thp: transparent hugepage core fixlet
[deliverable/linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
0fe6e20b 59#include <linux/hugetlb.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
db114b83 73void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
74{
75 kmem_cache_free(anon_vma_cachep, anon_vma);
76}
1da177e4 77
5beb4930
RR
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
e574b5fd 83static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
84{
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
d9d332e0
LT
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
23a0790a 97 * not we either need to find an adjacent mapping that we
d9d332e0
LT
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
1da177e4
LT
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 118 struct anon_vma_chain *avc;
1da177e4
LT
119
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
d9d332e0 123 struct anon_vma *allocated;
1da177e4 124
5beb4930
RR
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
128
1da177e4 129 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
130 allocated = NULL;
131 if (!anon_vma) {
1da177e4
LT
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
5beb4930 134 goto out_enomem_free_avc;
1da177e4 135 allocated = anon_vma;
5c341ee1
RR
136 /*
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
139 */
140 anon_vma->root = anon_vma;
1da177e4
LT
141 }
142
cba48b98 143 anon_vma_lock(anon_vma);
1da177e4
LT
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
5beb4930
RR
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 152 allocated = NULL;
31f2b0eb 153 avc = NULL;
1da177e4
LT
154 }
155 spin_unlock(&mm->page_table_lock);
cba48b98 156 anon_vma_unlock(anon_vma);
31f2b0eb
ON
157
158 if (unlikely(allocated))
1da177e4 159 anon_vma_free(allocated);
31f2b0eb 160 if (unlikely(avc))
5beb4930 161 anon_vma_chain_free(avc);
1da177e4
LT
162 }
163 return 0;
5beb4930
RR
164
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
1da177e4
LT
169}
170
5beb4930
RR
171static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
1da177e4 174{
5beb4930
RR
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
178
cba48b98 179 anon_vma_lock(anon_vma);
5beb4930 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 181 anon_vma_unlock(anon_vma);
1da177e4
LT
182}
183
5beb4930
RR
184/*
185 * Attach the anon_vmas from src to dst.
186 * Returns 0 on success, -ENOMEM on failure.
187 */
188int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 189{
5beb4930
RR
190 struct anon_vma_chain *avc, *pavc;
191
646d87b4 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
193 avc = anon_vma_chain_alloc();
194 if (!avc)
195 goto enomem_failure;
196 anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 }
198 return 0;
1da177e4 199
5beb4930
RR
200 enomem_failure:
201 unlink_anon_vmas(dst);
202 return -ENOMEM;
1da177e4
LT
203}
204
5beb4930
RR
205/*
206 * Attach vma to its own anon_vma, as well as to the anon_vmas that
207 * the corresponding VMA in the parent process is attached to.
208 * Returns 0 on success, non-zero on failure.
209 */
210int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 211{
5beb4930
RR
212 struct anon_vma_chain *avc;
213 struct anon_vma *anon_vma;
1da177e4 214
5beb4930
RR
215 /* Don't bother if the parent process has no anon_vma here. */
216 if (!pvma->anon_vma)
217 return 0;
218
219 /*
220 * First, attach the new VMA to the parent VMA's anon_vmas,
221 * so rmap can find non-COWed pages in child processes.
222 */
223 if (anon_vma_clone(vma, pvma))
224 return -ENOMEM;
225
226 /* Then add our own anon_vma. */
227 anon_vma = anon_vma_alloc();
228 if (!anon_vma)
229 goto out_error;
230 avc = anon_vma_chain_alloc();
231 if (!avc)
232 goto out_error_free_anon_vma;
5c341ee1
RR
233
234 /*
235 * The root anon_vma's spinlock is the lock actually used when we
236 * lock any of the anon_vmas in this anon_vma tree.
237 */
238 anon_vma->root = pvma->anon_vma->root;
76545066
RR
239 /*
240 * With KSM refcounts, an anon_vma can stay around longer than the
241 * process it belongs to. The root anon_vma needs to be pinned
242 * until this anon_vma is freed, because the lock lives in the root.
243 */
244 get_anon_vma(anon_vma->root);
5beb4930
RR
245 /* Mark this anon_vma as the one where our new (COWed) pages go. */
246 vma->anon_vma = anon_vma;
5c341ee1 247 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
248
249 return 0;
250
251 out_error_free_anon_vma:
252 anon_vma_free(anon_vma);
253 out_error:
4946d54c 254 unlink_anon_vmas(vma);
5beb4930 255 return -ENOMEM;
1da177e4
LT
256}
257
5beb4930 258static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 259{
5beb4930 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
261 int empty;
262
5beb4930 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
264 if (!anon_vma)
265 return;
266
cba48b98 267 anon_vma_lock(anon_vma);
5beb4930 268 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
269
270 /* We must garbage collect the anon_vma if it's empty */
7f60c214 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
cba48b98 272 anon_vma_unlock(anon_vma);
1da177e4 273
76545066
RR
274 if (empty) {
275 /* We no longer need the root anon_vma */
276 if (anon_vma->root != anon_vma)
277 drop_anon_vma(anon_vma->root);
1da177e4 278 anon_vma_free(anon_vma);
76545066 279 }
1da177e4
LT
280}
281
5beb4930
RR
282void unlink_anon_vmas(struct vm_area_struct *vma)
283{
284 struct anon_vma_chain *avc, *next;
285
5c341ee1
RR
286 /*
287 * Unlink each anon_vma chained to the VMA. This list is ordered
288 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 */
5beb4930
RR
290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 anon_vma_unlink(avc);
292 list_del(&avc->same_vma);
293 anon_vma_chain_free(avc);
294 }
295}
296
51cc5068 297static void anon_vma_ctor(void *data)
1da177e4 298{
a35afb83 299 struct anon_vma *anon_vma = data;
1da177e4 300
a35afb83 301 spin_lock_init(&anon_vma->lock);
7f60c214 302 anonvma_external_refcount_init(anon_vma);
a35afb83 303 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
304}
305
306void __init anon_vma_init(void)
307{
308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
311}
312
313/*
314 * Getting a lock on a stable anon_vma from a page off the LRU is
315 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316 */
ea4525b6 317struct anon_vma *__page_lock_anon_vma(struct page *page)
1da177e4 318{
f1819427 319 struct anon_vma *anon_vma, *root_anon_vma;
1da177e4
LT
320 unsigned long anon_mapping;
321
322 rcu_read_lock();
80e14822 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
325 goto out;
326 if (!page_mapped(page))
327 goto out;
328
329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
f1819427
HD
330 root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 spin_lock(&root_anon_vma->lock);
332
333 /*
334 * If this page is still mapped, then its anon_vma cannot have been
335 * freed. But if it has been unmapped, we have no security against
336 * the anon_vma structure being freed and reused (for another anon_vma:
337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340 */
341 if (page_mapped(page))
342 return anon_vma;
343
344 spin_unlock(&root_anon_vma->lock);
1da177e4
LT
345out:
346 rcu_read_unlock();
34bbd704
ON
347 return NULL;
348}
349
10be22df 350void page_unlock_anon_vma(struct anon_vma *anon_vma)
ea4525b6
NK
351 __releases(&anon_vma->root->lock)
352 __releases(RCU)
34bbd704 353{
cba48b98 354 anon_vma_unlock(anon_vma);
34bbd704 355 rcu_read_unlock();
1da177e4
LT
356}
357
358/*
3ad33b24
LS
359 * At what user virtual address is page expected in @vma?
