
4422 return 0;
ed8ece2e
DH
4423}
4424
c09b4240 4425static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4426{
99dcc3e5
CL
4427 /*
4428 * per cpu subsystem is not up at this point. The following code
4429 * relies on the ability of the linker to provide the
4430 * offset of a (static) per cpu variable into the per cpu area.
4431 */
4432 zone->pageset = &boot_pageset;
ed8ece2e 4433
b38a8725 4434 if (populated_zone(zone))
99dcc3e5
CL
4435 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4436 zone->name, zone->present_pages,
4437 zone_batchsize(zone));
ed8ece2e
DH
4438}
4439
4ed7e022 4440int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4441 unsigned long zone_start_pfn,
a2f3aa02
DH
4442 unsigned long size,
4443 enum memmap_context context)
ed8ece2e
DH
4444{
4445 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4446 int ret;
4447 ret = zone_wait_table_init(zone, size);
4448 if (ret)
4449 return ret;
ed8ece2e
DH
4450 pgdat->nr_zones = zone_idx(zone) + 1;
4451
ed8ece2e
DH
4452 zone->zone_start_pfn = zone_start_pfn;
4453
708614e6
MG
4454 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4455 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4456 pgdat->node_id,
4457 (unsigned long)zone_idx(zone),
4458 zone_start_pfn, (zone_start_pfn + size));
4459
1e548deb 4460 zone_init_free_lists(zone);
718127cc
YG
4461
4462 return 0;
ed8ece2e
DH
4463}
4464
0ee332c1 4465#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4466#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4467/*
4468 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4469 */
f2dbcfa7 4470int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4471{
c13291a5 4472 unsigned long start_pfn, end_pfn;
e76b63f8 4473 int nid;
7c243c71
RA
4474 /*
4475 * NOTE: The following SMP-unsafe globals are only used early in boot
4476 * when the kernel is running single-threaded.
4477 */
4478 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4479 static int __meminitdata last_nid;
4480
4481 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4482 return last_nid;
c713216d 4483
e76b63f8
YL
4484 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4485 if (nid != -1) {
4486 last_start_pfn = start_pfn;
4487 last_end_pfn = end_pfn;
4488 last_nid = nid;
4489 }
4490
4491 return nid;
c713216d
MG
4492}
4493#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4494
f2dbcfa7
KH
4495int __meminit early_pfn_to_nid(unsigned long pfn)
4496{
cc2559bc
KH
4497 int nid;
4498
4499 nid = __early_pfn_to_nid(pfn);
4500 if (nid >= 0)
4501 return nid;
4502 /* just returns 0 */
4503 return 0;
f2dbcfa7
KH
4504}
4505
cc2559bc
KH
4506#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4507bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4508{
4509 int nid;
4510
4511 nid = __early_pfn_to_nid(pfn);
4512 if (nid >= 0 && nid != node)
4513 return false;
4514 return true;
4515}
4516#endif
f2dbcfa7 4517
c713216d 4518/**
6782832e 4519 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4520 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4521 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4522 *
7d018176
ZZ
4523 * If an architecture guarantees that all ranges registered contain no holes
4524 * and may be freed, this this function may be used instead of calling
4525 * memblock_free_early_nid() manually.
c713216d 4526 */
c13291a5 4527void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4528{
c13291a5
TH
4529 unsigned long start_pfn, end_pfn;
4530 int i, this_nid;
edbe7d23 4531
c13291a5
TH
4532 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4533 start_pfn = min(start_pfn, max_low_pfn);
4534 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4535
c13291a5 4536 if (start_pfn < end_pfn)
6782832e
SS
4537 memblock_free_early_nid(PFN_PHYS(start_pfn),
4538 (end_pfn - start_pfn) << PAGE_SHIFT,
4539 this_nid);
edbe7d23 4540 }
edbe7d23 4541}
edbe7d23 4542
c713216d
MG
4543/**
4544 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4545 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4546 *
7d018176
ZZ
4547 * If an architecture guarantees that all ranges registered contain no holes and may
4548 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4549 */
4550void __init sparse_memory_present_with_active_regions(int nid)
4551{
c13291a5
TH
4552 unsigned long start_pfn, end_pfn;
4553 int i, this_nid;
c713216d 4554
c13291a5
TH
4555 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4556 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4557}
4558
4559/**
4560 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4561 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4562 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4563 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4564 *
4565 * It returns the start and end page frame of a node based on information
7d018176 4566 * provided by memblock_set_node(). If called for a node
c713216d 4567 * with no available memory, a warning is printed and the start and end
88ca3b94 4568 * PFNs will be 0.
c713216d 4569 */
a3142c8e 4570void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4571 unsigned long *start_pfn, unsigned long *end_pfn)
4572{
c13291a5 4573 unsigned long this_start_pfn, this_end_pfn;
c713216d 4574 int i;
c13291a5 4575
c713216d
MG
4576 *start_pfn = -1UL;
4577 *end_pfn = 0;
4578
c13291a5
TH
4579 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4580 *start_pfn = min(*start_pfn, this_start_pfn);
4581 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4582 }
4583
633c0666 4584 if (*start_pfn == -1UL)
c713216d 4585 *start_pfn = 0;
c713216d
MG
4586}
4587
2a1e274a
MG
4588/*
4589 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4590 * assumption is made that zones within a node are ordered in monotonic
4591 * increasing memory addresses so that the "highest" populated zone is used
4592 */
b69a7288 4593static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4594{
4595 int zone_index;
4596 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4597 if (zone_index == ZONE_MOVABLE)
4598 continue;
4599
4600 if (arch_zone_highest_possible_pfn[zone_index] >
4601 arch_zone_lowest_possible_pfn[zone_index])
4602 break;
4603 }
4604
4605 VM_BUG_ON(zone_index == -1);
4606 movable_zone = zone_index;
4607}
4608
4609/*
4610 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4611 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4612 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4613 * in each node depending on the size of each node and how evenly kernelcore
4614 * is distributed. This helper function adjusts the zone ranges
4615 * provided by the architecture for a given node by using the end of the
4616 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4617 * zones within a node are in order of monotonic increases memory addresses
4618 */
b69a7288 4619static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4620 unsigned long zone_type,
4621 unsigned long node_start_pfn,
4622 unsigned long node_end_pfn,
4623 unsigned long *zone_start_pfn,
4624 unsigned long *zone_end_pfn)
4625{
4626 /* Only adjust if ZONE_MOVABLE is on this node */
4627 if (zone_movable_pfn[nid]) {
4628 /* Size ZONE_MOVABLE */
4629 if (zone_type == ZONE_MOVABLE) {
4630 *zone_start_pfn = zone_movable_pfn[nid];
4631 *zone_end_pfn = min(node_end_pfn,
4632 arch_zone_highest_possible_pfn[movable_zone]);
4633
4634 /* Adjust for ZONE_MOVABLE starting within this range */
4635 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4636 *zone_end_pfn > zone_movable_pfn[nid]) {
4637 *zone_end_pfn = zone_movable_pfn[nid];
4638
4639 /* Check if this whole range is within ZONE_MOVABLE */
4640 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4641 *zone_start_pfn = *zone_end_pfn;
4642 }
4643}
4644
c713216d
MG
4645/*
4646 * Return the number of pages a zone spans in a node, including holes
4647 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4648 */
6ea6e688 4649static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4650 unsigned long zone_type,
7960aedd
ZY
4651 unsigned long node_start_pfn,
4652 unsigned long node_end_pfn,
c713216d
MG
4653 unsigned long *ignored)
4654{
c713216d
MG
4655 unsigned long zone_start_pfn, zone_end_pfn;
4656
7960aedd 4657 /* Get the start and end of the zone */
c713216d
MG
4658 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4659 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4660 adjust_zone_range_for_zone_movable(nid, zone_type,
4661 node_start_pfn, node_end_pfn,
4662 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4663
4664 /* Check that this node has pages within the zone's required range */
4665 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4666 return 0;
4667
4668 /* Move the zone boundaries inside the node if necessary */
4669 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4670 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4671
4672 /* Return the spanned pages */
4673 return zone_end_pfn - zone_start_pfn;
4674}
4675
4676/*
4677 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4678 * then all holes in the requested range will be accounted for.
