zram: add copyright
[deliverable/linux.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the license that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 */
12
2db51dae 13/*
c3e3e88a
NC
14 * This allocator is designed for use with zram. Thus, the allocator is
15 * supposed to work well under low memory conditions. In particular, it
16 * never attempts higher order page allocation which is very likely to
17 * fail under memory pressure. On the other hand, if we just use single
18 * (0-order) pages, it would suffer from very high fragmentation --
19 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
20 * This was one of the major issues with its predecessor (xvmalloc).
2db51dae
NG
21 *
22 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
23 * and links them together using various 'struct page' fields. These linked
24 * pages act as a single higher-order page i.e. an object can span 0-order
25 * page boundaries. The code refers to these linked pages as a single entity
26 * called zspage.
27 *
c3e3e88a
NC
28 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
29 * since this satisfies the requirements of all its current users (in the
30 * worst case, page is incompressible and is thus stored "as-is" i.e. in
31 * uncompressed form). For allocation requests larger than this size, failure
32 * is returned (see zs_malloc).
33 *
34 * Additionally, zs_malloc() does not return a dereferenceable pointer.
35 * Instead, it returns an opaque handle (unsigned long) which encodes actual
36 * location of the allocated object. The reason for this indirection is that
37 * zsmalloc does not keep zspages permanently mapped since that would cause
38 * issues on 32-bit systems where the VA region for kernel space mappings
39 * is very small. So, before using the allocating memory, the object has to
40 * be mapped using zs_map_object() to get a usable pointer and subsequently
41 * unmapped using zs_unmap_object().
42 *
2db51dae
NG
43 * Following is how we use various fields and flags of underlying
44 * struct page(s) to form a zspage.
45 *
46 * Usage of struct page fields:
47 * page->first_page: points to the first component (0-order) page
48 * page->index (union with page->freelist): offset of the first object
49 * starting in this page. For the first page, this is
50 * always 0, so we use this field (aka freelist) to point
51 * to the first free object in zspage.
52 * page->lru: links together all component pages (except the first page)
53 * of a zspage
54 *
55 * For _first_ page only:
56 *
57 * page->private (union with page->first_page): refers to the
58 * component page after the first page
59 * page->freelist: points to the first free object in zspage.
60 * Free objects are linked together using in-place
61 * metadata.
62 * page->objects: maximum number of objects we can store in this
63 * zspage (class->zspage_order * PAGE_SIZE / class->size)
64 * page->lru: links together first pages of various zspages.
65 * Basically forming list of zspages in a fullness group.
66 * page->mapping: class index and fullness group of the zspage
67 *
68 * Usage of struct page flags:
69 * PG_private: identifies the first component page
70 * PG_private2: identifies the last component page
71 *
72 */
73
61989a80
NG
74#ifdef CONFIG_ZSMALLOC_DEBUG
75#define DEBUG
76#endif
77
78#include <linux/module.h>
79#include <linux/kernel.h>
80#include <linux/bitops.h>
81#include <linux/errno.h>
82#include <linux/highmem.h>
61989a80
NG
83#include <linux/string.h>
84#include <linux/slab.h>
85#include <asm/tlbflush.h>
86#include <asm/pgtable.h>
87#include <linux/cpumask.h>
88#include <linux/cpu.h>
0cbb613f 89#include <linux/vmalloc.h>
c60369f0 90#include <linux/hardirq.h>
0959c63f
SJ
91#include <linux/spinlock.h>
92#include <linux/types.h>
bcf1647d 93#include <linux/zsmalloc.h>
0959c63f
SJ
94
95/*
96 * This must be power of 2 and greater than of equal to sizeof(link_free).
97 * These two conditions ensure that any 'struct link_free' itself doesn't
98 * span more than 1 page which avoids complex case of mapping 2 pages simply
99 * to restore link_free pointer values.
100 */
101#define ZS_ALIGN 8
102
103/*
104 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
105 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
106 */
107#define ZS_MAX_ZSPAGE_ORDER 2
108#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
109
110/*
111 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 112 * as single (unsigned long) handle value.
0959c63f
SJ
113 *
114 * Note that object index <obj_idx> is relative to system
115 * page <PFN> it is stored in, so for each sub-page belonging
116 * to a zspage, obj_idx starts with 0.
117 *
118 * This is made more complicated by various memory models and PAE.
119 */
120
121#ifndef MAX_PHYSMEM_BITS
122#ifdef CONFIG_HIGHMEM64G
123#define MAX_PHYSMEM_BITS 36
124#else /* !CONFIG_HIGHMEM64G */
125/*
126 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
127 * be PAGE_SHIFT
128 */
129#define MAX_PHYSMEM_BITS BITS_PER_LONG
130#endif
131#endif
132#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
133#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
134#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
135
136#define MAX(a, b) ((a) >= (b) ? (a) : (b))
137/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
138#define ZS_MIN_ALLOC_SIZE \
139 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
140#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
141
142/*
143 * On systems with 4K page size, this gives 254 size classes! There is a
144 * trader-off here:
145 * - Large number of size classes is potentially wasteful as free page are
146 * spread across these classes
147 * - Small number of size classes causes large internal fragmentation
148 * - Probably its better to use specific size classes (empirically
149 * determined). NOTE: all those class sizes must be set as multiple of
150 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
151 *
152 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
153 * (reason above)
154 */
d662b8eb 155#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
156#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
157 ZS_SIZE_CLASS_DELTA + 1)
158
159/*
160 * We do not maintain any list for completely empty or full pages
161 */
162enum fullness_group {
163 ZS_ALMOST_FULL,
164 ZS_ALMOST_EMPTY,
165 _ZS_NR_FULLNESS_GROUPS,
166
167 ZS_EMPTY,
168 ZS_FULL
169};
170
171/*
172 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
173 * n <= N / f, where
174 * n = number of allocated objects
175 * N = total number of objects zspage can store
176 * f = 1/fullness_threshold_frac
177 *
178 * Similarly, we assign zspage to:
179 * ZS_ALMOST_FULL when n > N / f
180 * ZS_EMPTY when n == 0
181 * ZS_FULL when n == N
182 *
183 * (see: fix_fullness_group())
184 */
185static const int fullness_threshold_frac = 4;
186
187struct size_class {
188 /*
189 * Size of objects stored in this class. Must be multiple
190 * of ZS_ALIGN.
191 */
192 int size;
193 unsigned int index;
194
195 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
196 int pages_per_zspage;
197
198 spinlock_t lock;
199
200 /* stats */
201 u64 pages_allocated;
202
203 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
204};
205
206/*
207 * Placed within free objects to form a singly linked list.
208 * For every zspage, first_page->freelist gives head of this list.
209 *
210 * This must be power of 2 and less than or equal to ZS_ALIGN
211 */
212struct link_free {
213 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
214 void *next;
215};
216
217struct zs_pool {
218 struct size_class size_class[ZS_SIZE_CLASSES];
219
220 gfp_t flags; /* allocation flags used when growing pool */
0959c63f 221};
61989a80
NG
222
223/*
224 * A zspage's class index and fullness group
225 * are encoded in its (first)page->mapping
226 */
227#define CLASS_IDX_BITS 28
228#define FULLNESS_BITS 4
229#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
230#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
231
f553646a 232struct mapping_area {
1b945aee 233#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
234 struct vm_struct *vm; /* vm area for mapping object that span pages */
235#else
236 char *vm_buf; /* copy buffer for objects that span pages */
237#endif
238 char *vm_addr; /* address of kmap_atomic()'ed pages */
239 enum zs_mapmode vm_mm; /* mapping mode */
240};
241
242
61989a80
NG
243/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
244static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
245
246static int is_first_page(struct page *page)
247{
a27545bf 248 return PagePrivate(page);
61989a80
NG
249}
250
251static int is_last_page(struct page *page)
252{
a27545bf 253 return PagePrivate2(page);
61989a80
NG
254}
255
256static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
257 enum fullness_group *fullness)
258{
259 unsigned long m;
260 BUG_ON(!is_first_page(page));
261
262 m = (unsigned long)page->mapping;
263 *fullness = m & FULLNESS_MASK;
264 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
265}
266
267static void set_zspage_mapping(struct page *page, unsigned int class_idx,
268 enum fullness_group fullness)
269{
270 unsigned long m;
271 BUG_ON(!is_first_page(page));
272
273 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
274 (fullness & FULLNESS_MASK);
275 page->mapping = (struct address_space *)m;
276}
277
c3e3e88a
NC
278/*
279 * zsmalloc divides the pool into various size classes where each
280 * class maintains a list of zspages where each zspage is divided
281 * into equal sized chunks. Each allocation falls into one of these
282 * classes depending on its size. This function returns index of the
283 * size class which has chunk size big enough to hold the give size.
284 */
61989a80
NG
285static int get_size_class_index(int size)
286{
287 int idx = 0;
288
289 if (likely(size > ZS_MIN_ALLOC_SIZE))
290 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
291 ZS_SIZE_CLASS_DELTA);
292
293 return idx;
294}
295
c3e3e88a
NC
296/*
297 * For each size class, zspages are divided into different groups
298 * depending on how "full" they are. This was done so that we could
299 * easily find empty or nearly empty zspages when we try to shrink
300 * the pool (not yet implemented). This function returns fullness
301 * status of the given page.
302 */
61989a80
NG
303static enum fullness_group get_fullness_group(struct page *page)
304{
305 int inuse, max_objects;
306 enum fullness_group fg;
307 BUG_ON(!is_first_page(page));
308
309 inuse = page->inuse;
310 max_objects = page->objects;
311
312 if (inuse == 0)
313 fg = ZS_EMPTY;
314 else if (inuse == max_objects)
315 fg = ZS_FULL;
316 else if (inuse <= max_objects / fullness_threshold_frac)
317 fg = ZS_ALMOST_EMPTY;
318 else
319 fg = ZS_ALMOST_FULL;
320
321 return fg;
322}
323
c3e3e88a
NC
324/*
325 * Each size class maintains various freelists and zspages are assigned
326 * to one of these freelists based on the number of live objects they
327 * have. This functions inserts the given zspage into the freelist
328 * identified by <class, fullness_group>.
329 */
61989a80
NG
330static void insert_zspage(struct page *page, struct size_class *class,
331 enum fullness_group fullness)
332{
333 struct page **head;
334
335 BUG_ON(!is_first_page(page));
336
337 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
338 return;
339
340 head = &class->fullness_list[fullness];
341 if (*head)
342 list_add_tail(&page->lru, &(*head)->lru);
343
344 *head = page;
345}
346
c3e3e88a
NC
347/*
348 * This function removes the given zspage from the freelist identified
349 * by <class, fullness_group>.
350 */
61989a80
NG
351static void remove_zspage(struct page *page, struct size_class *class,
352 enum fullness_group fullness)
353{
354 struct page **head;
355
356 BUG_ON(!is_first_page(page));
357
358 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
359 return;
360
361 head = &class->fullness_list[fullness];
362 BUG_ON(!*head);
363 if (list_empty(&(*head)->lru))
364 *head = NULL;
365 else if (*head == page)
366 *head = (struct page *)list_entry((*head)->lru.next,
367 struct page, lru);
368
369 list_del_init(&page->lru);
370}
371
c3e3e88a
NC
372/*
373 * Each size class maintains zspages in different fullness groups depending
374 * on the number of live objects they contain. When allocating or freeing
375 * objects, the fullness status of the page can change, say, from ALMOST_FULL
376 * to ALMOST_EMPTY when freeing an object. This function checks if such
377 * a status change has occurred for the given page and accordingly moves the
378 * page from the freelist of the old fullness group to that of the new
379 * fullness group.
380 */
61989a80
NG
381static enum fullness_group fix_fullness_group(struct zs_pool *pool,
382 struct page *page)
383{
384 int class_idx;
385 struct size_class *class;
386 enum fullness_group currfg, newfg;
387
388 BUG_ON(!is_first_page(page));
389
390 get_zspage_mapping(page, &class_idx, &currfg);
391 newfg = get_fullness_group(page);
392 if (newfg == currfg)
393 goto out;
394
395 class = &pool->size_class[class_idx];
396 remove_zspage(page, class, currfg);
397 insert_zspage(page, class, newfg);
398 set_zspage_mapping(page, class_idx, newfg);
399
400out:
401 return newfg;
402}
403
404/*
405 * We have to decide on how many pages to link together
406 * to form a zspage for each size class. This is important
407 * to reduce wastage due to unusable space left at end of
408 * each zspage which is given as:
409 * wastage = Zp - Zp % size_class
410 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
411 *
412 * For example, for size class of 3/8 * PAGE_SIZE, we should
413 * link together 3 PAGE_SIZE sized pages to form a zspage
414 * since then we can perfectly fit in 8 such objects.
415 */
2e3b6154 416static int get_pages_per_zspage(int class_size)
61989a80
NG
417{
418 int i, max_usedpc = 0;
419 /* zspage order which gives maximum used size per KB */
420 int max_usedpc_order = 1;
421
84d4faab 422 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
423 int zspage_size;
424 int waste, usedpc;
425
426 zspage_size = i * PAGE_SIZE;
427 waste = zspage_size % class_size;
428 usedpc = (zspage_size - waste) * 100 / zspage_size;
429
430 if (usedpc > max_usedpc) {
431 max_usedpc = usedpc;
432 max_usedpc_order = i;
433 }
434 }
435
436 return max_usedpc_order;
437}
438
439/*
440 * A single 'zspage' is composed of many system pages which are
441 * linked together using fields in struct page. This function finds
442 * the first/head page, given any component page of a zspage.
443 */
444static struct page *get_first_page(struct page *page)
445{
446 if (is_first_page(page))
447 return page;
448 else
449 return page->first_page;
450}
451
452static struct page *get_next_page(struct page *page)
453{
454 struct page *next;
455
456 if (is_last_page(page))
457 next = NULL;
458 else if (is_first_page(page))
e842b976 459 next = (struct page *)page_private(page);
61989a80
NG
460 else
461 next = list_entry(page->lru.next, struct page, lru);
462
463 return next;
464}
465
67296874
OH
466/*
467 * Encode <page, obj_idx> as a single handle value.
468 * On hardware platforms with physical memory starting at 0x0 the pfn
469 * could be 0 so we ensure that the handle will never be 0 by adjusting the
470 * encoded obj_idx value before encoding.
471 */
61989a80
NG
472static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
473{
474 unsigned long handle;
475
476 if (!page) {
477 BUG_ON(obj_idx);
478 return NULL;
479 }
480
481 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
67296874 482 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
61989a80
NG
483
484 return (void *)handle;
485}
486
67296874
OH
487/*
488 * Decode <page, obj_idx> pair from the given object handle. We adjust the
489 * decoded obj_idx back to its original value since it was adjusted in
490 * obj_location_to_handle().
491 */
c2344348 492static void obj_handle_to_location(unsigned long handle, struct page **page,
61989a80
NG
493 unsigned long *obj_idx)
494{
c2344348 495 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
67296874 496 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
61989a80
NG
497}
498
499static unsigned long obj_idx_to_offset(struct page *page,
500 unsigned long obj_idx, int class_size)
501{
502 unsigned long off = 0;
503
504 if (!is_first_page(page))
505 off = page->index;
506
507 return off + obj_idx * class_size;
508}
509
f4477e90
NG
510static void reset_page(struct page *page)
511{
512 clear_bit(PG_private, &page->flags);
513 clear_bit(PG_private_2, &page->flags);
514 set_page_private(page, 0);
515 page->mapping = NULL;
516 page->freelist = NULL;
22b751c3 517 page_mapcount_reset(page);
f4477e90
NG
518}
519
61989a80
NG
520static void free_zspage(struct page *first_page)
521{
f4477e90 522 struct page *nextp, *tmp, *head_extra;
61989a80
NG
523
524 BUG_ON(!is_first_page(first_page));
525 BUG_ON(first_page->inuse);
526
f4477e90 527 head_extra = (struct page *)page_private(first_page);
61989a80 528
f4477e90 529 reset_page(first_page);
61989a80
NG
530 __free_page(first_page);
531
532 /* zspage with only 1 system page */
f4477e90 533 if (!head_extra)
61989a80
NG
534 return;
535
f4477e90 536 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 537 list_del(&nextp->lru);
f4477e90 538 reset_page(nextp);
61989a80
NG
539 __free_page(nextp);
540 }
f4477e90
NG
541 reset_page(head_extra);
542 __free_page(head_extra);
61989a80
NG
543}
544
545/* Initialize a newly allocated zspage */
546static void init_zspage(struct page *first_page, struct size_class *class)
547{
548 unsigned long off = 0;
549 struct page *page = first_page;
550
551 BUG_ON(!is_first_page(first_page));
552 while (page) {
553 struct page *next_page;
554 struct link_free *link;
555 unsigned int i, objs_on_page;
556
557 /*
558 * page->index stores offset of first object starting
559 * in the page. For the first page, this is always 0,
560 * so we use first_page->index (aka ->freelist) to store
561 * head of corresponding zspage's freelist.
562 */
563 if (page != first_page)
564 page->index = off;
565
566 link = (struct link_free *)kmap_atomic(page) +
567 off / sizeof(*link);
568 objs_on_page = (PAGE_SIZE - off) / class->size;
569
570 for (i = 1; i <= objs_on_page; i++) {
571 off += class->size;
572 if (off < PAGE_SIZE) {
573 link->next = obj_location_to_handle(page, i);
574 link += class->size / sizeof(*link);
575 }
576 }
577
578 /*
579 * We now come to the last (full or partial) object on this
580 * page, which must point to the first object on the next
581 * page (if present)
582 */
583 next_page = get_next_page(page);
584 link->next = obj_location_to_handle(next_page, 0);
585 kunmap_atomic(link);
586 page = next_page;
587 off = (off + class->size) % PAGE_SIZE;
588 }
589}
590
591/*
592 * Allocate a zspage for the given size class
593 */
594static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
595{
596 int i, error;
b4b700c5 597 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
598
599 /*
600 * Allocate individual pages and link them together as:
601 * 1. first page->private = first sub-page
602 * 2. all sub-pages are linked together using page->lru
603 * 3. each sub-page is linked to the first page using page->first_page
604 *
605 * For each size class, First/Head pages are linked together using
606 * page->lru. Also, we set PG_private to identify the first page
607 * (i.e. no other sub-page has this flag set) and PG_private_2 to
608 * identify the last page.
609 */
610 error = -ENOMEM;
2e3b6154 611 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 612 struct page *page;
61989a80
NG
613
614 page = alloc_page(flags);
615 if (!page)
616 goto cleanup;
617
618 INIT_LIST_HEAD(&page->lru);
619 if (i == 0) { /* first page */
a27545bf 620 SetPagePrivate(page);
61989a80
NG
621 set_page_private(page, 0);
622 first_page = page;
623 first_page->inuse = 0;
624 }
625 if (i == 1)
e842b976 626 set_page_private(first_page, (unsigned long)page);
61989a80
NG
627 if (i >= 1)
628 page->first_page = first_page;
629 if (i >= 2)
630 list_add(&page->lru, &prev_page->lru);
2e3b6154 631 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 632 SetPagePrivate2(page);
61989a80
NG
633 prev_page = page;
634 }
635
636 init_zspage(first_page, class);
637
638 first_page->freelist = obj_location_to_handle(first_page, 0);
639 /* Maximum number of objects we can store in this zspage */
2e3b6154 640 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
641
642 error = 0; /* Success */
643
644cleanup:
645 if (unlikely(error) && first_page) {
646 free_zspage(first_page);
647 first_page = NULL;
648 }
649
650 return first_page;
651}
652
653static struct page *find_get_zspage(struct size_class *class)
654{
655 int i;
656 struct page *page;
657
658 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
659 page = class->fullness_list[i];
660 if (page)
661 break;
662 }
663
664 return page;
665}
666
1b945aee 667#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
668static inline int __zs_cpu_up(struct mapping_area *area)
669{
670 /*
671 * Make sure we don't leak memory if a cpu UP notification
672 * and zs_init() race and both call zs_cpu_up() on the same cpu
673 */
674 if (area->vm)
675 return 0;
676 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
677 if (!area->vm)
678 return -ENOMEM;
679 return 0;
680}
681
682static inline void __zs_cpu_down(struct mapping_area *area)
683{
684 if (area->vm)
685 free_vm_area(area->vm);
686 area->vm = NULL;
687}
688
689static inline void *__zs_map_object(struct mapping_area *area,
690 struct page *pages[2], int off, int size)
691{
692 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
693 area->vm_addr = area->vm->addr;
694 return area->vm_addr + off;
695}
696
697static inline void __zs_unmap_object(struct mapping_area *area,
698 struct page *pages[2], int off, int size)
699{
700 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 701
d95abbbb 702 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
703}
704
1b945aee 705#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
706
707static inline int __zs_cpu_up(struct mapping_area *area)
708{
709 /*
710 * Make sure we don't leak memory if a cpu UP notification
711 * and zs_init() race and both call zs_cpu_up() on the same cpu
712 */
713 if (area->vm_buf)
714 return 0;
715 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
716 if (!area->vm_buf)
717 return -ENOMEM;
718 return 0;
719}
720
721static inline void __zs_cpu_down(struct mapping_area *area)
722{
723 if (area->vm_buf)
724 free_page((unsigned long)area->vm_buf);
725 area->vm_buf = NULL;
726}
727
728static void *__zs_map_object(struct mapping_area *area,
729 struct page *pages[2], int off, int size)
5f601902 730{
5f601902
SJ
731 int sizes[2];
732 void *addr;
f553646a 733 char *buf = area->vm_buf;
5f601902 734
f553646a
SJ
735 /* disable page faults to match kmap_atomic() return conditions */
736 pagefault_disable();
737
738 /* no read fastpath */
739 if (area->vm_mm == ZS_MM_WO)
740 goto out;
5f601902
SJ
741
742 sizes[0] = PAGE_SIZE - off;
743 sizes[1] = size - sizes[0];
744
5f601902
SJ
745 /* copy object to per-cpu buffer */
746 addr = kmap_atomic(pages[0]);
747 memcpy(buf, addr + off, sizes[0]);
748 kunmap_atomic(addr);
749 addr = kmap_atomic(pages[1]);
750 memcpy(buf + sizes[0], addr, sizes[1]);
751 kunmap_atomic(addr);
f553646a
SJ
752out:
753 return area->vm_buf;
5f601902
SJ
754}
755
f553646a
SJ
756static void __zs_unmap_object(struct mapping_area *area,
757 struct page *pages[2], int off, int size)
5f601902 758{
5f601902
SJ
759 int sizes[2];
760 void *addr;
f553646a 761 char *buf = area->vm_buf;
5f601902 762
f553646a
SJ
763 /* no write fastpath */
764 if (area->vm_mm == ZS_MM_RO)
765 goto out;
5f601902
SJ
766
767 sizes[0] = PAGE_SIZE - off;
768 sizes[1] = size - sizes[0];
769
770 /* copy per-cpu buffer to object */
771 addr = kmap_atomic(pages[0]);
772 memcpy(addr + off, buf, sizes[0]);
773 kunmap_atomic(addr);
774 addr = kmap_atomic(pages[1]);
775 memcpy(addr, buf + sizes[0], sizes[1]);
776 kunmap_atomic(addr);
f553646a
SJ
777
778out:
779 /* enable page faults to match kunmap_atomic() return conditions */
780 pagefault_enable();
5f601902 781}
61989a80 782
1b945aee 783#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 784
61989a80
NG
785static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
786 void *pcpu)
787{
f553646a 788 int ret, cpu = (long)pcpu;
61989a80
NG
789 struct mapping_area *area;
790
791 switch (action) {
792 case CPU_UP_PREPARE:
793 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
794 ret = __zs_cpu_up(area);
795 if (ret)
796 return notifier_from_errno(ret);
61989a80
NG
797 break;
798 case CPU_DEAD:
799 case CPU_UP_CANCELED:
800 area = &per_cpu(zs_map_area, cpu);
f553646a 801 __zs_cpu_down(area);
61989a80
NG
802 break;
803 }
804
805 return NOTIFY_OK;
806}
807
808static struct notifier_block zs_cpu_nb = {
809 .notifier_call = zs_cpu_notifier
810};
811
812static void zs_exit(void)
813{
814 int cpu;
815
816 for_each_online_cpu(cpu)
817 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
818 unregister_cpu_notifier(&zs_cpu_nb);
819}
820
821static int zs_init(void)
822{
823 int cpu, ret;
824
825 register_cpu_notifier(&zs_cpu_nb);
826 for_each_online_cpu(cpu) {
827 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
828 if (notifier_to_errno(ret))
829 goto fail;
830 }
831 return 0;
832fail:
833 zs_exit();
834 return notifier_to_errno(ret);
835}
836
4bbc0bc0
DB
837/**
838 * zs_create_pool - Creates an allocation pool to work from.
0d145a50 839 * @flags: allocation flags used to allocate pool metadata
4bbc0bc0
DB
840 *
841 * This function must be called before anything when using
842 * the zsmalloc allocator.
843 *
844 * On success, a pointer to the newly created pool is returned,
845 * otherwise NULL.
846 */
0d145a50 847struct zs_pool *zs_create_pool(gfp_t flags)
61989a80 848{
069f101f 849 int i, ovhd_size;
61989a80
NG
850 struct zs_pool *pool;
851
61989a80
NG
852 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
853 pool = kzalloc(ovhd_size, GFP_KERNEL);
854 if (!pool)
855 return NULL;
856
857 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
858 int size;
859 struct size_class *class;
860
861 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
862 if (size > ZS_MAX_ALLOC_SIZE)
863 size = ZS_MAX_ALLOC_SIZE;
864
865 class = &pool->size_class[i];
866 class->size = size;
867 class->index = i;
868 spin_lock_init(&class->lock);
2e3b6154 869 class->pages_per_zspage = get_pages_per_zspage(size);
61989a80
NG
870
871 }
872
61989a80 873 pool->flags = flags;
61989a80 874
61989a80
NG
875 return pool;
876}
877EXPORT_SYMBOL_GPL(zs_create_pool);
878
879void zs_destroy_pool(struct zs_pool *pool)
880{
881 int i;
882
883 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
884 int fg;
885 struct size_class *class = &pool->size_class[i];
886
887 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
888 if (class->fullness_list[fg]) {
93ad5ab5 889 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
61989a80
NG
890 class->size, fg);
891 }
892 }
893 }
894 kfree(pool);
895}
896EXPORT_SYMBOL_GPL(zs_destroy_pool);
897
898/**
899 * zs_malloc - Allocate block of given size from pool.
900 * @pool: pool to allocate from
901 * @size: size of block to allocate
61989a80 902 *
00a61d86 903 * On success, handle to the allocated object is returned,
c2344348 904 * otherwise 0.
61989a80
NG
905 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
906 */
c2344348 907unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 908{
c2344348 909 unsigned long obj;
61989a80
NG
910 struct link_free *link;
911 int class_idx;
912 struct size_class *class;
913
914 struct page *first_page, *m_page;
915 unsigned long m_objidx, m_offset;
916
917 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c2344348 918 return 0;
61989a80
NG
919
920 class_idx = get_size_class_index(size);
921 class = &pool->size_class[class_idx];
922 BUG_ON(class_idx != class->index);
923
924 spin_lock(&class->lock);
925 first_page = find_get_zspage(class);
926
927 if (!first_page) {
928 spin_unlock(&class->lock);
929 first_page = alloc_zspage(class, pool->flags);
930 if (unlikely(!first_page))
c2344348 931 return 0;
61989a80
NG
932
933 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
934 spin_lock(&class->lock);
2e3b6154 935 class->pages_allocated += class->pages_per_zspage;
61989a80
NG
936 }
937
c2344348 938 obj = (unsigned long)first_page->freelist;
61989a80
NG
939 obj_handle_to_location(obj, &m_page, &m_objidx);
940 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
941
942 link = (struct link_free *)kmap_atomic(m_page) +
943 m_offset / sizeof(*link);
944 first_page->freelist = link->next;
945 memset(link, POISON_INUSE, sizeof(*link));
946 kunmap_atomic(link);
947
948 first_page->inuse++;
949 /* Now move the zspage to another fullness group, if required */
950 fix_fullness_group(pool, first_page);
951 spin_unlock(&class->lock);
952
953 return obj;
954}
955EXPORT_SYMBOL_GPL(zs_malloc);
956
c2344348 957void zs_free(struct zs_pool *pool, unsigned long obj)
61989a80
NG
958{
959 struct link_free *link;
960 struct page *first_page, *f_page;
961 unsigned long f_objidx, f_offset;
962
963 int class_idx;
964 struct size_class *class;
965 enum fullness_group fullness;
966
967 if (unlikely(!obj))
968 return;
969
970 obj_handle_to_location(obj, &f_page, &f_objidx);
971 first_page = get_first_page(f_page);
972
973 get_zspage_mapping(first_page, &class_idx, &fullness);
974 class = &pool->size_class[class_idx];
975 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
976
977 spin_lock(&class->lock);
978
979 /* Insert this object in containing zspage's freelist */
980 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
981 + f_offset);
982 link->next = first_page->freelist;
983 kunmap_atomic(link);
c2344348 984 first_page->freelist = (void *)obj;
61989a80
NG
985
986 first_page->inuse--;
987 fullness = fix_fullness_group(pool, first_page);
988
989 if (fullness == ZS_EMPTY)
2e3b6154 990 class->pages_allocated -= class->pages_per_zspage;
61989a80
NG
991
992 spin_unlock(&class->lock);
993
994 if (fullness == ZS_EMPTY)
995 free_zspage(first_page);
996}
997EXPORT_SYMBOL_GPL(zs_free);
998
00a61d86
MK
999/**
1000 * zs_map_object - get address of allocated object from handle.
1001 * @pool: pool from which the object was allocated
1002 * @handle: handle returned from zs_malloc
1003 *
1004 * Before using an object allocated from zs_malloc, it must be mapped using
1005 * this function. When done with the object, it must be unmapped using
166cfda7
SJ
1006 * zs_unmap_object.
1007 *
1008 * Only one object can be mapped per cpu at a time. There is no protection
1009 * against nested mappings.
1010 *
1011 * This function returns with preemption and page faults disabled.
396b7fd6 1012 */
b7418510
SJ
1013void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1014 enum zs_mapmode mm)
61989a80
NG
1015{
1016 struct page *page;
1017 unsigned long obj_idx, off;
1018
1019 unsigned int class_idx;
1020 enum fullness_group fg;
1021 struct size_class *class;
1022 struct mapping_area *area;
f553646a 1023 struct page *pages[2];
61989a80
NG
1024
1025 BUG_ON(!handle);
1026
c60369f0
SJ
1027 /*
1028 * Because we use per-cpu mapping areas shared among the
1029 * pools/users, we can't allow mapping in interrupt context
1030 * because it can corrupt another users mappings.
1031 */
1032 BUG_ON(in_interrupt());
1033
61989a80
NG
1034 obj_handle_to_location(handle, &page, &obj_idx);
1035 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1036 class = &pool->size_class[class_idx];
1037 off = obj_idx_to_offset(page, obj_idx, class->size);
1038
1039 area = &get_cpu_var(zs_map_area);
f553646a 1040 area->vm_mm = mm;
61989a80
NG
1041 if (off + class->size <= PAGE_SIZE) {
1042 /* this object is contained entirely within a page */
1043 area->vm_addr = kmap_atomic(page);
5f601902 1044 return area->vm_addr + off;
61989a80
NG
1045 }
1046
f553646a
SJ
1047 /* this object spans two pages */
1048 pages[0] = page;
1049 pages[1] = get_next_page(page);
1050 BUG_ON(!pages[1]);
b7418510 1051
f553646a 1052 return __zs_map_object(area, pages, off, class->size);
61989a80
NG
1053}
1054EXPORT_SYMBOL_GPL(zs_map_object);
1055
c2344348 1056void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80
NG
1057{
1058 struct page *page;
1059 unsigned long obj_idx, off;
1060
1061 unsigned int class_idx;
1062 enum fullness_group fg;
1063 struct size_class *class;
1064 struct mapping_area *area;
1065
1066 BUG_ON(!handle);
1067
1068 obj_handle_to_location(handle, &page, &obj_idx);
1069 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1070 class = &pool->size_class[class_idx];
1071 off = obj_idx_to_offset(page, obj_idx, class->size);
1072
f553646a
SJ
1073 area = &__get_cpu_var(zs_map_area);
1074 if (off + class->size <= PAGE_SIZE)
1075 kunmap_atomic(area->vm_addr);
1076 else {
1077 struct page *pages[2];
1078
1079 pages[0] = page;
1080 pages[1] = get_next_page(page);
1081 BUG_ON(!pages[1]);
b7418510 1082
f553646a
SJ
1083 __zs_unmap_object(area, pages, off, class->size);
1084 }
61989a80
NG
1085 put_cpu_var(zs_map_area);
1086}
1087EXPORT_SYMBOL_GPL(zs_unmap_object);
1088
1089u64 zs_get_total_size_bytes(struct zs_pool *pool)
1090{
1091 int i;
1092 u64 npages = 0;
1093
1094 for (i = 0; i < ZS_SIZE_CLASSES; i++)
1095 npages += pool->size_class[i].pages_allocated;
1096
1097 return npages << PAGE_SHIFT;
1098}
1099EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
069f101f
BH
1100
1101module_init(zs_init);
1102module_exit(zs_exit);
1103
1104MODULE_LICENSE("Dual BSD/GPL");
1105MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.311592 seconds and 5 git commands to generate.