drm: check for minor master before allowing drop master.
[deliverable/linux.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
d87a133f
NP
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602
MM
61#include <linux/slab.h>
62#include <linux/mm.h>
63#include <linux/cache.h>
64#include <linux/init.h>
65#include <linux/module.h>
afc0cedb 66#include <linux/rcupdate.h>
95b35127
NP
67#include <linux/list.h>
68#include <asm/atomic.h>
69
95b35127
NP
70/*
71 * slob_block has a field 'units', which indicates size of block if +ve,
72 * or offset of next block if -ve (in SLOB_UNITs).
73 *
74 * Free blocks of size 1 unit simply contain the offset of the next block.
75 * Those with larger size contain their size in the first SLOB_UNIT of
76 * memory, and the offset of the next free block in the second SLOB_UNIT.
77 */
55394849 78#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
79typedef s16 slobidx_t;
80#else
81typedef s32 slobidx_t;
82#endif
83
10cef602 84struct slob_block {
95b35127 85 slobidx_t units;
55394849 86};
10cef602
MM
87typedef struct slob_block slob_t;
88
95b35127
NP
89/*
90 * We use struct page fields to manage some slob allocation aspects,
91 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
92 * just define our own struct page type variant here.
93 */
94struct slob_page {
95 union {
96 struct {
97 unsigned long flags; /* mandatory */
98 atomic_t _count; /* mandatory */
99 slobidx_t units; /* free units left in page */
100 unsigned long pad[2];
101 slob_t *free; /* first free slob_t in page */
102 struct list_head list; /* linked list of free pages */
103 };
104 struct page page;
105 };
106};
107static inline void struct_slob_page_wrong_size(void)
108{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
109
110/*
111 * free_slob_page: call before a slob_page is returned to the page allocator.
112 */
113static inline void free_slob_page(struct slob_page *sp)
114{
115 reset_page_mapcount(&sp->page);
116 sp->page.mapping = NULL;
117}
118
119/*
20cecbae 120 * All partially free slob pages go on these lists.
95b35127 121 */
20cecbae
MM
122#define SLOB_BREAK1 256
123#define SLOB_BREAK2 1024
124static LIST_HEAD(free_slob_small);
125static LIST_HEAD(free_slob_medium);
126static LIST_HEAD(free_slob_large);
95b35127
NP
127
128/*
6e9ed0cc 129 * is_slob_page: True for all slob pages (false for bigblock pages)
95b35127 130 */
6e9ed0cc 131static inline int is_slob_page(struct slob_page *sp)
95b35127 132{
9023cb7e 133 return PageSlobPage((struct page *)sp);
95b35127
NP
134}
135
136static inline void set_slob_page(struct slob_page *sp)
137{
9023cb7e 138 __SetPageSlobPage((struct page *)sp);
95b35127
NP
139}
140
141static inline void clear_slob_page(struct slob_page *sp)
142{
9023cb7e 143 __ClearPageSlobPage((struct page *)sp);
95b35127
NP
144}
145
6e9ed0cc
AW
146static inline struct slob_page *slob_page(const void *addr)
147{
148 return (struct slob_page *)virt_to_page(addr);
149}
150
95b35127
NP
151/*
152 * slob_page_free: true for pages on free_slob_pages list.
153 */
154static inline int slob_page_free(struct slob_page *sp)
155{
9023cb7e 156 return PageSlobFree((struct page *)sp);
95b35127
NP
157}
158
20cecbae 159static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
95b35127 160{
20cecbae 161 list_add(&sp->list, list);
9023cb7e 162 __SetPageSlobFree((struct page *)sp);
95b35127
NP
163}
164
165static inline void clear_slob_page_free(struct slob_page *sp)
166{
167 list_del(&sp->list);
9023cb7e 168 __ClearPageSlobFree((struct page *)sp);
95b35127
NP
169}
170
10cef602
MM
171#define SLOB_UNIT sizeof(slob_t)
172#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
173#define SLOB_ALIGN L1_CACHE_BYTES
174
afc0cedb
NP
175/*
176 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
177 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
178 * the block using call_rcu.