c713216d 4679 */
32996250 4680unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4681 unsigned long range_start_pfn,
4682 unsigned long range_end_pfn)
4683{
96e907d1
TH
4684 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4685 unsigned long start_pfn, end_pfn;
4686 int i;
c713216d 4687
96e907d1
TH
4688 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4689 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4690 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4691 nr_absent -= end_pfn - start_pfn;
c713216d 4692 }
96e907d1 4693 return nr_absent;
c713216d
MG
4694}
4695
4696/**
4697 * absent_pages_in_range - Return number of page frames in holes within a range
4698 * @start_pfn: The start PFN to start searching for holes
4699 * @end_pfn: The end PFN to stop searching for holes
4700 *
88ca3b94 4701 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4702 */
4703unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4704 unsigned long end_pfn)
4705{
4706 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4707}
4708
4709/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4710static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4711 unsigned long zone_type,
7960aedd
ZY
4712 unsigned long node_start_pfn,
4713 unsigned long node_end_pfn,
c713216d
MG
4714 unsigned long *ignored)
4715{
96e907d1
TH
4716 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4717 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4718 unsigned long zone_start_pfn, zone_end_pfn;
4719
96e907d1
TH
4720 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4721 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4722
2a1e274a
MG
4723 adjust_zone_range_for_zone_movable(nid, zone_type,
4724 node_start_pfn, node_end_pfn,
4725 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4726 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4727}
0e0b864e 4728
0ee332c1 4729#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4730static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4731 unsigned long zone_type,
7960aedd
ZY
4732 unsigned long node_start_pfn,
4733 unsigned long node_end_pfn,
c713216d
MG
4734 unsigned long *zones_size)
4735{
4736 return zones_size[zone_type];
4737}
4738
6ea6e688 4739static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4740 unsigned long zone_type,
7960aedd
ZY
4741 unsigned long node_start_pfn,
4742 unsigned long node_end_pfn,
c713216d
MG
4743 unsigned long *zholes_size)
4744{
4745 if (!zholes_size)
4746 return 0;
4747
4748 return zholes_size[zone_type];
4749}
20e6926d 4750
0ee332c1 4751#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4752
a3142c8e 4753static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4754 unsigned long node_start_pfn,
4755 unsigned long node_end_pfn,
4756 unsigned long *zones_size,
4757 unsigned long *zholes_size)
c713216d 4758{
febd5949 4759 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
4760 enum zone_type i;
4761
febd5949
GZ
4762 for (i = 0; i < MAX_NR_ZONES; i++) {
4763 struct zone *zone = pgdat->node_zones + i;
4764 unsigned long size, real_size;
c713216d 4765
febd5949
GZ
4766 size = zone_spanned_pages_in_node(pgdat->node_id, i,
4767 node_start_pfn,
4768 node_end_pfn,
4769 zones_size);
4770 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4771 node_start_pfn, node_end_pfn,
4772 zholes_size);
febd5949
GZ
4773 zone->spanned_pages = size;
4774 zone->present_pages = real_size;
4775
4776 totalpages += size;
4777 realtotalpages += real_size;
4778 }
4779
4780 pgdat->node_spanned_pages = totalpages;
c713216d
MG
4781 pgdat->node_present_pages = realtotalpages;
4782 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4783 realtotalpages);
4784}
4785
835c134e
MG
4786#ifndef CONFIG_SPARSEMEM
4787/*
4788 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4789 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4790 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4791 * round what is now in bits to nearest long in bits, then return it in
4792 * bytes.
4793 */
7c45512d 4794static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4795{
4796 unsigned long usemapsize;
4797
7c45512d 4798 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4799 usemapsize = roundup(zonesize, pageblock_nr_pages);
4800 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4801 usemapsize *= NR_PAGEBLOCK_BITS;
4802 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4803
4804 return usemapsize / 8;
4805}
4806
4807static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4808 struct zone *zone,
4809 unsigned long zone_start_pfn,
4810 unsigned long zonesize)
835c134e 4811{
7c45512d 4812 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4813 zone->pageblock_flags = NULL;
58a01a45 4814 if (usemapsize)
6782832e
SS
4815 zone->pageblock_flags =
4816 memblock_virt_alloc_node_nopanic(usemapsize,
4817 pgdat->node_id);
835c134e
MG
4818}
4819#else
7c45512d
LT
4820static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4821 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4822#endif /* CONFIG_SPARSEMEM */
4823
d9c23400 4824#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4825
d9c23400 4826/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4827void __paginginit set_pageblock_order(void)
d9c23400 4828{
955c1cd7
AM
4829 unsigned int order;
4830
d9c23400
MG
4831 /* Check that pageblock_nr_pages has not already been setup */
4832 if (pageblock_order)
4833 return;
4834
955c1cd7
AM
4835 if (HPAGE_SHIFT > PAGE_SHIFT)
4836 order = HUGETLB_PAGE_ORDER;
4837 else
4838 order = MAX_ORDER - 1;
4839
d9c23400
MG
4840 /*
4841 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4842 * This value may be variable depending on boot parameters on IA64 and
4843 * powerpc.
d9c23400
MG
4844 */
4845 pageblock_order = order;
4846}
4847#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4848
ba72cb8c
MG
4849/*
4850 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4851 * is unused as pageblock_order is set at compile-time. See
4852 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4853 * the kernel config
ba72cb8c 4854 */
15ca220e 4855void __paginginit set_pageblock_order(void)
ba72cb8c 4856{
ba72cb8c 4857}
d9c23400
MG
4858
4859#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4860
01cefaef
JL
4861static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4862 unsigned long present_pages)
4863{
4864 unsigned long pages = spanned_pages;
4865
4866 /*
4867 * Provide a more accurate estimation if there are holes within
4868 * the zone and SPARSEMEM is in use. If there are holes within the
4869 * zone, each populated memory region may cost us one or two extra
4870 * memmap pages due to alignment because memmap pages for each
4871 * populated regions may not naturally algined on page boundary.
4872 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4873 */
4874 if (spanned_pages > present_pages + (present_pages >> 4) &&
4875 IS_ENABLED(CONFIG_SPARSEMEM))
4876 pages = present_pages;
4877
4878 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4879}
4880
1da177e4
LT
4881/*
4882 * Set up the zone data structures:
4883 * - mark all pages reserved
4884 * - mark all memory queues empty
4885 * - clear the memory bitmaps
6527af5d
MK
4886 *
4887 * NOTE: pgdat should get zeroed by caller.
1da177e4 4888 */
b5a0e011 4889static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 4890 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 4891{
2f1b6248 4892 enum zone_type j;
ed8ece2e 4893 int nid = pgdat->node_id;
1da177e4 4894 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4895 int ret;
1da177e4 4896
208d54e5 4897 pgdat_resize_init(pgdat);
8177a420
AA
4898#ifdef CONFIG_NUMA_BALANCING
4899 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4900 pgdat->numabalancing_migrate_nr_pages = 0;
4901 pgdat->numabalancing_migrate_next_window = jiffies;
4902#endif
1da177e4 4903 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4904 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4905 pgdat_page_ext_init(pgdat);
5f63b720 4906
1da177e4
LT
4907 for (j = 0; j < MAX_NR_ZONES; j++) {
4908 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4909 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4910
febd5949
GZ
4911 size = zone->spanned_pages;
4912 realsize = freesize = zone->present_pages;
1da177e4 4913
0e0b864e 4914 /*
9feedc9d 4915 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4916 * is used by this zone for memmap. This affects the watermark
4917 * and per-cpu initialisations
4918 */
01cefaef 4919 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4920 if (!is_highmem_idx(j)) {
4921 if (freesize >= memmap_pages) {
4922 freesize -= memmap_pages;
4923 if (memmap_pages)
4924 printk(KERN_DEBUG
4925 " %s zone: %lu pages used for memmap\n",
4926 zone_names[j], memmap_pages);
4927 } else
4928 printk(KERN_WARNING
4929 " %s zone: %lu pages exceeds freesize %lu\n",
4930 zone_names[j], memmap_pages, freesize);
4931 }
0e0b864e 4932
6267276f 4933 /* Account for reserved pages */
9feedc9d
JL
4934 if (j == 0 && freesize > dma_reserve) {
4935 freesize -= dma_reserve;
d903ef9f 4936 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4937 zone_names[0], dma_reserve);
0e0b864e
MG
4938 }
4939
98d2b0eb 4940 if (!is_highmem_idx(j))
9feedc9d 4941 nr_kernel_pages += freesize;
01cefaef
JL
4942 /* Charge for highmem memmap if there are enough kernel pages */
4943 else if (nr_kernel_pages > memmap_pages * 2)
4944 nr_kernel_pages -= memmap_pages;
9feedc9d 4945 nr_all_pages += freesize;
1da177e4 4946
9feedc9d
JL
4947 /*
4948 * Set an approximate value for lowmem here, it will be adjusted
4949 * when the bootmem allocator frees pages into the buddy system.
4950 * And all highmem pages will be managed by the buddy system.