360 * Returns virtual address or -EFAULT if page's index/offset is not
361 * within the range mapped the @vma.
1da177e4 362 */
71e3aac0 363inline unsigned long
1da177e4
LT
364vma_address(struct page *page, struct vm_area_struct *vma)
365{
366 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
367 unsigned long address;
368
0fe6e20b
NH
369 if (unlikely(is_vm_hugetlb_page(vma)))
370 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
371 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
372 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 373 /* page should be within @vma mapping range */
1da177e4
LT
374 return -EFAULT;
375 }
376 return address;
377}
378
379/*
bf89c8c8 380 * At what user virtual address is page expected in vma?
ab941e0f 381 * Caller should check the page is actually part of the vma.
1da177e4
LT
382 */
383unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
384{
21d0d443 385 if (PageAnon(page)) {
4829b906
HD
386 struct anon_vma *page__anon_vma = page_anon_vma(page);
387 /*
388 * Note: swapoff's unuse_vma() is more efficient with this
389 * check, and needs it to match anon_vma when KSM is active.
390 */
391 if (!vma->anon_vma || !page__anon_vma ||
392 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
393 return -EFAULT;
394 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
395 if (!vma->vm_file ||
396 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
397 return -EFAULT;
398 } else
399 return -EFAULT;
400 return vma_address(page, vma);
401}
402
81b4082d
ND
403/*
404 * Check that @page is mapped at @address into @mm.
405 *
479db0bf
NP
406 * If @sync is false, page_check_address may perform a racy check to avoid
407 * the page table lock when the pte is not present (helpful when reclaiming
408 * highly shared pages).
409 *
b8072f09 410 * On success returns with pte mapped and locked.
81b4082d 411 */
e9a81a82 412pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 413 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
414{
415 pgd_t *pgd;
416 pud_t *pud;
417 pmd_t *pmd;
418 pte_t *pte;
c0718806 419 spinlock_t *ptl;
81b4082d 420
0fe6e20b
NH
421 if (unlikely(PageHuge(page))) {
422 pte = huge_pte_offset(mm, address);
423 ptl = &mm->page_table_lock;
424 goto check;
425 }
426
81b4082d 427 pgd = pgd_offset(mm, address);
c0718806
HD
428 if (!pgd_present(*pgd))
429 return NULL;
430
431 pud = pud_offset(pgd, address);
432 if (!pud_present(*pud))
433 return NULL;
434
435 pmd = pmd_offset(pud, address);
436 if (!pmd_present(*pmd))
437 return NULL;
71e3aac0
AA
438 if (pmd_trans_huge(*pmd))
439 return NULL;
c0718806
HD
440
441 pte = pte_offset_map(pmd, address);
442 /* Make a quick check before getting the lock */
479db0bf 443 if (!sync && !pte_present(*pte)) {
c0718806
HD
444 pte_unmap(pte);
445 return NULL;
446 }
447
4c21e2f2 448 ptl = pte_lockptr(mm, pmd);
0fe6e20b 449check:
c0718806
HD
450 spin_lock(ptl);
451 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
452 *ptlp = ptl;
453 return pte;
81b4082d 454 }
c0718806
HD
455 pte_unmap_unlock(pte, ptl);
456 return NULL;
81b4082d
ND
457}
458
b291f000
NP
459/**
460 * page_mapped_in_vma - check whether a page is really mapped in a VMA
461 * @page: the page to test
462 * @vma: the VMA to test
463 *
464 * Returns 1 if the page is mapped into the page tables of the VMA, 0
465 * if the page is not mapped into the page tables of this VMA. Only
466 * valid for normal file or anonymous VMAs.
467 */
6a46079c 468int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
469{
470 unsigned long address;
471 pte_t *pte;
472 spinlock_t *ptl;
473
474 address = vma_address(page, vma);
475 if (address == -EFAULT) /* out of vma range */
476 return 0;
477 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
478 if (!pte) /* the page is not in this mm */
479 return 0;
480 pte_unmap_unlock(pte, ptl);
481
482 return 1;
483}
484
1da177e4
LT
485/*
486 * Subfunctions of page_referenced: page_referenced_one called
487 * repeatedly from either page_referenced_anon or page_referenced_file.
488 */
5ad64688
HD
489int page_referenced_one(struct page *page, struct vm_area_struct *vma,
490 unsigned long address, unsigned int *mapcount,
491 unsigned long *vm_flags)
1da177e4
LT
492{
493 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
494 int referenced = 0;
495
b291f000
NP
496 /*
497 * Don't want to elevate referenced for mlocked page that gets this far,
498 * in order that it progresses to try_to_unmap and is moved to the
499 * unevictable list.
