hpfs: handle allocation failures in hpfs_add_pos()
[deliverable/linux.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
3b32123d 8#include <linux/compiler.h>
0b0acbec 9#include <linux/highmem.h>
b95f1b31 10#include <linux/export.h>
28ae55c9 11#include <linux/spinlock.h>
0b0acbec 12#include <linux/vmalloc.h>
3b32123d 13
0c0a4a51 14#include "internal.h"
d41dee36 15#include <asm/dma.h>
8f6aac41
CL
16#include <asm/pgalloc.h>
17#include <asm/pgtable.h>
d41dee36
AW
18
19/*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
3e347261 24#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 25struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 29 ____cacheline_internodealigned_in_smp;
3e347261
BP
30#endif
31EXPORT_SYMBOL(mem_section);
32
89689ae7
CL
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
33dd4e0e 45int page_to_nid(const struct page *page)
89689ae7
CL
46{
47 return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53 section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
89689ae7
CL
59#endif
60
3e347261 61#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
63{
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
f52407ce
SL
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 71 else
5b760e64
GS
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
bb016b84 74 section = memblock_virt_alloc_node(array_size, nid);
5b760e64 75 }
28ae55c9
DH
76
77 return section;
3e347261 78}
802f192e 79
a3142c8e 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 81{
28ae55c9
DH
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
802f192e
BP
84
85 if (mem_section[root])
28ae55c9 86 return -EEXIST;
3e347261 87
28ae55c9 88 section = sparse_index_alloc(nid);
af0cd5a7
WC
89 if (!section)
90 return -ENOMEM;
28ae55c9
DH
91
92 mem_section[root] = section;
c1c95183 93
9d1936cf 94 return 0;
28ae55c9
DH
95}
96#else /* !SPARSEMEM_EXTREME */
97static inline int sparse_index_init(unsigned long section_nr, int nid)
98{
99 return 0;
802f192e 100}
28ae55c9
DH
101#endif
102
4ca644d9
DH
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 105 * to also work for the flat array case because
4ca644d9
DH
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110 unsigned long root_nr;
111 struct mem_section* root;
112
12783b00
MK
113 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
115 if (!root)
116 continue;
117
118 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119 break;
120 }
121
db36a461
GS
122 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
4ca644d9
DH
124 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
126
30c253e6
AW
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node. This keeps us from having to use another data structure. The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135 return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140 return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
2dbb51c4
MG
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145 unsigned long *end_pfn)
d41dee36 146{
2dbb51c4 147 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 148
bead9a3a
IM
149 /*
150 * Sanity checks - do not allow an architecture to pass
151 * in larger pfns than the maximum scope of sparsemem:
152 */
2dbb51c4
MG
153 if (*start_pfn > max_sparsemem_pfn) {
154 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 *start_pfn, *end_pfn, max_sparsemem_pfn);
157 WARN_ON_ONCE(1);
158 *start_pfn = max_sparsemem_pfn;
159 *end_pfn = max_sparsemem_pfn;
ef161a98 160 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *end_pfn = max_sparsemem_pfn;
166 }
167}
168
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172 unsigned long pfn;
bead9a3a 173
d41dee36 174 start &= PAGE_SECTION_MASK;
2dbb51c4 175 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
176 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
178 struct mem_section *ms;
179
180 sparse_index_init(section, nid);
85770ffe 181 set_section_nid(section, nid);
802f192e
BP
182
183 ms = __nr_to_section(section);
184 if (!ms->section_mem_map)
30c253e6
AW
185 ms->section_mem_map = sparse_encode_early_nid(nid) |
186 SECTION_MARKED_PRESENT;
d41dee36
AW
187 }
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195 unsigned long end_pfn)
196{
197 unsigned long pfn;
198 unsigned long nr_pages = 0;
199
2dbb51c4 200 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
201 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202 if (nid != early_pfn_to_nid(pfn))
203 continue;
204
540557b9 205 if (pfn_present(pfn))
d41dee36
AW
206 nr_pages += PAGES_PER_SECTION;
207 }
208
209 return nr_pages * sizeof(struct page);
210}
211
29751f69
AW
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
220}
221
222/*
ea01ea93 223 * Decode mem_map from the coded memmap
29751f69 224 */
29751f69
AW
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
ea01ea93
BP
227 /* mask off the extra low bits of information */
228 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
229 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
231
a3142c8e 232static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
233 unsigned long pnum, struct page *mem_map,
234 unsigned long *pageblock_bitmap)
29751f69 235{
540557b9 236 if (!present_section(ms))
29751f69
AW
237 return -EINVAL;
238
30c253e6 239 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
240 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241 SECTION_HAS_MEM_MAP;
5c0e3066 242 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
243
244 return 1;
245}
246
04753278 247unsigned long usemap_size(void)
5c0e3066
MG
248{
249 unsigned long size_bytes;
250 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251 size_bytes = roundup(size_bytes, sizeof(unsigned long));
252 return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258 return kmalloc(usemap_size(), GFP_KERNEL);
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
48c90682
YG
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
a4322e1b 264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 265 unsigned long size)
48c90682 266{
99ab7b19
YL
267 unsigned long goal, limit;
268 unsigned long *p;
269 int nid;
48c90682
YG
270 /*
271 * A page may contain usemaps for other sections preventing the
272 * page being freed and making a section unremovable while
c800bcd5 273 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
274 * a pgdat can prevent a section being removed. If section A
275 * contains a pgdat and section B contains the usemap, both
276 * sections become inter-dependent. This allocates usemaps
277 * from the same section as the pgdat where possible to avoid
278 * this problem.
279 */
07b4e2bc 280 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
281 limit = goal + (1UL << PA_SECTION_SHIFT);
282 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
bb016b84
SS
284 p = memblock_virt_alloc_try_nid_nopanic(size,
285 SMP_CACHE_BYTES, goal, limit,
286 nid);
99ab7b19
YL
287 if (!p && limit) {
288 limit = 0;
289 goto again;
290 }
291 return p;
48c90682
YG
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
301
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
306
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
310
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
313
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
1170532b
JP
316 pr_info("node %d must be removed before remove section %ld\n",
317 nid, usemap_snr);
48c90682
YG
318 return;
319 }
320 /*
321 * There is a circular dependency.
322 * Some platforms allow un-removable section because they will just
323 * gather other removable sections for dynamic partitioning.
324 * Just notify un-removable section's number here.
325 */
1170532b
JP
326 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
327 usemap_snr, pgdat_snr, nid);
48c90682
YG
328}
329#else
330static unsigned long * __init
a4322e1b 331sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 332 unsigned long size)
48c90682 333{
bb016b84 334 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
48c90682
YG
335}
336
337static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338{
339}
340#endif /* CONFIG_MEMORY_HOTREMOVE */
341
18732093 342static void __init sparse_early_usemaps_alloc_node(void *data,
a4322e1b
YL
343 unsigned long pnum_begin,
344 unsigned long pnum_end,
345 unsigned long usemap_count, int nodeid)
5c0e3066 346{
a4322e1b
YL
347 void *usemap;
348 unsigned long pnum;
18732093 349 unsigned long **usemap_map = (unsigned long **)data;
a4322e1b 350 int size = usemap_size();
5c0e3066 351
a4322e1b 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 353 size * usemap_count);
f5bf18fa 354 if (!usemap) {
1170532b 355 pr_warn("%s: allocation failed\n", __func__);
238305bb 356 return;
48c90682
YG
357 }
358
f5bf18fa
NA
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 365 }
5c0e3066
MG
366}
367
8f6aac41 368#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 369struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
370{
371 struct page *map;
e48e67e0 372 unsigned long size;
29751f69
AW
373
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
377
e48e67e0 378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
bb016b84
SS
379 map = memblock_virt_alloc_try_nid(size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
381 BOOTMEM_ALLOC_ACCESSIBLE, nid);
8f6aac41
CL
382 return map;
383}
9bdac914
YL
384void __init sparse_mem_maps_populate_node(struct page **map_map,
385 unsigned long pnum_begin,
386 unsigned long pnum_end,
387 unsigned long map_count, int nodeid)
388{
389 void *map;
390 unsigned long pnum;
391 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392
393 map = alloc_remap(nodeid, size * map_count);
394 if (map) {
395 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396 if (!present_section_nr(pnum))
397 continue;
398 map_map[pnum] = map;
399 map += size;
400 }
401 return;
402 }
403
404 size = PAGE_ALIGN(size);
bb016b84
SS
405 map = memblock_virt_alloc_try_nid(size * map_count,
406 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
407 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
9bdac914
YL
408 if (map) {
409 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
410 if (!present_section_nr(pnum))
411 continue;
412 map_map[pnum] = map;
413 map += size;
414 }
415 return;
416 }
417
418 /* fallback */
419 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420 struct mem_section *ms;
421
422 if (!present_section_nr(pnum))
423 continue;
424 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
425 if (map_map[pnum])
426 continue;
427 ms = __nr_to_section(pnum);
1170532b 428 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 429 __func__);
9bdac914
YL
430 ms->section_mem_map = 0;
431 }
432}
8f6aac41
CL
433#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
434
81d0d950 435#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
18732093 436static void __init sparse_early_mem_maps_alloc_node(void *data,
9bdac914
YL
437 unsigned long pnum_begin,
438 unsigned long pnum_end,
439 unsigned long map_count, int nodeid)
440{
18732093 441 struct page **map_map = (struct page **)data;
9bdac914
YL
442 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
443 map_count, nodeid);
444}
81d0d950 445#else
9e5c6da7 446static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
447{
448 struct page *map;
449 struct mem_section *ms = __nr_to_section(pnum);
450 int nid = sparse_early_nid(ms);
451
98f3cfc1 452 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
453 if (map)
454 return map;
455
1170532b 456 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 457 __func__);
802f192e 458 ms->section_mem_map = 0;
29751f69
AW
459 return NULL;
460}
9bdac914 461#endif
29751f69 462
3b32123d 463void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
464{
465}
a4322e1b 466
18732093
WL
467/**
468 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
469 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
470 */
471static void __init alloc_usemap_and_memmap(void (*alloc_func)
472 (void *, unsigned long, unsigned long,
473 unsigned long, int), void *data)
474{
475 unsigned long pnum;
476 unsigned long map_count;
477 int nodeid_begin = 0;
478 unsigned long pnum_begin = 0;
479
480 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
481 struct mem_section *ms;
482
483 if (!present_section_nr(pnum))
484 continue;
485 ms = __nr_to_section(pnum);
486 nodeid_begin = sparse_early_nid(ms);
487 pnum_begin = pnum;
488 break;
489 }
490 map_count = 1;
491 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
492 struct mem_section *ms;
493 int nodeid;
494
495 if (!present_section_nr(pnum))
496 continue;
497 ms = __nr_to_section(pnum);
498 nodeid = sparse_early_nid(ms);
499 if (nodeid == nodeid_begin) {
500 map_count++;
501 continue;
502 }
503 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
504 alloc_func(data, pnum_begin, pnum,
505 map_count, nodeid_begin);
506 /* new start, update count etc*/
507 nodeid_begin = nodeid;
508 pnum_begin = pnum;
509 map_count = 1;
510 }
511 /* ok, last chunk */
512 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
513 map_count, nodeid_begin);
514}
515
193faea9
SR
516/*
517 * Allocate the accumulated non-linear sections, allocate a mem_map
518 * for each and record the physical to section mapping.
519 */
520void __init sparse_init(void)
521{
522 unsigned long pnum;
523 struct page *map;
5c0e3066 524 unsigned long *usemap;
e123dd3f 525 unsigned long **usemap_map;
81d0d950 526 int size;
81d0d950 527#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
81d0d950
YL
528 int size2;
529 struct page **map_map;
530#endif
e123dd3f 531
55878e88
CS
532 /* see include/linux/mmzone.h 'struct mem_section' definition */
533 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
534
ca57df79
XQ
535 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
536 set_pageblock_order();
537
e123dd3f
YL
538 /*
539 * map is using big page (aka 2M in x86 64 bit)
540 * usemap is less one page (aka 24 bytes)
541 * so alloc 2M (with 2M align) and 24 bytes in turn will
542 * make next 2M slip to one more 2M later.
543 * then in big system, the memory will have a lot of holes...
25985edc 544 * here try to allocate 2M pages continuously.
e123dd3f
YL
545 *
546 * powerpc need to call sparse_init_one_section right after each
547 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
548 */
549 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
bb016b84 550 usemap_map = memblock_virt_alloc(size, 0);
e123dd3f
YL
551 if (!usemap_map)
552 panic("can not allocate usemap_map\n");
18732093
WL
553 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
554 (void *)usemap_map);
193faea9 555
9bdac914
YL
556#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
557 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
bb016b84 558 map_map = memblock_virt_alloc(size2, 0);
9bdac914
YL
559 if (!map_map)
560 panic("can not allocate map_map\n");
18732093
WL
561 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
562 (void *)map_map);
9bdac914
YL
563#endif
564
e123dd3f
YL
565 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
566 if (!present_section_nr(pnum))
193faea9 567 continue;
5c0e3066 568
e123dd3f 569 usemap = usemap_map[pnum];
5c0e3066
MG
570 if (!usemap)
571 continue;
572
9bdac914
YL
573#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
574 map = map_map[pnum];
575#else
e123dd3f 576 map = sparse_early_mem_map_alloc(pnum);
9bdac914 577#endif
e123dd3f
YL
578 if (!map)
579 continue;
580
5c0e3066
MG
581 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
582 usemap);
193faea9 583 }
e123dd3f 584
c2b91e2e
YL
585 vmemmap_populate_print_last();
586
9bdac914 587#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
bb016b84 588 memblock_free_early(__pa(map_map), size2);
9bdac914 589#endif
bb016b84 590 memblock_free_early(__pa(usemap_map), size);
193faea9
SR
591}
592
593#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1 594#ifdef CONFIG_SPARSEMEM_VMEMMAP
85b35fea 595static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1
YG
596{
597 /* This will make the necessary allocations eventually. */
598 return sparse_mem_map_populate(pnum, nid);
599}
85b35fea 600static void __kfree_section_memmap(struct page *memmap)
98f3cfc1 601{
0aad818b 602 unsigned long start = (unsigned long)memmap;
85b35fea 603 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
604
605 vmemmap_free(start, end);
98f3cfc1 606}
4edd7cef 607#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 608static void free_map_bootmem(struct page *memmap)
0c0a4a51 609{
0aad818b 610 unsigned long start = (unsigned long)memmap;
81556b02 611 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
612
613 vmemmap_free(start, end);
0c0a4a51 614}
4edd7cef 615#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 616#else
85b35fea 617static struct page *__kmalloc_section_memmap(void)
0b0acbec
DH
618{
619 struct page *page, *ret;
85b35fea 620 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
0b0acbec 621
f2d0aa5b 622 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
623 if (page)
624 goto got_map_page;
625
626 ret = vmalloc(memmap_size);
627 if (ret)
628 goto got_map_ptr;
629
630 return NULL;
631got_map_page:
632 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633got_map_ptr:
0b0acbec
DH
634
635 return ret;
636}
637
85b35fea 638static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1 639{
85b35fea 640 return __kmalloc_section_memmap();
98f3cfc1
YG
641}
642
85b35fea 643static void __kfree_section_memmap(struct page *memmap)
0b0acbec 644{
9e2779fa 645 if (is_vmalloc_addr(memmap))
0b0acbec
DH
646 vfree(memmap);
647 else
648 free_pages((unsigned long)memmap,
85b35fea 649 get_order(sizeof(struct page) * PAGES_PER_SECTION));
0b0acbec 650}
0c0a4a51 651
4edd7cef 652#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 653static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
654{
655 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 656 unsigned long magic, nr_pages;
ae64ffca 657 struct page *page = virt_to_page(memmap);
0c0a4a51 658
81556b02
ZY
659 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
660 >> PAGE_SHIFT;
661
0c0a4a51 662 for (i = 0; i < nr_pages; i++, page++) {
5f24ce5f 663 magic = (unsigned long) page->lru.next;
0c0a4a51
YG
664
665 BUG_ON(magic == NODE_INFO);
666
667 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
668 removing_section_nr = page->private;
669
670 /*
671 * When this function is called, the removing section is
672 * logical offlined state. This means all pages are isolated
673 * from page allocator. If removing section's memmap is placed
674 * on the same section, it must not be freed.
675 * If it is freed, page allocator may allocate it which will
676 * be removed physically soon.
677 */
678 if (maps_section_nr != removing_section_nr)
679 put_page_bootmem(page);
680 }
681}
4edd7cef 682#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 683#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 684
29751f69
AW
685/*
686 * returns the number of sections whose mem_maps were properly
687 * set. If this is <=0, then that means that the passed-in
688 * map was not consumed and must be freed.
689 */
85b35fea 690int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
29751f69 691{
0b0acbec
DH
692 unsigned long section_nr = pfn_to_section_nr(start_pfn);
693 struct pglist_data *pgdat = zone->zone_pgdat;
694 struct mem_section *ms;
695 struct page *memmap;
5c0e3066 696 unsigned long *usemap;
0b0acbec
DH
697 unsigned long flags;
698 int ret;
29751f69 699
0b0acbec
DH
700 /*
701 * no locking for this, because it does its own
702 * plus, it does a kmalloc
703 */
bbd06825
WC
704 ret = sparse_index_init(section_nr, pgdat->node_id);
705 if (ret < 0 && ret != -EEXIST)
706 return ret;
85b35fea 707 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
bbd06825
WC
708 if (!memmap)
709 return -ENOMEM;
5c0e3066 710 usemap = __kmalloc_section_usemap();
bbd06825 711 if (!usemap) {
85b35fea 712 __kfree_section_memmap(memmap);
bbd06825
WC
713 return -ENOMEM;
714 }
0b0acbec
DH
715
716 pgdat_resize_lock(pgdat, &flags);
29751f69 717
0b0acbec
DH
718 ms = __pfn_to_section(start_pfn);
719 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
720 ret = -EEXIST;
721 goto out;
722 }
5c0e3066 723
85b35fea 724 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
3ac19f8e 725
29751f69
AW
726 ms->section_mem_map |= SECTION_MARKED_PRESENT;
727
5c0e3066 728 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 729
0b0acbec
DH
730out:
731 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
732 if (ret <= 0) {
733 kfree(usemap);
85b35fea 734 __kfree_section_memmap(memmap);
bbd06825 735 }
0b0acbec 736 return ret;
29751f69 737}
ea01ea93 738
f3deb687 739#ifdef CONFIG_MEMORY_HOTREMOVE
95a4774d
WC
740#ifdef CONFIG_MEMORY_FAILURE
741static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
742{
743 int i;
744
745 if (!memmap)
746 return;
747
4b94ffdc 748 for (i = 0; i < nr_pages; i++) {
95a4774d 749 if (PageHWPoison(&memmap[i])) {
293c07e3 750 atomic_long_sub(1, &num_poisoned_pages);
95a4774d
WC
751 ClearPageHWPoison(&memmap[i]);
752 }
753 }
754}
755#else
756static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
757{
758}
759#endif
760
4edd7cef
DR
761static void free_section_usemap(struct page *memmap, unsigned long *usemap)
762{
763 struct page *usemap_page;
4edd7cef
DR
764
765 if (!usemap)
766 return;
767
768 usemap_page = virt_to_page(usemap);
769 /*
770 * Check to see if allocation came from hot-plug-add
771 */
772 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
773 kfree(usemap);
774 if (memmap)
85b35fea 775 __kfree_section_memmap(memmap);
4edd7cef
DR
776 return;
777 }
778
779 /*
780 * The usemap came from bootmem. This is packed with other usemaps
781 * on the section which has pgdat at boot time. Just keep it as is now.
782 */
783
81556b02
ZY
784 if (memmap)
785 free_map_bootmem(memmap);
4edd7cef
DR
786}
787
4b94ffdc
DW
788void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
789 unsigned long map_offset)
ea01ea93
BP
790{
791 struct page *memmap = NULL;
cd099682
TC
792 unsigned long *usemap = NULL, flags;
793 struct pglist_data *pgdat = zone->zone_pgdat;
ea01ea93 794
cd099682 795 pgdat_resize_lock(pgdat, &flags);
ea01ea93
BP
796 if (ms->section_mem_map) {
797 usemap = ms->pageblock_flags;
798 memmap = sparse_decode_mem_map(ms->section_mem_map,
799 __section_nr(ms));
800 ms->section_mem_map = 0;
801 ms->pageblock_flags = NULL;
802 }
cd099682 803 pgdat_resize_unlock(pgdat, &flags);
ea01ea93 804
4b94ffdc
DW
805 clear_hwpoisoned_pages(memmap + map_offset,
806 PAGES_PER_SECTION - map_offset);
ea01ea93
BP
807 free_section_usemap(memmap, usemap);
808}
4edd7cef
DR
809#endif /* CONFIG_MEMORY_HOTREMOVE */
810#endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.869316 seconds and 5 git commands to generate.