4951 */
4952 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4953#ifdef CONFIG_NUMA
d5f541ed 4954 zone->node = nid;
9feedc9d 4955 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4956 / 100;
9feedc9d 4957 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4958#endif
1da177e4
LT
4959 zone->name = zone_names[j];
4960 spin_lock_init(&zone->lock);
4961 spin_lock_init(&zone->lru_lock);
bdc8cb98 4962 zone_seqlock_init(zone);
1da177e4 4963 zone->zone_pgdat = pgdat;
ed8ece2e 4964 zone_pcp_init(zone);
81c0a2bb
JW
4965
4966 /* For bootup, initialized properly in watermark setup */
4967 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4968
bea8c150 4969 lruvec_init(&zone->lruvec);
1da177e4
LT
4970 if (!size)
4971 continue;
4972
955c1cd7 4973 set_pageblock_order();
7c45512d 4974 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4975 ret = init_currently_empty_zone(zone, zone_start_pfn,
4976 size, MEMMAP_EARLY);
718127cc 4977 BUG_ON(ret);
76cdd58e 4978 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4979 zone_start_pfn += size;
1da177e4
LT
4980 }
4981}
4982
577a32f6 4983static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4984{
1da177e4
LT
4985 /* Skip empty nodes */
4986 if (!pgdat->node_spanned_pages)
4987 return;
4988
d41dee36 4989#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4990 /* ia64 gets its own node_mem_map, before this, without bootmem */
4991 if (!pgdat->node_mem_map) {
e984bb43 4992 unsigned long size, start, end;
d41dee36
AW
4993 struct page *map;
4994
e984bb43
BP
4995 /*
4996 * The zone's endpoints aren't required to be MAX_ORDER
4997 * aligned but the node_mem_map endpoints must be in order
4998 * for the buddy allocator to function correctly.
4999 */
5000 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5001 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5002 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5003 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5004 map = alloc_remap(pgdat->node_id, size);
5005 if (!map)
6782832e
SS
5006 map = memblock_virt_alloc_node_nopanic(size,
5007 pgdat->node_id);
e984bb43 5008 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5009 }
12d810c1 5010#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5011 /*
5012 * With no DISCONTIG, the global mem_map is just set as node 0's
5013 */
c713216d 5014 if (pgdat == NODE_DATA(0)) {
1da177e4 5015 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5016#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5017 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5018 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5019#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5020 }
1da177e4 5021#endif
d41dee36 5022#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5023}
5024
9109fb7b
JW
5025void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5026 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5027{
9109fb7b 5028 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5029 unsigned long start_pfn = 0;
5030 unsigned long end_pfn = 0;
9109fb7b 5031
88fdf75d 5032 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5033 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5034
1da177e4
LT
5035 pgdat->node_id = nid;
5036 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5037#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5038 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5039 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5040 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5041#endif
5042 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5043 zones_size, zholes_size);
1da177e4
LT
5044
5045 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5046#ifdef CONFIG_FLAT_NODE_MEM_MAP
5047 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5048 nid, (unsigned long)pgdat,
5049 (unsigned long)pgdat->node_mem_map);
5050#endif
1da177e4 5051
febd5949 5052 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5053}
5054
0ee332c1 5055#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5056
5057#if MAX_NUMNODES > 1
5058/*
5059 * Figure out the number of possible node ids.
5060 */
f9872caf 5061void __init setup_nr_node_ids(void)
418508c1
MS
5062{
5063 unsigned int node;
5064 unsigned int highest = 0;
5065
5066 for_each_node_mask(node, node_possible_map)
5067 highest = node;
5068 nr_node_ids = highest + 1;
5069}
418508c1
MS
5070#endif
5071
1e01979c
TH
5072/**
5073 * node_map_pfn_alignment - determine the maximum internode alignment
5074 *
5075 * This function should be called after node map is populated and sorted.
5076 * It calculates the maximum power of two alignment which can distinguish
5077 * all the nodes.
5078 *
5079 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5080 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5081 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5082 * shifted, 1GiB is enough and this function will indicate so.
5083 *
5084 * This is used to test whether pfn -> nid mapping of the chosen memory
5085 * model has fine enough granularity to avoid incorrect mapping for the
5086 * populated node map.
5087 *
5088 * Returns the determined alignment in pfn's. 0 if there is no alignment
5089 * requirement (single node).
5090 */
5091unsigned long __init node_map_pfn_alignment(void)
5092{
5093 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5094 unsigned long start, end, mask;
1e01979c 5095 int last_nid = -1;
c13291a5 5096 int i, nid;
1e01979c 5097
c13291a5 5098 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5099 if (!start || last_nid < 0 || last_nid == nid) {
5100 last_nid = nid;
5101 last_end = end;
5102 continue;
5103 }
5104
5105 /*
5106 * Start with a mask granular enough to pin-point to the
5107 * start pfn and tick off bits one-by-one until it becomes
5108 * too coarse to separate the current node from the last.
5109 */
5110 mask = ~((1 << __ffs(start)) - 1);
5111 while (mask && last_end <= (start & (mask << 1)))
5112 mask <<= 1;
5113
5114 /* accumulate all internode masks */
5115 accl_mask |= mask;
5116 }
5117
5118 /* convert mask to number of pages */
5119 return ~accl_mask + 1;
5120}
5121
a6af2bc3 5122/* Find the lowest pfn for a node */
b69a7288 5123static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5124{
a6af2bc3 5125 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5126 unsigned long start_pfn;
5127 int i;
1abbfb41 5128
c13291a5
TH
5129 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5130 min_pfn = min(min_pfn, start_pfn);
c713216d 5131
a6af2bc3
MG
5132 if (min_pfn == ULONG_MAX) {
5133 printk(KERN_WARNING
2bc0d261 5134 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5135 return 0;
5136 }
5137
5138 return min_pfn;
c713216d
MG
5139}
5140
5141/**
5142 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5143 *
5144 * It returns the minimum PFN based on information provided via
7d018176 5145 * memblock_set_node().
c713216d
MG
5146 */
5147unsigned long __init find_min_pfn_with_active_regions(void)
5148{
5149 return find_min_pfn_for_node(MAX_NUMNODES);
5150}
5151
37b07e41
LS
5152/*
5153 * early_calculate_totalpages()
5154 * Sum pages in active regions for movable zone.
4b0ef1fe 5155 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5156 */
484f51f8 5157static unsigned long __init early_calculate_totalpages(void)
7e63efef 5158{
7e63efef 5159 unsigned long totalpages = 0;
c13291a5
TH
5160 unsigned long start_pfn, end_pfn;
5161 int i, nid;
5162
5163 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5164 unsigned long pages = end_pfn - start_pfn;
7e63efef 5165
37b07e41
LS
5166 totalpages += pages;
5167 if (pages)
4b0ef1fe 5168 node_set_state(nid, N_MEMORY);
37b07e41 5169 }
b8af2941 5170 return totalpages;
7e63efef
MG
5171}
5172
2a1e274a
MG
5173/*
5174 * Find the PFN the Movable zone begins in each node. Kernel memory
5175 * is spread evenly between nodes as long as the nodes have enough
5176 * memory. When they don't, some nodes will have more kernelcore than
5177 * others
5178 */
b224ef85 5179static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5180{
5181 int i, nid;
5182 unsigned long usable_startpfn;
5183 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5184 /* save the state before borrow the nodemask */
4b0ef1fe 5185 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5186 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5187 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5188 struct memblock_region *r;
b2f3eebe
TC
5189
5190 /* Need to find movable_zone earlier when movable_node is specified. */
5191 find_usable_zone_for_movable();
5192
5193 /*
5194 * If movable_node is specified, ignore kernelcore and movablecore
5195 * options.
5196 */
5197 if (movable_node_is_enabled()) {
136199f0
EM
5198 for_each_memblock(memory, r) {
5199 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5200 continue;
5201
136199f0 5202 nid = r->nid;
b2f3eebe 5203
136199f0 5204 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5205 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5206 min(usable_startpfn, zone_movable_pfn[nid]) :
5207 usable_startpfn;
5208 }
5209
5210 goto out2;
5211 }
2a1e274a 5212
7e63efef 5213 /*
b2f3eebe 5214 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5215 * kernelcore that corresponds so that memory usable for
5216 * any allocation type is evenly spread. If both kernelcore
5217 * and movablecore are specified, then the value of kernelcore
5218 * will be used for required_kernelcore if it's greater than
5219 * what movablecore would have allowed.