500 */
5a9bbdcd 501 if (vma->vm_flags & VM_LOCKED) {
71e3aac0 502 *mapcount = 0; /* break early from loop */
03ef83af 503 *vm_flags |= VM_LOCKED;
71e3aac0 504 goto out;
4917e5d0 505 }
1da177e4 506
c0718806
HD
507 /* Pretend the page is referenced if the task has the
508 swap token and is in the middle of a page fault. */
f7b7fd8f 509 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
510 rwsem_is_locked(&mm->mmap_sem))
511 referenced++;
512
71e3aac0
AA
513 if (unlikely(PageTransHuge(page))) {
514 pmd_t *pmd;
515
516 spin_lock(&mm->page_table_lock);
517 pmd = page_check_address_pmd(page, mm, address,
518 PAGE_CHECK_ADDRESS_PMD_FLAG);
519 if (pmd && !pmd_trans_splitting(*pmd) &&
520 pmdp_clear_flush_young_notify(vma, address, pmd))
521 referenced++;
522 spin_unlock(&mm->page_table_lock);
523 } else {
524 pte_t *pte;
525 spinlock_t *ptl;
526
527 pte = page_check_address(page, mm, address, &ptl, 0);
528 if (!pte)
529 goto out;
530
531 if (ptep_clear_flush_young_notify(vma, address, pte)) {
532 /*
533 * Don't treat a reference through a sequentially read
534 * mapping as such. If the page has been used in
535 * another mapping, we will catch it; if this other
536 * mapping is already gone, the unmap path will have
537 * set PG_referenced or activated the page.
538 */
539 if (likely(!VM_SequentialReadHint(vma)))
540 referenced++;
541 }
542 pte_unmap_unlock(pte, ptl);
543 }
544
c0718806 545 (*mapcount)--;
273f047e 546
6fe6b7e3
WF
547 if (referenced)
548 *vm_flags |= vma->vm_flags;
273f047e 549out:
1da177e4
LT
550 return referenced;
551}
552
bed7161a 553static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
554 struct mem_cgroup *mem_cont,
555 unsigned long *vm_flags)
1da177e4
LT
556{
557 unsigned int mapcount;
558 struct anon_vma *anon_vma;
5beb4930 559 struct anon_vma_chain *avc;
1da177e4
LT
560 int referenced = 0;
561
562 anon_vma = page_lock_anon_vma(page);
563 if (!anon_vma)
564 return referenced;
565
566 mapcount = page_mapcount(page);
5beb4930
RR
567 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
568 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
569 unsigned long address = vma_address(page, vma);
570 if (address == -EFAULT)
571 continue;
bed7161a
BS
572 /*
573 * If we are reclaiming on behalf of a cgroup, skip
574 * counting on behalf of references from different
575 * cgroups
576 */
bd845e38 577 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 578 continue;
1cb1729b 579 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 580 &mapcount, vm_flags);
1da177e4
LT
581 if (!mapcount)
582 break;
583 }
34bbd704
ON
584
585 page_unlock_anon_vma(anon_vma);
1da177e4
LT
586 return referenced;
587}
588
589/**
590 * page_referenced_file - referenced check for object-based rmap
591 * @page: the page we're checking references on.
43d8eac4 592 * @mem_cont: target memory controller
6fe6b7e3 593 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
594 *
595 * For an object-based mapped page, find all the places it is mapped and
596 * check/clear the referenced flag. This is done by following the page->mapping
597 * pointer, then walking the chain of vmas it holds. It returns the number
598 * of references it found.
599 *
600 * This function is only called from page_referenced for object-based pages.
601 */
bed7161a 602static int page_referenced_file(struct page *page,
6fe6b7e3
WF
603 struct mem_cgroup *mem_cont,
604 unsigned long *vm_flags)
1da177e4
LT
605{
606 unsigned int mapcount;
607 struct address_space *mapping = page->mapping;
608 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
609 struct vm_area_struct *vma;
610 struct prio_tree_iter iter;
611 int referenced = 0;
612
613 /*
614 * The caller's checks on page->mapping and !PageAnon have made
615 * sure that this is a file page: the check for page->mapping
616 * excludes the case just before it gets set on an anon page.
617 */
618 BUG_ON(PageAnon(page));
619
620 /*
621 * The page lock not only makes sure that page->mapping cannot
622 * suddenly be NULLified by truncation, it makes sure that the
623 * structure at mapping cannot be freed and reused yet,
624 * so we can safely take mapping->i_mmap_lock.
625 */
626 BUG_ON(!PageLocked(page));
627
628 spin_lock(&mapping->i_mmap_lock);
629
630 /*
631 * i_mmap_lock does not stabilize mapcount at all, but mapcount
632 * is more likely to be accurate if we note it after spinning.
633 */
634 mapcount = page_mapcount(page);
635
636 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
637 unsigned long address = vma_address(page, vma);
638 if (address == -EFAULT)
639 continue;
bed7161a
BS
640 /*
641 * If we are reclaiming on behalf of a cgroup, skip
642 * counting on behalf of references from different
643 * cgroups
644 */
bd845e38 645 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 646 continue;
1cb1729b 647 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 648 &mapcount, vm_flags);
1da177e4
LT
649 if (!mapcount)
650 break;
651 }
652
653 spin_unlock(&mapping->i_mmap_lock);
654 return referenced;
655}
656
657/**
658 * page_referenced - test if the page was referenced
659 * @page: the page to test
660 * @is_locked: caller holds lock on the page
43d8eac4 661 * @mem_cont: target memory controller
6fe6b7e3 662 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
663 *
664 * Quick test_and_clear_referenced for all mappings to a page,
665 * returns the number of ptes which referenced the page.
