net: prevent of emerging cross-namespace symlinks
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
8f0f2223
DM
121#include <linux/ipv6.h>
122#include <linux/in.h>
b6b2fed1
DM
123#include <linux/jhash.h>
124#include <linux/random.h>
9cbc1cb8 125#include <trace/events/napi.h>
cf66ba58 126#include <trace/events/net.h>
07dc22e7 127#include <trace/events/skb.h>
5acbbd42 128#include <linux/pci.h>
caeda9b9 129#include <linux/inetdevice.h>
c445477d 130#include <linux/cpu_rmap.h>
c5905afb 131#include <linux/static_key.h>
af12fa6e 132#include <linux/hashtable.h>
60877a32 133#include <linux/vmalloc.h>
529d0489 134#include <linux/if_macvlan.h>
e7fd2885 135#include <linux/errqueue.h>
1da177e4 136
342709ef
PE
137#include "net-sysfs.h"
138
d565b0a1
HX
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
5d38a079
HX
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
1da177e4 145static DEFINE_SPINLOCK(ptype_lock);
62532da9 146static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
62532da9 149static struct list_head offload_base __read_mostly;
1da177e4 150
ae78dbfa 151static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
ae78dbfa 155
1da177e4 156/*
7562f876 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
158 * semaphore.
159 *
c6d14c84 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
7562f876 163 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
1da177e4 175DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
176EXPORT_SYMBOL(dev_base_lock);
177
af12fa6e
ET
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
18afa4b0 184static seqcount_t devnet_rename_seq;
c91f6df2 185
4e985ada
TG
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
881d966b 191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 192{
95c96174
ED
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
08e9897d 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
196}
197
881d966b 198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 199{
7c28bd0b 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
201}
202
e36fa2f7 203static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
204{
205#ifdef CONFIG_RPS
e36fa2f7 206 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
207#endif
208}
209
e36fa2f7 210static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
ce286d32 217/* Device list insertion */
53759be9 218static void list_netdevice(struct net_device *dev)
ce286d32 219{
c346dca1 220 struct net *net = dev_net(dev);
ce286d32
EB
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
c6d14c84 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
ce286d32 229 write_unlock_bh(&dev_base_lock);
4e985ada
TG
230
231 dev_base_seq_inc(net);
ce286d32
EB
232}
233
fb699dfd
ED
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
ce286d32
EB
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
c6d14c84 243 list_del_rcu(&dev->dev_list);
72c9528b 244 hlist_del_rcu(&dev->name_hlist);
fb699dfd 245 hlist_del_rcu(&dev->index_hlist);
ce286d32 246 write_unlock_bh(&dev_base_lock);
4e985ada
TG
247
248 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
249}
250
1da177e4
LT
251/*
252 * Our notifier list
253 */
254
f07d5b94 255static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
bea3348e 261
9958da05 262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 263EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 264
cf508b12 265#ifdef CONFIG_LOCKDEP
723e98b7 266/*
c773e847 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 286
36cbd3dc 287static const char *const netdev_lock_name[] =
723e98b7
JP
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
cf508b12
DM
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
723e98b7
JP
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
cf508b12
DM
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
723e98b7 337#else
cf508b12
DM
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
343{
344}
345#endif
1da177e4
LT
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
1da177e4
LT
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
c07b68e8
ED
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
1da177e4
LT
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
4ec93edb 385 * This call does not sleep therefore it can not
1da177e4
LT
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
c07b68e8 392 struct list_head *head = ptype_head(pt);
1da177e4 393
c07b68e8
ED
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
1da177e4 397}
d1b19dff 398EXPORT_SYMBOL(dev_add_pack);
1da177e4 399
1da177e4
LT
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
4ec93edb 407 * returns.
1da177e4
LT
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
c07b68e8 415 struct list_head *head = ptype_head(pt);
1da177e4
LT
416 struct packet_type *pt1;
417
c07b68e8 418 spin_lock(&ptype_lock);
1da177e4
LT
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
7b6cd1ce 427 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 428out:
c07b68e8 429 spin_unlock(&ptype_lock);
1da177e4 430}
d1b19dff
ED
431EXPORT_SYMBOL(__dev_remove_pack);
432
1da177e4
LT
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
4ec93edb 448
1da177e4
LT
449 synchronize_net();
450}
d1b19dff 451EXPORT_SYMBOL(dev_remove_pack);
1da177e4 452
62532da9
VY
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
1d143d9f 489static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
c53aa505 494 spin_lock(&offload_lock);
62532da9
VY
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
c53aa505 505 spin_unlock(&offload_lock);
62532da9 506}
62532da9
VY
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
1da177e4
LT
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 555 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 580 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
d1b19dff 590EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
881d966b 615 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
c4ea43c5 661 * @net: the applicable net namespace
1da177e4
LT
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
881d966b 671struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 672{
0bd8d536
ED
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 675
b67bfe0d 676 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
0bd8d536 679
1da177e4
LT
680 return NULL;
681}
d1b19dff 682EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 683
72c9528b
ED
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
72c9528b
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
b67bfe0d 701 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
1da177e4
LT
709/**
710 * dev_get_by_name - find a device by its name
c4ea43c5 711 * @net: the applicable net namespace
1da177e4
LT
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
881d966b 721struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
722{
723 struct net_device *dev;
724
72c9528b
ED
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
727 if (dev)
728 dev_hold(dev);
72c9528b 729 rcu_read_unlock();
1da177e4
LT
730 return dev;
731}
d1b19dff 732EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
881d966b 746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 747{
0bd8d536
ED
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 750
b67bfe0d 751 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
752 if (dev->ifindex == ifindex)
753 return dev;
0bd8d536 754
1da177e4
LT
755 return NULL;
756}
d1b19dff 757EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 758
fb699dfd
ED
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
fb699dfd
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
b67bfe0d 775 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
1da177e4
LT
783
784/**
785 * dev_get_by_index - find a device by its ifindex
c4ea43c5 786 * @net: the applicable net namespace
1da177e4
LT
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
881d966b 795struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
796{
797 struct net_device *dev;
798
fb699dfd
ED
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
801 if (dev)
802 dev_hold(dev);
fb699dfd 803 rcu_read_unlock();
1da177e4
LT
804 return dev;
805}
d1b19dff 806EXPORT_SYMBOL(dev_get_by_index);
1da177e4 807
5dbe7c17
NS
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
1da177e4 842/**
941666c2 843 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 844 * @net: the applicable net namespace
1da177e4
LT
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
941666c2 851 * The returned device has not had its ref count increased
1da177e4
LT
852 * and the caller must therefore be careful about locking
853 *
1da177e4
LT
854 */
855
941666c2
ED
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
1da177e4
LT
858{
859 struct net_device *dev;
860
941666c2 861 for_each_netdev_rcu(net, dev)
1da177e4
LT
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
864 return dev;
865
866 return NULL;
1da177e4 867}
941666c2 868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 869
881d966b 870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
871{
872 struct net_device *dev;
873
4e9cac2b 874 ASSERT_RTNL();
881d966b 875 for_each_netdev(net, dev)
4e9cac2b 876 if (dev->type == type)
7562f876
PE
877 return dev;
878
879 return NULL;
4e9cac2b 880}
4e9cac2b
PM
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
881d966b 883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 884{
99fe3c39 885 struct net_device *dev, *ret = NULL;
4e9cac2b 886
99fe3c39
ED
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
1da177e4 896}
1da177e4
LT
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
bb69ae04 900 * dev_get_by_flags_rcu - find any device with given flags
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04
ED
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
1da177e4
LT
908 */
909
bb69ae04 910struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
d1b19dff 911 unsigned short mask)
1da177e4 912{
7562f876 913 struct net_device *dev, *ret;
1da177e4 914
7562f876 915 ret = NULL;
c6d14c84 916 for_each_netdev_rcu(net, dev) {
1da177e4 917 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 918 ret = dev;
1da177e4
LT
919 break;
920 }
921 }
7562f876 922 return ret;
1da177e4 923}
bb69ae04 924EXPORT_SYMBOL(dev_get_by_flags_rcu);
1da177e4
LT
925
926/**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
c7fa9d18
DM
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
1da177e4 933 */
95f050bf 934bool dev_valid_name(const char *name)
1da177e4 935{
c7fa9d18 936 if (*name == '\0')
95f050bf 937 return false;
b6fe17d6 938 if (strlen(name) >= IFNAMSIZ)
95f050bf 939 return false;
c7fa9d18 940 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 941 return false;
c7fa9d18
DM
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
95f050bf 945 return false;
c7fa9d18
DM
946 name++;
947 }
95f050bf 948 return true;
1da177e4 949}
d1b19dff 950EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
951
952/**
b267b179
EB
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
1da177e4 955 * @name: name format string
b267b179 956 * @buf: scratch buffer and result name string
1da177e4
LT
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
965 */
966
b267b179 967static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
968{
969 int i = 0;
1da177e4
LT
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 972 unsigned long *inuse;
1da177e4
LT
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
cfcabdcc 986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
987 if (!inuse)
988 return -ENOMEM;
989
881d966b 990 for_each_netdev(net, d) {
1da177e4
LT
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 997 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
d9031024
OP
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1008 if (!__dev_get_by_name(net, buf))
1da177e4 1009 return i;
1da177e4
LT
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016}
1017
b267b179
EB
1018/**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032int dev_alloc_name(struct net_device *dev, const char *name)
1033{
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
c346dca1
YH
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
b267b179
EB
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044}
d1b19dff 1045EXPORT_SYMBOL(dev_alloc_name);
b267b179 1046
828de4f6
G
1047static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
d9031024 1050{
828de4f6
G
1051 char buf[IFNAMSIZ];
1052 int ret;
8ce6cebc 1053
828de4f6
G
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058}
1059
1060static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063{
1064 BUG_ON(!net);
8ce6cebc 1065
d9031024
OP
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1c5cae81 1069 if (strchr(name, '%'))
828de4f6 1070 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
8ce6cebc
DL
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1075
1076 return 0;
1077}
1da177e4
LT
1078
1079/**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
cf04a4c7 1087int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1088{
238fa362 1089 unsigned char old_assign_type;
fcc5a03a 1090 char oldname[IFNAMSIZ];
1da177e4 1091 int err = 0;
fcc5a03a 1092 int ret;
881d966b 1093 struct net *net;
1da177e4
LT
1094
1095 ASSERT_RTNL();
c346dca1 1096 BUG_ON(!dev_net(dev));
1da177e4 1097
c346dca1 1098 net = dev_net(dev);
1da177e4
LT
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
30e6c9fa 1102 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1105 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1106 return 0;
c91f6df2 1107 }
c8d90dca 1108
fcc5a03a
HX
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
828de4f6 1111 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1112 if (err < 0) {
30e6c9fa 1113 write_seqcount_end(&devnet_rename_seq);
d9031024 1114 return err;
c91f6df2 1115 }
1da177e4 1116
6fe82a39
VF
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
238fa362
TG
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
fcc5a03a 1123rollback:
a1b3f594
EB
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1127 dev->name_assign_type = old_assign_type;
30e6c9fa 1128 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1129 return ret;
dcc99773 1130 }
7f988eab 1131
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1133
5bb025fa
VF
1134 netdev_adjacent_rename_links(dev, oldname);
1135
7f988eab 1136 write_lock_bh(&dev_base_lock);
372b2312 1137 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1144 write_unlock_bh(&dev_base_lock);
1145
056925ab 1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
91e9c07b
ED
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
fcc5a03a 1152 err = ret;
30e6c9fa 1153 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1154 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1155 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1158 goto rollback;
91e9c07b 1159 } else {
7b6cd1ce 1160 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1161 dev->name, ret);
fcc5a03a
HX
1162 }
1163 }
1da177e4
LT
1164
1165 return err;
1166}
1167
0b815a1a
SH
1168/**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
f0db275a 1172 * @len: limit of bytes to copy from info
0b815a1a
SH
1173 *
1174 * Set ifalias for a device,
1175 */
1176int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177{
7364e445
AK
1178 char *new_ifalias;
1179
0b815a1a
SH
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
96ca4a2c 1185 if (!len) {
388dfc2d
SK
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
96ca4a2c
OH
1188 return 0;
1189 }
1190
7364e445
AK
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
0b815a1a 1193 return -ENOMEM;
7364e445 1194 dev->ifalias = new_ifalias;
0b815a1a
SH
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198}
1199
1200
d8a33ac4 1201/**
3041a069 1202 * netdev_features_change - device changes features
d8a33ac4
SH
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207void netdev_features_change(struct net_device *dev)
1208{
056925ab 1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1210}
1211EXPORT_SYMBOL(netdev_features_change);
1212
1da177e4
LT
1213/**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221void netdev_state_change(struct net_device *dev)
1222{
1223 if (dev->flags & IFF_UP) {
54951194
LP
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
7f294054 1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1230 }
1231}
d1b19dff 1232EXPORT_SYMBOL(netdev_state_change);
1da177e4 1233
ee89bab1
AW
1234/**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1245{
ee89bab1
AW
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
c1da4ac7 1249}
ee89bab1 1250EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1251
bd380811 1252static int __dev_open(struct net_device *dev)
1da177e4 1253{
d314774c 1254 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1255 int ret;
1da177e4 1256
e46b66bc
BH
1257 ASSERT_RTNL();
1258
1da177e4
LT
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
ca99ca14
NH
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
66b5552f 1266 netpoll_poll_disable(dev);
ca99ca14 1267
3b8bcfd5
JB
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1da177e4 1273 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1274
d314774c
SH
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
bada339b 1277
d314774c
SH
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1da177e4 1280
66b5552f 1281 netpoll_poll_enable(dev);
ca99ca14 1282
bada339b
JG
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1da177e4 1286 dev->flags |= IFF_UP;
b4bd07c2 1287 net_dmaengine_get();
4417da66 1288 dev_set_rx_mode(dev);
1da177e4 1289 dev_activate(dev);
7bf23575 1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1291 }
bada339b 1292
1da177e4
LT
1293 return ret;
1294}
1295
1296/**
bd380811
PM
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1da177e4 1299 *
bd380811
PM
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1da177e4 1307 */
bd380811
PM
1308int dev_open(struct net_device *dev)
1309{
1310 int ret;
1311
bd380811
PM
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
bd380811
PM
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
7f294054 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323}
1324EXPORT_SYMBOL(dev_open);
1325
44345724 1326static int __dev_close_many(struct list_head *head)
1da177e4 1327{
44345724 1328 struct net_device *dev;
e46b66bc 1329
bd380811 1330 ASSERT_RTNL();
9d5010db
DM
1331 might_sleep();
1332
5cde2829 1333 list_for_each_entry(dev, head, close_list) {
3f4df206 1334 /* Temporarily disable netpoll until the interface is down */
66b5552f 1335 netpoll_poll_disable(dev);
3f4df206 1336
44345724 1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1338
44345724 1339 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1340
44345724
OP
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
4e857c58 1347 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1348 }
1da177e4 1349
44345724 1350 dev_deactivate_many(head);
d8b2a4d2 1351
5cde2829 1352 list_for_each_entry(dev, head, close_list) {
44345724 1353 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1354
44345724
OP
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
44345724 1365 dev->flags &= ~IFF_UP;
44345724 1366 net_dmaengine_put();
66b5552f 1367 netpoll_poll_enable(dev);
44345724
OP
1368 }
1369
1370 return 0;
1371}
1372
1373static int __dev_close(struct net_device *dev)
1374{
f87e6f47 1375 int retval;
44345724
OP
1376 LIST_HEAD(single);
1377
5cde2829 1378 list_add(&dev->close_list, &single);
f87e6f47
LT
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
ca99ca14 1381
f87e6f47 1382 return retval;
44345724
OP
1383}
1384
3fbd8758 1385static int dev_close_many(struct list_head *head)
44345724
OP
1386{
1387 struct net_device *dev, *tmp;
1da177e4 1388
5cde2829
EB
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1391 if (!(dev->flags & IFF_UP))
5cde2829 1392 list_del_init(&dev->close_list);
44345724
OP
1393
1394 __dev_close_many(head);
1da177e4 1395
5cde2829 1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1399 list_del_init(&dev->close_list);
44345724 1400 }
bd380811
PM
1401
1402 return 0;
1403}
1404
1405/**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414int dev_close(struct net_device *dev)
1415{
e14a5993
ED
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1da177e4 1418
5cde2829 1419 list_add(&dev->close_list, &single);
e14a5993
ED
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
da6e378b 1423 return 0;
1da177e4 1424}
d1b19dff 1425EXPORT_SYMBOL(dev_close);
1da177e4
LT
1426
1427
0187bdfb
BH
1428/**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436void dev_disable_lro(struct net_device *dev)
1437{
f11970e3
NH
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
529d0489
MK
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
bc5787c6
MM
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
27660515 1451
22d5969f
MM
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
0187bdfb
BH
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
351638e7
JP
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
0187bdfb 1465
881d966b
EB
1466static int dev_boot_phase = 1;
1467
1da177e4
LT
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
4ec93edb 1478 * to the new notifier to allow device to have a race free
1da177e4
LT
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
fcc5a03a 1485 struct net_device *last;
881d966b 1486 struct net *net;
1da177e4
LT
1487 int err;
1488
1489 rtnl_lock();
f07d5b94 1490 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1491 if (err)
1492 goto unlock;
881d966b
EB
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
351638e7 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1da177e4 1504
351638e7 1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1506 }
1da177e4 1507 }
fcc5a03a
HX
1508
1509unlock:
1da177e4
LT
1510 rtnl_unlock();
1511 return err;
fcc5a03a
HX
1512
1513rollback:
1514 last = dev;
881d966b
EB
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
8f891489 1518 goto outroll;
fcc5a03a 1519
881d966b 1520 if (dev->flags & IFF_UP) {
351638e7
JP
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1524 }
351638e7 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1526 }
fcc5a03a 1527 }
c67625a1 1528
8f891489 1529outroll:
c67625a1 1530 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1531 goto unlock;
1da177e4 1532}
d1b19dff 1533EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
7d3d43da
EB
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1da177e4
LT
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
7d3d43da
EB
1551 struct net_device *dev;
1552 struct net *net;
9f514950
HX
1553 int err;
1554
1555 rtnl_lock();
f07d5b94 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
351638e7
JP
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1566 }
351638e7 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1568 }
1569 }
1570unlock:
9f514950
HX
1571 rtnl_unlock();
1572 return err;
1da177e4 1573}
d1b19dff 1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1575
351638e7
JP
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1d143d9f 1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
351638e7
JP
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
351638e7 1594
1da177e4
LT
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
c4ea43c5 1598 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1599 *
1600 * Call all network notifier blocks. Parameters and return value
f07d5b94 1601 * are as for raw_notifier_call_chain().
1da177e4
LT
1602 */
1603
ad7379d4 1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1605{
351638e7
JP
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1609}
edf947f1 1610EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1611
c5905afb 1612static struct static_key netstamp_needed __read_mostly;
b90e5794 1613#ifdef HAVE_JUMP_LABEL
c5905afb 1614/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1615 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1616 * static_key_slow_dec() calls.
b90e5794
ED
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1da177e4
LT
1620
1621void net_enable_timestamp(void)
1622{
b90e5794
ED
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
c5905afb 1628 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1629 return;
1630 }
1631#endif
c5905afb 1632 static_key_slow_inc(&netstamp_needed);
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1635
1636void net_disable_timestamp(void)
1637{
b90e5794
ED
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
c5905afb 1644 static_key_slow_dec(&netstamp_needed);
1da177e4 1645}
d1b19dff 1646EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1647
3b098e2d 1648static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1649{
588f0330 1650 skb->tstamp.tv64 = 0;
c5905afb 1651 if (static_key_false(&netstamp_needed))
a61bbcf2 1652 __net_timestamp(skb);
1da177e4
LT
1653}
1654
588f0330 1655#define net_timestamp_check(COND, SKB) \
c5905afb 1656 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
3b098e2d 1660
1ee481fb 1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1ee481fb 1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1681
a0265d28
HX
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
44540960
AB
1705/**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
6ec82562 1713 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724{
a0265d28 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1726}
1727EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
71d9dec2
CG
1729static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732{
1080e512
MT
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
71d9dec2
CG
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737}
1738
c0de08d0
EL
1739static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740{
a3d744e9 1741 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750}
1751
1da177e4
LT
1752/*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
f6a78bfc 1757static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1758{
1759 struct packet_type *ptype;
71d9dec2
CG
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
a61bbcf2 1762
1da177e4
LT
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1769 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1777 if (!skb2)
1778 break;
1779
70978182
ED
1780 net_timestamp_set(skb2);
1781
1da177e4
LT
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
459a98ed 1786 skb_reset_mac_header(skb2);
1da177e4 1787
d56f90a7 1788 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
c1d2bbe1 1793 skb_reset_network_header(skb2);
1da177e4
LT
1794 }
1795
b0e380b1 1796 skb2->transport_header = skb2->network_header;
1da177e4 1797 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1798 pt_prev = ptype;
1da177e4
LT
1799 }
1800 }
71d9dec2
CG
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1803 rcu_read_unlock();
1804}
1805
2c53040f
BH
1806/**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
bb134d22 1819static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1820{
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
7b6cd1ce 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
4f57c087
JF
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842}
1843
537c00de
AD
1844#ifdef CONFIG_XPS
1845static DEFINE_MUTEX(xps_map_mutex);
1846#define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
10cdc3f3
AD
1849static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
537c00de 1851{
10cdc3f3
AD
1852 struct xps_map *map = NULL;
1853 int pos;
537c00de 1854
10cdc3f3
AD
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1857
10cdc3f3
AD
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
537c00de
AD
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
10cdc3f3 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
10cdc3f3 1867 break;
537c00de 1868 }
537c00de
AD
1869 }
1870
10cdc3f3
AD
1871 return map;
1872}
1873
024e9679 1874static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1875{
1876 struct xps_dev_maps *dev_maps;
024e9679 1877 int cpu, i;
10cdc3f3
AD
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
024e9679
AD
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
10cdc3f3
AD
1892 active = true;
1893 }
1894
1895 if (!active) {
537c00de
AD
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
024e9679
AD
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
537c00de
AD
1904out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906}
1907
01c5f864
AD
1908static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910{
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941}
1942
3573540c
MT
1943int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
537c00de 1945{
01c5f864 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1947 struct xps_map *map, *new_map;
537c00de 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
537c00de
AD
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
01c5f864
AD
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
01c5f864 1965 return -ENOMEM;
2bb60cb9 1966 }
01c5f864
AD
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
537c00de 1981 for_each_possible_cpu(cpu) {
01c5f864
AD
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
537c00de 1992#ifdef CONFIG_NUMA
537c00de
AD
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
537c00de 1997#endif
01c5f864
AD
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2002 }
01c5f864 2003
537c00de
AD
2004 }
2005
01c5f864
AD
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
537c00de 2008 /* Cleanup old maps */
01c5f864
AD
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
537c00de 2016
01c5f864 2017 kfree_rcu(dev_maps, rcu);
537c00de
AD
2018 }
2019
01c5f864
AD
2020 dev_maps = new_dev_maps;
2021 active = true;
537c00de 2022
01c5f864
AD
2023out_no_new_maps:
2024 /* update Tx queue numa node */
537c00de
AD
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
01c5f864
AD
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047out_no_maps:
537c00de
AD
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051error:
01c5f864
AD
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
537c00de
AD
2061 mutex_unlock(&xps_map_mutex);
2062
537c00de
AD
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065}
2066EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068#endif
f0796d5c
JF
2069/*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
e6484930 2073int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2074{
1d24eb48
TH
2075 int rc;
2076
e6484930
TH
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
f0796d5c 2079
5c56580b
BH
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2082 ASSERT_RTNL();
2083
1d24eb48
TH
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
bf264145
TH
2086 if (rc)
2087 return rc;
2088
4f57c087
JF
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
024e9679 2092 if (txq < dev->real_num_tx_queues) {
e6484930 2093 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2094#ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096#endif
2097 }
f0796d5c 2098 }
e6484930
TH
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
f0796d5c
JF
2102}
2103EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2104
a953be53 2105#ifdef CONFIG_SYSFS
62fe0b40
BH
2106/**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2113 * negative error code. If called before registration, it always
2114 * succeeds.