5220 */
5221 if (required_movablecore) {
7e63efef
MG
5222 unsigned long corepages;
5223
5224 /*
5225 * Round-up so that ZONE_MOVABLE is at least as large as what
5226 * was requested by the user
5227 */
5228 required_movablecore =
5229 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5230 corepages = totalpages - required_movablecore;
5231
5232 required_kernelcore = max(required_kernelcore, corepages);
5233 }
5234
20e6926d
YL
5235 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5236 if (!required_kernelcore)
66918dcd 5237 goto out;
2a1e274a
MG
5238
5239 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5240 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5241
5242restart:
5243 /* Spread kernelcore memory as evenly as possible throughout nodes */
5244 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5245 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5246 unsigned long start_pfn, end_pfn;
5247
2a1e274a
MG
5248 /*
5249 * Recalculate kernelcore_node if the division per node
5250 * now exceeds what is necessary to satisfy the requested
5251 * amount of memory for the kernel
5252 */
5253 if (required_kernelcore < kernelcore_node)
5254 kernelcore_node = required_kernelcore / usable_nodes;
5255
5256 /*
5257 * As the map is walked, we track how much memory is usable
5258 * by the kernel using kernelcore_remaining. When it is
5259 * 0, the rest of the node is usable by ZONE_MOVABLE
5260 */
5261 kernelcore_remaining = kernelcore_node;
5262
5263 /* Go through each range of PFNs within this node */
c13291a5 5264 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5265 unsigned long size_pages;
5266
c13291a5 5267 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5268 if (start_pfn >= end_pfn)
5269 continue;
5270
5271 /* Account for what is only usable for kernelcore */
5272 if (start_pfn < usable_startpfn) {
5273 unsigned long kernel_pages;
5274 kernel_pages = min(end_pfn, usable_startpfn)
5275 - start_pfn;
5276
5277 kernelcore_remaining -= min(kernel_pages,
5278 kernelcore_remaining);
5279 required_kernelcore -= min(kernel_pages,
5280 required_kernelcore);
5281
5282 /* Continue if range is now fully accounted */
5283 if (end_pfn <= usable_startpfn) {
5284
5285 /*
5286 * Push zone_movable_pfn to the end so
5287 * that if we have to rebalance
5288 * kernelcore across nodes, we will
5289 * not double account here
5290 */
5291 zone_movable_pfn[nid] = end_pfn;
5292 continue;
5293 }
5294 start_pfn = usable_startpfn;
5295 }
5296
5297 /*
5298 * The usable PFN range for ZONE_MOVABLE is from
5299 * start_pfn->end_pfn. Calculate size_pages as the
5300 * number of pages used as kernelcore
5301 */
5302 size_pages = end_pfn - start_pfn;
5303 if (size_pages > kernelcore_remaining)
5304 size_pages = kernelcore_remaining;
5305 zone_movable_pfn[nid] = start_pfn + size_pages;
5306
5307 /*
5308 * Some kernelcore has been met, update counts and
5309 * break if the kernelcore for this node has been
b8af2941 5310 * satisfied
2a1e274a
MG
5311 */
5312 required_kernelcore -= min(required_kernelcore,
5313 size_pages);
5314 kernelcore_remaining -= size_pages;
5315 if (!kernelcore_remaining)
5316 break;
5317 }
5318 }
5319
5320 /*
5321 * If there is still required_kernelcore, we do another pass with one
5322 * less node in the count. This will push zone_movable_pfn[nid] further
5323 * along on the nodes that still have memory until kernelcore is
b8af2941 5324 * satisfied
2a1e274a
MG
5325 */
5326 usable_nodes--;
5327 if (usable_nodes && required_kernelcore > usable_nodes)
5328 goto restart;
5329
b2f3eebe 5330out2:
2a1e274a
MG
5331 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5332 for (nid = 0; nid < MAX_NUMNODES; nid++)
5333 zone_movable_pfn[nid] =
5334 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5335
20e6926d 5336out:
66918dcd 5337 /* restore the node_state */
4b0ef1fe 5338 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5339}
5340
4b0ef1fe
LJ
5341/* Any regular or high memory on that node ? */
5342static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5343{
37b07e41
LS
5344 enum zone_type zone_type;
5345
4b0ef1fe
LJ
5346 if (N_MEMORY == N_NORMAL_MEMORY)
5347 return;
5348
5349 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5350 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5351 if (populated_zone(zone)) {
4b0ef1fe
LJ
5352 node_set_state(nid, N_HIGH_MEMORY);
5353 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5354 zone_type <= ZONE_NORMAL)
5355 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5356 break;
5357 }
37b07e41 5358 }
37b07e41
LS
5359}
5360
c713216d
MG
5361/**
5362 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5363 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5364 *
5365 * This will call free_area_init_node() for each active node in the system.
7d018176 5366 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5367 * zone in each node and their holes is calculated. If the maximum PFN
5368 * between two adjacent zones match, it is assumed that the zone is empty.
5369 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5370 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5371 * starts where the previous one ended. For example, ZONE_DMA32 starts
5372 * at arch_max_dma_pfn.
5373 */
5374void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5375{
c13291a5
TH
5376 unsigned long start_pfn, end_pfn;
5377 int i, nid;
a6af2bc3 5378
c713216d
MG
5379 /* Record where the zone boundaries are */
5380 memset(arch_zone_lowest_possible_pfn, 0,
5381 sizeof(arch_zone_lowest_possible_pfn));
5382 memset(arch_zone_highest_possible_pfn, 0,
5383 sizeof(arch_zone_highest_possible_pfn));
5384 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5385 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5386 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5387 if (i == ZONE_MOVABLE)
5388 continue;
c713216d
MG
5389 arch_zone_lowest_possible_pfn[i] =
5390 arch_zone_highest_possible_pfn[i-1];
5391 arch_zone_highest_possible_pfn[i] =
5392 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5393 }
2a1e274a
MG
5394 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5395 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5396
5397 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5398 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5399 find_zone_movable_pfns_for_nodes();
c713216d 5400
c713216d 5401 /* Print out the zone ranges */
f88dfff5 5402 pr_info("Zone ranges:\n");
2a1e274a
MG
5403 for (i = 0; i < MAX_NR_ZONES; i++) {
5404 if (i == ZONE_MOVABLE)
5405 continue;
f88dfff5 5406 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5407 if (arch_zone_lowest_possible_pfn[i] ==
5408 arch_zone_highest_possible_pfn[i])
f88dfff5 5409 pr_cont("empty\n");
72f0ba02 5410 else
8d29e18a
JG
5411 pr_cont("[mem %#018Lx-%#018Lx]\n",
5412 (u64)arch_zone_lowest_possible_pfn[i]
5413 << PAGE_SHIFT,
5414 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5415 << PAGE_SHIFT) - 1);
2a1e274a
MG
5416 }
5417
5418 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5419 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5420 for (i = 0; i < MAX_NUMNODES; i++) {
5421 if (zone_movable_pfn[i])
8d29e18a
JG
5422 pr_info(" Node %d: %#018Lx\n", i,
5423 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5424 }
c713216d 5425
f2d52fe5 5426 /* Print out the early node map */
f88dfff5 5427 pr_info("Early memory node ranges\n");
c13291a5 5428 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5429 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5430 (u64)start_pfn << PAGE_SHIFT,
5431 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5432
5433 /* Initialise every node */
708614e6 5434 mminit_verify_pageflags_layout();
8ef82866 5435 setup_nr_node_ids();
c713216d
MG
5436 for_each_online_node(nid) {
5437 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5438 free_area_init_node(nid, NULL,
c713216d 5439 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5440
5441 /* Any memory on that node */
5442 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5443 node_set_state(nid, N_MEMORY);
5444 check_for_memory(pgdat, nid);
c713216d
MG
5445 }
5446}
2a1e274a 5447
7e63efef 5448static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5449{
5450 unsigned long long coremem;
5451 if (!p)
5452 return -EINVAL;
5453
5454 coremem = memparse(p, &p);
7e63efef 5455 *core = coremem >> PAGE_SHIFT;
2a1e274a 5456
7e63efef 5457 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5458 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5459
5460 return 0;
5461}
ed7ed365 5462
7e63efef
MG
5463/*
5464 * kernelcore=size sets the amount of memory for use for allocations that
5465 * cannot be reclaimed or migrated.
5466 */
5467static int __init cmdline_parse_kernelcore(char *p)
5468{
5469 return cmdline_parse_core(p, &required_kernelcore);
5470}
5471
5472/*
5473 * movablecore=size sets the amount of memory for use for allocations that
5474 * can be reclaimed or migrated.
5475 */
5476static int __init cmdline_parse_movablecore(char *p)
5477{
5478 return cmdline_parse_core(p, &required_movablecore);
5479}
5480
ed7ed365 5481early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5482early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5483
0ee332c1 5484#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5485
c3d5f5f0
JL
5486void adjust_managed_page_count(struct page *page, long count)
5487{
5488 spin_lock(&managed_page_count_lock);
5489 page_zone(page)->managed_pages += count;
5490 totalram_pages += count;
3dcc0571
JL
5491#ifdef CONFIG_HIGHMEM
5492 if (PageHighMem(page))
5493 totalhigh_pages += count;
5494#endif
c3d5f5f0
JL
5495 spin_unlock(&managed_page_count_lock);
5496}
3dcc0571 5497EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5498
11199692 5499unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5500{
11199692
JL
5501 void *pos;
5502 unsigned long pages = 0;
69afade7 5503
11199692
JL
5504 start = (void *)PAGE_ALIGN((unsigned long)start);
5505 end = (void *)((unsigned long)end & PAGE_MASK);
5506 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5507 if ((unsigned int)poison <= 0xFF)
11199692
JL
5508 memset(pos, poison, PAGE_SIZE);
5509 free_reserved_page(virt_to_page(pos));
69afade7
JL
5510 }
5511
5512 if (pages && s)
11199692 5513 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5514 s, pages << (PAGE_SHIFT - 10), start, end);
5515
5516 return pages;
5517}
11199692 5518EXPORT_SYMBOL(free_reserved_area);
69afade7 5519
cfa11e08
JL
5520#ifdef CONFIG_HIGHMEM
5521void free_highmem_page(struct page *page)
5522{
5523 __free_reserved_page(page);
5524 totalram_pages++;
7b4b2a0d 5525 page_zone(page)->managed_pages++;
cfa11e08
JL
5526 totalhigh_pages++;
5527}
5528#endif
5529
7ee3d4e8
JL
5530
5531void __init mem_init_print_info(const char *str)
5532{
5533 unsigned long physpages, codesize, datasize, rosize, bss_size;
5534 unsigned long init_code_size, init_data_size;
5535
5536 physpages = get_num_physpages();
5537 codesize = _etext - _stext;
5538 datasize = _edata - _sdata;
5539 rosize = __end_rodata - __start_rodata;
5540 bss_size = __bss_stop - __bss_start;
5541 init_data_size = __init_end - __init_begin;
5542 init_code_size = _einittext - _sinittext;
5543
5544 /*
5545 * Detect special cases and adjust section sizes accordingly:
5546 * 1) .init.* may be embedded into .data sections
5547 * 2) .init.text.* may be out of [__init_begin, __init_end],
5548 * please refer to arch/tile/kernel/vmlinux.lds.S.
