SLUB: Define functions for cpu slab handling instead of using PageActive
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
a737b3e2
AM
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
1da177e4
LT
574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
a737b3e2
AM
593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
1da177e4 597 */
065d41cb
PE
598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
d85f3385 605 page = compound_head(page);
ddc2e812 606 BUG_ON(!PageSlab(page));
065d41cb
PE
607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
ddc2e812 617 BUG_ON(!PageSlab(page));
065d41cb
PE
618 return (struct slab *)page->lru.prev;
619}
1da177e4 620
6ed5eb22
PE
621static inline struct kmem_cache *virt_to_cache(const void *obj)
622{
b49af68f 623 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
624 return page_get_cache(page);
625}
626
627static inline struct slab *virt_to_slab(const void *obj)
628{
b49af68f 629 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
630 return page_get_slab(page);
631}
632
8fea4e96
PE
633static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
635{
636 return slab->s_mem + cache->buffer_size * idx;
637}
638
6a2d7a95
ED
639/*
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 */
645static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
8fea4e96 647{
6a2d7a95
ED
648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
650}
651
a737b3e2
AM
652/*
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 */
1da177e4
LT
655struct cache_sizes malloc_sizes[] = {
656#define CACHE(x) { .cs_size = (x) },
657#include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659#undef CACHE
660};
661EXPORT_SYMBOL(malloc_sizes);
662
663/* Must match cache_sizes above. Out of line to keep cache footprint low. */
664struct cache_names {
665 char *name;
666 char *name_dma;
667};
668
669static struct cache_names __initdata cache_names[] = {
670#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671#include <linux/kmalloc_sizes.h>
b28a02de 672 {NULL,}
1da177e4
LT
673#undef CACHE
674};
675
676static struct arraycache_init initarray_cache __initdata =
b28a02de 677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 678static struct arraycache_init initarray_generic =
b28a02de 679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
680
681/* internal cache of cache description objs */
343e0d7a 682static struct kmem_cache cache_cache = {
b28a02de
PE
683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
343e0d7a 686 .buffer_size = sizeof(struct kmem_cache),
b28a02de 687 .name = "kmem_cache",
1da177e4
LT
688};
689
056c6241
RT
690#define BAD_ALIEN_MAGIC 0x01020304ul
691
f1aaee53
AV
692#ifdef CONFIG_LOCKDEP
693
694/*
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
700 *
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
f1aaee53 704 */
056c6241
RT
705static struct lock_class_key on_slab_l3_key;
706static struct lock_class_key on_slab_alc_key;
707
708static inline void init_lock_keys(void)
f1aaee53 709
f1aaee53
AV
710{
711 int q;
056c6241
RT
712 struct cache_sizes *s = malloc_sizes;
713
714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
723 /*
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
729 */
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
736 }
737 }
738 s++;
f1aaee53
AV
739 }
740}
f1aaee53 741#else
056c6241 742static inline void init_lock_keys(void)
f1aaee53
AV
743{
744}
745#endif
746
8f5be20b
RT
747/*
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 */
fc0abb14 751static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
752static struct list_head cache_chain;
753
1da177e4
LT
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
e498be7d
CL
760 PARTIAL_AC,
761 PARTIAL_L3,
1da177e4
LT
762 FULL
763} g_cpucache_up;
764
39d24e64
MK
765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
52bad64d 773static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 774
343e0d7a 775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
776{
777 return cachep->array[smp_processor_id()];
778}
779
a737b3e2
AM
780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
1da177e4
LT
782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
b28a02de
PE
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
c7e43c78 790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
791#endif
792 while (size > csizep->cs_size)
793 csizep++;
794
795 /*
0abf40c1 796 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
797 * has cs_{dma,}cachep==NULL. Thus no special case
798 * for large kmalloc calls required.
799 */
4b51d669 800#ifdef CONFIG_ZONE_DMA
1da177e4
LT
801 if (unlikely(gfpflags & GFP_DMA))
802 return csizep->cs_dmacachep;
4b51d669 803#endif
1da177e4
LT
804 return csizep->cs_cachep;
805}
806
b221385b 807static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
808{
809 return __find_general_cachep(size, gfpflags);
810}
97e2bde4 811
fbaccacf 812static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 813{
fbaccacf
SR
814 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
815}
1da177e4 816
a737b3e2
AM
817/*
818 * Calculate the number of objects and left-over bytes for a given buffer size.
819 */
fbaccacf
SR
820static void cache_estimate(unsigned long gfporder, size_t buffer_size,
821 size_t align, int flags, size_t *left_over,
822 unsigned int *num)
823{
824 int nr_objs;
825 size_t mgmt_size;
826 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 827
fbaccacf
SR
828 /*
829 * The slab management structure can be either off the slab or
830 * on it. For the latter case, the memory allocated for a
831 * slab is used for:
832 *
833 * - The struct slab
834 * - One kmem_bufctl_t for each object
835 * - Padding to respect alignment of @align
836 * - @buffer_size bytes for each object
837 *
838 * If the slab management structure is off the slab, then the
839 * alignment will already be calculated into the size. Because
840 * the slabs are all pages aligned, the objects will be at the
841 * correct alignment when allocated.
842 */
843 if (flags & CFLGS_OFF_SLAB) {
844 mgmt_size = 0;
845 nr_objs = slab_size / buffer_size;
846
847 if (nr_objs > SLAB_LIMIT)
848 nr_objs = SLAB_LIMIT;
849 } else {
850 /*
851 * Ignore padding for the initial guess. The padding
852 * is at most @align-1 bytes, and @buffer_size is at
853 * least @align. In the worst case, this result will
854 * be one greater than the number of objects that fit
855 * into the memory allocation when taking the padding
856 * into account.
857 */
858 nr_objs = (slab_size - sizeof(struct slab)) /
859 (buffer_size + sizeof(kmem_bufctl_t));
860
861 /*
862 * This calculated number will be either the right
863 * amount, or one greater than what we want.
864 */
865 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
866 > slab_size)
867 nr_objs--;
868
869 if (nr_objs > SLAB_LIMIT)
870 nr_objs = SLAB_LIMIT;
871
872 mgmt_size = slab_mgmt_size(nr_objs, align);
873 }
874 *num = nr_objs;
875 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
876}
877
878#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
879
a737b3e2
AM
880static void __slab_error(const char *function, struct kmem_cache *cachep,
881 char *msg)
1da177e4
LT
882{
883 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 884 function, cachep->name, msg);
1da177e4
LT
885 dump_stack();
886}
887
3395ee05
PM
888/*
889 * By default on NUMA we use alien caches to stage the freeing of
890 * objects allocated from other nodes. This causes massive memory
891 * inefficiencies when using fake NUMA setup to split memory into a
892 * large number of small nodes, so it can be disabled on the command
893 * line
894 */
895
896static int use_alien_caches __read_mostly = 1;
897static int __init noaliencache_setup(char *s)
898{
899 use_alien_caches = 0;
900 return 1;
901}
902__setup("noaliencache", noaliencache_setup);
903
8fce4d8e
CL
904#ifdef CONFIG_NUMA
905/*
906 * Special reaping functions for NUMA systems called from cache_reap().
907 * These take care of doing round robin flushing of alien caches (containing
908 * objects freed on different nodes from which they were allocated) and the
909 * flushing of remote pcps by calling drain_node_pages.
910 */
911static DEFINE_PER_CPU(unsigned long, reap_node);
912
913static void init_reap_node(int cpu)
914{
915 int node;
916
917 node = next_node(cpu_to_node(cpu), node_online_map);
918 if (node == MAX_NUMNODES)
442295c9 919 node = first_node(node_online_map);
8fce4d8e 920
7f6b8876 921 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
922}
923
924static void next_reap_node(void)
925{
926 int node = __get_cpu_var(reap_node);
927
8fce4d8e
CL
928 node = next_node(node, node_online_map);
929 if (unlikely(node >= MAX_NUMNODES))
930 node = first_node(node_online_map);
931 __get_cpu_var(reap_node) = node;
932}
933
934#else
935#define init_reap_node(cpu) do { } while (0)
936#define next_reap_node(void) do { } while (0)
937#endif
938
1da177e4
LT
939/*
940 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
941 * via the workqueue/eventd.
942 * Add the CPU number into the expiration time to minimize the possibility of
943 * the CPUs getting into lockstep and contending for the global cache chain
944 * lock.
945 */
946static void __devinit start_cpu_timer(int cpu)
947{
52bad64d 948 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
949
950 /*
951 * When this gets called from do_initcalls via cpucache_init(),
952 * init_workqueues() has already run, so keventd will be setup
953 * at that time.
954 */
52bad64d 955 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 956 init_reap_node(cpu);
65f27f38 957 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
958 schedule_delayed_work_on(cpu, reap_work,
959 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
960 }
961}
962
e498be7d 963static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 964 int batchcount)
1da177e4 965{
b28a02de 966 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
967 struct array_cache *nc = NULL;
968
e498be7d 969 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
970 if (nc) {
971 nc->avail = 0;
972 nc->limit = entries;
973 nc->batchcount = batchcount;
974 nc->touched = 0;
e498be7d 975 spin_lock_init(&nc->lock);
1da177e4
LT
976 }
977 return nc;
978}
979
3ded175a
CL
980/*
981 * Transfer objects in one arraycache to another.
982 * Locking must be handled by the caller.
983 *
984 * Return the number of entries transferred.
985 */
986static int transfer_objects(struct array_cache *to,
987 struct array_cache *from, unsigned int max)
988{
989 /* Figure out how many entries to transfer */
990 int nr = min(min(from->avail, max), to->limit - to->avail);
991
992 if (!nr)
993 return 0;
994
995 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
996 sizeof(void *) *nr);
997
998 from->avail -= nr;
999 to->avail += nr;
1000 to->touched = 1;
1001 return nr;
1002}
1003
765c4507
CL
1004#ifndef CONFIG_NUMA
1005
1006#define drain_alien_cache(cachep, alien) do { } while (0)
1007#define reap_alien(cachep, l3) do { } while (0)
1008
1009static inline struct array_cache **alloc_alien_cache(int node, int limit)
1010{
1011 return (struct array_cache **)BAD_ALIEN_MAGIC;
1012}
1013
1014static inline void free_alien_cache(struct array_cache **ac_ptr)
1015{
1016}
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020 return 0;
1021}
1022
1023static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1024 gfp_t flags)
1025{
1026 return NULL;
1027}
1028
8b98c169 1029static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1030 gfp_t flags, int nodeid)
1031{
1032 return NULL;
1033}
1034
1035#else /* CONFIG_NUMA */
1036
8b98c169 1037static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1038static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1039
5295a74c 1040static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1041{
1042 struct array_cache **ac_ptr;
8ef82866 1043 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1044 int i;
1045
1046 if (limit > 1)
1047 limit = 12;
1048 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1049 if (ac_ptr) {
1050 for_each_node(i) {
1051 if (i == node || !node_online(i)) {
1052 ac_ptr[i] = NULL;
1053 continue;
1054 }
1055 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1056 if (!ac_ptr[i]) {
b28a02de 1057 for (i--; i <= 0; i--)
e498be7d
CL
1058 kfree(ac_ptr[i]);
1059 kfree(ac_ptr);
1060 return NULL;
1061 }
1062 }
1063 }
1064 return ac_ptr;
1065}
1066
5295a74c 1067static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1068{
1069 int i;
1070
1071 if (!ac_ptr)
1072 return;
e498be7d 1073 for_each_node(i)
b28a02de 1074 kfree(ac_ptr[i]);
e498be7d
CL
1075 kfree(ac_ptr);
1076}
1077
343e0d7a 1078static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1079 struct array_cache *ac, int node)
e498be7d
CL
1080{
1081 struct kmem_list3 *rl3 = cachep->nodelists[node];
1082
1083 if (ac->avail) {
1084 spin_lock(&rl3->list_lock);
e00946fe
CL
1085 /*
1086 * Stuff objects into the remote nodes shared array first.
1087 * That way we could avoid the overhead of putting the objects
1088 * into the free lists and getting them back later.
1089 */
693f7d36 1090 if (rl3->shared)
1091 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1092
ff69416e 1093 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1094 ac->avail = 0;
1095 spin_unlock(&rl3->list_lock);
1096 }
1097}
1098
8fce4d8e
CL
1099/*
1100 * Called from cache_reap() to regularly drain alien caches round robin.
1101 */
1102static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1103{
1104 int node = __get_cpu_var(reap_node);
1105
1106 if (l3->alien) {
1107 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1108
1109 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1110 __drain_alien_cache(cachep, ac, node);
1111 spin_unlock_irq(&ac->lock);
1112 }
1113 }
1114}
1115
a737b3e2
AM
1116static void drain_alien_cache(struct kmem_cache *cachep,
1117 struct array_cache **alien)
e498be7d 1118{
b28a02de 1119 int i = 0;
e498be7d
CL
1120 struct array_cache *ac;
1121 unsigned long flags;
1122
1123 for_each_online_node(i) {
4484ebf1 1124 ac = alien[i];
e498be7d
CL
1125 if (ac) {
1126 spin_lock_irqsave(&ac->lock, flags);
1127 __drain_alien_cache(cachep, ac, i);
1128 spin_unlock_irqrestore(&ac->lock, flags);
1129 }
1130 }
1131}
729bd0b7 1132
873623df 1133static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1134{
1135 struct slab *slabp = virt_to_slab(objp);
1136 int nodeid = slabp->nodeid;
1137 struct kmem_list3 *l3;
1138 struct array_cache *alien = NULL;
1ca4cb24
PE
1139 int node;
1140
1141 node = numa_node_id();
729bd0b7
PE
1142
1143 /*
1144 * Make sure we are not freeing a object from another node to the array
1145 * cache on this cpu.
1146 */
62918a03 1147 if (likely(slabp->nodeid == node))
729bd0b7
PE
1148 return 0;
1149
1ca4cb24 1150 l3 = cachep->nodelists[node];
729bd0b7
PE
1151 STATS_INC_NODEFREES(cachep);
1152 if (l3->alien && l3->alien[nodeid]) {
1153 alien = l3->alien[nodeid];
873623df 1154 spin_lock(&alien->lock);
729bd0b7
PE
1155 if (unlikely(alien->avail == alien->limit)) {
1156 STATS_INC_ACOVERFLOW(cachep);
1157 __drain_alien_cache(cachep, alien, nodeid);
1158 }
1159 alien->entry[alien->avail++] = objp;
1160 spin_unlock(&alien->lock);
1161 } else {
1162 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1163 free_block(cachep, &objp, 1, nodeid);
1164 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1165 }
1166 return 1;
1167}
e498be7d
CL
1168#endif
1169
8c78f307 1170static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1171 unsigned long action, void *hcpu)
1da177e4
LT
1172{
1173 long cpu = (long)hcpu;
343e0d7a 1174 struct kmem_cache *cachep;
e498be7d
CL
1175 struct kmem_list3 *l3 = NULL;
1176 int node = cpu_to_node(cpu);
1177 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1178
1179 switch (action) {
38c3bd96 1180 case CPU_LOCK_ACQUIRE:
fc0abb14 1181 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1182 break;
1183 case CPU_UP_PREPARE:
8bb78442 1184 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1185 /*
1186 * We need to do this right in the beginning since
e498be7d
CL
1187 * alloc_arraycache's are going to use this list.