666 */
6fe6b7e3
WF
667int page_referenced(struct page *page,
668 int is_locked,
669 struct mem_cgroup *mem_cont,
670 unsigned long *vm_flags)
1da177e4
LT
671{
672 int referenced = 0;
5ad64688 673 int we_locked = 0;
1da177e4 674
6fe6b7e3 675 *vm_flags = 0;
3ca7b3c5 676 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
677 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
678 we_locked = trylock_page(page);
679 if (!we_locked) {
680 referenced++;
681 goto out;
682 }
683 }
684 if (unlikely(PageKsm(page)))
685 referenced += page_referenced_ksm(page, mem_cont,
686 vm_flags);
687 else if (PageAnon(page))
6fe6b7e3
WF
688 referenced += page_referenced_anon(page, mem_cont,
689 vm_flags);
5ad64688 690 else if (page->mapping)
6fe6b7e3
WF
691 referenced += page_referenced_file(page, mem_cont,
692 vm_flags);
5ad64688 693 if (we_locked)
1da177e4 694 unlock_page(page);
1da177e4 695 }
5ad64688 696out:
5b7baf05
CB
697 if (page_test_and_clear_young(page))
698 referenced++;
699
1da177e4
LT
700 return referenced;
701}
702
1cb1729b
HD
703static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
704 unsigned long address)
d08b3851
PZ
705{
706 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 707 pte_t *pte;
d08b3851
PZ
708 spinlock_t *ptl;
709 int ret = 0;
710
479db0bf 711 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
712 if (!pte)
713 goto out;
714
c2fda5fe
PZ
715 if (pte_dirty(*pte) || pte_write(*pte)) {
716 pte_t entry;
d08b3851 717
c2fda5fe 718 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 719 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
720 entry = pte_wrprotect(entry);
721 entry = pte_mkclean(entry);
d6e88e67 722 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
723 ret = 1;
724 }
d08b3851 725
d08b3851
PZ
726 pte_unmap_unlock(pte, ptl);
727out:
728 return ret;
729}
730
731static int page_mkclean_file(struct address_space *mapping, struct page *page)
732{
733 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
734 struct vm_area_struct *vma;
735 struct prio_tree_iter iter;
736 int ret = 0;
737
738 BUG_ON(PageAnon(page));
739
740 spin_lock(&mapping->i_mmap_lock);
741 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
742 if (vma->vm_flags & VM_SHARED) {
743 unsigned long address = vma_address(page, vma);
744 if (address == -EFAULT)
745 continue;
746 ret += page_mkclean_one(page, vma, address);
747 }
d08b3851
PZ
748 }
749 spin_unlock(&mapping->i_mmap_lock);
750 return ret;
751}
752
753int page_mkclean(struct page *page)
754{
755 int ret = 0;
756
757 BUG_ON(!PageLocked(page));
758
759 if (page_mapped(page)) {
760 struct address_space *mapping = page_mapping(page);
ce7e9fae 761 if (mapping) {
d08b3851 762 ret = page_mkclean_file(mapping, page);
ce7e9fae 763 if (page_test_dirty(page)) {
e2b8d7af 764 page_clear_dirty(page, 1);
ce7e9fae
CB
765 ret = 1;
766 }
6c210482 767 }
d08b3851
PZ
768 }
769
770 return ret;
771}
60b59bea 772EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 773
c44b6743
RR
774/**
775 * page_move_anon_rmap - move a page to our anon_vma
776 * @page: the page to move to our anon_vma
777 * @vma: the vma the page belongs to
778 * @address: the user virtual address mapped
779 *
780 * When a page belongs exclusively to one process after a COW event,
781 * that page can be moved into the anon_vma that belongs to just that
782 * process, so the rmap code will not search the parent or sibling
783 * processes.
784 */
785void page_move_anon_rmap(struct page *page,
786 struct vm_area_struct *vma, unsigned long address)
787{
788 struct anon_vma *anon_vma = vma->anon_vma;
789
790 VM_BUG_ON(!PageLocked(page));
791 VM_BUG_ON(!anon_vma);
792 VM_BUG_ON(page->index != linear_page_index(vma, address));
793
794 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
795 page->mapping = (struct address_space *) anon_vma;
796}
797
9617d95e 798/**
4e1c1975
AK
799 * __page_set_anon_rmap - set up new anonymous rmap
800 * @page: Page to add to rmap
801 * @vma: VM area to add page to.
802 * @address: User virtual address of the mapping
e8a03feb 803 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
804 */
805static void __page_set_anon_rmap(struct page *page,
e8a03feb 806 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 807{
e8a03feb 808 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 809
e8a03feb 810 BUG_ON(!anon_vma);
ea90002b 811
4e1c1975
AK
812 if (PageAnon(page))
813 return;
814
ea90002b 815 /*
e8a03feb
RR
816 * If the page isn't exclusively mapped into this vma,
817 * we must use the _oldest_ possible anon_vma for the
818 * page mapping!
ea90002b 819 */
4e1c1975 820 if (!exclusive)
288468c3 821 anon_vma = anon_vma->root;
9617d95e 822
9617d95e
NP
823 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
824 page->mapping = (struct address_space *) anon_vma;
9617d95e 825 page->index = linear_page_index(vma, address);
9617d95e
NP
826}
827
c97a9e10 828/**
43d8eac4 829 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
830 * @page: the page to add the mapping to
831 * @vma: the vm area in which the mapping is added
832 * @address: the user virtual address mapped
833 */
834static void __page_check_anon_rmap(struct page *page,
835 struct vm_area_struct *vma, unsigned long address)
836{
837#ifdef CONFIG_DEBUG_VM
838 /*
839 * The page's anon-rmap details (mapping and index) are guaranteed to
840 * be set up correctly at this point.
841 *
842 * We have exclusion against page_add_anon_rmap because the caller
843 * always holds the page locked, except if called from page_dup_rmap,
844 * in which case the page is already known to be setup.
845 *
846 * We have exclusion against page_add_new_anon_rmap because those pages
847 * are initially only visible via the pagetables, and the pte is locked
848 * over the call to page_add_new_anon_rmap.
849 */
44ab57a0 850 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
851 BUG_ON(page->index != linear_page_index(vma, address));
852#endif
853}
854
1da177e4
LT
855/**
856 * page_add_anon_rmap - add pte mapping to an anonymous page
857 * @page: the page to add the mapping to
858 * @vma: the vm area in which the mapping is added
859 * @address: the user virtual address mapped
860 *
5ad64688 861 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
862 * the anon_vma case: to serialize mapping,index checking after setting,
863 * and to ensure that PageAnon is not being upgraded racily to PageKsm
864 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
865 */
866void page_add_anon_rmap(struct page *page,
867 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
868{
869 do_page_add_anon_rmap(page, vma, address, 0);
870}
871
872/*
873 * Special version of the above for do_swap_page, which often runs
874 * into pages that are exclusively owned by the current process.
875 * Everybody else should continue to use page_add_anon_rmap above.