179 */
180struct slob_rcu {
181 struct rcu_head head;
182 int size;
183};
184
95b35127
NP
185/*
186 * slob_lock protects all slob allocator structures.
187 */
10cef602 188static DEFINE_SPINLOCK(slob_lock);
10cef602 189
95b35127
NP
190/*
191 * Encode the given size and next info into a free slob block s.
192 */
193static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
194{
195 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
196 slobidx_t offset = next - base;
bcb4ddb4 197
95b35127
NP
198 if (size > 1) {
199 s[0].units = size;
200 s[1].units = offset;
201 } else
202 s[0].units = -offset;
203}
10cef602 204
95b35127
NP
205/*
206 * Return the size of a slob block.
207 */
208static slobidx_t slob_units(slob_t *s)
209{
210 if (s->units > 0)
211 return s->units;
212 return 1;
213}
214
215/*
216 * Return the next free slob block pointer after this one.
217 */
218static slob_t *slob_next(slob_t *s)
219{
220 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
221 slobidx_t next;
222
223 if (s[0].units < 0)
224 next = -s[0].units;
225 else
226 next = s[1].units;
227 return base+next;
228}
229
230/*
231 * Returns true if s is the last free block in its page.
232 */
233static int slob_last(slob_t *s)
234{
235 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
236}
237
6e9ed0cc 238static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
239{
240 void *page;
241
242#ifdef CONFIG_NUMA
243 if (node != -1)
244 page = alloc_pages_node(node, gfp, order);
245 else
246#endif
247 page = alloc_pages(gfp, order);
248
249 if (!page)
250 return NULL;
251
252 return page_address(page);
253}
254
6e9ed0cc
AW
255static void slob_free_pages(void *b, int order)
256{
257 free_pages((unsigned long)b, order);
258}
259
95b35127
NP
260/*
261 * Allocate a slob block within a given slob_page sp.
262 */
263static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
10cef602 264{
6e9ed0cc 265 slob_t *prev, *cur, *aligned = NULL;
10cef602 266 int delta = 0, units = SLOB_UNITS(size);
10cef602 267
95b35127
NP
268 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
269 slobidx_t avail = slob_units(cur);
270
10cef602
MM
271 if (align) {
272 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
273 delta = aligned - cur;
274 }
95b35127
NP
275 if (avail >= units + delta) { /* room enough? */
276 slob_t *next;
277
10cef602 278 if (delta) { /* need to fragment head to align? */
95b35127
NP
279 next = slob_next(cur);
280 set_slob(aligned, avail - delta, next);
281 set_slob(cur, delta, aligned);
10cef602
MM
282 prev = cur;
283 cur = aligned;
95b35127 284 avail = slob_units(cur);
10cef602
MM
285 }
286
95b35127
NP
287 next = slob_next(cur);
288 if (avail == units) { /* exact fit? unlink. */
289 if (prev)
290 set_slob(prev, slob_units(prev), next);
291 else
292 sp->free = next;
293 } else { /* fragment */
294 if (prev)
295 set_slob(prev, slob_units(prev), cur + units);
296 else
297 sp->free = cur + units;
298 set_slob(cur + units, avail - units, next);
10cef602
MM
299 }
300
95b35127
NP
301 sp->units -= units;
302 if (!sp->units)
303 clear_slob_page_free(sp);
10cef602
MM
304 return cur;
305 }
95b35127
NP
306 if (slob_last(cur))
307 return NULL;
308 }
309}
10cef602 310
95b35127
NP
311/*
312 * slob_alloc: entry point into the slob allocator.