1188 * kmalloc_node allows us to add the slab to the right
1189 * kmem_list3 and not this cpu's kmem_list3
1190 */
1191
1da177e4 1192 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1193 /*
1194 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1195 * begin anything. Make sure some other cpu on this
1196 * node has not already allocated this
1197 */
1198 if (!cachep->nodelists[node]) {
a737b3e2
AM
1199 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1200 if (!l3)
e498be7d
CL
1201 goto bad;
1202 kmem_list3_init(l3);
1203 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1204 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1205
4484ebf1
RT
1206 /*
1207 * The l3s don't come and go as CPUs come and
1208 * go. cache_chain_mutex is sufficient
1209 * protection here.
1210 */
e498be7d
CL
1211 cachep->nodelists[node] = l3;
1212 }
1da177e4 1213
e498be7d
CL
1214 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1215 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1216 (1 + nr_cpus_node(node)) *
1217 cachep->batchcount + cachep->num;
e498be7d
CL
1218 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1219 }
1220
a737b3e2
AM
1221 /*
1222 * Now we can go ahead with allocating the shared arrays and
1223 * array caches
1224 */
e498be7d 1225 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1226 struct array_cache *nc;
63109846 1227 struct array_cache *shared = NULL;
3395ee05 1228 struct array_cache **alien = NULL;
cd105df4 1229
e498be7d 1230 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1231 cachep->batchcount);
1da177e4
LT
1232 if (!nc)
1233 goto bad;
63109846
ED
1234 if (cachep->shared) {
1235 shared = alloc_arraycache(node,
4484ebf1
RT
1236 cachep->shared * cachep->batchcount,
1237 0xbaadf00d);
63109846
ED
1238 if (!shared)
1239 goto bad;
1240 }
3395ee05
PM
1241 if (use_alien_caches) {
1242 alien = alloc_alien_cache(node, cachep->limit);
1243 if (!alien)
1244 goto bad;
1245 }
1da177e4 1246 cachep->array[cpu] = nc;
e498be7d
CL
1247 l3 = cachep->nodelists[node];
1248 BUG_ON(!l3);
e498be7d 1249
4484ebf1
RT
1250 spin_lock_irq(&l3->list_lock);
1251 if (!l3->shared) {
1252 /*
1253 * We are serialised from CPU_DEAD or
1254 * CPU_UP_CANCELLED by the cpucontrol lock
1255 */
1256 l3->shared = shared;
1257 shared = NULL;
e498be7d 1258 }
4484ebf1
RT
1259#ifdef CONFIG_NUMA
1260 if (!l3->alien) {
1261 l3->alien = alien;
1262 alien = NULL;
1263 }
1264#endif
1265 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1266 kfree(shared);
1267 free_alien_cache(alien);
1da177e4 1268 }
1da177e4
LT
1269 break;
1270 case CPU_ONLINE:
8bb78442 1271 case CPU_ONLINE_FROZEN:
1da177e4
LT
1272 start_cpu_timer(cpu);
1273 break;
1274#ifdef CONFIG_HOTPLUG_CPU
5830c590 1275 case CPU_DOWN_PREPARE:
8bb78442 1276 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1277 /*
1278 * Shutdown cache reaper. Note that the cache_chain_mutex is
1279 * held so that if cache_reap() is invoked it cannot do
1280 * anything expensive but will only modify reap_work
1281 * and reschedule the timer.
1282 */
1283 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1284 /* Now the cache_reaper is guaranteed to be not running. */
1285 per_cpu(reap_work, cpu).work.func = NULL;
1286 break;
1287 case CPU_DOWN_FAILED:
8bb78442 1288 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1289 start_cpu_timer(cpu);
1290 break;
1da177e4 1291 case CPU_DEAD:
8bb78442 1292 case CPU_DEAD_FROZEN:
4484ebf1
RT
1293 /*
1294 * Even if all the cpus of a node are down, we don't free the
1295 * kmem_list3 of any cache. This to avoid a race between
1296 * cpu_down, and a kmalloc allocation from another cpu for
1297 * memory from the node of the cpu going down. The list3
1298 * structure is usually allocated from kmem_cache_create() and
1299 * gets destroyed at kmem_cache_destroy().
1300 */
1da177e4 1301 /* fall thru */
8f5be20b 1302#endif
1da177e4 1303 case CPU_UP_CANCELED:
8bb78442 1304 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1305 list_for_each_entry(cachep, &cache_chain, next) {
1306 struct array_cache *nc;
4484ebf1
RT
1307 struct array_cache *shared;
1308 struct array_cache **alien;
e498be7d 1309 cpumask_t mask;
1da177e4 1310
e498be7d 1311 mask = node_to_cpumask(node);
1da177e4
LT
1312 /* cpu is dead; no one can alloc from it. */
1313 nc = cachep->array[cpu];
1314 cachep->array[cpu] = NULL;
e498be7d
CL
1315 l3 = cachep->nodelists[node];
1316
1317 if (!l3)
4484ebf1 1318 goto free_array_cache;
e498be7d 1319
ca3b9b91 1320 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1321
1322 /* Free limit for this kmem_list3 */
1323 l3->free_limit -= cachep->batchcount;
1324 if (nc)
ff69416e 1325 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1326
1327 if (!cpus_empty(mask)) {
ca3b9b91 1328 spin_unlock_irq(&l3->list_lock);
4484ebf1 1329 goto free_array_cache;
b28a02de 1330 }
e498be7d 1331
4484ebf1
RT
1332 shared = l3->shared;
1333 if (shared) {
63109846
ED
1334 free_block(cachep, shared->entry,
1335 shared->avail, node);
e498be7d
CL
1336 l3->shared = NULL;
1337 }
e498be7d 1338
4484ebf1
RT
1339 alien = l3->alien;
1340 l3->alien = NULL;
1341
1342 spin_unlock_irq(&l3->list_lock);
1343
1344 kfree(shared);
1345 if (alien) {
1346 drain_alien_cache(cachep, alien);
1347 free_alien_cache(alien);
e498be7d 1348 }
4484ebf1 1349free_array_cache:
1da177e4
LT
1350 kfree(nc);
1351 }
4484ebf1
RT
1352 /*
1353 * In the previous loop, all the objects were freed to
1354 * the respective cache's slabs, now we can go ahead and
1355 * shrink each nodelist to its limit.
1356 */
1357 list_for_each_entry(cachep, &cache_chain, next) {
1358 l3 = cachep->nodelists[node];
1359 if (!l3)
1360 continue;
ed11d9eb 1361 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1362 }
38c3bd96
HC
1363 break;
1364 case CPU_LOCK_RELEASE:
fc0abb14 1365 mutex_unlock(&cache_chain_mutex);
1da177e4 1366 break;
1da177e4
LT
1367 }
1368 return NOTIFY_OK;
a737b3e2 1369bad:
1da177e4
LT
1370 return NOTIFY_BAD;
1371}
1372
74b85f37
CS
1373static struct notifier_block __cpuinitdata cpucache_notifier = {
1374 &cpuup_callback, NULL, 0
1375};
1da177e4 1376
e498be7d
CL
1377/*
1378 * swap the static kmem_list3 with kmalloced memory
1379 */
a737b3e2
AM
1380static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1381 int nodeid)
e498be7d
CL
1382{
1383 struct kmem_list3 *ptr;
1384
e498be7d
CL
1385 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1386 BUG_ON(!ptr);
1387
1388 local_irq_disable();
1389 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1390 /*
1391 * Do not assume that spinlocks can be initialized via memcpy:
1392 */
1393 spin_lock_init(&ptr->list_lock);
1394
e498be7d
CL
1395 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1396 cachep->nodelists[nodeid] = ptr;
1397 local_irq_enable();
1398}
1399
a737b3e2
AM
1400/*
1401 * Initialisation. Called after the page allocator have been initialised and
1402 * before smp_init().
1da177e4
LT
1403 */
1404void __init kmem_cache_init(void)
1405{
1406 size_t left_over;
1407 struct cache_sizes *sizes;
1408 struct cache_names *names;
e498be7d 1409 int i;
07ed76b2 1410 int order;
1ca4cb24 1411 int node;
e498be7d 1412
62918a03
SS
1413 if (num_possible_nodes() == 1)
1414 use_alien_caches = 0;
1415
e498be7d
CL
1416 for (i = 0; i < NUM_INIT_LISTS; i++) {
1417 kmem_list3_init(&initkmem_list3[i]);
1418 if (i < MAX_NUMNODES)
1419 cache_cache.nodelists[i] = NULL;
1420 }
1da177e4
LT
1421
1422 /*
1423 * Fragmentation resistance on low memory - only use bigger
1424 * page orders on machines with more than 32MB of memory.
1425 */
1426 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1427 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1428
1da177e4
LT
1429 /* Bootstrap is tricky, because several objects are allocated
1430 * from caches that do not exist yet:
a737b3e2
AM
1431 * 1) initialize the cache_cache cache: it contains the struct
1432 * kmem_cache structures of all caches, except cache_cache itself:
1433 * cache_cache is statically allocated.
e498be7d
CL
1434 * Initially an __init data area is used for the head array and the
1435 * kmem_list3 structures, it's replaced with a kmalloc allocated
1436 * array at the end of the bootstrap.
1da177e4 1437 * 2) Create the first kmalloc cache.
343e0d7a 1438 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1439 * An __init data area is used for the head array.
1440 * 3) Create the remaining kmalloc caches, with minimally sized
1441 * head arrays.
1da177e4
LT
1442 * 4) Replace the __init data head arrays for cache_cache and the first
1443 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1444 * 5) Replace the __init data for kmem_list3 for cache_cache and
1445 * the other cache's with kmalloc allocated memory.
1446 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1447 */
1448
1ca4cb24
PE
1449 node = numa_node_id();
1450
1da177e4 1451 /* 1) create the cache_cache */
1da177e4
LT
1452 INIT_LIST_HEAD(&cache_chain);
1453 list_add(&cache_cache.next, &cache_chain);
1454 cache_cache.colour_off = cache_line_size();
1455 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1456 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1457
8da3430d
ED
1458 /*
1459 * struct kmem_cache size depends on nr_node_ids, which
1460 * can be less than MAX_NUMNODES.
1461 */
1462 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1463 nr_node_ids * sizeof(struct kmem_list3 *);
1464#if DEBUG
1465 cache_cache.obj_size = cache_cache.buffer_size;
1466#endif
a737b3e2
AM
1467 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1468 cache_line_size());
6a2d7a95
ED
1469 cache_cache.reciprocal_buffer_size =
1470 reciprocal_value(cache_cache.buffer_size);
1da177e4 1471
07ed76b2
JS
1472 for (order = 0; order < MAX_ORDER; order++) {
1473 cache_estimate(order, cache_cache.buffer_size,
1474 cache_line_size(), 0, &left_over, &cache_cache.num);
1475 if (cache_cache.num)
1476 break;
1477 }
40094fa6 1478 BUG_ON(!cache_cache.num);
07ed76b2 1479 cache_cache.gfporder = order;
b28a02de 1480 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1481 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1482 sizeof(struct slab), cache_line_size());
1da177e4
LT
1483
1484 /* 2+3) create the kmalloc caches */
1485 sizes = malloc_sizes;
1486 names = cache_names;
1487
a737b3e2
AM
1488 /*
1489 * Initialize the caches that provide memory for the array cache and the
1490 * kmem_list3 structures first. Without this, further allocations will
1491 * bug.
e498be7d
CL
1492 */
1493
1494 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1495 sizes[INDEX_AC].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL, NULL);
e498be7d 1499
a737b3e2 1500 if (INDEX_AC != INDEX_L3) {
e498be7d 1501 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1502 kmem_cache_create(names[INDEX_L3].name,
1503 sizes[INDEX_L3].cs_size,
1504 ARCH_KMALLOC_MINALIGN,
1505 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1506 NULL, NULL);
1507 }
e498be7d 1508
e0a42726
IM
1509 slab_early_init = 0;
1510
1da177e4 1511 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1512 /*
1513 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1514 * This should be particularly beneficial on SMP boxes, as it
1515 * eliminates "false sharing".
1516 * Note for systems short on memory removing the alignment will
e498be7d
CL
1517 * allow tighter packing of the smaller caches.
1518 */
a737b3e2 1519 if (!sizes->cs_cachep) {
e498be7d 1520 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1524 NULL, NULL);
1525 }
4b51d669
CL
1526#ifdef CONFIG_ZONE_DMA
1527 sizes->cs_dmacachep = kmem_cache_create(
1528 names->name_dma,
a737b3e2
AM
1529 sizes->cs_size,
1530 ARCH_KMALLOC_MINALIGN,
1531 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1532 SLAB_PANIC,
1533 NULL, NULL);
4b51d669 1534#endif
1da177e4
LT
1535 sizes++;
1536 names++;
1537 }
1538 /* 4) Replace the bootstrap head arrays */
1539 {
2b2d5493 1540 struct array_cache *ptr;
e498be7d 1541
1da177e4 1542 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1543
1da177e4 1544 local_irq_disable();
9a2dba4b
PE
1545 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1546 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1547 sizeof(struct arraycache_init));
2b2d5493
IM
1548 /*
1549 * Do not assume that spinlocks can be initialized via memcpy:
1550 */
1551 spin_lock_init(&ptr->lock);
1552
1da177e4
LT
1553 cache_cache.array[smp_processor_id()] = ptr;
1554 local_irq_enable();
e498be7d 1555
1da177e4 1556 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1557
1da177e4 1558 local_irq_disable();
9a2dba4b 1559 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1560 != &initarray_generic.cache);
9a2dba4b 1561 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1562 sizeof(struct arraycache_init));
2b2d5493
IM
1563 /*
1564 * Do not assume that spinlocks can be initialized via memcpy:
1565 */
1566 spin_lock_init(&ptr->lock);
1567
e498be7d 1568 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1569 ptr;
1da177e4
LT
1570 local_irq_enable();
1571 }
e498be7d
CL
1572 /* 5) Replace the bootstrap kmem_list3's */
1573 {
1ca4cb24
PE
1574 int nid;
1575
e498be7d 1576 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1577 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1578
1ca4cb24 1579 for_each_online_node(nid) {
e498be7d 1580 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1581 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1582
1583 if (INDEX_AC != INDEX_L3) {
1584 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1585 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1586 }
1587 }
1588 }
1da177e4 1589
e498be7d 1590 /* 6) resize the head arrays to their final sizes */
1da177e4 1591 {
343e0d7a 1592 struct kmem_cache *cachep;
fc0abb14 1593 mutex_lock(&cache_chain_mutex);
1da177e4 1594 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1595 if (enable_cpucache(cachep))
1596 BUG();
fc0abb14 1597 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1598 }
1599
056c6241
RT
1600 /* Annotate slab for lockdep -- annotate the malloc caches */
1601 init_lock_keys();
1602
1603
1da177e4
LT
1604 /* Done! */
1605 g_cpucache_up = FULL;
1606
a737b3e2
AM
1607 /*
1608 * Register a cpu startup notifier callback that initializes
1609 * cpu_cache_get for all new cpus
1da177e4
LT
1610 */
1611 register_cpu_notifier(&cpucache_notifier);
1da177e4 1612
a737b3e2
AM
1613 /*
1614 * The reap timers are started later, with a module init call: That part
1615 * of the kernel is not yet operational.