5549 * 3) .rodata.* may be embedded into .text or .data sections.
5550 */
5551#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5552 do { \
5553 if (start <= pos && pos < end && size > adj) \
5554 size -= adj; \
5555 } while (0)
7ee3d4e8
JL
5556
5557 adj_init_size(__init_begin, __init_end, init_data_size,
5558 _sinittext, init_code_size);
5559 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5560 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5561 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5562 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5563
5564#undef adj_init_size
5565
f88dfff5 5566 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5567 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5568 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5569#ifdef CONFIG_HIGHMEM
5570 ", %luK highmem"
5571#endif
5572 "%s%s)\n",
5573 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5574 codesize >> 10, datasize >> 10, rosize >> 10,
5575 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5576 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5577 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5578#ifdef CONFIG_HIGHMEM
5579 totalhigh_pages << (PAGE_SHIFT-10),
5580#endif
5581 str ? ", " : "", str ? str : "");
5582}
5583
0e0b864e 5584/**
88ca3b94
RD
5585 * set_dma_reserve - set the specified number of pages reserved in the first zone
5586 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5587 *
5588 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5589 * In the DMA zone, a significant percentage may be consumed by kernel image
5590 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5591 * function may optionally be used to account for unfreeable pages in the
5592 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5593 * smaller per-cpu batchsize.
0e0b864e
MG
5594 */
5595void __init set_dma_reserve(unsigned long new_dma_reserve)
5596{
5597 dma_reserve = new_dma_reserve;
5598}
5599
1da177e4
LT
5600void __init free_area_init(unsigned long *zones_size)
5601{
9109fb7b 5602 free_area_init_node(0, zones_size,
1da177e4
LT
5603 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5604}
1da177e4 5605
1da177e4
LT
5606static int page_alloc_cpu_notify(struct notifier_block *self,
5607 unsigned long action, void *hcpu)
5608{
5609 int cpu = (unsigned long)hcpu;
1da177e4 5610
8bb78442 5611 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5612 lru_add_drain_cpu(cpu);
9f8f2172
CL
5613 drain_pages(cpu);
5614
5615 /*
5616 * Spill the event counters of the dead processor
5617 * into the current processors event counters.
5618 * This artificially elevates the count of the current
5619 * processor.
5620 */
f8891e5e 5621 vm_events_fold_cpu(cpu);
9f8f2172
CL
5622
5623 /*
5624 * Zero the differential counters of the dead processor
5625 * so that the vm statistics are consistent.
5626 *
5627 * This is only okay since the processor is dead and cannot
5628 * race with what we are doing.
5629 */
2bb921e5 5630 cpu_vm_stats_fold(cpu);
1da177e4
LT
5631 }
5632 return NOTIFY_OK;
5633}
1da177e4
LT
5634
5635void __init page_alloc_init(void)
5636{
5637 hotcpu_notifier(page_alloc_cpu_notify, 0);
5638}
5639
cb45b0e9
HA
5640/*
5641 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5642 * or min_free_kbytes changes.
5643 */
5644static void calculate_totalreserve_pages(void)
5645{
5646 struct pglist_data *pgdat;
5647 unsigned long reserve_pages = 0;
2f6726e5 5648 enum zone_type i, j;
cb45b0e9
HA
5649
5650 for_each_online_pgdat(pgdat) {
5651 for (i = 0; i < MAX_NR_ZONES; i++) {
5652 struct zone *zone = pgdat->node_zones + i;
3484b2de 5653 long max = 0;
cb45b0e9
HA
5654
5655 /* Find valid and maximum lowmem_reserve in the zone */
5656 for (j = i; j < MAX_NR_ZONES; j++) {
5657 if (zone->lowmem_reserve[j] > max)
5658 max = zone->lowmem_reserve[j];
5659 }
5660
41858966
MG
5661 /* we treat the high watermark as reserved pages. */
5662 max += high_wmark_pages(zone);
cb45b0e9 5663
b40da049
JL
5664 if (max > zone->managed_pages)
5665 max = zone->managed_pages;
cb45b0e9 5666 reserve_pages += max;
ab8fabd4
JW
5667 /*
5668 * Lowmem reserves are not available to
5669 * GFP_HIGHUSER page cache allocations and
5670 * kswapd tries to balance zones to their high
5671 * watermark. As a result, neither should be
5672 * regarded as dirtyable memory, to prevent a
5673 * situation where reclaim has to clean pages
5674 * in order to balance the zones.
5675 */
5676 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5677 }
5678 }
ab8fabd4 5679 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5680 totalreserve_pages = reserve_pages;
5681}
5682
1da177e4
LT
5683/*
5684 * setup_per_zone_lowmem_reserve - called whenever
5685 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5686 * has a correct pages reserved value, so an adequate number of
5687 * pages are left in the zone after a successful __alloc_pages().
5688 */
5689static void setup_per_zone_lowmem_reserve(void)
5690{
5691 struct pglist_data *pgdat;
2f6726e5 5692 enum zone_type j, idx;
1da177e4 5693
ec936fc5 5694 for_each_online_pgdat(pgdat) {
1da177e4
LT
5695 for (j = 0; j < MAX_NR_ZONES; j++) {
5696 struct zone *zone = pgdat->node_zones + j;
b40da049 5697 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5698
5699 zone->lowmem_reserve[j] = 0;
5700
2f6726e5
CL
5701 idx = j;
5702 while (idx) {
1da177e4
LT
5703 struct zone *lower_zone;
5704
2f6726e5
CL
5705 idx--;
5706
1da177e4
LT
5707 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5708 sysctl_lowmem_reserve_ratio[idx] = 1;
5709
5710 lower_zone = pgdat->node_zones + idx;
b40da049 5711 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5712 sysctl_lowmem_reserve_ratio[idx];
b40da049 5713 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5714 }
5715 }
5716 }
cb45b0e9
HA
5717
5718 /* update totalreserve_pages */
5719 calculate_totalreserve_pages();
1da177e4
LT
5720}
5721
cfd3da1e 5722static void __setup_per_zone_wmarks(void)
1da177e4
LT
5723{
5724 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5725 unsigned long lowmem_pages = 0;
5726 struct zone *zone;
5727 unsigned long flags;
5728
5729 /* Calculate total number of !ZONE_HIGHMEM pages */
5730 for_each_zone(zone) {
5731 if (!is_highmem(zone))
b40da049 5732 lowmem_pages += zone->managed_pages;
1da177e4
LT
5733 }
5734
5735 for_each_zone(zone) {
ac924c60
AM
5736 u64 tmp;
5737
1125b4e3 5738 spin_lock_irqsave(&zone->lock, flags);
b40da049 5739 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5740 do_div(tmp, lowmem_pages);
1da177e4
LT
5741 if (is_highmem(zone)) {
5742 /*
669ed175
NP
5743 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5744 * need highmem pages, so cap pages_min to a small
5745 * value here.
5746 *
41858966 5747 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 5748 * deltas control asynch page reclaim, and so should
669ed175 5749 * not be capped for highmem.
1da177e4 5750 */
90ae8d67 5751 unsigned long min_pages;
1da177e4 5752
b40da049 5753 min_pages = zone->managed_pages / 1024;
90ae8d67 5754 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5755 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5756 } else {
669ed175
NP
5757 /*
5758 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5759 * proportionate to the zone's size.
5760 */
41858966 5761 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5762 }
5763
41858966
MG
5764 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5765 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5766
81c0a2bb 5767 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5768 high_wmark_pages(zone) - low_wmark_pages(zone) -
5769 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5770
56fd56b8 5771 setup_zone_migrate_reserve(zone);
1125b4e3 5772 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5773 }
cb45b0e9
HA
5774
5775 /* update totalreserve_pages */
5776 calculate_totalreserve_pages();
1da177e4
LT
5777}
5778
cfd3da1e
MG
5779/**
5780 * setup_per_zone_wmarks - called when min_free_kbytes changes
5781 * or when memory is hot-{added|removed}
5782 *
5783 * Ensures that the watermark[min,low,high] values for each zone are set
5784 * correctly with respect to min_free_kbytes.