313 */
6193a2ff 314static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127
NP
315{
316 struct slob_page *sp;
d6269543 317 struct list_head *prev;
20cecbae 318 struct list_head *slob_list;
95b35127
NP
319 slob_t *b = NULL;
320 unsigned long flags;
10cef602 321
20cecbae
MM
322 if (size < SLOB_BREAK1)
323 slob_list = &free_slob_small;
324 else if (size < SLOB_BREAK2)
325 slob_list = &free_slob_medium;
326 else
327 slob_list = &free_slob_large;
328
95b35127
NP
329 spin_lock_irqsave(&slob_lock, flags);
330 /* Iterate through each partially free page, try to find room */
20cecbae 331 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
332#ifdef CONFIG_NUMA
333 /*
334 * If there's a node specification, search for a partial
335 * page with a matching node id in the freelist.
336 */
337 if (node != -1 && page_to_nid(&sp->page) != node)
338 continue;
339#endif
d6269543
MM
340 /* Enough room on this page? */
341 if (sp->units < SLOB_UNITS(size))
342 continue;
6193a2ff 343
d6269543
MM
344 /* Attempt to alloc */
345 prev = sp->list.prev;
346 b = slob_page_alloc(sp, size, align);
347 if (!b)
348 continue;
349
350 /* Improve fragment distribution and reduce our average
351 * search time by starting our next search here. (see
352 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
353 if (prev != slob_list->prev &&
354 slob_list->next != prev->next)
355 list_move_tail(slob_list, prev->next);
d6269543 356 break;
10cef602 357 }
95b35127
NP
358 spin_unlock_irqrestore(&slob_lock, flags);
359
360 /* Not enough space: must allocate a new page */
361 if (!b) {
6e9ed0cc 362 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 363 if (!b)
6e9ed0cc
AW
364 return NULL;
365 sp = slob_page(b);
95b35127
NP
366 set_slob_page(sp);
367
368 spin_lock_irqsave(&slob_lock, flags);
369 sp->units = SLOB_UNITS(PAGE_SIZE);
370 sp->free = b;
371 INIT_LIST_HEAD(&sp->list);
372 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 373 set_slob_page_free(sp, slob_list);
95b35127
NP
374 b = slob_page_alloc(sp, size, align);
375 BUG_ON(!b);
376 spin_unlock_irqrestore(&slob_lock, flags);
377 }
d07dbea4
CL
378 if (unlikely((gfp & __GFP_ZERO) && b))
379 memset(b, 0, size);
95b35127 380 return b;
10cef602
MM
381}
382
95b35127
NP
383/*
384 * slob_free: entry point into the slob allocator.
385 */
10cef602
MM
386static void slob_free(void *block, int size)
387{
95b35127
NP
388 struct slob_page *sp;
389 slob_t *prev, *next, *b = (slob_t *)block;
390 slobidx_t units;
10cef602
MM
391 unsigned long flags;
392
2408c550 393 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 394 return;
95b35127 395 BUG_ON(!size);
10cef602 396
6e9ed0cc 397 sp = slob_page(block);
95b35127 398 units = SLOB_UNITS(size);
10cef602 399
10cef602 400 spin_lock_irqsave(&slob_lock, flags);
10cef602 401
95b35127
NP
402 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
403 /* Go directly to page allocator. Do not pass slob allocator */
404 if (slob_page_free(sp))
405 clear_slob_page_free(sp);
6fb8f424 406 spin_unlock_irqrestore(&slob_lock, flags);
95b35127
NP
407 clear_slob_page(sp);
408 free_slob_page(sp);
409 free_page((unsigned long)b);
6fb8f424 410 return;
95b35127 411 }
10cef602 412
95b35127
NP
413 if (!slob_page_free(sp)) {
414 /* This slob page is about to become partially free. Easy! */
415 sp->units = units;
416 sp->free = b;
417 set_slob(b, units,
418 (void *)((unsigned long)(b +
419 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
20cecbae 420 set_slob_page_free(sp, &free_slob_small);
95b35127
NP
421 goto out;
422 }
423
424 /*
425 * Otherwise the page is already partially free, so find reinsertion
426 * point.