1da177e4
LT
1616 */
1617}
1618
1619static int __init cpucache_init(void)
1620{
1621 int cpu;
1622
a737b3e2
AM
1623 /*
1624 * Register the timers that return unneeded pages to the page allocator
1da177e4 1625 */
e498be7d 1626 for_each_online_cpu(cpu)
a737b3e2 1627 start_cpu_timer(cpu);
1da177e4
LT
1628 return 0;
1629}
1da177e4
LT
1630__initcall(cpucache_init);
1631
1632/*
1633 * Interface to system's page allocator. No need to hold the cache-lock.
1634 *
1635 * If we requested dmaable memory, we will get it. Even if we
1636 * did not request dmaable memory, we might get it, but that
1637 * would be relatively rare and ignorable.
1638 */
343e0d7a 1639static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1640{
1641 struct page *page;
e1b6aa6f 1642 int nr_pages;
1da177e4
LT
1643 int i;
1644
d6fef9da 1645#ifndef CONFIG_MMU
e1b6aa6f
CH
1646 /*
1647 * Nommu uses slab's for process anonymous memory allocations, and thus
1648 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1649 */
e1b6aa6f 1650 flags |= __GFP_COMP;
d6fef9da 1651#endif
765c4507 1652
3c517a61 1653 flags |= cachep->gfpflags;
e1b6aa6f
CH
1654
1655 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1656 if (!page)
1657 return NULL;
1da177e4 1658
e1b6aa6f 1659 nr_pages = (1 << cachep->gfporder);
1da177e4 1660 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1661 add_zone_page_state(page_zone(page),
1662 NR_SLAB_RECLAIMABLE, nr_pages);
1663 else
1664 add_zone_page_state(page_zone(page),
1665 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1666 for (i = 0; i < nr_pages; i++)
1667 __SetPageSlab(page + i);
1668 return page_address(page);
1da177e4
LT
1669}
1670
1671/*
1672 * Interface to system's page release.
1673 */
343e0d7a 1674static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1675{
b28a02de 1676 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1677 struct page *page = virt_to_page(addr);
1678 const unsigned long nr_freed = i;
1679
972d1a7b
CL
1680 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1681 sub_zone_page_state(page_zone(page),
1682 NR_SLAB_RECLAIMABLE, nr_freed);
1683 else
1684 sub_zone_page_state(page_zone(page),
1685 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1686 while (i--) {
f205b2fe
NP
1687 BUG_ON(!PageSlab(page));
1688 __ClearPageSlab(page);
1da177e4
LT
1689 page++;
1690 }
1da177e4
LT
1691 if (current->reclaim_state)
1692 current->reclaim_state->reclaimed_slab += nr_freed;
1693 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1694}
1695
1696static void kmem_rcu_free(struct rcu_head *head)
1697{
b28a02de 1698 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1699 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1700
1701 kmem_freepages(cachep, slab_rcu->addr);
1702 if (OFF_SLAB(cachep))
1703 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1704}
1705
1706#if DEBUG
1707
1708#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1709static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1710 unsigned long caller)
1da177e4 1711{
3dafccf2 1712 int size = obj_size(cachep);
1da177e4 1713
3dafccf2 1714 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1715
b28a02de 1716 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1717 return;
1718
b28a02de
PE
1719 *addr++ = 0x12345678;
1720 *addr++ = caller;
1721 *addr++ = smp_processor_id();
1722 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1723 {
1724 unsigned long *sptr = &caller;
1725 unsigned long svalue;
1726
1727 while (!kstack_end(sptr)) {
1728 svalue = *sptr++;
1729 if (kernel_text_address(svalue)) {
b28a02de 1730 *addr++ = svalue;
1da177e4
LT
1731 size -= sizeof(unsigned long);
1732 if (size <= sizeof(unsigned long))
1733 break;
1734 }
1735 }
1736
1737 }
b28a02de 1738 *addr++ = 0x87654321;
1da177e4
LT
1739}
1740#endif
1741
343e0d7a 1742static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1743{
3dafccf2
MS
1744 int size = obj_size(cachep);
1745 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1746
1747 memset(addr, val, size);
b28a02de 1748 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1749}
1750
1751static void dump_line(char *data, int offset, int limit)
1752{
1753 int i;
aa83aa40
DJ
1754 unsigned char error = 0;
1755 int bad_count = 0;
1756
1da177e4 1757 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1758 for (i = 0; i < limit; i++) {
1759 if (data[offset + i] != POISON_FREE) {
1760 error = data[offset + i];
1761 bad_count++;
1762 }
b28a02de 1763 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1764 }
1da177e4 1765 printk("\n");
aa83aa40
DJ
1766
1767 if (bad_count == 1) {
1768 error ^= POISON_FREE;
1769 if (!(error & (error - 1))) {
1770 printk(KERN_ERR "Single bit error detected. Probably "
1771 "bad RAM.\n");
1772#ifdef CONFIG_X86
1773 printk(KERN_ERR "Run memtest86+ or a similar memory "
1774 "test tool.\n");
1775#else
1776 printk(KERN_ERR "Run a memory test tool.\n");
1777#endif
1778 }
1779 }
1da177e4
LT
1780}
1781#endif
1782
1783#if DEBUG
1784
343e0d7a 1785static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1786{
1787 int i, size;
1788 char *realobj;
1789
1790 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1791 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1792 *dbg_redzone1(cachep, objp),
1793 *dbg_redzone2(cachep, objp));
1da177e4
LT
1794 }
1795
1796 if (cachep->flags & SLAB_STORE_USER) {
1797 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1798 *dbg_userword(cachep, objp));
1da177e4 1799 print_symbol("(%s)",
a737b3e2 1800 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1801 printk("\n");
1802 }
3dafccf2
MS
1803 realobj = (char *)objp + obj_offset(cachep);
1804 size = obj_size(cachep);
b28a02de 1805 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1806 int limit;
1807 limit = 16;
b28a02de
PE
1808 if (i + limit > size)
1809 limit = size - i;
1da177e4
LT
1810 dump_line(realobj, i, limit);
1811 }
1812}
1813
343e0d7a 1814static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1815{
1816 char *realobj;
1817 int size, i;
1818 int lines = 0;
1819
3dafccf2
MS
1820 realobj = (char *)objp + obj_offset(cachep);
1821 size = obj_size(cachep);
1da177e4 1822
b28a02de 1823 for (i = 0; i < size; i++) {
1da177e4 1824 char exp = POISON_FREE;
b28a02de 1825 if (i == size - 1)
1da177e4
LT
1826 exp = POISON_END;
1827 if (realobj[i] != exp) {
1828 int limit;
1829 /* Mismatch ! */
1830 /* Print header */
1831 if (lines == 0) {
b28a02de 1832 printk(KERN_ERR
e94a40c5
DH
1833 "Slab corruption: %s start=%p, len=%d\n",
1834 cachep->name, realobj, size);
1da177e4
LT
1835 print_objinfo(cachep, objp, 0);
1836 }
1837 /* Hexdump the affected line */
b28a02de 1838 i = (i / 16) * 16;
1da177e4 1839 limit = 16;
b28a02de
PE
1840 if (i + limit > size)
1841 limit = size - i;
1da177e4
LT
1842 dump_line(realobj, i, limit);
1843 i += 16;
1844 lines++;
1845 /* Limit to 5 lines */
1846 if (lines > 5)
1847 break;
1848 }
1849 }
1850 if (lines != 0) {
1851 /* Print some data about the neighboring objects, if they
1852 * exist:
1853 */
6ed5eb22 1854 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1855 unsigned int objnr;
1da177e4 1856
8fea4e96 1857 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1858 if (objnr) {
8fea4e96 1859 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1860 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1861 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1862 realobj, size);
1da177e4
LT
1863 print_objinfo(cachep, objp, 2);
1864 }
b28a02de 1865 if (objnr + 1 < cachep->num) {
8fea4e96 1866 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1867 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1868 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1869 realobj, size);
1da177e4
LT
1870 print_objinfo(cachep, objp, 2);
1871 }
1872 }
1873}
1874#endif
1875
12dd36fa
MD
1876#if DEBUG
1877/**
911851e6
RD
1878 * slab_destroy_objs - destroy a slab and its objects
1879 * @cachep: cache pointer being destroyed
1880 * @slabp: slab pointer being destroyed
1881 *
1882 * Call the registered destructor for each object in a slab that is being
1883 * destroyed.
1da177e4 1884 */
343e0d7a 1885static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1886{
1da177e4
LT
1887 int i;
1888 for (i = 0; i < cachep->num; i++) {
8fea4e96 1889 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1890
1891 if (cachep->flags & SLAB_POISON) {
1892#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1893 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1894 OFF_SLAB(cachep))
b28a02de 1895 kernel_map_pages(virt_to_page(objp),
a737b3e2 1896 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1897 else
1898 check_poison_obj(cachep, objp);
1899#else
1900 check_poison_obj(cachep, objp);
1901#endif
1902 }
1903 if (cachep->flags & SLAB_RED_ZONE) {
1904 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1905 slab_error(cachep, "start of a freed object "
b28a02de 1906 "was overwritten");
1da177e4
LT
1907 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1908 slab_error(cachep, "end of a freed object "
b28a02de 1909 "was overwritten");
1da177e4 1910 }
1da177e4 1911 }
12dd36fa 1912}
1da177e4 1913#else
343e0d7a 1914static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1915{
12dd36fa 1916}
1da177e4
LT
1917#endif
1918
911851e6
RD
1919/**
1920 * slab_destroy - destroy and release all objects in a slab
1921 * @cachep: cache pointer being destroyed
1922 * @slabp: slab pointer being destroyed
1923 *
12dd36fa 1924 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1925 * Before calling the slab must have been unlinked from the cache. The
1926 * cache-lock is not held/needed.
12dd36fa 1927 */
343e0d7a 1928static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1929{
1930 void *addr = slabp->s_mem - slabp->colouroff;
1931
1932 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1933 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1934 struct slab_rcu *slab_rcu;
1935
b28a02de 1936 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1937 slab_rcu->cachep = cachep;
1938 slab_rcu->addr = addr;
1939 call_rcu(&slab_rcu->head, kmem_rcu_free);
1940 } else {
1941 kmem_freepages(cachep, addr);
873623df
IM
1942 if (OFF_SLAB(cachep))
1943 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1944 }
1945}
1946
a737b3e2
AM
1947/*
1948 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1949 * size of kmem_list3.
1950 */
a3a02be7 1951static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1952{
1953 int node;
1954
1955 for_each_online_node(node) {
b28a02de 1956 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1957 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1958 REAPTIMEOUT_LIST3 +
1959 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1960 }
1961}
1962
117f6eb1
CL
1963static void __kmem_cache_destroy(struct kmem_cache *cachep)
1964{
1965 int i;
1966 struct kmem_list3 *l3;
1967
1968 for_each_online_cpu(i)
1969 kfree(cachep->array[i]);
1970
1971 /* NUMA: free the list3 structures */
1972 for_each_online_node(i) {
1973 l3 = cachep->nodelists[i];
1974 if (l3) {
1975 kfree(l3->shared);
1976 free_alien_cache(l3->alien);
1977 kfree(l3);
1978 }
1979 }
1980 kmem_cache_free(&cache_cache, cachep);
1981}
1982
1983
4d268eba 1984/**
a70773dd
RD
1985 * calculate_slab_order - calculate size (page order) of slabs
1986 * @cachep: pointer to the cache that is being created
1987 * @size: size of objects to be created in this cache.
1988 * @align: required alignment for the objects.
1989 * @flags: slab allocation flags
1990 *
1991 * Also calculates the number of objects per slab.
4d268eba
PE
1992 *
1993 * This could be made much more intelligent. For now, try to avoid using
1994 * high order pages for slabs. When the gfp() functions are more friendly
1995 * towards high-order requests, this should be changed.
1996 */
a737b3e2 1997static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1998 size_t size, size_t align, unsigned long flags)
4d268eba 1999{
b1ab41c4 2000 unsigned long offslab_limit;
4d268eba 2001 size_t left_over = 0;
9888e6fa 2002 int gfporder;
4d268eba 2003
a737b3e2 2004 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2005 unsigned int num;
2006 size_t remainder;
2007
9888e6fa 2008 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2009 if (!num)
2010 continue;
9888e6fa 2011
b1ab41c4
IM
2012 if (flags & CFLGS_OFF_SLAB) {
2013 /*
2014 * Max number of objs-per-slab for caches which
2015 * use off-slab slabs. Needed to avoid a possible
2016 * looping condition in cache_grow().
2017 */
2018 offslab_limit = size - sizeof(struct slab);
2019 offslab_limit /= sizeof(kmem_bufctl_t);
2020
2021 if (num > offslab_limit)
2022 break;
2023 }
4d268eba 2024
9888e6fa 2025 /* Found something acceptable - save it away */
4d268eba 2026 cachep->num = num;
9888e6fa 2027 cachep->gfporder = gfporder;
4d268eba
PE
2028 left_over = remainder;
2029
f78bb8ad
LT
2030 /*
2031 * A VFS-reclaimable slab tends to have most allocations
2032 * as GFP_NOFS and we really don't want to have to be allocating
2033 * higher-order pages when we are unable to shrink dcache.
2034 */
2035 if (flags & SLAB_RECLAIM_ACCOUNT)
2036 break;
2037
4d268eba
PE
2038 /*
2039 * Large number of objects is good, but very large slabs are
2040 * currently bad for the gfp()s.
2041 */
9888e6fa 2042 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2043 break;
2044
9888e6fa
LT
2045 /*
2046 * Acceptable internal fragmentation?
2047 */
a737b3e2 2048 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2049 break;
2050 }
2051 return left_over;
2052}
2053
2ed3a4ef 2054static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2055{
2ed3a4ef
CL
2056 if (g_cpucache_up == FULL)
2057 return enable_cpucache(cachep);
2058
f30cf7d1
PE
2059 if (g_cpucache_up == NONE) {
2060 /*
2061 * Note: the first kmem_cache_create must create the cache
2062 * that's used by kmalloc(24), otherwise the creation of
2063 * further caches will BUG().
2064 */
2065 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2066
2067 /*
2068 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2069 * the first cache, then we need to set up all its list3s,
2070 * otherwise the creation of further caches will BUG().
2071 */
2072 set_up_list3s(cachep, SIZE_AC);
2073 if (INDEX_AC == INDEX_L3)
2074 g_cpucache_up = PARTIAL_L3;
2075 else
2076 g_cpucache_up = PARTIAL_AC;
2077 } else {
2078 cachep->array[smp_processor_id()] =
2079 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2080
2081 if (g_cpucache_up == PARTIAL_AC) {
2082 set_up_list3s(cachep, SIZE_L3);
2083 g_cpucache_up = PARTIAL_L3;
2084 } else {
2085 int node;
2086 for_each_online_node(node) {
2087 cachep->nodelists[node] =
2088 kmalloc_node(sizeof(struct kmem_list3),
2089 GFP_KERNEL, node);
2090 BUG_ON(!cachep->nodelists[node]);
2091 kmem_list3_init(cachep->nodelists[node]);
2092 }
2093 }
2094 }
2095 cachep->nodelists[numa_node_id()]->next_reap =
2096 jiffies + REAPTIMEOUT_LIST3 +
2097 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2098
2099 cpu_cache_get(cachep)->avail = 0;
2100 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2101 cpu_cache_get(cachep)->batchcount = 1;
2102 cpu_cache_get(cachep)->touched = 0;
2103 cachep->batchcount = 1;
2104 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2105 return 0;
f30cf7d1
PE
2106}
2107
1da177e4
LT
2108/**
2109 * kmem_cache_create - Create a cache.