5785 */
5786void setup_per_zone_wmarks(void)
5787{
5788 mutex_lock(&zonelists_mutex);
5789 __setup_per_zone_wmarks();
5790 mutex_unlock(&zonelists_mutex);
5791}
5792
55a4462a 5793/*
556adecb
RR
5794 * The inactive anon list should be small enough that the VM never has to
5795 * do too much work, but large enough that each inactive page has a chance
5796 * to be referenced again before it is swapped out.
5797 *
5798 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5799 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5800 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5801 * the anonymous pages are kept on the inactive list.
5802 *
5803 * total target max
5804 * memory ratio inactive anon
5805 * -------------------------------------
5806 * 10MB 1 5MB
5807 * 100MB 1 50MB
5808 * 1GB 3 250MB
5809 * 10GB 10 0.9GB
5810 * 100GB 31 3GB
5811 * 1TB 101 10GB
5812 * 10TB 320 32GB
5813 */
1b79acc9 5814static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5815{
96cb4df5 5816 unsigned int gb, ratio;
556adecb 5817
96cb4df5 5818 /* Zone size in gigabytes */
b40da049 5819 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5820 if (gb)
556adecb 5821 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5822 else
5823 ratio = 1;
556adecb 5824
96cb4df5
MK
5825 zone->inactive_ratio = ratio;
5826}
556adecb 5827
839a4fcc 5828static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5829{
5830 struct zone *zone;
5831
5832 for_each_zone(zone)
5833 calculate_zone_inactive_ratio(zone);
556adecb
RR
5834}
5835
1da177e4
LT
5836/*
5837 * Initialise min_free_kbytes.
5838 *
5839 * For small machines we want it small (128k min). For large machines
5840 * we want it large (64MB max). But it is not linear, because network
5841 * bandwidth does not increase linearly with machine size. We use
5842 *
b8af2941 5843 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5844 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5845 *
5846 * which yields
5847 *
5848 * 16MB: 512k
5849 * 32MB: 724k
5850 * 64MB: 1024k
5851 * 128MB: 1448k
5852 * 256MB: 2048k
5853 * 512MB: 2896k
5854 * 1024MB: 4096k
5855 * 2048MB: 5792k
5856 * 4096MB: 8192k
5857 * 8192MB: 11584k
5858 * 16384MB: 16384k
5859 */
1b79acc9 5860int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5861{
5862 unsigned long lowmem_kbytes;
5f12733e 5863 int new_min_free_kbytes;
1da177e4
LT
5864
5865 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5866 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5867
5868 if (new_min_free_kbytes > user_min_free_kbytes) {
5869 min_free_kbytes = new_min_free_kbytes;
5870 if (min_free_kbytes < 128)
5871 min_free_kbytes = 128;
5872 if (min_free_kbytes > 65536)
5873 min_free_kbytes = 65536;
5874 } else {
5875 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5876 new_min_free_kbytes, user_min_free_kbytes);
5877 }
bc75d33f 5878 setup_per_zone_wmarks();
a6cccdc3 5879 refresh_zone_stat_thresholds();
1da177e4 5880 setup_per_zone_lowmem_reserve();
556adecb 5881 setup_per_zone_inactive_ratio();
1da177e4
LT
5882 return 0;
5883}
bc75d33f 5884module_init(init_per_zone_wmark_min)
1da177e4
LT
5885
5886/*
b8af2941 5887 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5888 * that we can call two helper functions whenever min_free_kbytes
5889 * changes.
5890 */
cccad5b9 5891int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5892 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5893{
da8c757b
HP
5894 int rc;
5895
5896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5897 if (rc)
5898 return rc;
5899
5f12733e
MH
5900 if (write) {
5901 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5902 setup_per_zone_wmarks();
5f12733e 5903 }
1da177e4
LT
5904 return 0;
5905}
5906
9614634f 5907#ifdef CONFIG_NUMA
cccad5b9 5908int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5909 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5910{
5911 struct zone *zone;
5912 int rc;
5913
8d65af78 5914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5915 if (rc)
5916 return rc;
5917
5918 for_each_zone(zone)
b40da049 5919 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5920 sysctl_min_unmapped_ratio) / 100;
5921 return 0;
5922}
0ff38490 5923
cccad5b9 5924int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5925 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5926{
5927 struct zone *zone;
5928 int rc;
5929
8d65af78 5930 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5931 if (rc)
5932 return rc;
5933
5934 for_each_zone(zone)
b40da049 5935 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5936 sysctl_min_slab_ratio) / 100;
5937 return 0;
5938}
9614634f
CL
5939#endif
5940
1da177e4
LT
5941/*
5942 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5943 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5944 * whenever sysctl_lowmem_reserve_ratio changes.
5945 *
5946 * The reserve ratio obviously has absolutely no relation with the
41858966 5947 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5948 * if in function of the boot time zone sizes.
5949 */
cccad5b9 5950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5951 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5952{
8d65af78 5953 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5954 setup_per_zone_lowmem_reserve();
5955 return 0;
5956}
5957
8ad4b1fb
RS
5958/*
5959 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5960 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5961 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5962 */
cccad5b9 5963int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5964 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5965{
5966 struct zone *zone;
7cd2b0a3 5967 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5968 int ret;
5969
7cd2b0a3
DR
5970 mutex_lock(&pcp_batch_high_lock);
5971 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5972
8d65af78 5973 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5974 if (!write || ret < 0)
5975 goto out;
5976
5977 /* Sanity checking to avoid pcp imbalance */
5978 if (percpu_pagelist_fraction &&
5979 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5980 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5981 ret = -EINVAL;
5982 goto out;
5983 }
5984
5985 /* No change? */
5986 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5987 goto out;
c8e251fa 5988
364df0eb 5989 for_each_populated_zone(zone) {
7cd2b0a3
DR
5990 unsigned int cpu;
5991
22a7f12b 5992 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5993 pageset_set_high_and_batch(zone,
5994 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5995 }
7cd2b0a3 5996out:
c8e251fa 5997 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5998 return ret;
8ad4b1fb
RS
5999}
6000
a9919c79 6001#ifdef CONFIG_NUMA
f034b5d4 6002int hashdist = HASHDIST_DEFAULT;
1da177e4 6003
1da177e4
LT
6004static int __init set_hashdist(char *str)
6005{
6006 if (!str)
6007 return 0;
6008 hashdist = simple_strtoul(str, &str, 0);
6009 return 1;
6010}
6011__setup("hashdist=", set_hashdist);
6012#endif
6013
6014/*
6015 * allocate a large system hash table from bootmem
6016 * - it is assumed that the hash table must contain an exact power-of-2
6017 * quantity of entries
6018 * - limit is the number of hash buckets, not the total allocation size
6019 */
6020void *__init alloc_large_system_hash(const char *tablename,
6021 unsigned long bucketsize,
6022 unsigned long numentries,
6023 int scale,
6024 int flags,
6025 unsigned int *_hash_shift,
6026 unsigned int *_hash_mask,
31fe62b9
TB
6027 unsigned long low_limit,
6028 unsigned long high_limit)
1da177e4 6029{
31fe62b9 6030 unsigned long long max = high_limit;
1da177e4
LT
6031 unsigned long log2qty, size;
6032 void *table = NULL;
6033
6034 /* allow the kernel cmdline to have a say */
6035 if (!numentries) {
6036 /* round applicable memory size up to nearest megabyte */
04903664 6037 numentries = nr_kernel_pages;
a7e83318
JZ
6038
6039 /* It isn't necessary when PAGE_SIZE >= 1MB */
6040 if (PAGE_SHIFT < 20)
6041 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6042
6043 /* limit to 1 bucket per 2^scale bytes of low memory */
6044 if (scale > PAGE_SHIFT)
6045 numentries >>= (scale - PAGE_SHIFT);
6046 else
6047 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6048
6049 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6050 if (unlikely(flags & HASH_SMALL)) {
6051 /* Makes no sense without HASH_EARLY */
6052 WARN_ON(!(flags & HASH_EARLY));
6053 if (!(numentries >> *_hash_shift)) {
6054 numentries = 1UL << *_hash_shift;
6055 BUG_ON(!numentries);
6056 }
6057 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6058 numentries = PAGE_SIZE / bucketsize;
1da177e4 6059 }
6e692ed3 6060 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6061
6062 /* limit allocation size to 1/16 total memory by default */
6063 if (max == 0) {
6064 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6065 do_div(max, bucketsize);
6066 }
074b8517 6067 max = min(max, 0x80000000ULL);
1da177e4 6068
31fe62b9
TB
6069 if (numentries < low_limit)
6070 numentries = low_limit;
1da177e4
LT
6071 if (numentries > max)
6072 numentries = max;
6073
f0d1b0b3 6074 log2qty = ilog2(numentries);
1da177e4
LT
6075
6076 do {
6077 size = bucketsize << log2qty;
6078 if (flags & HASH_EARLY)
6782832e 6079 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6080 else if (hashdist)
6081 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6082 else {
1037b83b
ED
6083 /*
6084 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6085 * some pages at the end of hash table which
6086 * alloc_pages_exact() automatically does