876 */
877void do_page_add_anon_rmap(struct page *page,
878 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 879{
5ad64688
HD
880 int first = atomic_inc_and_test(&page->_mapcount);
881 if (first)
882 __inc_zone_page_state(page, NR_ANON_PAGES);
883 if (unlikely(PageKsm(page)))
884 return;
885
c97a9e10
NP
886 VM_BUG_ON(!PageLocked(page));
887 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 888 if (first)
ad8c2ee8 889 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 890 else
c97a9e10 891 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
892}
893
43d8eac4 894/**
9617d95e
NP
895 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
896 * @page: the page to add the mapping to
897 * @vma: the vm area in which the mapping is added
898 * @address: the user virtual address mapped
899 *
900 * Same as page_add_anon_rmap but must only be called on *new* pages.
901 * This means the inc-and-test can be bypassed.
c97a9e10 902 * Page does not have to be locked.
9617d95e
NP
903 */
904void page_add_new_anon_rmap(struct page *page,
905 struct vm_area_struct *vma, unsigned long address)
906{
b5934c53 907 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
908 SetPageSwapBacked(page);
909 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 910 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 911 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 912 if (page_evictable(page, vma))
cbf84b7a 913 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
914 else
915 add_page_to_unevictable_list(page);
9617d95e
NP
916}
917
1da177e4
LT
918/**
919 * page_add_file_rmap - add pte mapping to a file page
920 * @page: the page to add the mapping to
921 *
b8072f09 922 * The caller needs to hold the pte lock.
1da177e4
LT
923 */
924void page_add_file_rmap(struct page *page)
925{
d69b042f 926 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 927 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 928 mem_cgroup_update_file_mapped(page, 1);
d69b042f 929 }
1da177e4
LT
930}
931
932/**
933 * page_remove_rmap - take down pte mapping from a page
934 * @page: page to remove mapping from
935 *
b8072f09 936 * The caller needs to hold the pte lock.
1da177e4 937 */
edc315fd 938void page_remove_rmap(struct page *page)
1da177e4 939{
b904dcfe
KM
940 /* page still mapped by someone else? */
941 if (!atomic_add_negative(-1, &page->_mapcount))
942 return;
943
944 /*
945 * Now that the last pte has gone, s390 must transfer dirty
946 * flag from storage key to struct page. We can usually skip
947 * this if the page is anon, so about to be freed; but perhaps
948 * not if it's in swapcache - there might be another pte slot
949 * containing the swap entry, but page not yet written to swap.
950 */
951 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
e2b8d7af 952 page_clear_dirty(page, 1);
b904dcfe 953 set_page_dirty(page);
1da177e4 954 }
0fe6e20b
NH
955 /*
956 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
957 * and not charged by memcg for now.
958 */
959 if (unlikely(PageHuge(page)))
960 return;
b904dcfe
KM
961 if (PageAnon(page)) {
962 mem_cgroup_uncharge_page(page);
963 __dec_zone_page_state(page, NR_ANON_PAGES);
964 } else {
965 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 966 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 967 }
b904dcfe
KM
968 /*
969 * It would be tidy to reset the PageAnon mapping here,
970 * but that might overwrite a racing page_add_anon_rmap
971 * which increments mapcount after us but sets mapping
972 * before us: so leave the reset to free_hot_cold_page,
973 * and remember that it's only reliable while mapped.
974 * Leaving it set also helps swapoff to reinstate ptes
975 * faster for those pages still in swapcache.
976 */
1da177e4
LT
977}
978
979/*
980 * Subfunctions of try_to_unmap: try_to_unmap_one called
981 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
982 */
5ad64688
HD
983int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
984 unsigned long address, enum ttu_flags flags)
1da177e4
LT
985{
986 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
987 pte_t *pte;
988 pte_t pteval;
c0718806 989 spinlock_t *ptl;
1da177e4
LT
990 int ret = SWAP_AGAIN;
991
479db0bf 992 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 993 if (!pte)
81b4082d 994 goto out;
1da177e4
LT
995
996 /*
997 * If the page is mlock()d, we cannot swap it out.
998 * If it's recently referenced (perhaps page_referenced
999 * skipped over this mm) then we should reactivate it.
1000 */
14fa31b8 1001 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1002 if (vma->vm_flags & VM_LOCKED)
1003 goto out_mlock;
1004
af8e3354 1005 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1006 goto out_unmap;
14fa31b8
AK
1007 }
1008 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1009 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1010 ret = SWAP_FAIL;
1011 goto out_unmap;
1012 }
1013 }
1da177e4 1014
1da177e4
LT
1015 /* Nuke the page table entry. */
1016 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1017 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1018
1019 /* Move the dirty bit to the physical page now the pte is gone. */
1020 if (pte_dirty(pteval))
1021 set_page_dirty(page);
1022
365e9c87
HD
1023 /* Update high watermark before we lower rss */
1024 update_hiwater_rss(mm);
1025
888b9f7c
AK
1026 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1027 if (PageAnon(page))
d559db08 1028 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1029 else
d559db08 1030 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1031 set_pte_at(mm, address, pte,
1032 swp_entry_to_pte(make_hwpoison_entry(page)));
1033 } else if (PageAnon(page)) {
4c21e2f2 1034 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1035
1036 if (PageSwapCache(page)) {
1037 /*
1038 * Store the swap location in the pte.
1039 * See handle_pte_fault() ...
1040 */
570a335b
HD
1041 if (swap_duplicate(entry) < 0) {
1042 set_pte_at(mm, address, pte, pteval);
1043 ret = SWAP_FAIL;
1044 goto out_unmap;
1045 }
0697212a
CL
1046 if (list_empty(&mm->mmlist)) {
1047 spin_lock(&mmlist_lock);
1048 if (list_empty(&mm->mmlist))
1049 list_add(&mm->mmlist, &init_mm.mmlist);
1050 spin_unlock(&mmlist_lock);
1051 }
d559db08 1052 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1053 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1054 } else if (PAGE_MIGRATION) {
0697212a
CL
1055 /*
1056 * Store the pfn of the page in a special migration
1057 * pte. do_swap_page() will wait until the migration
1058 * pte is removed and then restart fault handling.
