Commit | Line | Data |
---|---|---|
039363f3 CL |
1 | /* |
2 | * Slab allocator functions that are independent of the allocator strategy | |
3 | * | |
4 | * (C) 2012 Christoph Lameter <cl@linux.com> | |
5 | */ | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/poison.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/memory.h> | |
12 | #include <linux/compiler.h> | |
13 | #include <linux/module.h> | |
20cea968 CL |
14 | #include <linux/cpu.h> |
15 | #include <linux/uaccess.h> | |
b7454ad3 GC |
16 | #include <linux/seq_file.h> |
17 | #include <linux/proc_fs.h> | |
039363f3 CL |
18 | #include <asm/cacheflush.h> |
19 | #include <asm/tlbflush.h> | |
20 | #include <asm/page.h> | |
2633d7a0 | 21 | #include <linux/memcontrol.h> |
928cec9c AR |
22 | |
23 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 24 | #include <trace/events/kmem.h> |
039363f3 | 25 | |
97d06609 CL |
26 | #include "slab.h" |
27 | ||
28 | enum slab_state slab_state; | |
18004c5d CL |
29 | LIST_HEAD(slab_caches); |
30 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 31 | struct kmem_cache *kmem_cache; |
97d06609 | 32 | |
423c929c JK |
33 | /* |
34 | * Set of flags that will prevent slab merging | |
35 | */ | |
36 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
37 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | |
7ed2f9e6 | 38 | SLAB_FAILSLAB | SLAB_KASAN) |
423c929c | 39 | |
230e9fc2 VD |
40 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
41 | SLAB_NOTRACK | SLAB_ACCOUNT) | |
423c929c JK |
42 | |
43 | /* | |
44 | * Merge control. If this is set then no merging of slab caches will occur. | |
45 | * (Could be removed. This was introduced to pacify the merge skeptics.) | |
46 | */ | |
47 | static int slab_nomerge; | |
48 | ||
49 | static int __init setup_slab_nomerge(char *str) | |
50 | { | |
51 | slab_nomerge = 1; | |
52 | return 1; | |
53 | } | |
54 | ||
55 | #ifdef CONFIG_SLUB | |
56 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
57 | #endif | |
58 | ||
59 | __setup("slab_nomerge", setup_slab_nomerge); | |
60 | ||
07f361b2 JK |
61 | /* |
62 | * Determine the size of a slab object | |
63 | */ | |
64 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
65 | { | |
66 | return s->object_size; | |
67 | } | |
68 | EXPORT_SYMBOL(kmem_cache_size); | |
69 | ||
77be4b13 | 70 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 71 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
72 | { |
73 | struct kmem_cache *s = NULL; | |
74 | ||
039363f3 CL |
75 | if (!name || in_interrupt() || size < sizeof(void *) || |
76 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
77 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
78 | return -EINVAL; | |
039363f3 | 79 | } |
b920536a | 80 | |
20cea968 CL |
81 | list_for_each_entry(s, &slab_caches, list) { |
82 | char tmp; | |
83 | int res; | |
84 | ||
85 | /* | |
86 | * This happens when the module gets unloaded and doesn't | |
87 | * destroy its slab cache and no-one else reuses the vmalloc | |
88 | * area of the module. Print a warning. | |
89 | */ | |
90 | res = probe_kernel_address(s->name, tmp); | |
91 | if (res) { | |
77be4b13 | 92 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
93 | s->object_size); |
94 | continue; | |
95 | } | |
20cea968 CL |
96 | } |
97 | ||
98 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
99 | return 0; |
100 | } | |
101 | #else | |
794b1248 | 102 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
103 | { |
104 | return 0; | |
105 | } | |
20cea968 CL |
106 | #endif |
107 | ||
484748f0 CL |
108 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
109 | { | |
110 | size_t i; | |
111 | ||
ca257195 JDB |
112 | for (i = 0; i < nr; i++) { |
113 | if (s) | |
114 | kmem_cache_free(s, p[i]); | |
115 | else | |
116 | kfree(p[i]); | |
117 | } | |
484748f0 CL |
118 | } |
119 | ||
865762a8 | 120 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
121 | void **p) |
122 | { | |
123 | size_t i; | |
124 | ||
125 | for (i = 0; i < nr; i++) { | |
126 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
127 | if (!x) { | |
128 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 129 | return 0; |
484748f0 CL |
130 | } |
131 | } | |
865762a8 | 132 | return i; |
484748f0 CL |
133 | } |
134 | ||
127424c8 | 135 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
f7ce3190 | 136 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 137 | { |
f7ce3190 | 138 | s->memcg_params.is_root_cache = true; |
426589f5 | 139 | INIT_LIST_HEAD(&s->memcg_params.list); |
f7ce3190 VD |
140 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
141 | } | |
142 | ||
143 | static int init_memcg_params(struct kmem_cache *s, | |
144 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
145 | { | |
146 | struct memcg_cache_array *arr; | |
33a690c4 | 147 | |
f7ce3190 VD |
148 | if (memcg) { |
149 | s->memcg_params.is_root_cache = false; | |
150 | s->memcg_params.memcg = memcg; | |
151 | s->memcg_params.root_cache = root_cache; | |
33a690c4 | 152 | return 0; |
f7ce3190 | 153 | } |
33a690c4 | 154 | |
f7ce3190 | 155 | slab_init_memcg_params(s); |
33a690c4 | 156 | |
f7ce3190 VD |
157 | if (!memcg_nr_cache_ids) |
158 | return 0; | |
33a690c4 | 159 | |
f7ce3190 VD |
160 | arr = kzalloc(sizeof(struct memcg_cache_array) + |
161 | memcg_nr_cache_ids * sizeof(void *), | |
162 | GFP_KERNEL); | |
163 | if (!arr) | |
164 | return -ENOMEM; | |
33a690c4 | 165 | |
f7ce3190 | 166 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
167 | return 0; |
168 | } | |
169 | ||