1037b83b 6087 */
264ef8a9 6088 if (get_order(size) < MAX_ORDER) {
a1dd268c 6089 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6090 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6091 }
1da177e4
LT
6092 }
6093 } while (!table && size > PAGE_SIZE && --log2qty);
6094
6095 if (!table)
6096 panic("Failed to allocate %s hash table\n", tablename);
6097
f241e660 6098 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6099 tablename,
f241e660 6100 (1UL << log2qty),
f0d1b0b3 6101 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6102 size);
6103
6104 if (_hash_shift)
6105 *_hash_shift = log2qty;
6106 if (_hash_mask)
6107 *_hash_mask = (1 << log2qty) - 1;
6108
6109 return table;
6110}
a117e66e 6111
835c134e
MG
6112/* Return a pointer to the bitmap storing bits affecting a block of pages */
6113static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6114 unsigned long pfn)
6115{
6116#ifdef CONFIG_SPARSEMEM
6117 return __pfn_to_section(pfn)->pageblock_flags;
6118#else
6119 return zone->pageblock_flags;
6120#endif /* CONFIG_SPARSEMEM */
6121}
6122
6123static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6124{
6125#ifdef CONFIG_SPARSEMEM
6126 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6127 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6128#else
c060f943 6129 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6130 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6131#endif /* CONFIG_SPARSEMEM */
6132}
6133
6134/**
1aab4d77 6135 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6136 * @page: The page within the block of interest
1aab4d77
RD
6137 * @pfn: The target page frame number
6138 * @end_bitidx: The last bit of interest to retrieve
6139 * @mask: mask of bits that the caller is interested in
6140 *
6141 * Return: pageblock_bits flags
835c134e 6142 */
dc4b0caf 6143unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6144 unsigned long end_bitidx,
6145 unsigned long mask)
835c134e
MG
6146{
6147 struct zone *zone;
6148 unsigned long *bitmap;
dc4b0caf 6149 unsigned long bitidx, word_bitidx;
e58469ba 6150 unsigned long word;
835c134e
MG
6151
6152 zone = page_zone(page);
835c134e
MG
6153 bitmap = get_pageblock_bitmap(zone, pfn);
6154 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6155 word_bitidx = bitidx / BITS_PER_LONG;
6156 bitidx &= (BITS_PER_LONG-1);
835c134e 6157
e58469ba
MG
6158 word = bitmap[word_bitidx];
6159 bitidx += end_bitidx;
6160 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6161}
6162
6163/**
dc4b0caf 6164 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6165 * @page: The page within the block of interest
835c134e 6166 * @flags: The flags to set
1aab4d77
RD
6167 * @pfn: The target page frame number
6168 * @end_bitidx: The last bit of interest
6169 * @mask: mask of bits that the caller is interested in
835c134e 6170 */
dc4b0caf
MG
6171void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6172 unsigned long pfn,
e58469ba
MG
6173 unsigned long end_bitidx,
6174 unsigned long mask)
835c134e
MG
6175{
6176 struct zone *zone;
6177 unsigned long *bitmap;
dc4b0caf 6178 unsigned long bitidx, word_bitidx;
e58469ba
MG
6179 unsigned long old_word, word;
6180
6181 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6182
6183 zone = page_zone(page);
835c134e
MG
6184 bitmap = get_pageblock_bitmap(zone, pfn);
6185 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6186 word_bitidx = bitidx / BITS_PER_LONG;
6187 bitidx &= (BITS_PER_LONG-1);
6188
309381fe 6189 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6190
e58469ba
MG
6191 bitidx += end_bitidx;
6192 mask <<= (BITS_PER_LONG - bitidx - 1);
6193 flags <<= (BITS_PER_LONG - bitidx - 1);
6194
4db0c3c2 6195 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6196 for (;;) {
6197 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6198 if (word == old_word)
6199 break;
6200 word = old_word;
6201 }
835c134e 6202}
a5d76b54
KH
6203
6204/*
80934513
MK
6205 * This function checks whether pageblock includes unmovable pages or not.
6206 * If @count is not zero, it is okay to include less @count unmovable pages
6207 *
b8af2941 6208 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6209 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6210 * expect this function should be exact.
a5d76b54 6211 */
b023f468
WC
6212bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6213 bool skip_hwpoisoned_pages)
49ac8255
KH
6214{
6215 unsigned long pfn, iter, found;
47118af0
MN
6216 int mt;
6217
49ac8255
KH
6218 /*
6219 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6220 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6221 */
6222 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6223 return false;
47118af0
MN
6224 mt = get_pageblock_migratetype(page);
6225 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6226 return false;
49ac8255
KH
6227
6228 pfn = page_to_pfn(page);
6229 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6230 unsigned long check = pfn + iter;
6231
29723fcc 6232 if (!pfn_valid_within(check))
49ac8255 6233 continue;
29723fcc 6234
49ac8255 6235 page = pfn_to_page(check);
c8721bbb
NH
6236
6237 /*
6238 * Hugepages are not in LRU lists, but they're movable.
6239 * We need not scan over tail pages bacause we don't
6240 * handle each tail page individually in migration.
6241 */
6242 if (PageHuge(page)) {
6243 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6244 continue;
6245 }
6246
97d255c8
MK
6247 /*
6248 * We can't use page_count without pin a page
6249 * because another CPU can free compound page.
6250 * This check already skips compound tails of THP
6251 * because their page->_count is zero at all time.
6252 */
6253 if (!atomic_read(&page->_count)) {
49ac8255
KH
6254 if (PageBuddy(page))
6255 iter += (1 << page_order(page)) - 1;
6256 continue;
6257 }
97d255c8 6258
b023f468
WC
6259 /*
6260 * The HWPoisoned page may be not in buddy system, and
6261 * page_count() is not 0.
6262 */
6263 if (skip_hwpoisoned_pages && PageHWPoison(page))
6264 continue;
6265
49ac8255
KH
6266 if (!PageLRU(page))
6267 found++;
6268 /*
6b4f7799
JW
6269 * If there are RECLAIMABLE pages, we need to check
6270 * it. But now, memory offline itself doesn't call
6271 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6272 */
6273 /*
6274 * If the page is not RAM, page_count()should be 0.
6275 * we don't need more check. This is an _used_ not-movable page.
6276 *
6277 * The problematic thing here is PG_reserved pages. PG_reserved
6278 * is set to both of a memory hole page and a _used_ kernel
6279 * page at boot.
6280 */
6281 if (found > count)
80934513 6282 return true;
49ac8255 6283 }
80934513 6284 return false;
49ac8255
KH
6285}
6286
6287bool is_pageblock_removable_nolock(struct page *page)
6288{
656a0706
MH
6289 struct zone *zone;
6290 unsigned long pfn;
687875fb
MH
6291
6292 /*
6293 * We have to be careful here because we are iterating over memory
6294 * sections which are not zone aware so we might end up outside of
6295 * the zone but still within the section.
656a0706
MH
6296 * We have to take care about the node as well. If the node is offline
6297 * its NODE_DATA will be NULL - see page_zone.
687875fb 6298 */
656a0706
MH
6299 if (!node_online(page_to_nid(page)))
6300 return false;
6301
6302 zone = page_zone(page);
6303 pfn = page_to_pfn(page);
108bcc96 6304 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6305 return false;
6306
b023f468 6307 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6308}
0c0e6195 6309
041d3a8c
MN
6310#ifdef CONFIG_CMA
6311
6312static unsigned long pfn_max_align_down(unsigned long pfn)
6313{
6314 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6315 pageblock_nr_pages) - 1);
6316}
6317
6318static unsigned long pfn_max_align_up(unsigned long pfn)
6319{
6320 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6321 pageblock_nr_pages));
6322}
6323
041d3a8c 6324/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6325static int __alloc_contig_migrate_range(struct compact_control *cc,
6326 unsigned long start, unsigned long end)
041d3a8c
MN
6327{
6328 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6329 unsigned long nr_reclaimed;
041d3a8c
MN
6330 unsigned long pfn = start;
6331 unsigned int tries = 0;
6332 int ret = 0;
6333
be49a6e1 6334 migrate_prep();
041d3a8c 6335
bb13ffeb 6336 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6337 if (fatal_signal_pending(current)) {
6338 ret = -EINTR;
6339 break;
6340 }
6341
bb13ffeb
MG
6342 if (list_empty(&cc->migratepages)) {
6343 cc->nr_migratepages = 0;
edc2ca61 6344 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6345 if (!pfn) {
6346 ret = -EINTR;
6347 break;
6348 }
6349 tries = 0;
6350 } else if (++tries == 5) {
6351 ret = ret < 0 ? ret : -EBUSY;
6352 break;
6353 }
6354
beb51eaa
MK
6355 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6356 &cc->migratepages);
6357 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6358
9c620e2b 6359 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6360 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6361 }
2a6f5124
SP
6362 if (ret < 0) {
6363 putback_movable_pages(&cc->migratepages);
6364 return ret;
6365 }
6366 return 0;
041d3a8c
MN
6367}
6368
6369/**
6370 * alloc_contig_range() -- tries to allocate given range of pages
6371 * @start: start PFN to allocate
6372 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6373 * @migratetype: migratetype of the underlaying pageblocks (either
6374 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6375 * in range must have the same migratetype and it must
6376 * be either of the two.