2110 * @name: A string which is used in /proc/slabinfo to identify this cache.
2111 * @size: The size of objects to be created in this cache.
2112 * @align: The required alignment for the objects.
2113 * @flags: SLAB flags
2114 * @ctor: A constructor for the objects.
c59def9f 2115 * @dtor: A destructor for the objects (not implemented anymore).
1da177e4
LT
2116 *
2117 * Returns a ptr to the cache on success, NULL on failure.
2118 * Cannot be called within a int, but can be interrupted.
2119 * The @ctor is run when new pages are allocated by the cache
2120 * and the @dtor is run before the pages are handed back.
2121 *
2122 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2123 * the module calling this has to destroy the cache before getting unloaded.
2124 *
1da177e4
LT
2125 * The flags are
2126 *
2127 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2128 * to catch references to uninitialised memory.
2129 *
2130 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2131 * for buffer overruns.
2132 *
1da177e4
LT
2133 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2134 * cacheline. This can be beneficial if you're counting cycles as closely
2135 * as davem.
2136 */
343e0d7a 2137struct kmem_cache *
1da177e4 2138kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2139 unsigned long flags,
2140 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2141 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2142{
2143 size_t left_over, slab_size, ralign;
7a7c381d 2144 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2145
2146 /*
2147 * Sanity checks... these are all serious usage bugs.
2148 */
a737b3e2 2149 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
c59def9f 2150 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
a737b3e2
AM
2151 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2152 name);
b28a02de
PE
2153 BUG();
2154 }
1da177e4 2155
f0188f47 2156 /*
8f5be20b
RT
2157 * We use cache_chain_mutex to ensure a consistent view of
2158 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2159 */
fc0abb14 2160 mutex_lock(&cache_chain_mutex);
4f12bb4f 2161
7a7c381d 2162 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2163 char tmp;
2164 int res;
2165
2166 /*
2167 * This happens when the module gets unloaded and doesn't
2168 * destroy its slab cache and no-one else reuses the vmalloc
2169 * area of the module. Print a warning.
2170 */
138ae663 2171 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2172 if (res) {
b4169525 2173 printk(KERN_ERR
2174 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2175 pc->buffer_size);
4f12bb4f
AM
2176 continue;
2177 }
2178
b28a02de 2179 if (!strcmp(pc->name, name)) {
b4169525 2180 printk(KERN_ERR
2181 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2182 dump_stack();
2183 goto oops;
2184 }
2185 }
2186
1da177e4
LT
2187#if DEBUG
2188 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2189#if FORCED_DEBUG
2190 /*
2191 * Enable redzoning and last user accounting, except for caches with
2192 * large objects, if the increased size would increase the object size
2193 * above the next power of two: caches with object sizes just above a
2194 * power of two have a significant amount of internal fragmentation.
2195 */
a737b3e2 2196 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2197 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2198 if (!(flags & SLAB_DESTROY_BY_RCU))
2199 flags |= SLAB_POISON;
2200#endif
2201 if (flags & SLAB_DESTROY_BY_RCU)
2202 BUG_ON(flags & SLAB_POISON);
2203#endif
1da177e4 2204 /*
a737b3e2
AM
2205 * Always checks flags, a caller might be expecting debug support which
2206 * isn't available.
1da177e4 2207 */
40094fa6 2208 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2209
a737b3e2
AM
2210 /*
2211 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2212 * unaligned accesses for some archs when redzoning is used, and makes
2213 * sure any on-slab bufctl's are also correctly aligned.
2214 */
b28a02de
PE
2215 if (size & (BYTES_PER_WORD - 1)) {
2216 size += (BYTES_PER_WORD - 1);
2217 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2218 }
2219
a737b3e2
AM
2220 /* calculate the final buffer alignment: */
2221
1da177e4
LT
2222 /* 1) arch recommendation: can be overridden for debug */
2223 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2224 /*
2225 * Default alignment: as specified by the arch code. Except if
2226 * an object is really small, then squeeze multiple objects into
2227 * one cacheline.
1da177e4
LT
2228 */
2229 ralign = cache_line_size();
b28a02de 2230 while (size <= ralign / 2)
1da177e4
LT
2231 ralign /= 2;
2232 } else {
2233 ralign = BYTES_PER_WORD;
2234 }
ca5f9703
PE
2235
2236 /*
2237 * Redzoning and user store require word alignment. Note this will be
2238 * overridden by architecture or caller mandated alignment if either
2239 * is greater than BYTES_PER_WORD.
2240 */
2241 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2242 ralign = __alignof__(unsigned long long);
ca5f9703 2243
a44b56d3 2244 /* 2) arch mandated alignment */
1da177e4
LT
2245 if (ralign < ARCH_SLAB_MINALIGN) {
2246 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2247 }
a44b56d3 2248 /* 3) caller mandated alignment */
1da177e4
LT
2249 if (ralign < align) {
2250 ralign = align;
1da177e4 2251 }
a44b56d3 2252 /* disable debug if necessary */
b46b8f19 2253 if (ralign > __alignof__(unsigned long long))
a44b56d3 2254 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2255 /*
ca5f9703 2256 * 4) Store it.
1da177e4
LT
2257 */
2258 align = ralign;
2259
2260 /* Get cache's description obj. */
e94b1766 2261 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2262 if (!cachep)
4f12bb4f 2263 goto oops;
1da177e4
LT
2264
2265#if DEBUG
3dafccf2 2266 cachep->obj_size = size;
1da177e4 2267
ca5f9703
PE
2268 /*
2269 * Both debugging options require word-alignment which is calculated
2270 * into align above.
2271 */
1da177e4 2272 if (flags & SLAB_RED_ZONE) {
1da177e4 2273 /* add space for red zone words */
b46b8f19
DW
2274 cachep->obj_offset += sizeof(unsigned long long);
2275 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2276 }
2277 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2278 /* user store requires one word storage behind the end of
2279 * the real object.
1da177e4 2280 */
1da177e4
LT
2281 size += BYTES_PER_WORD;
2282 }
2283#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2284 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2285 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2286 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2287 size = PAGE_SIZE;
2288 }
2289#endif
2290#endif
2291
e0a42726
IM
2292 /*
2293 * Determine if the slab management is 'on' or 'off' slab.
2294 * (bootstrapping cannot cope with offslab caches so don't do
2295 * it too early on.)
2296 */
2297 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2298 /*
2299 * Size is large, assume best to place the slab management obj
2300 * off-slab (should allow better packing of objs).
2301 */
2302 flags |= CFLGS_OFF_SLAB;
2303
2304 size = ALIGN(size, align);
2305
f78bb8ad 2306 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2307
2308 if (!cachep->num) {
b4169525 2309 printk(KERN_ERR
2310 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2311 kmem_cache_free(&cache_cache, cachep);
2312 cachep = NULL;
4f12bb4f 2313 goto oops;
1da177e4 2314 }
b28a02de
PE
2315 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2316 + sizeof(struct slab), align);
1da177e4
LT
2317
2318 /*
2319 * If the slab has been placed off-slab, and we have enough space then
2320 * move it on-slab. This is at the expense of any extra colouring.
2321 */
2322 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2323 flags &= ~CFLGS_OFF_SLAB;
2324 left_over -= slab_size;
2325 }
2326
2327 if (flags & CFLGS_OFF_SLAB) {
2328 /* really off slab. No need for manual alignment */
b28a02de
PE
2329 slab_size =
2330 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2331 }
2332
2333 cachep->colour_off = cache_line_size();
2334 /* Offset must be a multiple of the alignment. */
2335 if (cachep->colour_off < align)
2336 cachep->colour_off = align;
b28a02de 2337 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2338 cachep->slab_size = slab_size;
2339 cachep->flags = flags;
2340 cachep->gfpflags = 0;
4b51d669 2341 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2342 cachep->gfpflags |= GFP_DMA;
3dafccf2 2343 cachep->buffer_size = size;
6a2d7a95 2344 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2345
e5ac9c5a 2346 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2347 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2348 /*
2349 * This is a possibility for one of the malloc_sizes caches.
2350 * But since we go off slab only for object size greater than
2351 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2352 * this should not happen at all.
2353 * But leave a BUG_ON for some lucky dude.
2354 */
2355 BUG_ON(!cachep->slabp_cache);
2356 }
1da177e4 2357 cachep->ctor = ctor;
1da177e4
LT
2358 cachep->name = name;
2359
2ed3a4ef
CL
2360 if (setup_cpu_cache(cachep)) {
2361 __kmem_cache_destroy(cachep);
2362 cachep = NULL;
2363 goto oops;
2364 }
1da177e4 2365
1da177e4
LT
2366 /* cache setup completed, link it into the list */
2367 list_add(&cachep->next, &cache_chain);
a737b3e2 2368oops:
1da177e4
LT
2369 if (!cachep && (flags & SLAB_PANIC))
2370 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2371 name);
fc0abb14 2372 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2373 return cachep;
2374}
2375EXPORT_SYMBOL(kmem_cache_create);
2376
2377#if DEBUG
2378static void check_irq_off(void)
2379{
2380 BUG_ON(!irqs_disabled());
2381}
2382
2383static void check_irq_on(void)
2384{
2385 BUG_ON(irqs_disabled());
2386}
2387
343e0d7a 2388static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2389{
2390#ifdef CONFIG_SMP
2391 check_irq_off();
e498be7d 2392 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2393#endif
2394}
e498be7d 2395
343e0d7a 2396static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2397{
2398#ifdef CONFIG_SMP
2399 check_irq_off();
2400 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2401#endif
2402}
2403
1da177e4
LT
2404#else
2405#define check_irq_off() do { } while(0)
2406#define check_irq_on() do { } while(0)
2407#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2408#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2409#endif
2410
aab2207c
CL
2411static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2412 struct array_cache *ac,
2413 int force, int node);
2414
1da177e4
LT
2415static void do_drain(void *arg)
2416{
a737b3e2 2417 struct kmem_cache *cachep = arg;
1da177e4 2418 struct array_cache *ac;
ff69416e 2419 int node = numa_node_id();
1da177e4
LT
2420
2421 check_irq_off();
9a2dba4b 2422 ac = cpu_cache_get(cachep);
ff69416e
CL
2423 spin_lock(&cachep->nodelists[node]->list_lock);
2424 free_block(cachep, ac->entry, ac->avail, node);
2425 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2426 ac->avail = 0;
2427}
2428
343e0d7a 2429static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2430{
e498be7d
CL
2431 struct kmem_list3 *l3;
2432 int node;
2433
a07fa394 2434 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2435 check_irq_on();
b28a02de 2436 for_each_online_node(node) {
e498be7d 2437 l3 = cachep->nodelists[node];
a4523a8b
RD
2438 if (l3 && l3->alien)
2439 drain_alien_cache(cachep, l3->alien);
2440 }
2441
2442 for_each_online_node(node) {
2443 l3 = cachep->nodelists[node];
2444 if (l3)
aab2207c 2445 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2446 }
1da177e4
LT
2447}
2448
ed11d9eb
CL
2449/*
2450 * Remove slabs from the list of free slabs.
2451 * Specify the number of slabs to drain in tofree.
2452 *
2453 * Returns the actual number of slabs released.
2454 */
2455static int drain_freelist(struct kmem_cache *cache,
2456 struct kmem_list3 *l3, int tofree)
1da177e4 2457{
ed11d9eb
CL
2458 struct list_head *p;
2459 int nr_freed;
1da177e4 2460 struct slab *slabp;
1da177e4 2461
ed11d9eb
CL
2462 nr_freed = 0;
2463 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2464
ed11d9eb 2465 spin_lock_irq(&l3->list_lock);
e498be7d 2466 p = l3->slabs_free.prev;
ed11d9eb
CL
2467 if (p == &l3->slabs_free) {
2468 spin_unlock_irq(&l3->list_lock);
2469 goto out;
2470 }
1da177e4 2471
ed11d9eb 2472 slabp = list_entry(p, struct slab, list);
1da177e4 2473#if DEBUG
40094fa6 2474 BUG_ON(slabp->inuse);
1da177e4
LT
2475#endif
2476 list_del(&slabp->list);
ed11d9eb
CL
2477 /*
2478 * Safe to drop the lock. The slab is no longer linked
2479 * to the cache.
2480 */
2481 l3->free_objects -= cache->num;
e498be7d 2482 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2483 slab_destroy(cache, slabp);
2484 nr_freed++;
1da177e4 2485 }
ed11d9eb
CL
2486out:
2487 return nr_freed;
1da177e4
LT
2488}
2489
8f5be20b 2490/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2491static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2492{
2493 int ret = 0, i = 0;
2494 struct kmem_list3 *l3;
2495
2496 drain_cpu_caches(cachep);
2497
2498 check_irq_on();
2499 for_each_online_node(i) {
2500 l3 = cachep->nodelists[i];
ed11d9eb
CL
2501 if (!l3)
2502 continue;
2503
2504 drain_freelist(cachep, l3, l3->free_objects);
2505
2506 ret += !list_empty(&l3->slabs_full) ||
2507 !list_empty(&l3->slabs_partial);
e498be7d
CL
2508 }
2509 return (ret ? 1 : 0);
2510}
2511
1da177e4
LT
2512/**
2513 * kmem_cache_shrink - Shrink a cache.
2514 * @cachep: The cache to shrink.
2515 *
2516 * Releases as many slabs as possible for a cache.
2517 * To help debugging, a zero exit status indicates all slabs were released.
2518 */
343e0d7a 2519int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2520{
8f5be20b 2521 int ret;
40094fa6 2522 BUG_ON(!cachep || in_interrupt());
1da177e4 2523
8f5be20b
RT
2524 mutex_lock(&cache_chain_mutex);
2525 ret = __cache_shrink(cachep);
2526 mutex_unlock(&cache_chain_mutex);
2527 return ret;
1da177e4
LT
2528}
2529EXPORT_SYMBOL(kmem_cache_shrink);
2530
2531/**
2532 * kmem_cache_destroy - delete a cache
2533 * @cachep: the cache to destroy
2534 *
72fd4a35 2535 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2536 *
2537 * It is expected this function will be called by a module when it is
2538 * unloaded. This will remove the cache completely, and avoid a duplicate
2539 * cache being allocated each time a module is loaded and unloaded, if the
2540 * module doesn't have persistent in-kernel storage across loads and unloads.
2541 *
2542 * The cache must be empty before calling this function.
2543 *
2544 * The caller must guarantee that noone will allocate memory from the cache
2545 * during the kmem_cache_destroy().
2546 */
133d205a 2547void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2548{
40094fa6 2549 BUG_ON(!cachep || in_interrupt());
1da177e4 2550
1da177e4 2551 /* Find the cache in the chain of caches. */
fc0abb14 2552 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2553 /*
2554 * the chain is never empty, cache_cache is never destroyed
2555 */
2556 list_del(&cachep->next);
1da177e4
LT
2557 if (__cache_shrink(cachep)) {
2558 slab_error(cachep, "Can't free all objects");
b28a02de 2559 list_add(&cachep->next, &cache_chain);
fc0abb14 2560 mutex_unlock(&cache_chain_mutex);
133d205a 2561 return;
1da177e4
LT
2562 }
2563
2564 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2565 synchronize_rcu();
1da177e4 2566
117f6eb1 2567 __kmem_cache_destroy(cachep);
8f5be20b 2568 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2569}
2570EXPORT_SYMBOL(kmem_cache_destroy);
2571
e5ac9c5a
RT
2572/*
2573 * Get the memory for a slab management obj.