f7ce3190 | 170 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 171 | { |
f7ce3190 VD |
172 | if (is_root_cache(s)) |
173 | kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | |
33a690c4 VD |
174 | } |
175 | ||
f7ce3190 | 176 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 177 | { |
f7ce3190 | 178 | struct memcg_cache_array *old, *new; |
6f817f4c | 179 | |
f7ce3190 VD |
180 | if (!is_root_cache(s)) |
181 | return 0; | |
6f817f4c | 182 | |
f7ce3190 VD |
183 | new = kzalloc(sizeof(struct memcg_cache_array) + |
184 | new_array_size * sizeof(void *), GFP_KERNEL); | |
185 | if (!new) | |
6f817f4c VD |
186 | return -ENOMEM; |
187 | ||
f7ce3190 VD |
188 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
189 | lockdep_is_held(&slab_mutex)); | |
190 | if (old) | |
191 | memcpy(new->entries, old->entries, | |
192 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 193 | |
f7ce3190 VD |
194 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
195 | if (old) | |
196 | kfree_rcu(old, rcu); | |
6f817f4c VD |
197 | return 0; |
198 | } | |
199 | ||
55007d84 GC |
200 | int memcg_update_all_caches(int num_memcgs) |
201 | { | |
202 | struct kmem_cache *s; | |
203 | int ret = 0; | |
55007d84 | 204 | |
05257a1a | 205 | mutex_lock(&slab_mutex); |
55007d84 | 206 | list_for_each_entry(s, &slab_caches, list) { |
f7ce3190 | 207 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 208 | /* |
55007d84 GC |
209 | * Instead of freeing the memory, we'll just leave the caches |
210 | * up to this point in an updated state. | |
211 | */ | |
212 | if (ret) | |
05257a1a | 213 | break; |
55007d84 | 214 | } |
55007d84 GC |
215 | mutex_unlock(&slab_mutex); |
216 | return ret; | |
217 | } | |
33a690c4 | 218 | #else |
f7ce3190 VD |
219 | static inline int init_memcg_params(struct kmem_cache *s, |
220 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
221 | { |
222 | return 0; | |
223 | } | |
224 | ||
f7ce3190 | 225 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
226 | { |
227 | } | |
127424c8 | 228 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
55007d84 | 229 | |
423c929c JK |
230 | /* |
231 | * Find a mergeable slab cache | |
232 | */ | |
233 | int slab_unmergeable(struct kmem_cache *s) | |
234 | { | |
235 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
236 | return 1; | |
237 | ||
238 | if (!is_root_cache(s)) | |
239 | return 1; | |
240 | ||
241 | if (s->ctor) | |
242 | return 1; | |
243 | ||
244 | /* | |
245 | * We may have set a slab to be unmergeable during bootstrap. | |
246 | */ | |
247 | if (s->refcount < 0) | |
248 | return 1; | |
249 | ||
250 | return 0; | |
251 | } | |
252 | ||
253 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
254 | unsigned long flags, const char *name, void (*ctor)(void *)) | |
255 | { | |
256 | struct kmem_cache *s; | |
257 | ||
258 | if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) | |
259 | return NULL; | |
260 | ||
261 | if (ctor) | |
262 | return NULL; | |
263 | ||
264 | size = ALIGN(size, sizeof(void *)); | |
265 | align = calculate_alignment(flags, align, size); | |
266 | size = ALIGN(size, align); | |
267 | flags = kmem_cache_flags(size, flags, name, NULL); | |
268 | ||
54362057 | 269 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
270 | if (slab_unmergeable(s)) |
271 | continue; | |
272 | ||
273 | if (size > s->size) | |
274 | continue; | |
275 | ||
276 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
277 | continue; | |
278 | /* | |
279 | * Check if alignment is compatible. | |
280 | * Courtesy of Adrian Drzewiecki | |
281 | */ | |
282 | if ((s->size & ~(align - 1)) != s->size) | |
283 | continue; | |
284 | ||
285 | if (s->size - size >= sizeof(void *)) | |
286 | continue; | |
287 | ||
95069ac8 JK |
288 | if (IS_ENABLED(CONFIG_SLAB) && align && |
289 | (align > s->align || s->align % align)) | |
290 | continue; | |
291 | ||
423c929c JK |
292 | return s; |
293 | } | |
294 | return NULL; | |
295 | } | |
296 | ||
45906855 CL |
297 | /* |
298 | * Figure out what the alignment of the objects will be given a set of | |
299 | * flags, a user specified alignment and the size of the objects. | |
300 | */ | |
301 | unsigned long calculate_alignment(unsigned long flags, | |
302 | unsigned long align, unsigned long size) | |
303 | { | |
304 | /* | |
305 | * If the user wants hardware cache aligned objects then follow that | |
306 | * suggestion if the object is sufficiently large. | |
307 | * | |
308 | * The hardware cache alignment cannot override the specified | |
309 | * alignment though. If that is greater then use it. | |
310 | */ | |
311 | if (flags & SLAB_HWCACHE_ALIGN) { | |
312 | unsigned long ralign = cache_line_size(); | |
313 | while (size <= ralign / 2) | |
314 | ralign /= 2; | |
315 | align = max(align, ralign); | |
316 | } | |
317 | ||
318 | if (align < ARCH_SLAB_MINALIGN) | |
319 | align = ARCH_SLAB_MINALIGN; | |
320 | ||
321 | return ALIGN(align, sizeof(void *)); | |
322 | } | |
323 | ||
c9a77a79 VD |
324 | static struct kmem_cache *create_cache(const char *name, |
325 | size_t object_size, size_t size, size_t align, | |
326 | unsigned long flags, void (*ctor)(void *), | |
327 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
794b1248 VD |
328 | { |
329 | struct kmem_cache *s; | |
330 | int err; | |
331 | ||
332 | err = -ENOMEM; | |
333 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
334 | if (!s) | |
335 | goto out; | |
336 | ||
337 | s->name = name; | |
338 | s->object_size = object_size; | |