041d3a8c
MN
6377 *
6378 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6379 * aligned, however it's the caller's responsibility to guarantee that
6380 * we are the only thread that changes migrate type of pageblocks the
6381 * pages fall in.
6382 *
6383 * The PFN range must belong to a single zone.
6384 *
6385 * Returns zero on success or negative error code. On success all
6386 * pages which PFN is in [start, end) are allocated for the caller and
6387 * need to be freed with free_contig_range().
6388 */
0815f3d8
MN
6389int alloc_contig_range(unsigned long start, unsigned long end,
6390 unsigned migratetype)
041d3a8c 6391{
041d3a8c
MN
6392 unsigned long outer_start, outer_end;
6393 int ret = 0, order;
6394
bb13ffeb
MG
6395 struct compact_control cc = {
6396 .nr_migratepages = 0,
6397 .order = -1,
6398 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6399 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6400 .ignore_skip_hint = true,
6401 };
6402 INIT_LIST_HEAD(&cc.migratepages);
6403
041d3a8c
MN
6404 /*
6405 * What we do here is we mark all pageblocks in range as
6406 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6407 * have different sizes, and due to the way page allocator
6408 * work, we align the range to biggest of the two pages so
6409 * that page allocator won't try to merge buddies from
6410 * different pageblocks and change MIGRATE_ISOLATE to some
6411 * other migration type.
6412 *
6413 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6414 * migrate the pages from an unaligned range (ie. pages that
6415 * we are interested in). This will put all the pages in
6416 * range back to page allocator as MIGRATE_ISOLATE.
6417 *
6418 * When this is done, we take the pages in range from page
6419 * allocator removing them from the buddy system. This way
6420 * page allocator will never consider using them.
6421 *
6422 * This lets us mark the pageblocks back as
6423 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6424 * aligned range but not in the unaligned, original range are
6425 * put back to page allocator so that buddy can use them.
6426 */
6427
6428 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6429 pfn_max_align_up(end), migratetype,
6430 false);
041d3a8c 6431 if (ret)
86a595f9 6432 return ret;
041d3a8c 6433
bb13ffeb 6434 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6435 if (ret)
6436 goto done;
6437
6438 /*
6439 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6440 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6441 * more, all pages in [start, end) are free in page allocator.
6442 * What we are going to do is to allocate all pages from
6443 * [start, end) (that is remove them from page allocator).
6444 *
6445 * The only problem is that pages at the beginning and at the
6446 * end of interesting range may be not aligned with pages that
6447 * page allocator holds, ie. they can be part of higher order
6448 * pages. Because of this, we reserve the bigger range and
6449 * once this is done free the pages we are not interested in.
6450 *
6451 * We don't have to hold zone->lock here because the pages are
6452 * isolated thus they won't get removed from buddy.
6453 */
6454
6455 lru_add_drain_all();
510f5507 6456 drain_all_pages(cc.zone);
041d3a8c
MN
6457
6458 order = 0;
6459 outer_start = start;
6460 while (!PageBuddy(pfn_to_page(outer_start))) {
6461 if (++order >= MAX_ORDER) {
6462 ret = -EBUSY;
6463 goto done;
6464 }
6465 outer_start &= ~0UL << order;
6466 }
6467
6468 /* Make sure the range is really isolated. */
b023f468 6469 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6470 pr_info("%s: [%lx, %lx) PFNs busy\n",
6471 __func__, outer_start, end);
041d3a8c
MN
6472 ret = -EBUSY;
6473 goto done;
6474 }
6475
49f223a9 6476 /* Grab isolated pages from freelists. */
bb13ffeb 6477 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6478 if (!outer_end) {
6479 ret = -EBUSY;
6480 goto done;
6481 }
6482
6483 /* Free head and tail (if any) */
6484 if (start != outer_start)
6485 free_contig_range(outer_start, start - outer_start);
6486 if (end != outer_end)
6487 free_contig_range(end, outer_end - end);
6488
6489done:
6490 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6491 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6492 return ret;
6493}
6494
6495void free_contig_range(unsigned long pfn, unsigned nr_pages)
6496{
bcc2b02f
MS
6497 unsigned int count = 0;
6498
6499 for (; nr_pages--; pfn++) {
6500 struct page *page = pfn_to_page(pfn);
6501
6502 count += page_count(page) != 1;
6503 __free_page(page);
6504 }
6505 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6506}
6507#endif
6508
4ed7e022 6509#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6510/*
6511 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6512 * page high values need to be recalulated.
6513 */
4ed7e022
JL
6514void __meminit zone_pcp_update(struct zone *zone)
6515{
0a647f38 6516 unsigned cpu;
c8e251fa 6517 mutex_lock(&pcp_batch_high_lock);
0a647f38 6518 for_each_possible_cpu(cpu)
169f6c19
CS
6519 pageset_set_high_and_batch(zone,
6520 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6521 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6522}
6523#endif
6524
340175b7
JL
6525void zone_pcp_reset(struct zone *zone)
6526{
6527 unsigned long flags;
5a883813
MK
6528 int cpu;
6529 struct per_cpu_pageset *pset;
340175b7
JL
6530
6531 /* avoid races with drain_pages() */
6532 local_irq_save(flags);
6533 if (zone->pageset != &boot_pageset) {
5a883813
MK
6534 for_each_online_cpu(cpu) {
6535 pset = per_cpu_ptr(zone->pageset, cpu);
6536 drain_zonestat(zone, pset);
6537 }
340175b7
JL
6538 free_percpu(zone->pageset);
6539 zone->pageset = &boot_pageset;
6540 }
6541 local_irq_restore(flags);
6542}
6543
6dcd73d7 6544#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6545/*
6546 * All pages in the range must be isolated before calling this.
6547 */
6548void
6549__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6550{
6551 struct page *page;
6552 struct zone *zone;
7aeb09f9 6553 unsigned int order, i;
0c0e6195
KH
6554 unsigned long pfn;
6555 unsigned long flags;
6556 /* find the first valid pfn */
6557 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6558 if (pfn_valid(pfn))
6559 break;
6560 if (pfn == end_pfn)
6561 return;
6562 zone = page_zone(pfn_to_page(pfn));
6563 spin_lock_irqsave(&zone->lock, flags);
6564 pfn = start_pfn;
6565 while (pfn < end_pfn) {
6566 if (!pfn_valid(pfn)) {
6567 pfn++;
6568 continue;
6569 }
6570 page = pfn_to_page(pfn);
b023f468
WC
6571 /*
6572 * The HWPoisoned page may be not in buddy system, and
6573 * page_count() is not 0.
6574 */
6575 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6576 pfn++;
6577 SetPageReserved(page);
6578 continue;
6579 }
6580
0c0e6195
KH
6581 BUG_ON(page_count(page));
6582 BUG_ON(!PageBuddy(page));
6583 order = page_order(page);
6584#ifdef CONFIG_DEBUG_VM
6585 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6586 pfn, 1 << order, end_pfn);
6587#endif
6588 list_del(&page->lru);
6589 rmv_page_order(page);
6590 zone->free_area[order].nr_free--;
0c0e6195
KH
6591 for (i = 0; i < (1 << order); i++)
6592 SetPageReserved((page+i));
6593 pfn += (1 << order);
6594 }
6595 spin_unlock_irqrestore(&zone->lock, flags);
6596}
6597#endif
8d22ba1b
WF
6598
6599#ifdef CONFIG_MEMORY_FAILURE
6600bool is_free_buddy_page(struct page *page)
6601{
6602 struct zone *zone = page_zone(page);
6603 unsigned long pfn = page_to_pfn(page);
6604 unsigned long flags;
7aeb09f9 6605 unsigned int order;
8d22ba1b
WF
6606
6607 spin_lock_irqsave(&zone->lock, flags);
6608 for (order = 0; order < MAX_ORDER; order++) {
6609 struct page *page_head = page - (pfn & ((1 << order) - 1));
6610
6611 if (PageBuddy(page_head) && page_order(page_head) >= order)
6612 break;
6613 }
6614 spin_unlock_irqrestore(&zone->lock, flags);
6615
6616 return order < MAX_ORDER;
6617}
6618#endif
This page took 1.501705 seconds and 5 git commands to generate.