1059 */
14fa31b8 1060 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1061 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1062 }
1063 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1064 BUG_ON(pte_file(*pte));
14fa31b8 1065 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1066 /* Establish migration entry for a file page */
1067 swp_entry_t entry;
1068 entry = make_migration_entry(page, pte_write(pteval));
1069 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1070 } else
d559db08 1071 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1072
edc315fd 1073 page_remove_rmap(page);
1da177e4
LT
1074 page_cache_release(page);
1075
1076out_unmap:
c0718806 1077 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1078out:
1079 return ret;
53f79acb 1080
caed0f48
KM
1081out_mlock:
1082 pte_unmap_unlock(pte, ptl);
1083
1084
1085 /*
1086 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1087 * unstable result and race. Plus, We can't wait here because
1088 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1089 * if trylock failed, the page remain in evictable lru and later
1090 * vmscan could retry to move the page to unevictable lru if the
1091 * page is actually mlocked.
1092 */
1093 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1094 if (vma->vm_flags & VM_LOCKED) {
1095 mlock_vma_page(page);
1096 ret = SWAP_MLOCK;
53f79acb 1097 }
caed0f48 1098 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1099 }
1da177e4
LT
1100 return ret;
1101}
1102
1103/*
1104 * objrmap doesn't work for nonlinear VMAs because the assumption that
1105 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1106 * Consequently, given a particular page and its ->index, we cannot locate the
1107 * ptes which are mapping that page without an exhaustive linear search.
1108 *
1109 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1110 * maps the file to which the target page belongs. The ->vm_private_data field
1111 * holds the current cursor into that scan. Successive searches will circulate
1112 * around the vma's virtual address space.
1113 *
1114 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1115 * more scanning pressure is placed against them as well. Eventually pages
1116 * will become fully unmapped and are eligible for eviction.
1117 *
1118 * For very sparsely populated VMAs this is a little inefficient - chances are
1119 * there there won't be many ptes located within the scan cluster. In this case
1120 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1121 *
1122 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1123 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1124 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1125 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1126 */
1127#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1128#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1129
b291f000
NP
1130static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1131 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1132{
1133 struct mm_struct *mm = vma->vm_mm;
1134 pgd_t *pgd;
1135 pud_t *pud;
1136 pmd_t *pmd;
c0718806 1137 pte_t *pte;
1da177e4 1138 pte_t pteval;
c0718806 1139 spinlock_t *ptl;
1da177e4
LT
1140 struct page *page;
1141 unsigned long address;
1142 unsigned long end;
b291f000
NP
1143 int ret = SWAP_AGAIN;
1144 int locked_vma = 0;
1da177e4 1145
1da177e4
LT
1146 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1147 end = address + CLUSTER_SIZE;
1148 if (address < vma->vm_start)
1149 address = vma->vm_start;
1150 if (end > vma->vm_end)
1151 end = vma->vm_end;
1152
1153 pgd = pgd_offset(mm, address);
1154 if (!pgd_present(*pgd))
b291f000 1155 return ret;
1da177e4
LT
1156
1157 pud = pud_offset(pgd, address);
1158 if (!pud_present(*pud))
b291f000 1159 return ret;
1da177e4
LT
1160
1161 pmd = pmd_offset(pud, address);
1162 if (!pmd_present(*pmd))
b291f000
NP
1163 return ret;
1164
1165 /*
af8e3354 1166 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1167 * keep the sem while scanning the cluster for mlocking pages.
1168 */
af8e3354 1169 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1170 locked_vma = (vma->vm_flags & VM_LOCKED);
1171 if (!locked_vma)
1172 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1173 }
c0718806
HD
1174
1175 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1176
365e9c87
HD
1177 /* Update high watermark before we lower rss */
1178 update_hiwater_rss(mm);
1179
c0718806 1180 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1181 if (!pte_present(*pte))
1182 continue;
6aab341e
LT
1183 page = vm_normal_page(vma, address, *pte);
1184 BUG_ON(!page || PageAnon(page));
1da177e4 1185
b291f000
NP
1186 if (locked_vma) {
1187 mlock_vma_page(page); /* no-op if already mlocked */
1188 if (page == check_page)
1189 ret = SWAP_MLOCK;
1190 continue; /* don't unmap */
1191 }
1192
cddb8a5c 1193 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1194 continue;
1195
1196 /* Nuke the page table entry. */
eca35133 1197 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1198 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1199
1200 /* If nonlinear, store the file page offset in the pte. */
1201 if (page->index != linear_page_index(vma, address))
1202 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1203
1204 /* Move the dirty bit to the physical page now the pte is gone. */
1205 if (pte_dirty(pteval))
1206 set_page_dirty(page);
1207
edc315fd 1208 page_remove_rmap(page);
1da177e4 1209 page_cache_release(page);
d559db08 1210 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1211 (*mapcount)--;
1212 }
c0718806 1213 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1214 if (locked_vma)
1215 up_read(&vma->vm_mm->mmap_sem);
1216 return ret;
1da177e4
LT
1217}
1218
71e3aac0 1219bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1220{
1221 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1222
1223 if (!maybe_stack)
1224 return false;
1225
1226 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1227 VM_STACK_INCOMPLETE_SETUP)
1228 return true;
1229
1230 return false;
1231}
1232
b291f000
NP
1233/**
1234 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1235 * rmap method
1236 * @page: the page to unmap/unlock
8051be5e 1237 * @flags: action and flags
b291f000
NP
1238 *
1239 * Find all the mappings of a page using the mapping pointer and the vma chains
1240 * contained in the anon_vma struct it points to.
1241 *
1242 * This function is only called from try_to_unmap/try_to_munlock for
1243 * anonymous pages.
1244 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1245 * where the page was found will be held for write. So, we won't recheck
1246 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1247 * 'LOCKED.
1248 */
14fa31b8 1249static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1250{
1251 struct anon_vma *anon_vma;
5beb4930 1252 struct anon_vma_chain *avc;
1da177e4 1253 int ret = SWAP_AGAIN;
b291f000 1254
1da177e4
LT
1255 anon_vma = page_lock_anon_vma(page);
1256 if (!anon_vma)
1257 return ret;
1258
5beb4930
RR
1259 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1260 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1261 unsigned long address;
1262
1263 /*
1264 * During exec, a temporary VMA is setup and later moved.