339 | s->size = size; | |
340 | s->align = align; | |
341 | s->ctor = ctor; | |
342 | ||
f7ce3190 | 343 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
344 | if (err) |
345 | goto out_free_cache; | |
346 | ||
347 | err = __kmem_cache_create(s, flags); | |
348 | if (err) | |
349 | goto out_free_cache; | |
350 | ||
351 | s->refcount = 1; | |
352 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
353 | out: |
354 | if (err) | |
355 | return ERR_PTR(err); | |
356 | return s; | |
357 | ||
358 | out_free_cache: | |
f7ce3190 | 359 | destroy_memcg_params(s); |
7c4da061 | 360 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
361 | goto out; |
362 | } | |
45906855 | 363 | |
77be4b13 SK |
364 | /* |
365 | * kmem_cache_create - Create a cache. | |
366 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
367 | * @size: The size of objects to be created in this cache. | |
368 | * @align: The required alignment for the objects. | |
369 | * @flags: SLAB flags | |
370 | * @ctor: A constructor for the objects. | |
371 | * | |
372 | * Returns a ptr to the cache on success, NULL on failure. | |
373 | * Cannot be called within a interrupt, but can be interrupted. | |
374 | * The @ctor is run when new pages are allocated by the cache. | |
375 | * | |
376 | * The flags are | |
377 | * | |
378 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
379 | * to catch references to uninitialised memory. | |
380 | * | |
381 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
382 | * for buffer overruns. | |
383 | * | |
384 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
385 | * cacheline. This can be beneficial if you're counting cycles as closely | |
386 | * as davem. | |
387 | */ | |
2633d7a0 | 388 | struct kmem_cache * |
794b1248 VD |
389 | kmem_cache_create(const char *name, size_t size, size_t align, |
390 | unsigned long flags, void (*ctor)(void *)) | |
77be4b13 | 391 | { |
40911a79 | 392 | struct kmem_cache *s = NULL; |
3dec16ea | 393 | const char *cache_name; |
3965fc36 | 394 | int err; |
039363f3 | 395 | |
77be4b13 | 396 | get_online_cpus(); |
03afc0e2 | 397 | get_online_mems(); |
05257a1a | 398 | memcg_get_cache_ids(); |
03afc0e2 | 399 | |
77be4b13 | 400 | mutex_lock(&slab_mutex); |
686d550d | 401 | |
794b1248 | 402 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 403 | if (err) { |
3965fc36 | 404 | goto out_unlock; |
3aa24f51 | 405 | } |
686d550d | 406 | |
d8843922 GC |
407 | /* |
408 | * Some allocators will constraint the set of valid flags to a subset | |
409 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
410 | * case, and we'll just provide them with a sanitized version of the | |
411 | * passed flags. | |
412 | */ | |
413 | flags &= CACHE_CREATE_MASK; | |
686d550d | 414 | |
794b1248 VD |
415 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
416 | if (s) | |
3965fc36 | 417 | goto out_unlock; |
2633d7a0 | 418 | |
3dec16ea | 419 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
420 | if (!cache_name) { |
421 | err = -ENOMEM; | |
422 | goto out_unlock; | |
423 | } | |
7c9adf5a | 424 | |
c9a77a79 VD |
425 | s = create_cache(cache_name, size, size, |
426 | calculate_alignment(flags, align, size), | |
427 | flags, ctor, NULL, NULL); | |
794b1248 VD |
428 | if (IS_ERR(s)) { |
429 | err = PTR_ERR(s); | |
3dec16ea | 430 | kfree_const(cache_name); |
794b1248 | 431 | } |
3965fc36 VD |
432 | |
433 | out_unlock: | |
20cea968 | 434 | mutex_unlock(&slab_mutex); |
03afc0e2 | 435 | |
05257a1a | 436 | memcg_put_cache_ids(); |
03afc0e2 | 437 | put_online_mems(); |
20cea968 CL |
438 | put_online_cpus(); |
439 | ||
ba3253c7 | 440 | if (err) { |
686d550d CL |
441 | if (flags & SLAB_PANIC) |
442 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
443 | name, err); | |
444 | else { | |
1170532b | 445 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
686d550d CL |
446 | name, err); |
447 | dump_stack(); | |
448 | } | |
686d550d CL |
449 | return NULL; |
450 | } | |
039363f3 CL |
451 | return s; |
452 | } | |
794b1248 | 453 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 454 | |
c9a77a79 | 455 | static int shutdown_cache(struct kmem_cache *s, |
d5b3cf71 VD |
456 | struct list_head *release, bool *need_rcu_barrier) |
457 | { | |
cd918c55 | 458 | if (__kmem_cache_shutdown(s) != 0) |
d5b3cf71 | 459 | return -EBUSY; |
d5b3cf71 VD |
460 | |
461 | if (s->flags & SLAB_DESTROY_BY_RCU) | |
462 | *need_rcu_barrier = true; | |
463 | ||
d5b3cf71 VD |
464 | list_move(&s->list, release); |
465 | return 0; | |
466 | } | |
467 | ||
c9a77a79 | 468 | static void release_caches(struct list_head *release, bool need_rcu_barrier) |
d5b3cf71 VD |
469 | { |
470 | struct kmem_cache *s, *s2; | |
471 | ||
472 | if (need_rcu_barrier) | |
473 | rcu_barrier(); | |
474 | ||
475 | list_for_each_entry_safe(s, s2, release, list) { | |
476 | #ifdef SLAB_SUPPORTS_SYSFS | |
477 | sysfs_slab_remove(s); | |
478 | #else | |
479 | slab_kmem_cache_release(s); | |
480 | #endif | |
481 | } | |
482 | } | |
483 | ||
127424c8 | 484 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
794b1248 | 485 | /* |
776ed0f0 | 486 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
487 | * @memcg: The memory cgroup the new cache is for. |
488 | * @root_cache: The parent of the new cache. | |
489 | * | |
490 | * This function attempts to create a kmem cache that will serve allocation | |
491 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
492 | * from its parent. | |
493 | */ | |
d5b3cf71 VD |
494 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