427 */
428 sp->units += units;
10cef602 429
95b35127 430 if (b < sp->free) {
679299b3
MM
431 if (b + units == sp->free) {
432 units += slob_units(sp->free);
433 sp->free = slob_next(sp->free);
434 }
95b35127
NP
435 set_slob(b, units, sp->free);
436 sp->free = b;
437 } else {
438 prev = sp->free;
439 next = slob_next(prev);
440 while (b > next) {
441 prev = next;
442 next = slob_next(prev);
443 }
10cef602 444
95b35127
NP
445 if (!slob_last(prev) && b + units == next) {
446 units += slob_units(next);
447 set_slob(b, units, slob_next(next));
448 } else
449 set_slob(b, units, next);
450
451 if (prev + slob_units(prev) == b) {
452 units = slob_units(b) + slob_units(prev);
453 set_slob(prev, units, slob_next(b));
454 } else
455 set_slob(prev, slob_units(prev), b);
456 }
457out:
10cef602
MM
458 spin_unlock_irqrestore(&slob_lock, flags);
459}
460
95b35127
NP
461/*
462 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
463 */
464
55394849
NP
465#ifndef ARCH_KMALLOC_MINALIGN
466#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
467#endif
468
469#ifndef ARCH_SLAB_MINALIGN
470#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
471#endif
472
6193a2ff 473void *__kmalloc_node(size_t size, gfp_t gfp, int node)
10cef602 474{
6cb8f913 475 unsigned int *m;
55394849
NP
476 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
477
19cefdff 478 lockdep_trace_alloc(gfp);
cf40bd16 479
55394849 480 if (size < PAGE_SIZE - align) {
6cb8f913
CL
481 if (!size)
482 return ZERO_SIZE_PTR;
483
6193a2ff 484 m = slob_alloc(size + align, gfp, align, node);
239f49c0
MK
485 if (!m)
486 return NULL;
487 *m = size;
55394849 488 return (void *)m + align;
d87a133f
NP
489 } else {
490 void *ret;
491
6e9ed0cc 492 ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
d87a133f
NP
493 if (ret) {
494 struct page *page;
495 page = virt_to_page(ret);
496 page->private = size;
497 }
498 return ret;
10cef602 499 }
10cef602 500}
6193a2ff 501EXPORT_SYMBOL(__kmalloc_node);
10cef602
MM
502
503void kfree(const void *block)
504{
95b35127 505 struct slob_page *sp;
10cef602 506
2408c550 507 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602
MM
508 return;
509
6e9ed0cc
AW
510 sp = slob_page(block);
511 if (is_slob_page(sp)) {
55394849
NP
512 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
513 unsigned int *m = (unsigned int *)(block - align);
514 slob_free(m, *m + align);
d87a133f
NP
515 } else
516 put_page(&sp->page);
10cef602 517}
10cef602
MM
518EXPORT_SYMBOL(kfree);
519
d87a133f 520/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 521size_t ksize(const void *block)
10cef602 522{
95b35127 523 struct slob_page *sp;
10cef602 524
ef8b4520
CL
525 BUG_ON(!block);
526 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
527 return 0;
528
6e9ed0cc
AW
529 sp = slob_page(block);
530 if (is_slob_page(sp)) {
70096a56
MM
531 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
532 unsigned int *m = (unsigned int *)(block - align);
533 return SLOB_UNITS(*m) * SLOB_UNIT;
534 } else
d87a133f 535 return sp->page.private;
10cef602 536}
b1aabecd 537EXPORT_SYMBOL(ksize);
10cef602
MM
538
539struct kmem_cache {
540 unsigned int size, align;
afc0cedb 541 unsigned long flags;
10cef602 542 const char *name;
51cc5068 543 void (*ctor)(void *);
10cef602
MM
544};
545
546struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 547 size_t align, unsigned long flags, void (*ctor)(void *))
10cef602
MM
548{
549 struct kmem_cache *c;
550
0701a9e6 551 c = slob_alloc(sizeof(struct kmem_cache),
5e18e2b8 552 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
10cef602
MM
553
554 if (c) {
555 c->name = name;
556 c->size = size;
afc0cedb 557 if (flags & SLAB_DESTROY_BY_RCU) {
afc0cedb
NP
558 /* leave room for rcu footer at the end of object */
559 c->size += sizeof(struct slob_rcu);
560 }
561 c->flags = flags;
10cef602 562 c->ctor = ctor;
10cef602 563 /* ignore alignment unless it's forced */
5af60839 564 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
55394849
NP
565 if (c->align < ARCH_SLAB_MINALIGN)
566 c->align = ARCH_SLAB_MINALIGN;
10cef602
MM
567 if (c->align < align)
568 c->align = align;
bc0055ae
AM
569 } else if (flags & SLAB_PANIC)
570 panic("Cannot create slab cache %s\n", name);
10cef602
MM
571
572 return c;
573}
574EXPORT_SYMBOL(kmem_cache_create);
575
133d205a 576void kmem_cache_destroy(struct kmem_cache *c)
10cef602
MM
577{
578 slob_free(c, sizeof(struct kmem_cache));
10cef602
MM
579}
580EXPORT_SYMBOL(kmem_cache_destroy);
581
6193a2ff 582void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
583{
584 void *b;
585
586 if (c->size < PAGE_SIZE)
6193a2ff 587 b = slob_alloc(c->size, flags, c->align, node);
10cef602 588 else
6e9ed0cc 589 b = slob_new_pages(flags, get_order(c->size), node);
10cef602
MM
590
591 if (c->ctor)
51cc5068 592 c->ctor(b);
10cef602
MM
593
594 return b;
595}
6193a2ff 596EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 597
afc0cedb 598static void __kmem_cache_free(void *b, int size)
10cef602 599{
afc0cedb
NP
600 if (size < PAGE_SIZE)
601 slob_free(b, size);
10cef602 602 else
6e9ed0cc 603 slob_free_pages(b, get_order(size));
afc0cedb
NP
604}
605
606static void kmem_rcu_free(struct rcu_head *head)
607{
608 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
609 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
610
611 __kmem_cache_free(b, slob_rcu->size);
612}
613
614void kmem_cache_free(struct kmem_cache *c, void *b)
615{
616 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
617 struct slob_rcu *slob_rcu;
618 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
619 INIT_RCU_HEAD(&slob_rcu->head);
620 slob_rcu->size = c->size;
621 call_rcu(&slob_rcu->head, kmem_rcu_free);
622 } else {
afc0cedb
NP
623 __kmem_cache_free(b, c->size);
624 }
10cef602
MM
625}
626EXPORT_SYMBOL(kmem_cache_free);
627
628unsigned int kmem_cache_size(struct kmem_cache *c)
629{
630 return c->size;
631}
632EXPORT_SYMBOL(kmem_cache_size);
633
634const char *kmem_cache_name(struct kmem_cache *c)
635{
636 return c->name;
637}
638EXPORT_SYMBOL(kmem_cache_name);
639
2e892f43
CL
640int kmem_cache_shrink(struct kmem_cache *d)
641{
642 return 0;
643}
644EXPORT_SYMBOL(kmem_cache_shrink);
645
55935a34 646int kmem_ptr_validate(struct kmem_cache *a, const void *b)
2e892f43
CL
647{
648 return 0;
649}
650
84a01c2f
PM
651static unsigned int slob_ready __read_mostly;
652
653int slab_is_available(void)
654{
655 return slob_ready;
656}
657
bcb4ddb4
DG
658void __init kmem_cache_init(void)
659{
84a01c2f 660 slob_ready = 1;
10cef602 661}
This page took 0.54915 seconds and 5 git commands to generate.