2574 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2575 * always come from malloc_sizes caches. The slab descriptor cannot
2576 * come from the same cache which is getting created because,
2577 * when we are searching for an appropriate cache for these
2578 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2579 * If we are creating a malloc_sizes cache here it would not be visible to
2580 * kmem_find_general_cachep till the initialization is complete.
2581 * Hence we cannot have slabp_cache same as the original cache.
2582 */
343e0d7a 2583static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2584 int colour_off, gfp_t local_flags,
2585 int nodeid)
1da177e4
LT
2586{
2587 struct slab *slabp;
b28a02de 2588
1da177e4
LT
2589 if (OFF_SLAB(cachep)) {
2590 /* Slab management obj is off-slab. */
5b74ada7 2591 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2592 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2593 if (!slabp)
2594 return NULL;
2595 } else {
b28a02de 2596 slabp = objp + colour_off;
1da177e4
LT
2597 colour_off += cachep->slab_size;
2598 }
2599 slabp->inuse = 0;
2600 slabp->colouroff = colour_off;
b28a02de 2601 slabp->s_mem = objp + colour_off;
5b74ada7 2602 slabp->nodeid = nodeid;
1da177e4
LT
2603 return slabp;
2604}
2605
2606static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2607{
b28a02de 2608 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2609}
2610
343e0d7a 2611static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2612 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2613{
2614 int i;
2615
2616 for (i = 0; i < cachep->num; i++) {
8fea4e96 2617 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2618#if DEBUG
2619 /* need to poison the objs? */
2620 if (cachep->flags & SLAB_POISON)
2621 poison_obj(cachep, objp, POISON_FREE);
2622 if (cachep->flags & SLAB_STORE_USER)
2623 *dbg_userword(cachep, objp) = NULL;
2624
2625 if (cachep->flags & SLAB_RED_ZONE) {
2626 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2627 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2628 }
2629 /*
a737b3e2
AM
2630 * Constructors are not allowed to allocate memory from the same
2631 * cache which they are a constructor for. Otherwise, deadlock.
2632 * They must also be threaded.
1da177e4
LT
2633 */
2634 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2635 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2636 ctor_flags);
1da177e4
LT
2637
2638 if (cachep->flags & SLAB_RED_ZONE) {
2639 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2640 slab_error(cachep, "constructor overwrote the"
b28a02de 2641 " end of an object");
1da177e4
LT
2642 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2643 slab_error(cachep, "constructor overwrote the"
b28a02de 2644 " start of an object");
1da177e4 2645 }
a737b3e2
AM
2646 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2647 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2648 kernel_map_pages(virt_to_page(objp),
3dafccf2 2649 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2650#else
2651 if (cachep->ctor)
2652 cachep->ctor(objp, cachep, ctor_flags);
2653#endif
b28a02de 2654 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2655 }
b28a02de 2656 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2657 slabp->free = 0;
2658}
2659
343e0d7a 2660static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2661{
4b51d669
CL
2662 if (CONFIG_ZONE_DMA_FLAG) {
2663 if (flags & GFP_DMA)
2664 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2665 else
2666 BUG_ON(cachep->gfpflags & GFP_DMA);
2667 }
1da177e4
LT
2668}
2669
a737b3e2
AM
2670static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2671 int nodeid)
78d382d7 2672{
8fea4e96 2673 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2674 kmem_bufctl_t next;
2675
2676 slabp->inuse++;
2677 next = slab_bufctl(slabp)[slabp->free];
2678#if DEBUG
2679 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2680 WARN_ON(slabp->nodeid != nodeid);
2681#endif
2682 slabp->free = next;
2683
2684 return objp;
2685}
2686
a737b3e2
AM
2687static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2688 void *objp, int nodeid)
78d382d7 2689{
8fea4e96 2690 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2691
2692#if DEBUG
2693 /* Verify that the slab belongs to the intended node */
2694 WARN_ON(slabp->nodeid != nodeid);
2695
871751e2 2696 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2697 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2698 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2699 BUG();
2700 }
2701#endif
2702 slab_bufctl(slabp)[objnr] = slabp->free;
2703 slabp->free = objnr;
2704 slabp->inuse--;
2705}
2706
4776874f
PE
2707/*
2708 * Map pages beginning at addr to the given cache and slab. This is required
2709 * for the slab allocator to be able to lookup the cache and slab of a
2710 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2711 */
2712static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2713 void *addr)
1da177e4 2714{
4776874f 2715 int nr_pages;
1da177e4
LT
2716 struct page *page;
2717
4776874f 2718 page = virt_to_page(addr);
84097518 2719
4776874f 2720 nr_pages = 1;
84097518 2721 if (likely(!PageCompound(page)))
4776874f
PE
2722 nr_pages <<= cache->gfporder;
2723
1da177e4 2724 do {
4776874f
PE
2725 page_set_cache(page, cache);
2726 page_set_slab(page, slab);
1da177e4 2727 page++;
4776874f 2728 } while (--nr_pages);
1da177e4
LT
2729}
2730
2731/*
2732 * Grow (by 1) the number of slabs within a cache. This is called by
2733 * kmem_cache_alloc() when there are no active objs left in a cache.
2734 */
3c517a61
CL
2735static int cache_grow(struct kmem_cache *cachep,
2736 gfp_t flags, int nodeid, void *objp)
1da177e4 2737{
b28a02de 2738 struct slab *slabp;
b28a02de
PE
2739 size_t offset;
2740 gfp_t local_flags;
2741 unsigned long ctor_flags;
e498be7d 2742 struct kmem_list3 *l3;
1da177e4 2743
a737b3e2
AM
2744 /*
2745 * Be lazy and only check for valid flags here, keeping it out of the
2746 * critical path in kmem_cache_alloc().
1da177e4 2747 */
cfce6604 2748 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4
LT
2749
2750 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2751 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2752 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2753 check_irq_off();
2e1217cf
RT
2754 l3 = cachep->nodelists[nodeid];
2755 spin_lock(&l3->list_lock);
1da177e4
LT
2756
2757 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2758 offset = l3->colour_next;
2759 l3->colour_next++;
2760 if (l3->colour_next >= cachep->colour)
2761 l3->colour_next = 0;
2762 spin_unlock(&l3->list_lock);
1da177e4 2763
2e1217cf 2764 offset *= cachep->colour_off;
1da177e4
LT
2765
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2768
2769 /*
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2774 */
2775 kmem_flagcheck(cachep, flags);
2776
a737b3e2
AM
2777 /*
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
e498be7d 2780 */
3c517a61
CL
2781 if (!objp)
2782 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2783 if (!objp)
1da177e4
LT
2784 goto failed;
2785
2786 /* Get slab management. */
3c517a61
CL
2787 slabp = alloc_slabmgmt(cachep, objp, offset,
2788 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2789 if (!slabp)
1da177e4
LT
2790 goto opps1;
2791
e498be7d 2792 slabp->nodeid = nodeid;
4776874f 2793 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2794
2795 cache_init_objs(cachep, slabp, ctor_flags);
2796
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 check_irq_off();
e498be7d 2800 spin_lock(&l3->list_lock);
1da177e4
LT
2801
2802 /* Make slab active. */
e498be7d 2803 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2804 STATS_INC_GROWN(cachep);
e498be7d
CL
2805 l3->free_objects += cachep->num;
2806 spin_unlock(&l3->list_lock);
1da177e4 2807 return 1;
a737b3e2 2808opps1:
1da177e4 2809 kmem_freepages(cachep, objp);
a737b3e2 2810failed:
1da177e4
LT
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 return 0;
2814}
2815
2816#if DEBUG
2817
2818/*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
1da177e4
LT
2822 */
2823static void kfree_debugcheck(const void *objp)
2824{
1da177e4
LT
2825 if (!virt_addr_valid(objp)) {
2826 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2827 (unsigned long)objp);
2828 BUG();
1da177e4 2829 }
1da177e4
LT
2830}
2831
58ce1fd5
PE
2832static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833{
b46b8f19 2834 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2835
2836 redzone1 = *dbg_redzone1(cache, obj);
2837 redzone2 = *dbg_redzone2(cache, obj);
2838
2839 /*
2840 * Redzone is ok.
2841 */
2842 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843 return;
2844
2845 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846 slab_error(cache, "double free detected");
2847 else
2848 slab_error(cache, "memory outside object was overwritten");
2849
b46b8f19 2850 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2851 obj, redzone1, redzone2);
2852}
2853
343e0d7a 2854static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2855 void *caller)
1da177e4
LT
2856{
2857 struct page *page;
2858 unsigned int objnr;
2859 struct slab *slabp;
2860
3dafccf2 2861 objp -= obj_offset(cachep);
1da177e4 2862 kfree_debugcheck(objp);
b49af68f 2863 page = virt_to_head_page(objp);
1da177e4 2864
065d41cb 2865 slabp = page_get_slab(page);
1da177e4
LT
2866
2867 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2868 verify_redzone_free(cachep, objp);
1da177e4
LT
2869 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2870 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2871 }
2872 if (cachep->flags & SLAB_STORE_USER)
2873 *dbg_userword(cachep, objp) = caller;
2874
8fea4e96 2875 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2876
2877 BUG_ON(objnr >= cachep->num);
8fea4e96 2878 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2879
871751e2
AV
2880#ifdef CONFIG_DEBUG_SLAB_LEAK
2881 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2882#endif
1da177e4
LT
2883 if (cachep->flags & SLAB_POISON) {
2884#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2885 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2886 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2887 kernel_map_pages(virt_to_page(objp),
3dafccf2 2888 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2889 } else {
2890 poison_obj(cachep, objp, POISON_FREE);
2891 }
2892#else
2893 poison_obj(cachep, objp, POISON_FREE);
2894#endif
2895 }
2896 return objp;
2897}
2898
343e0d7a 2899static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2900{
2901 kmem_bufctl_t i;
2902 int entries = 0;
b28a02de 2903
1da177e4
LT
2904 /* Check slab's freelist to see if this obj is there. */
2905 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2906 entries++;
2907 if (entries > cachep->num || i >= cachep->num)
2908 goto bad;
2909 }
2910 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2911bad:
2912 printk(KERN_ERR "slab: Internal list corruption detected in "
2913 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2914 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2915 for (i = 0;
264132bc 2916 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2917 i++) {
a737b3e2 2918 if (i % 16 == 0)
1da177e4 2919 printk("\n%03x:", i);
b28a02de 2920 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2921 }
2922 printk("\n");
2923 BUG();
2924 }
2925}
2926#else
2927#define kfree_debugcheck(x) do { } while(0)
2928#define cache_free_debugcheck(x,objp,z) (objp)
2929#define check_slabp(x,y) do { } while(0)
2930#endif
2931
343e0d7a 2932static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2933{
2934 int batchcount;
2935 struct kmem_list3 *l3;
2936 struct array_cache *ac;
1ca4cb24
PE
2937 int node;
2938
2939 node = numa_node_id();
1da177e4
LT
2940
2941 check_irq_off();
9a2dba4b 2942 ac = cpu_cache_get(cachep);
a737b3e2 2943retry:
1da177e4
LT
2944 batchcount = ac->batchcount;
2945 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2946 /*
2947 * If there was little recent activity on this cache, then
2948 * perform only a partial refill. Otherwise we could generate
2949 * refill bouncing.
1da177e4
LT
2950 */
2951 batchcount = BATCHREFILL_LIMIT;
2952 }
1ca4cb24 2953 l3 = cachep->nodelists[node];
e498be7d
CL
2954
2955 BUG_ON(ac->avail > 0 || !l3);
2956 spin_lock(&l3->list_lock);
1da177e4 2957
3ded175a
CL
2958 /* See if we can refill from the shared array */
2959 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2960 goto alloc_done;
2961
1da177e4
LT
2962 while (batchcount > 0) {
2963 struct list_head *entry;
2964 struct slab *slabp;
2965 /* Get slab alloc is to come from. */
2966 entry = l3->slabs_partial.next;
2967 if (entry == &l3->slabs_partial) {
2968 l3->free_touched = 1;
2969 entry = l3->slabs_free.next;
2970 if (entry == &l3->slabs_free)
2971 goto must_grow;
2972 }
2973
2974 slabp = list_entry(entry, struct slab, list);
2975 check_slabp(cachep, slabp);
2976 check_spinlock_acquired(cachep);
714b8171
PE
2977
2978 /*
2979 * The slab was either on partial or free list so
2980 * there must be at least one object available for
2981 * allocation.
2982 */
2983 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2984
1da177e4 2985 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2986 STATS_INC_ALLOCED(cachep);
2987 STATS_INC_ACTIVE(cachep);
2988 STATS_SET_HIGH(cachep);
2989
78d382d7 2990 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2991 node);
1da177e4
LT
2992 }
2993 check_slabp(cachep, slabp);
2994
2995 /* move slabp to correct slabp list: */
2996 list_del(&slabp->list);
2997 if (slabp->free == BUFCTL_END)
2998 list_add(&slabp->list, &l3->slabs_full);
2999 else
3000 list_add(&slabp->list, &l3->slabs_partial);
3001 }
3002
a737b3e2 3003must_grow:
1da177e4 3004 l3->free_objects -= ac->avail;
a737b3e2 3005alloc_done:
e498be7d 3006 spin_unlock(&l3->list_lock);
1da177e4
LT
3007
3008 if (unlikely(!ac->avail)) {
3009 int x;
3c517a61 3010 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3011
a737b3e2 3012 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3013 ac = cpu_cache_get(cachep);
a737b3e2 3014 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3015 return NULL;
3016
a737b3e2 3017 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3018 goto retry;
3019 }
3020 ac->touched = 1;
e498be7d 3021 return ac->entry[--ac->avail];
1da177e4
LT
3022}
3023
a737b3e2
AM
3024static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3025 gfp_t flags)
1da177e4
LT
3026{
3027 might_sleep_if(flags & __GFP_WAIT);
3028#if DEBUG
3029 kmem_flagcheck(cachep, flags);
3030#endif
3031}
3032
3033#if DEBUG
a737b3e2
AM
3034static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035 gfp_t flags, void *objp, void *caller)
1da177e4 3036{
b28a02de 3037 if (!objp)
1da177e4 3038 return objp;
b28a02de 3039 if (cachep->flags & SLAB_POISON) {
1da177e4 3040#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3041 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3042 kernel_map_pages(virt_to_page(objp),
3dafccf2 3043 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3044 else
3045 check_poison_obj(cachep, objp);
3046#else
3047 check_poison_obj(cachep, objp);
3048#endif
3049 poison_obj(cachep, objp, POISON_INUSE);
3050 }
3051 if (cachep->flags & SLAB_STORE_USER)
3052 *dbg_userword(cachep, objp) = caller;
3053
3054 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3055 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3056 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3057 slab_error(cachep, "double free, or memory outside"
3058 " object was overwritten");
b28a02de 3059 printk(KERN_ERR
b46b8f19 3060 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3061 objp, *dbg_redzone1(cachep, objp),
3062 *dbg_redzone2(cachep, objp));
1da177e4
LT
3063 }
3064 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3065 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3066 }
871751e2
AV
3067#ifdef CONFIG_DEBUG_SLAB_LEAK
3068 {
3069 struct slab *slabp;
3070 unsigned objnr;
3071
b49af68f 3072 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3073 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3074 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3075 }
3076#endif
3dafccf2 3077 objp += obj_offset(cachep);
4f104934
CL
3078 if (cachep->ctor && cachep->flags & SLAB_POISON)
3079 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
a44b56d3
KH
3080#if ARCH_SLAB_MINALIGN
3081 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3082 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3083 objp, ARCH_SLAB_MINALIGN);
3084 }
3085#endif
1da177e4
LT
3086 return objp;
3087}
3088#else
3089#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3090#endif
3091
8a8b6502
AM
3092#ifdef CONFIG_FAILSLAB
3093
3094static struct failslab_attr {
3095
3096 struct fault_attr attr;
3097
3098 u32 ignore_gfp_wait;
3099#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3100 struct dentry *ignore_gfp_wait_file;
3101#endif
3102
3103} failslab = {
3104 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3105 .ignore_gfp_wait = 1,
8a8b6502
AM
3106};
3107
3108static int __init setup_failslab(char *str)
3109{
3110 return setup_fault_attr(&failslab.attr, str);
3111}
3112__setup("failslab=", setup_failslab);
3113
3114static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3115{
3116 if (cachep == &cache_cache)
3117 return 0;
3118 if (flags & __GFP_NOFAIL)
3119 return 0;
3120 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3121 return 0;
3122
3123 return should_fail(&failslab.attr, obj_size(cachep));
3124}
3125
3126#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3127
3128static int __init failslab_debugfs(void)
3129{
3130 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3131 struct dentry *dir;
3132 int err;
3133
824ebef1 3134 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3135 if (err)
3136 return err;
3137 dir = failslab.attr.dentries.dir;
3138
3139 failslab.ignore_gfp_wait_file =
3140 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3141 &failslab.ignore_gfp_wait);
3142
3143 if (!failslab.ignore_gfp_wait_file) {
3144 err = -ENOMEM;
3145 debugfs_remove(failslab.ignore_gfp_wait_file);
3146 cleanup_fault_attr_dentries(&failslab.attr);
3147 }
3148
3149 return err;
3150}
3151
3152late_initcall(failslab_debugfs);
3153
3154#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3155
3156#else /* CONFIG_FAILSLAB */
3157
3158static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3159{
3160 return 0;
3161}
3162
3163#endif /* CONFIG_FAILSLAB */
3164
343e0d7a 3165static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3166{
b28a02de 3167 void *objp;
1da177e4
LT
3168 struct array_cache *ac;
3169
5c382300 3170 check_irq_off();
8a8b6502 3171
9a2dba4b 3172 ac = cpu_cache_get(cachep);
1da177e4
LT
3173 if (likely(ac->avail)) {
3174 STATS_INC_ALLOCHIT(cachep);
3175 ac->touched = 1;
e498be7d 3176 objp = ac->entry[--ac->avail];
1da177e4
LT
3177 } else {
3178 STATS_INC_ALLOCMISS(cachep);
3179 objp = cache_alloc_refill(cachep, flags);
3180 }
5c382300
AK
3181 return objp;
3182}
3183
e498be7d 3184#ifdef CONFIG_NUMA
c61afb18 3185/*
b2455396 3186 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3187 *
3188 * If we are in_interrupt, then process context, including cpusets and
3189 * mempolicy, may not apply and should not be used for allocation policy.
3190 */
3191static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3192{
3193 int nid_alloc, nid_here;
3194
765c4507 3195 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3196 return NULL;
3197 nid_alloc = nid_here = numa_node_id();
3198 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3199 nid_alloc = cpuset_mem_spread_node();
3200 else if (current->mempolicy)
3201 nid_alloc = slab_node(current->mempolicy);
3202 if (nid_alloc != nid_here)
8b98c169 3203 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3204 return NULL;
3205}
3206
765c4507
CL
3207/*
3208 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3209 * certain node and fall back is permitted. First we scan all the
3210 * available nodelists for available objects. If that fails then we
3211 * perform an allocation without specifying a node. This allows the page
3212 * allocator to do its reclaim / fallback magic. We then insert the
3213 * slab into the proper nodelist and then allocate from it.
765c4507 3214 */
8c8cc2c1 3215static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3216{
8c8cc2c1
PE
3217 struct zonelist *zonelist;
3218 gfp_t local_flags;
765c4507
CL
3219 struct zone **z;
3220 void *obj = NULL;
3c517a61 3221 int nid;
8c8cc2c1
PE
3222
3223 if (flags & __GFP_THISNODE)
3224 return NULL;
3225
3226 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3227 ->node_zonelists[gfp_zone(flags)];
3228 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3229
3c517a61
CL
3230retry:
3231 /*
3232 * Look through allowed nodes for objects available
3233 * from existing per node queues.
3234 */
aedb0eb1 3235 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3236 nid = zone_to_nid(*z);
aedb0eb1 3237
02a0e53d 3238 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3239 cache->nodelists[nid] &&
3240 cache->nodelists[nid]->free_objects)
3241 obj = ____cache_alloc_node(cache,
3242 flags | GFP_THISNODE, nid);
3243 }
3244
cfce6604 3245 if (!obj) {
3c517a61
CL
3246 /*
3247 * This allocation will be performed within the constraints
3248 * of the current cpuset / memory policy requirements.
3249 * We may trigger various forms of reclaim on the allowed
3250 * set and go into memory reserves if necessary.
3251 */
dd47ea75
CL
3252 if (local_flags & __GFP_WAIT)
3253 local_irq_enable();
3254 kmem_flagcheck(cache, flags);
3c517a61 3255 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3256 if (local_flags & __GFP_WAIT)
3257 local_irq_disable();
3c517a61
CL
3258 if (obj) {
3259 /*
3260 * Insert into the appropriate per node queues
3261 */
3262 nid = page_to_nid(virt_to_page(obj));
3263 if (cache_grow(cache, flags, nid, obj)) {
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 if (!obj)
3267 /*
3268 * Another processor may allocate the
3269 * objects in the slab since we are
3270 * not holding any locks.
3271 */
3272 goto retry;
3273 } else {
b6a60451 3274 /* cache_grow already freed obj */
3c517a61
CL
3275 obj = NULL;
3276 }
3277 }
aedb0eb1 3278 }
765c4507
CL
3279 return obj;
3280}
3281
e498be7d
CL
3282/*
3283 * A interface to enable slab creation on nodeid
1da177e4 3284 */
8b98c169 3285static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3286 int nodeid)
e498be7d
CL
3287{
3288 struct list_head *entry;
b28a02de
PE
3289 struct slab *slabp;
3290 struct kmem_list3 *l3;
3291 void *obj;
b28a02de
PE
3292 int x;
3293
3294 l3 = cachep->nodelists[nodeid];
3295 BUG_ON(!l3);
3296
a737b3e2 3297retry:
ca3b9b91 3298 check_irq_off();
b28a02de
PE
3299 spin_lock(&l3->list_lock);
3300 entry = l3->slabs_partial.next;
3301 if (entry == &l3->slabs_partial) {
3302 l3->free_touched = 1;
3303 entry = l3->slabs_free.next;
3304 if (entry == &l3->slabs_free)
3305 goto must_grow;
3306 }
3307
3308 slabp = list_entry(entry, struct slab, list);
3309 check_spinlock_acquired_node(cachep, nodeid);
3310 check_slabp(cachep, slabp);
3311
3312 STATS_INC_NODEALLOCS(cachep);
3313 STATS_INC_ACTIVE(cachep);
3314 STATS_SET_HIGH(cachep);
3315
3316 BUG_ON(slabp->inuse == cachep->num);
3317
78d382d7 3318 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3319 check_slabp(cachep, slabp);
3320 l3->free_objects--;
3321 /* move slabp to correct slabp list: */
3322 list_del(&slabp->list);
3323
a737b3e2 3324 if (slabp->free == BUFCTL_END)
b28a02de 3325 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3326 else
b28a02de 3327 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3328
b28a02de
PE
3329 spin_unlock(&l3->list_lock);
3330 goto done;
e498be7d 3331
a737b3e2 3332must_grow:
b28a02de 3333 spin_unlock(&l3->list_lock);
3c517a61 3334 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3335 if (x)
3336 goto retry;
1da177e4 3337
8c8cc2c1 3338 return fallback_alloc(cachep, flags);
e498be7d 3339
a737b3e2 3340done:
b28a02de 3341 return obj;
e498be7d 3342}
8c8cc2c1
PE
3343
3344/**
3345 * kmem_cache_alloc_node - Allocate an object on the specified node
3346 * @cachep: The cache to allocate from.
3347 * @flags: See kmalloc().
3348 * @nodeid: node number of the target node.
3349 * @caller: return address of caller, used for debug information
3350 *
3351 * Identical to kmem_cache_alloc but it will allocate memory on the given
3352 * node, which can improve the performance for cpu bound structures.
3353 *
3354 * Fallback to other node is possible if __GFP_THISNODE is not set.
3355 */
3356static __always_inline void *
3357__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3358 void *caller)
3359{
3360 unsigned long save_flags;
3361 void *ptr;
3362
824ebef1
AM
3363 if (should_failslab(cachep, flags))
3364 return NULL;
3365
8c8cc2c1
PE
3366 cache_alloc_debugcheck_before(cachep, flags);
3367 local_irq_save(save_flags);
3368
3369 if (unlikely(nodeid == -1))
3370 nodeid = numa_node_id();
3371
3372 if (unlikely(!cachep->nodelists[nodeid])) {
3373 /* Node not bootstrapped yet */
3374 ptr = fallback_alloc(cachep, flags);
3375 goto out;
3376 }
3377
3378 if (nodeid == numa_node_id()) {
3379 /*
3380 * Use the locally cached objects if possible.
3381 * However ____cache_alloc does not allow fallback
3382 * to other nodes. It may fail while we still have
3383 * objects on other nodes available.
3384 */
3385 ptr = ____cache_alloc(cachep, flags);
3386 if (ptr)
3387 goto out;
3388 }
3389 /* ___cache_alloc_node can fall back to other nodes */
3390 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3391 out:
3392 local_irq_restore(save_flags);
3393 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3394
3395 return ptr;
3396}
3397
3398static __always_inline void *
3399__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3400{
3401 void *objp;
3402
3403 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3404 objp = alternate_node_alloc(cache, flags);
3405 if (objp)
3406 goto out;
3407 }
3408 objp = ____cache_alloc(cache, flags);
3409
3410 /*
3411 * We may just have run out of memory on the local node.
3412 * ____cache_alloc_node() knows how to locate memory on other nodes
3413 */
3414 if (!objp)
3415 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3416
3417 out:
3418 return objp;
3419}
3420#else
3421
3422static __always_inline void *
3423__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3424{
3425 return ____cache_alloc(cachep, flags);
3426}
3427
3428#endif /* CONFIG_NUMA */
3429
3430static __always_inline void *
3431__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3432{
3433 unsigned long save_flags;
3434 void *objp;
3435
824ebef1
AM
3436 if (should_failslab(cachep, flags))
3437 return NULL;
3438
8c8cc2c1
PE
3439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
3441 objp = __do_cache_alloc(cachep, flags);
3442 local_irq_restore(save_flags);
3443 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3444 prefetchw(objp);
3445
3446 return objp;
3447}
e498be7d
CL
3448
3449/*
3450 * Caller needs to acquire correct kmem_list's list_lock
3451 */
343e0d7a 3452static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3453 int node)
1da177e4
LT
3454{
3455 int i;
e498be7d 3456 struct kmem_list3 *l3;
1da177e4
LT
3457
3458 for (i = 0; i < nr_objects; i++) {
3459 void *objp = objpp[i];
3460 struct slab *slabp;
1da177e4 3461
6ed5eb22 3462 slabp = virt_to_slab(objp);
ff69416e 3463 l3 = cachep->nodelists[node];
1da177e4 3464 list_del(&slabp->list);
ff69416e 3465 check_spinlock_acquired_node(cachep, node);
1da177e4 3466 check_slabp(cachep, slabp);
78d382d7 3467 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3468 STATS_DEC_ACTIVE(cachep);
e498be7d 3469 l3->free_objects++;
1da177e4
LT
3470 check_slabp(cachep, slabp);
3471
3472 /* fixup slab chains */
3473 if (slabp->inuse == 0) {
e498be7d
CL
3474 if (l3->free_objects > l3->free_limit) {
3475 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3476 /* No need to drop any previously held
3477 * lock here, even if we have a off-slab slab
3478 * descriptor it is guaranteed to come from
3479 * a different cache, refer to comments before
3480 * alloc_slabmgmt.
3481 */
1da177e4
LT
3482 slab_destroy(cachep, slabp);
3483 } else {
e498be7d 3484 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3485 }
3486 } else {
3487 /* Unconditionally move a slab to the end of the
3488 * partial list on free - maximum time for the
3489 * other objects to be freed, too.
3490 */
e498be7d 3491 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3492 }
3493 }
3494}
3495
343e0d7a 3496static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3497{
3498 int batchcount;
e498be7d 3499 struct kmem_list3 *l3;
ff69416e 3500 int node = numa_node_id();
1da177e4
LT
3501
3502 batchcount = ac->batchcount;
3503#if DEBUG
3504 BUG_ON(!batchcount || batchcount > ac->avail);
3505#endif
3506 check_irq_off();
ff69416e 3507 l3 = cachep->nodelists[node];
873623df 3508 spin_lock(&l3->list_lock);
e498be7d
CL
3509 if (l3->shared) {
3510 struct array_cache *shared_array = l3->shared;
b28a02de 3511 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3512 if (max) {
3513 if (batchcount > max)
3514 batchcount = max;
e498be7d 3515 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3516 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3517 shared_array->avail += batchcount;
3518 goto free_done;
3519 }
3520 }
3521
ff69416e 3522 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3523free_done:
1da177e4
LT
3524#if STATS
3525 {
3526 int i = 0;
3527 struct list_head *p;
3528
e498be7d
CL
3529 p = l3->slabs_free.next;
3530 while (p != &(l3->slabs_free)) {
1da177e4
LT
3531 struct slab *slabp;
3532
3533 slabp = list_entry(p, struct slab, list);
3534 BUG_ON(slabp->inuse);
3535
3536 i++;
3537 p = p->next;
3538 }
3539 STATS_SET_FREEABLE(cachep, i);
3540 }
3541#endif
e498be7d 3542 spin_unlock(&l3->list_lock);
1da177e4 3543 ac->avail -= batchcount;
a737b3e2 3544 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3545}
3546
3547/*
a737b3e2
AM
3548 * Release an obj back to its cache. If the obj has a constructed state, it must
3549 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3550 */
873623df 3551static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3552{
9a2dba4b 3553 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3554
3555 check_irq_off();
3556 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3557
62918a03 3558 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3559 return;
3560
1da177e4
LT
3561 if (likely(ac->avail < ac->limit)) {
3562 STATS_INC_FREEHIT(cachep);
e498be7d 3563 ac->entry[ac->avail++] = objp;
1da177e4
LT
3564 return;
3565 } else {
3566 STATS_INC_FREEMISS(cachep);
3567 cache_flusharray(cachep, ac);
e498be7d 3568 ac->entry[ac->avail++] = objp;
1da177e4
LT
3569 }
3570}
3571
3572/**
3573 * kmem_cache_alloc - Allocate an object
3574 * @cachep: The cache to allocate from.
3575 * @flags: See kmalloc().
3576 *
3577 * Allocate an object from this cache. The flags are only relevant
3578 * if the cache has no available objects.
3579 */
343e0d7a 3580void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3581{
7fd6b141 3582 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3583}
3584EXPORT_SYMBOL(kmem_cache_alloc);
3585
a8c0f9a4 3586/**
b8008b2b 3587 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3588 * @cache: The cache to allocate from.
3589 * @flags: See kmalloc().
3590 *
3591 * Allocate an object from this cache and set the allocated memory to zero.
3592 * The flags are only relevant if the cache has no available objects.
3593 */
3594void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3595{
3596 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3597 if (ret)
3598 memset(ret, 0, obj_size(cache));
3599 return ret;
3600}
3601EXPORT_SYMBOL(kmem_cache_zalloc);
3602
1da177e4
LT
3603/**
3604 * kmem_ptr_validate - check if an untrusted pointer might
3605 * be a slab entry.
3606 * @cachep: the cache we're checking against
3607 * @ptr: pointer to validate
3608 *
3609 * This verifies that the untrusted pointer looks sane:
3610 * it is _not_ a guarantee that the pointer is actually
3611 * part of the slab cache in question, but it at least
3612 * validates that the pointer can be dereferenced and
3613 * looks half-way sane.
3614 *
3615 * Currently only used for dentry validation.
3616 */
b7f869a2 3617int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3618{
b28a02de 3619 unsigned long addr = (unsigned long)ptr;
1da177e4 3620 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3621 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3622 unsigned long size = cachep->buffer_size;
1da177e4
LT
3623 struct page *page;
3624
3625 if (unlikely(addr < min_addr))
3626 goto out;
3627 if (unlikely(addr > (unsigned long)high_memory - size))
3628 goto out;
3629 if (unlikely(addr & align_mask))
3630 goto out;
3631 if (unlikely(!kern_addr_valid(addr)))
3632 goto out;
3633 if (unlikely(!kern_addr_valid(addr + size - 1)))
3634 goto out;
3635 page = virt_to_page(ptr);
3636 if (unlikely(!PageSlab(page)))
3637 goto out;
065d41cb 3638 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3639 goto out;
3640 return 1;
a737b3e2 3641out:
1da177e4
LT
3642 return 0;
3643}
3644
3645#ifdef CONFIG_NUMA
8b98c169
CH
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
3648 return __cache_alloc_node(cachep, flags, nodeid,
3649 __builtin_return_address(0));
3650}
1da177e4
LT
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
8b98c169
CH
3653static __always_inline void *
3654__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3655{
343e0d7a 3656 struct kmem_cache *cachep;
97e2bde4
MS
3657
3658 cachep = kmem_find_general_cachep(size, flags);
3659 if (unlikely(cachep == NULL))
3660 return NULL;
3661 return kmem_cache_alloc_node(cachep, flags, node);
3662}
8b98c169
CH
3663
3664#ifdef CONFIG_DEBUG_SLAB
3665void *__kmalloc_node(size_t size, gfp_t flags, int node)
3666{
3667 return __do_kmalloc_node(size, flags, node,
3668 __builtin_return_address(0));
3669}
dbe5e69d 3670EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3671
3672void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3673 int node, void *caller)
3674{
3675 return __do_kmalloc_node(size, flags, node, caller);
3676}
3677EXPORT_SYMBOL(__kmalloc_node_track_caller);
3678#else
3679void *__kmalloc_node(size_t size, gfp_t flags, int node)
3680{
3681 return __do_kmalloc_node(size, flags, node, NULL);
3682}
3683EXPORT_SYMBOL(__kmalloc_node);
3684#endif /* CONFIG_DEBUG_SLAB */
3685#endif /* CONFIG_NUMA */
1da177e4
LT
3686
3687/**
800590f5 3688 * __do_kmalloc - allocate memory
1da177e4 3689 * @size: how many bytes of memory are required.
800590f5 3690 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3691 * @caller: function caller for debug tracking of the caller
1da177e4 3692 */
7fd6b141
PE
3693static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3694 void *caller)
1da177e4 3695{
343e0d7a 3696 struct kmem_cache *cachep;
1da177e4 3697
97e2bde4
MS
3698 /* If you want to save a few bytes .text space: replace
3699 * __ with kmem_.
3700 * Then kmalloc uses the uninlined functions instead of the inline
3701 * functions.
3702 */
3703 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3704 if (unlikely(cachep == NULL))
3705 return NULL;
7fd6b141
PE
3706 return __cache_alloc(cachep, flags, caller);
3707}
3708
7fd6b141 3709
1d2c8eea 3710#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3711void *__kmalloc(size_t size, gfp_t flags)
3712{
871751e2 3713 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3714}
3715EXPORT_SYMBOL(__kmalloc);
3716
7fd6b141
PE
3717void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3718{
3719 return __do_kmalloc(size, flags, caller);
3720}
3721EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3722
3723#else
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
3726 return __do_kmalloc(size, flags, NULL);
3727}
3728EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3729#endif
3730
fd76bab2
PE
3731/**
3732 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3733 * @p: object to reallocate memory for.
3734 * @new_size: how many bytes of memory are required.
3735 * @flags: the type of memory to allocate.
3736 *
3737 * The contents of the object pointed to are preserved up to the
3738 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3739 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3740 * %NULL pointer, the object pointed to is freed.
3741 */
3742void *krealloc(const void *p, size_t new_size, gfp_t flags)
3743{
3744 struct kmem_cache *cache, *new_cache;
3745 void *ret;
3746
3747 if (unlikely(!p))
3748 return kmalloc_track_caller(new_size, flags);
3749
3750 if (unlikely(!new_size)) {
3751 kfree(p);
3752 return NULL;
3753 }
3754
3755 cache = virt_to_cache(p);
3756 new_cache = __find_general_cachep(new_size, flags);
3757
3758 /*
3759 * If new size fits in the current cache, bail out.
3760 */
3761 if (likely(cache == new_cache))
3762 return (void *)p;
3763
3764 /*
3765 * We are on the slow-path here so do not use __cache_alloc
3766 * because it bloats kernel text.
3767 */
3768 ret = kmalloc_track_caller(new_size, flags);
3769 if (ret) {
3770 memcpy(ret, p, min(new_size, ksize(p)));
3771 kfree(p);
3772 }
3773 return ret;
3774}
3775EXPORT_SYMBOL(krealloc);
3776
1da177e4
LT
3777/**
3778 * kmem_cache_free - Deallocate an object
3779 * @cachep: The cache the allocation was from.
3780 * @objp: The previously allocated object.
3781 *
3782 * Free an object which was previously allocated from this
3783 * cache.
3784 */
343e0d7a 3785void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3786{
3787 unsigned long flags;
3788
ddc2e812
PE
3789 BUG_ON(virt_to_cache(objp) != cachep);
3790
1da177e4 3791 local_irq_save(flags);
898552c9 3792 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3793 __cache_free(cachep, objp);
1da177e4
LT
3794 local_irq_restore(flags);
3795}
3796EXPORT_SYMBOL(kmem_cache_free);
3797
1da177e4
LT
3798/**
3799 * kfree - free previously allocated memory
3800 * @objp: pointer returned by kmalloc.
3801 *
80e93eff
PE
3802 * If @objp is NULL, no operation is performed.
3803 *
1da177e4
LT
3804 * Don't free memory not originally allocated by kmalloc()
3805 * or you will run into trouble.
3806 */
3807void kfree(const void *objp)
3808{
343e0d7a 3809 struct kmem_cache *c;
1da177e4
LT
3810 unsigned long flags;
3811
3812 if (unlikely(!objp))
3813 return;
3814 local_irq_save(flags);
3815 kfree_debugcheck(objp);
6ed5eb22 3816 c = virt_to_cache(objp);
f9b8404c 3817 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3818 __cache_free(c, (void *)objp);
1da177e4
LT
3819 local_irq_restore(flags);
3820}
3821EXPORT_SYMBOL(kfree);
3822
343e0d7a 3823unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3824{
3dafccf2 3825 return obj_size(cachep);
1da177e4
LT
3826}
3827EXPORT_SYMBOL(kmem_cache_size);
3828
343e0d7a 3829const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3830{
3831 return cachep->name;
3832}
3833EXPORT_SYMBOL_GPL(kmem_cache_name);
3834
e498be7d 3835/*
0718dc2a 3836 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3837 */
343e0d7a 3838static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3839{
3840 int node;
3841 struct kmem_list3 *l3;
cafeb02e 3842 struct array_cache *new_shared;
3395ee05 3843 struct array_cache **new_alien = NULL;
e498be7d
CL
3844
3845 for_each_online_node(node) {
cafeb02e 3846
3395ee05
PM
3847 if (use_alien_caches) {
3848 new_alien = alloc_alien_cache(node, cachep->limit);
3849 if (!new_alien)
3850 goto fail;
3851 }
cafeb02e 3852
63109846
ED
3853 new_shared = NULL;
3854 if (cachep->shared) {
3855 new_shared = alloc_arraycache(node,
0718dc2a 3856 cachep->shared*cachep->batchcount,
a737b3e2 3857 0xbaadf00d);
63109846
ED
3858 if (!new_shared) {
3859 free_alien_cache(new_alien);
3860 goto fail;
3861 }
0718dc2a 3862 }
cafeb02e 3863
a737b3e2
AM
3864 l3 = cachep->nodelists[node];
3865 if (l3) {
cafeb02e
CL
3866 struct array_cache *shared = l3->shared;
3867
e498be7d
CL
3868 spin_lock_irq(&l3->list_lock);
3869
cafeb02e 3870 if (shared)
0718dc2a
CL
3871 free_block(cachep, shared->entry,
3872 shared->avail, node);
e498be7d 3873
cafeb02e
CL
3874 l3->shared = new_shared;
3875 if (!l3->alien) {
e498be7d
CL
3876 l3->alien = new_alien;
3877 new_alien = NULL;
3878 }
b28a02de 3879 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3880 cachep->batchcount + cachep->num;
e498be7d 3881 spin_unlock_irq(&l3->list_lock);
cafeb02e 3882 kfree(shared);
e498be7d
CL
3883 free_alien_cache(new_alien);
3884 continue;
3885 }
a737b3e2 3886 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3887 if (!l3) {
3888 free_alien_cache(new_alien);
3889 kfree(new_shared);
e498be7d 3890 goto fail;
0718dc2a 3891 }
e498be7d
CL
3892
3893 kmem_list3_init(l3);
3894 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3895 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3896 l3->shared = new_shared;
e498be7d 3897 l3->alien = new_alien;
b28a02de 3898 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3899 cachep->batchcount + cachep->num;
e498be7d
CL
3900 cachep->nodelists[node] = l3;
3901 }
cafeb02e 3902 return 0;
0718dc2a 3903
a737b3e2 3904fail:
0718dc2a
CL
3905 if (!cachep->next.next) {
3906 /* Cache is not active yet. Roll back what we did */
3907 node--;
3908 while (node >= 0) {
3909 if (cachep->nodelists[node]) {
3910 l3 = cachep->nodelists[node];
3911
3912 kfree(l3->shared);
3913 free_alien_cache(l3->alien);
3914 kfree(l3);
3915 cachep->nodelists[node] = NULL;
3916 }
3917 node--;
3918 }
3919 }
cafeb02e 3920 return -ENOMEM;
e498be7d
CL
3921}
3922
1da177e4 3923struct ccupdate_struct {
343e0d7a 3924 struct kmem_cache *cachep;
1da177e4
LT
3925 struct array_cache *new[NR_CPUS];
3926};
3927
3928static void do_ccupdate_local(void *info)
3929{
a737b3e2 3930 struct ccupdate_struct *new = info;
1da177e4
LT
3931 struct array_cache *old;
3932
3933 check_irq_off();
9a2dba4b 3934 old = cpu_cache_get(new->cachep);
e498be7d 3935
1da177e4
LT
3936 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3937 new->new[smp_processor_id()] = old;
3938}
3939
b5d8ca7c 3940/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3941static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3942 int batchcount, int shared)
1da177e4 3943{
d2e7b7d0 3944 struct ccupdate_struct *new;
2ed3a4ef 3945 int i;
1da177e4 3946
d2e7b7d0
SS
3947 new = kzalloc(sizeof(*new), GFP_KERNEL);
3948 if (!new)
3949 return -ENOMEM;
3950
e498be7d 3951 for_each_online_cpu(i) {
d2e7b7d0 3952 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3953 batchcount);
d2e7b7d0 3954 if (!new->new[i]) {
b28a02de 3955 for (i--; i >= 0; i--)
d2e7b7d0
SS
3956 kfree(new->new[i]);
3957 kfree(new);
e498be7d 3958 return -ENOMEM;
1da177e4
LT
3959 }
3960 }
d2e7b7d0 3961 new->cachep = cachep;
1da177e4 3962
d2e7b7d0 3963 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3964
1da177e4 3965 check_irq_on();
1da177e4
LT
3966 cachep->batchcount = batchcount;
3967 cachep->limit = limit;
e498be7d 3968 cachep->shared = shared;
1da177e4 3969
e498be7d 3970 for_each_online_cpu(i) {
d2e7b7d0 3971 struct array_cache *ccold = new->new[i];
1da177e4
LT
3972 if (!ccold)
3973 continue;
e498be7d 3974 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3975 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3976 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3977 kfree(ccold);
3978 }
d2e7b7d0 3979 kfree(new);
2ed3a4ef 3980 return alloc_kmemlist(cachep);
1da177e4
LT
3981}
3982
b5d8ca7c 3983/* Called with cache_chain_mutex held always */
2ed3a4ef 3984static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3985{
3986 int err;
3987 int limit, shared;
3988
a737b3e2
AM
3989 /*
3990 * The head array serves three purposes:
1da177e4
LT
3991 * - create a LIFO ordering, i.e. return objects that are cache-warm
3992 * - reduce the number of spinlock operations.
a737b3e2 3993 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3994 * bufctl chains: array operations are cheaper.
3995 * The numbers are guessed, we should auto-tune as described by
3996 * Bonwick.
3997 */
3dafccf2 3998 if (cachep->buffer_size > 131072)
1da177e4 3999 limit = 1;
3dafccf2 4000 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4001 limit = 8;
3dafccf2 4002 else if (cachep->buffer_size > 1024)
1da177e4 4003 limit = 24;
3dafccf2 4004 else if (cachep->buffer_size > 256)
1da177e4
LT
4005 limit = 54;
4006 else
4007 limit = 120;
4008
a737b3e2
AM
4009 /*
4010 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4011 * allocation behaviour: Most allocs on one cpu, most free operations
4012 * on another cpu. For these cases, an efficient object passing between
4013 * cpus is necessary. This is provided by a shared array. The array
4014 * replaces Bonwick's magazine layer.
4015 * On uniprocessor, it's functionally equivalent (but less efficient)
4016 * to a larger limit. Thus disabled by default.
4017 */
4018 shared = 0;
364fbb29 4019 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4020 shared = 8;
1da177e4
LT
4021
4022#if DEBUG
a737b3e2
AM
4023 /*
4024 * With debugging enabled, large batchcount lead to excessively long
4025 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4026 */
4027 if (limit > 32)
4028 limit = 32;
4029#endif
b28a02de 4030 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4031 if (err)
4032 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4033 cachep->name, -err);
2ed3a4ef 4034 return err;
1da177e4
LT
4035}
4036
1b55253a
CL
4037/*
4038 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4039 * necessary. Note that the l3 listlock also protects the array_cache
4040 * if drain_array() is used on the shared array.
1b55253a
CL
4041 */
4042void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4043 struct array_cache *ac, int force, int node)
1da177e4
LT
4044{
4045 int tofree;
4046
1b55253a
CL
4047 if (!ac || !ac->avail)
4048 return;
1da177e4
LT
4049 if (ac->touched && !force) {
4050 ac->touched = 0;
b18e7e65 4051 } else {
1b55253a 4052 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4053 if (ac->avail) {
4054 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4055 if (tofree > ac->avail)
4056 tofree = (ac->avail + 1) / 2;
4057 free_block(cachep, ac->entry, tofree, node);
4058 ac->avail -= tofree;
4059 memmove(ac->entry, &(ac->entry[tofree]),
4060 sizeof(void *) * ac->avail);
4061 }
1b55253a 4062 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4063 }
4064}
4065
4066/**
4067 * cache_reap - Reclaim memory from caches.
05fb6bf0 4068 * @w: work descriptor
1da177e4
LT
4069 *
4070 * Called from workqueue/eventd every few seconds.
4071 * Purpose:
4072 * - clear the per-cpu caches for this CPU.
4073 * - return freeable pages to the main free memory pool.
4074 *
a737b3e2
AM
4075 * If we cannot acquire the cache chain mutex then just give up - we'll try
4076 * again on the next iteration.
1da177e4 4077 */
7c5cae36 4078static void cache_reap(struct work_struct *w)
1da177e4 4079{
7a7c381d 4080 struct kmem_cache *searchp;
e498be7d 4081 struct kmem_list3 *l3;
aab2207c 4082 int node = numa_node_id();
7c5cae36
CL
4083 struct delayed_work *work =
4084 container_of(w, struct delayed_work, work);
1da177e4 4085
7c5cae36 4086 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4087 /* Give up. Setup the next iteration. */
7c5cae36 4088 goto out;
1da177e4 4089
7a7c381d 4090 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4091 check_irq_on();
4092
35386e3b
CL
4093 /*
4094 * We only take the l3 lock if absolutely necessary and we
4095 * have established with reasonable certainty that
4096 * we can do some work if the lock was obtained.
4097 */
aab2207c 4098 l3 = searchp->nodelists[node];
35386e3b 4099
8fce4d8e 4100 reap_alien(searchp, l3);
1da177e4 4101
aab2207c 4102 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4103
35386e3b
CL
4104 /*
4105 * These are racy checks but it does not matter
4106 * if we skip one check or scan twice.
4107 */
e498be7d 4108 if (time_after(l3->next_reap, jiffies))
35386e3b 4109 goto next;
1da177e4 4110
e498be7d 4111 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4112
aab2207c 4113 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4114
ed11d9eb 4115 if (l3->free_touched)
e498be7d 4116 l3->free_touched = 0;
ed11d9eb
CL
4117 else {
4118 int freed;
1da177e4 4119
ed11d9eb
CL
4120 freed = drain_freelist(searchp, l3, (l3->free_limit +
4121 5 * searchp->num - 1) / (5 * searchp->num));
4122 STATS_ADD_REAPED(searchp, freed);
4123 }
35386e3b 4124next:
1da177e4
LT
4125 cond_resched();
4126 }
4127 check_irq_on();
fc0abb14 4128 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4129 next_reap_node();
7c5cae36 4130out:
a737b3e2 4131 /* Set up the next iteration */
7c5cae36 4132 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4133}
4134
4135#ifdef CONFIG_PROC_FS
4136
85289f98 4137static void print_slabinfo_header(struct seq_file *m)
1da177e4 4138{
85289f98
PE
4139 /*
4140 * Output format version, so at least we can change it
4141 * without _too_ many complaints.
4142 */
1da177e4 4143#if STATS
85289f98 4144 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4145#else
85289f98 4146 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4147#endif
85289f98
PE
4148 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4149 "<objperslab> <pagesperslab>");
4150 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4151 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4152#if STATS
85289f98 4153 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4154 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4155 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4156#endif
85289f98
PE
4157 seq_putc(m, '\n');
4158}
4159
4160static void *s_start(struct seq_file *m, loff_t *pos)
4161{
4162 loff_t n = *pos;
4163 struct list_head *p;
4164
fc0abb14 4165 mutex_lock(&cache_chain_mutex);
85289f98
PE
4166 if (!n)
4167 print_slabinfo_header(m);
1da177e4
LT
4168 p = cache_chain.next;
4169 while (n--) {
4170 p = p->next;
4171 if (p == &cache_chain)
4172 return NULL;
4173 }
343e0d7a 4174 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4175}
4176
4177static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4178{
343e0d7a 4179 struct kmem_cache *cachep = p;
1da177e4 4180 ++*pos;
a737b3e2
AM
4181 return cachep->next.next == &cache_chain ?
4182 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4183}
4184
4185static void s_stop(struct seq_file *m, void *p)
4186{
fc0abb14 4187 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4188}
4189
4190static int s_show(struct seq_file *m, void *p)
4191{
343e0d7a 4192 struct kmem_cache *cachep = p;
b28a02de
PE
4193 struct slab *slabp;
4194 unsigned long active_objs;
4195 unsigned long num_objs;
4196 unsigned long active_slabs = 0;
4197 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4198 const char *name;
1da177e4 4199 char *error = NULL;
e498be7d
CL
4200 int node;
4201 struct kmem_list3 *l3;
1da177e4 4202
1da177e4
LT
4203 active_objs = 0;
4204 num_slabs = 0;
e498be7d
CL
4205 for_each_online_node(node) {
4206 l3 = cachep->nodelists[node];
4207 if (!l3)
4208 continue;
4209
ca3b9b91
RT
4210 check_irq_on();
4211 spin_lock_irq(&l3->list_lock);
e498be7d 4212
7a7c381d 4213 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4214 if (slabp->inuse != cachep->num && !error)
4215 error = "slabs_full accounting error";
4216 active_objs += cachep->num;
4217 active_slabs++;
4218 }
7a7c381d 4219 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4220 if (slabp->inuse == cachep->num && !error)
4221 error = "slabs_partial inuse accounting error";
4222 if (!slabp->inuse && !error)
4223 error = "slabs_partial/inuse accounting error";
4224 active_objs += slabp->inuse;
4225 active_slabs++;
4226 }
7a7c381d 4227 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4228 if (slabp->inuse && !error)
4229 error = "slabs_free/inuse accounting error";
4230 num_slabs++;
4231 }
4232 free_objects += l3->free_objects;
4484ebf1
RT
4233 if (l3->shared)
4234 shared_avail += l3->shared->avail;
e498be7d 4235
ca3b9b91 4236 spin_unlock_irq(&l3->list_lock);
1da177e4 4237 }
b28a02de
PE
4238 num_slabs += active_slabs;
4239 num_objs = num_slabs * cachep->num;
e498be7d 4240 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4241 error = "free_objects accounting error";
4242
b28a02de 4243 name = cachep->name;
1da177e4
LT
4244 if (error)
4245 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4246
4247 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4248 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4249 cachep->num, (1 << cachep->gfporder));
1da177e4 4250 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4251 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4252 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4253 active_slabs, num_slabs, shared_avail);
1da177e4 4254#if STATS
b28a02de 4255 { /* list3 stats */
1da177e4
LT
4256 unsigned long high = cachep->high_mark;
4257 unsigned long allocs = cachep->num_allocations;
4258 unsigned long grown = cachep->grown;
4259 unsigned long reaped = cachep->reaped;
4260 unsigned long errors = cachep->errors;
4261 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4262 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4263 unsigned long node_frees = cachep->node_frees;
fb7faf33 4264 unsigned long overflows = cachep->node_overflow;
1da177e4 4265
e498be7d 4266 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4267 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4268 reaped, errors, max_freeable, node_allocs,
fb7faf33 4269 node_frees, overflows);
1da177e4
LT
4270 }
4271 /* cpu stats */
4272 {
4273 unsigned long allochit = atomic_read(&cachep->allochit);
4274 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4275 unsigned long freehit = atomic_read(&cachep->freehit);
4276 unsigned long freemiss = atomic_read(&cachep->freemiss);
4277
4278 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4279 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4280 }
4281#endif
4282 seq_putc(m, '\n');
1da177e4
LT
4283 return 0;
4284}
4285
4286/*
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4288 *
4289 * Output layout:
4290 * cache-name
4291 * num-active-objs
4292 * total-objs
4293 * object size
4294 * num-active-slabs
4295 * total-slabs
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4298 */
4299
15ad7cdc 4300const struct seq_operations slabinfo_op = {
b28a02de
PE
4301 .start = s_start,
4302 .next = s_next,
4303 .stop = s_stop,
4304 .show = s_show,
1da177e4
LT
4305};
4306
4307#define MAX_SLABINFO_WRITE 128
4308/**
4309 * slabinfo_write - Tuning for the slab allocator
4310 * @file: unused
4311 * @buffer: user buffer
4312 * @count: data length
4313 * @ppos: unused
4314 */
b28a02de
PE
4315ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4316 size_t count, loff_t *ppos)
1da177e4 4317{
b28a02de 4318 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4319 int limit, batchcount, shared, res;
7a7c381d 4320 struct kmem_cache *cachep;
b28a02de 4321
1da177e4
LT
4322 if (count > MAX_SLABINFO_WRITE)
4323 return -EINVAL;
4324 if (copy_from_user(&kbuf, buffer, count))
4325 return -EFAULT;
b28a02de 4326 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4327
4328 tmp = strchr(kbuf, ' ');
4329 if (!tmp)
4330 return -EINVAL;
4331 *tmp = '\0';
4332 tmp++;
4333 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4334 return -EINVAL;
4335
4336 /* Find the cache in the chain of caches. */
fc0abb14 4337 mutex_lock(&cache_chain_mutex);
1da177e4 4338 res = -EINVAL;
7a7c381d 4339 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4340 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4341 if (limit < 1 || batchcount < 1 ||
4342 batchcount > limit || shared < 0) {
e498be7d 4343 res = 0;
1da177e4 4344 } else {
e498be7d 4345 res = do_tune_cpucache(cachep, limit,
b28a02de 4346 batchcount, shared);
1da177e4
LT
4347 }
4348 break;
4349 }
4350 }
fc0abb14 4351 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4352 if (res >= 0)
4353 res = count;
4354 return res;
4355}
871751e2
AV
4356
4357#ifdef CONFIG_DEBUG_SLAB_LEAK
4358
4359static void *leaks_start(struct seq_file *m, loff_t *pos)
4360{
4361 loff_t n = *pos;
4362 struct list_head *p;
4363
4364 mutex_lock(&cache_chain_mutex);
4365 p = cache_chain.next;
4366 while (n--) {
4367 p = p->next;
4368 if (p == &cache_chain)
4369 return NULL;
4370 }
4371 return list_entry(p, struct kmem_cache, next);
4372}
4373
4374static inline int add_caller(unsigned long *n, unsigned long v)
4375{
4376 unsigned long *p;
4377 int l;
4378 if (!v)
4379 return 1;
4380 l = n[1];
4381 p = n + 2;
4382 while (l) {
4383 int i = l/2;
4384 unsigned long *q = p + 2 * i;
4385 if (*q == v) {
4386 q[1]++;
4387 return 1;
4388 }
4389 if (*q > v) {
4390 l = i;
4391 } else {
4392 p = q + 2;
4393 l -= i + 1;
4394 }
4395 }
4396 if (++n[1] == n[0])
4397 return 0;
4398 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4399 p[0] = v;
4400 p[1] = 1;
4401 return 1;
4402}
4403
4404static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4405{
4406 void *p;
4407 int i;
4408 if (n[0] == n[1])
4409 return;
4410 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4411 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4412 continue;
4413 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4414 return;
4415 }
4416}
4417
4418static void show_symbol(struct seq_file *m, unsigned long address)
4419{
4420#ifdef CONFIG_KALLSYMS
871751e2 4421 unsigned long offset, size;
a5c43dae 4422 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4423
a5c43dae 4424 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4425 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4426 if (modname[0])
871751e2
AV
4427 seq_printf(m, " [%s]", modname);
4428 return;
4429 }
4430#endif
4431 seq_printf(m, "%p", (void *)address);
4432}
4433
4434static int leaks_show(struct seq_file *m, void *p)
4435{
4436 struct kmem_cache *cachep = p;
871751e2
AV
4437 struct slab *slabp;
4438 struct kmem_list3 *l3;
4439 const char *name;
4440 unsigned long *n = m->private;
4441 int node;
4442 int i;
4443
4444 if (!(cachep->flags & SLAB_STORE_USER))
4445 return 0;
4446 if (!(cachep->flags & SLAB_RED_ZONE))
4447 return 0;
4448
4449 /* OK, we can do it */
4450
4451 n[1] = 0;
4452
4453 for_each_online_node(node) {
4454 l3 = cachep->nodelists[node];
4455 if (!l3)
4456 continue;
4457
4458 check_irq_on();
4459 spin_lock_irq(&l3->list_lock);
4460
7a7c381d 4461 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4462 handle_slab(n, cachep, slabp);
7a7c381d 4463 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4464 handle_slab(n, cachep, slabp);
871751e2
AV
4465 spin_unlock_irq(&l3->list_lock);
4466 }
4467 name = cachep->name;
4468 if (n[0] == n[1]) {
4469 /* Increase the buffer size */
4470 mutex_unlock(&cache_chain_mutex);
4471 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4472 if (!m->private) {
4473 /* Too bad, we are really out */
4474 m->private = n;
4475 mutex_lock(&cache_chain_mutex);
4476 return -ENOMEM;
4477 }
4478 *(unsigned long *)m->private = n[0] * 2;
4479 kfree(n);
4480 mutex_lock(&cache_chain_mutex);
4481 /* Now make sure this entry will be retried */
4482 m->count = m->size;
4483 return 0;
4484 }
4485 for (i = 0; i < n[1]; i++) {
4486 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4487 show_symbol(m, n[2*i+2]);
4488 seq_putc(m, '\n');
4489 }
d2e7b7d0 4490
871751e2
AV
4491 return 0;
4492}
4493
15ad7cdc 4494const struct seq_operations slabstats_op = {
871751e2
AV
4495 .start = leaks_start,
4496 .next = s_next,
4497 .stop = s_stop,
4498 .show = leaks_show,
4499};
4500#endif
1da177e4
LT
4501#endif
4502
00e145b6
MS
4503/**
4504 * ksize - get the actual amount of memory allocated for a given object
4505 * @objp: Pointer to the object
4506 *
4507 * kmalloc may internally round up allocations and return more memory
4508 * than requested. ksize() can be used to determine the actual amount of
4509 * memory allocated. The caller may use this additional memory, even though
4510 * a smaller amount of memory was initially specified with the kmalloc call.
4511 * The caller must guarantee that objp points to a valid object previously
4512 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4513 * must not be freed during the duration of the call.
4514 */
fd76bab2 4515size_t ksize(const void *objp)
1da177e4 4516{
00e145b6
MS
4517 if (unlikely(objp == NULL))
4518 return 0;
1da177e4 4519
6ed5eb22 4520 return obj_size(virt_to_cache(objp));
1da177e4 4521}
This page took 0.538014 seconds and 5 git commands to generate.