495 | struct kmem_cache *root_cache) | |
2633d7a0 | 496 | { |
3e0350a3 | 497 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 498 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 499 | struct memcg_cache_array *arr; |
bd673145 | 500 | struct kmem_cache *s = NULL; |
794b1248 | 501 | char *cache_name; |
f7ce3190 | 502 | int idx; |
794b1248 VD |
503 | |
504 | get_online_cpus(); | |
03afc0e2 VD |
505 | get_online_mems(); |
506 | ||
794b1248 VD |
507 | mutex_lock(&slab_mutex); |
508 | ||
2a4db7eb | 509 | /* |
567e9ab2 | 510 | * The memory cgroup could have been offlined while the cache |
2a4db7eb VD |
511 | * creation work was pending. |
512 | */ | |
b6ecd2de | 513 | if (memcg->kmem_state != KMEM_ONLINE) |
2a4db7eb VD |
514 | goto out_unlock; |
515 | ||
f7ce3190 VD |
516 | idx = memcg_cache_id(memcg); |
517 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
518 | lockdep_is_held(&slab_mutex)); | |
519 | ||
d5b3cf71 VD |
520 | /* |
521 | * Since per-memcg caches are created asynchronously on first | |
522 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
523 | * create the same cache, but only one of them may succeed. | |
524 | */ | |
f7ce3190 | 525 | if (arr->entries[idx]) |
d5b3cf71 VD |
526 | goto out_unlock; |
527 | ||
f1008365 | 528 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
073ee1c6 | 529 | cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, |
f1008365 | 530 | css->id, memcg_name_buf); |
794b1248 VD |
531 | if (!cache_name) |
532 | goto out_unlock; | |
533 | ||
c9a77a79 VD |
534 | s = create_cache(cache_name, root_cache->object_size, |
535 | root_cache->size, root_cache->align, | |
536 | root_cache->flags, root_cache->ctor, | |
537 | memcg, root_cache); | |
d5b3cf71 VD |
538 | /* |
539 | * If we could not create a memcg cache, do not complain, because | |
540 | * that's not critical at all as we can always proceed with the root | |
541 | * cache. | |
542 | */ | |
bd673145 | 543 | if (IS_ERR(s)) { |
794b1248 | 544 | kfree(cache_name); |
d5b3cf71 | 545 | goto out_unlock; |
bd673145 | 546 | } |
794b1248 | 547 | |
426589f5 VD |
548 | list_add(&s->memcg_params.list, &root_cache->memcg_params.list); |
549 | ||
d5b3cf71 VD |
550 | /* |
551 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
552 | * barrier here to ensure nobody will see the kmem_cache partially | |
553 | * initialized. | |
554 | */ | |
555 | smp_wmb(); | |
f7ce3190 | 556 | arr->entries[idx] = s; |
d5b3cf71 | 557 | |
794b1248 VD |
558 | out_unlock: |
559 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
560 | |
561 | put_online_mems(); | |
794b1248 | 562 | put_online_cpus(); |
2633d7a0 | 563 | } |
b8529907 | 564 | |
2a4db7eb VD |
565 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
566 | { | |
567 | int idx; | |
568 | struct memcg_cache_array *arr; | |
d6e0b7fa | 569 | struct kmem_cache *s, *c; |
2a4db7eb VD |
570 | |
571 | idx = memcg_cache_id(memcg); | |
572 | ||
d6e0b7fa VD |
573 | get_online_cpus(); |
574 | get_online_mems(); | |
575 | ||
2a4db7eb VD |
576 | mutex_lock(&slab_mutex); |
577 | list_for_each_entry(s, &slab_caches, list) { | |
578 | if (!is_root_cache(s)) | |
579 | continue; | |
580 | ||
581 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
582 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
583 | c = arr->entries[idx]; |
584 | if (!c) | |
585 | continue; | |
586 | ||
587 | __kmem_cache_shrink(c, true); | |
2a4db7eb VD |
588 | arr->entries[idx] = NULL; |
589 | } | |
590 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
591 | |
592 | put_online_mems(); | |
593 | put_online_cpus(); | |
2a4db7eb VD |
594 | } |
595 | ||
d60fdcc9 VD |
596 | static int __shutdown_memcg_cache(struct kmem_cache *s, |
597 | struct list_head *release, bool *need_rcu_barrier) | |
598 | { | |
599 | BUG_ON(is_root_cache(s)); | |
600 | ||
601 | if (shutdown_cache(s, release, need_rcu_barrier)) | |
602 | return -EBUSY; | |
603 | ||
604 | list_del(&s->memcg_params.list); | |
605 | return 0; | |
606 | } | |
607 | ||
d5b3cf71 | 608 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 609 | { |
d5b3cf71 VD |
610 | LIST_HEAD(release); |
611 | bool need_rcu_barrier = false; | |
612 | struct kmem_cache *s, *s2; | |
b8529907 | 613 | |
d5b3cf71 VD |
614 | get_online_cpus(); |
615 | get_online_mems(); | |
b8529907 | 616 | |
b8529907 | 617 | mutex_lock(&slab_mutex); |
d5b3cf71 | 618 | list_for_each_entry_safe(s, s2, &slab_caches, list) { |
f7ce3190 | 619 | if (is_root_cache(s) || s->memcg_params.memcg != memcg) |
d5b3cf71 VD |
620 | continue; |
621 | /* | |
622 | * The cgroup is about to be freed and therefore has no charges | |
623 | * left. Hence, all its caches must be empty by now. | |
624 | */ | |
d60fdcc9 | 625 | BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier)); |
d5b3cf71 VD |
626 | } |
627 | mutex_unlock(&slab_mutex); | |
b8529907 | 628 | |
d5b3cf71 VD |
629 | put_online_mems(); |
630 | put_online_cpus(); | |
631 | ||
c9a77a79 | 632 | release_caches(&release, need_rcu_barrier); |
b8529907 | 633 | } |
d60fdcc9 VD |
634 | |
635 | static int shutdown_memcg_caches(struct kmem_cache *s, | |
636 | struct list_head *release, bool *need_rcu_barrier) | |
637 | { | |
638 | struct memcg_cache_array *arr; | |
639 | struct kmem_cache *c, *c2; | |
640 | LIST_HEAD(busy); | |
641 | int i; | |
642 | ||
643 | BUG_ON(!is_root_cache(s)); | |
644 | ||
645 | /* | |
646 | * First, shutdown active caches, i.e. caches that belong to online | |
647 | * memory cgroups. | |
648 | */ | |