1265 * The VMA is moved under the anon_vma lock but not the
1266 * page tables leading to a race where migration cannot
1267 * find the migration ptes. Rather than increasing the
1268 * locking requirements of exec(), migration skips
1269 * temporary VMAs until after exec() completes.
1270 */
1271 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1272 is_vma_temporary_stack(vma))
1273 continue;
1274
1275 address = vma_address(page, vma);
1cb1729b
HD
1276 if (address == -EFAULT)
1277 continue;
1278 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1279 if (ret != SWAP_AGAIN || !page_mapped(page))
1280 break;
1da177e4 1281 }
34bbd704
ON
1282
1283 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1284 return ret;
1285}
1286
1287/**
b291f000
NP
1288 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1289 * @page: the page to unmap/unlock
14fa31b8 1290 * @flags: action and flags
1da177e4
LT
1291 *
1292 * Find all the mappings of a page using the mapping pointer and the vma chains
1293 * contained in the address_space struct it points to.
1294 *
b291f000
NP
1295 * This function is only called from try_to_unmap/try_to_munlock for
1296 * object-based pages.
1297 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1298 * where the page was found will be held for write. So, we won't recheck
1299 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1300 * 'LOCKED.
1da177e4 1301 */
14fa31b8 1302static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1303{
1304 struct address_space *mapping = page->mapping;
1305 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1306 struct vm_area_struct *vma;
1307 struct prio_tree_iter iter;
1308 int ret = SWAP_AGAIN;
1309 unsigned long cursor;
1310 unsigned long max_nl_cursor = 0;
1311 unsigned long max_nl_size = 0;
1312 unsigned int mapcount;
1313
1314 spin_lock(&mapping->i_mmap_lock);
1315 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1316 unsigned long address = vma_address(page, vma);
1317 if (address == -EFAULT)
1318 continue;
1319 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1320 if (ret != SWAP_AGAIN || !page_mapped(page))
1321 goto out;
1da177e4
LT
1322 }
1323
1324 if (list_empty(&mapping->i_mmap_nonlinear))
1325 goto out;
1326
53f79acb
HD
1327 /*
1328 * We don't bother to try to find the munlocked page in nonlinears.
1329 * It's costly. Instead, later, page reclaim logic may call
1330 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1331 */
1332 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1333 goto out;
1334
1da177e4
LT
1335 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1336 shared.vm_set.list) {
1da177e4
LT
1337 cursor = (unsigned long) vma->vm_private_data;
1338 if (cursor > max_nl_cursor)
1339 max_nl_cursor = cursor;
1340 cursor = vma->vm_end - vma->vm_start;
1341 if (cursor > max_nl_size)
1342 max_nl_size = cursor;
1343 }
1344
b291f000 1345 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1346 ret = SWAP_FAIL;
1347 goto out;
1348 }
1349
1350 /*
1351 * We don't try to search for this page in the nonlinear vmas,
1352 * and page_referenced wouldn't have found it anyway. Instead
1353 * just walk the nonlinear vmas trying to age and unmap some.
1354 * The mapcount of the page we came in with is irrelevant,
1355 * but even so use it as a guide to how hard we should try?
1356 */
1357 mapcount = page_mapcount(page);
1358 if (!mapcount)
1359 goto out;
1360 cond_resched_lock(&mapping->i_mmap_lock);
1361
1362 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1363 if (max_nl_cursor == 0)
1364 max_nl_cursor = CLUSTER_SIZE;
1365
1366 do {
1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368 shared.vm_set.list) {
1da177e4 1369 cursor = (unsigned long) vma->vm_private_data;
839b9685 1370 while ( cursor < max_nl_cursor &&
1da177e4 1371 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1372 if (try_to_unmap_cluster(cursor, &mapcount,
1373 vma, page) == SWAP_MLOCK)
1374 ret = SWAP_MLOCK;
1da177e4
LT
1375 cursor += CLUSTER_SIZE;
1376 vma->vm_private_data = (void *) cursor;
1377 if ((int)mapcount <= 0)
1378 goto out;
1379 }
1380 vma->vm_private_data = (void *) max_nl_cursor;
1381 }
1382 cond_resched_lock(&mapping->i_mmap_lock);
1383 max_nl_cursor += CLUSTER_SIZE;
1384 } while (max_nl_cursor <= max_nl_size);
1385
1386 /*
1387 * Don't loop forever (perhaps all the remaining pages are
1388 * in locked vmas). Reset cursor on all unreserved nonlinear
1389 * vmas, now forgetting on which ones it had fallen behind.
1390 */
101d2be7
HD
1391 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1392 vma->vm_private_data = NULL;
1da177e4
LT
1393out:
1394 spin_unlock(&mapping->i_mmap_lock);
1395 return ret;
1396}
1397
1398/**
1399 * try_to_unmap - try to remove all page table mappings to a page
1400 * @page: the page to get unmapped
14fa31b8 1401 * @flags: action and flags
1da177e4
LT
1402 *
1403 * Tries to remove all the page table entries which are mapping this
1404 * page, used in the pageout path. Caller must hold the page lock.
1405 * Return values are:
1406 *
1407 * SWAP_SUCCESS - we succeeded in removing all mappings
1408 * SWAP_AGAIN - we missed a mapping, try again later
1409 * SWAP_FAIL - the page is unswappable
b291f000 1410 * SWAP_MLOCK - page is mlocked.
1da177e4 1411 */
14fa31b8 1412int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1413{
1414 int ret;
1415
1da177e4 1416 BUG_ON(!PageLocked(page));
3f04f62f 1417 BUG_ON(PageTransHuge(page));
1da177e4 1418
5ad64688
HD
1419 if (unlikely(PageKsm(page)))
1420 ret = try_to_unmap_ksm(page, flags);
1421 else if (PageAnon(page))
14fa31b8 1422 ret = try_to_unmap_anon(page, flags);
1da177e4 1423 else
14fa31b8 1424 ret = try_to_unmap_file(page, flags);
b291f000 1425 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1426 ret = SWAP_SUCCESS;
1427 return ret;
1428}
81b4082d 1429
b291f000
NP
1430/**
1431 * try_to_munlock - try to munlock a page
1432 * @page: the page to be munlocked
1433 *
1434 * Called from munlock code. Checks all of the VMAs mapping the page
1435 * to make sure nobody else has this page mlocked. The page will be
1436 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1437 *
1438 * Return values are:
1439 *
53f79acb 1440 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1441 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1442 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1443 * SWAP_MLOCK - page is now mlocked.
1444 */
1445int try_to_munlock(struct page *page)
1446{
1447 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1448
5ad64688
HD
1449 if (unlikely(PageKsm(page)))
1450 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1451 else if (PageAnon(page))
14fa31b8 1452 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1453 else
14fa31b8 1454 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1455}
e9995ef9 1456
76545066
RR
1457#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1458/*
1459 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1460 * if necessary. Be careful to do all the tests under the lock. Once
1461 * we know we are the last user, nobody else can get a reference and we
1462 * can do the freeing without the lock.
1463 */
1464void drop_anon_vma(struct anon_vma *anon_vma)
1465{
44ab57a0 1466 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
76545066
RR
1467 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1468 struct anon_vma *root = anon_vma->root;
1469 int empty = list_empty(&anon_vma->head);
1470 int last_root_user = 0;
1471 int root_empty = 0;
1472
1473 /*
1474 * The refcount on a non-root anon_vma got dropped. Drop
1475 * the refcount on the root and check if we need to free it.
1476 */
1477 if (empty && anon_vma != root) {
44ab57a0 1478 BUG_ON(atomic_read(&root->external_refcount) <= 0);
76545066
RR
1479 last_root_user = atomic_dec_and_test(&root->external_refcount);
1480 root_empty = list_empty(&root->head);
1481 }
1482 anon_vma_unlock(anon_vma);
1483
1484 if (empty) {
1485 anon_vma_free(anon_vma);
1486 if (root_empty && last_root_user)
1487 anon_vma_free(root);
1488 }
1489 }
1490}
1491#endif
1492
e9995ef9
HD
1493#ifdef CONFIG_MIGRATION
1494/*
1495 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1496 * Called by migrate.c to remove migration ptes, but might be used more later.
1497 */
1498static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1499 struct vm_area_struct *, unsigned long, void *), void *arg)
1500{
1501 struct anon_vma *anon_vma;
5beb4930 1502 struct anon_vma_chain *avc;
e9995ef9
HD
1503 int ret = SWAP_AGAIN;
1504
1505 /*
1506 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1507 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1508 * are holding mmap_sem. Users without mmap_sem are required to
1509 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1510 */
1511 anon_vma = page_anon_vma(page);
1512 if (!anon_vma)
1513 return ret;
cba48b98 1514 anon_vma_lock(anon_vma);
5beb4930
RR
1515 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1516 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1517 unsigned long address = vma_address(page, vma);
1518 if (address == -EFAULT)
1519 continue;
1520 ret = rmap_one(page, vma, address, arg);
1521 if (ret != SWAP_AGAIN)
1522 break;
1523 }
cba48b98 1524 anon_vma_unlock(anon_vma);
e9995ef9
HD
1525 return ret;
1526}
1527
1528static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1529 struct vm_area_struct *, unsigned long, void *), void *arg)
1530{
1531 struct address_space *mapping = page->mapping;
1532 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1533 struct vm_area_struct *vma;
1534 struct prio_tree_iter iter;
1535 int ret = SWAP_AGAIN;
1536
1537 if (!mapping)
1538 return ret;
1539 spin_lock(&mapping->i_mmap_lock);
1540 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1541 unsigned long address = vma_address(page, vma);
1542 if (address == -EFAULT)
1543 continue;
1544 ret = rmap_one(page, vma, address, arg);
1545 if (ret != SWAP_AGAIN)
1546 break;
1547 }
1548 /*
1549 * No nonlinear handling: being always shared, nonlinear vmas
1550 * never contain migration ptes. Decide what to do about this
1551 * limitation to linear when we need rmap_walk() on nonlinear.
1552 */
1553 spin_unlock(&mapping->i_mmap_lock);
1554 return ret;
1555}
1556
1557int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1558 struct vm_area_struct *, unsigned long, void *), void *arg)
1559{
1560 VM_BUG_ON(!PageLocked(page));
1561
1562 if (unlikely(PageKsm(page)))
1563 return rmap_walk_ksm(page, rmap_one, arg);
1564 else if (PageAnon(page))
1565 return rmap_walk_anon(page, rmap_one, arg);
1566 else
1567 return rmap_walk_file(page, rmap_one, arg);
1568}
1569#endif /* CONFIG_MIGRATION */
0fe6e20b 1570
e3390f67 1571#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1572/*
1573 * The following three functions are for anonymous (private mapped) hugepages.
1574 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1575 * and no lru code, because we handle hugepages differently from common pages.
1576 */
1577static void __hugepage_set_anon_rmap(struct page *page,
1578 struct vm_area_struct *vma, unsigned long address, int exclusive)
1579{
1580 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1581
0fe6e20b 1582 BUG_ON(!anon_vma);
433abed6
NH
1583
1584 if (PageAnon(page))
1585 return;
1586 if (!exclusive)
1587 anon_vma = anon_vma->root;
1588
0fe6e20b
NH
1589 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1590 page->mapping = (struct address_space *) anon_vma;
1591 page->index = linear_page_index(vma, address);
1592}
1593
1594void hugepage_add_anon_rmap(struct page *page,
1595 struct vm_area_struct *vma, unsigned long address)
1596{
1597 struct anon_vma *anon_vma = vma->anon_vma;
1598 int first;
a850ea30
NH
1599
1600 BUG_ON(!PageLocked(page));
0fe6e20b
NH
1601 BUG_ON(!anon_vma);
1602 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1603 first = atomic_inc_and_test(&page->_mapcount);
1604 if (first)
1605 __hugepage_set_anon_rmap(page, vma, address, 0);
1606}
1607
1608void hugepage_add_new_anon_rmap(struct page *page,
1609 struct vm_area_struct *vma, unsigned long address)
1610{
1611 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1612 atomic_set(&page->_mapcount, 0);
1613 __hugepage_set_anon_rmap(page, vma, address, 1);
1614}
e3390f67 1615#endif /* CONFIG_HUGETLB_PAGE */
This page took 0.651451 seconds and 5 git commands to generate.