62fe0b40
BH
2115 */
2116int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117{
2118 int rc;
2119
bd25fa7b
TH
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
62fe0b40
BH
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
62fe0b40
BH
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
62fe0b40
BH
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134}
2135EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136#endif
2137
2c53040f
BH
2138/**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
a55b138b 2144int netif_get_num_default_rss_queues(void)
16917b87
YM
2145{
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147}
2148EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
def82a1d 2150static inline void __netif_reschedule(struct Qdisc *q)
56079431 2151{
def82a1d
JP
2152 struct softnet_data *sd;
2153 unsigned long flags;
56079431 2154
def82a1d
JP
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
a9cbd588
CG
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162}
2163
2164void __netif_schedule(struct Qdisc *q)
2165{
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
56079431
DV
2168}
2169EXPORT_SYMBOL(__netif_schedule);
2170
e6247027
ED
2171struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173};
2174
2175static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2176{
e6247027
ED
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178}
2179
2180void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2181{
e6247027 2182 unsigned long flags;
56079431 2183
e6247027
ED
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
bea3348e 2189 }
e6247027
ED
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
56079431 2196}
e6247027 2197EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2198
e6247027 2199void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2200{
2201 if (in_irq() || irqs_disabled())
e6247027 2202 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2203 else
2204 dev_kfree_skb(skb);
2205}
e6247027 2206EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2207
2208
bea3348e
SH
2209/**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
56079431
DV
2215void netif_device_detach(struct net_device *dev)
2216{
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
d543103a 2219 netif_tx_stop_all_queues(dev);
56079431
DV
2220 }
2221}
2222EXPORT_SYMBOL(netif_device_detach);
2223
bea3348e
SH
2224/**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
56079431
DV
2230void netif_device_attach(struct net_device *dev)
2231{
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
d543103a 2234 netif_tx_wake_all_queues(dev);
4ec93edb 2235 __netdev_watchdog_up(dev);
56079431
DV
2236 }
2237}
2238EXPORT_SYMBOL(netif_device_attach);
2239
36c92474
BH
2240static void skb_warn_bad_offload(const struct sk_buff *skb)
2241{
65e9d2fa 2242 static const netdev_features_t null_features = 0;
36c92474
BH
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
c846ad9b
BG
2246 if (!net_ratelimit())
2247 return;
2248
36c92474
BH
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258}
2259
1da177e4
LT
2260/*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
84fa7933 2264int skb_checksum_help(struct sk_buff *skb)
1da177e4 2265{
d3bc23e7 2266 __wsum csum;
663ead3b 2267 int ret = 0, offset;
1da177e4 2268
84fa7933 2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
1da177e4
LT
2275 }
2276
cef401de
ED
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
55508d60 2286 offset = skb_checksum_start_offset(skb);
a030847e
HX
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
a030847e 2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2301out_set_summed:
1da177e4 2302 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2303out:
1da177e4
LT
2304 return ret;
2305}
d1b19dff 2306EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2307
53d6471c 2308__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2309{
4b9b1cdf 2310 unsigned int vlan_depth = skb->mac_len;
252e3346 2311 __be16 type = skb->protocol;
f6a78bfc 2312
19acc327
PS
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
4b9b1cdf
NA
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
80019d31 2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
7b9c6090
JG
2348 }
2349
53d6471c
VY
2350 *depth = vlan_depth;
2351
ec5f0615
PS
2352 return type;
2353}
2354
2355/**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362{
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
53d6471c
VY
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
53d6471c 2371 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2372
2373 rcu_read_lock();
22061d80 2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
84fa7933 2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
05e8ef4a
PS
2377 int err;
2378
f191a1d1 2379 err = ptype->callbacks.gso_send_check(skb);
a430a43d
HX
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
d56f90a7
ACM
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
a430a43d 2385 }
f191a1d1 2386 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
98e399f8 2392 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2393
f6a78bfc
HX
2394 return segs;
2395}
05e8ef4a
PS
2396EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399/* openvswitch calls this on rx path, so we need a different check.
2400 */
2401static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402{
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407}
2408
2409/**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422{
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
a40e0a66 2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
05e8ef4a
PS
2430 return ERR_PTR(err);
2431 }
2432
68c33163 2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
05e8ef4a
PS
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440}
12b0004d 2441EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2442
fb286bb2
HX
2443/* Take action when hardware reception checksum errors are detected. */
2444#ifdef CONFIG_BUG
2445void netdev_rx_csum_fault(struct net_device *dev)
2446{
2447 if (net_ratelimit()) {
7b6cd1ce 2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2449 dump_stack();
2450 }
2451}
2452EXPORT_SYMBOL(netdev_rx_csum_fault);
2453#endif
2454
1da177e4
LT
2455/* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
c1e756bf 2460static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2461{
3d3a8533 2462#ifdef CONFIG_HIGHMEM
1da177e4 2463 int i;
5acbbd42 2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2468 return 1;
ea2ab693 2469 }
5acbbd42 2470 }
1da177e4 2471
5acbbd42
FT
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
1da177e4 2474
9092c658
ED
2475 if (!pdev)
2476 return 0;
5acbbd42 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
3d3a8533 2484#endif
1da177e4
LT
2485 return 0;
2486}
1da177e4 2487
f6a78bfc
HX
2488struct dev_gso_cb {
2489 void (*destructor)(struct sk_buff *skb);
2490};
2491
2492#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493
2494static void dev_gso_skb_destructor(struct sk_buff *skb)
2495{
2496 struct dev_gso_cb *cb;
2497
289dccbe
ED
2498 kfree_skb_list(skb->next);
2499 skb->next = NULL;
f6a78bfc
HX
2500
2501 cb = DEV_GSO_CB(skb);
2502 if (cb->destructor)
2503 cb->destructor(skb);
2504}
2505
2506/**
2507 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2508 * @skb: buffer to segment
91ecb63c 2509 * @features: device features as applicable to this skb
f6a78bfc
HX
2510 *
2511 * This function segments the given skb and stores the list of segments
2512 * in skb->next.
2513 */
c8f44aff 2514static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
f6a78bfc 2515{
f6a78bfc 2516 struct sk_buff *segs;
576a30eb
HX
2517
2518 segs = skb_gso_segment(skb, features);
2519
2520 /* Verifying header integrity only. */
2521 if (!segs)
2522 return 0;
f6a78bfc 2523
801678c5 2524 if (IS_ERR(segs))
f6a78bfc
HX
2525 return PTR_ERR(segs);
2526
2527 skb->next = segs;
2528 DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 skb->destructor = dev_gso_skb_destructor;
2530
2531 return 0;
2532}
2533
3b392ddb
SH
2534/* If MPLS offload request, verify we are testing hardware MPLS features
2535 * instead of standard features for the netdev.
2536 */
2537#ifdef CONFIG_NET_MPLS_GSO
2538static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541{
2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 features &= skb->dev->mpls_features;
2544
2545 return features;
2546}
2547#else
2548static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 netdev_features_t features,
2550 __be16 type)
2551{
2552 return features;
2553}
2554#endif
2555
c8f44aff 2556static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2557 netdev_features_t features)
f01a5236 2558{
53d6471c 2559 int tmp;
3b392ddb
SH
2560 __be16 type;
2561
2562 type = skb_network_protocol(skb, &tmp);
2563 features = net_mpls_features(skb, features, type);
53d6471c 2564
c0d680e5 2565 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2566 !can_checksum_protocol(features, type)) {
f01a5236 2567 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2568 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2569 features &= ~NETIF_F_SG;
2570 }
2571
2572 return features;
2573}
2574
c1e756bf 2575netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6
JG
2576{
2577 __be16 protocol = skb->protocol;
c1e756bf 2578 netdev_features_t features = skb->dev->features;
58e998c6 2579
c1e756bf 2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
30b678d8
BH
2581 features &= ~NETIF_F_GSO_MASK;
2582
8ad227ff 2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
58e998c6
JG
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
f01a5236 2586 } else if (!vlan_tx_tag_present(skb)) {
c1e756bf 2587 return harmonize_features(skb, features);
f01a5236 2588 }
58e998c6 2589
c1e756bf 2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
8ad227ff 2591 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2592
cdbaa0bb 2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
f01a5236 2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
8ad227ff
PM
2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX;
cdbaa0bb 2597
c1e756bf 2598 return harmonize_features(skb, features);
58e998c6 2599}
c1e756bf 2600EXPORT_SYMBOL(netif_skb_features);
58e998c6 2601
fd2ea0a7 2602int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
f663dd9a 2603 struct netdev_queue *txq)
f6a78bfc 2604{
00829823 2605 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 2606 int rc = NETDEV_TX_OK;
ec764bf0 2607 unsigned int skb_len;
00829823 2608
f6a78bfc 2609 if (likely(!skb->next)) {
c8f44aff 2610 netdev_features_t features;
fc741216 2611
93f154b5 2612 /*
25985edc 2613 * If device doesn't need skb->dst, release it right now while
93f154b5
ED
2614 * its hot in this cpu cache
2615 */
adf30907
ED
2616 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2617 skb_dst_drop(skb);
2618
fc741216
JG
2619 features = netif_skb_features(skb);
2620
7b9c6090 2621 if (vlan_tx_tag_present(skb) &&
86a9bad3
PM
2622 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2623 skb = __vlan_put_tag(skb, skb->vlan_proto,
2624 vlan_tx_tag_get(skb));
7b9c6090
JG
2625 if (unlikely(!skb))
2626 goto out;
2627
2628 skb->vlan_tci = 0;
2629 }
2630
fc70fb64
AD
2631 /* If encapsulation offload request, verify we are testing
2632 * hardware encapsulation features instead of standard
2633 * features for the netdev
2634 */
2635 if (skb->encapsulation)
2636 features &= dev->hw_enc_features;
2637
fc741216 2638 if (netif_needs_gso(skb, features)) {
91ecb63c 2639 if (unlikely(dev_gso_segment(skb, features)))
9ccb8975
DM
2640 goto out_kfree_skb;
2641 if (skb->next)
2642 goto gso;
6afff0ca 2643 } else {
02932ce9 2644 if (skb_needs_linearize(skb, features) &&
6afff0ca
JF
2645 __skb_linearize(skb))
2646 goto out_kfree_skb;
2647
2648 /* If packet is not checksummed and device does not
2649 * support checksumming for this protocol, complete
2650 * checksumming here.
2651 */
2652 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fc70fb64
AD
2653 if (skb->encapsulation)
2654 skb_set_inner_transport_header(skb,
2655 skb_checksum_start_offset(skb));
2656 else
2657 skb_set_transport_header(skb,
2658 skb_checksum_start_offset(skb));
03634668 2659 if (!(features & NETIF_F_ALL_CSUM) &&
6afff0ca
JF
2660 skb_checksum_help(skb))
2661 goto out_kfree_skb;
2662 }
9ccb8975
DM
2663 }
2664
b40863c6
ED
2665 if (!list_empty(&ptype_all))
2666 dev_queue_xmit_nit(skb, dev);
2667
ec764bf0 2668 skb_len = skb->len;
d87d04a7 2669 trace_net_dev_start_xmit(skb, dev);
20567661 2670 rc = ops->ndo_start_xmit(skb, dev);
ec764bf0 2671 trace_net_dev_xmit(skb, rc, dev, skb_len);
f663dd9a 2672 if (rc == NETDEV_TX_OK)
08baf561 2673 txq_trans_update(txq);
ac45f602 2674 return rc;
f6a78bfc
HX
2675 }
2676
576a30eb 2677gso:
f6a78bfc
HX
2678 do {
2679 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
2680
2681 skb->next = nskb->next;
2682 nskb->next = NULL;
068a2de5 2683
b40863c6
ED
2684 if (!list_empty(&ptype_all))
2685 dev_queue_xmit_nit(nskb, dev);
2686
ec764bf0 2687 skb_len = nskb->len;
d87d04a7 2688 trace_net_dev_start_xmit(nskb, dev);
f663dd9a 2689 rc = ops->ndo_start_xmit(nskb, dev);
ec764bf0 2690 trace_net_dev_xmit(nskb, rc, dev, skb_len);
ec634fe3 2691 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
2692 if (rc & ~NETDEV_TX_MASK)
2693 goto out_kfree_gso_skb;
f54d9e8d 2694 nskb->next = skb->next;
f6a78bfc
HX
2695 skb->next = nskb;
2696 return rc;
2697 }
08baf561 2698 txq_trans_update(txq);
73466498 2699 if (unlikely(netif_xmit_stopped(txq) && skb->next))
f54d9e8d 2700 return NETDEV_TX_BUSY;
f6a78bfc 2701 } while (skb->next);
4ec93edb 2702
572a9d7b 2703out_kfree_gso_skb:
0c772159 2704 if (likely(skb->next == NULL)) {
572a9d7b 2705 skb->destructor = DEV_GSO_CB(skb)->destructor;
0c772159
SS
2706 consume_skb(skb);
2707 return rc;
2708 }
f6a78bfc
HX
2709out_kfree_skb:
2710 kfree_skb(skb);
7b9c6090 2711out:
572a9d7b 2712 return rc;
f6a78bfc 2713}
a6cc0cfa 2714EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
f6a78bfc 2715
1def9238
ED
2716static void qdisc_pkt_len_init(struct sk_buff *skb)
2717{
2718 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2719
2720 qdisc_skb_cb(skb)->pkt_len = skb->len;
2721
2722 /* To get more precise estimation of bytes sent on wire,
2723 * we add to pkt_len the headers size of all segments
2724 */
2725 if (shinfo->gso_size) {
757b8b1d 2726 unsigned int hdr_len;
15e5a030 2727 u16 gso_segs = shinfo->gso_segs;
1def9238 2728
757b8b1d
ED
2729 /* mac layer + network layer */
2730 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2731
2732 /* + transport layer */
1def9238
ED
2733 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2734 hdr_len += tcp_hdrlen(skb);
2735 else
2736 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2737
2738 if (shinfo->gso_type & SKB_GSO_DODGY)
2739 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2740 shinfo->gso_size);
2741
2742 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2743 }
2744}
2745
bbd8a0d3
KK
2746static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2747 struct net_device *dev,
2748 struct netdev_queue *txq)
2749{
2750 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2751 bool contended;
bbd8a0d3
KK
2752 int rc;
2753
1def9238 2754 qdisc_pkt_len_init(skb);
a2da570d 2755 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2756 /*
2757 * Heuristic to force contended enqueues to serialize on a
2758 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2759 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2760 * often and dequeue packets faster.
79640a4c 2761 */
a2da570d 2762 contended = qdisc_is_running(q);
79640a4c
ED
2763 if (unlikely(contended))
2764 spin_lock(&q->busylock);
2765
bbd8a0d3
KK
2766 spin_lock(root_lock);
2767 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2768 kfree_skb(skb);
2769 rc = NET_XMIT_DROP;
2770 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2771 qdisc_run_begin(q)) {
bbd8a0d3
KK
2772 /*
2773 * This is a work-conserving queue; there are no old skbs
2774 * waiting to be sent out; and the qdisc is not running -
2775 * xmit the skb directly.
2776 */
7fee226a
ED
2777 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2778 skb_dst_force(skb);
bfe0d029 2779
bfe0d029
ED
2780 qdisc_bstats_update(q, skb);
2781
79640a4c
ED
2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2783 if (unlikely(contended)) {
2784 spin_unlock(&q->busylock);
2785 contended = false;
2786 }
bbd8a0d3 2787 __qdisc_run(q);
79640a4c 2788 } else
bc135b23 2789 qdisc_run_end(q);
bbd8a0d3
KK
2790
2791 rc = NET_XMIT_SUCCESS;
2792 } else {
7fee226a 2793 skb_dst_force(skb);
a2da570d 2794 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2795 if (qdisc_run_begin(q)) {
2796 if (unlikely(contended)) {
2797 spin_unlock(&q->busylock);
2798 contended = false;
2799 }
2800 __qdisc_run(q);
2801 }
bbd8a0d3
KK
2802 }
2803 spin_unlock(root_lock);
79640a4c
ED
2804 if (unlikely(contended))
2805 spin_unlock(&q->busylock);
bbd8a0d3
KK
2806 return rc;
2807}
2808
86f8515f 2809#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2810static void skb_update_prio(struct sk_buff *skb)
2811{
6977a79d 2812 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2813
91c68ce2
ED
2814 if (!skb->priority && skb->sk && map) {
2815 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2816
2817 if (prioidx < map->priomap_len)
2818 skb->priority = map->priomap[prioidx];
2819 }
5bc1421e
NH
2820}
2821#else
2822#define skb_update_prio(skb)
2823#endif
2824
745e20f1 2825static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2826#define RECURSION_LIMIT 10
745e20f1 2827
95603e22
MM
2828/**
2829 * dev_loopback_xmit - loop back @skb
2830 * @skb: buffer to transmit
2831 */
2832int dev_loopback_xmit(struct sk_buff *skb)
2833{
2834 skb_reset_mac_header(skb);
2835 __skb_pull(skb, skb_network_offset(skb));
2836 skb->pkt_type = PACKET_LOOPBACK;
2837 skb->ip_summed = CHECKSUM_UNNECESSARY;
2838 WARN_ON(!skb_dst(skb));
2839 skb_dst_force(skb);
2840 netif_rx_ni(skb);
2841 return 0;
2842}
2843EXPORT_SYMBOL(dev_loopback_xmit);
2844
d29f749e 2845/**
9d08dd3d 2846 * __dev_queue_xmit - transmit a buffer
d29f749e 2847 * @skb: buffer to transmit
9d08dd3d 2848 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2849 *
2850 * Queue a buffer for transmission to a network device. The caller must
2851 * have set the device and priority and built the buffer before calling
2852 * this function. The function can be called from an interrupt.
2853 *
2854 * A negative errno code is returned on a failure. A success does not
2855 * guarantee the frame will be transmitted as it may be dropped due
2856 * to congestion or traffic shaping.
2857 *
2858 * -----------------------------------------------------------------------------------
2859 * I notice this method can also return errors from the queue disciplines,
2860 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2861 * be positive.
2862 *
2863 * Regardless of the return value, the skb is consumed, so it is currently
2864 * difficult to retry a send to this method. (You can bump the ref count
2865 * before sending to hold a reference for retry if you are careful.)
2866 *
2867 * When calling this method, interrupts MUST be enabled. This is because
2868 * the BH enable code must have IRQs enabled so that it will not deadlock.
2869 * --BLG
2870 */
0a59f3a9 2871static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2872{
2873 struct net_device *dev = skb->dev;
dc2b4847 2874 struct netdev_queue *txq;
1da177e4
LT
2875 struct Qdisc *q;
2876 int rc = -ENOMEM;
2877
6d1ccff6
ED
2878 skb_reset_mac_header(skb);
2879
e7fd2885
WB
2880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2881 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2882
4ec93edb
YH
2883 /* Disable soft irqs for various locks below. Also
2884 * stops preemption for RCU.
1da177e4 2885 */
4ec93edb 2886 rcu_read_lock_bh();
1da177e4 2887
5bc1421e
NH
2888 skb_update_prio(skb);
2889
f663dd9a 2890 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2891 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2892
1da177e4 2893#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2894 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2895#endif
cf66ba58 2896 trace_net_dev_queue(skb);
1da177e4 2897 if (q->enqueue) {
bbd8a0d3 2898 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2899 goto out;
1da177e4
LT
2900 }
2901
2902 /* The device has no queue. Common case for software devices:
2903 loopback, all the sorts of tunnels...
2904
932ff279
HX
2905 Really, it is unlikely that netif_tx_lock protection is necessary
2906 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2907 counters.)
2908 However, it is possible, that they rely on protection
2909 made by us here.
2910
2911 Check this and shot the lock. It is not prone from deadlocks.
2912 Either shot noqueue qdisc, it is even simpler 8)
2913 */
2914 if (dev->flags & IFF_UP) {
2915 int cpu = smp_processor_id(); /* ok because BHs are off */
2916
c773e847 2917 if (txq->xmit_lock_owner != cpu) {
1da177e4 2918
745e20f1
ED
2919 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2920 goto recursion_alert;
2921
c773e847 2922 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2923
73466498 2924 if (!netif_xmit_stopped(txq)) {
745e20f1 2925 __this_cpu_inc(xmit_recursion);
f663dd9a 2926 rc = dev_hard_start_xmit(skb, dev, txq);
745e20f1 2927 __this_cpu_dec(xmit_recursion);
572a9d7b 2928 if (dev_xmit_complete(rc)) {
c773e847 2929 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2930 goto out;
2931 }
2932 }
c773e847 2933 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2935 dev->name);
1da177e4
LT
2936 } else {
2937 /* Recursion is detected! It is possible,
745e20f1
ED
2938 * unfortunately
2939 */
2940recursion_alert:
e87cc472
JP
2941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2942 dev->name);
1da177e4
LT
2943 }
2944 }
2945
2946 rc = -ENETDOWN;
d4828d85 2947 rcu_read_unlock_bh();
1da177e4 2948
015f0688 2949 atomic_long_inc(&dev->tx_dropped);
1da177e4
LT
2950 kfree_skb(skb);
2951 return rc;
2952out:
d4828d85 2953 rcu_read_unlock_bh();
1da177e4
LT
2954 return rc;
2955}
f663dd9a
JW
2956
2957int dev_queue_xmit(struct sk_buff *skb)
2958{
2959 return __dev_queue_xmit(skb, NULL);
2960}
d1b19dff 2961EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 2962
f663dd9a
JW
2963int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2964{
2965 return __dev_queue_xmit(skb, accel_priv);
2966}
2967EXPORT_SYMBOL(dev_queue_xmit_accel);
2968
1da177e4
LT
2969
2970/*=======================================================================
2971 Receiver routines
2972 =======================================================================*/
2973
6b2bedc3 2974int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
2975EXPORT_SYMBOL(netdev_max_backlog);
2976
3b098e2d 2977int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
2978int netdev_budget __read_mostly = 300;
2979int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 2980
eecfd7c4
ED
2981/* Called with irq disabled */
2982static inline void ____napi_schedule(struct softnet_data *sd,
2983 struct napi_struct *napi)
2984{
2985 list_add_tail(&napi->poll_list, &sd->poll_list);
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987}
2988
bfb564e7
KK
2989#ifdef CONFIG_RPS
2990
2991/* One global table that all flow-based protocols share. */
6e3f7faf 2992struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
2993EXPORT_SYMBOL(rps_sock_flow_table);
2994
c5905afb 2995struct static_key rps_needed __read_mostly;
adc9300e 2996
c445477d
BH
2997static struct rps_dev_flow *
2998set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2999 struct rps_dev_flow *rflow, u16 next_cpu)
3000{
09994d1b 3001 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3002#ifdef CONFIG_RFS_ACCEL
3003 struct netdev_rx_queue *rxqueue;
3004 struct rps_dev_flow_table *flow_table;
3005 struct rps_dev_flow *old_rflow;
3006 u32 flow_id;
3007 u16 rxq_index;
3008 int rc;
3009
3010 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3012 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3013 goto out;
3014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3015 if (rxq_index == skb_get_rx_queue(skb))
3016 goto out;
3017
3018 rxqueue = dev->_rx + rxq_index;
3019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 if (!flow_table)
3021 goto out;
61b905da 3022 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3024 rxq_index, flow_id);
3025 if (rc < 0)
3026 goto out;
3027 old_rflow = rflow;
3028 rflow = &flow_table->flows[flow_id];
c445477d
BH
3029 rflow->filter = rc;
3030 if (old_rflow->filter == rflow->filter)
3031 old_rflow->filter = RPS_NO_FILTER;
3032 out:
3033#endif
3034 rflow->last_qtail =
09994d1b 3035 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3036 }
3037
09994d1b 3038 rflow->cpu = next_cpu;
c445477d
BH
3039 return rflow;
3040}
3041
bfb564e7
KK
3042/*
3043 * get_rps_cpu is called from netif_receive_skb and returns the target
3044 * CPU from the RPS map of the receiving queue for a given skb.
3045 * rcu_read_lock must be held on entry.
3046 */
3047static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3048 struct rps_dev_flow **rflowp)
3049{
3050 struct netdev_rx_queue *rxqueue;
6e3f7faf 3051 struct rps_map *map;
bfb564e7
KK
3052 struct rps_dev_flow_table *flow_table;
3053 struct rps_sock_flow_table *sock_flow_table;
3054 int cpu = -1;
3055 u16 tcpu;
61b905da 3056 u32 hash;
bfb564e7
KK
3057
3058 if (skb_rx_queue_recorded(skb)) {
3059 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3060 if (unlikely(index >= dev->real_num_rx_queues)) {
3061 WARN_ONCE(dev->real_num_rx_queues > 1,
3062 "%s received packet on queue %u, but number "
3063 "of RX queues is %u\n",
3064 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3065 goto done;
3066 }
3067 rxqueue = dev->_rx + index;
3068 } else
3069 rxqueue = dev->_rx;
3070
6e3f7faf
ED
3071 map = rcu_dereference(rxqueue->rps_map);
3072 if (map) {
85875236 3073 if (map->len == 1 &&
33d480ce 3074 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3075 tcpu = map->cpus[0];
3076 if (cpu_online(tcpu))
3077 cpu = tcpu;
3078 goto done;
3079 }
33d480ce 3080 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3081 goto done;
6febfca9 3082 }
bfb564e7 3083
2d47b459 3084 skb_reset_network_header(skb);
61b905da
TH
3085 hash = skb_get_hash(skb);
3086 if (!hash)
bfb564e7
KK
3087 goto done;
3088
fec5e652
TH
3089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3091 if (flow_table && sock_flow_table) {
3092 u16 next_cpu;
3093 struct rps_dev_flow *rflow;
3094
61b905da 3095 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3096 tcpu = rflow->cpu;
3097
61b905da 3098 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3099
3100 /*
3101 * If the desired CPU (where last recvmsg was done) is
3102 * different from current CPU (one in the rx-queue flow
3103 * table entry), switch if one of the following holds:
3104 * - Current CPU is unset (equal to RPS_NO_CPU).
3105 * - Current CPU is offline.
3106 * - The current CPU's queue tail has advanced beyond the
3107 * last packet that was enqueued using this table entry.
3108 * This guarantees that all previous packets for the flow
3109 * have been dequeued, thus preserving in order delivery.
3110 */
3111 if (unlikely(tcpu != next_cpu) &&
3112 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3114 rflow->last_qtail)) >= 0)) {
3115 tcpu = next_cpu;
c445477d 3116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3117 }
c445477d 3118
fec5e652
TH
3119 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3120 *rflowp = rflow;
3121 cpu = tcpu;
3122 goto done;
3123 }
3124 }
3125
0a9627f2 3126 if (map) {
61b905da 3127 tcpu = map->cpus[((u64) hash * map->len) >> 32];
0a9627f2
TH
3128
3129 if (cpu_online(tcpu)) {
3130 cpu = tcpu;
3131 goto done;
3132 }
3133 }
3134
3135done:
0a9627f2
TH
3136 return cpu;
3137}
3138
c445477d
BH
3139#ifdef CONFIG_RFS_ACCEL
3140
3141/**
3142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3143 * @dev: Device on which the filter was set
3144 * @rxq_index: RX queue index
3145 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3146 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3147 *
3148 * Drivers that implement ndo_rx_flow_steer() should periodically call
3149 * this function for each installed filter and remove the filters for
3150 * which it returns %true.
3151 */
3152bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3153 u32 flow_id, u16 filter_id)
3154{
3155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3156 struct rps_dev_flow_table *flow_table;
3157 struct rps_dev_flow *rflow;
3158 bool expire = true;
3159 int cpu;
3160
3161 rcu_read_lock();
3162 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3163 if (flow_table && flow_id <= flow_table->mask) {
3164 rflow = &flow_table->flows[flow_id];
3165 cpu = ACCESS_ONCE(rflow->cpu);
3166 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3167 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3168 rflow->last_qtail) <
3169 (int)(10 * flow_table->mask)))
3170 expire = false;
3171 }
3172 rcu_read_unlock();
3173 return expire;
3174}
3175EXPORT_SYMBOL(rps_may_expire_flow);
3176
3177#endif /* CONFIG_RFS_ACCEL */
3178
0a9627f2 3179/* Called from hardirq (IPI) context */
e36fa2f7 3180static void rps_trigger_softirq(void *data)
0a9627f2 3181{
e36fa2f7
ED
3182 struct softnet_data *sd = data;
3183
eecfd7c4 3184 ____napi_schedule(sd, &sd->backlog);
dee42870 3185 sd->received_rps++;
0a9627f2 3186}
e36fa2f7 3187
fec5e652 3188#endif /* CONFIG_RPS */
0a9627f2 3189
e36fa2f7
ED
3190/*
3191 * Check if this softnet_data structure is another cpu one
3192 * If yes, queue it to our IPI list and return 1
3193 * If no, return 0
3194 */
3195static int rps_ipi_queued(struct softnet_data *sd)
3196{
3197#ifdef CONFIG_RPS
3198 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3199
3200 if (sd != mysd) {
3201 sd->rps_ipi_next = mysd->rps_ipi_list;
3202 mysd->rps_ipi_list = sd;
3203
3204 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3205 return 1;
3206 }
3207#endif /* CONFIG_RPS */
3208 return 0;
3209}
3210
99bbc707
WB
3211#ifdef CONFIG_NET_FLOW_LIMIT
3212int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3213#endif
3214
3215static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3216{
3217#ifdef CONFIG_NET_FLOW_LIMIT
3218 struct sd_flow_limit *fl;
3219 struct softnet_data *sd;
3220 unsigned int old_flow, new_flow;
3221
3222 if (qlen < (netdev_max_backlog >> 1))
3223 return false;
3224
3225 sd = &__get_cpu_var(softnet_data);
3226
3227 rcu_read_lock();
3228 fl = rcu_dereference(sd->flow_limit);
3229 if (fl) {
3958afa1 3230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3231 old_flow = fl->history[fl->history_head];
3232 fl->history[fl->history_head] = new_flow;
3233
3234 fl->history_head++;
3235 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3236
3237 if (likely(fl->buckets[old_flow]))
3238 fl->buckets[old_flow]--;
3239
3240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3241 fl->count++;
3242 rcu_read_unlock();
3243 return true;
3244 }
3245 }
3246 rcu_read_unlock();
3247#endif
3248 return false;
3249}
3250
0a9627f2
TH
3251/*
3252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3253 * queue (may be a remote CPU queue).
3254 */
fec5e652
TH
3255static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3256 unsigned int *qtail)
0a9627f2 3257{
e36fa2f7 3258 struct softnet_data *sd;
0a9627f2 3259 unsigned long flags;
99bbc707 3260 unsigned int qlen;
0a9627f2 3261
e36fa2f7 3262 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3263
3264 local_irq_save(flags);
0a9627f2 3265
e36fa2f7 3266 rps_lock(sd);
99bbc707
WB
3267 qlen = skb_queue_len(&sd->input_pkt_queue);
3268 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
6e7676c1 3269 if (skb_queue_len(&sd->input_pkt_queue)) {
0a9627f2 3270enqueue:
e36fa2f7 3271 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3272 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3273 rps_unlock(sd);
152102c7 3274 local_irq_restore(flags);
0a9627f2
TH
3275 return NET_RX_SUCCESS;
3276 }
3277
ebda37c2
ED
3278 /* Schedule NAPI for backlog device
3279 * We can use non atomic operation since we own the queue lock
3280 */
3281 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3282 if (!rps_ipi_queued(sd))
eecfd7c4 3283 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3284 }
3285 goto enqueue;
3286 }
3287
dee42870 3288 sd->dropped++;
e36fa2f7 3289 rps_unlock(sd);
0a9627f2 3290
0a9627f2
TH
3291 local_irq_restore(flags);
3292
caf586e5 3293 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3294 kfree_skb(skb);
3295 return NET_RX_DROP;
3296}
1da177e4 3297
ae78dbfa 3298static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3299{
b0e28f1e 3300 int ret;
1da177e4 3301
588f0330 3302 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3303
cf66ba58 3304 trace_netif_rx(skb);
df334545 3305#ifdef CONFIG_RPS
c5905afb 3306 if (static_key_false(&rps_needed)) {
fec5e652 3307 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3308 int cpu;
3309
cece1945 3310 preempt_disable();
b0e28f1e 3311 rcu_read_lock();
fec5e652
TH
3312
3313 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3314 if (cpu < 0)
3315 cpu = smp_processor_id();
fec5e652
TH
3316
3317 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3318
b0e28f1e 3319 rcu_read_unlock();
cece1945 3320 preempt_enable();
adc9300e
ED
3321 } else
3322#endif
fec5e652
TH
3323 {
3324 unsigned int qtail;
3325 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3326 put_cpu();
3327 }
b0e28f1e 3328 return ret;
1da177e4 3329}
ae78dbfa
BH
3330
3331/**
3332 * netif_rx - post buffer to the network code
3333 * @skb: buffer to post
3334 *
3335 * This function receives a packet from a device driver and queues it for
3336 * the upper (protocol) levels to process. It always succeeds. The buffer
3337 * may be dropped during processing for congestion control or by the
3338 * protocol layers.
3339 *
3340 * return values:
3341 * NET_RX_SUCCESS (no congestion)
3342 * NET_RX_DROP (packet was dropped)
3343 *
3344 */
3345
3346int netif_rx(struct sk_buff *skb)
3347{
3348 trace_netif_rx_entry(skb);
3349
3350 return netif_rx_internal(skb);
3351}
d1b19dff 3352EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3353
3354int netif_rx_ni(struct sk_buff *skb)
3355{
3356 int err;
3357
ae78dbfa
BH
3358 trace_netif_rx_ni_entry(skb);
3359
1da177e4 3360 preempt_disable();
ae78dbfa 3361 err = netif_rx_internal(skb);
1da177e4
LT
3362 if (local_softirq_pending())
3363 do_softirq();
3364 preempt_enable();
3365
3366 return err;
3367}
1da177e4
LT
3368EXPORT_SYMBOL(netif_rx_ni);
3369
1da177e4
LT
3370static void net_tx_action(struct softirq_action *h)
3371{
3372 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3373
3374 if (sd->completion_queue) {
3375 struct sk_buff *clist;
3376
3377 local_irq_disable();
3378 clist = sd->completion_queue;
3379 sd->completion_queue = NULL;
3380 local_irq_enable();
3381
3382 while (clist) {
3383 struct sk_buff *skb = clist;
3384 clist = clist->next;
3385
547b792c 3386 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3387 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3388 trace_consume_skb(skb);
3389 else
3390 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3391 __kfree_skb(skb);
3392 }
3393 }
3394
3395 if (sd->output_queue) {
37437bb2 3396 struct Qdisc *head;
1da177e4
LT
3397
3398 local_irq_disable();
3399 head = sd->output_queue;
3400 sd->output_queue = NULL;
a9cbd588 3401 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3402 local_irq_enable();
3403
3404 while (head) {
37437bb2
DM
3405 struct Qdisc *q = head;
3406 spinlock_t *root_lock;
3407
1da177e4
LT
3408 head = head->next_sched;
3409
5fb66229 3410 root_lock = qdisc_lock(q);
37437bb2 3411 if (spin_trylock(root_lock)) {
4e857c58 3412 smp_mb__before_atomic();
def82a1d
JP
3413 clear_bit(__QDISC_STATE_SCHED,
3414 &q->state);
37437bb2
DM
3415 qdisc_run(q);
3416 spin_unlock(root_lock);
1da177e4 3417 } else {
195648bb 3418 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3419 &q->state)) {
195648bb 3420 __netif_reschedule(q);
e8a83e10 3421 } else {
4e857c58 3422 smp_mb__before_atomic();
e8a83e10
JP
3423 clear_bit(__QDISC_STATE_SCHED,
3424 &q->state);
3425 }
1da177e4
LT
3426 }
3427 }
3428 }
3429}
3430
ab95bfe0
JP
3431#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3432 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3433/* This hook is defined here for ATM LANE */
3434int (*br_fdb_test_addr_hook)(struct net_device *dev,
3435 unsigned char *addr) __read_mostly;
4fb019a0 3436EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3437#endif
1da177e4 3438
1da177e4
LT
3439#ifdef CONFIG_NET_CLS_ACT
3440/* TODO: Maybe we should just force sch_ingress to be compiled in
3441 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3442 * a compare and 2 stores extra right now if we dont have it on
3443 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3444 * NOTE: This doesn't stop any functionality; if you dont have
3445 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3446 *
3447 */
24824a09 3448static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3449{
1da177e4 3450 struct net_device *dev = skb->dev;
f697c3e8 3451 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3452 int result = TC_ACT_OK;
3453 struct Qdisc *q;
4ec93edb 3454
de384830 3455 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3456 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3457 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3458 return TC_ACT_SHOT;
3459 }
1da177e4 3460
f697c3e8
HX
3461 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3462 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3463
83874000 3464 q = rxq->qdisc;
8d50b53d 3465 if (q != &noop_qdisc) {
83874000 3466 spin_lock(qdisc_lock(q));
a9312ae8
DM
3467 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3468 result = qdisc_enqueue_root(skb, q);
83874000
DM
3469 spin_unlock(qdisc_lock(q));
3470 }
f697c3e8
HX
3471
3472 return result;
3473}
86e65da9 3474
f697c3e8
HX
3475static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3476 struct packet_type **pt_prev,
3477 int *ret, struct net_device *orig_dev)
3478{
24824a09
ED
3479 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3480
3481 if (!rxq || rxq->qdisc == &noop_qdisc)
f697c3e8 3482 goto out;
1da177e4 3483
f697c3e8
HX
3484 if (*pt_prev) {
3485 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3486 *pt_prev = NULL;
1da177e4
LT
3487 }
3488
24824a09 3489 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3490 case TC_ACT_SHOT:
3491 case TC_ACT_STOLEN:
3492 kfree_skb(skb);
3493 return NULL;
3494 }
3495
3496out:
3497 skb->tc_verd = 0;
3498 return skb;
1da177e4
LT
3499}
3500#endif
3501
ab95bfe0
JP
3502/**
3503 * netdev_rx_handler_register - register receive handler
3504 * @dev: device to register a handler for
3505 * @rx_handler: receive handler to register
93e2c32b 3506 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3507 *
e227867f 3508 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3509 * called from __netif_receive_skb. A negative errno code is returned
3510 * on a failure.
3511 *
3512 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3513 *
3514 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3515 */
3516int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3517 rx_handler_func_t *rx_handler,
3518 void *rx_handler_data)
ab95bfe0
JP
3519{
3520 ASSERT_RTNL();
3521
3522 if (dev->rx_handler)
3523 return -EBUSY;
3524
00cfec37 3525 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3526 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3527 rcu_assign_pointer(dev->rx_handler, rx_handler);
3528
3529 return 0;
3530}
3531EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3532
3533/**
3534 * netdev_rx_handler_unregister - unregister receive handler
3535 * @dev: device to unregister a handler from
3536 *
166ec369 3537 * Unregister a receive handler from a device.
ab95bfe0
JP
3538 *
3539 * The caller must hold the rtnl_mutex.
3540 */
3541void netdev_rx_handler_unregister(struct net_device *dev)
3542{
3543
3544 ASSERT_RTNL();
a9b3cd7f 3545 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3546 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3547 * section has a guarantee to see a non NULL rx_handler_data
3548 * as well.
3549 */
3550 synchronize_net();
a9b3cd7f 3551 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3552}
3553EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3554
b4b9e355
MG
3555/*
3556 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3557 * the special handling of PFMEMALLOC skbs.
3558 */
3559static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3560{
3561 switch (skb->protocol) {
2b8837ae
JP
3562 case htons(ETH_P_ARP):
3563 case htons(ETH_P_IP):
3564 case htons(ETH_P_IPV6):
3565 case htons(ETH_P_8021Q):
3566 case htons(ETH_P_8021AD):
b4b9e355
MG
3567 return true;
3568 default:
3569 return false;
3570 }
3571}
3572
9754e293 3573static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3574{
3575 struct packet_type *ptype, *pt_prev;
ab95bfe0 3576 rx_handler_func_t *rx_handler;
f2ccd8fa 3577 struct net_device *orig_dev;
63d8ea7f 3578 struct net_device *null_or_dev;
8a4eb573 3579 bool deliver_exact = false;
1da177e4 3580 int ret = NET_RX_DROP;
252e3346 3581 __be16 type;
1da177e4 3582
588f0330 3583 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3584
cf66ba58 3585 trace_netif_receive_skb(skb);
9b22ea56 3586
cc9bd5ce 3587 orig_dev = skb->dev;
8f903c70 3588
c1d2bbe1 3589 skb_reset_network_header(skb);
fda55eca
ED
3590 if (!skb_transport_header_was_set(skb))
3591 skb_reset_transport_header(skb);
0b5c9db1 3592 skb_reset_mac_len(skb);
1da177e4
LT
3593
3594 pt_prev = NULL;
3595
3596 rcu_read_lock();
3597
63d8ea7f 3598another_round:
b6858177 3599 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3600
3601 __this_cpu_inc(softnet_data.processed);
3602
8ad227ff
PM
3603 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3604 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3605 skb = skb_vlan_untag(skb);
bcc6d479 3606 if (unlikely(!skb))
b4b9e355 3607 goto unlock;
bcc6d479
JP
3608 }
3609
1da177e4
LT
3610#ifdef CONFIG_NET_CLS_ACT
3611 if (skb->tc_verd & TC_NCLS) {
3612 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3613 goto ncls;
3614 }
3615#endif
3616
9754e293 3617 if (pfmemalloc)
b4b9e355
MG
3618 goto skip_taps;
3619
1da177e4 3620 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3621 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3622 if (pt_prev)
f2ccd8fa 3623 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3624 pt_prev = ptype;
3625 }
3626 }
3627
b4b9e355 3628skip_taps:
1da177e4 3629#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3630 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3631 if (!skb)
b4b9e355 3632 goto unlock;
1da177e4
LT
3633ncls:
3634#endif
3635
9754e293 3636 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3637 goto drop;
3638
2425717b
JF
3639 if (vlan_tx_tag_present(skb)) {
3640 if (pt_prev) {
3641 ret = deliver_skb(skb, pt_prev, orig_dev);
3642 pt_prev = NULL;
3643 }
48cc32d3 3644 if (vlan_do_receive(&skb))
2425717b
JF
3645 goto another_round;
3646 else if (unlikely(!skb))
b4b9e355 3647 goto unlock;
2425717b
JF
3648 }
3649
48cc32d3 3650 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3651 if (rx_handler) {
3652 if (pt_prev) {
3653 ret = deliver_skb(skb, pt_prev, orig_dev);
3654 pt_prev = NULL;
3655 }
8a4eb573
JP
3656 switch (rx_handler(&skb)) {
3657 case RX_HANDLER_CONSUMED:
3bc1b1ad 3658 ret = NET_RX_SUCCESS;
b4b9e355 3659 goto unlock;
8a4eb573 3660 case RX_HANDLER_ANOTHER:
63d8ea7f 3661 goto another_round;
8a4eb573
JP
3662 case RX_HANDLER_EXACT:
3663 deliver_exact = true;
3664 case RX_HANDLER_PASS:
3665 break;
3666 default:
3667 BUG();
3668 }
ab95bfe0 3669 }
1da177e4 3670
d4b812de
ED
3671 if (unlikely(vlan_tx_tag_present(skb))) {
3672 if (vlan_tx_tag_get_id(skb))
3673 skb->pkt_type = PACKET_OTHERHOST;
3674 /* Note: we might in the future use prio bits
3675 * and set skb->priority like in vlan_do_receive()
3676 * For the time being, just ignore Priority Code Point
3677 */
3678 skb->vlan_tci = 0;
3679 }
48cc32d3 3680
63d8ea7f 3681 /* deliver only exact match when indicated */
8a4eb573 3682 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3683
1da177e4 3684 type = skb->protocol;
82d8a867
PE
3685 list_for_each_entry_rcu(ptype,
3686 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3687 if (ptype->type == type &&
e3f48d37
JP
3688 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3689 ptype->dev == orig_dev)) {
4ec93edb 3690 if (pt_prev)
f2ccd8fa 3691 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3692 pt_prev = ptype;
3693 }
3694 }
3695
3696 if (pt_prev) {
1080e512 3697 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3698 goto drop;
1080e512
MT
3699 else
3700 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3701 } else {
b4b9e355 3702drop:
caf586e5 3703 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3704 kfree_skb(skb);
3705 /* Jamal, now you will not able to escape explaining
3706 * me how you were going to use this. :-)
3707 */
3708 ret = NET_RX_DROP;
3709 }
3710
b4b9e355 3711unlock:
1da177e4 3712 rcu_read_unlock();
9754e293
DM
3713 return ret;
3714}
3715
3716static int __netif_receive_skb(struct sk_buff *skb)
3717{
3718 int ret;
3719
3720 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3721 unsigned long pflags = current->flags;
3722
3723 /*
3724 * PFMEMALLOC skbs are special, they should
3725 * - be delivered to SOCK_MEMALLOC sockets only
3726 * - stay away from userspace
3727 * - have bounded memory usage
3728 *
3729 * Use PF_MEMALLOC as this saves us from propagating the allocation
3730 * context down to all allocation sites.
3731 */
3732 current->flags |= PF_MEMALLOC;
3733 ret = __netif_receive_skb_core(skb, true);
3734 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3735 } else
3736 ret = __netif_receive_skb_core(skb, false);
3737
1da177e4
LT
3738 return ret;
3739}
0a9627f2 3740
ae78dbfa 3741static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3742{
588f0330 3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3744
c1f19b51
RC
3745 if (skb_defer_rx_timestamp(skb))
3746 return NET_RX_SUCCESS;
3747
df334545 3748#ifdef CONFIG_RPS
c5905afb 3749 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3750 struct rps_dev_flow voidflow, *rflow = &voidflow;
3751 int cpu, ret;
fec5e652 3752
3b098e2d
ED
3753 rcu_read_lock();
3754
3755 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3756
3b098e2d
ED
3757 if (cpu >= 0) {
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759 rcu_read_unlock();
adc9300e 3760 return ret;
3b098e2d 3761 }
adc9300e 3762 rcu_read_unlock();
fec5e652 3763 }
1e94d72f 3764#endif
adc9300e 3765 return __netif_receive_skb(skb);
0a9627f2 3766}
ae78dbfa
BH
3767
3768/**
3769 * netif_receive_skb - process receive buffer from network
3770 * @skb: buffer to process
3771 *
3772 * netif_receive_skb() is the main receive data processing function.
3773 * It always succeeds. The buffer may be dropped during processing
3774 * for congestion control or by the protocol layers.
3775 *
3776 * This function may only be called from softirq context and interrupts
3777 * should be enabled.
3778 *
3779 * Return values (usually ignored):
3780 * NET_RX_SUCCESS: no congestion
3781 * NET_RX_DROP: packet was dropped
3782 */
3783int netif_receive_skb(struct sk_buff *skb)
3784{
3785 trace_netif_receive_skb_entry(skb);
3786
3787 return netif_receive_skb_internal(skb);
3788}
d1b19dff 3789EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3790
88751275
ED
3791/* Network device is going away, flush any packets still pending
3792 * Called with irqs disabled.
3793 */
152102c7 3794static void flush_backlog(void *arg)
6e583ce5 3795{
152102c7 3796 struct net_device *dev = arg;
e36fa2f7 3797 struct softnet_data *sd = &__get_cpu_var(softnet_data);
6e583ce5
SH
3798 struct sk_buff *skb, *tmp;
3799
e36fa2f7 3800 rps_lock(sd);
6e7676c1 3801 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3802 if (skb->dev == dev) {
e36fa2f7 3803 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3804 kfree_skb(skb);
76cc8b13 3805 input_queue_head_incr(sd);
6e583ce5 3806 }
6e7676c1 3807 }
e36fa2f7 3808 rps_unlock(sd);
6e7676c1
CG
3809
3810 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3811 if (skb->dev == dev) {
3812 __skb_unlink(skb, &sd->process_queue);
3813 kfree_skb(skb);
76cc8b13 3814 input_queue_head_incr(sd);
6e7676c1
CG
3815 }
3816 }
6e583ce5
SH
3817}
3818
d565b0a1
HX
3819static int napi_gro_complete(struct sk_buff *skb)
3820{
22061d80 3821 struct packet_offload *ptype;
d565b0a1 3822 __be16 type = skb->protocol;
22061d80 3823 struct list_head *head = &offload_base;
d565b0a1
HX
3824 int err = -ENOENT;
3825
c3c7c254
ED
3826 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3827
fc59f9a3
HX
3828 if (NAPI_GRO_CB(skb)->count == 1) {
3829 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3830 goto out;
fc59f9a3 3831 }
d565b0a1
HX
3832
3833 rcu_read_lock();
3834 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3835 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3836 continue;
3837
299603e8 3838 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3839 break;
3840 }
3841 rcu_read_unlock();
3842
3843 if (err) {
3844 WARN_ON(&ptype->list == head);
3845 kfree_skb(skb);
3846 return NET_RX_SUCCESS;
3847 }
3848
3849out:
ae78dbfa 3850 return netif_receive_skb_internal(skb);
d565b0a1
HX
3851}
3852
2e71a6f8
ED
3853/* napi->gro_list contains packets ordered by age.
3854 * youngest packets at the head of it.
3855 * Complete skbs in reverse order to reduce latencies.
3856 */
3857void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3858{
2e71a6f8 3859 struct sk_buff *skb, *prev = NULL;
d565b0a1 3860
2e71a6f8
ED
3861 /* scan list and build reverse chain */
3862 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3863 skb->prev = prev;
3864 prev = skb;
3865 }
3866
3867 for (skb = prev; skb; skb = prev) {
d565b0a1 3868 skb->next = NULL;
2e71a6f8
ED
3869
3870 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3871 return;
3872
3873 prev = skb->prev;
d565b0a1 3874 napi_gro_complete(skb);
2e71a6f8 3875 napi->gro_count--;
d565b0a1
HX
3876 }
3877
3878 napi->gro_list = NULL;
3879}
86cac58b 3880EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3881
89c5fa33
ED
3882static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3883{
3884 struct sk_buff *p;
3885 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3886 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3887
3888 for (p = napi->gro_list; p; p = p->next) {
3889 unsigned long diffs;
3890
0b4cec8c
TH
3891 NAPI_GRO_CB(p)->flush = 0;
3892
3893 if (hash != skb_get_hash_raw(p)) {
3894 NAPI_GRO_CB(p)->same_flow = 0;
3895 continue;
3896 }
3897
89c5fa33
ED
3898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3899 diffs |= p->vlan_tci ^ skb->vlan_tci;
3900 if (maclen == ETH_HLEN)
3901 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3902 skb_mac_header(skb));
89c5fa33
ED
3903 else if (!diffs)
3904 diffs = memcmp(skb_mac_header(p),
a50e233c 3905 skb_mac_header(skb),
89c5fa33
ED
3906 maclen);
3907 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3908 }
3909}
3910
299603e8
JC
3911static void skb_gro_reset_offset(struct sk_buff *skb)
3912{
3913 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3914 const skb_frag_t *frag0 = &pinfo->frags[0];
3915
3916 NAPI_GRO_CB(skb)->data_offset = 0;
3917 NAPI_GRO_CB(skb)->frag0 = NULL;
3918 NAPI_GRO_CB(skb)->frag0_len = 0;
3919
3920 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3921 pinfo->nr_frags &&
3922 !PageHighMem(skb_frag_page(frag0))) {
3923 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3924 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3925 }
3926}
3927
a50e233c
ED
3928static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3929{
3930 struct skb_shared_info *pinfo = skb_shinfo(skb);
3931
3932 BUG_ON(skb->end - skb->tail < grow);
3933
3934 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3935
3936 skb->data_len -= grow;
3937 skb->tail += grow;
3938
3939 pinfo->frags[0].page_offset += grow;
3940 skb_frag_size_sub(&pinfo->frags[0], grow);
3941
3942 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3943 skb_frag_unref(skb, 0);
3944 memmove(pinfo->frags, pinfo->frags + 1,
3945 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3946 }
3947}
3948
bb728820 3949static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3950{
3951 struct sk_buff **pp = NULL;
22061d80 3952 struct packet_offload *ptype;
d565b0a1 3953 __be16 type = skb->protocol;
22061d80 3954 struct list_head *head = &offload_base;
0da2afd5 3955 int same_flow;
5b252f0c 3956 enum gro_result ret;
a50e233c 3957 int grow;
d565b0a1 3958
9c62a68d 3959 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
3960 goto normal;
3961
21dc3301 3962 if (skb_is_gso(skb) || skb_has_frag_list(skb))
f17f5c91
HX
3963 goto normal;
3964
89c5fa33 3965 gro_list_prepare(napi, skb);
bf5a755f 3966 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
89c5fa33 3967
d565b0a1
HX
3968 rcu_read_lock();
3969 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3970 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
3971 continue;
3972
86911732 3973 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 3974 skb_reset_mac_len(skb);
d565b0a1
HX
3975 NAPI_GRO_CB(skb)->same_flow = 0;
3976 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 3977 NAPI_GRO_CB(skb)->free = 0;
b582ef09 3978 NAPI_GRO_CB(skb)->udp_mark = 0;
d565b0a1 3979
f191a1d1 3980 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
3981 break;
3982 }
3983 rcu_read_unlock();
3984
3985 if (&ptype->list == head)
3986 goto normal;
3987
0da2afd5 3988 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 3989 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 3990
d565b0a1
HX
3991 if (pp) {
3992 struct sk_buff *nskb = *pp;
3993
3994 *pp = nskb->next;
3995 nskb->next = NULL;
3996 napi_gro_complete(nskb);
4ae5544f 3997 napi->gro_count--;
d565b0a1
HX
3998 }
3999
0da2afd5 4000 if (same_flow)
d565b0a1
HX
4001 goto ok;
4002
600adc18 4003 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4004 goto normal;
d565b0a1 4005
600adc18
ED
4006 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4007 struct sk_buff *nskb = napi->gro_list;
4008
4009 /* locate the end of the list to select the 'oldest' flow */
4010 while (nskb->next) {
4011 pp = &nskb->next;
4012 nskb = *pp;
4013 }
4014 *pp = NULL;
4015 nskb->next = NULL;
4016 napi_gro_complete(nskb);
4017 } else {
4018 napi->gro_count++;
4019 }
d565b0a1 4020 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4021 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4022 NAPI_GRO_CB(skb)->last = skb;
86911732 4023 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4024 skb->next = napi->gro_list;
4025 napi->gro_list = skb;
5d0d9be8 4026 ret = GRO_HELD;
d565b0a1 4027
ad0f9904 4028pull:
a50e233c
ED
4029 grow = skb_gro_offset(skb) - skb_headlen(skb);
4030 if (grow > 0)
4031 gro_pull_from_frag0(skb, grow);
d565b0a1 4032ok:
5d0d9be8 4033 return ret;
d565b0a1
HX
4034
4035normal:
ad0f9904
HX
4036 ret = GRO_NORMAL;
4037 goto pull;
5d38a079 4038}
96e93eab 4039
bf5a755f
JC
4040struct packet_offload *gro_find_receive_by_type(__be16 type)
4041{
4042 struct list_head *offload_head = &offload_base;
4043 struct packet_offload *ptype;
4044
4045 list_for_each_entry_rcu(ptype, offload_head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_receive)
4047 continue;
4048 return ptype;
4049 }
4050 return NULL;
4051}
e27a2f83 4052EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4053
4054struct packet_offload *gro_find_complete_by_type(__be16 type)
4055{
4056 struct list_head *offload_head = &offload_base;
4057 struct packet_offload *ptype;
4058
4059 list_for_each_entry_rcu(ptype, offload_head, list) {
4060 if (ptype->type != type || !ptype->callbacks.gro_complete)
4061 continue;
4062 return ptype;
4063 }
4064 return NULL;
4065}
e27a2f83 4066EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4067
bb728820 4068static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4069{
5d0d9be8
HX
4070 switch (ret) {
4071 case GRO_NORMAL:
ae78dbfa 4072 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4073 ret = GRO_DROP;
4074 break;
5d38a079 4075
5d0d9be8 4076 case GRO_DROP:
5d38a079
HX
4077 kfree_skb(skb);
4078 break;
5b252f0c 4079
daa86548 4080 case GRO_MERGED_FREE:
d7e8883c
ED
4081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4082 kmem_cache_free(skbuff_head_cache, skb);
4083 else
4084 __kfree_skb(skb);
daa86548
ED
4085 break;
4086
5b252f0c
BH
4087 case GRO_HELD:
4088 case GRO_MERGED:
4089 break;
5d38a079
HX
4090 }
4091
c7c4b3b6 4092 return ret;
5d0d9be8 4093}
5d0d9be8 4094
c7c4b3b6 4095gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4096{
ae78dbfa 4097 trace_napi_gro_receive_entry(skb);
86911732 4098
a50e233c
ED
4099 skb_gro_reset_offset(skb);
4100
89c5fa33 4101 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4102}
4103EXPORT_SYMBOL(napi_gro_receive);
4104
d0c2b0d2 4105static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4106{
96e93eab 4107 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4110 skb->vlan_tci = 0;
66c46d74 4111 skb->dev = napi->dev;
6d152e23 4112 skb->skb_iif = 0;
c3caf119
JC
4113 skb->encapsulation = 0;
4114 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4116
4117 napi->skb = skb;
4118}
96e93eab 4119
76620aaf 4120struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4121{
5d38a079 4122 struct sk_buff *skb = napi->skb;
5d38a079
HX
4123
4124 if (!skb) {
89d71a66 4125 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
84b9cd63 4126 napi->skb = skb;
80595d59 4127 }
96e93eab
HX
4128 return skb;
4129}
76620aaf 4130EXPORT_SYMBOL(napi_get_frags);
96e93eab 4131
a50e233c
ED
4132static gro_result_t napi_frags_finish(struct napi_struct *napi,
4133 struct sk_buff *skb,
4134 gro_result_t ret)
96e93eab 4135{
5d0d9be8
HX
4136 switch (ret) {
4137 case GRO_NORMAL:
a50e233c
ED
4138 case GRO_HELD:
4139 __skb_push(skb, ETH_HLEN);
4140 skb->protocol = eth_type_trans(skb, skb->dev);
4141 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4142 ret = GRO_DROP;
86911732 4143 break;
5d38a079 4144
5d0d9be8 4145 case GRO_DROP:
5d0d9be8
HX
4146 case GRO_MERGED_FREE:
4147 napi_reuse_skb(napi, skb);
4148 break;
5b252f0c
BH
4149
4150 case GRO_MERGED:
4151 break;
5d0d9be8 4152 }
5d38a079 4153
c7c4b3b6 4154 return ret;
5d38a079 4155}
5d0d9be8 4156
a50e233c
ED
4157/* Upper GRO stack assumes network header starts at gro_offset=0
4158 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4159 * We copy ethernet header into skb->data to have a common layout.
4160 */
4adb9c4a 4161static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4162{
4163 struct sk_buff *skb = napi->skb;
a50e233c
ED
4164 const struct ethhdr *eth;
4165 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4166
4167 napi->skb = NULL;
4168
a50e233c
ED
4169 skb_reset_mac_header(skb);
4170 skb_gro_reset_offset(skb);
4171
4172 eth = skb_gro_header_fast(skb, 0);
4173 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4174 eth = skb_gro_header_slow(skb, hlen, 0);
4175 if (unlikely(!eth)) {
4176 napi_reuse_skb(napi, skb);
4177 return NULL;
4178 }
4179 } else {
4180 gro_pull_from_frag0(skb, hlen);
4181 NAPI_GRO_CB(skb)->frag0 += hlen;
4182 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4183 }
a50e233c
ED
4184 __skb_pull(skb, hlen);
4185
4186 /*
4187 * This works because the only protocols we care about don't require
4188 * special handling.
4189 * We'll fix it up properly in napi_frags_finish()
4190 */
4191 skb->protocol = eth->h_proto;
76620aaf 4192
76620aaf
HX
4193 return skb;
4194}
76620aaf 4195
c7c4b3b6 4196gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4197{
76620aaf 4198 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4199
4200 if (!skb)
c7c4b3b6 4201 return GRO_DROP;
5d0d9be8 4202
ae78dbfa
BH
4203 trace_napi_gro_frags_entry(skb);
4204
89c5fa33 4205 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4206}
5d38a079
HX
4207EXPORT_SYMBOL(napi_gro_frags);
4208
e326bed2 4209/*
855abcf0 4210 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4211 * Note: called with local irq disabled, but exits with local irq enabled.
4212 */
4213static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4214{
4215#ifdef CONFIG_RPS
4216 struct softnet_data *remsd = sd->rps_ipi_list;
4217
4218 if (remsd) {
4219 sd->rps_ipi_list = NULL;
4220
4221 local_irq_enable();
4222
4223 /* Send pending IPI's to kick RPS processing on remote cpus. */
4224 while (remsd) {
4225 struct softnet_data *next = remsd->rps_ipi_next;
4226
4227 if (cpu_online(remsd->cpu))
c46fff2a 4228 smp_call_function_single_async(remsd->cpu,
fce8ad15 4229 &remsd->csd);
e326bed2
ED
4230 remsd = next;
4231 }
4232 } else
4233#endif
4234 local_irq_enable();
4235}
4236
bea3348e 4237static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4238{
4239 int work = 0;
eecfd7c4 4240 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4241
e326bed2
ED
4242#ifdef CONFIG_RPS
4243 /* Check if we have pending ipi, its better to send them now,
4244 * not waiting net_rx_action() end.
4245 */
4246 if (sd->rps_ipi_list) {
4247 local_irq_disable();
4248 net_rps_action_and_irq_enable(sd);
4249 }
4250#endif
bea3348e 4251 napi->weight = weight_p;
6e7676c1 4252 local_irq_disable();
11ef7a89 4253 while (1) {
1da177e4 4254 struct sk_buff *skb;
6e7676c1
CG
4255
4256 while ((skb = __skb_dequeue(&sd->process_queue))) {
4257 local_irq_enable();
4258 __netif_receive_skb(skb);
6e7676c1 4259 local_irq_disable();
76cc8b13
TH
4260 input_queue_head_incr(sd);
4261 if (++work >= quota) {
4262 local_irq_enable();
4263 return work;
4264 }
6e7676c1 4265 }
1da177e4 4266
e36fa2f7 4267 rps_lock(sd);
11ef7a89 4268 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4269 /*
4270 * Inline a custom version of __napi_complete().
4271 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4272 * and NAPI_STATE_SCHED is the only possible flag set
4273 * on backlog.
4274 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4275 * and we dont need an smp_mb() memory barrier.
4276 */
4277 list_del(&napi->poll_list);
4278 napi->state = 0;
11ef7a89 4279 rps_unlock(sd);
eecfd7c4 4280
11ef7a89 4281 break;
bea3348e 4282 }
11ef7a89
TH
4283
4284 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4285 &sd->process_queue);
e36fa2f7 4286 rps_unlock(sd);
6e7676c1
CG
4287 }
4288 local_irq_enable();
1da177e4 4289
bea3348e
SH
4290 return work;
4291}
1da177e4 4292
bea3348e
SH
4293/**
4294 * __napi_schedule - schedule for receive
c4ea43c5 4295 * @n: entry to schedule
bea3348e
SH
4296 *
4297 * The entry's receive function will be scheduled to run
4298 */
b5606c2d 4299void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4300{
4301 unsigned long flags;
1da177e4 4302
bea3348e 4303 local_irq_save(flags);
eecfd7c4 4304 ____napi_schedule(&__get_cpu_var(softnet_data), n);
bea3348e 4305 local_irq_restore(flags);
1da177e4 4306}
bea3348e
SH
4307EXPORT_SYMBOL(__napi_schedule);
4308
d565b0a1
HX
4309void __napi_complete(struct napi_struct *n)
4310{
4311 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4312 BUG_ON(n->gro_list);
4313
4314 list_del(&n->poll_list);
4e857c58 4315 smp_mb__before_atomic();
d565b0a1
HX
4316 clear_bit(NAPI_STATE_SCHED, &n->state);
4317}
4318EXPORT_SYMBOL(__napi_complete);
4319
4320void napi_complete(struct napi_struct *n)
4321{
4322 unsigned long flags;
4323
4324 /*
4325 * don't let napi dequeue from the cpu poll list
4326 * just in case its running on a different cpu
4327 */
4328 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4329 return;
4330
2e71a6f8 4331 napi_gro_flush(n, false);
d565b0a1
HX
4332 local_irq_save(flags);
4333 __napi_complete(n);
4334 local_irq_restore(flags);
4335}
4336EXPORT_SYMBOL(napi_complete);
4337
af12fa6e
ET
4338/* must be called under rcu_read_lock(), as we dont take a reference */
4339struct napi_struct *napi_by_id(unsigned int napi_id)
4340{
4341 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4342 struct napi_struct *napi;
4343
4344 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4345 if (napi->napi_id == napi_id)
4346 return napi;
4347
4348 return NULL;
4349}
4350EXPORT_SYMBOL_GPL(napi_by_id);
4351
4352void napi_hash_add(struct napi_struct *napi)
4353{
4354 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4355
4356 spin_lock(&napi_hash_lock);
4357
4358 /* 0 is not a valid id, we also skip an id that is taken
4359 * we expect both events to be extremely rare
4360 */
4361 napi->napi_id = 0;
4362 while (!napi->napi_id) {
4363 napi->napi_id = ++napi_gen_id;
4364 if (napi_by_id(napi->napi_id))
4365 napi->napi_id = 0;
4366 }
4367
4368 hlist_add_head_rcu(&napi->napi_hash_node,
4369 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4370
4371 spin_unlock(&napi_hash_lock);
4372 }
4373}
4374EXPORT_SYMBOL_GPL(napi_hash_add);
4375
4376/* Warning : caller is responsible to make sure rcu grace period
4377 * is respected before freeing memory containing @napi
4378 */
4379void napi_hash_del(struct napi_struct *napi)
4380{
4381 spin_lock(&napi_hash_lock);
4382
4383 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4384 hlist_del_rcu(&napi->napi_hash_node);
4385
4386 spin_unlock(&napi_hash_lock);
4387}
4388EXPORT_SYMBOL_GPL(napi_hash_del);
4389
d565b0a1
HX
4390void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4391 int (*poll)(struct napi_struct *, int), int weight)
4392{
4393 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 4394 napi->gro_count = 0;
d565b0a1 4395 napi->gro_list = NULL;
5d38a079 4396 napi->skb = NULL;
d565b0a1 4397 napi->poll = poll;
82dc3c63
ED
4398 if (weight > NAPI_POLL_WEIGHT)
4399 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4400 weight, dev->name);
d565b0a1
HX
4401 napi->weight = weight;
4402 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4403 napi->dev = dev;
5d38a079 4404#ifdef CONFIG_NETPOLL
d565b0a1
HX
4405 spin_lock_init(&napi->poll_lock);
4406 napi->poll_owner = -1;
4407#endif
4408 set_bit(NAPI_STATE_SCHED, &napi->state);
4409}
4410EXPORT_SYMBOL(netif_napi_add);
4411
4412void netif_napi_del(struct napi_struct *napi)
4413{
d7b06636 4414 list_del_init(&napi->dev_list);
76620aaf 4415 napi_free_frags(napi);
d565b0a1 4416
289dccbe 4417 kfree_skb_list(napi->gro_list);
d565b0a1 4418 napi->gro_list = NULL;
4ae5544f 4419 napi->gro_count = 0;
d565b0a1
HX
4420}
4421EXPORT_SYMBOL(netif_napi_del);
4422
1da177e4
LT
4423static void net_rx_action(struct softirq_action *h)
4424{
e326bed2 4425 struct softnet_data *sd = &__get_cpu_var(softnet_data);
24f8b238 4426 unsigned long time_limit = jiffies + 2;
51b0bded 4427 int budget = netdev_budget;
53fb95d3
MM
4428 void *have;
4429
1da177e4
LT
4430 local_irq_disable();
4431
e326bed2 4432 while (!list_empty(&sd->poll_list)) {
bea3348e
SH
4433 struct napi_struct *n;
4434 int work, weight;
1da177e4 4435
bea3348e 4436 /* If softirq window is exhuasted then punt.
24f8b238
SH
4437 * Allow this to run for 2 jiffies since which will allow
4438 * an average latency of 1.5/HZ.
bea3348e 4439 */
d1f41b67 4440 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
1da177e4
LT
4441 goto softnet_break;
4442
4443 local_irq_enable();
4444
bea3348e
SH
4445 /* Even though interrupts have been re-enabled, this
4446 * access is safe because interrupts can only add new
4447 * entries to the tail of this list, and only ->poll()
4448 * calls can remove this head entry from the list.
4449 */
e326bed2 4450 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
1da177e4 4451
bea3348e
SH
4452 have = netpoll_poll_lock(n);
4453
4454 weight = n->weight;
4455
0a7606c1
DM
4456 /* This NAPI_STATE_SCHED test is for avoiding a race
4457 * with netpoll's poll_napi(). Only the entity which
4458 * obtains the lock and sees NAPI_STATE_SCHED set will
4459 * actually make the ->poll() call. Therefore we avoid
25985edc 4460 * accidentally calling ->poll() when NAPI is not scheduled.
0a7606c1
DM
4461 */
4462 work = 0;
4ea7e386 4463 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 4464 work = n->poll(n, weight);
4ea7e386
NH
4465 trace_napi_poll(n);
4466 }
bea3348e
SH
4467
4468 WARN_ON_ONCE(work > weight);
4469
4470 budget -= work;
4471
4472 local_irq_disable();
4473
4474 /* Drivers must not modify the NAPI state if they
4475 * consume the entire weight. In such cases this code
4476 * still "owns" the NAPI instance and therefore can
4477 * move the instance around on the list at-will.
4478 */
fed17f30 4479 if (unlikely(work == weight)) {
ff780cd8
HX
4480 if (unlikely(napi_disable_pending(n))) {
4481 local_irq_enable();
4482 napi_complete(n);
4483 local_irq_disable();
2e71a6f8
ED
4484 } else {
4485 if (n->gro_list) {
4486 /* flush too old packets
4487 * If HZ < 1000, flush all packets.
4488 */
4489 local_irq_enable();
4490 napi_gro_flush(n, HZ >= 1000);
4491 local_irq_disable();
4492 }
e326bed2 4493 list_move_tail(&n->poll_list, &sd->poll_list);
2e71a6f8 4494 }
fed17f30 4495 }
bea3348e
SH
4496
4497 netpoll_poll_unlock(have);
1da177e4
LT
4498 }
4499out:
e326bed2 4500 net_rps_action_and_irq_enable(sd);
0a9627f2 4501
db217334
CL
4502#ifdef CONFIG_NET_DMA
4503 /*
4504 * There may not be any more sk_buffs coming right now, so push
4505 * any pending DMA copies to hardware
4506 */
2ba05622 4507 dma_issue_pending_all();
db217334 4508#endif
bea3348e 4509
1da177e4
LT
4510 return;
4511
4512softnet_break:
dee42870 4513 sd->time_squeeze++;
1da177e4
LT
4514 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4515 goto out;
4516}
4517
aa9d8560 4518struct netdev_adjacent {
9ff162a8 4519 struct net_device *dev;
5d261913
VF
4520
4521 /* upper master flag, there can only be one master device per list */
9ff162a8 4522 bool master;
5d261913 4523
5d261913
VF
4524 /* counter for the number of times this device was added to us */
4525 u16 ref_nr;
4526
402dae96
VF
4527 /* private field for the users */
4528 void *private;
4529
9ff162a8
JP
4530 struct list_head list;
4531 struct rcu_head rcu;
9ff162a8
JP
4532};
4533
5d261913
VF
4534static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4535 struct net_device *adj_dev,
2f268f12 4536 struct list_head *adj_list)
9ff162a8 4537{
5d261913 4538 struct netdev_adjacent *adj;
5d261913 4539
2f268f12 4540 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4541 if (adj->dev == adj_dev)
4542 return adj;
9ff162a8
JP
4543 }
4544 return NULL;
4545}
4546
4547/**
4548 * netdev_has_upper_dev - Check if device is linked to an upper device
4549 * @dev: device
4550 * @upper_dev: upper device to check
4551 *
4552 * Find out if a device is linked to specified upper device and return true
4553 * in case it is. Note that this checks only immediate upper device,
4554 * not through a complete stack of devices. The caller must hold the RTNL lock.
4555 */
4556bool netdev_has_upper_dev(struct net_device *dev,
4557 struct net_device *upper_dev)
4558{
4559 ASSERT_RTNL();
4560
2f268f12 4561 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4562}
4563EXPORT_SYMBOL(netdev_has_upper_dev);
4564
4565/**
4566 * netdev_has_any_upper_dev - Check if device is linked to some device
4567 * @dev: device
4568 *
4569 * Find out if a device is linked to an upper device and return true in case
4570 * it is. The caller must hold the RTNL lock.
4571 */
1d143d9f 4572static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4573{
4574 ASSERT_RTNL();
4575
2f268f12 4576 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4577}
9ff162a8
JP
4578
4579/**
4580 * netdev_master_upper_dev_get - Get master upper device
4581 * @dev: device
4582 *
4583 * Find a master upper device and return pointer to it or NULL in case
4584 * it's not there. The caller must hold the RTNL lock.
4585 */
4586struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4587{
aa9d8560 4588 struct netdev_adjacent *upper;
9ff162a8
JP
4589
4590 ASSERT_RTNL();
4591
2f268f12 4592 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4593 return NULL;
4594
2f268f12 4595 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4596 struct netdev_adjacent, list);
9ff162a8
JP
4597 if (likely(upper->master))
4598 return upper->dev;
4599 return NULL;
4600}
4601EXPORT_SYMBOL(netdev_master_upper_dev_get);
4602
b6ccba4c
VF
4603void *netdev_adjacent_get_private(struct list_head *adj_list)
4604{
4605 struct netdev_adjacent *adj;
4606
4607 adj = list_entry(adj_list, struct netdev_adjacent, list);
4608
4609 return adj->private;
4610}
4611EXPORT_SYMBOL(netdev_adjacent_get_private);
4612
44a40855
VY
4613/**
4614 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4615 * @dev: device
4616 * @iter: list_head ** of the current position
4617 *
4618 * Gets the next device from the dev's upper list, starting from iter
4619 * position. The caller must hold RCU read lock.
4620 */
4621struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4622 struct list_head **iter)
4623{
4624 struct netdev_adjacent *upper;
4625
4626 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4627
4628 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4629
4630 if (&upper->list == &dev->adj_list.upper)
4631 return NULL;
4632
4633 *iter = &upper->list;
4634
4635 return upper->dev;
4636}
4637EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4638
31088a11
VF
4639/**
4640 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4641 * @dev: device
4642 * @iter: list_head ** of the current position
4643 *
4644 * Gets the next device from the dev's upper list, starting from iter
4645 * position. The caller must hold RCU read lock.
4646 */
2f268f12
VF
4647struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4648 struct list_head **iter)
48311f46
VF
4649{
4650 struct netdev_adjacent *upper;
4651
85328240 4652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4653
4654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4655
2f268f12 4656 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4657 return NULL;
4658
4659 *iter = &upper->list;
4660
4661 return upper->dev;
4662}
2f268f12 4663EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4664
31088a11
VF
4665/**
4666 * netdev_lower_get_next_private - Get the next ->private from the
4667 * lower neighbour list
4668 * @dev: device
4669 * @iter: list_head ** of the current position
4670 *
4671 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4672 * list, starting from iter position. The caller must hold either hold the
4673 * RTNL lock or its own locking that guarantees that the neighbour lower
4674 * list will remain unchainged.
4675 */
4676void *netdev_lower_get_next_private(struct net_device *dev,
4677 struct list_head **iter)
4678{
4679 struct netdev_adjacent *lower;
4680
4681 lower = list_entry(*iter, struct netdev_adjacent, list);
4682
4683 if (&lower->list == &dev->adj_list.lower)
4684 return NULL;
4685
6859e7df 4686 *iter = lower->list.next;
31088a11
VF
4687
4688 return lower->private;
4689}
4690EXPORT_SYMBOL(netdev_lower_get_next_private);
4691
4692/**
4693 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4694 * lower neighbour list, RCU
4695 * variant
4696 * @dev: device
4697 * @iter: list_head ** of the current position
4698 *
4699 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4700 * list, starting from iter position. The caller must hold RCU read lock.
4701 */
4702void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4703 struct list_head **iter)
4704{
4705 struct netdev_adjacent *lower;
4706
4707 WARN_ON_ONCE(!rcu_read_lock_held());
4708
4709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710
4711 if (&lower->list == &dev->adj_list.lower)
4712 return NULL;
4713
6859e7df 4714 *iter = &lower->list;
31088a11
VF
4715
4716 return lower->private;
4717}
4718EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4719
4085ebe8
VY
4720/**
4721 * netdev_lower_get_next - Get the next device from the lower neighbour
4722 * list
4723 * @dev: device
4724 * @iter: list_head ** of the current position
4725 *
4726 * Gets the next netdev_adjacent from the dev's lower neighbour
4727 * list, starting from iter position. The caller must hold RTNL lock or
4728 * its own locking that guarantees that the neighbour lower
4729 * list will remain unchainged.
4730 */
4731void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4732{
4733 struct netdev_adjacent *lower;
4734
4735 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4736
4737 if (&lower->list == &dev->adj_list.lower)
4738 return NULL;
4739
4740 *iter = &lower->list;
4741
4742 return lower->dev;
4743}
4744EXPORT_SYMBOL(netdev_lower_get_next);
4745
e001bfad 4746/**
4747 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4748 * lower neighbour list, RCU
4749 * variant
4750 * @dev: device
4751 *
4752 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4753 * list. The caller must hold RCU read lock.
4754 */
4755void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4756{
4757 struct netdev_adjacent *lower;
4758
4759 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4760 struct netdev_adjacent, list);
4761 if (lower)
4762 return lower->private;
4763 return NULL;
4764}
4765EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4766
9ff162a8
JP
4767/**
4768 * netdev_master_upper_dev_get_rcu - Get master upper device
4769 * @dev: device
4770 *
4771 * Find a master upper device and return pointer to it or NULL in case
4772 * it's not there. The caller must hold the RCU read lock.
4773 */
4774struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4775{
aa9d8560 4776 struct netdev_adjacent *upper;
9ff162a8 4777
2f268f12 4778 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4779 struct netdev_adjacent, list);
9ff162a8
JP
4780 if (upper && likely(upper->master))
4781 return upper->dev;
4782 return NULL;
4783}
4784EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4785
0a59f3a9 4786static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4787 struct net_device *adj_dev,
4788 struct list_head *dev_list)
4789{
4790 char linkname[IFNAMSIZ+7];
4791 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4792 "upper_%s" : "lower_%s", adj_dev->name);
4793 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4794 linkname);
4795}
0a59f3a9 4796static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4797 char *name,
4798 struct list_head *dev_list)
4799{
4800 char linkname[IFNAMSIZ+7];
4801 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4802 "upper_%s" : "lower_%s", name);
4803 sysfs_remove_link(&(dev->dev.kobj), linkname);
4804}
4805
4806#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4807 (dev_list == &dev->adj_list.upper || \
4808 dev_list == &dev->adj_list.lower)
4809
5d261913
VF
4810static int __netdev_adjacent_dev_insert(struct net_device *dev,
4811 struct net_device *adj_dev,
7863c054 4812 struct list_head *dev_list,
402dae96 4813 void *private, bool master)
5d261913
VF
4814{
4815 struct netdev_adjacent *adj;
842d67a7 4816 int ret;
5d261913 4817
7863c054 4818 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4819
4820 if (adj) {
5d261913
VF
4821 adj->ref_nr++;
4822 return 0;
4823 }
4824
4825 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4826 if (!adj)
4827 return -ENOMEM;
4828
4829 adj->dev = adj_dev;
4830 adj->master = master;
5d261913 4831 adj->ref_nr = 1;
402dae96 4832 adj->private = private;
5d261913 4833 dev_hold(adj_dev);
2f268f12
VF
4834
4835 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4836 adj_dev->name, dev->name, adj_dev->name);
5d261913 4837
3ee32707
VF
4838 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4839 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
4840 if (ret)
4841 goto free_adj;
4842 }
4843
7863c054 4844 /* Ensure that master link is always the first item in list. */
842d67a7
VF
4845 if (master) {
4846 ret = sysfs_create_link(&(dev->dev.kobj),
4847 &(adj_dev->dev.kobj), "master");
4848 if (ret)
5831d66e 4849 goto remove_symlinks;
842d67a7 4850
7863c054 4851 list_add_rcu(&adj->list, dev_list);
842d67a7 4852 } else {
7863c054 4853 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 4854 }
5d261913
VF
4855
4856 return 0;
842d67a7 4857
5831d66e 4858remove_symlinks:
3ee32707
VF
4859 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4860 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
4861free_adj:
4862 kfree(adj);
974daef7 4863 dev_put(adj_dev);
842d67a7
VF
4864
4865 return ret;
5d261913
VF
4866}
4867
1d143d9f 4868static void __netdev_adjacent_dev_remove(struct net_device *dev,
4869 struct net_device *adj_dev,
4870 struct list_head *dev_list)
5d261913
VF
4871{
4872 struct netdev_adjacent *adj;
4873
7863c054 4874 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 4875
2f268f12
VF
4876 if (!adj) {
4877 pr_err("tried to remove device %s from %s\n",
4878 dev->name, adj_dev->name);
5d261913 4879 BUG();
2f268f12 4880 }
5d261913
VF
4881
4882 if (adj->ref_nr > 1) {
2f268f12
VF
4883 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4884 adj->ref_nr-1);
5d261913
VF
4885 adj->ref_nr--;
4886 return;
4887 }
4888
842d67a7
VF
4889 if (adj->master)
4890 sysfs_remove_link(&(dev->dev.kobj), "master");
4891
4c75431a
AF
4892 if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4893 net_eq(dev_net(dev),dev_net(adj_dev)))
3ee32707 4894 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 4895
5d261913 4896 list_del_rcu(&adj->list);
2f268f12
VF
4897 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4898 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
4899 dev_put(adj_dev);
4900 kfree_rcu(adj, rcu);
4901}
4902
1d143d9f 4903static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4904 struct net_device *upper_dev,
4905 struct list_head *up_list,
4906 struct list_head *down_list,
4907 void *private, bool master)
5d261913
VF
4908{
4909 int ret;
4910
402dae96
VF
4911 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4912 master);
5d261913
VF
4913 if (ret)
4914 return ret;
4915
402dae96
VF
4916 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4917 false);
5d261913 4918 if (ret) {
2f268f12 4919 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
4920 return ret;
4921 }
4922
4923 return 0;
4924}
4925
1d143d9f 4926static int __netdev_adjacent_dev_link(struct net_device *dev,
4927 struct net_device *upper_dev)
5d261913 4928{
2f268f12
VF
4929 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4930 &dev->all_adj_list.upper,
4931 &upper_dev->all_adj_list.lower,
402dae96 4932 NULL, false);
5d261913
VF
4933}
4934
1d143d9f 4935static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4936 struct net_device *upper_dev,
4937 struct list_head *up_list,
4938 struct list_head *down_list)
5d261913 4939{
2f268f12
VF
4940 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4941 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
4942}
4943
1d143d9f 4944static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4945 struct net_device *upper_dev)
5d261913 4946{
2f268f12
VF
4947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4948 &dev->all_adj_list.upper,
4949 &upper_dev->all_adj_list.lower);
4950}
4951
1d143d9f 4952static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4953 struct net_device *upper_dev,
4954 void *private, bool master)
2f268f12
VF
4955{
4956 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4957
4958 if (ret)
4959 return ret;
4960
4961 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4962 &dev->adj_list.upper,
4963 &upper_dev->adj_list.lower,
402dae96 4964 private, master);
2f268f12
VF
4965 if (ret) {
4966 __netdev_adjacent_dev_unlink(dev, upper_dev);
4967 return ret;
4968 }
4969
4970 return 0;
5d261913
VF
4971}
4972
1d143d9f 4973static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4974 struct net_device *upper_dev)
2f268f12
VF
4975{
4976 __netdev_adjacent_dev_unlink(dev, upper_dev);
4977 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4978 &dev->adj_list.upper,
4979 &upper_dev->adj_list.lower);
4980}
5d261913 4981
9ff162a8 4982static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
4983 struct net_device *upper_dev, bool master,
4984 void *private)
9ff162a8 4985{
5d261913
VF
4986 struct netdev_adjacent *i, *j, *to_i, *to_j;
4987 int ret = 0;
9ff162a8
JP
4988
4989 ASSERT_RTNL();
4990
4991 if (dev == upper_dev)
4992 return -EBUSY;
4993
4994 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 4995 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
4996 return -EBUSY;
4997
2f268f12 4998 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
4999 return -EEXIST;
5000
5001 if (master && netdev_master_upper_dev_get(dev))
5002 return -EBUSY;
5003
402dae96
VF
5004 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5005 master);
5d261913
VF
5006 if (ret)
5007 return ret;
9ff162a8 5008
5d261913 5009 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5010 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5011 * versa, and don't forget the devices itself. All of these
5012 * links are non-neighbours.
5013 */
2f268f12
VF
5014 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5015 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5016 pr_debug("Interlinking %s with %s, non-neighbour\n",
5017 i->dev->name, j->dev->name);
5d261913
VF
5018 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5019 if (ret)
5020 goto rollback_mesh;
5021 }
5022 }
5023
5024 /* add dev to every upper_dev's upper device */
2f268f12
VF
5025 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5026 pr_debug("linking %s's upper device %s with %s\n",
5027 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5028 ret = __netdev_adjacent_dev_link(dev, i->dev);
5029 if (ret)
5030 goto rollback_upper_mesh;
5031 }
5032
5033 /* add upper_dev to every dev's lower device */
2f268f12
VF
5034 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5035 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5036 i->dev->name, upper_dev->name);
5d261913
VF
5037 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5038 if (ret)
5039 goto rollback_lower_mesh;
5040 }
9ff162a8 5041
42e52bf9 5042 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5043 return 0;
5d261913
VF
5044
5045rollback_lower_mesh:
5046 to_i = i;
2f268f12 5047 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5048 if (i == to_i)
5049 break;
5050 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5051 }
5052
5053 i = NULL;
5054
5055rollback_upper_mesh:
5056 to_i = i;
2f268f12 5057 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5058 if (i == to_i)
5059 break;
5060 __netdev_adjacent_dev_unlink(dev, i->dev);
5061 }
5062
5063 i = j = NULL;
5064
5065rollback_mesh:
5066 to_i = i;
5067 to_j = j;
2f268f12
VF
5068 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5069 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5070 if (i == to_i && j == to_j)
5071 break;
5072 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5073 }
5074 if (i == to_i)
5075 break;
5076 }
5077
2f268f12 5078 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5079
5080 return ret;
9ff162a8
JP
5081}
5082
5083/**
5084 * netdev_upper_dev_link - Add a link to the upper device
5085 * @dev: device
5086 * @upper_dev: new upper device
5087 *
5088 * Adds a link to device which is upper to this one. The caller must hold
5089 * the RTNL lock. On a failure a negative errno code is returned.
5090 * On success the reference counts are adjusted and the function
5091 * returns zero.
5092 */
5093int netdev_upper_dev_link(struct net_device *dev,
5094 struct net_device *upper_dev)
5095{
402dae96 5096 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5097}
5098EXPORT_SYMBOL(netdev_upper_dev_link);
5099
5100/**
5101 * netdev_master_upper_dev_link - Add a master link to the upper device
5102 * @dev: device
5103 * @upper_dev: new upper device
5104 *
5105 * Adds a link to device which is upper to this one. In this case, only
5106 * one master upper device can be linked, although other non-master devices
5107 * might be linked as well. The caller must hold the RTNL lock.
5108 * On a failure a negative errno code is returned. On success the reference
5109 * counts are adjusted and the function returns zero.
5110 */
5111int netdev_master_upper_dev_link(struct net_device *dev,
5112 struct net_device *upper_dev)
5113{
402dae96 5114 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5115}
5116EXPORT_SYMBOL(netdev_master_upper_dev_link);
5117
402dae96
VF
5118int netdev_master_upper_dev_link_private(struct net_device *dev,
5119 struct net_device *upper_dev,
5120 void *private)
5121{
5122 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5123}
5124EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5125
9ff162a8
JP
5126/**
5127 * netdev_upper_dev_unlink - Removes a link to upper device
5128 * @dev: device
5129 * @upper_dev: new upper device
5130 *
5131 * Removes a link to device which is upper to this one. The caller must hold
5132 * the RTNL lock.
5133 */
5134void netdev_upper_dev_unlink(struct net_device *dev,
5135 struct net_device *upper_dev)
5136{
5d261913 5137 struct netdev_adjacent *i, *j;
9ff162a8
JP
5138 ASSERT_RTNL();
5139
2f268f12 5140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5141
5142 /* Here is the tricky part. We must remove all dev's lower
5143 * devices from all upper_dev's upper devices and vice
5144 * versa, to maintain the graph relationship.
5145 */
2f268f12
VF
5146 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5147 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5148 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5149
5150 /* remove also the devices itself from lower/upper device
5151 * list
5152 */
2f268f12 5153 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5154 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5155
2f268f12 5156 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5157 __netdev_adjacent_dev_unlink(dev, i->dev);
5158
42e52bf9 5159 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5160}
5161EXPORT_SYMBOL(netdev_upper_dev_unlink);
5162
4c75431a
AF
5163void netdev_adjacent_add_links(struct net_device *dev)
5164{
5165 struct netdev_adjacent *iter;
5166
5167 struct net *net = dev_net(dev);
5168
5169 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5170 if (!net_eq(net,dev_net(iter->dev)))
5171 continue;
5172 netdev_adjacent_sysfs_add(iter->dev, dev,
5173 &iter->dev->adj_list.lower);
5174 netdev_adjacent_sysfs_add(dev, iter->dev,
5175 &dev->adj_list.upper);
5176 }
5177
5178 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5179 if (!net_eq(net,dev_net(iter->dev)))
5180 continue;
5181 netdev_adjacent_sysfs_add(iter->dev, dev,
5182 &iter->dev->adj_list.upper);
5183 netdev_adjacent_sysfs_add(dev, iter->dev,
5184 &dev->adj_list.lower);
5185 }
5186}
5187
5188void netdev_adjacent_del_links(struct net_device *dev)
5189{
5190 struct netdev_adjacent *iter;
5191
5192 struct net *net = dev_net(dev);
5193
5194 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5195 if (!net_eq(net,dev_net(iter->dev)))
5196 continue;
5197 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5198 &iter->dev->adj_list.lower);
5199 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5200 &dev->adj_list.upper);
5201 }
5202
5203 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5204 if (!net_eq(net,dev_net(iter->dev)))
5205 continue;
5206 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5207 &iter->dev->adj_list.upper);
5208 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5209 &dev->adj_list.lower);
5210 }
5211}
5212
5bb025fa 5213void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5214{
5bb025fa 5215 struct netdev_adjacent *iter;
402dae96 5216
4c75431a
AF
5217 struct net *net = dev_net(dev);
5218
5bb025fa 5219 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5220 if (!net_eq(net,dev_net(iter->dev)))
5221 continue;
5bb025fa
VF
5222 netdev_adjacent_sysfs_del(iter->dev, oldname,
5223 &iter->dev->adj_list.lower);
5224 netdev_adjacent_sysfs_add(iter->dev, dev,
5225 &iter->dev->adj_list.lower);
5226 }
402dae96 5227
5bb025fa 5228 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5229 if (!net_eq(net,dev_net(iter->dev)))
5230 continue;
5bb025fa
VF
5231 netdev_adjacent_sysfs_del(iter->dev, oldname,
5232 &iter->dev->adj_list.upper);
5233 netdev_adjacent_sysfs_add(iter->dev, dev,
5234 &iter->dev->adj_list.upper);
5235 }
402dae96 5236}
402dae96
VF
5237
5238void *netdev_lower_dev_get_private(struct net_device *dev,
5239 struct net_device *lower_dev)
5240{
5241 struct netdev_adjacent *lower;
5242
5243 if (!lower_dev)
5244 return NULL;
5245 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5246 if (!lower)
5247 return NULL;
5248
5249 return lower->private;
5250}
5251EXPORT_SYMBOL(netdev_lower_dev_get_private);
5252
4085ebe8
VY
5253
5254int dev_get_nest_level(struct net_device *dev,
5255 bool (*type_check)(struct net_device *dev))
5256{
5257 struct net_device *lower = NULL;
5258 struct list_head *iter;
5259 int max_nest = -1;
5260 int nest;
5261
5262 ASSERT_RTNL();
5263
5264 netdev_for_each_lower_dev(dev, lower, iter) {
5265 nest = dev_get_nest_level(lower, type_check);
5266 if (max_nest < nest)
5267 max_nest = nest;
5268 }
5269
5270 if (type_check(dev))
5271 max_nest++;
5272
5273 return max_nest;
5274}
5275EXPORT_SYMBOL(dev_get_nest_level);
5276
b6c40d68
PM
5277static void dev_change_rx_flags(struct net_device *dev, int flags)
5278{
d314774c
SH
5279 const struct net_device_ops *ops = dev->netdev_ops;
5280
d2615bf4 5281 if (ops->ndo_change_rx_flags)
d314774c 5282 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5283}
5284
991fb3f7 5285static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5286{
b536db93 5287 unsigned int old_flags = dev->flags;
d04a48b0
EB
5288 kuid_t uid;
5289 kgid_t gid;
1da177e4 5290
24023451
PM
5291 ASSERT_RTNL();
5292
dad9b335
WC
5293 dev->flags |= IFF_PROMISC;
5294 dev->promiscuity += inc;
5295 if (dev->promiscuity == 0) {
5296 /*
5297 * Avoid overflow.
5298 * If inc causes overflow, untouch promisc and return error.
5299 */
5300 if (inc < 0)
5301 dev->flags &= ~IFF_PROMISC;
5302 else {
5303 dev->promiscuity -= inc;
7b6cd1ce
JP
5304 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5305 dev->name);
dad9b335
WC
5306 return -EOVERFLOW;
5307 }
5308 }
52609c0b 5309 if (dev->flags != old_flags) {
7b6cd1ce
JP
5310 pr_info("device %s %s promiscuous mode\n",
5311 dev->name,
5312 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5313 if (audit_enabled) {
5314 current_uid_gid(&uid, &gid);
7759db82
KHK
5315 audit_log(current->audit_context, GFP_ATOMIC,
5316 AUDIT_ANOM_PROMISCUOUS,
5317 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5318 dev->name, (dev->flags & IFF_PROMISC),
5319 (old_flags & IFF_PROMISC),
e1760bd5 5320 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5321 from_kuid(&init_user_ns, uid),
5322 from_kgid(&init_user_ns, gid),
7759db82 5323 audit_get_sessionid(current));
8192b0c4 5324 }
24023451 5325
b6c40d68 5326 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5327 }
991fb3f7
ND
5328 if (notify)
5329 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5330 return 0;
1da177e4
LT
5331}
5332
4417da66
PM
5333/**
5334 * dev_set_promiscuity - update promiscuity count on a device
5335 * @dev: device
5336 * @inc: modifier
5337 *
5338 * Add or remove promiscuity from a device. While the count in the device
5339 * remains above zero the interface remains promiscuous. Once it hits zero
5340 * the device reverts back to normal filtering operation. A negative inc
5341 * value is used to drop promiscuity on the device.
dad9b335 5342 * Return 0 if successful or a negative errno code on error.
4417da66 5343 */
dad9b335 5344int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5345{
b536db93 5346 unsigned int old_flags = dev->flags;
dad9b335 5347 int err;
4417da66 5348
991fb3f7 5349 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5350 if (err < 0)
dad9b335 5351 return err;
4417da66
PM
5352 if (dev->flags != old_flags)
5353 dev_set_rx_mode(dev);
dad9b335 5354 return err;
4417da66 5355}
d1b19dff 5356EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5357
991fb3f7 5358static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5359{
991fb3f7 5360 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5361
24023451
PM
5362 ASSERT_RTNL();
5363
1da177e4 5364 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5365 dev->allmulti += inc;
5366 if (dev->allmulti == 0) {
5367 /*
5368 * Avoid overflow.
5369 * If inc causes overflow, untouch allmulti and return error.
5370 */
5371 if (inc < 0)
5372 dev->flags &= ~IFF_ALLMULTI;
5373 else {
5374 dev->allmulti -= inc;
7b6cd1ce
JP
5375 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5376 dev->name);
dad9b335
WC
5377 return -EOVERFLOW;
5378 }
5379 }
24023451 5380 if (dev->flags ^ old_flags) {
b6c40d68 5381 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5382 dev_set_rx_mode(dev);
991fb3f7
ND
5383 if (notify)
5384 __dev_notify_flags(dev, old_flags,
5385 dev->gflags ^ old_gflags);
24023451 5386 }
dad9b335 5387 return 0;
4417da66 5388}
991fb3f7
ND
5389
5390/**
5391 * dev_set_allmulti - update allmulti count on a device
5392 * @dev: device
5393 * @inc: modifier
5394 *
5395 * Add or remove reception of all multicast frames to a device. While the
5396 * count in the device remains above zero the interface remains listening
5397 * to all interfaces. Once it hits zero the device reverts back to normal
5398 * filtering operation. A negative @inc value is used to drop the counter
5399 * when releasing a resource needing all multicasts.
5400 * Return 0 if successful or a negative errno code on error.
5401 */
5402
5403int dev_set_allmulti(struct net_device *dev, int inc)
5404{
5405 return __dev_set_allmulti(dev, inc, true);
5406}
d1b19dff 5407EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5408
5409/*
5410 * Upload unicast and multicast address lists to device and
5411 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5412 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5413 * are present.
5414 */
5415void __dev_set_rx_mode(struct net_device *dev)
5416{
d314774c
SH
5417 const struct net_device_ops *ops = dev->netdev_ops;
5418
4417da66
PM
5419 /* dev_open will call this function so the list will stay sane. */
5420 if (!(dev->flags&IFF_UP))
5421 return;
5422
5423 if (!netif_device_present(dev))
40b77c94 5424 return;
4417da66 5425
01789349 5426 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5427 /* Unicast addresses changes may only happen under the rtnl,
5428 * therefore calling __dev_set_promiscuity here is safe.
5429 */
32e7bfc4 5430 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5431 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5432 dev->uc_promisc = true;
32e7bfc4 5433 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5434 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5435 dev->uc_promisc = false;
4417da66 5436 }
4417da66 5437 }
01789349
JP
5438
5439 if (ops->ndo_set_rx_mode)
5440 ops->ndo_set_rx_mode(dev);
4417da66
PM
5441}
5442
5443void dev_set_rx_mode(struct net_device *dev)
5444{
b9e40857 5445 netif_addr_lock_bh(dev);
4417da66 5446 __dev_set_rx_mode(dev);
b9e40857 5447 netif_addr_unlock_bh(dev);
1da177e4
LT
5448}
5449
f0db275a
SH
5450/**
5451 * dev_get_flags - get flags reported to userspace
5452 * @dev: device
5453 *
5454 * Get the combination of flag bits exported through APIs to userspace.
5455 */
95c96174 5456unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5457{
95c96174 5458 unsigned int flags;
1da177e4
LT
5459
5460 flags = (dev->flags & ~(IFF_PROMISC |
5461 IFF_ALLMULTI |
b00055aa
SR
5462 IFF_RUNNING |
5463 IFF_LOWER_UP |
5464 IFF_DORMANT)) |
1da177e4
LT
5465 (dev->gflags & (IFF_PROMISC |
5466 IFF_ALLMULTI));
5467
b00055aa
SR
5468 if (netif_running(dev)) {
5469 if (netif_oper_up(dev))
5470 flags |= IFF_RUNNING;
5471 if (netif_carrier_ok(dev))
5472 flags |= IFF_LOWER_UP;
5473 if (netif_dormant(dev))
5474 flags |= IFF_DORMANT;
5475 }
1da177e4
LT
5476
5477 return flags;
5478}
d1b19dff 5479EXPORT_SYMBOL(dev_get_flags);
1da177e4 5480
bd380811 5481int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5482{
b536db93 5483 unsigned int old_flags = dev->flags;
bd380811 5484 int ret;
1da177e4 5485
24023451
PM
5486 ASSERT_RTNL();
5487
1da177e4
LT
5488 /*
5489 * Set the flags on our device.
5490 */
5491
5492 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5493 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5494 IFF_AUTOMEDIA)) |
5495 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5496 IFF_ALLMULTI));
5497
5498 /*
5499 * Load in the correct multicast list now the flags have changed.
5500 */
5501
b6c40d68
PM
5502 if ((old_flags ^ flags) & IFF_MULTICAST)
5503 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5504
4417da66 5505 dev_set_rx_mode(dev);
1da177e4
LT
5506
5507 /*
5508 * Have we downed the interface. We handle IFF_UP ourselves
5509 * according to user attempts to set it, rather than blindly
5510 * setting it.
5511 */
5512
5513 ret = 0;
d215d10f 5514 if ((old_flags ^ flags) & IFF_UP)
bd380811 5515 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5516
1da177e4 5517 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5518 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5519 unsigned int old_flags = dev->flags;
d1b19dff 5520
1da177e4 5521 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5522
5523 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5524 if (dev->flags != old_flags)
5525 dev_set_rx_mode(dev);
1da177e4
LT
5526 }
5527
5528 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5529 is important. Some (broken) drivers set IFF_PROMISC, when
5530 IFF_ALLMULTI is requested not asking us and not reporting.
5531 */
5532 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5533 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5534
1da177e4 5535 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5536 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5537 }
5538
bd380811
PM
5539 return ret;
5540}
5541
a528c219
ND
5542void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5543 unsigned int gchanges)
bd380811
PM
5544{
5545 unsigned int changes = dev->flags ^ old_flags;
5546
a528c219 5547 if (gchanges)
7f294054 5548 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5549
bd380811
PM
5550 if (changes & IFF_UP) {
5551 if (dev->flags & IFF_UP)
5552 call_netdevice_notifiers(NETDEV_UP, dev);
5553 else
5554 call_netdevice_notifiers(NETDEV_DOWN, dev);
5555 }
5556
5557 if (dev->flags & IFF_UP &&
be9efd36
JP
5558 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5559 struct netdev_notifier_change_info change_info;
5560
5561 change_info.flags_changed = changes;
5562 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5563 &change_info.info);
5564 }
bd380811
PM
5565}
5566
5567/**
5568 * dev_change_flags - change device settings
5569 * @dev: device
5570 * @flags: device state flags
5571 *
5572 * Change settings on device based state flags. The flags are
5573 * in the userspace exported format.
5574 */
b536db93 5575int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5576{
b536db93 5577 int ret;
991fb3f7 5578 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5579
5580 ret = __dev_change_flags(dev, flags);
5581 if (ret < 0)
5582 return ret;
5583
991fb3f7 5584 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5585 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5586 return ret;
5587}
d1b19dff 5588EXPORT_SYMBOL(dev_change_flags);
1da177e4 5589
2315dc91
VF
5590static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5591{
5592 const struct net_device_ops *ops = dev->netdev_ops;
5593
5594 if (ops->ndo_change_mtu)
5595 return ops->ndo_change_mtu(dev, new_mtu);
5596
5597 dev->mtu = new_mtu;
5598 return 0;
5599}
5600
f0db275a
SH
5601/**
5602 * dev_set_mtu - Change maximum transfer unit
5603 * @dev: device
5604 * @new_mtu: new transfer unit
5605 *
5606 * Change the maximum transfer size of the network device.
5607 */
1da177e4
LT
5608int dev_set_mtu(struct net_device *dev, int new_mtu)
5609{
2315dc91 5610 int err, orig_mtu;
1da177e4
LT
5611
5612 if (new_mtu == dev->mtu)
5613 return 0;
5614
5615 /* MTU must be positive. */
5616 if (new_mtu < 0)
5617 return -EINVAL;
5618
5619 if (!netif_device_present(dev))
5620 return -ENODEV;
5621
1d486bfb
VF
5622 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5623 err = notifier_to_errno(err);
5624 if (err)
5625 return err;
d314774c 5626
2315dc91
VF
5627 orig_mtu = dev->mtu;
5628 err = __dev_set_mtu(dev, new_mtu);
d314774c 5629
2315dc91
VF
5630 if (!err) {
5631 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5632 err = notifier_to_errno(err);
5633 if (err) {
5634 /* setting mtu back and notifying everyone again,
5635 * so that they have a chance to revert changes.
5636 */
5637 __dev_set_mtu(dev, orig_mtu);
5638 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5639 }
5640 }
1da177e4
LT
5641 return err;
5642}
d1b19dff 5643EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5644
cbda10fa
VD
5645/**
5646 * dev_set_group - Change group this device belongs to
5647 * @dev: device
5648 * @new_group: group this device should belong to
5649 */
5650void dev_set_group(struct net_device *dev, int new_group)
5651{
5652 dev->group = new_group;
5653}
5654EXPORT_SYMBOL(dev_set_group);
5655
f0db275a
SH
5656/**
5657 * dev_set_mac_address - Change Media Access Control Address
5658 * @dev: device
5659 * @sa: new address
5660 *
5661 * Change the hardware (MAC) address of the device
5662 */
1da177e4
LT
5663int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5664{
d314774c 5665 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5666 int err;
5667
d314774c 5668 if (!ops->ndo_set_mac_address)
1da177e4
LT
5669 return -EOPNOTSUPP;
5670 if (sa->sa_family != dev->type)
5671 return -EINVAL;
5672 if (!netif_device_present(dev))
5673 return -ENODEV;
d314774c 5674 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5675 if (err)
5676 return err;
fbdeca2d 5677 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5678 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5679 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5680 return 0;
1da177e4 5681}
d1b19dff 5682EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5683
4bf84c35
JP
5684/**
5685 * dev_change_carrier - Change device carrier
5686 * @dev: device
691b3b7e 5687 * @new_carrier: new value
4bf84c35
JP
5688 *
5689 * Change device carrier
5690 */
5691int dev_change_carrier(struct net_device *dev, bool new_carrier)
5692{
5693 const struct net_device_ops *ops = dev->netdev_ops;
5694
5695 if (!ops->ndo_change_carrier)
5696 return -EOPNOTSUPP;
5697 if (!netif_device_present(dev))
5698 return -ENODEV;
5699 return ops->ndo_change_carrier(dev, new_carrier);
5700}
5701EXPORT_SYMBOL(dev_change_carrier);
5702
66b52b0d
JP
5703/**
5704 * dev_get_phys_port_id - Get device physical port ID
5705 * @dev: device
5706 * @ppid: port ID
5707 *
5708 * Get device physical port ID
5709 */
5710int dev_get_phys_port_id(struct net_device *dev,
5711 struct netdev_phys_port_id *ppid)
5712{
5713 const struct net_device_ops *ops = dev->netdev_ops;
5714
5715 if (!ops->ndo_get_phys_port_id)
5716 return -EOPNOTSUPP;
5717 return ops->ndo_get_phys_port_id(dev, ppid);
5718}
5719EXPORT_SYMBOL(dev_get_phys_port_id);
5720
1da177e4
LT
5721/**
5722 * dev_new_index - allocate an ifindex
c4ea43c5 5723 * @net: the applicable net namespace
1da177e4
LT
5724 *
5725 * Returns a suitable unique value for a new device interface
5726 * number. The caller must hold the rtnl semaphore or the
5727 * dev_base_lock to be sure it remains unique.
5728 */
881d966b 5729static int dev_new_index(struct net *net)
1da177e4 5730{
aa79e66e 5731 int ifindex = net->ifindex;
1da177e4
LT
5732 for (;;) {
5733 if (++ifindex <= 0)
5734 ifindex = 1;
881d966b 5735 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5736 return net->ifindex = ifindex;
1da177e4
LT
5737 }
5738}
5739
1da177e4 5740/* Delayed registration/unregisteration */
3b5b34fd 5741static LIST_HEAD(net_todo_list);
200b916f 5742DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5743
6f05f629 5744static void net_set_todo(struct net_device *dev)
1da177e4 5745{
1da177e4 5746 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5747 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5748}
5749
9b5e383c 5750static void rollback_registered_many(struct list_head *head)
93ee31f1 5751{
e93737b0 5752 struct net_device *dev, *tmp;
5cde2829 5753 LIST_HEAD(close_head);
9b5e383c 5754
93ee31f1
DL
5755 BUG_ON(dev_boot_phase);
5756 ASSERT_RTNL();
5757
e93737b0 5758 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5759 /* Some devices call without registering
e93737b0
KK
5760 * for initialization unwind. Remove those
5761 * devices and proceed with the remaining.
9b5e383c
ED
5762 */
5763 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5764 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5765 dev->name, dev);
93ee31f1 5766
9b5e383c 5767 WARN_ON(1);
e93737b0
KK
5768 list_del(&dev->unreg_list);
5769 continue;
9b5e383c 5770 }
449f4544 5771 dev->dismantle = true;
9b5e383c 5772 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5773 }
93ee31f1 5774
44345724 5775 /* If device is running, close it first. */
5cde2829
EB
5776 list_for_each_entry(dev, head, unreg_list)
5777 list_add_tail(&dev->close_list, &close_head);
5778 dev_close_many(&close_head);
93ee31f1 5779
44345724 5780 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5781 /* And unlink it from device chain. */
5782 unlist_netdevice(dev);
93ee31f1 5783
9b5e383c
ED
5784 dev->reg_state = NETREG_UNREGISTERING;
5785 }
93ee31f1
DL
5786
5787 synchronize_net();
5788
9b5e383c
ED
5789 list_for_each_entry(dev, head, unreg_list) {
5790 /* Shutdown queueing discipline. */
5791 dev_shutdown(dev);
93ee31f1
DL
5792
5793
9b5e383c
ED
5794 /* Notify protocols, that we are about to destroy
5795 this device. They should clean all the things.
5796 */
5797 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5798
9b5e383c
ED
5799 /*
5800 * Flush the unicast and multicast chains
5801 */
a748ee24 5802 dev_uc_flush(dev);
22bedad3 5803 dev_mc_flush(dev);
93ee31f1 5804
9b5e383c
ED
5805 if (dev->netdev_ops->ndo_uninit)
5806 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5807
56bfa7ee
RP
5808 if (!dev->rtnl_link_ops ||
5809 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5810 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5811
9ff162a8
JP
5812 /* Notifier chain MUST detach us all upper devices. */
5813 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5814
9b5e383c
ED
5815 /* Remove entries from kobject tree */
5816 netdev_unregister_kobject(dev);
024e9679
AD
5817#ifdef CONFIG_XPS
5818 /* Remove XPS queueing entries */
5819 netif_reset_xps_queues_gt(dev, 0);
5820#endif
9b5e383c 5821 }
93ee31f1 5822
850a545b 5823 synchronize_net();
395264d5 5824
a5ee1551 5825 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5826 dev_put(dev);
5827}
5828
5829static void rollback_registered(struct net_device *dev)
5830{
5831 LIST_HEAD(single);
5832
5833 list_add(&dev->unreg_list, &single);
5834 rollback_registered_many(&single);
ceaaec98 5835 list_del(&single);
93ee31f1
DL
5836}
5837
c8f44aff
MM
5838static netdev_features_t netdev_fix_features(struct net_device *dev,
5839 netdev_features_t features)
b63365a2 5840{
57422dc5
MM
5841 /* Fix illegal checksum combinations */
5842 if ((features & NETIF_F_HW_CSUM) &&
5843 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5844 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
5845 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5846 }
5847
b63365a2 5848 /* TSO requires that SG is present as well. */
ea2d3688 5849 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 5850 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 5851 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
5852 }
5853
ec5f0615
PS
5854 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5855 !(features & NETIF_F_IP_CSUM)) {
5856 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5857 features &= ~NETIF_F_TSO;
5858 features &= ~NETIF_F_TSO_ECN;
5859 }
5860
5861 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5862 !(features & NETIF_F_IPV6_CSUM)) {
5863 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5864 features &= ~NETIF_F_TSO6;
5865 }
5866
31d8b9e0
BH
5867 /* TSO ECN requires that TSO is present as well. */
5868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5869 features &= ~NETIF_F_TSO_ECN;
5870
212b573f
MM
5871 /* Software GSO depends on SG. */
5872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 5873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
5874 features &= ~NETIF_F_GSO;
5875 }
5876
acd1130e 5877 /* UFO needs SG and checksumming */
b63365a2 5878 if (features & NETIF_F_UFO) {
79032644
MM
5879 /* maybe split UFO into V4 and V6? */
5880 if (!((features & NETIF_F_GEN_CSUM) ||
5881 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5882 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5883 netdev_dbg(dev,
acd1130e 5884 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
5885 features &= ~NETIF_F_UFO;
5886 }
5887
5888 if (!(features & NETIF_F_SG)) {
6f404e44 5889 netdev_dbg(dev,
acd1130e 5890 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
5891 features &= ~NETIF_F_UFO;
5892 }
5893 }
5894
d0290214
JP
5895#ifdef CONFIG_NET_RX_BUSY_POLL
5896 if (dev->netdev_ops->ndo_busy_poll)
5897 features |= NETIF_F_BUSY_POLL;
5898 else
5899#endif
5900 features &= ~NETIF_F_BUSY_POLL;
5901
b63365a2
HX
5902 return features;
5903}
b63365a2 5904
6cb6a27c 5905int __netdev_update_features(struct net_device *dev)
5455c699 5906{
c8f44aff 5907 netdev_features_t features;
5455c699
MM
5908 int err = 0;
5909
87267485
MM
5910 ASSERT_RTNL();
5911
5455c699
MM
5912 features = netdev_get_wanted_features(dev);
5913
5914 if (dev->netdev_ops->ndo_fix_features)
5915 features = dev->netdev_ops->ndo_fix_features(dev, features);
5916
5917 /* driver might be less strict about feature dependencies */
5918 features = netdev_fix_features(dev, features);
5919
5920 if (dev->features == features)
6cb6a27c 5921 return 0;
5455c699 5922
c8f44aff
MM
5923 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5924 &dev->features, &features);
5455c699
MM
5925
5926 if (dev->netdev_ops->ndo_set_features)
5927 err = dev->netdev_ops->ndo_set_features(dev, features);
5928
6cb6a27c 5929 if (unlikely(err < 0)) {
5455c699 5930 netdev_err(dev,
c8f44aff
MM
5931 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5932 err, &features, &dev->features);
6cb6a27c
MM
5933 return -1;
5934 }
5935
5936 if (!err)
5937 dev->features = features;
5938
5939 return 1;
5940}
5941
afe12cc8
MM
5942/**
5943 * netdev_update_features - recalculate device features
5944 * @dev: the device to check
5945 *
5946 * Recalculate dev->features set and send notifications if it
5947 * has changed. Should be called after driver or hardware dependent
5948 * conditions might have changed that influence the features.
5949 */
6cb6a27c
MM
5950void netdev_update_features(struct net_device *dev)
5951{
5952 if (__netdev_update_features(dev))
5953 netdev_features_change(dev);
5455c699
MM
5954}
5955EXPORT_SYMBOL(netdev_update_features);
5956
afe12cc8
MM
5957/**
5958 * netdev_change_features - recalculate device features
5959 * @dev: the device to check
5960 *
5961 * Recalculate dev->features set and send notifications even
5962 * if they have not changed. Should be called instead of
5963 * netdev_update_features() if also dev->vlan_features might
5964 * have changed to allow the changes to be propagated to stacked
5965 * VLAN devices.
5966 */
5967void netdev_change_features(struct net_device *dev)
5968{
5969 __netdev_update_features(dev);
5970 netdev_features_change(dev);
5971}
5972EXPORT_SYMBOL(netdev_change_features);
5973
fc4a7489
PM
5974/**
5975 * netif_stacked_transfer_operstate - transfer operstate
5976 * @rootdev: the root or lower level device to transfer state from
5977 * @dev: the device to transfer operstate to
5978 *
5979 * Transfer operational state from root to device. This is normally
5980 * called when a stacking relationship exists between the root
5981 * device and the device(a leaf device).
5982 */
5983void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5984 struct net_device *dev)
5985{
5986 if (rootdev->operstate == IF_OPER_DORMANT)
5987 netif_dormant_on(dev);
5988 else
5989 netif_dormant_off(dev);
5990
5991 if (netif_carrier_ok(rootdev)) {
5992 if (!netif_carrier_ok(dev))
5993 netif_carrier_on(dev);
5994 } else {
5995 if (netif_carrier_ok(dev))
5996 netif_carrier_off(dev);
5997 }
5998}
5999EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6000
a953be53 6001#ifdef CONFIG_SYSFS
1b4bf461
ED
6002static int netif_alloc_rx_queues(struct net_device *dev)
6003{
1b4bf461 6004 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6005 struct netdev_rx_queue *rx;
1b4bf461 6006
bd25fa7b 6007 BUG_ON(count < 1);
1b4bf461 6008
bd25fa7b 6009 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 6010 if (!rx)
bd25fa7b 6011 return -ENOMEM;
62b5942a 6012
bd25fa7b
TH
6013 dev->_rx = rx;
6014
bd25fa7b 6015 for (i = 0; i < count; i++)
fe822240 6016 rx[i].dev = dev;
1b4bf461
ED
6017 return 0;
6018}
bf264145 6019#endif
1b4bf461 6020
aa942104
CG
6021static void netdev_init_one_queue(struct net_device *dev,
6022 struct netdev_queue *queue, void *_unused)
6023{
6024 /* Initialize queue lock */
6025 spin_lock_init(&queue->_xmit_lock);
6026 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6027 queue->xmit_lock_owner = -1;
b236da69 6028 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6029 queue->dev = dev;
114cf580
TH
6030#ifdef CONFIG_BQL
6031 dql_init(&queue->dql, HZ);
6032#endif
aa942104
CG
6033}
6034
60877a32
ED
6035static void netif_free_tx_queues(struct net_device *dev)
6036{
4cb28970 6037 kvfree(dev->_tx);
60877a32
ED
6038}
6039
e6484930
TH
6040static int netif_alloc_netdev_queues(struct net_device *dev)
6041{
6042 unsigned int count = dev->num_tx_queues;
6043 struct netdev_queue *tx;
60877a32 6044 size_t sz = count * sizeof(*tx);
e6484930 6045
60877a32 6046 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6047
60877a32
ED
6048 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6049 if (!tx) {
6050 tx = vzalloc(sz);
6051 if (!tx)
6052 return -ENOMEM;
6053 }
e6484930 6054 dev->_tx = tx;
1d24eb48 6055
e6484930
TH
6056 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6057 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6058
6059 return 0;
e6484930
TH
6060}
6061
1da177e4
LT
6062/**
6063 * register_netdevice - register a network device
6064 * @dev: device to register
6065 *
6066 * Take a completed network device structure and add it to the kernel
6067 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6068 * chain. 0 is returned on success. A negative errno code is returned
6069 * on a failure to set up the device, or if the name is a duplicate.
6070 *
6071 * Callers must hold the rtnl semaphore. You may want
6072 * register_netdev() instead of this.
6073 *
6074 * BUGS:
6075 * The locking appears insufficient to guarantee two parallel registers
6076 * will not get the same name.
6077 */
6078
6079int register_netdevice(struct net_device *dev)
6080{
1da177e4 6081 int ret;
d314774c 6082 struct net *net = dev_net(dev);
1da177e4
LT
6083
6084 BUG_ON(dev_boot_phase);
6085 ASSERT_RTNL();
6086
b17a7c17
SH
6087 might_sleep();
6088
1da177e4
LT
6089 /* When net_device's are persistent, this will be fatal. */
6090 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6091 BUG_ON(!net);
1da177e4 6092
f1f28aa3 6093 spin_lock_init(&dev->addr_list_lock);
cf508b12 6094 netdev_set_addr_lockdep_class(dev);
1da177e4 6095
1da177e4
LT
6096 dev->iflink = -1;
6097
828de4f6 6098 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6099 if (ret < 0)
6100 goto out;
6101
1da177e4 6102 /* Init, if this function is available */
d314774c
SH
6103 if (dev->netdev_ops->ndo_init) {
6104 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6105 if (ret) {
6106 if (ret > 0)
6107 ret = -EIO;
90833aa4 6108 goto out;
1da177e4
LT
6109 }
6110 }
4ec93edb 6111
f646968f
PM
6112 if (((dev->hw_features | dev->features) &
6113 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6114 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6115 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6116 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6117 ret = -EINVAL;
6118 goto err_uninit;
6119 }
6120
9c7dafbf
PE
6121 ret = -EBUSY;
6122 if (!dev->ifindex)
6123 dev->ifindex = dev_new_index(net);
6124 else if (__dev_get_by_index(net, dev->ifindex))
6125 goto err_uninit;
6126
1da177e4
LT
6127 if (dev->iflink == -1)
6128 dev->iflink = dev->ifindex;
6129
5455c699
MM
6130 /* Transfer changeable features to wanted_features and enable
6131 * software offloads (GSO and GRO).
6132 */
6133 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6134 dev->features |= NETIF_F_SOFT_FEATURES;
6135 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6136
34324dc2
MM
6137 if (!(dev->flags & IFF_LOOPBACK)) {
6138 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6139 }
6140
1180e7d6 6141 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6142 */
1180e7d6 6143 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6144
ee579677
PS
6145 /* Make NETIF_F_SG inheritable to tunnel devices.
6146 */
6147 dev->hw_enc_features |= NETIF_F_SG;
6148
0d89d203
SH
6149 /* Make NETIF_F_SG inheritable to MPLS.
6150 */
6151 dev->mpls_features |= NETIF_F_SG;
6152
7ffbe3fd
JB
6153 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6154 ret = notifier_to_errno(ret);
6155 if (ret)
6156 goto err_uninit;
6157
8b41d188 6158 ret = netdev_register_kobject(dev);
b17a7c17 6159 if (ret)
7ce1b0ed 6160 goto err_uninit;
b17a7c17
SH
6161 dev->reg_state = NETREG_REGISTERED;
6162
6cb6a27c 6163 __netdev_update_features(dev);
8e9b59b2 6164
1da177e4
LT
6165 /*
6166 * Default initial state at registry is that the
6167 * device is present.
6168 */
6169
6170 set_bit(__LINK_STATE_PRESENT, &dev->state);
6171
8f4cccbb
BH
6172 linkwatch_init_dev(dev);
6173
1da177e4 6174 dev_init_scheduler(dev);
1da177e4 6175 dev_hold(dev);
ce286d32 6176 list_netdevice(dev);
7bf23575 6177 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6178
948b337e
JP
6179 /* If the device has permanent device address, driver should
6180 * set dev_addr and also addr_assign_type should be set to
6181 * NET_ADDR_PERM (default value).
6182 */
6183 if (dev->addr_assign_type == NET_ADDR_PERM)
6184 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6185
1da177e4 6186 /* Notify protocols, that a new device appeared. */
056925ab 6187 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6188 ret = notifier_to_errno(ret);
93ee31f1
DL
6189 if (ret) {
6190 rollback_registered(dev);
6191 dev->reg_state = NETREG_UNREGISTERED;
6192 }
d90a909e
EB
6193 /*
6194 * Prevent userspace races by waiting until the network
6195 * device is fully setup before sending notifications.
6196 */
a2835763
PM
6197 if (!dev->rtnl_link_ops ||
6198 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6199 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6200
6201out:
6202 return ret;
7ce1b0ed
HX
6203
6204err_uninit:
d314774c
SH
6205 if (dev->netdev_ops->ndo_uninit)
6206 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6207 goto out;
1da177e4 6208}
d1b19dff 6209EXPORT_SYMBOL(register_netdevice);
1da177e4 6210
937f1ba5
BH
6211/**
6212 * init_dummy_netdev - init a dummy network device for NAPI
6213 * @dev: device to init
6214 *
6215 * This takes a network device structure and initialize the minimum
6216 * amount of fields so it can be used to schedule NAPI polls without
6217 * registering a full blown interface. This is to be used by drivers
6218 * that need to tie several hardware interfaces to a single NAPI
6219 * poll scheduler due to HW limitations.
6220 */
6221int init_dummy_netdev(struct net_device *dev)
6222{
6223 /* Clear everything. Note we don't initialize spinlocks
6224 * are they aren't supposed to be taken by any of the
6225 * NAPI code and this dummy netdev is supposed to be
6226 * only ever used for NAPI polls
6227 */
6228 memset(dev, 0, sizeof(struct net_device));
6229
6230 /* make sure we BUG if trying to hit standard
6231 * register/unregister code path
6232 */
6233 dev->reg_state = NETREG_DUMMY;
6234
937f1ba5
BH
6235 /* NAPI wants this */
6236 INIT_LIST_HEAD(&dev->napi_list);
6237
6238 /* a dummy interface is started by default */
6239 set_bit(__LINK_STATE_PRESENT, &dev->state);
6240 set_bit(__LINK_STATE_START, &dev->state);
6241
29b4433d
ED
6242 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6243 * because users of this 'device' dont need to change
6244 * its refcount.
6245 */
6246
937f1ba5
BH
6247 return 0;
6248}
6249EXPORT_SYMBOL_GPL(init_dummy_netdev);
6250
6251
1da177e4
LT
6252/**
6253 * register_netdev - register a network device
6254 * @dev: device to register
6255 *
6256 * Take a completed network device structure and add it to the kernel
6257 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6258 * chain. 0 is returned on success. A negative errno code is returned
6259 * on a failure to set up the device, or if the name is a duplicate.
6260 *
38b4da38 6261 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6262 * and expands the device name if you passed a format string to
6263 * alloc_netdev.
6264 */
6265int register_netdev(struct net_device *dev)
6266{
6267 int err;
6268
6269 rtnl_lock();
1da177e4 6270 err = register_netdevice(dev);
1da177e4
LT
6271 rtnl_unlock();
6272 return err;
6273}
6274EXPORT_SYMBOL(register_netdev);
6275
29b4433d
ED
6276int netdev_refcnt_read(const struct net_device *dev)
6277{
6278 int i, refcnt = 0;
6279
6280 for_each_possible_cpu(i)
6281 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6282 return refcnt;
6283}
6284EXPORT_SYMBOL(netdev_refcnt_read);
6285
2c53040f 6286/**
1da177e4 6287 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6288 * @dev: target net_device
1da177e4
LT
6289 *
6290 * This is called when unregistering network devices.
6291 *
6292 * Any protocol or device that holds a reference should register
6293 * for netdevice notification, and cleanup and put back the
6294 * reference if they receive an UNREGISTER event.
6295 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6296 * call dev_put.
1da177e4
LT
6297 */
6298static void netdev_wait_allrefs(struct net_device *dev)
6299{
6300 unsigned long rebroadcast_time, warning_time;
29b4433d 6301 int refcnt;
1da177e4 6302
e014debe
ED
6303 linkwatch_forget_dev(dev);
6304
1da177e4 6305 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6306 refcnt = netdev_refcnt_read(dev);
6307
6308 while (refcnt != 0) {
1da177e4 6309 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6310 rtnl_lock();
1da177e4
LT
6311
6312 /* Rebroadcast unregister notification */
056925ab 6313 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6314
748e2d93 6315 __rtnl_unlock();
0115e8e3 6316 rcu_barrier();
748e2d93
ED
6317 rtnl_lock();
6318
0115e8e3 6319 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6320 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6321 &dev->state)) {
6322 /* We must not have linkwatch events
6323 * pending on unregister. If this
6324 * happens, we simply run the queue
6325 * unscheduled, resulting in a noop
6326 * for this device.
6327 */
6328 linkwatch_run_queue();
6329 }
6330
6756ae4b 6331 __rtnl_unlock();
1da177e4
LT
6332
6333 rebroadcast_time = jiffies;
6334 }
6335
6336 msleep(250);
6337
29b4433d
ED
6338 refcnt = netdev_refcnt_read(dev);
6339
1da177e4 6340 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6341 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6342 dev->name, refcnt);
1da177e4
LT
6343 warning_time = jiffies;
6344 }
6345 }
6346}
6347
6348/* The sequence is:
6349 *
6350 * rtnl_lock();
6351 * ...
6352 * register_netdevice(x1);
6353 * register_netdevice(x2);
6354 * ...
6355 * unregister_netdevice(y1);
6356 * unregister_netdevice(y2);
6357 * ...
6358 * rtnl_unlock();
6359 * free_netdev(y1);
6360 * free_netdev(y2);
6361 *
58ec3b4d 6362 * We are invoked by rtnl_unlock().
1da177e4 6363 * This allows us to deal with problems:
b17a7c17 6364 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6365 * without deadlocking with linkwatch via keventd.
6366 * 2) Since we run with the RTNL semaphore not held, we can sleep
6367 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6368 *
6369 * We must not return until all unregister events added during
6370 * the interval the lock was held have been completed.
1da177e4 6371 */
1da177e4
LT
6372void netdev_run_todo(void)
6373{
626ab0e6 6374 struct list_head list;
1da177e4 6375
1da177e4 6376 /* Snapshot list, allow later requests */
626ab0e6 6377 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6378
6379 __rtnl_unlock();
626ab0e6 6380
0115e8e3
ED
6381
6382 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6383 if (!list_empty(&list))
6384 rcu_barrier();
6385
1da177e4
LT
6386 while (!list_empty(&list)) {
6387 struct net_device *dev
e5e26d75 6388 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6389 list_del(&dev->todo_list);
6390
748e2d93 6391 rtnl_lock();
0115e8e3 6392 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6393 __rtnl_unlock();
0115e8e3 6394
b17a7c17 6395 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6396 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6397 dev->name, dev->reg_state);
6398 dump_stack();
6399 continue;
6400 }
1da177e4 6401
b17a7c17 6402 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6403
152102c7 6404 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6405
b17a7c17 6406 netdev_wait_allrefs(dev);
1da177e4 6407
b17a7c17 6408 /* paranoia */
29b4433d 6409 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6410 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6411 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6412 WARN_ON(dev->dn_ptr);
1da177e4 6413
b17a7c17
SH
6414 if (dev->destructor)
6415 dev->destructor(dev);
9093bbb2 6416
50624c93
EB
6417 /* Report a network device has been unregistered */
6418 rtnl_lock();
6419 dev_net(dev)->dev_unreg_count--;
6420 __rtnl_unlock();
6421 wake_up(&netdev_unregistering_wq);
6422
9093bbb2
SH
6423 /* Free network device */
6424 kobject_put(&dev->dev.kobj);
1da177e4 6425 }
1da177e4
LT
6426}
6427
3cfde79c
BH
6428/* Convert net_device_stats to rtnl_link_stats64. They have the same
6429 * fields in the same order, with only the type differing.
6430 */
77a1abf5
ED
6431void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6432 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6433{
6434#if BITS_PER_LONG == 64
77a1abf5
ED
6435 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6436 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6437#else
6438 size_t i, n = sizeof(*stats64) / sizeof(u64);
6439 const unsigned long *src = (const unsigned long *)netdev_stats;
6440 u64 *dst = (u64 *)stats64;
6441
6442 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6443 sizeof(*stats64) / sizeof(u64));
6444 for (i = 0; i < n; i++)
6445 dst[i] = src[i];
6446#endif
6447}
77a1abf5 6448EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6449
eeda3fd6
SH
6450/**
6451 * dev_get_stats - get network device statistics
6452 * @dev: device to get statistics from
28172739 6453 * @storage: place to store stats
eeda3fd6 6454 *
d7753516
BH
6455 * Get network statistics from device. Return @storage.
6456 * The device driver may provide its own method by setting
6457 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6458 * otherwise the internal statistics structure is used.
eeda3fd6 6459 */
d7753516
BH
6460struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6461 struct rtnl_link_stats64 *storage)
7004bf25 6462{
eeda3fd6
SH
6463 const struct net_device_ops *ops = dev->netdev_ops;
6464
28172739
ED
6465 if (ops->ndo_get_stats64) {
6466 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6467 ops->ndo_get_stats64(dev, storage);
6468 } else if (ops->ndo_get_stats) {
3cfde79c 6469 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6470 } else {
6471 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6472 }
caf586e5 6473 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6474 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6475 return storage;
c45d286e 6476}
eeda3fd6 6477EXPORT_SYMBOL(dev_get_stats);
c45d286e 6478
24824a09 6479struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6480{
24824a09 6481 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6482
24824a09
ED
6483#ifdef CONFIG_NET_CLS_ACT
6484 if (queue)
6485 return queue;
6486 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6487 if (!queue)
6488 return NULL;
6489 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6490 queue->qdisc = &noop_qdisc;
6491 queue->qdisc_sleeping = &noop_qdisc;
6492 rcu_assign_pointer(dev->ingress_queue, queue);
6493#endif
6494 return queue;
bb949fbd
DM
6495}
6496
2c60db03
ED
6497static const struct ethtool_ops default_ethtool_ops;
6498
d07d7507
SG
6499void netdev_set_default_ethtool_ops(struct net_device *dev,
6500 const struct ethtool_ops *ops)
6501{
6502 if (dev->ethtool_ops == &default_ethtool_ops)
6503 dev->ethtool_ops = ops;
6504}
6505EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6506
74d332c1
ED
6507void netdev_freemem(struct net_device *dev)
6508{
6509 char *addr = (char *)dev - dev->padded;
6510
4cb28970 6511 kvfree(addr);
74d332c1
ED
6512}
6513
1da177e4 6514/**
36909ea4 6515 * alloc_netdev_mqs - allocate network device
c835a677
TG
6516 * @sizeof_priv: size of private data to allocate space for
6517 * @name: device name format string
6518 * @name_assign_type: origin of device name
6519 * @setup: callback to initialize device
6520 * @txqs: the number of TX subqueues to allocate
6521 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6522 *
6523 * Allocates a struct net_device with private data area for driver use
90e51adf 6524 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6525 * for each queue on the device.
1da177e4 6526 */
36909ea4 6527struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6528 unsigned char name_assign_type,
36909ea4
TH
6529 void (*setup)(struct net_device *),
6530 unsigned int txqs, unsigned int rxqs)
1da177e4 6531{
1da177e4 6532 struct net_device *dev;
7943986c 6533 size_t alloc_size;
1ce8e7b5 6534 struct net_device *p;
1da177e4 6535
b6fe17d6
SH
6536 BUG_ON(strlen(name) >= sizeof(dev->name));
6537
36909ea4 6538 if (txqs < 1) {
7b6cd1ce 6539 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6540 return NULL;
6541 }
6542
a953be53 6543#ifdef CONFIG_SYSFS
36909ea4 6544 if (rxqs < 1) {
7b6cd1ce 6545 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6546 return NULL;
6547 }
6548#endif
6549
fd2ea0a7 6550 alloc_size = sizeof(struct net_device);
d1643d24
AD
6551 if (sizeof_priv) {
6552 /* ensure 32-byte alignment of private area */
1ce8e7b5 6553 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6554 alloc_size += sizeof_priv;
6555 }
6556 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6557 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6558
74d332c1
ED
6559 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6560 if (!p)
6561 p = vzalloc(alloc_size);
62b5942a 6562 if (!p)
1da177e4 6563 return NULL;
1da177e4 6564
1ce8e7b5 6565 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6566 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6567
29b4433d
ED
6568 dev->pcpu_refcnt = alloc_percpu(int);
6569 if (!dev->pcpu_refcnt)
74d332c1 6570 goto free_dev;
ab9c73cc 6571
ab9c73cc 6572 if (dev_addr_init(dev))
29b4433d 6573 goto free_pcpu;
ab9c73cc 6574
22bedad3 6575 dev_mc_init(dev);
a748ee24 6576 dev_uc_init(dev);
ccffad25 6577
c346dca1 6578 dev_net_set(dev, &init_net);
1da177e4 6579
8d3bdbd5 6580 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6581 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 6582
8d3bdbd5
DM
6583 INIT_LIST_HEAD(&dev->napi_list);
6584 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6585 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6586 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6587 INIT_LIST_HEAD(&dev->adj_list.upper);
6588 INIT_LIST_HEAD(&dev->adj_list.lower);
6589 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6590 INIT_LIST_HEAD(&dev->all_adj_list.lower);
8d3bdbd5
DM
6591 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6592 setup(dev);
6593
36909ea4
TH
6594 dev->num_tx_queues = txqs;
6595 dev->real_num_tx_queues = txqs;
ed9af2e8 6596 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6597 goto free_all;
e8a0464c 6598
a953be53 6599#ifdef CONFIG_SYSFS
36909ea4
TH
6600 dev->num_rx_queues = rxqs;
6601 dev->real_num_rx_queues = rxqs;
fe822240 6602 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6603 goto free_all;
df334545 6604#endif
0a9627f2 6605
1da177e4 6606 strcpy(dev->name, name);
c835a677 6607 dev->name_assign_type = name_assign_type;
cbda10fa 6608 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6609 if (!dev->ethtool_ops)
6610 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6611 return dev;
ab9c73cc 6612
8d3bdbd5
DM
6613free_all:
6614 free_netdev(dev);
6615 return NULL;
6616
29b4433d
ED
6617free_pcpu:
6618 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6619free_dev:
6620 netdev_freemem(dev);
ab9c73cc 6621 return NULL;
1da177e4 6622}
36909ea4 6623EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6624
6625/**
6626 * free_netdev - free network device
6627 * @dev: device
6628 *
4ec93edb
YH
6629 * This function does the last stage of destroying an allocated device
6630 * interface. The reference to the device object is released.
1da177e4
LT
6631 * If this is the last reference then it will be freed.
6632 */
6633void free_netdev(struct net_device *dev)
6634{
d565b0a1
HX
6635 struct napi_struct *p, *n;
6636
f3005d7f
DL
6637 release_net(dev_net(dev));
6638
60877a32 6639 netif_free_tx_queues(dev);
a953be53 6640#ifdef CONFIG_SYSFS
fe822240
TH
6641 kfree(dev->_rx);
6642#endif
e8a0464c 6643
33d480ce 6644 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6645
f001fde5
JP
6646 /* Flush device addresses */
6647 dev_addr_flush(dev);
6648
d565b0a1
HX
6649 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6650 netif_napi_del(p);
6651
29b4433d
ED
6652 free_percpu(dev->pcpu_refcnt);
6653 dev->pcpu_refcnt = NULL;
6654
3041a069 6655 /* Compatibility with error handling in drivers */
1da177e4 6656 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6657 netdev_freemem(dev);
1da177e4
LT
6658 return;
6659 }
6660
6661 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6662 dev->reg_state = NETREG_RELEASED;
6663
43cb76d9
GKH
6664 /* will free via device release */
6665 put_device(&dev->dev);
1da177e4 6666}
d1b19dff 6667EXPORT_SYMBOL(free_netdev);
4ec93edb 6668
f0db275a
SH
6669/**
6670 * synchronize_net - Synchronize with packet receive processing
6671 *
6672 * Wait for packets currently being received to be done.
6673 * Does not block later packets from starting.
6674 */
4ec93edb 6675void synchronize_net(void)
1da177e4
LT
6676{
6677 might_sleep();
be3fc413
ED
6678 if (rtnl_is_locked())
6679 synchronize_rcu_expedited();
6680 else
6681 synchronize_rcu();
1da177e4 6682}
d1b19dff 6683EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6684
6685/**
44a0873d 6686 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6687 * @dev: device
44a0873d 6688 * @head: list
6ebfbc06 6689 *
1da177e4 6690 * This function shuts down a device interface and removes it
d59b54b1 6691 * from the kernel tables.
44a0873d 6692 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6693 *
6694 * Callers must hold the rtnl semaphore. You may want
6695 * unregister_netdev() instead of this.
6696 */
6697
44a0873d 6698void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6699{
a6620712
HX
6700 ASSERT_RTNL();
6701
44a0873d 6702 if (head) {
9fdce099 6703 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6704 } else {
6705 rollback_registered(dev);
6706 /* Finish processing unregister after unlock */
6707 net_set_todo(dev);
6708 }
1da177e4 6709}
44a0873d 6710EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6711
9b5e383c
ED
6712/**
6713 * unregister_netdevice_many - unregister many devices
6714 * @head: list of devices
87757a91
ED
6715 *
6716 * Note: As most callers use a stack allocated list_head,
6717 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6718 */
6719void unregister_netdevice_many(struct list_head *head)
6720{
6721 struct net_device *dev;
6722
6723 if (!list_empty(head)) {
6724 rollback_registered_many(head);
6725 list_for_each_entry(dev, head, unreg_list)
6726 net_set_todo(dev);
87757a91 6727 list_del(head);
9b5e383c
ED
6728 }
6729}
63c8099d 6730EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6731
1da177e4
LT
6732/**
6733 * unregister_netdev - remove device from the kernel
6734 * @dev: device
6735 *
6736 * This function shuts down a device interface and removes it
d59b54b1 6737 * from the kernel tables.
1da177e4
LT
6738 *
6739 * This is just a wrapper for unregister_netdevice that takes
6740 * the rtnl semaphore. In general you want to use this and not
6741 * unregister_netdevice.
6742 */
6743void unregister_netdev(struct net_device *dev)
6744{
6745 rtnl_lock();
6746 unregister_netdevice(dev);
6747 rtnl_unlock();
6748}
1da177e4
LT
6749EXPORT_SYMBOL(unregister_netdev);
6750
ce286d32
EB
6751/**
6752 * dev_change_net_namespace - move device to different nethost namespace
6753 * @dev: device
6754 * @net: network namespace
6755 * @pat: If not NULL name pattern to try if the current device name
6756 * is already taken in the destination network namespace.
6757 *
6758 * This function shuts down a device interface and moves it
6759 * to a new network namespace. On success 0 is returned, on
6760 * a failure a netagive errno code is returned.
6761 *
6762 * Callers must hold the rtnl semaphore.
6763 */
6764
6765int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6766{
ce286d32
EB
6767 int err;
6768
6769 ASSERT_RTNL();
6770
6771 /* Don't allow namespace local devices to be moved. */
6772 err = -EINVAL;
6773 if (dev->features & NETIF_F_NETNS_LOCAL)
6774 goto out;
6775
6776 /* Ensure the device has been registrered */
ce286d32
EB
6777 if (dev->reg_state != NETREG_REGISTERED)
6778 goto out;
6779
6780 /* Get out if there is nothing todo */
6781 err = 0;
878628fb 6782 if (net_eq(dev_net(dev), net))
ce286d32
EB
6783 goto out;
6784
6785 /* Pick the destination device name, and ensure
6786 * we can use it in the destination network namespace.
6787 */
6788 err = -EEXIST;
d9031024 6789 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6790 /* We get here if we can't use the current device name */
6791 if (!pat)
6792 goto out;
828de4f6 6793 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6794 goto out;
6795 }
6796
6797 /*
6798 * And now a mini version of register_netdevice unregister_netdevice.
6799 */
6800
6801 /* If device is running close it first. */
9b772652 6802 dev_close(dev);
ce286d32
EB
6803
6804 /* And unlink it from device chain */
6805 err = -ENODEV;
6806 unlist_netdevice(dev);
6807
6808 synchronize_net();
6809
6810 /* Shutdown queueing discipline. */
6811 dev_shutdown(dev);
6812
6813 /* Notify protocols, that we are about to destroy
6814 this device. They should clean all the things.
3b27e105
DL
6815
6816 Note that dev->reg_state stays at NETREG_REGISTERED.
6817 This is wanted because this way 8021q and macvlan know
6818 the device is just moving and can keep their slaves up.
ce286d32
EB
6819 */
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6821 rcu_barrier();
6822 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6823 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6824
6825 /*
6826 * Flush the unicast and multicast chains
6827 */
a748ee24 6828 dev_uc_flush(dev);
22bedad3 6829 dev_mc_flush(dev);
ce286d32 6830
4e66ae2e
SH
6831 /* Send a netdev-removed uevent to the old namespace */
6832 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 6833 netdev_adjacent_del_links(dev);
4e66ae2e 6834
ce286d32 6835 /* Actually switch the network namespace */
c346dca1 6836 dev_net_set(dev, net);
ce286d32 6837
ce286d32
EB
6838 /* If there is an ifindex conflict assign a new one */
6839 if (__dev_get_by_index(net, dev->ifindex)) {
6840 int iflink = (dev->iflink == dev->ifindex);
6841 dev->ifindex = dev_new_index(net);
6842 if (iflink)
6843 dev->iflink = dev->ifindex;
6844 }
6845
4e66ae2e
SH
6846 /* Send a netdev-add uevent to the new namespace */
6847 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 6848 netdev_adjacent_add_links(dev);
4e66ae2e 6849
8b41d188 6850 /* Fixup kobjects */
a1b3f594 6851 err = device_rename(&dev->dev, dev->name);
8b41d188 6852 WARN_ON(err);
ce286d32
EB
6853
6854 /* Add the device back in the hashes */
6855 list_netdevice(dev);
6856
6857 /* Notify protocols, that a new device appeared. */
6858 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6859
d90a909e
EB
6860 /*
6861 * Prevent userspace races by waiting until the network
6862 * device is fully setup before sending notifications.
6863 */
7f294054 6864 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 6865
ce286d32
EB
6866 synchronize_net();
6867 err = 0;
6868out:
6869 return err;
6870}
463d0183 6871EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 6872
1da177e4
LT
6873static int dev_cpu_callback(struct notifier_block *nfb,
6874 unsigned long action,
6875 void *ocpu)
6876{
6877 struct sk_buff **list_skb;
1da177e4
LT
6878 struct sk_buff *skb;
6879 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6880 struct softnet_data *sd, *oldsd;
6881
8bb78442 6882 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
6883 return NOTIFY_OK;
6884
6885 local_irq_disable();
6886 cpu = smp_processor_id();
6887 sd = &per_cpu(softnet_data, cpu);
6888 oldsd = &per_cpu(softnet_data, oldcpu);
6889
6890 /* Find end of our completion_queue. */
6891 list_skb = &sd->completion_queue;
6892 while (*list_skb)
6893 list_skb = &(*list_skb)->next;
6894 /* Append completion queue from offline CPU. */
6895 *list_skb = oldsd->completion_queue;
6896 oldsd->completion_queue = NULL;
6897
1da177e4 6898 /* Append output queue from offline CPU. */
a9cbd588
CG
6899 if (oldsd->output_queue) {
6900 *sd->output_queue_tailp = oldsd->output_queue;
6901 sd->output_queue_tailp = oldsd->output_queue_tailp;
6902 oldsd->output_queue = NULL;
6903 oldsd->output_queue_tailp = &oldsd->output_queue;
6904 }
264524d5
HC
6905 /* Append NAPI poll list from offline CPU. */
6906 if (!list_empty(&oldsd->poll_list)) {
6907 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6908 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909 }
1da177e4
LT
6910
6911 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6912 local_irq_enable();
6913
6914 /* Process offline CPU's input_pkt_queue */
76cc8b13 6915 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 6916 netif_rx_internal(skb);
76cc8b13 6917 input_queue_head_incr(oldsd);
fec5e652 6918 }
76cc8b13 6919 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 6920 netif_rx_internal(skb);
76cc8b13
TH
6921 input_queue_head_incr(oldsd);
6922 }
1da177e4
LT
6923
6924 return NOTIFY_OK;
6925}
1da177e4
LT
6926
6927
7f353bf2 6928/**
b63365a2
HX
6929 * netdev_increment_features - increment feature set by one
6930 * @all: current feature set
6931 * @one: new feature set
6932 * @mask: mask feature set
7f353bf2
HX
6933 *
6934 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6935 * @one to the master device with current feature set @all. Will not
6936 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6937 */
c8f44aff
MM
6938netdev_features_t netdev_increment_features(netdev_features_t all,
6939 netdev_features_t one, netdev_features_t mask)
b63365a2 6940{
1742f183
MM
6941 if (mask & NETIF_F_GEN_CSUM)
6942 mask |= NETIF_F_ALL_CSUM;
6943 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 6944
1742f183
MM
6945 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6946 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 6947
1742f183
MM
6948 /* If one device supports hw checksumming, set for all. */
6949 if (all & NETIF_F_GEN_CSUM)
6950 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
6951
6952 return all;
6953}
b63365a2 6954EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6955
430f03cd 6956static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
6957{
6958 int i;
6959 struct hlist_head *hash;
6960
6961 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6962 if (hash != NULL)
6963 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6964 INIT_HLIST_HEAD(&hash[i]);
6965
6966 return hash;
6967}
6968
881d966b 6969/* Initialize per network namespace state */
4665079c 6970static int __net_init netdev_init(struct net *net)
881d966b 6971{
734b6541
RM
6972 if (net != &init_net)
6973 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6974
30d97d35
PE
6975 net->dev_name_head = netdev_create_hash();
6976 if (net->dev_name_head == NULL)
6977 goto err_name;
881d966b 6978
30d97d35
PE
6979 net->dev_index_head = netdev_create_hash();
6980 if (net->dev_index_head == NULL)
6981 goto err_idx;
881d966b
EB
6982
6983 return 0;
30d97d35
PE
6984
6985err_idx:
6986 kfree(net->dev_name_head);
6987err_name:
6988 return -ENOMEM;
881d966b
EB
6989}
6990
f0db275a
SH
6991/**
6992 * netdev_drivername - network driver for the device
6993 * @dev: network device
f0db275a
SH
6994 *
6995 * Determine network driver for device.
6996 */
3019de12 6997const char *netdev_drivername(const struct net_device *dev)
6579e57b 6998{
cf04a4c7
SH
6999 const struct device_driver *driver;
7000 const struct device *parent;
3019de12 7001 const char *empty = "";
6579e57b
AV
7002
7003 parent = dev->dev.parent;
6579e57b 7004 if (!parent)
3019de12 7005 return empty;
6579e57b
AV
7006
7007 driver = parent->driver;
7008 if (driver && driver->name)
3019de12
DM
7009 return driver->name;
7010 return empty;
6579e57b
AV
7011}
7012
b004ff49 7013static int __netdev_printk(const char *level, const struct net_device *dev,
256df2f3
JP
7014 struct va_format *vaf)
7015{
7016 int r;
7017
b004ff49 7018 if (dev && dev->dev.parent) {
666f355f
JP
7019 r = dev_printk_emit(level[1] - '0',
7020 dev->dev.parent,
ccc7f496 7021 "%s %s %s%s: %pV",
666f355f
JP
7022 dev_driver_string(dev->dev.parent),
7023 dev_name(dev->dev.parent),
ccc7f496
VF
7024 netdev_name(dev), netdev_reg_state(dev),
7025 vaf);
b004ff49 7026 } else if (dev) {
ccc7f496
VF
7027 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7028 netdev_reg_state(dev), vaf);
b004ff49 7029 } else {
256df2f3 7030 r = printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7031 }
256df2f3
JP
7032
7033 return r;
7034}
7035
7036int netdev_printk(const char *level, const struct net_device *dev,
7037 const char *format, ...)
7038{
7039 struct va_format vaf;
7040 va_list args;
7041 int r;
7042
7043 va_start(args, format);
7044
7045 vaf.fmt = format;
7046 vaf.va = &args;
7047
7048 r = __netdev_printk(level, dev, &vaf);
b004ff49 7049
256df2f3
JP
7050 va_end(args);
7051
7052 return r;
7053}
7054EXPORT_SYMBOL(netdev_printk);
7055
7056#define define_netdev_printk_level(func, level) \
7057int func(const struct net_device *dev, const char *fmt, ...) \
7058{ \
7059 int r; \
7060 struct va_format vaf; \
7061 va_list args; \
7062 \
7063 va_start(args, fmt); \
7064 \
7065 vaf.fmt = fmt; \
7066 vaf.va = &args; \
7067 \
7068 r = __netdev_printk(level, dev, &vaf); \
b004ff49 7069 \
256df2f3
JP
7070 va_end(args); \
7071 \
7072 return r; \
7073} \
7074EXPORT_SYMBOL(func);
7075
7076define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7077define_netdev_printk_level(netdev_alert, KERN_ALERT);
7078define_netdev_printk_level(netdev_crit, KERN_CRIT);
7079define_netdev_printk_level(netdev_err, KERN_ERR);
7080define_netdev_printk_level(netdev_warn, KERN_WARNING);
7081define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7082define_netdev_printk_level(netdev_info, KERN_INFO);
7083
4665079c 7084static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7085{
7086 kfree(net->dev_name_head);
7087 kfree(net->dev_index_head);
7088}
7089
022cbae6 7090static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7091 .init = netdev_init,
7092 .exit = netdev_exit,
7093};
7094
4665079c 7095static void __net_exit default_device_exit(struct net *net)
ce286d32 7096{
e008b5fc 7097 struct net_device *dev, *aux;
ce286d32 7098 /*
e008b5fc 7099 * Push all migratable network devices back to the
ce286d32
EB
7100 * initial network namespace
7101 */
7102 rtnl_lock();
e008b5fc 7103 for_each_netdev_safe(net, dev, aux) {
ce286d32 7104 int err;
aca51397 7105 char fb_name[IFNAMSIZ];
ce286d32
EB
7106
7107 /* Ignore unmoveable devices (i.e. loopback) */
7108 if (dev->features & NETIF_F_NETNS_LOCAL)
7109 continue;
7110
e008b5fc
EB
7111 /* Leave virtual devices for the generic cleanup */
7112 if (dev->rtnl_link_ops)
7113 continue;
d0c082ce 7114
25985edc 7115 /* Push remaining network devices to init_net */
aca51397
PE
7116 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7117 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7118 if (err) {
7b6cd1ce
JP
7119 pr_emerg("%s: failed to move %s to init_net: %d\n",
7120 __func__, dev->name, err);
aca51397 7121 BUG();
ce286d32
EB
7122 }
7123 }
7124 rtnl_unlock();
7125}
7126
50624c93
EB
7127static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7128{
7129 /* Return with the rtnl_lock held when there are no network
7130 * devices unregistering in any network namespace in net_list.
7131 */
7132 struct net *net;
7133 bool unregistering;
7134 DEFINE_WAIT(wait);
7135
7136 for (;;) {
7137 prepare_to_wait(&netdev_unregistering_wq, &wait,
7138 TASK_UNINTERRUPTIBLE);
7139 unregistering = false;
7140 rtnl_lock();
7141 list_for_each_entry(net, net_list, exit_list) {
7142 if (net->dev_unreg_count > 0) {
7143 unregistering = true;
7144 break;
7145 }
7146 }
7147 if (!unregistering)
7148 break;
7149 __rtnl_unlock();
7150 schedule();
7151 }
7152 finish_wait(&netdev_unregistering_wq, &wait);
7153}
7154
04dc7f6b
EB
7155static void __net_exit default_device_exit_batch(struct list_head *net_list)
7156{
7157 /* At exit all network devices most be removed from a network
b595076a 7158 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7159 * Do this across as many network namespaces as possible to
7160 * improve batching efficiency.
7161 */
7162 struct net_device *dev;
7163 struct net *net;
7164 LIST_HEAD(dev_kill_list);
7165
50624c93
EB
7166 /* To prevent network device cleanup code from dereferencing
7167 * loopback devices or network devices that have been freed
7168 * wait here for all pending unregistrations to complete,
7169 * before unregistring the loopback device and allowing the
7170 * network namespace be freed.
7171 *
7172 * The netdev todo list containing all network devices
7173 * unregistrations that happen in default_device_exit_batch
7174 * will run in the rtnl_unlock() at the end of
7175 * default_device_exit_batch.
7176 */
7177 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7178 list_for_each_entry(net, net_list, exit_list) {
7179 for_each_netdev_reverse(net, dev) {
b0ab2fab 7180 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7181 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7182 else
7183 unregister_netdevice_queue(dev, &dev_kill_list);
7184 }
7185 }
7186 unregister_netdevice_many(&dev_kill_list);
7187 rtnl_unlock();
7188}
7189
022cbae6 7190static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7191 .exit = default_device_exit,
04dc7f6b 7192 .exit_batch = default_device_exit_batch,
ce286d32
EB
7193};
7194
1da177e4
LT
7195/*
7196 * Initialize the DEV module. At boot time this walks the device list and
7197 * unhooks any devices that fail to initialise (normally hardware not
7198 * present) and leaves us with a valid list of present and active devices.
7199 *
7200 */
7201
7202/*
7203 * This is called single threaded during boot, so no need
7204 * to take the rtnl semaphore.
7205 */
7206static int __init net_dev_init(void)
7207{
7208 int i, rc = -ENOMEM;
7209
7210 BUG_ON(!dev_boot_phase);
7211
1da177e4
LT
7212 if (dev_proc_init())
7213 goto out;
7214
8b41d188 7215 if (netdev_kobject_init())
1da177e4
LT
7216 goto out;
7217
7218 INIT_LIST_HEAD(&ptype_all);
82d8a867 7219 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7220 INIT_LIST_HEAD(&ptype_base[i]);
7221
62532da9
VY
7222 INIT_LIST_HEAD(&offload_base);
7223
881d966b
EB
7224 if (register_pernet_subsys(&netdev_net_ops))
7225 goto out;
1da177e4
LT
7226
7227 /*
7228 * Initialise the packet receive queues.
7229 */
7230
6f912042 7231 for_each_possible_cpu(i) {
e36fa2f7 7232 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7233
e36fa2f7 7234 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7235 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7236 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7237 sd->output_queue_tailp = &sd->output_queue;
df334545 7238#ifdef CONFIG_RPS
e36fa2f7
ED
7239 sd->csd.func = rps_trigger_softirq;
7240 sd->csd.info = sd;
e36fa2f7 7241 sd->cpu = i;
1e94d72f 7242#endif
0a9627f2 7243
e36fa2f7
ED
7244 sd->backlog.poll = process_backlog;
7245 sd->backlog.weight = weight_p;
1da177e4
LT
7246 }
7247
1da177e4
LT
7248 dev_boot_phase = 0;
7249
505d4f73
EB
7250 /* The loopback device is special if any other network devices
7251 * is present in a network namespace the loopback device must
7252 * be present. Since we now dynamically allocate and free the
7253 * loopback device ensure this invariant is maintained by
7254 * keeping the loopback device as the first device on the
7255 * list of network devices. Ensuring the loopback devices
7256 * is the first device that appears and the last network device
7257 * that disappears.
7258 */
7259 if (register_pernet_device(&loopback_net_ops))
7260 goto out;
7261
7262 if (register_pernet_device(&default_device_ops))
7263 goto out;
7264
962cf36c
CM
7265 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7266 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7267
7268 hotcpu_notifier(dev_cpu_callback, 0);
7269 dst_init();
1da177e4
LT
7270 rc = 0;
7271out:
7272 return rc;
7273}
7274
7275subsys_initcall(net_dev_init);
This page took 2.449935 seconds and 5 git commands to generate.