649 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
650 | lockdep_is_held(&slab_mutex)); | |
651 | for_each_memcg_cache_index(i) { | |
652 | c = arr->entries[i]; | |
653 | if (!c) | |
654 | continue; | |
655 | if (__shutdown_memcg_cache(c, release, need_rcu_barrier)) | |
656 | /* | |
657 | * The cache still has objects. Move it to a temporary | |
658 | * list so as not to try to destroy it for a second | |
659 | * time while iterating over inactive caches below. | |
660 | */ | |
661 | list_move(&c->memcg_params.list, &busy); | |
662 | else | |
663 | /* | |
664 | * The cache is empty and will be destroyed soon. Clear | |
665 | * the pointer to it in the memcg_caches array so that | |
666 | * it will never be accessed even if the root cache | |
667 | * stays alive. | |
668 | */ | |
669 | arr->entries[i] = NULL; | |
670 | } | |
671 | ||
672 | /* | |
673 | * Second, shutdown all caches left from memory cgroups that are now | |
674 | * offline. | |
675 | */ | |
676 | list_for_each_entry_safe(c, c2, &s->memcg_params.list, | |
677 | memcg_params.list) | |
678 | __shutdown_memcg_cache(c, release, need_rcu_barrier); | |
679 | ||
680 | list_splice(&busy, &s->memcg_params.list); | |
681 | ||
682 | /* | |
683 | * A cache being destroyed must be empty. In particular, this means | |
684 | * that all per memcg caches attached to it must be empty too. | |
685 | */ | |
686 | if (!list_empty(&s->memcg_params.list)) | |
687 | return -EBUSY; | |
688 | return 0; | |
689 | } | |
690 | #else | |
691 | static inline int shutdown_memcg_caches(struct kmem_cache *s, | |
692 | struct list_head *release, bool *need_rcu_barrier) | |
693 | { | |
694 | return 0; | |
695 | } | |
127424c8 | 696 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
97d06609 | 697 | |
41a21285 CL |
698 | void slab_kmem_cache_release(struct kmem_cache *s) |
699 | { | |
52b4b950 | 700 | __kmem_cache_release(s); |
f7ce3190 | 701 | destroy_memcg_params(s); |
3dec16ea | 702 | kfree_const(s->name); |
41a21285 CL |
703 | kmem_cache_free(kmem_cache, s); |
704 | } | |
705 | ||
945cf2b6 CL |
706 | void kmem_cache_destroy(struct kmem_cache *s) |
707 | { | |
d5b3cf71 VD |
708 | LIST_HEAD(release); |
709 | bool need_rcu_barrier = false; | |
d60fdcc9 | 710 | int err; |
d5b3cf71 | 711 | |
3942d299 SS |
712 | if (unlikely(!s)) |
713 | return; | |
714 | ||
945cf2b6 | 715 | get_online_cpus(); |
03afc0e2 VD |
716 | get_online_mems(); |
717 | ||
945cf2b6 | 718 | mutex_lock(&slab_mutex); |
b8529907 | 719 | |
945cf2b6 | 720 | s->refcount--; |
b8529907 VD |
721 | if (s->refcount) |
722 | goto out_unlock; | |
723 | ||
d60fdcc9 VD |
724 | err = shutdown_memcg_caches(s, &release, &need_rcu_barrier); |
725 | if (!err) | |
cd918c55 | 726 | err = shutdown_cache(s, &release, &need_rcu_barrier); |
b8529907 | 727 | |
cd918c55 | 728 | if (err) { |
756a025f JP |
729 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
730 | s->name); | |
cd918c55 VD |
731 | dump_stack(); |
732 | } | |
b8529907 VD |
733 | out_unlock: |
734 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 735 | |
03afc0e2 | 736 | put_online_mems(); |
945cf2b6 | 737 | put_online_cpus(); |
d5b3cf71 | 738 | |
c9a77a79 | 739 | release_caches(&release, need_rcu_barrier); |
945cf2b6 CL |
740 | } |
741 | EXPORT_SYMBOL(kmem_cache_destroy); | |
742 | ||
03afc0e2 VD |
743 | /** |
744 | * kmem_cache_shrink - Shrink a cache. | |
745 | * @cachep: The cache to shrink. | |
746 | * | |
747 | * Releases as many slabs as possible for a cache. | |
748 | * To help debugging, a zero exit status indicates all slabs were released. | |
749 | */ | |
750 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
751 | { | |
752 | int ret; | |
753 | ||
754 | get_online_cpus(); | |
755 | get_online_mems(); | |
d6e0b7fa | 756 | ret = __kmem_cache_shrink(cachep, false); |
03afc0e2 VD |
757 | put_online_mems(); |
758 | put_online_cpus(); | |
759 | return ret; | |
760 | } | |
761 | EXPORT_SYMBOL(kmem_cache_shrink); | |
762 | ||
fda90124 | 763 | bool slab_is_available(void) |
97d06609 CL |
764 | { |
765 | return slab_state >= UP; | |
766 | } | |
b7454ad3 | 767 | |
45530c44 CL |
768 | #ifndef CONFIG_SLOB |
769 | /* Create a cache during boot when no slab services are available yet */ | |
770 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | |
771 | unsigned long flags) | |
772 | { | |
773 | int err; | |
774 | ||
775 | s->name = name; | |
776 | s->size = s->object_size = size; | |
45906855 | 777 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
f7ce3190 VD |
778 | |
779 | slab_init_memcg_params(s); | |
780 | ||
45530c44 CL |
781 | err = __kmem_cache_create(s, flags); |
782 | ||
783 | if (err) | |
31ba7346 | 784 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
45530c44 CL |
785 | name, size, err); |
786 | ||
787 | s->refcount = -1; /* Exempt from merging for now */ | |
788 | } | |
789 | ||
790 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |
791 | unsigned long flags) | |
792 | { | |
793 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
794 | ||
795 | if (!s) | |
796 | panic("Out of memory when creating slab %s\n", name); | |
797 | ||
798 | create_boot_cache(s, name, size, flags); | |
799 | list_add(&s->list, &slab_caches); | |
800 | s->refcount = 1; | |
801 | return s; | |
802 | } | |
803 | ||
9425c58e CL |
804 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
805 | EXPORT_SYMBOL(kmalloc_caches); | |
806 | ||
807 | #ifdef CONFIG_ZONE_DMA | |
808 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | |
809 | EXPORT_SYMBOL(kmalloc_dma_caches); | |
810 | #endif | |
811 | ||
2c59dd65 CL |
812 | /* |
813 | * Conversion table for small slabs sizes / 8 to the index in the | |
814 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
815 | * of two cache sizes there. The size of larger slabs can be determined using | |
816 | * fls. | |
817 | */ | |
818 | static s8 size_index[24] = { | |
819 | 3, /* 8 */ | |
820 | 4, /* 16 */ | |
821 | 5, /* 24 */ | |
822 | 5, /* 32 */ | |
823 | 6, /* 40 */ | |
824 | 6, /* 48 */ | |
825 | 6, /* 56 */ | |
826 | 6, /* 64 */ | |
827 | 1, /* 72 */ | |
828 | 1, /* 80 */ | |
829 | 1, /* 88 */ | |
830 | 1, /* 96 */ | |
831 | 7, /* 104 */ | |
832 | 7, /* 112 */ | |
833 | 7, /* 120 */ | |
834 | 7, /* 128 */ | |
835 | 2, /* 136 */ | |
836 | 2, /* 144 */ | |
837 | 2, /* 152 */ | |
838 | 2, /* 160 */ | |
839 | 2, /* 168 */ | |
840 | 2, /* 176 */ | |
841 | 2, /* 184 */ | |
842 | 2 /* 192 */ | |
843 | }; | |
844 | ||
845 | static inline int size_index_elem(size_t bytes) | |
846 | { | |
847 | return (bytes - 1) / 8; | |
848 | } | |
849 | ||
850 | /* | |
851 | * Find the kmem_cache structure that serves a given size of | |
852 | * allocation | |
853 | */ | |
854 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
855 | { | |
856 | int index; | |
857 | ||
9de1bc87 | 858 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 859 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 860 | return NULL; |
907985f4 | 861 | } |
6286ae97 | 862 | |
2c59dd65 CL |
863 | if (size <= 192) { |
864 | if (!size) | |
865 | return ZERO_SIZE_PTR; | |
866 | ||
867 | index = size_index[size_index_elem(size)]; | |
868 | } else | |
869 | index = fls(size - 1); | |
870 | ||
871 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 872 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
873 | return kmalloc_dma_caches[index]; |
874 | ||
875 | #endif | |
876 | return kmalloc_caches[index]; | |
877 | } | |
878 | ||
4066c33d GG |
879 | /* |
880 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
881 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
882 | * kmalloc-67108864. | |
883 | */ | |
884 | static struct { | |
885 | const char *name; | |
886 | unsigned long size; | |
887 | } const kmalloc_info[] __initconst = { | |
888 | {NULL, 0}, {"kmalloc-96", 96}, | |
889 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
890 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
891 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
892 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
893 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
894 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
895 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
896 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
897 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
898 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
899 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
900 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
901 | {"kmalloc-67108864", 67108864} | |
902 | }; | |
903 | ||
f97d5f63 | 904 | /* |
34cc6990 DS |
905 | * Patch up the size_index table if we have strange large alignment |
906 | * requirements for the kmalloc array. This is only the case for | |
907 | * MIPS it seems. The standard arches will not generate any code here. | |
908 | * | |
909 | * Largest permitted alignment is 256 bytes due to the way we | |
910 | * handle the index determination for the smaller caches. | |
911 | * | |
912 | * Make sure that nothing crazy happens if someone starts tinkering | |
913 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 914 | */ |
34cc6990 | 915 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
916 | { |
917 | int i; | |
918 | ||
2c59dd65 CL |
919 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
920 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
921 | ||
922 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
923 | int elem = size_index_elem(i); | |
924 | ||
925 | if (elem >= ARRAY_SIZE(size_index)) | |
926 | break; | |
927 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
928 | } | |
929 | ||
930 | if (KMALLOC_MIN_SIZE >= 64) { | |
931 | /* | |
932 | * The 96 byte size cache is not used if the alignment | |
933 | * is 64 byte. | |
934 | */ | |
935 | for (i = 64 + 8; i <= 96; i += 8) | |
936 | size_index[size_index_elem(i)] = 7; | |
937 | ||
938 | } | |
939 | ||
940 | if (KMALLOC_MIN_SIZE >= 128) { | |
941 | /* | |
942 | * The 192 byte sized cache is not used if the alignment | |
943 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
944 | * instead. | |
945 | */ | |
946 | for (i = 128 + 8; i <= 192; i += 8) | |
947 | size_index[size_index_elem(i)] = 8; | |
948 | } | |
34cc6990 DS |
949 | } |
950 | ||
ae6f2462 | 951 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
a9730fca CL |
952 | { |
953 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
954 | kmalloc_info[idx].size, flags); | |
955 | } | |
956 | ||
34cc6990 DS |
957 | /* |
958 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
959 | * may already have been created because they were needed to | |
960 | * enable allocations for slab creation. | |
961 | */ | |
962 | void __init create_kmalloc_caches(unsigned long flags) | |
963 | { | |
964 | int i; | |
965 | ||
a9730fca CL |
966 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
967 | if (!kmalloc_caches[i]) | |
968 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 969 | |
956e46ef | 970 | /* |
a9730fca CL |
971 | * Caches that are not of the two-to-the-power-of size. |
972 | * These have to be created immediately after the | |
973 | * earlier power of two caches | |
956e46ef | 974 | */ |
a9730fca CL |
975 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
976 | new_kmalloc_cache(1, flags); | |
977 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
978 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
979 | } |
980 | ||
f97d5f63 CL |
981 | /* Kmalloc array is now usable */ |
982 | slab_state = UP; | |
983 | ||
f97d5f63 CL |
984 | #ifdef CONFIG_ZONE_DMA |
985 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
986 | struct kmem_cache *s = kmalloc_caches[i]; | |
987 | ||
988 | if (s) { | |
989 | int size = kmalloc_size(i); | |
990 | char *n = kasprintf(GFP_NOWAIT, | |
991 | "dma-kmalloc-%d", size); | |
992 | ||
993 | BUG_ON(!n); | |
994 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
995 | size, SLAB_CACHE_DMA | flags); | |
996 | } | |
997 | } | |
998 | #endif | |
999 | } | |
45530c44 CL |
1000 | #endif /* !CONFIG_SLOB */ |
1001 | ||
cea371f4 VD |
1002 | /* |
1003 | * To avoid unnecessary overhead, we pass through large allocation requests | |
1004 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1005 | * know the allocation order to free the pages properly in kfree. | |
1006 | */ | |
52383431 VD |
1007 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1008 | { | |
1009 | void *ret; | |
1010 | struct page *page; | |
1011 | ||
1012 | flags |= __GFP_COMP; | |
1013 | page = alloc_kmem_pages(flags, order); | |
1014 | ret = page ? page_address(page) : NULL; | |
1015 | kmemleak_alloc(ret, size, 1, flags); | |
505f5dcb | 1016 | kasan_kmalloc_large(ret, size, flags); |
52383431 VD |
1017 | return ret; |
1018 | } | |
1019 | EXPORT_SYMBOL(kmalloc_order); | |
1020 | ||
f1b6eb6e CL |
1021 | #ifdef CONFIG_TRACING |
1022 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1023 | { | |
1024 | void *ret = kmalloc_order(size, flags, order); | |
1025 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1026 | return ret; | |
1027 | } | |
1028 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1029 | #endif | |
45530c44 | 1030 | |
b7454ad3 | 1031 | #ifdef CONFIG_SLABINFO |
e9b4db2b WL |
1032 | |
1033 | #ifdef CONFIG_SLAB | |
1034 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
1035 | #else | |
1036 | #define SLABINFO_RIGHTS S_IRUSR | |
1037 | #endif | |
1038 | ||
b047501c | 1039 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1040 | { |
1041 | /* | |
1042 | * Output format version, so at least we can change it | |
1043 | * without _too_ many complaints. | |
1044 | */ | |
1045 | #ifdef CONFIG_DEBUG_SLAB | |
1046 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1047 | #else | |
1048 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1049 | #endif | |
756a025f | 1050 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1051 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1052 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1053 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1054 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1055 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1056 | #endif | |
1057 | seq_putc(m, '\n'); | |
1058 | } | |
1059 | ||
1df3b26f | 1060 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1061 | { |
b7454ad3 | 1062 | mutex_lock(&slab_mutex); |
b7454ad3 GC |
1063 | return seq_list_start(&slab_caches, *pos); |
1064 | } | |
1065 | ||
276a2439 | 1066 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 GC |
1067 | { |
1068 | return seq_list_next(p, &slab_caches, pos); | |
1069 | } | |
1070 | ||
276a2439 | 1071 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1072 | { |
1073 | mutex_unlock(&slab_mutex); | |
1074 | } | |
1075 | ||
749c5415 GC |
1076 | static void |
1077 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1078 | { | |
1079 | struct kmem_cache *c; | |
1080 | struct slabinfo sinfo; | |
749c5415 GC |
1081 | |
1082 | if (!is_root_cache(s)) | |
1083 | return; | |
1084 | ||
426589f5 | 1085 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1086 | memset(&sinfo, 0, sizeof(sinfo)); |
1087 | get_slabinfo(c, &sinfo); | |
1088 | ||
1089 | info->active_slabs += sinfo.active_slabs; | |
1090 | info->num_slabs += sinfo.num_slabs; | |
1091 | info->shared_avail += sinfo.shared_avail; | |
1092 | info->active_objs += sinfo.active_objs; | |
1093 | info->num_objs += sinfo.num_objs; | |
1094 | } | |
1095 | } | |
1096 | ||
b047501c | 1097 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1098 | { |
0d7561c6 GC |
1099 | struct slabinfo sinfo; |
1100 | ||
1101 | memset(&sinfo, 0, sizeof(sinfo)); | |
1102 | get_slabinfo(s, &sinfo); | |
1103 | ||
749c5415 GC |
1104 | memcg_accumulate_slabinfo(s, &sinfo); |
1105 | ||
0d7561c6 | 1106 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1107 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1108 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1109 | ||
1110 | seq_printf(m, " : tunables %4u %4u %4u", | |
1111 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1112 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1113 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1114 | slabinfo_show_stats(m, s); | |
1115 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1116 | } |
1117 | ||
1df3b26f | 1118 | static int slab_show(struct seq_file *m, void *p) |
749c5415 GC |
1119 | { |
1120 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1121 | ||
1df3b26f VD |
1122 | if (p == slab_caches.next) |
1123 | print_slabinfo_header(m); | |
b047501c VD |
1124 | if (is_root_cache(s)) |
1125 | cache_show(s, m); | |
1126 | return 0; | |
1127 | } | |
1128 | ||
127424c8 | 1129 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
b047501c VD |
1130 | int memcg_slab_show(struct seq_file *m, void *p) |
1131 | { | |
1132 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1133 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1134 | ||
1135 | if (p == slab_caches.next) | |
1136 | print_slabinfo_header(m); | |
f7ce3190 | 1137 | if (!is_root_cache(s) && s->memcg_params.memcg == memcg) |
b047501c VD |
1138 | cache_show(s, m); |
1139 | return 0; | |
749c5415 | 1140 | } |
b047501c | 1141 | #endif |
749c5415 | 1142 | |
b7454ad3 GC |
1143 | /* |
1144 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1145 | * | |
1146 | * Output layout: | |
1147 | * cache-name | |
1148 | * num-active-objs | |
1149 | * total-objs | |
1150 | * object size | |
1151 | * num-active-slabs | |
1152 | * total-slabs | |
1153 | * num-pages-per-slab | |
1154 | * + further values on SMP and with statistics enabled | |
1155 | */ | |
1156 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1157 | .start = slab_start, |
276a2439 WL |
1158 | .next = slab_next, |
1159 | .stop = slab_stop, | |
1df3b26f | 1160 | .show = slab_show, |
b7454ad3 GC |
1161 | }; |
1162 | ||
1163 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1164 | { | |
1165 | return seq_open(file, &slabinfo_op); | |
1166 | } | |
1167 | ||
1168 | static const struct file_operations proc_slabinfo_operations = { | |
1169 | .open = slabinfo_open, | |
1170 | .read = seq_read, | |
1171 | .write = slabinfo_write, | |
1172 | .llseek = seq_lseek, | |
1173 | .release = seq_release, | |
1174 | }; | |
1175 | ||
1176 | static int __init slab_proc_init(void) | |
1177 | { | |
e9b4db2b WL |
1178 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1179 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1180 | return 0; |
1181 | } | |
1182 | module_init(slab_proc_init); | |
1183 | #endif /* CONFIG_SLABINFO */ | |
928cec9c AR |
1184 | |
1185 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1186 | gfp_t flags) | |
1187 | { | |
1188 | void *ret; | |
1189 | size_t ks = 0; | |
1190 | ||
1191 | if (p) | |
1192 | ks = ksize(p); | |
1193 | ||
0316bec2 | 1194 | if (ks >= new_size) { |
505f5dcb | 1195 | kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1196 | return (void *)p; |
0316bec2 | 1197 | } |
928cec9c AR |
1198 | |
1199 | ret = kmalloc_track_caller(new_size, flags); | |
1200 | if (ret && p) | |
1201 | memcpy(ret, p, ks); | |
1202 | ||
1203 | return ret; | |
1204 | } | |
1205 | ||
1206 | /** | |
1207 | * __krealloc - like krealloc() but don't free @p. | |
1208 | * @p: object to reallocate memory for. | |
1209 | * @new_size: how many bytes of memory are required. | |
1210 | * @flags: the type of memory to allocate. | |
1211 | * | |
1212 | * This function is like krealloc() except it never frees the originally | |
1213 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1214 | * like, for example, with RCU. | |
1215 | */ | |
1216 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1217 | { | |
1218 | if (unlikely(!new_size)) | |
1219 | return ZERO_SIZE_PTR; | |
1220 | ||
1221 | return __do_krealloc(p, new_size, flags); | |
1222 | ||
1223 | } | |
1224 | EXPORT_SYMBOL(__krealloc); | |
1225 | ||
1226 | /** | |
1227 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1228 | * @p: object to reallocate memory for. | |
1229 | * @new_size: how many bytes of memory are required. | |
1230 | * @flags: the type of memory to allocate. | |
1231 | * | |
1232 | * The contents of the object pointed to are preserved up to the | |
1233 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1234 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1235 | * %NULL pointer, the object pointed to is freed. | |
1236 | */ | |
1237 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1238 | { | |
1239 | void *ret; | |
1240 | ||
1241 | if (unlikely(!new_size)) { | |
1242 | kfree(p); | |
1243 | return ZERO_SIZE_PTR; | |
1244 | } | |
1245 | ||
1246 | ret = __do_krealloc(p, new_size, flags); | |
1247 | if (ret && p != ret) | |
1248 | kfree(p); | |
1249 | ||
1250 | return ret; | |
1251 | } | |
1252 | EXPORT_SYMBOL(krealloc); | |
1253 | ||
1254 | /** | |
1255 | * kzfree - like kfree but zero memory | |
1256 | * @p: object to free memory of | |
1257 | * | |
1258 | * The memory of the object @p points to is zeroed before freed. | |
1259 | * If @p is %NULL, kzfree() does nothing. | |
1260 | * | |
1261 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1262 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1263 | * careful when using this function in performance sensitive code. | |
1264 | */ | |
1265 | void kzfree(const void *p) | |
1266 | { | |
1267 | size_t ks; | |
1268 | void *mem = (void *)p; | |
1269 | ||
1270 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1271 | return; | |
1272 | ks = ksize(mem); | |
1273 | memset(mem, 0, ks); | |
1274 | kfree(mem); | |
1275 | } | |
1276 | EXPORT_SYMBOL(kzfree); | |
1277 | ||
1278 | /* Tracepoints definitions. */ | |
1279 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1280 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1281 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1282 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1283 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1284 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |