net_sched: drop packets after root qdisc lock is released
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
95c96174
ED
200 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
bbbf2df0
WB
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
08b4b8ea 1776 skb->priority = 0;
a0265d28 1777 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
44540960
AB
1784/**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
6ec82562 1792 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803{
a0265d28 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1805}
1806EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
71d9dec2
CG
1808static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811{
1080e512
MT
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
71d9dec2
CG
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816}
1817
7866a621
SN
1818static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
fbcb2170
JP
1820 struct net_device *orig_dev,
1821 __be16 type,
7866a621
SN
1822 struct list_head *ptype_list)
1823{
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
fbcb2170 1830 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834}
1835
c0de08d0
EL
1836static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837{
a3d744e9 1838 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847}
1848
1da177e4
LT
1849/*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
74b20582 1854void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1855{
1856 struct packet_type *ptype;
71d9dec2
CG
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
7866a621 1859 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1860
1da177e4 1861 rcu_read_lock();
7866a621
SN
1862again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
7866a621
SN
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
71d9dec2 1869
7866a621
SN
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1da177e4 1875
7866a621
SN
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
70978182 1880
7866a621 1881 net_timestamp_set(skb2);
1da177e4 1882
7866a621
SN
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1da177e4 1895 }
7866a621
SN
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1da177e4 1905 }
7866a621 1906out_unlock:
71d9dec2
CG
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1909 rcu_read_unlock();
1910}
74b20582 1911EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1912
2c53040f
BH
1913/**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
bb134d22 1926static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1927{
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
7b6cd1ce 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
4f57c087
JF
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949}
1950
537c00de
AD
1951#ifdef CONFIG_XPS
1952static DEFINE_MUTEX(xps_map_mutex);
1953#define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
10cdc3f3
AD
1956static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
537c00de 1958{
10cdc3f3
AD
1959 struct xps_map *map = NULL;
1960 int pos;
537c00de 1961
10cdc3f3
AD
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1964
10cdc3f3
AD
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
537c00de
AD
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
10cdc3f3 1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1973 }
10cdc3f3 1974 break;
537c00de 1975 }
537c00de
AD
1976 }
1977
10cdc3f3
AD
1978 return map;
1979}
1980
024e9679 1981static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1982{
1983 struct xps_dev_maps *dev_maps;
024e9679 1984 int cpu, i;
10cdc3f3
AD
1985 bool active = false;
1986
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1989
1990 if (!dev_maps)
1991 goto out_no_maps;
1992
1993 for_each_possible_cpu(cpu) {
024e9679
AD
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1997 }
1998 if (i == dev->num_tx_queues)
10cdc3f3
AD
1999 active = true;
2000 }
2001
2002 if (!active) {
537c00de
AD
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2005 }
2006
024e9679
AD
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2010
537c00de
AD
2011out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2013}
2014
01c5f864
AD
2015static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2017{
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2021
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2026 }
2027
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2032
2033 alloc_len = map->alloc_len * 2;
2034 }
2035
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2041
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2046
2047 return new_map;
2048}
2049
3573540c
MT
2050int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
537c00de 2052{
01c5f864 2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2054 struct xps_map *map, *new_map;
537c00de 2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
537c00de
AD
2058
2059 mutex_lock(&xps_map_mutex);
2060
2061 dev_maps = xmap_dereference(dev->xps_maps);
2062
01c5f864
AD
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2067
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
01c5f864 2072 return -ENOMEM;
2bb60cb9 2073 }
01c5f864
AD
2074
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2077
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2081
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 }
2084
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2087
537c00de 2088 for_each_possible_cpu(cpu) {
01c5f864
AD
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2092
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2096
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
537c00de 2099#ifdef CONFIG_NUMA
537c00de
AD
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
537c00de 2104#endif
01c5f864
AD
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2109 }
01c5f864 2110
537c00de
AD
2111 }
2112
01c5f864
AD
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
537c00de 2115 /* Cleanup old maps */
01c5f864
AD
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2122 }
537c00de 2123
01c5f864 2124 kfree_rcu(dev_maps, rcu);
537c00de
AD
2125 }
2126
01c5f864
AD
2127 dev_maps = new_dev_maps;
2128 active = true;
537c00de 2129
01c5f864
AD
2130out_no_new_maps:
2131 /* update Tx queue numa node */
537c00de
AD
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2135
01c5f864
AD
2136 if (!dev_maps)
2137 goto out_no_maps;
2138
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2143
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2146 }
2147
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2152 }
2153
2154out_no_maps:
537c00de
AD
2155 mutex_unlock(&xps_map_mutex);
2156
2157 return 0;
2158error:
01c5f864
AD
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2166 }
2167
537c00de
AD
2168 mutex_unlock(&xps_map_mutex);
2169
537c00de
AD
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2172}
2173EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175#endif
f0796d5c
JF
2176/*
2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179 */
e6484930 2180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2181{
1d24eb48
TH
2182 int rc;
2183
e6484930
TH
2184 if (txq < 1 || txq > dev->num_tx_queues)
2185 return -EINVAL;
f0796d5c 2186
5c56580b
BH
2187 if (dev->reg_state == NETREG_REGISTERED ||
2188 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2189 ASSERT_RTNL();
2190
1d24eb48
TH
2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192 txq);
bf264145
TH
2193 if (rc)
2194 return rc;
2195
4f57c087
JF
2196 if (dev->num_tc)
2197 netif_setup_tc(dev, txq);
2198
024e9679 2199 if (txq < dev->real_num_tx_queues) {
e6484930 2200 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2201#ifdef CONFIG_XPS
2202 netif_reset_xps_queues_gt(dev, txq);
2203#endif
2204 }
f0796d5c 2205 }
e6484930
TH
2206
2207 dev->real_num_tx_queues = txq;
2208 return 0;
f0796d5c
JF
2209}
2210EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2211
a953be53 2212#ifdef CONFIG_SYSFS
62fe0b40
BH
2213/**
2214 * netif_set_real_num_rx_queues - set actual number of RX queues used
2215 * @dev: Network device
2216 * @rxq: Actual number of RX queues
2217 *
2218 * This must be called either with the rtnl_lock held or before
2219 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2220 * negative error code. If called before registration, it always
2221 * succeeds.
62fe0b40
BH
2222 */
2223int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224{
2225 int rc;
2226
bd25fa7b
TH
2227 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 return -EINVAL;
2229
62fe0b40
BH
2230 if (dev->reg_state == NETREG_REGISTERED) {
2231 ASSERT_RTNL();
2232
62fe0b40
BH
2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234 rxq);
2235 if (rc)
2236 return rc;
62fe0b40
BH
2237 }
2238
2239 dev->real_num_rx_queues = rxq;
2240 return 0;
2241}
2242EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243#endif
2244
2c53040f
BH
2245/**
2246 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2247 *
2248 * This routine should set an upper limit on the number of RSS queues
2249 * used by default by multiqueue devices.
2250 */
a55b138b 2251int netif_get_num_default_rss_queues(void)
16917b87 2252{
40e4e713
HS
2253 return is_kdump_kernel() ?
2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2255}
2256EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
3bcb846c 2258static void __netif_reschedule(struct Qdisc *q)
56079431 2259{
def82a1d
JP
2260 struct softnet_data *sd;
2261 unsigned long flags;
56079431 2262
def82a1d 2263 local_irq_save(flags);
903ceff7 2264 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2265 q->next_sched = NULL;
2266 *sd->output_queue_tailp = q;
2267 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2268 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269 local_irq_restore(flags);
2270}
2271
2272void __netif_schedule(struct Qdisc *q)
2273{
2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275 __netif_reschedule(q);
56079431
DV
2276}
2277EXPORT_SYMBOL(__netif_schedule);
2278
e6247027
ED
2279struct dev_kfree_skb_cb {
2280 enum skb_free_reason reason;
2281};
2282
2283static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2284{
e6247027
ED
2285 return (struct dev_kfree_skb_cb *)skb->cb;
2286}
2287
46e5da40
JF
2288void netif_schedule_queue(struct netdev_queue *txq)
2289{
2290 rcu_read_lock();
2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294 __netif_schedule(q);
2295 }
2296 rcu_read_unlock();
2297}
2298EXPORT_SYMBOL(netif_schedule_queue);
2299
2300/**
2301 * netif_wake_subqueue - allow sending packets on subqueue
2302 * @dev: network device
2303 * @queue_index: sub queue index
2304 *
2305 * Resume individual transmit queue of a device with multiple transmit queues.
2306 */
2307void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308{
2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 struct Qdisc *q;
2313
2314 rcu_read_lock();
2315 q = rcu_dereference(txq->qdisc);
2316 __netif_schedule(q);
2317 rcu_read_unlock();
2318 }
2319}
2320EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323{
2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 struct Qdisc *q;
2326
2327 rcu_read_lock();
2328 q = rcu_dereference(dev_queue->qdisc);
2329 __netif_schedule(q);
2330 rcu_read_unlock();
2331 }
2332}
2333EXPORT_SYMBOL(netif_tx_wake_queue);
2334
e6247027 2335void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2336{
e6247027 2337 unsigned long flags;
56079431 2338
e6247027
ED
2339 if (likely(atomic_read(&skb->users) == 1)) {
2340 smp_rmb();
2341 atomic_set(&skb->users, 0);
2342 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343 return;
bea3348e 2344 }
e6247027
ED
2345 get_kfree_skb_cb(skb)->reason = reason;
2346 local_irq_save(flags);
2347 skb->next = __this_cpu_read(softnet_data.completion_queue);
2348 __this_cpu_write(softnet_data.completion_queue, skb);
2349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350 local_irq_restore(flags);
56079431 2351}
e6247027 2352EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2353
e6247027 2354void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2355{
2356 if (in_irq() || irqs_disabled())
e6247027 2357 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2358 else
2359 dev_kfree_skb(skb);
2360}
e6247027 2361EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2362
2363
bea3348e
SH
2364/**
2365 * netif_device_detach - mark device as removed
2366 * @dev: network device
2367 *
2368 * Mark device as removed from system and therefore no longer available.
2369 */
56079431
DV
2370void netif_device_detach(struct net_device *dev)
2371{
2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373 netif_running(dev)) {
d543103a 2374 netif_tx_stop_all_queues(dev);
56079431
DV
2375 }
2376}
2377EXPORT_SYMBOL(netif_device_detach);
2378
bea3348e
SH
2379/**
2380 * netif_device_attach - mark device as attached
2381 * @dev: network device
2382 *
2383 * Mark device as attached from system and restart if needed.
2384 */
56079431
DV
2385void netif_device_attach(struct net_device *dev)
2386{
2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388 netif_running(dev)) {
d543103a 2389 netif_tx_wake_all_queues(dev);
4ec93edb 2390 __netdev_watchdog_up(dev);
56079431
DV
2391 }
2392}
2393EXPORT_SYMBOL(netif_device_attach);
2394
5605c762
JP
2395/*
2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397 * to be used as a distribution range.
2398 */
2399u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400 unsigned int num_tx_queues)
2401{
2402 u32 hash;
2403 u16 qoffset = 0;
2404 u16 qcount = num_tx_queues;
2405
2406 if (skb_rx_queue_recorded(skb)) {
2407 hash = skb_get_rx_queue(skb);
2408 while (unlikely(hash >= num_tx_queues))
2409 hash -= num_tx_queues;
2410 return hash;
2411 }
2412
2413 if (dev->num_tc) {
2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415 qoffset = dev->tc_to_txq[tc].offset;
2416 qcount = dev->tc_to_txq[tc].count;
2417 }
2418
2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420}
2421EXPORT_SYMBOL(__skb_tx_hash);
2422
36c92474
BH
2423static void skb_warn_bad_offload(const struct sk_buff *skb)
2424{
84d15ae5 2425 static const netdev_features_t null_features;
36c92474 2426 struct net_device *dev = skb->dev;
88ad4175 2427 const char *name = "";
36c92474 2428
c846ad9b
BG
2429 if (!net_ratelimit())
2430 return;
2431
88ad4175
BM
2432 if (dev) {
2433 if (dev->dev.parent)
2434 name = dev_driver_string(dev->dev.parent);
2435 else
2436 name = netdev_name(dev);
2437 }
36c92474
BH
2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439 "gso_type=%d ip_summed=%d\n",
88ad4175 2440 name, dev ? &dev->features : &null_features,
65e9d2fa 2441 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444}
2445
1da177e4
LT
2446/*
2447 * Invalidate hardware checksum when packet is to be mangled, and
2448 * complete checksum manually on outgoing path.
2449 */
84fa7933 2450int skb_checksum_help(struct sk_buff *skb)
1da177e4 2451{
d3bc23e7 2452 __wsum csum;
663ead3b 2453 int ret = 0, offset;
1da177e4 2454
84fa7933 2455 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2456 goto out_set_summed;
2457
2458 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2459 skb_warn_bad_offload(skb);
2460 return -EINVAL;
1da177e4
LT
2461 }
2462
cef401de
ED
2463 /* Before computing a checksum, we should make sure no frag could
2464 * be modified by an external entity : checksum could be wrong.
2465 */
2466 if (skb_has_shared_frag(skb)) {
2467 ret = __skb_linearize(skb);
2468 if (ret)
2469 goto out;
2470 }
2471
55508d60 2472 offset = skb_checksum_start_offset(skb);
a030847e
HX
2473 BUG_ON(offset >= skb_headlen(skb));
2474 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476 offset += skb->csum_offset;
2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479 if (skb_cloned(skb) &&
2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482 if (ret)
2483 goto out;
2484 }
2485
a030847e 2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2487out_set_summed:
1da177e4 2488 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2489out:
1da177e4
LT
2490 return ret;
2491}
d1b19dff 2492EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2493
6ae23ad3
TH
2494/* skb_csum_offload_check - Driver helper function to determine if a device
2495 * with limited checksum offload capabilities is able to offload the checksum
2496 * for a given packet.
2497 *
2498 * Arguments:
2499 * skb - sk_buff for the packet in question
2500 * spec - contains the description of what device can offload
2501 * csum_encapped - returns true if the checksum being offloaded is
2502 * encpasulated. That is it is checksum for the transport header
2503 * in the inner headers.
2504 * checksum_help - when set indicates that helper function should
2505 * call skb_checksum_help if offload checks fail
2506 *
2507 * Returns:
2508 * true: Packet has passed the checksum checks and should be offloadable to
2509 * the device (a driver may still need to check for additional
2510 * restrictions of its device)
2511 * false: Checksum is not offloadable. If checksum_help was set then
2512 * skb_checksum_help was called to resolve checksum for non-GSO
2513 * packets and when IP protocol is not SCTP
2514 */
2515bool __skb_csum_offload_chk(struct sk_buff *skb,
2516 const struct skb_csum_offl_spec *spec,
2517 bool *csum_encapped,
2518 bool csum_help)
2519{
2520 struct iphdr *iph;
2521 struct ipv6hdr *ipv6;
2522 void *nhdr;
2523 int protocol;
2524 u8 ip_proto;
2525
2526 if (skb->protocol == htons(ETH_P_8021Q) ||
2527 skb->protocol == htons(ETH_P_8021AD)) {
2528 if (!spec->vlan_okay)
2529 goto need_help;
2530 }
2531
2532 /* We check whether the checksum refers to a transport layer checksum in
2533 * the outermost header or an encapsulated transport layer checksum that
2534 * corresponds to the inner headers of the skb. If the checksum is for
2535 * something else in the packet we need help.
2536 */
2537 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2538 /* Non-encapsulated checksum */
2539 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2540 nhdr = skb_network_header(skb);
2541 *csum_encapped = false;
2542 if (spec->no_not_encapped)
2543 goto need_help;
2544 } else if (skb->encapsulation && spec->encap_okay &&
2545 skb_checksum_start_offset(skb) ==
2546 skb_inner_transport_offset(skb)) {
2547 /* Encapsulated checksum */
2548 *csum_encapped = true;
2549 switch (skb->inner_protocol_type) {
2550 case ENCAP_TYPE_ETHER:
2551 protocol = eproto_to_ipproto(skb->inner_protocol);
2552 break;
2553 case ENCAP_TYPE_IPPROTO:
2554 protocol = skb->inner_protocol;
2555 break;
2556 }
2557 nhdr = skb_inner_network_header(skb);
2558 } else {
2559 goto need_help;
2560 }
2561
2562 switch (protocol) {
2563 case IPPROTO_IP:
2564 if (!spec->ipv4_okay)
2565 goto need_help;
2566 iph = nhdr;
2567 ip_proto = iph->protocol;
2568 if (iph->ihl != 5 && !spec->ip_options_okay)
2569 goto need_help;
2570 break;
2571 case IPPROTO_IPV6:
2572 if (!spec->ipv6_okay)
2573 goto need_help;
2574 if (spec->no_encapped_ipv6 && *csum_encapped)
2575 goto need_help;
2576 ipv6 = nhdr;
2577 nhdr += sizeof(*ipv6);
2578 ip_proto = ipv6->nexthdr;
2579 break;
2580 default:
2581 goto need_help;
2582 }
2583
2584ip_proto_again:
2585 switch (ip_proto) {
2586 case IPPROTO_TCP:
2587 if (!spec->tcp_okay ||
2588 skb->csum_offset != offsetof(struct tcphdr, check))
2589 goto need_help;
2590 break;
2591 case IPPROTO_UDP:
2592 if (!spec->udp_okay ||
2593 skb->csum_offset != offsetof(struct udphdr, check))
2594 goto need_help;
2595 break;
2596 case IPPROTO_SCTP:
2597 if (!spec->sctp_okay ||
2598 skb->csum_offset != offsetof(struct sctphdr, checksum))
2599 goto cant_help;
2600 break;
2601 case NEXTHDR_HOP:
2602 case NEXTHDR_ROUTING:
2603 case NEXTHDR_DEST: {
2604 u8 *opthdr = nhdr;
2605
2606 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2607 goto need_help;
2608
2609 ip_proto = opthdr[0];
2610 nhdr += (opthdr[1] + 1) << 3;
2611
2612 goto ip_proto_again;
2613 }
2614 default:
2615 goto need_help;
2616 }
2617
2618 /* Passed the tests for offloading checksum */
2619 return true;
2620
2621need_help:
2622 if (csum_help && !skb_shinfo(skb)->gso_size)
2623 skb_checksum_help(skb);
2624cant_help:
2625 return false;
2626}
2627EXPORT_SYMBOL(__skb_csum_offload_chk);
2628
53d6471c 2629__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2630{
252e3346 2631 __be16 type = skb->protocol;
f6a78bfc 2632
19acc327
PS
2633 /* Tunnel gso handlers can set protocol to ethernet. */
2634 if (type == htons(ETH_P_TEB)) {
2635 struct ethhdr *eth;
2636
2637 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2638 return 0;
2639
2640 eth = (struct ethhdr *)skb_mac_header(skb);
2641 type = eth->h_proto;
2642 }
2643
d4bcef3f 2644 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2645}
2646
2647/**
2648 * skb_mac_gso_segment - mac layer segmentation handler.
2649 * @skb: buffer to segment
2650 * @features: features for the output path (see dev->features)
2651 */
2652struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2653 netdev_features_t features)
2654{
2655 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2656 struct packet_offload *ptype;
53d6471c
VY
2657 int vlan_depth = skb->mac_len;
2658 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2659
2660 if (unlikely(!type))
2661 return ERR_PTR(-EINVAL);
2662
53d6471c 2663 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2664
2665 rcu_read_lock();
22061d80 2666 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2667 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2668 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2669 break;
2670 }
2671 }
2672 rcu_read_unlock();
2673
98e399f8 2674 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2675
f6a78bfc
HX
2676 return segs;
2677}
05e8ef4a
PS
2678EXPORT_SYMBOL(skb_mac_gso_segment);
2679
2680
2681/* openvswitch calls this on rx path, so we need a different check.
2682 */
2683static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2684{
2685 if (tx_path)
2686 return skb->ip_summed != CHECKSUM_PARTIAL;
2687 else
2688 return skb->ip_summed == CHECKSUM_NONE;
2689}
2690
2691/**
2692 * __skb_gso_segment - Perform segmentation on skb.
2693 * @skb: buffer to segment
2694 * @features: features for the output path (see dev->features)
2695 * @tx_path: whether it is called in TX path
2696 *
2697 * This function segments the given skb and returns a list of segments.
2698 *
2699 * It may return NULL if the skb requires no segmentation. This is
2700 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2701 *
2702 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2703 */
2704struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2705 netdev_features_t features, bool tx_path)
2706{
2707 if (unlikely(skb_needs_check(skb, tx_path))) {
2708 int err;
2709
2710 skb_warn_bad_offload(skb);
2711
a40e0a66 2712 err = skb_cow_head(skb, 0);
2713 if (err < 0)
05e8ef4a
PS
2714 return ERR_PTR(err);
2715 }
2716
802ab55a
AD
2717 /* Only report GSO partial support if it will enable us to
2718 * support segmentation on this frame without needing additional
2719 * work.
2720 */
2721 if (features & NETIF_F_GSO_PARTIAL) {
2722 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2723 struct net_device *dev = skb->dev;
2724
2725 partial_features |= dev->features & dev->gso_partial_features;
2726 if (!skb_gso_ok(skb, features | partial_features))
2727 features &= ~NETIF_F_GSO_PARTIAL;
2728 }
2729
9207f9d4
KK
2730 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2731 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2732
68c33163 2733 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2734 SKB_GSO_CB(skb)->encap_level = 0;
2735
05e8ef4a
PS
2736 skb_reset_mac_header(skb);
2737 skb_reset_mac_len(skb);
2738
2739 return skb_mac_gso_segment(skb, features);
2740}
12b0004d 2741EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2742
fb286bb2
HX
2743/* Take action when hardware reception checksum errors are detected. */
2744#ifdef CONFIG_BUG
2745void netdev_rx_csum_fault(struct net_device *dev)
2746{
2747 if (net_ratelimit()) {
7b6cd1ce 2748 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2749 dump_stack();
2750 }
2751}
2752EXPORT_SYMBOL(netdev_rx_csum_fault);
2753#endif
2754
1da177e4
LT
2755/* Actually, we should eliminate this check as soon as we know, that:
2756 * 1. IOMMU is present and allows to map all the memory.
2757 * 2. No high memory really exists on this machine.
2758 */
2759
c1e756bf 2760static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2761{
3d3a8533 2762#ifdef CONFIG_HIGHMEM
1da177e4 2763 int i;
5acbbd42 2764 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2768 return 1;
ea2ab693 2769 }
5acbbd42 2770 }
1da177e4 2771
5acbbd42
FT
2772 if (PCI_DMA_BUS_IS_PHYS) {
2773 struct device *pdev = dev->dev.parent;
1da177e4 2774
9092c658
ED
2775 if (!pdev)
2776 return 0;
5acbbd42 2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2779 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2780 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2781 return 1;
2782 }
2783 }
3d3a8533 2784#endif
1da177e4
LT
2785 return 0;
2786}
1da177e4 2787
3b392ddb
SH
2788/* If MPLS offload request, verify we are testing hardware MPLS features
2789 * instead of standard features for the netdev.
2790 */
d0edc7bf 2791#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2792static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795{
25cd9ba0 2796 if (eth_p_mpls(type))
3b392ddb
SH
2797 features &= skb->dev->mpls_features;
2798
2799 return features;
2800}
2801#else
2802static netdev_features_t net_mpls_features(struct sk_buff *skb,
2803 netdev_features_t features,
2804 __be16 type)
2805{
2806 return features;
2807}
2808#endif
2809
c8f44aff 2810static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2811 netdev_features_t features)
f01a5236 2812{
53d6471c 2813 int tmp;
3b392ddb
SH
2814 __be16 type;
2815
2816 type = skb_network_protocol(skb, &tmp);
2817 features = net_mpls_features(skb, features, type);
53d6471c 2818
c0d680e5 2819 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2820 !can_checksum_protocol(features, type)) {
996e8021 2821 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2822 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2823 features &= ~NETIF_F_SG;
2824 }
2825
2826 return features;
2827}
2828
e38f3025
TM
2829netdev_features_t passthru_features_check(struct sk_buff *skb,
2830 struct net_device *dev,
2831 netdev_features_t features)
2832{
2833 return features;
2834}
2835EXPORT_SYMBOL(passthru_features_check);
2836
8cb65d00
TM
2837static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2838 struct net_device *dev,
2839 netdev_features_t features)
2840{
2841 return vlan_features_check(skb, features);
2842}
2843
cbc53e08
AD
2844static netdev_features_t gso_features_check(const struct sk_buff *skb,
2845 struct net_device *dev,
2846 netdev_features_t features)
2847{
2848 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2849
2850 if (gso_segs > dev->gso_max_segs)
2851 return features & ~NETIF_F_GSO_MASK;
2852
802ab55a
AD
2853 /* Support for GSO partial features requires software
2854 * intervention before we can actually process the packets
2855 * so we need to strip support for any partial features now
2856 * and we can pull them back in after we have partially
2857 * segmented the frame.
2858 */
2859 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2860 features &= ~dev->gso_partial_features;
2861
2862 /* Make sure to clear the IPv4 ID mangling feature if the
2863 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2864 */
2865 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2866 struct iphdr *iph = skb->encapsulation ?
2867 inner_ip_hdr(skb) : ip_hdr(skb);
2868
2869 if (!(iph->frag_off & htons(IP_DF)))
2870 features &= ~NETIF_F_TSO_MANGLEID;
2871 }
2872
2873 return features;
2874}
2875
c1e756bf 2876netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2877{
5f35227e 2878 struct net_device *dev = skb->dev;
fcbeb976 2879 netdev_features_t features = dev->features;
58e998c6 2880
cbc53e08
AD
2881 if (skb_is_gso(skb))
2882 features = gso_features_check(skb, dev, features);
30b678d8 2883
5f35227e
JG
2884 /* If encapsulation offload request, verify we are testing
2885 * hardware encapsulation features instead of standard
2886 * features for the netdev
2887 */
2888 if (skb->encapsulation)
2889 features &= dev->hw_enc_features;
2890
f5a7fb88
TM
2891 if (skb_vlan_tagged(skb))
2892 features = netdev_intersect_features(features,
2893 dev->vlan_features |
2894 NETIF_F_HW_VLAN_CTAG_TX |
2895 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2896
5f35227e
JG
2897 if (dev->netdev_ops->ndo_features_check)
2898 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2899 features);
8cb65d00
TM
2900 else
2901 features &= dflt_features_check(skb, dev, features);
5f35227e 2902
c1e756bf 2903 return harmonize_features(skb, features);
58e998c6 2904}
c1e756bf 2905EXPORT_SYMBOL(netif_skb_features);
58e998c6 2906
2ea25513 2907static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2908 struct netdev_queue *txq, bool more)
f6a78bfc 2909{
2ea25513
DM
2910 unsigned int len;
2911 int rc;
00829823 2912
7866a621 2913 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2914 dev_queue_xmit_nit(skb, dev);
fc741216 2915
2ea25513
DM
2916 len = skb->len;
2917 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2918 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2919 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2920
2ea25513
DM
2921 return rc;
2922}
7b9c6090 2923
8dcda22a
DM
2924struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2925 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2926{
2927 struct sk_buff *skb = first;
2928 int rc = NETDEV_TX_OK;
7b9c6090 2929
7f2e870f
DM
2930 while (skb) {
2931 struct sk_buff *next = skb->next;
fc70fb64 2932
7f2e870f 2933 skb->next = NULL;
95f6b3dd 2934 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2935 if (unlikely(!dev_xmit_complete(rc))) {
2936 skb->next = next;
2937 goto out;
2938 }
6afff0ca 2939
7f2e870f
DM
2940 skb = next;
2941 if (netif_xmit_stopped(txq) && skb) {
2942 rc = NETDEV_TX_BUSY;
2943 break;
9ccb8975 2944 }
7f2e870f 2945 }
9ccb8975 2946
7f2e870f
DM
2947out:
2948 *ret = rc;
2949 return skb;
2950}
b40863c6 2951
1ff0dc94
ED
2952static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2953 netdev_features_t features)
f6a78bfc 2954{
df8a39de 2955 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2956 !vlan_hw_offload_capable(features, skb->vlan_proto))
2957 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2958 return skb;
2959}
f6a78bfc 2960
55a93b3e 2961static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2962{
2963 netdev_features_t features;
f6a78bfc 2964
eae3f88e
DM
2965 features = netif_skb_features(skb);
2966 skb = validate_xmit_vlan(skb, features);
2967 if (unlikely(!skb))
2968 goto out_null;
7b9c6090 2969
8b86a61d 2970 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2971 struct sk_buff *segs;
2972
2973 segs = skb_gso_segment(skb, features);
cecda693 2974 if (IS_ERR(segs)) {
af6dabc9 2975 goto out_kfree_skb;
cecda693
JW
2976 } else if (segs) {
2977 consume_skb(skb);
2978 skb = segs;
f6a78bfc 2979 }
eae3f88e
DM
2980 } else {
2981 if (skb_needs_linearize(skb, features) &&
2982 __skb_linearize(skb))
2983 goto out_kfree_skb;
4ec93edb 2984
eae3f88e
DM
2985 /* If packet is not checksummed and device does not
2986 * support checksumming for this protocol, complete
2987 * checksumming here.
2988 */
2989 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2990 if (skb->encapsulation)
2991 skb_set_inner_transport_header(skb,
2992 skb_checksum_start_offset(skb));
2993 else
2994 skb_set_transport_header(skb,
2995 skb_checksum_start_offset(skb));
a188222b 2996 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2997 skb_checksum_help(skb))
2998 goto out_kfree_skb;
7b9c6090 2999 }
0c772159 3000 }
7b9c6090 3001
eae3f88e 3002 return skb;
fc70fb64 3003
f6a78bfc
HX
3004out_kfree_skb:
3005 kfree_skb(skb);
eae3f88e 3006out_null:
d21fd63e 3007 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3008 return NULL;
3009}
6afff0ca 3010
55a93b3e
ED
3011struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3012{
3013 struct sk_buff *next, *head = NULL, *tail;
3014
bec3cfdc 3015 for (; skb != NULL; skb = next) {
55a93b3e
ED
3016 next = skb->next;
3017 skb->next = NULL;
bec3cfdc
ED
3018
3019 /* in case skb wont be segmented, point to itself */
3020 skb->prev = skb;
3021
55a93b3e 3022 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3023 if (!skb)
3024 continue;
55a93b3e 3025
bec3cfdc
ED
3026 if (!head)
3027 head = skb;
3028 else
3029 tail->next = skb;
3030 /* If skb was segmented, skb->prev points to
3031 * the last segment. If not, it still contains skb.
3032 */
3033 tail = skb->prev;
55a93b3e
ED
3034 }
3035 return head;
f6a78bfc
HX
3036}
3037
1def9238
ED
3038static void qdisc_pkt_len_init(struct sk_buff *skb)
3039{
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3046 */
3047 if (shinfo->gso_size) {
757b8b1d 3048 unsigned int hdr_len;
15e5a030 3049 u16 gso_segs = shinfo->gso_segs;
1def9238 3050
757b8b1d
ED
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054 /* + transport layer */
1def9238
ED
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3057 else
3058 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3059
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 shinfo->gso_size);
3063
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3065 }
3066}
3067
bbd8a0d3
KK
3068static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3071{
3072 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3073 struct sk_buff *to_free = NULL;
a2da570d 3074 bool contended;
bbd8a0d3
KK
3075 int rc;
3076
a2da570d 3077 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3078 /*
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
f9eb8aea 3081 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3082 * often and dequeue packets faster.
79640a4c 3083 */
a2da570d 3084 contended = qdisc_is_running(q);
79640a4c
ED
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3087
bbd8a0d3
KK
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3090 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3091 rc = NET_XMIT_DROP;
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3093 qdisc_run_begin(q)) {
bbd8a0d3
KK
3094 /*
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3098 */
bfe0d029 3099
bfe0d029
ED
3100 qdisc_bstats_update(q, skb);
3101
55a93b3e 3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3105 contended = false;
3106 }
bbd8a0d3 3107 __qdisc_run(q);
79640a4c 3108 } else
bc135b23 3109 qdisc_run_end(q);
bbd8a0d3
KK
3110
3111 rc = NET_XMIT_SUCCESS;
3112 } else {
520ac30f 3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3117 contended = false;
3118 }
3119 __qdisc_run(q);
3120 }
bbd8a0d3
KK
3121 }
3122 spin_unlock(root_lock);
520ac30f
ED
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
79640a4c
ED
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
bbd8a0d3
KK
3127 return rc;
3128}
3129
86f8515f 3130#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3131static void skb_update_prio(struct sk_buff *skb)
3132{
6977a79d 3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3134
91c68ce2 3135 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3138
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3141 }
5bc1421e
NH
3142}
3143#else
3144#define skb_update_prio(skb)
3145#endif
3146
f60e5990 3147DEFINE_PER_CPU(int, xmit_recursion);
3148EXPORT_SYMBOL(xmit_recursion);
3149
95603e22
MM
3150/**
3151 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3154 * @skb: buffer to transmit
3155 */
0c4b51f0 3156int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3157{
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3163 skb_dst_force(skb);
3164 netif_rx_ni(skb);
3165 return 0;
3166}
3167EXPORT_SYMBOL(dev_loopback_xmit);
3168
1f211a1b
DB
3169#ifdef CONFIG_NET_EGRESS
3170static struct sk_buff *
3171sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172{
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3175
3176 if (!cl)
3177 return skb;
3178
3179 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3180 * earlier by the caller.
3181 */
3182 qdisc_bstats_cpu_update(cl->q, skb);
3183
3184 switch (tc_classify(skb, cl, &cl_res, false)) {
3185 case TC_ACT_OK:
3186 case TC_ACT_RECLASSIFY:
3187 skb->tc_index = TC_H_MIN(cl_res.classid);
3188 break;
3189 case TC_ACT_SHOT:
3190 qdisc_qstats_cpu_drop(cl->q);
3191 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3192 kfree_skb(skb);
3193 return NULL;
1f211a1b
DB
3194 case TC_ACT_STOLEN:
3195 case TC_ACT_QUEUED:
3196 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3197 consume_skb(skb);
1f211a1b
DB
3198 return NULL;
3199 case TC_ACT_REDIRECT:
3200 /* No need to push/pop skb's mac_header here on egress! */
3201 skb_do_redirect(skb);
3202 *ret = NET_XMIT_SUCCESS;
3203 return NULL;
3204 default:
3205 break;
3206 }
3207
3208 return skb;
3209}
3210#endif /* CONFIG_NET_EGRESS */
3211
638b2a69
JP
3212static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3213{
3214#ifdef CONFIG_XPS
3215 struct xps_dev_maps *dev_maps;
3216 struct xps_map *map;
3217 int queue_index = -1;
3218
3219 rcu_read_lock();
3220 dev_maps = rcu_dereference(dev->xps_maps);
3221 if (dev_maps) {
3222 map = rcu_dereference(
3223 dev_maps->cpu_map[skb->sender_cpu - 1]);
3224 if (map) {
3225 if (map->len == 1)
3226 queue_index = map->queues[0];
3227 else
3228 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3229 map->len)];
3230 if (unlikely(queue_index >= dev->real_num_tx_queues))
3231 queue_index = -1;
3232 }
3233 }
3234 rcu_read_unlock();
3235
3236 return queue_index;
3237#else
3238 return -1;
3239#endif
3240}
3241
3242static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3243{
3244 struct sock *sk = skb->sk;
3245 int queue_index = sk_tx_queue_get(sk);
3246
3247 if (queue_index < 0 || skb->ooo_okay ||
3248 queue_index >= dev->real_num_tx_queues) {
3249 int new_index = get_xps_queue(dev, skb);
3250 if (new_index < 0)
3251 new_index = skb_tx_hash(dev, skb);
3252
3253 if (queue_index != new_index && sk &&
004a5d01 3254 sk_fullsock(sk) &&
638b2a69
JP
3255 rcu_access_pointer(sk->sk_dst_cache))
3256 sk_tx_queue_set(sk, new_index);
3257
3258 queue_index = new_index;
3259 }
3260
3261 return queue_index;
3262}
3263
3264struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3265 struct sk_buff *skb,
3266 void *accel_priv)
3267{
3268 int queue_index = 0;
3269
3270#ifdef CONFIG_XPS
52bd2d62
ED
3271 u32 sender_cpu = skb->sender_cpu - 1;
3272
3273 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3274 skb->sender_cpu = raw_smp_processor_id() + 1;
3275#endif
3276
3277 if (dev->real_num_tx_queues != 1) {
3278 const struct net_device_ops *ops = dev->netdev_ops;
3279 if (ops->ndo_select_queue)
3280 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281 __netdev_pick_tx);
3282 else
3283 queue_index = __netdev_pick_tx(dev, skb);
3284
3285 if (!accel_priv)
3286 queue_index = netdev_cap_txqueue(dev, queue_index);
3287 }
3288
3289 skb_set_queue_mapping(skb, queue_index);
3290 return netdev_get_tx_queue(dev, queue_index);
3291}
3292
d29f749e 3293/**
9d08dd3d 3294 * __dev_queue_xmit - transmit a buffer
d29f749e 3295 * @skb: buffer to transmit
9d08dd3d 3296 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3297 *
3298 * Queue a buffer for transmission to a network device. The caller must
3299 * have set the device and priority and built the buffer before calling
3300 * this function. The function can be called from an interrupt.
3301 *
3302 * A negative errno code is returned on a failure. A success does not
3303 * guarantee the frame will be transmitted as it may be dropped due
3304 * to congestion or traffic shaping.
3305 *
3306 * -----------------------------------------------------------------------------------
3307 * I notice this method can also return errors from the queue disciplines,
3308 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3309 * be positive.
3310 *
3311 * Regardless of the return value, the skb is consumed, so it is currently
3312 * difficult to retry a send to this method. (You can bump the ref count
3313 * before sending to hold a reference for retry if you are careful.)
3314 *
3315 * When calling this method, interrupts MUST be enabled. This is because
3316 * the BH enable code must have IRQs enabled so that it will not deadlock.
3317 * --BLG
3318 */
0a59f3a9 3319static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3320{
3321 struct net_device *dev = skb->dev;
dc2b4847 3322 struct netdev_queue *txq;
1da177e4
LT
3323 struct Qdisc *q;
3324 int rc = -ENOMEM;
3325
6d1ccff6
ED
3326 skb_reset_mac_header(skb);
3327
e7fd2885
WB
3328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330
4ec93edb
YH
3331 /* Disable soft irqs for various locks below. Also
3332 * stops preemption for RCU.
1da177e4 3333 */
4ec93edb 3334 rcu_read_lock_bh();
1da177e4 3335
5bc1421e
NH
3336 skb_update_prio(skb);
3337
1f211a1b
DB
3338 qdisc_pkt_len_init(skb);
3339#ifdef CONFIG_NET_CLS_ACT
3340 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3341# ifdef CONFIG_NET_EGRESS
3342 if (static_key_false(&egress_needed)) {
3343 skb = sch_handle_egress(skb, &rc, dev);
3344 if (!skb)
3345 goto out;
3346 }
3347# endif
3348#endif
02875878
ED
3349 /* If device/qdisc don't need skb->dst, release it right now while
3350 * its hot in this cpu cache.
3351 */
3352 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353 skb_dst_drop(skb);
3354 else
3355 skb_dst_force(skb);
3356
0c4f691f
SF
3357#ifdef CONFIG_NET_SWITCHDEV
3358 /* Don't forward if offload device already forwarded */
3359 if (skb->offload_fwd_mark &&
3360 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3361 consume_skb(skb);
3362 rc = NET_XMIT_SUCCESS;
3363 goto out;
3364 }
3365#endif
3366
f663dd9a 3367 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3368 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3369
cf66ba58 3370 trace_net_dev_queue(skb);
1da177e4 3371 if (q->enqueue) {
bbd8a0d3 3372 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3373 goto out;
1da177e4
LT
3374 }
3375
3376 /* The device has no queue. Common case for software devices:
3377 loopback, all the sorts of tunnels...
3378
932ff279
HX
3379 Really, it is unlikely that netif_tx_lock protection is necessary
3380 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3381 counters.)
3382 However, it is possible, that they rely on protection
3383 made by us here.
3384
3385 Check this and shot the lock. It is not prone from deadlocks.
3386 Either shot noqueue qdisc, it is even simpler 8)
3387 */
3388 if (dev->flags & IFF_UP) {
3389 int cpu = smp_processor_id(); /* ok because BHs are off */
3390
c773e847 3391 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3392 if (unlikely(__this_cpu_read(xmit_recursion) >
3393 XMIT_RECURSION_LIMIT))
745e20f1
ED
3394 goto recursion_alert;
3395
1f59533f
JDB
3396 skb = validate_xmit_skb(skb, dev);
3397 if (!skb)
d21fd63e 3398 goto out;
1f59533f 3399
c773e847 3400 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3401
73466498 3402 if (!netif_xmit_stopped(txq)) {
745e20f1 3403 __this_cpu_inc(xmit_recursion);
ce93718f 3404 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3405 __this_cpu_dec(xmit_recursion);
572a9d7b 3406 if (dev_xmit_complete(rc)) {
c773e847 3407 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3408 goto out;
3409 }
3410 }
c773e847 3411 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3412 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3413 dev->name);
1da177e4
LT
3414 } else {
3415 /* Recursion is detected! It is possible,
745e20f1
ED
3416 * unfortunately
3417 */
3418recursion_alert:
e87cc472
JP
3419 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3420 dev->name);
1da177e4
LT
3421 }
3422 }
3423
3424 rc = -ENETDOWN;
d4828d85 3425 rcu_read_unlock_bh();
1da177e4 3426
015f0688 3427 atomic_long_inc(&dev->tx_dropped);
1f59533f 3428 kfree_skb_list(skb);
1da177e4
LT
3429 return rc;
3430out:
d4828d85 3431 rcu_read_unlock_bh();
1da177e4
LT
3432 return rc;
3433}
f663dd9a 3434
2b4aa3ce 3435int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3436{
3437 return __dev_queue_xmit(skb, NULL);
3438}
2b4aa3ce 3439EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3440
f663dd9a
JW
3441int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3442{
3443 return __dev_queue_xmit(skb, accel_priv);
3444}
3445EXPORT_SYMBOL(dev_queue_xmit_accel);
3446
1da177e4
LT
3447
3448/*=======================================================================
3449 Receiver routines
3450 =======================================================================*/
3451
6b2bedc3 3452int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3453EXPORT_SYMBOL(netdev_max_backlog);
3454
3b098e2d 3455int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3456int netdev_budget __read_mostly = 300;
3457int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3458
eecfd7c4
ED
3459/* Called with irq disabled */
3460static inline void ____napi_schedule(struct softnet_data *sd,
3461 struct napi_struct *napi)
3462{
3463 list_add_tail(&napi->poll_list, &sd->poll_list);
3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465}
3466
bfb564e7
KK
3467#ifdef CONFIG_RPS
3468
3469/* One global table that all flow-based protocols share. */
6e3f7faf 3470struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3471EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3472u32 rps_cpu_mask __read_mostly;
3473EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3474
c5905afb 3475struct static_key rps_needed __read_mostly;
3df97ba8 3476EXPORT_SYMBOL(rps_needed);
adc9300e 3477
c445477d
BH
3478static struct rps_dev_flow *
3479set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3480 struct rps_dev_flow *rflow, u16 next_cpu)
3481{
a31196b0 3482 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3483#ifdef CONFIG_RFS_ACCEL
3484 struct netdev_rx_queue *rxqueue;
3485 struct rps_dev_flow_table *flow_table;
3486 struct rps_dev_flow *old_rflow;
3487 u32 flow_id;
3488 u16 rxq_index;
3489 int rc;
3490
3491 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3492 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3493 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3494 goto out;
3495 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3496 if (rxq_index == skb_get_rx_queue(skb))
3497 goto out;
3498
3499 rxqueue = dev->_rx + rxq_index;
3500 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3501 if (!flow_table)
3502 goto out;
61b905da 3503 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3504 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3505 rxq_index, flow_id);
3506 if (rc < 0)
3507 goto out;
3508 old_rflow = rflow;
3509 rflow = &flow_table->flows[flow_id];
c445477d
BH
3510 rflow->filter = rc;
3511 if (old_rflow->filter == rflow->filter)
3512 old_rflow->filter = RPS_NO_FILTER;
3513 out:
3514#endif
3515 rflow->last_qtail =
09994d1b 3516 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3517 }
3518
09994d1b 3519 rflow->cpu = next_cpu;
c445477d
BH
3520 return rflow;
3521}
3522
bfb564e7
KK
3523/*
3524 * get_rps_cpu is called from netif_receive_skb and returns the target
3525 * CPU from the RPS map of the receiving queue for a given skb.
3526 * rcu_read_lock must be held on entry.
3527 */
3528static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3529 struct rps_dev_flow **rflowp)
3530{
567e4b79
ED
3531 const struct rps_sock_flow_table *sock_flow_table;
3532 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3533 struct rps_dev_flow_table *flow_table;
567e4b79 3534 struct rps_map *map;
bfb564e7 3535 int cpu = -1;
567e4b79 3536 u32 tcpu;
61b905da 3537 u32 hash;
bfb564e7
KK
3538
3539 if (skb_rx_queue_recorded(skb)) {
3540 u16 index = skb_get_rx_queue(skb);
567e4b79 3541
62fe0b40
BH
3542 if (unlikely(index >= dev->real_num_rx_queues)) {
3543 WARN_ONCE(dev->real_num_rx_queues > 1,
3544 "%s received packet on queue %u, but number "
3545 "of RX queues is %u\n",
3546 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3547 goto done;
3548 }
567e4b79
ED
3549 rxqueue += index;
3550 }
bfb564e7 3551
567e4b79
ED
3552 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3553
3554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3555 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3556 if (!flow_table && !map)
bfb564e7
KK
3557 goto done;
3558
2d47b459 3559 skb_reset_network_header(skb);
61b905da
TH
3560 hash = skb_get_hash(skb);
3561 if (!hash)
bfb564e7
KK
3562 goto done;
3563
fec5e652
TH
3564 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3565 if (flow_table && sock_flow_table) {
fec5e652 3566 struct rps_dev_flow *rflow;
567e4b79
ED
3567 u32 next_cpu;
3568 u32 ident;
3569
3570 /* First check into global flow table if there is a match */
3571 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3572 if ((ident ^ hash) & ~rps_cpu_mask)
3573 goto try_rps;
fec5e652 3574
567e4b79
ED
3575 next_cpu = ident & rps_cpu_mask;
3576
3577 /* OK, now we know there is a match,
3578 * we can look at the local (per receive queue) flow table
3579 */
61b905da 3580 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3581 tcpu = rflow->cpu;
3582
fec5e652
TH
3583 /*
3584 * If the desired CPU (where last recvmsg was done) is
3585 * different from current CPU (one in the rx-queue flow
3586 * table entry), switch if one of the following holds:
a31196b0 3587 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3588 * - Current CPU is offline.
3589 * - The current CPU's queue tail has advanced beyond the
3590 * last packet that was enqueued using this table entry.
3591 * This guarantees that all previous packets for the flow
3592 * have been dequeued, thus preserving in order delivery.
3593 */
3594 if (unlikely(tcpu != next_cpu) &&
a31196b0 3595 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3596 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3597 rflow->last_qtail)) >= 0)) {
3598 tcpu = next_cpu;
c445477d 3599 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3600 }
c445477d 3601
a31196b0 3602 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3603 *rflowp = rflow;
3604 cpu = tcpu;
3605 goto done;
3606 }
3607 }
3608
567e4b79
ED
3609try_rps:
3610
0a9627f2 3611 if (map) {
8fc54f68 3612 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3613 if (cpu_online(tcpu)) {
3614 cpu = tcpu;
3615 goto done;
3616 }
3617 }
3618
3619done:
0a9627f2
TH
3620 return cpu;
3621}
3622
c445477d
BH
3623#ifdef CONFIG_RFS_ACCEL
3624
3625/**
3626 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3627 * @dev: Device on which the filter was set
3628 * @rxq_index: RX queue index
3629 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3630 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3631 *
3632 * Drivers that implement ndo_rx_flow_steer() should periodically call
3633 * this function for each installed filter and remove the filters for
3634 * which it returns %true.
3635 */
3636bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3637 u32 flow_id, u16 filter_id)
3638{
3639 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3640 struct rps_dev_flow_table *flow_table;
3641 struct rps_dev_flow *rflow;
3642 bool expire = true;
a31196b0 3643 unsigned int cpu;
c445477d
BH
3644
3645 rcu_read_lock();
3646 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3647 if (flow_table && flow_id <= flow_table->mask) {
3648 rflow = &flow_table->flows[flow_id];
3649 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3650 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3651 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3652 rflow->last_qtail) <
3653 (int)(10 * flow_table->mask)))
3654 expire = false;
3655 }
3656 rcu_read_unlock();
3657 return expire;
3658}
3659EXPORT_SYMBOL(rps_may_expire_flow);
3660
3661#endif /* CONFIG_RFS_ACCEL */
3662
0a9627f2 3663/* Called from hardirq (IPI) context */
e36fa2f7 3664static void rps_trigger_softirq(void *data)
0a9627f2 3665{
e36fa2f7
ED
3666 struct softnet_data *sd = data;
3667
eecfd7c4 3668 ____napi_schedule(sd, &sd->backlog);
dee42870 3669 sd->received_rps++;
0a9627f2 3670}
e36fa2f7 3671
fec5e652 3672#endif /* CONFIG_RPS */
0a9627f2 3673
e36fa2f7
ED
3674/*
3675 * Check if this softnet_data structure is another cpu one
3676 * If yes, queue it to our IPI list and return 1
3677 * If no, return 0
3678 */
3679static int rps_ipi_queued(struct softnet_data *sd)
3680{
3681#ifdef CONFIG_RPS
903ceff7 3682 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3683
3684 if (sd != mysd) {
3685 sd->rps_ipi_next = mysd->rps_ipi_list;
3686 mysd->rps_ipi_list = sd;
3687
3688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3689 return 1;
3690 }
3691#endif /* CONFIG_RPS */
3692 return 0;
3693}
3694
99bbc707
WB
3695#ifdef CONFIG_NET_FLOW_LIMIT
3696int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3697#endif
3698
3699static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3700{
3701#ifdef CONFIG_NET_FLOW_LIMIT
3702 struct sd_flow_limit *fl;
3703 struct softnet_data *sd;
3704 unsigned int old_flow, new_flow;
3705
3706 if (qlen < (netdev_max_backlog >> 1))
3707 return false;
3708
903ceff7 3709 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3710
3711 rcu_read_lock();
3712 fl = rcu_dereference(sd->flow_limit);
3713 if (fl) {
3958afa1 3714 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3715 old_flow = fl->history[fl->history_head];
3716 fl->history[fl->history_head] = new_flow;
3717
3718 fl->history_head++;
3719 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3720
3721 if (likely(fl->buckets[old_flow]))
3722 fl->buckets[old_flow]--;
3723
3724 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3725 fl->count++;
3726 rcu_read_unlock();
3727 return true;
3728 }
3729 }
3730 rcu_read_unlock();
3731#endif
3732 return false;
3733}
3734
0a9627f2
TH
3735/*
3736 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3737 * queue (may be a remote CPU queue).
3738 */
fec5e652
TH
3739static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3740 unsigned int *qtail)
0a9627f2 3741{
e36fa2f7 3742 struct softnet_data *sd;
0a9627f2 3743 unsigned long flags;
99bbc707 3744 unsigned int qlen;
0a9627f2 3745
e36fa2f7 3746 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3747
3748 local_irq_save(flags);
0a9627f2 3749
e36fa2f7 3750 rps_lock(sd);
e9e4dd32
JA
3751 if (!netif_running(skb->dev))
3752 goto drop;
99bbc707
WB
3753 qlen = skb_queue_len(&sd->input_pkt_queue);
3754 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3755 if (qlen) {
0a9627f2 3756enqueue:
e36fa2f7 3757 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3758 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3759 rps_unlock(sd);
152102c7 3760 local_irq_restore(flags);
0a9627f2
TH
3761 return NET_RX_SUCCESS;
3762 }
3763
ebda37c2
ED
3764 /* Schedule NAPI for backlog device
3765 * We can use non atomic operation since we own the queue lock
3766 */
3767 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3768 if (!rps_ipi_queued(sd))
eecfd7c4 3769 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3770 }
3771 goto enqueue;
3772 }
3773
e9e4dd32 3774drop:
dee42870 3775 sd->dropped++;
e36fa2f7 3776 rps_unlock(sd);
0a9627f2 3777
0a9627f2
TH
3778 local_irq_restore(flags);
3779
caf586e5 3780 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3781 kfree_skb(skb);
3782 return NET_RX_DROP;
3783}
1da177e4 3784
ae78dbfa 3785static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3786{
b0e28f1e 3787 int ret;
1da177e4 3788
588f0330 3789 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3790
cf66ba58 3791 trace_netif_rx(skb);
df334545 3792#ifdef CONFIG_RPS
c5905afb 3793 if (static_key_false(&rps_needed)) {
fec5e652 3794 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3795 int cpu;
3796
cece1945 3797 preempt_disable();
b0e28f1e 3798 rcu_read_lock();
fec5e652
TH
3799
3800 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3801 if (cpu < 0)
3802 cpu = smp_processor_id();
fec5e652
TH
3803
3804 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3805
b0e28f1e 3806 rcu_read_unlock();
cece1945 3807 preempt_enable();
adc9300e
ED
3808 } else
3809#endif
fec5e652
TH
3810 {
3811 unsigned int qtail;
3812 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3813 put_cpu();
3814 }
b0e28f1e 3815 return ret;
1da177e4 3816}
ae78dbfa
BH
3817
3818/**
3819 * netif_rx - post buffer to the network code
3820 * @skb: buffer to post
3821 *
3822 * This function receives a packet from a device driver and queues it for
3823 * the upper (protocol) levels to process. It always succeeds. The buffer
3824 * may be dropped during processing for congestion control or by the
3825 * protocol layers.
3826 *
3827 * return values:
3828 * NET_RX_SUCCESS (no congestion)
3829 * NET_RX_DROP (packet was dropped)
3830 *
3831 */
3832
3833int netif_rx(struct sk_buff *skb)
3834{
3835 trace_netif_rx_entry(skb);
3836
3837 return netif_rx_internal(skb);
3838}
d1b19dff 3839EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3840
3841int netif_rx_ni(struct sk_buff *skb)
3842{
3843 int err;
3844
ae78dbfa
BH
3845 trace_netif_rx_ni_entry(skb);
3846
1da177e4 3847 preempt_disable();
ae78dbfa 3848 err = netif_rx_internal(skb);
1da177e4
LT
3849 if (local_softirq_pending())
3850 do_softirq();
3851 preempt_enable();
3852
3853 return err;
3854}
1da177e4
LT
3855EXPORT_SYMBOL(netif_rx_ni);
3856
1da177e4
LT
3857static void net_tx_action(struct softirq_action *h)
3858{
903ceff7 3859 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3860
3861 if (sd->completion_queue) {
3862 struct sk_buff *clist;
3863
3864 local_irq_disable();
3865 clist = sd->completion_queue;
3866 sd->completion_queue = NULL;
3867 local_irq_enable();
3868
3869 while (clist) {
3870 struct sk_buff *skb = clist;
3871 clist = clist->next;
3872
547b792c 3873 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3874 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3875 trace_consume_skb(skb);
3876 else
3877 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3878
3879 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3880 __kfree_skb(skb);
3881 else
3882 __kfree_skb_defer(skb);
1da177e4 3883 }
15fad714
JDB
3884
3885 __kfree_skb_flush();
1da177e4
LT
3886 }
3887
3888 if (sd->output_queue) {
37437bb2 3889 struct Qdisc *head;
1da177e4
LT
3890
3891 local_irq_disable();
3892 head = sd->output_queue;
3893 sd->output_queue = NULL;
a9cbd588 3894 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3895 local_irq_enable();
3896
3897 while (head) {
37437bb2
DM
3898 struct Qdisc *q = head;
3899 spinlock_t *root_lock;
3900
1da177e4
LT
3901 head = head->next_sched;
3902
5fb66229 3903 root_lock = qdisc_lock(q);
3bcb846c
ED
3904 spin_lock(root_lock);
3905 /* We need to make sure head->next_sched is read
3906 * before clearing __QDISC_STATE_SCHED
3907 */
3908 smp_mb__before_atomic();
3909 clear_bit(__QDISC_STATE_SCHED, &q->state);
3910 qdisc_run(q);
3911 spin_unlock(root_lock);
1da177e4
LT
3912 }
3913 }
3914}
3915
ab95bfe0
JP
3916#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3917 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3918/* This hook is defined here for ATM LANE */
3919int (*br_fdb_test_addr_hook)(struct net_device *dev,
3920 unsigned char *addr) __read_mostly;
4fb019a0 3921EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3922#endif
1da177e4 3923
1f211a1b
DB
3924static inline struct sk_buff *
3925sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3926 struct net_device *orig_dev)
f697c3e8 3927{
e7582bab 3928#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3929 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3930 struct tcf_result cl_res;
24824a09 3931
c9e99fd0
DB
3932 /* If there's at least one ingress present somewhere (so
3933 * we get here via enabled static key), remaining devices
3934 * that are not configured with an ingress qdisc will bail
d2788d34 3935 * out here.
c9e99fd0 3936 */
d2788d34 3937 if (!cl)
4577139b 3938 return skb;
f697c3e8
HX
3939 if (*pt_prev) {
3940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3941 *pt_prev = NULL;
1da177e4
LT
3942 }
3943
3365495c 3944 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3945 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3946 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3947
3b3ae880 3948 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3949 case TC_ACT_OK:
3950 case TC_ACT_RECLASSIFY:
3951 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 break;
3953 case TC_ACT_SHOT:
24ea591d 3954 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3955 kfree_skb(skb);
3956 return NULL;
d2788d34
DB
3957 case TC_ACT_STOLEN:
3958 case TC_ACT_QUEUED:
8a3a4c6e 3959 consume_skb(skb);
d2788d34 3960 return NULL;
27b29f63
AS
3961 case TC_ACT_REDIRECT:
3962 /* skb_mac_header check was done by cls/act_bpf, so
3963 * we can safely push the L2 header back before
3964 * redirecting to another netdev
3965 */
3966 __skb_push(skb, skb->mac_len);
3967 skb_do_redirect(skb);
3968 return NULL;
d2788d34
DB
3969 default:
3970 break;
f697c3e8 3971 }
e7582bab 3972#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3973 return skb;
3974}
1da177e4 3975
ab95bfe0
JP
3976/**
3977 * netdev_rx_handler_register - register receive handler
3978 * @dev: device to register a handler for
3979 * @rx_handler: receive handler to register
93e2c32b 3980 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3981 *
e227867f 3982 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3983 * called from __netif_receive_skb. A negative errno code is returned
3984 * on a failure.
3985 *
3986 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3987 *
3988 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3989 */
3990int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3991 rx_handler_func_t *rx_handler,
3992 void *rx_handler_data)
ab95bfe0
JP
3993{
3994 ASSERT_RTNL();
3995
3996 if (dev->rx_handler)
3997 return -EBUSY;
3998
00cfec37 3999 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4000 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4001 rcu_assign_pointer(dev->rx_handler, rx_handler);
4002
4003 return 0;
4004}
4005EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4006
4007/**
4008 * netdev_rx_handler_unregister - unregister receive handler
4009 * @dev: device to unregister a handler from
4010 *
166ec369 4011 * Unregister a receive handler from a device.
ab95bfe0
JP
4012 *
4013 * The caller must hold the rtnl_mutex.
4014 */
4015void netdev_rx_handler_unregister(struct net_device *dev)
4016{
4017
4018 ASSERT_RTNL();
a9b3cd7f 4019 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4020 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4021 * section has a guarantee to see a non NULL rx_handler_data
4022 * as well.
4023 */
4024 synchronize_net();
a9b3cd7f 4025 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4026}
4027EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4028
b4b9e355
MG
4029/*
4030 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4031 * the special handling of PFMEMALLOC skbs.
4032 */
4033static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4034{
4035 switch (skb->protocol) {
2b8837ae
JP
4036 case htons(ETH_P_ARP):
4037 case htons(ETH_P_IP):
4038 case htons(ETH_P_IPV6):
4039 case htons(ETH_P_8021Q):
4040 case htons(ETH_P_8021AD):
b4b9e355
MG
4041 return true;
4042 default:
4043 return false;
4044 }
4045}
4046
e687ad60
PN
4047static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4048 int *ret, struct net_device *orig_dev)
4049{
e7582bab 4050#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4051 if (nf_hook_ingress_active(skb)) {
4052 if (*pt_prev) {
4053 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4054 *pt_prev = NULL;
4055 }
4056
4057 return nf_hook_ingress(skb);
4058 }
e7582bab 4059#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4060 return 0;
4061}
e687ad60 4062
9754e293 4063static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4064{
4065 struct packet_type *ptype, *pt_prev;
ab95bfe0 4066 rx_handler_func_t *rx_handler;
f2ccd8fa 4067 struct net_device *orig_dev;
8a4eb573 4068 bool deliver_exact = false;
1da177e4 4069 int ret = NET_RX_DROP;
252e3346 4070 __be16 type;
1da177e4 4071
588f0330 4072 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4073
cf66ba58 4074 trace_netif_receive_skb(skb);
9b22ea56 4075
cc9bd5ce 4076 orig_dev = skb->dev;
8f903c70 4077
c1d2bbe1 4078 skb_reset_network_header(skb);
fda55eca
ED
4079 if (!skb_transport_header_was_set(skb))
4080 skb_reset_transport_header(skb);
0b5c9db1 4081 skb_reset_mac_len(skb);
1da177e4
LT
4082
4083 pt_prev = NULL;
4084
63d8ea7f 4085another_round:
b6858177 4086 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4087
4088 __this_cpu_inc(softnet_data.processed);
4089
8ad227ff
PM
4090 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4091 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4092 skb = skb_vlan_untag(skb);
bcc6d479 4093 if (unlikely(!skb))
2c17d27c 4094 goto out;
bcc6d479
JP
4095 }
4096
1da177e4
LT
4097#ifdef CONFIG_NET_CLS_ACT
4098 if (skb->tc_verd & TC_NCLS) {
4099 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4100 goto ncls;
4101 }
4102#endif
4103
9754e293 4104 if (pfmemalloc)
b4b9e355
MG
4105 goto skip_taps;
4106
1da177e4 4107 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4108 if (pt_prev)
4109 ret = deliver_skb(skb, pt_prev, orig_dev);
4110 pt_prev = ptype;
4111 }
4112
4113 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4114 if (pt_prev)
4115 ret = deliver_skb(skb, pt_prev, orig_dev);
4116 pt_prev = ptype;
1da177e4
LT
4117 }
4118
b4b9e355 4119skip_taps:
1cf51900 4120#ifdef CONFIG_NET_INGRESS
4577139b 4121 if (static_key_false(&ingress_needed)) {
1f211a1b 4122 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4123 if (!skb)
2c17d27c 4124 goto out;
e687ad60
PN
4125
4126 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4127 goto out;
4577139b 4128 }
1cf51900
PN
4129#endif
4130#ifdef CONFIG_NET_CLS_ACT
4577139b 4131 skb->tc_verd = 0;
1da177e4
LT
4132ncls:
4133#endif
9754e293 4134 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4135 goto drop;
4136
df8a39de 4137 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4138 if (pt_prev) {
4139 ret = deliver_skb(skb, pt_prev, orig_dev);
4140 pt_prev = NULL;
4141 }
48cc32d3 4142 if (vlan_do_receive(&skb))
2425717b
JF
4143 goto another_round;
4144 else if (unlikely(!skb))
2c17d27c 4145 goto out;
2425717b
JF
4146 }
4147
48cc32d3 4148 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4149 if (rx_handler) {
4150 if (pt_prev) {
4151 ret = deliver_skb(skb, pt_prev, orig_dev);
4152 pt_prev = NULL;
4153 }
8a4eb573
JP
4154 switch (rx_handler(&skb)) {
4155 case RX_HANDLER_CONSUMED:
3bc1b1ad 4156 ret = NET_RX_SUCCESS;
2c17d27c 4157 goto out;
8a4eb573 4158 case RX_HANDLER_ANOTHER:
63d8ea7f 4159 goto another_round;
8a4eb573
JP
4160 case RX_HANDLER_EXACT:
4161 deliver_exact = true;
4162 case RX_HANDLER_PASS:
4163 break;
4164 default:
4165 BUG();
4166 }
ab95bfe0 4167 }
1da177e4 4168
df8a39de
JP
4169 if (unlikely(skb_vlan_tag_present(skb))) {
4170 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4171 skb->pkt_type = PACKET_OTHERHOST;
4172 /* Note: we might in the future use prio bits
4173 * and set skb->priority like in vlan_do_receive()
4174 * For the time being, just ignore Priority Code Point
4175 */
4176 skb->vlan_tci = 0;
4177 }
48cc32d3 4178
7866a621
SN
4179 type = skb->protocol;
4180
63d8ea7f 4181 /* deliver only exact match when indicated */
7866a621
SN
4182 if (likely(!deliver_exact)) {
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &ptype_base[ntohs(type) &
4185 PTYPE_HASH_MASK]);
4186 }
1f3c8804 4187
7866a621
SN
4188 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 &orig_dev->ptype_specific);
4190
4191 if (unlikely(skb->dev != orig_dev)) {
4192 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193 &skb->dev->ptype_specific);
1da177e4
LT
4194 }
4195
4196 if (pt_prev) {
1080e512 4197 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4198 goto drop;
1080e512
MT
4199 else
4200 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4201 } else {
b4b9e355 4202drop:
6e7333d3
JW
4203 if (!deliver_exact)
4204 atomic_long_inc(&skb->dev->rx_dropped);
4205 else
4206 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4207 kfree_skb(skb);
4208 /* Jamal, now you will not able to escape explaining
4209 * me how you were going to use this. :-)
4210 */
4211 ret = NET_RX_DROP;
4212 }
4213
2c17d27c 4214out:
9754e293
DM
4215 return ret;
4216}
4217
4218static int __netif_receive_skb(struct sk_buff *skb)
4219{
4220 int ret;
4221
4222 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4223 unsigned long pflags = current->flags;
4224
4225 /*
4226 * PFMEMALLOC skbs are special, they should
4227 * - be delivered to SOCK_MEMALLOC sockets only
4228 * - stay away from userspace
4229 * - have bounded memory usage
4230 *
4231 * Use PF_MEMALLOC as this saves us from propagating the allocation
4232 * context down to all allocation sites.
4233 */
4234 current->flags |= PF_MEMALLOC;
4235 ret = __netif_receive_skb_core(skb, true);
4236 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4237 } else
4238 ret = __netif_receive_skb_core(skb, false);
4239
1da177e4
LT
4240 return ret;
4241}
0a9627f2 4242
ae78dbfa 4243static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4244{
2c17d27c
JA
4245 int ret;
4246
588f0330 4247 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4248
c1f19b51
RC
4249 if (skb_defer_rx_timestamp(skb))
4250 return NET_RX_SUCCESS;
4251
2c17d27c
JA
4252 rcu_read_lock();
4253
df334545 4254#ifdef CONFIG_RPS
c5905afb 4255 if (static_key_false(&rps_needed)) {
3b098e2d 4256 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4257 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4258
3b098e2d
ED
4259 if (cpu >= 0) {
4260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4261 rcu_read_unlock();
adc9300e 4262 return ret;
3b098e2d 4263 }
fec5e652 4264 }
1e94d72f 4265#endif
2c17d27c
JA
4266 ret = __netif_receive_skb(skb);
4267 rcu_read_unlock();
4268 return ret;
0a9627f2 4269}
ae78dbfa
BH
4270
4271/**
4272 * netif_receive_skb - process receive buffer from network
4273 * @skb: buffer to process
4274 *
4275 * netif_receive_skb() is the main receive data processing function.
4276 * It always succeeds. The buffer may be dropped during processing
4277 * for congestion control or by the protocol layers.
4278 *
4279 * This function may only be called from softirq context and interrupts
4280 * should be enabled.
4281 *
4282 * Return values (usually ignored):
4283 * NET_RX_SUCCESS: no congestion
4284 * NET_RX_DROP: packet was dropped
4285 */
04eb4489 4286int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4287{
4288 trace_netif_receive_skb_entry(skb);
4289
4290 return netif_receive_skb_internal(skb);
4291}
04eb4489 4292EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4293
88751275
ED
4294/* Network device is going away, flush any packets still pending
4295 * Called with irqs disabled.
4296 */
152102c7 4297static void flush_backlog(void *arg)
6e583ce5 4298{
152102c7 4299 struct net_device *dev = arg;
903ceff7 4300 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4301 struct sk_buff *skb, *tmp;
4302
e36fa2f7 4303 rps_lock(sd);
6e7676c1 4304 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4305 if (skb->dev == dev) {
e36fa2f7 4306 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4307 kfree_skb(skb);
76cc8b13 4308 input_queue_head_incr(sd);
6e583ce5 4309 }
6e7676c1 4310 }
e36fa2f7 4311 rps_unlock(sd);
6e7676c1
CG
4312
4313 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4314 if (skb->dev == dev) {
4315 __skb_unlink(skb, &sd->process_queue);
4316 kfree_skb(skb);
76cc8b13 4317 input_queue_head_incr(sd);
6e7676c1
CG
4318 }
4319 }
6e583ce5
SH
4320}
4321
d565b0a1
HX
4322static int napi_gro_complete(struct sk_buff *skb)
4323{
22061d80 4324 struct packet_offload *ptype;
d565b0a1 4325 __be16 type = skb->protocol;
22061d80 4326 struct list_head *head = &offload_base;
d565b0a1
HX
4327 int err = -ENOENT;
4328
c3c7c254
ED
4329 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
fc59f9a3
HX
4331 if (NAPI_GRO_CB(skb)->count == 1) {
4332 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4333 goto out;
fc59f9a3 4334 }
d565b0a1
HX
4335
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4338 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4339 continue;
4340
299603e8 4341 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4342 break;
4343 }
4344 rcu_read_unlock();
4345
4346 if (err) {
4347 WARN_ON(&ptype->list == head);
4348 kfree_skb(skb);
4349 return NET_RX_SUCCESS;
4350 }
4351
4352out:
ae78dbfa 4353 return netif_receive_skb_internal(skb);
d565b0a1
HX
4354}
4355
2e71a6f8
ED
4356/* napi->gro_list contains packets ordered by age.
4357 * youngest packets at the head of it.
4358 * Complete skbs in reverse order to reduce latencies.
4359 */
4360void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4361{
2e71a6f8 4362 struct sk_buff *skb, *prev = NULL;
d565b0a1 4363
2e71a6f8
ED
4364 /* scan list and build reverse chain */
4365 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366 skb->prev = prev;
4367 prev = skb;
4368 }
4369
4370 for (skb = prev; skb; skb = prev) {
d565b0a1 4371 skb->next = NULL;
2e71a6f8
ED
4372
4373 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374 return;
4375
4376 prev = skb->prev;
d565b0a1 4377 napi_gro_complete(skb);
2e71a6f8 4378 napi->gro_count--;
d565b0a1
HX
4379 }
4380
4381 napi->gro_list = NULL;
4382}
86cac58b 4383EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4384
89c5fa33
ED
4385static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386{
4387 struct sk_buff *p;
4388 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4389 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4390
4391 for (p = napi->gro_list; p; p = p->next) {
4392 unsigned long diffs;
4393
0b4cec8c
TH
4394 NAPI_GRO_CB(p)->flush = 0;
4395
4396 if (hash != skb_get_hash_raw(p)) {
4397 NAPI_GRO_CB(p)->same_flow = 0;
4398 continue;
4399 }
4400
89c5fa33
ED
4401 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4403 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4404 if (maclen == ETH_HLEN)
4405 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4406 skb_mac_header(skb));
89c5fa33
ED
4407 else if (!diffs)
4408 diffs = memcmp(skb_mac_header(p),
a50e233c 4409 skb_mac_header(skb),
89c5fa33
ED
4410 maclen);
4411 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4412 }
4413}
4414
299603e8
JC
4415static void skb_gro_reset_offset(struct sk_buff *skb)
4416{
4417 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418 const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420 NAPI_GRO_CB(skb)->data_offset = 0;
4421 NAPI_GRO_CB(skb)->frag0 = NULL;
4422 NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425 pinfo->nr_frags &&
4426 !PageHighMem(skb_frag_page(frag0))) {
4427 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4429 }
4430}
4431
a50e233c
ED
4432static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4433{
4434 struct skb_shared_info *pinfo = skb_shinfo(skb);
4435
4436 BUG_ON(skb->end - skb->tail < grow);
4437
4438 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4439
4440 skb->data_len -= grow;
4441 skb->tail += grow;
4442
4443 pinfo->frags[0].page_offset += grow;
4444 skb_frag_size_sub(&pinfo->frags[0], grow);
4445
4446 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4447 skb_frag_unref(skb, 0);
4448 memmove(pinfo->frags, pinfo->frags + 1,
4449 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4450 }
4451}
4452
bb728820 4453static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4454{
4455 struct sk_buff **pp = NULL;
22061d80 4456 struct packet_offload *ptype;
d565b0a1 4457 __be16 type = skb->protocol;
22061d80 4458 struct list_head *head = &offload_base;
0da2afd5 4459 int same_flow;
5b252f0c 4460 enum gro_result ret;
a50e233c 4461 int grow;
d565b0a1 4462
9c62a68d 4463 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4464 goto normal;
4465
5a212329 4466 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4467 goto normal;
4468
89c5fa33
ED
4469 gro_list_prepare(napi, skb);
4470
d565b0a1
HX
4471 rcu_read_lock();
4472 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4473 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4474 continue;
4475
86911732 4476 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4477 skb_reset_mac_len(skb);
d565b0a1
HX
4478 NAPI_GRO_CB(skb)->same_flow = 0;
4479 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4480 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4481 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4482 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4483 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4484 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4485
662880f4
TH
4486 /* Setup for GRO checksum validation */
4487 switch (skb->ip_summed) {
4488 case CHECKSUM_COMPLETE:
4489 NAPI_GRO_CB(skb)->csum = skb->csum;
4490 NAPI_GRO_CB(skb)->csum_valid = 1;
4491 NAPI_GRO_CB(skb)->csum_cnt = 0;
4492 break;
4493 case CHECKSUM_UNNECESSARY:
4494 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4495 NAPI_GRO_CB(skb)->csum_valid = 0;
4496 break;
4497 default:
4498 NAPI_GRO_CB(skb)->csum_cnt = 0;
4499 NAPI_GRO_CB(skb)->csum_valid = 0;
4500 }
d565b0a1 4501
f191a1d1 4502 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4503 break;
4504 }
4505 rcu_read_unlock();
4506
4507 if (&ptype->list == head)
4508 goto normal;
4509
0da2afd5 4510 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4511 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4512
d565b0a1
HX
4513 if (pp) {
4514 struct sk_buff *nskb = *pp;
4515
4516 *pp = nskb->next;
4517 nskb->next = NULL;
4518 napi_gro_complete(nskb);
4ae5544f 4519 napi->gro_count--;
d565b0a1
HX
4520 }
4521
0da2afd5 4522 if (same_flow)
d565b0a1
HX
4523 goto ok;
4524
600adc18 4525 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4526 goto normal;
d565b0a1 4527
600adc18
ED
4528 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4529 struct sk_buff *nskb = napi->gro_list;
4530
4531 /* locate the end of the list to select the 'oldest' flow */
4532 while (nskb->next) {
4533 pp = &nskb->next;
4534 nskb = *pp;
4535 }
4536 *pp = NULL;
4537 nskb->next = NULL;
4538 napi_gro_complete(nskb);
4539 } else {
4540 napi->gro_count++;
4541 }
d565b0a1 4542 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4543 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4544 NAPI_GRO_CB(skb)->last = skb;
86911732 4545 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4546 skb->next = napi->gro_list;
4547 napi->gro_list = skb;
5d0d9be8 4548 ret = GRO_HELD;
d565b0a1 4549
ad0f9904 4550pull:
a50e233c
ED
4551 grow = skb_gro_offset(skb) - skb_headlen(skb);
4552 if (grow > 0)
4553 gro_pull_from_frag0(skb, grow);
d565b0a1 4554ok:
5d0d9be8 4555 return ret;
d565b0a1
HX
4556
4557normal:
ad0f9904
HX
4558 ret = GRO_NORMAL;
4559 goto pull;
5d38a079 4560}
96e93eab 4561
bf5a755f
JC
4562struct packet_offload *gro_find_receive_by_type(__be16 type)
4563{
4564 struct list_head *offload_head = &offload_base;
4565 struct packet_offload *ptype;
4566
4567 list_for_each_entry_rcu(ptype, offload_head, list) {
4568 if (ptype->type != type || !ptype->callbacks.gro_receive)
4569 continue;
4570 return ptype;
4571 }
4572 return NULL;
4573}
e27a2f83 4574EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4575
4576struct packet_offload *gro_find_complete_by_type(__be16 type)
4577{
4578 struct list_head *offload_head = &offload_base;
4579 struct packet_offload *ptype;
4580
4581 list_for_each_entry_rcu(ptype, offload_head, list) {
4582 if (ptype->type != type || !ptype->callbacks.gro_complete)
4583 continue;
4584 return ptype;
4585 }
4586 return NULL;
4587}
e27a2f83 4588EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4589
bb728820 4590static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4591{
5d0d9be8
HX
4592 switch (ret) {
4593 case GRO_NORMAL:
ae78dbfa 4594 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4595 ret = GRO_DROP;
4596 break;
5d38a079 4597
5d0d9be8 4598 case GRO_DROP:
5d38a079
HX
4599 kfree_skb(skb);
4600 break;
5b252f0c 4601
daa86548 4602 case GRO_MERGED_FREE:
ce87fc6c
JG
4603 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4604 skb_dst_drop(skb);
d7e8883c 4605 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4606 } else {
d7e8883c 4607 __kfree_skb(skb);
ce87fc6c 4608 }
daa86548
ED
4609 break;
4610
5b252f0c
BH
4611 case GRO_HELD:
4612 case GRO_MERGED:
4613 break;
5d38a079
HX
4614 }
4615
c7c4b3b6 4616 return ret;
5d0d9be8 4617}
5d0d9be8 4618
c7c4b3b6 4619gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4620{
93f93a44 4621 skb_mark_napi_id(skb, napi);
ae78dbfa 4622 trace_napi_gro_receive_entry(skb);
86911732 4623
a50e233c
ED
4624 skb_gro_reset_offset(skb);
4625
89c5fa33 4626 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4627}
4628EXPORT_SYMBOL(napi_gro_receive);
4629
d0c2b0d2 4630static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4631{
93a35f59
ED
4632 if (unlikely(skb->pfmemalloc)) {
4633 consume_skb(skb);
4634 return;
4635 }
96e93eab 4636 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4637 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4638 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4639 skb->vlan_tci = 0;
66c46d74 4640 skb->dev = napi->dev;
6d152e23 4641 skb->skb_iif = 0;
c3caf119
JC
4642 skb->encapsulation = 0;
4643 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4644 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4645
4646 napi->skb = skb;
4647}
96e93eab 4648
76620aaf 4649struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4650{
5d38a079 4651 struct sk_buff *skb = napi->skb;
5d38a079
HX
4652
4653 if (!skb) {
fd11a83d 4654 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4655 if (skb) {
4656 napi->skb = skb;
4657 skb_mark_napi_id(skb, napi);
4658 }
80595d59 4659 }
96e93eab
HX
4660 return skb;
4661}
76620aaf 4662EXPORT_SYMBOL(napi_get_frags);
96e93eab 4663
a50e233c
ED
4664static gro_result_t napi_frags_finish(struct napi_struct *napi,
4665 struct sk_buff *skb,
4666 gro_result_t ret)
96e93eab 4667{
5d0d9be8
HX
4668 switch (ret) {
4669 case GRO_NORMAL:
a50e233c
ED
4670 case GRO_HELD:
4671 __skb_push(skb, ETH_HLEN);
4672 skb->protocol = eth_type_trans(skb, skb->dev);
4673 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4674 ret = GRO_DROP;
86911732 4675 break;
5d38a079 4676
5d0d9be8 4677 case GRO_DROP:
5d0d9be8
HX
4678 case GRO_MERGED_FREE:
4679 napi_reuse_skb(napi, skb);
4680 break;
5b252f0c
BH
4681
4682 case GRO_MERGED:
4683 break;
5d0d9be8 4684 }
5d38a079 4685
c7c4b3b6 4686 return ret;
5d38a079 4687}
5d0d9be8 4688
a50e233c
ED
4689/* Upper GRO stack assumes network header starts at gro_offset=0
4690 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4691 * We copy ethernet header into skb->data to have a common layout.
4692 */
4adb9c4a 4693static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4694{
4695 struct sk_buff *skb = napi->skb;
a50e233c
ED
4696 const struct ethhdr *eth;
4697 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4698
4699 napi->skb = NULL;
4700
a50e233c
ED
4701 skb_reset_mac_header(skb);
4702 skb_gro_reset_offset(skb);
4703
4704 eth = skb_gro_header_fast(skb, 0);
4705 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4706 eth = skb_gro_header_slow(skb, hlen, 0);
4707 if (unlikely(!eth)) {
4da46ceb
AC
4708 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4709 __func__, napi->dev->name);
a50e233c
ED
4710 napi_reuse_skb(napi, skb);
4711 return NULL;
4712 }
4713 } else {
4714 gro_pull_from_frag0(skb, hlen);
4715 NAPI_GRO_CB(skb)->frag0 += hlen;
4716 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4717 }
a50e233c
ED
4718 __skb_pull(skb, hlen);
4719
4720 /*
4721 * This works because the only protocols we care about don't require
4722 * special handling.
4723 * We'll fix it up properly in napi_frags_finish()
4724 */
4725 skb->protocol = eth->h_proto;
76620aaf 4726
76620aaf
HX
4727 return skb;
4728}
76620aaf 4729
c7c4b3b6 4730gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4731{
76620aaf 4732 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4733
4734 if (!skb)
c7c4b3b6 4735 return GRO_DROP;
5d0d9be8 4736
ae78dbfa
BH
4737 trace_napi_gro_frags_entry(skb);
4738
89c5fa33 4739 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4740}
5d38a079
HX
4741EXPORT_SYMBOL(napi_gro_frags);
4742
573e8fca
TH
4743/* Compute the checksum from gro_offset and return the folded value
4744 * after adding in any pseudo checksum.
4745 */
4746__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4747{
4748 __wsum wsum;
4749 __sum16 sum;
4750
4751 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4752
4753 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4754 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4755 if (likely(!sum)) {
4756 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4757 !skb->csum_complete_sw)
4758 netdev_rx_csum_fault(skb->dev);
4759 }
4760
4761 NAPI_GRO_CB(skb)->csum = wsum;
4762 NAPI_GRO_CB(skb)->csum_valid = 1;
4763
4764 return sum;
4765}
4766EXPORT_SYMBOL(__skb_gro_checksum_complete);
4767
e326bed2 4768/*
855abcf0 4769 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4770 * Note: called with local irq disabled, but exits with local irq enabled.
4771 */
4772static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4773{
4774#ifdef CONFIG_RPS
4775 struct softnet_data *remsd = sd->rps_ipi_list;
4776
4777 if (remsd) {
4778 sd->rps_ipi_list = NULL;
4779
4780 local_irq_enable();
4781
4782 /* Send pending IPI's to kick RPS processing on remote cpus. */
4783 while (remsd) {
4784 struct softnet_data *next = remsd->rps_ipi_next;
4785
4786 if (cpu_online(remsd->cpu))
c46fff2a 4787 smp_call_function_single_async(remsd->cpu,
fce8ad15 4788 &remsd->csd);
e326bed2
ED
4789 remsd = next;
4790 }
4791 } else
4792#endif
4793 local_irq_enable();
4794}
4795
d75b1ade
ED
4796static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4797{
4798#ifdef CONFIG_RPS
4799 return sd->rps_ipi_list != NULL;
4800#else
4801 return false;
4802#endif
4803}
4804
bea3348e 4805static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4806{
4807 int work = 0;
eecfd7c4 4808 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4809
e326bed2
ED
4810 /* Check if we have pending ipi, its better to send them now,
4811 * not waiting net_rx_action() end.
4812 */
d75b1ade 4813 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4814 local_irq_disable();
4815 net_rps_action_and_irq_enable(sd);
4816 }
d75b1ade 4817
bea3348e 4818 napi->weight = weight_p;
6e7676c1 4819 local_irq_disable();
11ef7a89 4820 while (1) {
1da177e4 4821 struct sk_buff *skb;
6e7676c1
CG
4822
4823 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4824 rcu_read_lock();
6e7676c1
CG
4825 local_irq_enable();
4826 __netif_receive_skb(skb);
2c17d27c 4827 rcu_read_unlock();
6e7676c1 4828 local_irq_disable();
76cc8b13
TH
4829 input_queue_head_incr(sd);
4830 if (++work >= quota) {
4831 local_irq_enable();
4832 return work;
4833 }
6e7676c1 4834 }
1da177e4 4835
e36fa2f7 4836 rps_lock(sd);
11ef7a89 4837 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4838 /*
4839 * Inline a custom version of __napi_complete().
4840 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4841 * and NAPI_STATE_SCHED is the only possible flag set
4842 * on backlog.
4843 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4844 * and we dont need an smp_mb() memory barrier.
4845 */
eecfd7c4 4846 napi->state = 0;
11ef7a89 4847 rps_unlock(sd);
eecfd7c4 4848
11ef7a89 4849 break;
bea3348e 4850 }
11ef7a89
TH
4851
4852 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4853 &sd->process_queue);
e36fa2f7 4854 rps_unlock(sd);
6e7676c1
CG
4855 }
4856 local_irq_enable();
1da177e4 4857
bea3348e
SH
4858 return work;
4859}
1da177e4 4860
bea3348e
SH
4861/**
4862 * __napi_schedule - schedule for receive
c4ea43c5 4863 * @n: entry to schedule
bea3348e 4864 *
bc9ad166
ED
4865 * The entry's receive function will be scheduled to run.
4866 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4867 */
b5606c2d 4868void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4869{
4870 unsigned long flags;
1da177e4 4871
bea3348e 4872 local_irq_save(flags);
903ceff7 4873 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4874 local_irq_restore(flags);
1da177e4 4875}
bea3348e
SH
4876EXPORT_SYMBOL(__napi_schedule);
4877
bc9ad166
ED
4878/**
4879 * __napi_schedule_irqoff - schedule for receive
4880 * @n: entry to schedule
4881 *
4882 * Variant of __napi_schedule() assuming hard irqs are masked
4883 */
4884void __napi_schedule_irqoff(struct napi_struct *n)
4885{
4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887}
4888EXPORT_SYMBOL(__napi_schedule_irqoff);
4889
d565b0a1
HX
4890void __napi_complete(struct napi_struct *n)
4891{
4892 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4893
d75b1ade 4894 list_del_init(&n->poll_list);
4e857c58 4895 smp_mb__before_atomic();
d565b0a1
HX
4896 clear_bit(NAPI_STATE_SCHED, &n->state);
4897}
4898EXPORT_SYMBOL(__napi_complete);
4899
3b47d303 4900void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4901{
4902 unsigned long flags;
4903
4904 /*
4905 * don't let napi dequeue from the cpu poll list
4906 * just in case its running on a different cpu
4907 */
4908 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4909 return;
4910
3b47d303
ED
4911 if (n->gro_list) {
4912 unsigned long timeout = 0;
d75b1ade 4913
3b47d303
ED
4914 if (work_done)
4915 timeout = n->dev->gro_flush_timeout;
4916
4917 if (timeout)
4918 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4919 HRTIMER_MODE_REL_PINNED);
4920 else
4921 napi_gro_flush(n, false);
4922 }
d75b1ade
ED
4923 if (likely(list_empty(&n->poll_list))) {
4924 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4925 } else {
4926 /* If n->poll_list is not empty, we need to mask irqs */
4927 local_irq_save(flags);
4928 __napi_complete(n);
4929 local_irq_restore(flags);
4930 }
d565b0a1 4931}
3b47d303 4932EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4933
af12fa6e 4934/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4935static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4936{
4937 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4938 struct napi_struct *napi;
4939
4940 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4941 if (napi->napi_id == napi_id)
4942 return napi;
4943
4944 return NULL;
4945}
02d62e86
ED
4946
4947#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4948#define BUSY_POLL_BUDGET 8
02d62e86
ED
4949bool sk_busy_loop(struct sock *sk, int nonblock)
4950{
4951 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4952 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4953 struct napi_struct *napi;
4954 int rc = false;
4955
2a028ecb 4956 rcu_read_lock();
02d62e86
ED
4957
4958 napi = napi_by_id(sk->sk_napi_id);
4959 if (!napi)
4960 goto out;
4961
ce6aea93
ED
4962 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4963 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4964
4965 do {
ce6aea93 4966 rc = 0;
2a028ecb 4967 local_bh_disable();
ce6aea93
ED
4968 if (busy_poll) {
4969 rc = busy_poll(napi);
4970 } else if (napi_schedule_prep(napi)) {
4971 void *have = netpoll_poll_lock(napi);
4972
4973 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4974 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4975 trace_napi_poll(napi);
4976 if (rc == BUSY_POLL_BUDGET) {
4977 napi_complete_done(napi, rc);
4978 napi_schedule(napi);
4979 }
4980 }
4981 netpoll_poll_unlock(have);
4982 }
2a028ecb 4983 if (rc > 0)
02a1d6e7
ED
4984 __NET_ADD_STATS(sock_net(sk),
4985 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4986 local_bh_enable();
02d62e86
ED
4987
4988 if (rc == LL_FLUSH_FAILED)
4989 break; /* permanent failure */
4990
02d62e86 4991 cpu_relax();
02d62e86
ED
4992 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4993 !need_resched() && !busy_loop_timeout(end_time));
4994
4995 rc = !skb_queue_empty(&sk->sk_receive_queue);
4996out:
2a028ecb 4997 rcu_read_unlock();
02d62e86
ED
4998 return rc;
4999}
5000EXPORT_SYMBOL(sk_busy_loop);
5001
5002#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5003
5004void napi_hash_add(struct napi_struct *napi)
5005{
d64b5e85
ED
5006 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5007 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5008 return;
af12fa6e 5009
52bd2d62 5010 spin_lock(&napi_hash_lock);
af12fa6e 5011
52bd2d62
ED
5012 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5013 do {
5014 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5015 napi_gen_id = NR_CPUS + 1;
5016 } while (napi_by_id(napi_gen_id));
5017 napi->napi_id = napi_gen_id;
af12fa6e 5018
52bd2d62
ED
5019 hlist_add_head_rcu(&napi->napi_hash_node,
5020 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5021
52bd2d62 5022 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5023}
5024EXPORT_SYMBOL_GPL(napi_hash_add);
5025
5026/* Warning : caller is responsible to make sure rcu grace period
5027 * is respected before freeing memory containing @napi
5028 */
34cbe27e 5029bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5030{
34cbe27e
ED
5031 bool rcu_sync_needed = false;
5032
af12fa6e
ET
5033 spin_lock(&napi_hash_lock);
5034
34cbe27e
ED
5035 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5036 rcu_sync_needed = true;
af12fa6e 5037 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5038 }
af12fa6e 5039 spin_unlock(&napi_hash_lock);
34cbe27e 5040 return rcu_sync_needed;
af12fa6e
ET
5041}
5042EXPORT_SYMBOL_GPL(napi_hash_del);
5043
3b47d303
ED
5044static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5045{
5046 struct napi_struct *napi;
5047
5048 napi = container_of(timer, struct napi_struct, timer);
5049 if (napi->gro_list)
5050 napi_schedule(napi);
5051
5052 return HRTIMER_NORESTART;
5053}
5054
d565b0a1
HX
5055void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5056 int (*poll)(struct napi_struct *, int), int weight)
5057{
5058 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5059 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5060 napi->timer.function = napi_watchdog;
4ae5544f 5061 napi->gro_count = 0;
d565b0a1 5062 napi->gro_list = NULL;
5d38a079 5063 napi->skb = NULL;
d565b0a1 5064 napi->poll = poll;
82dc3c63
ED
5065 if (weight > NAPI_POLL_WEIGHT)
5066 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5067 weight, dev->name);
d565b0a1
HX
5068 napi->weight = weight;
5069 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5070 napi->dev = dev;
5d38a079 5071#ifdef CONFIG_NETPOLL
d565b0a1
HX
5072 spin_lock_init(&napi->poll_lock);
5073 napi->poll_owner = -1;
5074#endif
5075 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5076 napi_hash_add(napi);
d565b0a1
HX
5077}
5078EXPORT_SYMBOL(netif_napi_add);
5079
3b47d303
ED
5080void napi_disable(struct napi_struct *n)
5081{
5082 might_sleep();
5083 set_bit(NAPI_STATE_DISABLE, &n->state);
5084
5085 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5086 msleep(1);
2d8bff12
NH
5087 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5088 msleep(1);
3b47d303
ED
5089
5090 hrtimer_cancel(&n->timer);
5091
5092 clear_bit(NAPI_STATE_DISABLE, &n->state);
5093}
5094EXPORT_SYMBOL(napi_disable);
5095
93d05d4a 5096/* Must be called in process context */
d565b0a1
HX
5097void netif_napi_del(struct napi_struct *napi)
5098{
93d05d4a
ED
5099 might_sleep();
5100 if (napi_hash_del(napi))
5101 synchronize_net();
d7b06636 5102 list_del_init(&napi->dev_list);
76620aaf 5103 napi_free_frags(napi);
d565b0a1 5104
289dccbe 5105 kfree_skb_list(napi->gro_list);
d565b0a1 5106 napi->gro_list = NULL;
4ae5544f 5107 napi->gro_count = 0;
d565b0a1
HX
5108}
5109EXPORT_SYMBOL(netif_napi_del);
5110
726ce70e
HX
5111static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5112{
5113 void *have;
5114 int work, weight;
5115
5116 list_del_init(&n->poll_list);
5117
5118 have = netpoll_poll_lock(n);
5119
5120 weight = n->weight;
5121
5122 /* This NAPI_STATE_SCHED test is for avoiding a race
5123 * with netpoll's poll_napi(). Only the entity which
5124 * obtains the lock and sees NAPI_STATE_SCHED set will
5125 * actually make the ->poll() call. Therefore we avoid
5126 * accidentally calling ->poll() when NAPI is not scheduled.
5127 */
5128 work = 0;
5129 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5130 work = n->poll(n, weight);
5131 trace_napi_poll(n);
5132 }
5133
5134 WARN_ON_ONCE(work > weight);
5135
5136 if (likely(work < weight))
5137 goto out_unlock;
5138
5139 /* Drivers must not modify the NAPI state if they
5140 * consume the entire weight. In such cases this code
5141 * still "owns" the NAPI instance and therefore can
5142 * move the instance around on the list at-will.
5143 */
5144 if (unlikely(napi_disable_pending(n))) {
5145 napi_complete(n);
5146 goto out_unlock;
5147 }
5148
5149 if (n->gro_list) {
5150 /* flush too old packets
5151 * If HZ < 1000, flush all packets.
5152 */
5153 napi_gro_flush(n, HZ >= 1000);
5154 }
5155
001ce546
HX
5156 /* Some drivers may have called napi_schedule
5157 * prior to exhausting their budget.
5158 */
5159 if (unlikely(!list_empty(&n->poll_list))) {
5160 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5161 n->dev ? n->dev->name : "backlog");
5162 goto out_unlock;
5163 }
5164
726ce70e
HX
5165 list_add_tail(&n->poll_list, repoll);
5166
5167out_unlock:
5168 netpoll_poll_unlock(have);
5169
5170 return work;
5171}
5172
1da177e4
LT
5173static void net_rx_action(struct softirq_action *h)
5174{
903ceff7 5175 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5176 unsigned long time_limit = jiffies + 2;
51b0bded 5177 int budget = netdev_budget;
d75b1ade
ED
5178 LIST_HEAD(list);
5179 LIST_HEAD(repoll);
53fb95d3 5180
1da177e4 5181 local_irq_disable();
d75b1ade
ED
5182 list_splice_init(&sd->poll_list, &list);
5183 local_irq_enable();
1da177e4 5184
ceb8d5bf 5185 for (;;) {
bea3348e 5186 struct napi_struct *n;
1da177e4 5187
ceb8d5bf
HX
5188 if (list_empty(&list)) {
5189 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5190 return;
5191 break;
5192 }
5193
6bd373eb
HX
5194 n = list_first_entry(&list, struct napi_struct, poll_list);
5195 budget -= napi_poll(n, &repoll);
5196
d75b1ade 5197 /* If softirq window is exhausted then punt.
24f8b238
SH
5198 * Allow this to run for 2 jiffies since which will allow
5199 * an average latency of 1.5/HZ.
bea3348e 5200 */
ceb8d5bf
HX
5201 if (unlikely(budget <= 0 ||
5202 time_after_eq(jiffies, time_limit))) {
5203 sd->time_squeeze++;
5204 break;
5205 }
1da177e4 5206 }
d75b1ade 5207
795bb1c0 5208 __kfree_skb_flush();
d75b1ade
ED
5209 local_irq_disable();
5210
5211 list_splice_tail_init(&sd->poll_list, &list);
5212 list_splice_tail(&repoll, &list);
5213 list_splice(&list, &sd->poll_list);
5214 if (!list_empty(&sd->poll_list))
5215 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5216
e326bed2 5217 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5218}
5219
aa9d8560 5220struct netdev_adjacent {
9ff162a8 5221 struct net_device *dev;
5d261913
VF
5222
5223 /* upper master flag, there can only be one master device per list */
9ff162a8 5224 bool master;
5d261913 5225
5d261913
VF
5226 /* counter for the number of times this device was added to us */
5227 u16 ref_nr;
5228
402dae96
VF
5229 /* private field for the users */
5230 void *private;
5231
9ff162a8
JP
5232 struct list_head list;
5233 struct rcu_head rcu;
9ff162a8
JP
5234};
5235
6ea29da1 5236static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5237 struct list_head *adj_list)
9ff162a8 5238{
5d261913 5239 struct netdev_adjacent *adj;
5d261913 5240
2f268f12 5241 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5242 if (adj->dev == adj_dev)
5243 return adj;
9ff162a8
JP
5244 }
5245 return NULL;
5246}
5247
5248/**
5249 * netdev_has_upper_dev - Check if device is linked to an upper device
5250 * @dev: device
5251 * @upper_dev: upper device to check
5252 *
5253 * Find out if a device is linked to specified upper device and return true
5254 * in case it is. Note that this checks only immediate upper device,
5255 * not through a complete stack of devices. The caller must hold the RTNL lock.
5256 */
5257bool netdev_has_upper_dev(struct net_device *dev,
5258 struct net_device *upper_dev)
5259{
5260 ASSERT_RTNL();
5261
6ea29da1 5262 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5263}
5264EXPORT_SYMBOL(netdev_has_upper_dev);
5265
5266/**
5267 * netdev_has_any_upper_dev - Check if device is linked to some device
5268 * @dev: device
5269 *
5270 * Find out if a device is linked to an upper device and return true in case
5271 * it is. The caller must hold the RTNL lock.
5272 */
1d143d9f 5273static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5274{
5275 ASSERT_RTNL();
5276
2f268f12 5277 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5278}
9ff162a8
JP
5279
5280/**
5281 * netdev_master_upper_dev_get - Get master upper device
5282 * @dev: device
5283 *
5284 * Find a master upper device and return pointer to it or NULL in case
5285 * it's not there. The caller must hold the RTNL lock.
5286 */
5287struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5288{
aa9d8560 5289 struct netdev_adjacent *upper;
9ff162a8
JP
5290
5291 ASSERT_RTNL();
5292
2f268f12 5293 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5294 return NULL;
5295
2f268f12 5296 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5297 struct netdev_adjacent, list);
9ff162a8
JP
5298 if (likely(upper->master))
5299 return upper->dev;
5300 return NULL;
5301}
5302EXPORT_SYMBOL(netdev_master_upper_dev_get);
5303
b6ccba4c
VF
5304void *netdev_adjacent_get_private(struct list_head *adj_list)
5305{
5306 struct netdev_adjacent *adj;
5307
5308 adj = list_entry(adj_list, struct netdev_adjacent, list);
5309
5310 return adj->private;
5311}
5312EXPORT_SYMBOL(netdev_adjacent_get_private);
5313
44a40855
VY
5314/**
5315 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5316 * @dev: device
5317 * @iter: list_head ** of the current position
5318 *
5319 * Gets the next device from the dev's upper list, starting from iter
5320 * position. The caller must hold RCU read lock.
5321 */
5322struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5323 struct list_head **iter)
5324{
5325 struct netdev_adjacent *upper;
5326
5327 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5328
5329 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5330
5331 if (&upper->list == &dev->adj_list.upper)
5332 return NULL;
5333
5334 *iter = &upper->list;
5335
5336 return upper->dev;
5337}
5338EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5339
31088a11
VF
5340/**
5341 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5342 * @dev: device
5343 * @iter: list_head ** of the current position
5344 *
5345 * Gets the next device from the dev's upper list, starting from iter
5346 * position. The caller must hold RCU read lock.
5347 */
2f268f12
VF
5348struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5349 struct list_head **iter)
48311f46
VF
5350{
5351 struct netdev_adjacent *upper;
5352
85328240 5353 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5354
5355 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5356
2f268f12 5357 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5358 return NULL;
5359
5360 *iter = &upper->list;
5361
5362 return upper->dev;
5363}
2f268f12 5364EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5365
31088a11
VF
5366/**
5367 * netdev_lower_get_next_private - Get the next ->private from the
5368 * lower neighbour list
5369 * @dev: device
5370 * @iter: list_head ** of the current position
5371 *
5372 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5373 * list, starting from iter position. The caller must hold either hold the
5374 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5375 * list will remain unchanged.
31088a11
VF
5376 */
5377void *netdev_lower_get_next_private(struct net_device *dev,
5378 struct list_head **iter)
5379{
5380 struct netdev_adjacent *lower;
5381
5382 lower = list_entry(*iter, struct netdev_adjacent, list);
5383
5384 if (&lower->list == &dev->adj_list.lower)
5385 return NULL;
5386
6859e7df 5387 *iter = lower->list.next;
31088a11
VF
5388
5389 return lower->private;
5390}
5391EXPORT_SYMBOL(netdev_lower_get_next_private);
5392
5393/**
5394 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5395 * lower neighbour list, RCU
5396 * variant
5397 * @dev: device
5398 * @iter: list_head ** of the current position
5399 *
5400 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401 * list, starting from iter position. The caller must hold RCU read lock.
5402 */
5403void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5404 struct list_head **iter)
5405{
5406 struct netdev_adjacent *lower;
5407
5408 WARN_ON_ONCE(!rcu_read_lock_held());
5409
5410 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5411
5412 if (&lower->list == &dev->adj_list.lower)
5413 return NULL;
5414
6859e7df 5415 *iter = &lower->list;
31088a11
VF
5416
5417 return lower->private;
5418}
5419EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5420
4085ebe8
VY
5421/**
5422 * netdev_lower_get_next - Get the next device from the lower neighbour
5423 * list
5424 * @dev: device
5425 * @iter: list_head ** of the current position
5426 *
5427 * Gets the next netdev_adjacent from the dev's lower neighbour
5428 * list, starting from iter position. The caller must hold RTNL lock or
5429 * its own locking that guarantees that the neighbour lower
b469139e 5430 * list will remain unchanged.
4085ebe8
VY
5431 */
5432void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5433{
5434 struct netdev_adjacent *lower;
5435
cfdd28be 5436 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5437
5438 if (&lower->list == &dev->adj_list.lower)
5439 return NULL;
5440
cfdd28be 5441 *iter = lower->list.next;
4085ebe8
VY
5442
5443 return lower->dev;
5444}
5445EXPORT_SYMBOL(netdev_lower_get_next);
5446
e001bfad 5447/**
5448 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5449 * lower neighbour list, RCU
5450 * variant
5451 * @dev: device
5452 *
5453 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5454 * list. The caller must hold RCU read lock.
5455 */
5456void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5457{
5458 struct netdev_adjacent *lower;
5459
5460 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5461 struct netdev_adjacent, list);
5462 if (lower)
5463 return lower->private;
5464 return NULL;
5465}
5466EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5467
9ff162a8
JP
5468/**
5469 * netdev_master_upper_dev_get_rcu - Get master upper device
5470 * @dev: device
5471 *
5472 * Find a master upper device and return pointer to it or NULL in case
5473 * it's not there. The caller must hold the RCU read lock.
5474 */
5475struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5476{
aa9d8560 5477 struct netdev_adjacent *upper;
9ff162a8 5478
2f268f12 5479 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5480 struct netdev_adjacent, list);
9ff162a8
JP
5481 if (upper && likely(upper->master))
5482 return upper->dev;
5483 return NULL;
5484}
5485EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5486
0a59f3a9 5487static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5488 struct net_device *adj_dev,
5489 struct list_head *dev_list)
5490{
5491 char linkname[IFNAMSIZ+7];
5492 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5493 "upper_%s" : "lower_%s", adj_dev->name);
5494 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5495 linkname);
5496}
0a59f3a9 5497static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5498 char *name,
5499 struct list_head *dev_list)
5500{
5501 char linkname[IFNAMSIZ+7];
5502 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5503 "upper_%s" : "lower_%s", name);
5504 sysfs_remove_link(&(dev->dev.kobj), linkname);
5505}
5506
7ce64c79
AF
5507static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5508 struct net_device *adj_dev,
5509 struct list_head *dev_list)
5510{
5511 return (dev_list == &dev->adj_list.upper ||
5512 dev_list == &dev->adj_list.lower) &&
5513 net_eq(dev_net(dev), dev_net(adj_dev));
5514}
3ee32707 5515
5d261913
VF
5516static int __netdev_adjacent_dev_insert(struct net_device *dev,
5517 struct net_device *adj_dev,
7863c054 5518 struct list_head *dev_list,
402dae96 5519 void *private, bool master)
5d261913
VF
5520{
5521 struct netdev_adjacent *adj;
842d67a7 5522 int ret;
5d261913 5523
6ea29da1 5524 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5525
5526 if (adj) {
5d261913
VF
5527 adj->ref_nr++;
5528 return 0;
5529 }
5530
5531 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5532 if (!adj)
5533 return -ENOMEM;
5534
5535 adj->dev = adj_dev;
5536 adj->master = master;
5d261913 5537 adj->ref_nr = 1;
402dae96 5538 adj->private = private;
5d261913 5539 dev_hold(adj_dev);
2f268f12
VF
5540
5541 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5542 adj_dev->name, dev->name, adj_dev->name);
5d261913 5543
7ce64c79 5544 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5545 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5546 if (ret)
5547 goto free_adj;
5548 }
5549
7863c054 5550 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5551 if (master) {
5552 ret = sysfs_create_link(&(dev->dev.kobj),
5553 &(adj_dev->dev.kobj), "master");
5554 if (ret)
5831d66e 5555 goto remove_symlinks;
842d67a7 5556
7863c054 5557 list_add_rcu(&adj->list, dev_list);
842d67a7 5558 } else {
7863c054 5559 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5560 }
5d261913
VF
5561
5562 return 0;
842d67a7 5563
5831d66e 5564remove_symlinks:
7ce64c79 5565 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5566 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5567free_adj:
5568 kfree(adj);
974daef7 5569 dev_put(adj_dev);
842d67a7
VF
5570
5571 return ret;
5d261913
VF
5572}
5573
1d143d9f 5574static void __netdev_adjacent_dev_remove(struct net_device *dev,
5575 struct net_device *adj_dev,
5576 struct list_head *dev_list)
5d261913
VF
5577{
5578 struct netdev_adjacent *adj;
5579
6ea29da1 5580 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5581
2f268f12
VF
5582 if (!adj) {
5583 pr_err("tried to remove device %s from %s\n",
5584 dev->name, adj_dev->name);
5d261913 5585 BUG();
2f268f12 5586 }
5d261913
VF
5587
5588 if (adj->ref_nr > 1) {
2f268f12
VF
5589 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5590 adj->ref_nr-1);
5d261913
VF
5591 adj->ref_nr--;
5592 return;
5593 }
5594
842d67a7
VF
5595 if (adj->master)
5596 sysfs_remove_link(&(dev->dev.kobj), "master");
5597
7ce64c79 5598 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5599 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5600
5d261913 5601 list_del_rcu(&adj->list);
2f268f12
VF
5602 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5603 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5604 dev_put(adj_dev);
5605 kfree_rcu(adj, rcu);
5606}
5607
1d143d9f 5608static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5609 struct net_device *upper_dev,
5610 struct list_head *up_list,
5611 struct list_head *down_list,
5612 void *private, bool master)
5d261913
VF
5613{
5614 int ret;
5615
402dae96
VF
5616 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5617 master);
5d261913
VF
5618 if (ret)
5619 return ret;
5620
402dae96
VF
5621 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5622 false);
5d261913 5623 if (ret) {
2f268f12 5624 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5625 return ret;
5626 }
5627
5628 return 0;
5629}
5630
1d143d9f 5631static int __netdev_adjacent_dev_link(struct net_device *dev,
5632 struct net_device *upper_dev)
5d261913 5633{
2f268f12
VF
5634 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5635 &dev->all_adj_list.upper,
5636 &upper_dev->all_adj_list.lower,
402dae96 5637 NULL, false);
5d261913
VF
5638}
5639
1d143d9f 5640static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5641 struct net_device *upper_dev,
5642 struct list_head *up_list,
5643 struct list_head *down_list)
5d261913 5644{
2f268f12
VF
5645 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5646 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5647}
5648
1d143d9f 5649static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5650 struct net_device *upper_dev)
5d261913 5651{
2f268f12
VF
5652 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5653 &dev->all_adj_list.upper,
5654 &upper_dev->all_adj_list.lower);
5655}
5656
1d143d9f 5657static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5658 struct net_device *upper_dev,
5659 void *private, bool master)
2f268f12
VF
5660{
5661 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5662
5663 if (ret)
5664 return ret;
5665
5666 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5667 &dev->adj_list.upper,
5668 &upper_dev->adj_list.lower,
402dae96 5669 private, master);
2f268f12
VF
5670 if (ret) {
5671 __netdev_adjacent_dev_unlink(dev, upper_dev);
5672 return ret;
5673 }
5674
5675 return 0;
5d261913
VF
5676}
5677
1d143d9f 5678static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5679 struct net_device *upper_dev)
2f268f12
VF
5680{
5681 __netdev_adjacent_dev_unlink(dev, upper_dev);
5682 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5683 &dev->adj_list.upper,
5684 &upper_dev->adj_list.lower);
5685}
5d261913 5686
9ff162a8 5687static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5688 struct net_device *upper_dev, bool master,
29bf24af 5689 void *upper_priv, void *upper_info)
9ff162a8 5690{
0e4ead9d 5691 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5692 struct netdev_adjacent *i, *j, *to_i, *to_j;
5693 int ret = 0;
9ff162a8
JP
5694
5695 ASSERT_RTNL();
5696
5697 if (dev == upper_dev)
5698 return -EBUSY;
5699
5700 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5701 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5702 return -EBUSY;
5703
6ea29da1 5704 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5705 return -EEXIST;
5706
5707 if (master && netdev_master_upper_dev_get(dev))
5708 return -EBUSY;
5709
0e4ead9d
JP
5710 changeupper_info.upper_dev = upper_dev;
5711 changeupper_info.master = master;
5712 changeupper_info.linking = true;
29bf24af 5713 changeupper_info.upper_info = upper_info;
0e4ead9d 5714
573c7ba0
JP
5715 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5716 &changeupper_info.info);
5717 ret = notifier_to_errno(ret);
5718 if (ret)
5719 return ret;
5720
6dffb044 5721 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5722 master);
5d261913
VF
5723 if (ret)
5724 return ret;
9ff162a8 5725
5d261913 5726 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5727 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5728 * versa, and don't forget the devices itself. All of these
5729 * links are non-neighbours.
5730 */
2f268f12
VF
5731 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5732 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5733 pr_debug("Interlinking %s with %s, non-neighbour\n",
5734 i->dev->name, j->dev->name);
5d261913
VF
5735 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5736 if (ret)
5737 goto rollback_mesh;
5738 }
5739 }
5740
5741 /* add dev to every upper_dev's upper device */
2f268f12
VF
5742 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5743 pr_debug("linking %s's upper device %s with %s\n",
5744 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5745 ret = __netdev_adjacent_dev_link(dev, i->dev);
5746 if (ret)
5747 goto rollback_upper_mesh;
5748 }
5749
5750 /* add upper_dev to every dev's lower device */
2f268f12
VF
5751 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5752 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5753 i->dev->name, upper_dev->name);
5d261913
VF
5754 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5755 if (ret)
5756 goto rollback_lower_mesh;
5757 }
9ff162a8 5758
b03804e7
IS
5759 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5760 &changeupper_info.info);
5761 ret = notifier_to_errno(ret);
5762 if (ret)
5763 goto rollback_lower_mesh;
5764
9ff162a8 5765 return 0;
5d261913
VF
5766
5767rollback_lower_mesh:
5768 to_i = i;
2f268f12 5769 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5770 if (i == to_i)
5771 break;
5772 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5773 }
5774
5775 i = NULL;
5776
5777rollback_upper_mesh:
5778 to_i = i;
2f268f12 5779 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5780 if (i == to_i)
5781 break;
5782 __netdev_adjacent_dev_unlink(dev, i->dev);
5783 }
5784
5785 i = j = NULL;
5786
5787rollback_mesh:
5788 to_i = i;
5789 to_j = j;
2f268f12
VF
5790 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5791 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5792 if (i == to_i && j == to_j)
5793 break;
5794 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5795 }
5796 if (i == to_i)
5797 break;
5798 }
5799
2f268f12 5800 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5801
5802 return ret;
9ff162a8
JP
5803}
5804
5805/**
5806 * netdev_upper_dev_link - Add a link to the upper device
5807 * @dev: device
5808 * @upper_dev: new upper device
5809 *
5810 * Adds a link to device which is upper to this one. The caller must hold
5811 * the RTNL lock. On a failure a negative errno code is returned.
5812 * On success the reference counts are adjusted and the function
5813 * returns zero.
5814 */
5815int netdev_upper_dev_link(struct net_device *dev,
5816 struct net_device *upper_dev)
5817{
29bf24af 5818 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5819}
5820EXPORT_SYMBOL(netdev_upper_dev_link);
5821
5822/**
5823 * netdev_master_upper_dev_link - Add a master link to the upper device
5824 * @dev: device
5825 * @upper_dev: new upper device
6dffb044 5826 * @upper_priv: upper device private
29bf24af 5827 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5828 *
5829 * Adds a link to device which is upper to this one. In this case, only
5830 * one master upper device can be linked, although other non-master devices
5831 * might be linked as well. The caller must hold the RTNL lock.
5832 * On a failure a negative errno code is returned. On success the reference
5833 * counts are adjusted and the function returns zero.
5834 */
5835int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5836 struct net_device *upper_dev,
29bf24af 5837 void *upper_priv, void *upper_info)
9ff162a8 5838{
29bf24af
JP
5839 return __netdev_upper_dev_link(dev, upper_dev, true,
5840 upper_priv, upper_info);
9ff162a8
JP
5841}
5842EXPORT_SYMBOL(netdev_master_upper_dev_link);
5843
5844/**
5845 * netdev_upper_dev_unlink - Removes a link to upper device
5846 * @dev: device
5847 * @upper_dev: new upper device
5848 *
5849 * Removes a link to device which is upper to this one. The caller must hold
5850 * the RTNL lock.
5851 */
5852void netdev_upper_dev_unlink(struct net_device *dev,
5853 struct net_device *upper_dev)
5854{
0e4ead9d 5855 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5856 struct netdev_adjacent *i, *j;
9ff162a8
JP
5857 ASSERT_RTNL();
5858
0e4ead9d
JP
5859 changeupper_info.upper_dev = upper_dev;
5860 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5861 changeupper_info.linking = false;
5862
573c7ba0
JP
5863 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5864 &changeupper_info.info);
5865
2f268f12 5866 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5867
5868 /* Here is the tricky part. We must remove all dev's lower
5869 * devices from all upper_dev's upper devices and vice
5870 * versa, to maintain the graph relationship.
5871 */
2f268f12
VF
5872 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5873 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5874 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5875
5876 /* remove also the devices itself from lower/upper device
5877 * list
5878 */
2f268f12 5879 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5880 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5881
2f268f12 5882 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5883 __netdev_adjacent_dev_unlink(dev, i->dev);
5884
0e4ead9d
JP
5885 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5886 &changeupper_info.info);
9ff162a8
JP
5887}
5888EXPORT_SYMBOL(netdev_upper_dev_unlink);
5889
61bd3857
MS
5890/**
5891 * netdev_bonding_info_change - Dispatch event about slave change
5892 * @dev: device
4a26e453 5893 * @bonding_info: info to dispatch
61bd3857
MS
5894 *
5895 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5896 * The caller must hold the RTNL lock.
5897 */
5898void netdev_bonding_info_change(struct net_device *dev,
5899 struct netdev_bonding_info *bonding_info)
5900{
5901 struct netdev_notifier_bonding_info info;
5902
5903 memcpy(&info.bonding_info, bonding_info,
5904 sizeof(struct netdev_bonding_info));
5905 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5906 &info.info);
5907}
5908EXPORT_SYMBOL(netdev_bonding_info_change);
5909
2ce1ee17 5910static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5911{
5912 struct netdev_adjacent *iter;
5913
5914 struct net *net = dev_net(dev);
5915
5916 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5917 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5918 continue;
5919 netdev_adjacent_sysfs_add(iter->dev, dev,
5920 &iter->dev->adj_list.lower);
5921 netdev_adjacent_sysfs_add(dev, iter->dev,
5922 &dev->adj_list.upper);
5923 }
5924
5925 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5926 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5927 continue;
5928 netdev_adjacent_sysfs_add(iter->dev, dev,
5929 &iter->dev->adj_list.upper);
5930 netdev_adjacent_sysfs_add(dev, iter->dev,
5931 &dev->adj_list.lower);
5932 }
5933}
5934
2ce1ee17 5935static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5936{
5937 struct netdev_adjacent *iter;
5938
5939 struct net *net = dev_net(dev);
5940
5941 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5942 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5943 continue;
5944 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5945 &iter->dev->adj_list.lower);
5946 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5947 &dev->adj_list.upper);
5948 }
5949
5950 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5951 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5952 continue;
5953 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5954 &iter->dev->adj_list.upper);
5955 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5956 &dev->adj_list.lower);
5957 }
5958}
5959
5bb025fa 5960void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5961{
5bb025fa 5962 struct netdev_adjacent *iter;
402dae96 5963
4c75431a
AF
5964 struct net *net = dev_net(dev);
5965
5bb025fa 5966 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5967 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5968 continue;
5bb025fa
VF
5969 netdev_adjacent_sysfs_del(iter->dev, oldname,
5970 &iter->dev->adj_list.lower);
5971 netdev_adjacent_sysfs_add(iter->dev, dev,
5972 &iter->dev->adj_list.lower);
5973 }
402dae96 5974
5bb025fa 5975 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5976 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5977 continue;
5bb025fa
VF
5978 netdev_adjacent_sysfs_del(iter->dev, oldname,
5979 &iter->dev->adj_list.upper);
5980 netdev_adjacent_sysfs_add(iter->dev, dev,
5981 &iter->dev->adj_list.upper);
5982 }
402dae96 5983}
402dae96
VF
5984
5985void *netdev_lower_dev_get_private(struct net_device *dev,
5986 struct net_device *lower_dev)
5987{
5988 struct netdev_adjacent *lower;
5989
5990 if (!lower_dev)
5991 return NULL;
6ea29da1 5992 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5993 if (!lower)
5994 return NULL;
5995
5996 return lower->private;
5997}
5998EXPORT_SYMBOL(netdev_lower_dev_get_private);
5999
4085ebe8
VY
6000
6001int dev_get_nest_level(struct net_device *dev,
b618aaa9 6002 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6003{
6004 struct net_device *lower = NULL;
6005 struct list_head *iter;
6006 int max_nest = -1;
6007 int nest;
6008
6009 ASSERT_RTNL();
6010
6011 netdev_for_each_lower_dev(dev, lower, iter) {
6012 nest = dev_get_nest_level(lower, type_check);
6013 if (max_nest < nest)
6014 max_nest = nest;
6015 }
6016
6017 if (type_check(dev))
6018 max_nest++;
6019
6020 return max_nest;
6021}
6022EXPORT_SYMBOL(dev_get_nest_level);
6023
04d48266
JP
6024/**
6025 * netdev_lower_change - Dispatch event about lower device state change
6026 * @lower_dev: device
6027 * @lower_state_info: state to dispatch
6028 *
6029 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6030 * The caller must hold the RTNL lock.
6031 */
6032void netdev_lower_state_changed(struct net_device *lower_dev,
6033 void *lower_state_info)
6034{
6035 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6036
6037 ASSERT_RTNL();
6038 changelowerstate_info.lower_state_info = lower_state_info;
6039 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6040 &changelowerstate_info.info);
6041}
6042EXPORT_SYMBOL(netdev_lower_state_changed);
6043
b6c40d68
PM
6044static void dev_change_rx_flags(struct net_device *dev, int flags)
6045{
d314774c
SH
6046 const struct net_device_ops *ops = dev->netdev_ops;
6047
d2615bf4 6048 if (ops->ndo_change_rx_flags)
d314774c 6049 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6050}
6051
991fb3f7 6052static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6053{
b536db93 6054 unsigned int old_flags = dev->flags;
d04a48b0
EB
6055 kuid_t uid;
6056 kgid_t gid;
1da177e4 6057
24023451
PM
6058 ASSERT_RTNL();
6059
dad9b335
WC
6060 dev->flags |= IFF_PROMISC;
6061 dev->promiscuity += inc;
6062 if (dev->promiscuity == 0) {
6063 /*
6064 * Avoid overflow.
6065 * If inc causes overflow, untouch promisc and return error.
6066 */
6067 if (inc < 0)
6068 dev->flags &= ~IFF_PROMISC;
6069 else {
6070 dev->promiscuity -= inc;
7b6cd1ce
JP
6071 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6072 dev->name);
dad9b335
WC
6073 return -EOVERFLOW;
6074 }
6075 }
52609c0b 6076 if (dev->flags != old_flags) {
7b6cd1ce
JP
6077 pr_info("device %s %s promiscuous mode\n",
6078 dev->name,
6079 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6080 if (audit_enabled) {
6081 current_uid_gid(&uid, &gid);
7759db82
KHK
6082 audit_log(current->audit_context, GFP_ATOMIC,
6083 AUDIT_ANOM_PROMISCUOUS,
6084 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6085 dev->name, (dev->flags & IFF_PROMISC),
6086 (old_flags & IFF_PROMISC),
e1760bd5 6087 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6088 from_kuid(&init_user_ns, uid),
6089 from_kgid(&init_user_ns, gid),
7759db82 6090 audit_get_sessionid(current));
8192b0c4 6091 }
24023451 6092
b6c40d68 6093 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6094 }
991fb3f7
ND
6095 if (notify)
6096 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6097 return 0;
1da177e4
LT
6098}
6099
4417da66
PM
6100/**
6101 * dev_set_promiscuity - update promiscuity count on a device
6102 * @dev: device
6103 * @inc: modifier
6104 *
6105 * Add or remove promiscuity from a device. While the count in the device
6106 * remains above zero the interface remains promiscuous. Once it hits zero
6107 * the device reverts back to normal filtering operation. A negative inc
6108 * value is used to drop promiscuity on the device.
dad9b335 6109 * Return 0 if successful or a negative errno code on error.
4417da66 6110 */
dad9b335 6111int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6112{
b536db93 6113 unsigned int old_flags = dev->flags;
dad9b335 6114 int err;
4417da66 6115
991fb3f7 6116 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6117 if (err < 0)
dad9b335 6118 return err;
4417da66
PM
6119 if (dev->flags != old_flags)
6120 dev_set_rx_mode(dev);
dad9b335 6121 return err;
4417da66 6122}
d1b19dff 6123EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6124
991fb3f7 6125static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6126{
991fb3f7 6127 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6128
24023451
PM
6129 ASSERT_RTNL();
6130
1da177e4 6131 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6132 dev->allmulti += inc;
6133 if (dev->allmulti == 0) {
6134 /*
6135 * Avoid overflow.
6136 * If inc causes overflow, untouch allmulti and return error.
6137 */
6138 if (inc < 0)
6139 dev->flags &= ~IFF_ALLMULTI;
6140 else {
6141 dev->allmulti -= inc;
7b6cd1ce
JP
6142 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6143 dev->name);
dad9b335
WC
6144 return -EOVERFLOW;
6145 }
6146 }
24023451 6147 if (dev->flags ^ old_flags) {
b6c40d68 6148 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6149 dev_set_rx_mode(dev);
991fb3f7
ND
6150 if (notify)
6151 __dev_notify_flags(dev, old_flags,
6152 dev->gflags ^ old_gflags);
24023451 6153 }
dad9b335 6154 return 0;
4417da66 6155}
991fb3f7
ND
6156
6157/**
6158 * dev_set_allmulti - update allmulti count on a device
6159 * @dev: device
6160 * @inc: modifier
6161 *
6162 * Add or remove reception of all multicast frames to a device. While the
6163 * count in the device remains above zero the interface remains listening
6164 * to all interfaces. Once it hits zero the device reverts back to normal
6165 * filtering operation. A negative @inc value is used to drop the counter
6166 * when releasing a resource needing all multicasts.
6167 * Return 0 if successful or a negative errno code on error.
6168 */
6169
6170int dev_set_allmulti(struct net_device *dev, int inc)
6171{
6172 return __dev_set_allmulti(dev, inc, true);
6173}
d1b19dff 6174EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6175
6176/*
6177 * Upload unicast and multicast address lists to device and
6178 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6179 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6180 * are present.
6181 */
6182void __dev_set_rx_mode(struct net_device *dev)
6183{
d314774c
SH
6184 const struct net_device_ops *ops = dev->netdev_ops;
6185
4417da66
PM
6186 /* dev_open will call this function so the list will stay sane. */
6187 if (!(dev->flags&IFF_UP))
6188 return;
6189
6190 if (!netif_device_present(dev))
40b77c94 6191 return;
4417da66 6192
01789349 6193 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6194 /* Unicast addresses changes may only happen under the rtnl,
6195 * therefore calling __dev_set_promiscuity here is safe.
6196 */
32e7bfc4 6197 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6198 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6199 dev->uc_promisc = true;
32e7bfc4 6200 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6201 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6202 dev->uc_promisc = false;
4417da66 6203 }
4417da66 6204 }
01789349
JP
6205
6206 if (ops->ndo_set_rx_mode)
6207 ops->ndo_set_rx_mode(dev);
4417da66
PM
6208}
6209
6210void dev_set_rx_mode(struct net_device *dev)
6211{
b9e40857 6212 netif_addr_lock_bh(dev);
4417da66 6213 __dev_set_rx_mode(dev);
b9e40857 6214 netif_addr_unlock_bh(dev);
1da177e4
LT
6215}
6216
f0db275a
SH
6217/**
6218 * dev_get_flags - get flags reported to userspace
6219 * @dev: device
6220 *
6221 * Get the combination of flag bits exported through APIs to userspace.
6222 */
95c96174 6223unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6224{
95c96174 6225 unsigned int flags;
1da177e4
LT
6226
6227 flags = (dev->flags & ~(IFF_PROMISC |
6228 IFF_ALLMULTI |
b00055aa
SR
6229 IFF_RUNNING |
6230 IFF_LOWER_UP |
6231 IFF_DORMANT)) |
1da177e4
LT
6232 (dev->gflags & (IFF_PROMISC |
6233 IFF_ALLMULTI));
6234
b00055aa
SR
6235 if (netif_running(dev)) {
6236 if (netif_oper_up(dev))
6237 flags |= IFF_RUNNING;
6238 if (netif_carrier_ok(dev))
6239 flags |= IFF_LOWER_UP;
6240 if (netif_dormant(dev))
6241 flags |= IFF_DORMANT;
6242 }
1da177e4
LT
6243
6244 return flags;
6245}
d1b19dff 6246EXPORT_SYMBOL(dev_get_flags);
1da177e4 6247
bd380811 6248int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6249{
b536db93 6250 unsigned int old_flags = dev->flags;
bd380811 6251 int ret;
1da177e4 6252
24023451
PM
6253 ASSERT_RTNL();
6254
1da177e4
LT
6255 /*
6256 * Set the flags on our device.
6257 */
6258
6259 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6260 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6261 IFF_AUTOMEDIA)) |
6262 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6263 IFF_ALLMULTI));
6264
6265 /*
6266 * Load in the correct multicast list now the flags have changed.
6267 */
6268
b6c40d68
PM
6269 if ((old_flags ^ flags) & IFF_MULTICAST)
6270 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6271
4417da66 6272 dev_set_rx_mode(dev);
1da177e4
LT
6273
6274 /*
6275 * Have we downed the interface. We handle IFF_UP ourselves
6276 * according to user attempts to set it, rather than blindly
6277 * setting it.
6278 */
6279
6280 ret = 0;
d215d10f 6281 if ((old_flags ^ flags) & IFF_UP)
bd380811 6282 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6283
1da177e4 6284 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6285 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6286 unsigned int old_flags = dev->flags;
d1b19dff 6287
1da177e4 6288 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6289
6290 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6291 if (dev->flags != old_flags)
6292 dev_set_rx_mode(dev);
1da177e4
LT
6293 }
6294
6295 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6296 is important. Some (broken) drivers set IFF_PROMISC, when
6297 IFF_ALLMULTI is requested not asking us and not reporting.
6298 */
6299 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6300 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6301
1da177e4 6302 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6303 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6304 }
6305
bd380811
PM
6306 return ret;
6307}
6308
a528c219
ND
6309void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6310 unsigned int gchanges)
bd380811
PM
6311{
6312 unsigned int changes = dev->flags ^ old_flags;
6313
a528c219 6314 if (gchanges)
7f294054 6315 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6316
bd380811
PM
6317 if (changes & IFF_UP) {
6318 if (dev->flags & IFF_UP)
6319 call_netdevice_notifiers(NETDEV_UP, dev);
6320 else
6321 call_netdevice_notifiers(NETDEV_DOWN, dev);
6322 }
6323
6324 if (dev->flags & IFF_UP &&
be9efd36
JP
6325 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6326 struct netdev_notifier_change_info change_info;
6327
6328 change_info.flags_changed = changes;
6329 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6330 &change_info.info);
6331 }
bd380811
PM
6332}
6333
6334/**
6335 * dev_change_flags - change device settings
6336 * @dev: device
6337 * @flags: device state flags
6338 *
6339 * Change settings on device based state flags. The flags are
6340 * in the userspace exported format.
6341 */
b536db93 6342int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6343{
b536db93 6344 int ret;
991fb3f7 6345 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6346
6347 ret = __dev_change_flags(dev, flags);
6348 if (ret < 0)
6349 return ret;
6350
991fb3f7 6351 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6352 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6353 return ret;
6354}
d1b19dff 6355EXPORT_SYMBOL(dev_change_flags);
1da177e4 6356
2315dc91
VF
6357static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6358{
6359 const struct net_device_ops *ops = dev->netdev_ops;
6360
6361 if (ops->ndo_change_mtu)
6362 return ops->ndo_change_mtu(dev, new_mtu);
6363
6364 dev->mtu = new_mtu;
6365 return 0;
6366}
6367
f0db275a
SH
6368/**
6369 * dev_set_mtu - Change maximum transfer unit
6370 * @dev: device
6371 * @new_mtu: new transfer unit
6372 *
6373 * Change the maximum transfer size of the network device.
6374 */
1da177e4
LT
6375int dev_set_mtu(struct net_device *dev, int new_mtu)
6376{
2315dc91 6377 int err, orig_mtu;
1da177e4
LT
6378
6379 if (new_mtu == dev->mtu)
6380 return 0;
6381
6382 /* MTU must be positive. */
6383 if (new_mtu < 0)
6384 return -EINVAL;
6385
6386 if (!netif_device_present(dev))
6387 return -ENODEV;
6388
1d486bfb
VF
6389 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6390 err = notifier_to_errno(err);
6391 if (err)
6392 return err;
d314774c 6393
2315dc91
VF
6394 orig_mtu = dev->mtu;
6395 err = __dev_set_mtu(dev, new_mtu);
d314774c 6396
2315dc91
VF
6397 if (!err) {
6398 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6399 err = notifier_to_errno(err);
6400 if (err) {
6401 /* setting mtu back and notifying everyone again,
6402 * so that they have a chance to revert changes.
6403 */
6404 __dev_set_mtu(dev, orig_mtu);
6405 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6406 }
6407 }
1da177e4
LT
6408 return err;
6409}
d1b19dff 6410EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6411
cbda10fa
VD
6412/**
6413 * dev_set_group - Change group this device belongs to
6414 * @dev: device
6415 * @new_group: group this device should belong to
6416 */
6417void dev_set_group(struct net_device *dev, int new_group)
6418{
6419 dev->group = new_group;
6420}
6421EXPORT_SYMBOL(dev_set_group);
6422
f0db275a
SH
6423/**
6424 * dev_set_mac_address - Change Media Access Control Address
6425 * @dev: device
6426 * @sa: new address
6427 *
6428 * Change the hardware (MAC) address of the device
6429 */
1da177e4
LT
6430int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6431{
d314774c 6432 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6433 int err;
6434
d314774c 6435 if (!ops->ndo_set_mac_address)
1da177e4
LT
6436 return -EOPNOTSUPP;
6437 if (sa->sa_family != dev->type)
6438 return -EINVAL;
6439 if (!netif_device_present(dev))
6440 return -ENODEV;
d314774c 6441 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6442 if (err)
6443 return err;
fbdeca2d 6444 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6445 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6446 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6447 return 0;
1da177e4 6448}
d1b19dff 6449EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6450
4bf84c35
JP
6451/**
6452 * dev_change_carrier - Change device carrier
6453 * @dev: device
691b3b7e 6454 * @new_carrier: new value
4bf84c35
JP
6455 *
6456 * Change device carrier
6457 */
6458int dev_change_carrier(struct net_device *dev, bool new_carrier)
6459{
6460 const struct net_device_ops *ops = dev->netdev_ops;
6461
6462 if (!ops->ndo_change_carrier)
6463 return -EOPNOTSUPP;
6464 if (!netif_device_present(dev))
6465 return -ENODEV;
6466 return ops->ndo_change_carrier(dev, new_carrier);
6467}
6468EXPORT_SYMBOL(dev_change_carrier);
6469
66b52b0d
JP
6470/**
6471 * dev_get_phys_port_id - Get device physical port ID
6472 * @dev: device
6473 * @ppid: port ID
6474 *
6475 * Get device physical port ID
6476 */
6477int dev_get_phys_port_id(struct net_device *dev,
02637fce 6478 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6479{
6480 const struct net_device_ops *ops = dev->netdev_ops;
6481
6482 if (!ops->ndo_get_phys_port_id)
6483 return -EOPNOTSUPP;
6484 return ops->ndo_get_phys_port_id(dev, ppid);
6485}
6486EXPORT_SYMBOL(dev_get_phys_port_id);
6487
db24a904
DA
6488/**
6489 * dev_get_phys_port_name - Get device physical port name
6490 * @dev: device
6491 * @name: port name
ed49e650 6492 * @len: limit of bytes to copy to name
db24a904
DA
6493 *
6494 * Get device physical port name
6495 */
6496int dev_get_phys_port_name(struct net_device *dev,
6497 char *name, size_t len)
6498{
6499 const struct net_device_ops *ops = dev->netdev_ops;
6500
6501 if (!ops->ndo_get_phys_port_name)
6502 return -EOPNOTSUPP;
6503 return ops->ndo_get_phys_port_name(dev, name, len);
6504}
6505EXPORT_SYMBOL(dev_get_phys_port_name);
6506
d746d707
AK
6507/**
6508 * dev_change_proto_down - update protocol port state information
6509 * @dev: device
6510 * @proto_down: new value
6511 *
6512 * This info can be used by switch drivers to set the phys state of the
6513 * port.
6514 */
6515int dev_change_proto_down(struct net_device *dev, bool proto_down)
6516{
6517 const struct net_device_ops *ops = dev->netdev_ops;
6518
6519 if (!ops->ndo_change_proto_down)
6520 return -EOPNOTSUPP;
6521 if (!netif_device_present(dev))
6522 return -ENODEV;
6523 return ops->ndo_change_proto_down(dev, proto_down);
6524}
6525EXPORT_SYMBOL(dev_change_proto_down);
6526
1da177e4
LT
6527/**
6528 * dev_new_index - allocate an ifindex
c4ea43c5 6529 * @net: the applicable net namespace
1da177e4
LT
6530 *
6531 * Returns a suitable unique value for a new device interface
6532 * number. The caller must hold the rtnl semaphore or the
6533 * dev_base_lock to be sure it remains unique.
6534 */
881d966b 6535static int dev_new_index(struct net *net)
1da177e4 6536{
aa79e66e 6537 int ifindex = net->ifindex;
1da177e4
LT
6538 for (;;) {
6539 if (++ifindex <= 0)
6540 ifindex = 1;
881d966b 6541 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6542 return net->ifindex = ifindex;
1da177e4
LT
6543 }
6544}
6545
1da177e4 6546/* Delayed registration/unregisteration */
3b5b34fd 6547static LIST_HEAD(net_todo_list);
200b916f 6548DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6549
6f05f629 6550static void net_set_todo(struct net_device *dev)
1da177e4 6551{
1da177e4 6552 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6553 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6554}
6555
9b5e383c 6556static void rollback_registered_many(struct list_head *head)
93ee31f1 6557{
e93737b0 6558 struct net_device *dev, *tmp;
5cde2829 6559 LIST_HEAD(close_head);
9b5e383c 6560
93ee31f1
DL
6561 BUG_ON(dev_boot_phase);
6562 ASSERT_RTNL();
6563
e93737b0 6564 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6565 /* Some devices call without registering
e93737b0
KK
6566 * for initialization unwind. Remove those
6567 * devices and proceed with the remaining.
9b5e383c
ED
6568 */
6569 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6570 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6571 dev->name, dev);
93ee31f1 6572
9b5e383c 6573 WARN_ON(1);
e93737b0
KK
6574 list_del(&dev->unreg_list);
6575 continue;
9b5e383c 6576 }
449f4544 6577 dev->dismantle = true;
9b5e383c 6578 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6579 }
93ee31f1 6580
44345724 6581 /* If device is running, close it first. */
5cde2829
EB
6582 list_for_each_entry(dev, head, unreg_list)
6583 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6584 dev_close_many(&close_head, true);
93ee31f1 6585
44345724 6586 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6587 /* And unlink it from device chain. */
6588 unlist_netdevice(dev);
93ee31f1 6589
9b5e383c 6590 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6591 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6592 }
93ee31f1
DL
6593
6594 synchronize_net();
6595
9b5e383c 6596 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6597 struct sk_buff *skb = NULL;
6598
9b5e383c
ED
6599 /* Shutdown queueing discipline. */
6600 dev_shutdown(dev);
93ee31f1
DL
6601
6602
9b5e383c
ED
6603 /* Notify protocols, that we are about to destroy
6604 this device. They should clean all the things.
6605 */
6606 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6607
395eea6c
MB
6608 if (!dev->rtnl_link_ops ||
6609 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6610 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6611 GFP_KERNEL);
6612
9b5e383c
ED
6613 /*
6614 * Flush the unicast and multicast chains
6615 */
a748ee24 6616 dev_uc_flush(dev);
22bedad3 6617 dev_mc_flush(dev);
93ee31f1 6618
9b5e383c
ED
6619 if (dev->netdev_ops->ndo_uninit)
6620 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6621
395eea6c
MB
6622 if (skb)
6623 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6624
9ff162a8
JP
6625 /* Notifier chain MUST detach us all upper devices. */
6626 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6627
9b5e383c
ED
6628 /* Remove entries from kobject tree */
6629 netdev_unregister_kobject(dev);
024e9679
AD
6630#ifdef CONFIG_XPS
6631 /* Remove XPS queueing entries */
6632 netif_reset_xps_queues_gt(dev, 0);
6633#endif
9b5e383c 6634 }
93ee31f1 6635
850a545b 6636 synchronize_net();
395264d5 6637
a5ee1551 6638 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6639 dev_put(dev);
6640}
6641
6642static void rollback_registered(struct net_device *dev)
6643{
6644 LIST_HEAD(single);
6645
6646 list_add(&dev->unreg_list, &single);
6647 rollback_registered_many(&single);
ceaaec98 6648 list_del(&single);
93ee31f1
DL
6649}
6650
fd867d51
JW
6651static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6652 struct net_device *upper, netdev_features_t features)
6653{
6654 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6655 netdev_features_t feature;
5ba3f7d6 6656 int feature_bit;
fd867d51 6657
5ba3f7d6
JW
6658 for_each_netdev_feature(&upper_disables, feature_bit) {
6659 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6660 if (!(upper->wanted_features & feature)
6661 && (features & feature)) {
6662 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6663 &feature, upper->name);
6664 features &= ~feature;
6665 }
6666 }
6667
6668 return features;
6669}
6670
6671static void netdev_sync_lower_features(struct net_device *upper,
6672 struct net_device *lower, netdev_features_t features)
6673{
6674 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6675 netdev_features_t feature;
5ba3f7d6 6676 int feature_bit;
fd867d51 6677
5ba3f7d6
JW
6678 for_each_netdev_feature(&upper_disables, feature_bit) {
6679 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6680 if (!(features & feature) && (lower->features & feature)) {
6681 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6682 &feature, lower->name);
6683 lower->wanted_features &= ~feature;
6684 netdev_update_features(lower);
6685
6686 if (unlikely(lower->features & feature))
6687 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6688 &feature, lower->name);
6689 }
6690 }
6691}
6692
c8f44aff
MM
6693static netdev_features_t netdev_fix_features(struct net_device *dev,
6694 netdev_features_t features)
b63365a2 6695{
57422dc5
MM
6696 /* Fix illegal checksum combinations */
6697 if ((features & NETIF_F_HW_CSUM) &&
6698 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6699 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6700 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6701 }
6702
b63365a2 6703 /* TSO requires that SG is present as well. */
ea2d3688 6704 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6705 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6706 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6707 }
6708
ec5f0615
PS
6709 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6710 !(features & NETIF_F_IP_CSUM)) {
6711 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6712 features &= ~NETIF_F_TSO;
6713 features &= ~NETIF_F_TSO_ECN;
6714 }
6715
6716 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6717 !(features & NETIF_F_IPV6_CSUM)) {
6718 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6719 features &= ~NETIF_F_TSO6;
6720 }
6721
b1dc497b
AD
6722 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6723 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6724 features &= ~NETIF_F_TSO_MANGLEID;
6725
31d8b9e0
BH
6726 /* TSO ECN requires that TSO is present as well. */
6727 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6728 features &= ~NETIF_F_TSO_ECN;
6729
212b573f
MM
6730 /* Software GSO depends on SG. */
6731 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6732 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6733 features &= ~NETIF_F_GSO;
6734 }
6735
acd1130e 6736 /* UFO needs SG and checksumming */
b63365a2 6737 if (features & NETIF_F_UFO) {
79032644 6738 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6739 if (!(features & NETIF_F_HW_CSUM) &&
6740 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6741 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6742 netdev_dbg(dev,
acd1130e 6743 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6744 features &= ~NETIF_F_UFO;
6745 }
6746
6747 if (!(features & NETIF_F_SG)) {
6f404e44 6748 netdev_dbg(dev,
acd1130e 6749 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6750 features &= ~NETIF_F_UFO;
6751 }
6752 }
6753
802ab55a
AD
6754 /* GSO partial features require GSO partial be set */
6755 if ((features & dev->gso_partial_features) &&
6756 !(features & NETIF_F_GSO_PARTIAL)) {
6757 netdev_dbg(dev,
6758 "Dropping partially supported GSO features since no GSO partial.\n");
6759 features &= ~dev->gso_partial_features;
6760 }
6761
d0290214
JP
6762#ifdef CONFIG_NET_RX_BUSY_POLL
6763 if (dev->netdev_ops->ndo_busy_poll)
6764 features |= NETIF_F_BUSY_POLL;
6765 else
6766#endif
6767 features &= ~NETIF_F_BUSY_POLL;
6768
b63365a2
HX
6769 return features;
6770}
b63365a2 6771
6cb6a27c 6772int __netdev_update_features(struct net_device *dev)
5455c699 6773{
fd867d51 6774 struct net_device *upper, *lower;
c8f44aff 6775 netdev_features_t features;
fd867d51 6776 struct list_head *iter;
e7868a85 6777 int err = -1;
5455c699 6778
87267485
MM
6779 ASSERT_RTNL();
6780
5455c699
MM
6781 features = netdev_get_wanted_features(dev);
6782
6783 if (dev->netdev_ops->ndo_fix_features)
6784 features = dev->netdev_ops->ndo_fix_features(dev, features);
6785
6786 /* driver might be less strict about feature dependencies */
6787 features = netdev_fix_features(dev, features);
6788
fd867d51
JW
6789 /* some features can't be enabled if they're off an an upper device */
6790 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6791 features = netdev_sync_upper_features(dev, upper, features);
6792
5455c699 6793 if (dev->features == features)
e7868a85 6794 goto sync_lower;
5455c699 6795
c8f44aff
MM
6796 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6797 &dev->features, &features);
5455c699
MM
6798
6799 if (dev->netdev_ops->ndo_set_features)
6800 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6801 else
6802 err = 0;
5455c699 6803
6cb6a27c 6804 if (unlikely(err < 0)) {
5455c699 6805 netdev_err(dev,
c8f44aff
MM
6806 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6807 err, &features, &dev->features);
17b85d29
NA
6808 /* return non-0 since some features might have changed and
6809 * it's better to fire a spurious notification than miss it
6810 */
6811 return -1;
6cb6a27c
MM
6812 }
6813
e7868a85 6814sync_lower:
fd867d51
JW
6815 /* some features must be disabled on lower devices when disabled
6816 * on an upper device (think: bonding master or bridge)
6817 */
6818 netdev_for_each_lower_dev(dev, lower, iter)
6819 netdev_sync_lower_features(dev, lower, features);
6820
6cb6a27c
MM
6821 if (!err)
6822 dev->features = features;
6823
e7868a85 6824 return err < 0 ? 0 : 1;
6cb6a27c
MM
6825}
6826
afe12cc8
MM
6827/**
6828 * netdev_update_features - recalculate device features
6829 * @dev: the device to check
6830 *
6831 * Recalculate dev->features set and send notifications if it
6832 * has changed. Should be called after driver or hardware dependent
6833 * conditions might have changed that influence the features.
6834 */
6cb6a27c
MM
6835void netdev_update_features(struct net_device *dev)
6836{
6837 if (__netdev_update_features(dev))
6838 netdev_features_change(dev);
5455c699
MM
6839}
6840EXPORT_SYMBOL(netdev_update_features);
6841
afe12cc8
MM
6842/**
6843 * netdev_change_features - recalculate device features
6844 * @dev: the device to check
6845 *
6846 * Recalculate dev->features set and send notifications even
6847 * if they have not changed. Should be called instead of
6848 * netdev_update_features() if also dev->vlan_features might
6849 * have changed to allow the changes to be propagated to stacked
6850 * VLAN devices.
6851 */
6852void netdev_change_features(struct net_device *dev)
6853{
6854 __netdev_update_features(dev);
6855 netdev_features_change(dev);
6856}
6857EXPORT_SYMBOL(netdev_change_features);
6858
fc4a7489
PM
6859/**
6860 * netif_stacked_transfer_operstate - transfer operstate
6861 * @rootdev: the root or lower level device to transfer state from
6862 * @dev: the device to transfer operstate to
6863 *
6864 * Transfer operational state from root to device. This is normally
6865 * called when a stacking relationship exists between the root
6866 * device and the device(a leaf device).
6867 */
6868void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6869 struct net_device *dev)
6870{
6871 if (rootdev->operstate == IF_OPER_DORMANT)
6872 netif_dormant_on(dev);
6873 else
6874 netif_dormant_off(dev);
6875
6876 if (netif_carrier_ok(rootdev)) {
6877 if (!netif_carrier_ok(dev))
6878 netif_carrier_on(dev);
6879 } else {
6880 if (netif_carrier_ok(dev))
6881 netif_carrier_off(dev);
6882 }
6883}
6884EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6885
a953be53 6886#ifdef CONFIG_SYSFS
1b4bf461
ED
6887static int netif_alloc_rx_queues(struct net_device *dev)
6888{
1b4bf461 6889 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6890 struct netdev_rx_queue *rx;
10595902 6891 size_t sz = count * sizeof(*rx);
1b4bf461 6892
bd25fa7b 6893 BUG_ON(count < 1);
1b4bf461 6894
10595902
PG
6895 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6896 if (!rx) {
6897 rx = vzalloc(sz);
6898 if (!rx)
6899 return -ENOMEM;
6900 }
bd25fa7b
TH
6901 dev->_rx = rx;
6902
bd25fa7b 6903 for (i = 0; i < count; i++)
fe822240 6904 rx[i].dev = dev;
1b4bf461
ED
6905 return 0;
6906}
bf264145 6907#endif
1b4bf461 6908
aa942104
CG
6909static void netdev_init_one_queue(struct net_device *dev,
6910 struct netdev_queue *queue, void *_unused)
6911{
6912 /* Initialize queue lock */
6913 spin_lock_init(&queue->_xmit_lock);
6914 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6915 queue->xmit_lock_owner = -1;
b236da69 6916 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6917 queue->dev = dev;
114cf580
TH
6918#ifdef CONFIG_BQL
6919 dql_init(&queue->dql, HZ);
6920#endif
aa942104
CG
6921}
6922
60877a32
ED
6923static void netif_free_tx_queues(struct net_device *dev)
6924{
4cb28970 6925 kvfree(dev->_tx);
60877a32
ED
6926}
6927
e6484930
TH
6928static int netif_alloc_netdev_queues(struct net_device *dev)
6929{
6930 unsigned int count = dev->num_tx_queues;
6931 struct netdev_queue *tx;
60877a32 6932 size_t sz = count * sizeof(*tx);
e6484930 6933
d339727c
ED
6934 if (count < 1 || count > 0xffff)
6935 return -EINVAL;
62b5942a 6936
60877a32
ED
6937 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6938 if (!tx) {
6939 tx = vzalloc(sz);
6940 if (!tx)
6941 return -ENOMEM;
6942 }
e6484930 6943 dev->_tx = tx;
1d24eb48 6944
e6484930
TH
6945 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6946 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6947
6948 return 0;
e6484930
TH
6949}
6950
a2029240
DV
6951void netif_tx_stop_all_queues(struct net_device *dev)
6952{
6953 unsigned int i;
6954
6955 for (i = 0; i < dev->num_tx_queues; i++) {
6956 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6957 netif_tx_stop_queue(txq);
6958 }
6959}
6960EXPORT_SYMBOL(netif_tx_stop_all_queues);
6961
1da177e4
LT
6962/**
6963 * register_netdevice - register a network device
6964 * @dev: device to register
6965 *
6966 * Take a completed network device structure and add it to the kernel
6967 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6968 * chain. 0 is returned on success. A negative errno code is returned
6969 * on a failure to set up the device, or if the name is a duplicate.
6970 *
6971 * Callers must hold the rtnl semaphore. You may want
6972 * register_netdev() instead of this.
6973 *
6974 * BUGS:
6975 * The locking appears insufficient to guarantee two parallel registers
6976 * will not get the same name.
6977 */
6978
6979int register_netdevice(struct net_device *dev)
6980{
1da177e4 6981 int ret;
d314774c 6982 struct net *net = dev_net(dev);
1da177e4
LT
6983
6984 BUG_ON(dev_boot_phase);
6985 ASSERT_RTNL();
6986
b17a7c17
SH
6987 might_sleep();
6988
1da177e4
LT
6989 /* When net_device's are persistent, this will be fatal. */
6990 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6991 BUG_ON(!net);
1da177e4 6992
f1f28aa3 6993 spin_lock_init(&dev->addr_list_lock);
cf508b12 6994 netdev_set_addr_lockdep_class(dev);
1da177e4 6995
828de4f6 6996 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6997 if (ret < 0)
6998 goto out;
6999
1da177e4 7000 /* Init, if this function is available */
d314774c
SH
7001 if (dev->netdev_ops->ndo_init) {
7002 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7003 if (ret) {
7004 if (ret > 0)
7005 ret = -EIO;
90833aa4 7006 goto out;
1da177e4
LT
7007 }
7008 }
4ec93edb 7009
f646968f
PM
7010 if (((dev->hw_features | dev->features) &
7011 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7012 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7013 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7014 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7015 ret = -EINVAL;
7016 goto err_uninit;
7017 }
7018
9c7dafbf
PE
7019 ret = -EBUSY;
7020 if (!dev->ifindex)
7021 dev->ifindex = dev_new_index(net);
7022 else if (__dev_get_by_index(net, dev->ifindex))
7023 goto err_uninit;
7024
5455c699
MM
7025 /* Transfer changeable features to wanted_features and enable
7026 * software offloads (GSO and GRO).
7027 */
7028 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7029 dev->features |= NETIF_F_SOFT_FEATURES;
7030 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7031
cbc53e08 7032 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7033 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7034
7f348a60
AD
7035 /* If IPv4 TCP segmentation offload is supported we should also
7036 * allow the device to enable segmenting the frame with the option
7037 * of ignoring a static IP ID value. This doesn't enable the
7038 * feature itself but allows the user to enable it later.
7039 */
cbc53e08
AD
7040 if (dev->hw_features & NETIF_F_TSO)
7041 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7042 if (dev->vlan_features & NETIF_F_TSO)
7043 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7044 if (dev->mpls_features & NETIF_F_TSO)
7045 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7046 if (dev->hw_enc_features & NETIF_F_TSO)
7047 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7048
1180e7d6 7049 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7050 */
1180e7d6 7051 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7052
ee579677
PS
7053 /* Make NETIF_F_SG inheritable to tunnel devices.
7054 */
802ab55a 7055 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7056
0d89d203
SH
7057 /* Make NETIF_F_SG inheritable to MPLS.
7058 */
7059 dev->mpls_features |= NETIF_F_SG;
7060
7ffbe3fd
JB
7061 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7062 ret = notifier_to_errno(ret);
7063 if (ret)
7064 goto err_uninit;
7065
8b41d188 7066 ret = netdev_register_kobject(dev);
b17a7c17 7067 if (ret)
7ce1b0ed 7068 goto err_uninit;
b17a7c17
SH
7069 dev->reg_state = NETREG_REGISTERED;
7070
6cb6a27c 7071 __netdev_update_features(dev);
8e9b59b2 7072
1da177e4
LT
7073 /*
7074 * Default initial state at registry is that the
7075 * device is present.
7076 */
7077
7078 set_bit(__LINK_STATE_PRESENT, &dev->state);
7079
8f4cccbb
BH
7080 linkwatch_init_dev(dev);
7081
1da177e4 7082 dev_init_scheduler(dev);
1da177e4 7083 dev_hold(dev);
ce286d32 7084 list_netdevice(dev);
7bf23575 7085 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7086
948b337e
JP
7087 /* If the device has permanent device address, driver should
7088 * set dev_addr and also addr_assign_type should be set to
7089 * NET_ADDR_PERM (default value).
7090 */
7091 if (dev->addr_assign_type == NET_ADDR_PERM)
7092 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7093
1da177e4 7094 /* Notify protocols, that a new device appeared. */
056925ab 7095 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7096 ret = notifier_to_errno(ret);
93ee31f1
DL
7097 if (ret) {
7098 rollback_registered(dev);
7099 dev->reg_state = NETREG_UNREGISTERED;
7100 }
d90a909e
EB
7101 /*
7102 * Prevent userspace races by waiting until the network
7103 * device is fully setup before sending notifications.
7104 */
a2835763
PM
7105 if (!dev->rtnl_link_ops ||
7106 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7107 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7108
7109out:
7110 return ret;
7ce1b0ed
HX
7111
7112err_uninit:
d314774c
SH
7113 if (dev->netdev_ops->ndo_uninit)
7114 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7115 goto out;
1da177e4 7116}
d1b19dff 7117EXPORT_SYMBOL(register_netdevice);
1da177e4 7118
937f1ba5
BH
7119/**
7120 * init_dummy_netdev - init a dummy network device for NAPI
7121 * @dev: device to init
7122 *
7123 * This takes a network device structure and initialize the minimum
7124 * amount of fields so it can be used to schedule NAPI polls without
7125 * registering a full blown interface. This is to be used by drivers
7126 * that need to tie several hardware interfaces to a single NAPI
7127 * poll scheduler due to HW limitations.
7128 */
7129int init_dummy_netdev(struct net_device *dev)
7130{
7131 /* Clear everything. Note we don't initialize spinlocks
7132 * are they aren't supposed to be taken by any of the
7133 * NAPI code and this dummy netdev is supposed to be
7134 * only ever used for NAPI polls
7135 */
7136 memset(dev, 0, sizeof(struct net_device));
7137
7138 /* make sure we BUG if trying to hit standard
7139 * register/unregister code path
7140 */
7141 dev->reg_state = NETREG_DUMMY;
7142
937f1ba5
BH
7143 /* NAPI wants this */
7144 INIT_LIST_HEAD(&dev->napi_list);
7145
7146 /* a dummy interface is started by default */
7147 set_bit(__LINK_STATE_PRESENT, &dev->state);
7148 set_bit(__LINK_STATE_START, &dev->state);
7149
29b4433d
ED
7150 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7151 * because users of this 'device' dont need to change
7152 * its refcount.
7153 */
7154
937f1ba5
BH
7155 return 0;
7156}
7157EXPORT_SYMBOL_GPL(init_dummy_netdev);
7158
7159
1da177e4
LT
7160/**
7161 * register_netdev - register a network device
7162 * @dev: device to register
7163 *
7164 * Take a completed network device structure and add it to the kernel
7165 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7166 * chain. 0 is returned on success. A negative errno code is returned
7167 * on a failure to set up the device, or if the name is a duplicate.
7168 *
38b4da38 7169 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7170 * and expands the device name if you passed a format string to
7171 * alloc_netdev.
7172 */
7173int register_netdev(struct net_device *dev)
7174{
7175 int err;
7176
7177 rtnl_lock();
1da177e4 7178 err = register_netdevice(dev);
1da177e4
LT
7179 rtnl_unlock();
7180 return err;
7181}
7182EXPORT_SYMBOL(register_netdev);
7183
29b4433d
ED
7184int netdev_refcnt_read(const struct net_device *dev)
7185{
7186 int i, refcnt = 0;
7187
7188 for_each_possible_cpu(i)
7189 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7190 return refcnt;
7191}
7192EXPORT_SYMBOL(netdev_refcnt_read);
7193
2c53040f 7194/**
1da177e4 7195 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7196 * @dev: target net_device
1da177e4
LT
7197 *
7198 * This is called when unregistering network devices.
7199 *
7200 * Any protocol or device that holds a reference should register
7201 * for netdevice notification, and cleanup and put back the
7202 * reference if they receive an UNREGISTER event.
7203 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7204 * call dev_put.
1da177e4
LT
7205 */
7206static void netdev_wait_allrefs(struct net_device *dev)
7207{
7208 unsigned long rebroadcast_time, warning_time;
29b4433d 7209 int refcnt;
1da177e4 7210
e014debe
ED
7211 linkwatch_forget_dev(dev);
7212
1da177e4 7213 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7214 refcnt = netdev_refcnt_read(dev);
7215
7216 while (refcnt != 0) {
1da177e4 7217 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7218 rtnl_lock();
1da177e4
LT
7219
7220 /* Rebroadcast unregister notification */
056925ab 7221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7222
748e2d93 7223 __rtnl_unlock();
0115e8e3 7224 rcu_barrier();
748e2d93
ED
7225 rtnl_lock();
7226
0115e8e3 7227 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7228 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7229 &dev->state)) {
7230 /* We must not have linkwatch events
7231 * pending on unregister. If this
7232 * happens, we simply run the queue
7233 * unscheduled, resulting in a noop
7234 * for this device.
7235 */
7236 linkwatch_run_queue();
7237 }
7238
6756ae4b 7239 __rtnl_unlock();
1da177e4
LT
7240
7241 rebroadcast_time = jiffies;
7242 }
7243
7244 msleep(250);
7245
29b4433d
ED
7246 refcnt = netdev_refcnt_read(dev);
7247
1da177e4 7248 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7249 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7250 dev->name, refcnt);
1da177e4
LT
7251 warning_time = jiffies;
7252 }
7253 }
7254}
7255
7256/* The sequence is:
7257 *
7258 * rtnl_lock();
7259 * ...
7260 * register_netdevice(x1);
7261 * register_netdevice(x2);
7262 * ...
7263 * unregister_netdevice(y1);
7264 * unregister_netdevice(y2);
7265 * ...
7266 * rtnl_unlock();
7267 * free_netdev(y1);
7268 * free_netdev(y2);
7269 *
58ec3b4d 7270 * We are invoked by rtnl_unlock().
1da177e4 7271 * This allows us to deal with problems:
b17a7c17 7272 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7273 * without deadlocking with linkwatch via keventd.
7274 * 2) Since we run with the RTNL semaphore not held, we can sleep
7275 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7276 *
7277 * We must not return until all unregister events added during
7278 * the interval the lock was held have been completed.
1da177e4 7279 */
1da177e4
LT
7280void netdev_run_todo(void)
7281{
626ab0e6 7282 struct list_head list;
1da177e4 7283
1da177e4 7284 /* Snapshot list, allow later requests */
626ab0e6 7285 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7286
7287 __rtnl_unlock();
626ab0e6 7288
0115e8e3
ED
7289
7290 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7291 if (!list_empty(&list))
7292 rcu_barrier();
7293
1da177e4
LT
7294 while (!list_empty(&list)) {
7295 struct net_device *dev
e5e26d75 7296 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7297 list_del(&dev->todo_list);
7298
748e2d93 7299 rtnl_lock();
0115e8e3 7300 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7301 __rtnl_unlock();
0115e8e3 7302
b17a7c17 7303 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7304 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7305 dev->name, dev->reg_state);
7306 dump_stack();
7307 continue;
7308 }
1da177e4 7309
b17a7c17 7310 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7311
b17a7c17 7312 netdev_wait_allrefs(dev);
1da177e4 7313
b17a7c17 7314 /* paranoia */
29b4433d 7315 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7316 BUG_ON(!list_empty(&dev->ptype_all));
7317 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7318 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7319 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7320 WARN_ON(dev->dn_ptr);
1da177e4 7321
b17a7c17
SH
7322 if (dev->destructor)
7323 dev->destructor(dev);
9093bbb2 7324
50624c93
EB
7325 /* Report a network device has been unregistered */
7326 rtnl_lock();
7327 dev_net(dev)->dev_unreg_count--;
7328 __rtnl_unlock();
7329 wake_up(&netdev_unregistering_wq);
7330
9093bbb2
SH
7331 /* Free network device */
7332 kobject_put(&dev->dev.kobj);
1da177e4 7333 }
1da177e4
LT
7334}
7335
9256645a
JW
7336/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7337 * all the same fields in the same order as net_device_stats, with only
7338 * the type differing, but rtnl_link_stats64 may have additional fields
7339 * at the end for newer counters.
3cfde79c 7340 */
77a1abf5
ED
7341void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7342 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7343{
7344#if BITS_PER_LONG == 64
9256645a 7345 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7346 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7347 /* zero out counters that only exist in rtnl_link_stats64 */
7348 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7349 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7350#else
9256645a 7351 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7352 const unsigned long *src = (const unsigned long *)netdev_stats;
7353 u64 *dst = (u64 *)stats64;
7354
9256645a 7355 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7356 for (i = 0; i < n; i++)
7357 dst[i] = src[i];
9256645a
JW
7358 /* zero out counters that only exist in rtnl_link_stats64 */
7359 memset((char *)stats64 + n * sizeof(u64), 0,
7360 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7361#endif
7362}
77a1abf5 7363EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7364
eeda3fd6
SH
7365/**
7366 * dev_get_stats - get network device statistics
7367 * @dev: device to get statistics from
28172739 7368 * @storage: place to store stats
eeda3fd6 7369 *
d7753516
BH
7370 * Get network statistics from device. Return @storage.
7371 * The device driver may provide its own method by setting
7372 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7373 * otherwise the internal statistics structure is used.
eeda3fd6 7374 */
d7753516
BH
7375struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7376 struct rtnl_link_stats64 *storage)
7004bf25 7377{
eeda3fd6
SH
7378 const struct net_device_ops *ops = dev->netdev_ops;
7379
28172739
ED
7380 if (ops->ndo_get_stats64) {
7381 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7382 ops->ndo_get_stats64(dev, storage);
7383 } else if (ops->ndo_get_stats) {
3cfde79c 7384 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7385 } else {
7386 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7387 }
caf586e5 7388 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7389 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7390 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7391 return storage;
c45d286e 7392}
eeda3fd6 7393EXPORT_SYMBOL(dev_get_stats);
c45d286e 7394
24824a09 7395struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7396{
24824a09 7397 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7398
24824a09
ED
7399#ifdef CONFIG_NET_CLS_ACT
7400 if (queue)
7401 return queue;
7402 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7403 if (!queue)
7404 return NULL;
7405 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7406 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7407 queue->qdisc_sleeping = &noop_qdisc;
7408 rcu_assign_pointer(dev->ingress_queue, queue);
7409#endif
7410 return queue;
bb949fbd
DM
7411}
7412
2c60db03
ED
7413static const struct ethtool_ops default_ethtool_ops;
7414
d07d7507
SG
7415void netdev_set_default_ethtool_ops(struct net_device *dev,
7416 const struct ethtool_ops *ops)
7417{
7418 if (dev->ethtool_ops == &default_ethtool_ops)
7419 dev->ethtool_ops = ops;
7420}
7421EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7422
74d332c1
ED
7423void netdev_freemem(struct net_device *dev)
7424{
7425 char *addr = (char *)dev - dev->padded;
7426
4cb28970 7427 kvfree(addr);
74d332c1
ED
7428}
7429
1da177e4 7430/**
36909ea4 7431 * alloc_netdev_mqs - allocate network device
c835a677
TG
7432 * @sizeof_priv: size of private data to allocate space for
7433 * @name: device name format string
7434 * @name_assign_type: origin of device name
7435 * @setup: callback to initialize device
7436 * @txqs: the number of TX subqueues to allocate
7437 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7438 *
7439 * Allocates a struct net_device with private data area for driver use
90e51adf 7440 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7441 * for each queue on the device.
1da177e4 7442 */
36909ea4 7443struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7444 unsigned char name_assign_type,
36909ea4
TH
7445 void (*setup)(struct net_device *),
7446 unsigned int txqs, unsigned int rxqs)
1da177e4 7447{
1da177e4 7448 struct net_device *dev;
7943986c 7449 size_t alloc_size;
1ce8e7b5 7450 struct net_device *p;
1da177e4 7451
b6fe17d6
SH
7452 BUG_ON(strlen(name) >= sizeof(dev->name));
7453
36909ea4 7454 if (txqs < 1) {
7b6cd1ce 7455 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7456 return NULL;
7457 }
7458
a953be53 7459#ifdef CONFIG_SYSFS
36909ea4 7460 if (rxqs < 1) {
7b6cd1ce 7461 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7462 return NULL;
7463 }
7464#endif
7465
fd2ea0a7 7466 alloc_size = sizeof(struct net_device);
d1643d24
AD
7467 if (sizeof_priv) {
7468 /* ensure 32-byte alignment of private area */
1ce8e7b5 7469 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7470 alloc_size += sizeof_priv;
7471 }
7472 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7473 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7474
74d332c1
ED
7475 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7476 if (!p)
7477 p = vzalloc(alloc_size);
62b5942a 7478 if (!p)
1da177e4 7479 return NULL;
1da177e4 7480
1ce8e7b5 7481 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7482 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7483
29b4433d
ED
7484 dev->pcpu_refcnt = alloc_percpu(int);
7485 if (!dev->pcpu_refcnt)
74d332c1 7486 goto free_dev;
ab9c73cc 7487
ab9c73cc 7488 if (dev_addr_init(dev))
29b4433d 7489 goto free_pcpu;
ab9c73cc 7490
22bedad3 7491 dev_mc_init(dev);
a748ee24 7492 dev_uc_init(dev);
ccffad25 7493
c346dca1 7494 dev_net_set(dev, &init_net);
1da177e4 7495
8d3bdbd5 7496 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7497 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7498
8d3bdbd5
DM
7499 INIT_LIST_HEAD(&dev->napi_list);
7500 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7501 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7502 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7503 INIT_LIST_HEAD(&dev->adj_list.upper);
7504 INIT_LIST_HEAD(&dev->adj_list.lower);
7505 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7506 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7507 INIT_LIST_HEAD(&dev->ptype_all);
7508 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7509 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7510 setup(dev);
7511
a813104d 7512 if (!dev->tx_queue_len) {
f84bb1ea 7513 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7514 dev->tx_queue_len = 1;
7515 }
906470c1 7516
36909ea4
TH
7517 dev->num_tx_queues = txqs;
7518 dev->real_num_tx_queues = txqs;
ed9af2e8 7519 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7520 goto free_all;
e8a0464c 7521
a953be53 7522#ifdef CONFIG_SYSFS
36909ea4
TH
7523 dev->num_rx_queues = rxqs;
7524 dev->real_num_rx_queues = rxqs;
fe822240 7525 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7526 goto free_all;
df334545 7527#endif
0a9627f2 7528
1da177e4 7529 strcpy(dev->name, name);
c835a677 7530 dev->name_assign_type = name_assign_type;
cbda10fa 7531 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7532 if (!dev->ethtool_ops)
7533 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7534
7535 nf_hook_ingress_init(dev);
7536
1da177e4 7537 return dev;
ab9c73cc 7538
8d3bdbd5
DM
7539free_all:
7540 free_netdev(dev);
7541 return NULL;
7542
29b4433d
ED
7543free_pcpu:
7544 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7545free_dev:
7546 netdev_freemem(dev);
ab9c73cc 7547 return NULL;
1da177e4 7548}
36909ea4 7549EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7550
7551/**
7552 * free_netdev - free network device
7553 * @dev: device
7554 *
4ec93edb
YH
7555 * This function does the last stage of destroying an allocated device
7556 * interface. The reference to the device object is released.
1da177e4 7557 * If this is the last reference then it will be freed.
93d05d4a 7558 * Must be called in process context.
1da177e4
LT
7559 */
7560void free_netdev(struct net_device *dev)
7561{
d565b0a1
HX
7562 struct napi_struct *p, *n;
7563
93d05d4a 7564 might_sleep();
60877a32 7565 netif_free_tx_queues(dev);
a953be53 7566#ifdef CONFIG_SYSFS
10595902 7567 kvfree(dev->_rx);
fe822240 7568#endif
e8a0464c 7569
33d480ce 7570 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7571
f001fde5
JP
7572 /* Flush device addresses */
7573 dev_addr_flush(dev);
7574
d565b0a1
HX
7575 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7576 netif_napi_del(p);
7577
29b4433d
ED
7578 free_percpu(dev->pcpu_refcnt);
7579 dev->pcpu_refcnt = NULL;
7580
3041a069 7581 /* Compatibility with error handling in drivers */
1da177e4 7582 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7583 netdev_freemem(dev);
1da177e4
LT
7584 return;
7585 }
7586
7587 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7588 dev->reg_state = NETREG_RELEASED;
7589
43cb76d9
GKH
7590 /* will free via device release */
7591 put_device(&dev->dev);
1da177e4 7592}
d1b19dff 7593EXPORT_SYMBOL(free_netdev);
4ec93edb 7594
f0db275a
SH
7595/**
7596 * synchronize_net - Synchronize with packet receive processing
7597 *
7598 * Wait for packets currently being received to be done.
7599 * Does not block later packets from starting.
7600 */
4ec93edb 7601void synchronize_net(void)
1da177e4
LT
7602{
7603 might_sleep();
be3fc413
ED
7604 if (rtnl_is_locked())
7605 synchronize_rcu_expedited();
7606 else
7607 synchronize_rcu();
1da177e4 7608}
d1b19dff 7609EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7610
7611/**
44a0873d 7612 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7613 * @dev: device
44a0873d 7614 * @head: list
6ebfbc06 7615 *
1da177e4 7616 * This function shuts down a device interface and removes it
d59b54b1 7617 * from the kernel tables.
44a0873d 7618 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7619 *
7620 * Callers must hold the rtnl semaphore. You may want
7621 * unregister_netdev() instead of this.
7622 */
7623
44a0873d 7624void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7625{
a6620712
HX
7626 ASSERT_RTNL();
7627
44a0873d 7628 if (head) {
9fdce099 7629 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7630 } else {
7631 rollback_registered(dev);
7632 /* Finish processing unregister after unlock */
7633 net_set_todo(dev);
7634 }
1da177e4 7635}
44a0873d 7636EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7637
9b5e383c
ED
7638/**
7639 * unregister_netdevice_many - unregister many devices
7640 * @head: list of devices
87757a91
ED
7641 *
7642 * Note: As most callers use a stack allocated list_head,
7643 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7644 */
7645void unregister_netdevice_many(struct list_head *head)
7646{
7647 struct net_device *dev;
7648
7649 if (!list_empty(head)) {
7650 rollback_registered_many(head);
7651 list_for_each_entry(dev, head, unreg_list)
7652 net_set_todo(dev);
87757a91 7653 list_del(head);
9b5e383c
ED
7654 }
7655}
63c8099d 7656EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7657
1da177e4
LT
7658/**
7659 * unregister_netdev - remove device from the kernel
7660 * @dev: device
7661 *
7662 * This function shuts down a device interface and removes it
d59b54b1 7663 * from the kernel tables.
1da177e4
LT
7664 *
7665 * This is just a wrapper for unregister_netdevice that takes
7666 * the rtnl semaphore. In general you want to use this and not
7667 * unregister_netdevice.
7668 */
7669void unregister_netdev(struct net_device *dev)
7670{
7671 rtnl_lock();
7672 unregister_netdevice(dev);
7673 rtnl_unlock();
7674}
1da177e4
LT
7675EXPORT_SYMBOL(unregister_netdev);
7676
ce286d32
EB
7677/**
7678 * dev_change_net_namespace - move device to different nethost namespace
7679 * @dev: device
7680 * @net: network namespace
7681 * @pat: If not NULL name pattern to try if the current device name
7682 * is already taken in the destination network namespace.
7683 *
7684 * This function shuts down a device interface and moves it
7685 * to a new network namespace. On success 0 is returned, on
7686 * a failure a netagive errno code is returned.
7687 *
7688 * Callers must hold the rtnl semaphore.
7689 */
7690
7691int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7692{
ce286d32
EB
7693 int err;
7694
7695 ASSERT_RTNL();
7696
7697 /* Don't allow namespace local devices to be moved. */
7698 err = -EINVAL;
7699 if (dev->features & NETIF_F_NETNS_LOCAL)
7700 goto out;
7701
7702 /* Ensure the device has been registrered */
ce286d32
EB
7703 if (dev->reg_state != NETREG_REGISTERED)
7704 goto out;
7705
7706 /* Get out if there is nothing todo */
7707 err = 0;
878628fb 7708 if (net_eq(dev_net(dev), net))
ce286d32
EB
7709 goto out;
7710
7711 /* Pick the destination device name, and ensure
7712 * we can use it in the destination network namespace.
7713 */
7714 err = -EEXIST;
d9031024 7715 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7716 /* We get here if we can't use the current device name */
7717 if (!pat)
7718 goto out;
828de4f6 7719 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7720 goto out;
7721 }
7722
7723 /*
7724 * And now a mini version of register_netdevice unregister_netdevice.
7725 */
7726
7727 /* If device is running close it first. */
9b772652 7728 dev_close(dev);
ce286d32
EB
7729
7730 /* And unlink it from device chain */
7731 err = -ENODEV;
7732 unlist_netdevice(dev);
7733
7734 synchronize_net();
7735
7736 /* Shutdown queueing discipline. */
7737 dev_shutdown(dev);
7738
7739 /* Notify protocols, that we are about to destroy
7740 this device. They should clean all the things.
3b27e105
DL
7741
7742 Note that dev->reg_state stays at NETREG_REGISTERED.
7743 This is wanted because this way 8021q and macvlan know
7744 the device is just moving and can keep their slaves up.
ce286d32
EB
7745 */
7746 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7747 rcu_barrier();
7748 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7749 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7750
7751 /*
7752 * Flush the unicast and multicast chains
7753 */
a748ee24 7754 dev_uc_flush(dev);
22bedad3 7755 dev_mc_flush(dev);
ce286d32 7756
4e66ae2e
SH
7757 /* Send a netdev-removed uevent to the old namespace */
7758 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7759 netdev_adjacent_del_links(dev);
4e66ae2e 7760
ce286d32 7761 /* Actually switch the network namespace */
c346dca1 7762 dev_net_set(dev, net);
ce286d32 7763
ce286d32 7764 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7765 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7766 dev->ifindex = dev_new_index(net);
ce286d32 7767
4e66ae2e
SH
7768 /* Send a netdev-add uevent to the new namespace */
7769 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7770 netdev_adjacent_add_links(dev);
4e66ae2e 7771
8b41d188 7772 /* Fixup kobjects */
a1b3f594 7773 err = device_rename(&dev->dev, dev->name);
8b41d188 7774 WARN_ON(err);
ce286d32
EB
7775
7776 /* Add the device back in the hashes */
7777 list_netdevice(dev);
7778
7779 /* Notify protocols, that a new device appeared. */
7780 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7781
d90a909e
EB
7782 /*
7783 * Prevent userspace races by waiting until the network
7784 * device is fully setup before sending notifications.
7785 */
7f294054 7786 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7787
ce286d32
EB
7788 synchronize_net();
7789 err = 0;
7790out:
7791 return err;
7792}
463d0183 7793EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7794
1da177e4
LT
7795static int dev_cpu_callback(struct notifier_block *nfb,
7796 unsigned long action,
7797 void *ocpu)
7798{
7799 struct sk_buff **list_skb;
1da177e4
LT
7800 struct sk_buff *skb;
7801 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7802 struct softnet_data *sd, *oldsd;
7803
8bb78442 7804 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7805 return NOTIFY_OK;
7806
7807 local_irq_disable();
7808 cpu = smp_processor_id();
7809 sd = &per_cpu(softnet_data, cpu);
7810 oldsd = &per_cpu(softnet_data, oldcpu);
7811
7812 /* Find end of our completion_queue. */
7813 list_skb = &sd->completion_queue;
7814 while (*list_skb)
7815 list_skb = &(*list_skb)->next;
7816 /* Append completion queue from offline CPU. */
7817 *list_skb = oldsd->completion_queue;
7818 oldsd->completion_queue = NULL;
7819
1da177e4 7820 /* Append output queue from offline CPU. */
a9cbd588
CG
7821 if (oldsd->output_queue) {
7822 *sd->output_queue_tailp = oldsd->output_queue;
7823 sd->output_queue_tailp = oldsd->output_queue_tailp;
7824 oldsd->output_queue = NULL;
7825 oldsd->output_queue_tailp = &oldsd->output_queue;
7826 }
ac64da0b
ED
7827 /* Append NAPI poll list from offline CPU, with one exception :
7828 * process_backlog() must be called by cpu owning percpu backlog.
7829 * We properly handle process_queue & input_pkt_queue later.
7830 */
7831 while (!list_empty(&oldsd->poll_list)) {
7832 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7833 struct napi_struct,
7834 poll_list);
7835
7836 list_del_init(&napi->poll_list);
7837 if (napi->poll == process_backlog)
7838 napi->state = 0;
7839 else
7840 ____napi_schedule(sd, napi);
264524d5 7841 }
1da177e4
LT
7842
7843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7844 local_irq_enable();
7845
7846 /* Process offline CPU's input_pkt_queue */
76cc8b13 7847 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7848 netif_rx_ni(skb);
76cc8b13 7849 input_queue_head_incr(oldsd);
fec5e652 7850 }
ac64da0b 7851 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7852 netif_rx_ni(skb);
76cc8b13
TH
7853 input_queue_head_incr(oldsd);
7854 }
1da177e4
LT
7855
7856 return NOTIFY_OK;
7857}
1da177e4
LT
7858
7859
7f353bf2 7860/**
b63365a2
HX
7861 * netdev_increment_features - increment feature set by one
7862 * @all: current feature set
7863 * @one: new feature set
7864 * @mask: mask feature set
7f353bf2
HX
7865 *
7866 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7867 * @one to the master device with current feature set @all. Will not
7868 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7869 */
c8f44aff
MM
7870netdev_features_t netdev_increment_features(netdev_features_t all,
7871 netdev_features_t one, netdev_features_t mask)
b63365a2 7872{
c8cd0989 7873 if (mask & NETIF_F_HW_CSUM)
a188222b 7874 mask |= NETIF_F_CSUM_MASK;
1742f183 7875 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7876
a188222b 7877 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7878 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7879
1742f183 7880 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7881 if (all & NETIF_F_HW_CSUM)
7882 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7883
7884 return all;
7885}
b63365a2 7886EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7887
430f03cd 7888static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7889{
7890 int i;
7891 struct hlist_head *hash;
7892
7893 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7894 if (hash != NULL)
7895 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7896 INIT_HLIST_HEAD(&hash[i]);
7897
7898 return hash;
7899}
7900
881d966b 7901/* Initialize per network namespace state */
4665079c 7902static int __net_init netdev_init(struct net *net)
881d966b 7903{
734b6541
RM
7904 if (net != &init_net)
7905 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7906
30d97d35
PE
7907 net->dev_name_head = netdev_create_hash();
7908 if (net->dev_name_head == NULL)
7909 goto err_name;
881d966b 7910
30d97d35
PE
7911 net->dev_index_head = netdev_create_hash();
7912 if (net->dev_index_head == NULL)
7913 goto err_idx;
881d966b
EB
7914
7915 return 0;
30d97d35
PE
7916
7917err_idx:
7918 kfree(net->dev_name_head);
7919err_name:
7920 return -ENOMEM;
881d966b
EB
7921}
7922
f0db275a
SH
7923/**
7924 * netdev_drivername - network driver for the device
7925 * @dev: network device
f0db275a
SH
7926 *
7927 * Determine network driver for device.
7928 */
3019de12 7929const char *netdev_drivername(const struct net_device *dev)
6579e57b 7930{
cf04a4c7
SH
7931 const struct device_driver *driver;
7932 const struct device *parent;
3019de12 7933 const char *empty = "";
6579e57b
AV
7934
7935 parent = dev->dev.parent;
6579e57b 7936 if (!parent)
3019de12 7937 return empty;
6579e57b
AV
7938
7939 driver = parent->driver;
7940 if (driver && driver->name)
3019de12
DM
7941 return driver->name;
7942 return empty;
6579e57b
AV
7943}
7944
6ea754eb
JP
7945static void __netdev_printk(const char *level, const struct net_device *dev,
7946 struct va_format *vaf)
256df2f3 7947{
b004ff49 7948 if (dev && dev->dev.parent) {
6ea754eb
JP
7949 dev_printk_emit(level[1] - '0',
7950 dev->dev.parent,
7951 "%s %s %s%s: %pV",
7952 dev_driver_string(dev->dev.parent),
7953 dev_name(dev->dev.parent),
7954 netdev_name(dev), netdev_reg_state(dev),
7955 vaf);
b004ff49 7956 } else if (dev) {
6ea754eb
JP
7957 printk("%s%s%s: %pV",
7958 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7959 } else {
6ea754eb 7960 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7961 }
256df2f3
JP
7962}
7963
6ea754eb
JP
7964void netdev_printk(const char *level, const struct net_device *dev,
7965 const char *format, ...)
256df2f3
JP
7966{
7967 struct va_format vaf;
7968 va_list args;
256df2f3
JP
7969
7970 va_start(args, format);
7971
7972 vaf.fmt = format;
7973 vaf.va = &args;
7974
6ea754eb 7975 __netdev_printk(level, dev, &vaf);
b004ff49 7976
256df2f3 7977 va_end(args);
256df2f3
JP
7978}
7979EXPORT_SYMBOL(netdev_printk);
7980
7981#define define_netdev_printk_level(func, level) \
6ea754eb 7982void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7983{ \
256df2f3
JP
7984 struct va_format vaf; \
7985 va_list args; \
7986 \
7987 va_start(args, fmt); \
7988 \
7989 vaf.fmt = fmt; \
7990 vaf.va = &args; \
7991 \
6ea754eb 7992 __netdev_printk(level, dev, &vaf); \
b004ff49 7993 \
256df2f3 7994 va_end(args); \
256df2f3
JP
7995} \
7996EXPORT_SYMBOL(func);
7997
7998define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7999define_netdev_printk_level(netdev_alert, KERN_ALERT);
8000define_netdev_printk_level(netdev_crit, KERN_CRIT);
8001define_netdev_printk_level(netdev_err, KERN_ERR);
8002define_netdev_printk_level(netdev_warn, KERN_WARNING);
8003define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8004define_netdev_printk_level(netdev_info, KERN_INFO);
8005
4665079c 8006static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8007{
8008 kfree(net->dev_name_head);
8009 kfree(net->dev_index_head);
8010}
8011
022cbae6 8012static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8013 .init = netdev_init,
8014 .exit = netdev_exit,
8015};
8016
4665079c 8017static void __net_exit default_device_exit(struct net *net)
ce286d32 8018{
e008b5fc 8019 struct net_device *dev, *aux;
ce286d32 8020 /*
e008b5fc 8021 * Push all migratable network devices back to the
ce286d32
EB
8022 * initial network namespace
8023 */
8024 rtnl_lock();
e008b5fc 8025 for_each_netdev_safe(net, dev, aux) {
ce286d32 8026 int err;
aca51397 8027 char fb_name[IFNAMSIZ];
ce286d32
EB
8028
8029 /* Ignore unmoveable devices (i.e. loopback) */
8030 if (dev->features & NETIF_F_NETNS_LOCAL)
8031 continue;
8032
e008b5fc
EB
8033 /* Leave virtual devices for the generic cleanup */
8034 if (dev->rtnl_link_ops)
8035 continue;
d0c082ce 8036
25985edc 8037 /* Push remaining network devices to init_net */
aca51397
PE
8038 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8039 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8040 if (err) {
7b6cd1ce
JP
8041 pr_emerg("%s: failed to move %s to init_net: %d\n",
8042 __func__, dev->name, err);
aca51397 8043 BUG();
ce286d32
EB
8044 }
8045 }
8046 rtnl_unlock();
8047}
8048
50624c93
EB
8049static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8050{
8051 /* Return with the rtnl_lock held when there are no network
8052 * devices unregistering in any network namespace in net_list.
8053 */
8054 struct net *net;
8055 bool unregistering;
ff960a73 8056 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8057
ff960a73 8058 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8059 for (;;) {
50624c93
EB
8060 unregistering = false;
8061 rtnl_lock();
8062 list_for_each_entry(net, net_list, exit_list) {
8063 if (net->dev_unreg_count > 0) {
8064 unregistering = true;
8065 break;
8066 }
8067 }
8068 if (!unregistering)
8069 break;
8070 __rtnl_unlock();
ff960a73
PZ
8071
8072 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8073 }
ff960a73 8074 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8075}
8076
04dc7f6b
EB
8077static void __net_exit default_device_exit_batch(struct list_head *net_list)
8078{
8079 /* At exit all network devices most be removed from a network
b595076a 8080 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8081 * Do this across as many network namespaces as possible to
8082 * improve batching efficiency.
8083 */
8084 struct net_device *dev;
8085 struct net *net;
8086 LIST_HEAD(dev_kill_list);
8087
50624c93
EB
8088 /* To prevent network device cleanup code from dereferencing
8089 * loopback devices or network devices that have been freed
8090 * wait here for all pending unregistrations to complete,
8091 * before unregistring the loopback device and allowing the
8092 * network namespace be freed.
8093 *
8094 * The netdev todo list containing all network devices
8095 * unregistrations that happen in default_device_exit_batch
8096 * will run in the rtnl_unlock() at the end of
8097 * default_device_exit_batch.
8098 */
8099 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8100 list_for_each_entry(net, net_list, exit_list) {
8101 for_each_netdev_reverse(net, dev) {
b0ab2fab 8102 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8103 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8104 else
8105 unregister_netdevice_queue(dev, &dev_kill_list);
8106 }
8107 }
8108 unregister_netdevice_many(&dev_kill_list);
8109 rtnl_unlock();
8110}
8111
022cbae6 8112static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8113 .exit = default_device_exit,
04dc7f6b 8114 .exit_batch = default_device_exit_batch,
ce286d32
EB
8115};
8116
1da177e4
LT
8117/*
8118 * Initialize the DEV module. At boot time this walks the device list and
8119 * unhooks any devices that fail to initialise (normally hardware not
8120 * present) and leaves us with a valid list of present and active devices.
8121 *
8122 */
8123
8124/*
8125 * This is called single threaded during boot, so no need
8126 * to take the rtnl semaphore.
8127 */
8128static int __init net_dev_init(void)
8129{
8130 int i, rc = -ENOMEM;
8131
8132 BUG_ON(!dev_boot_phase);
8133
1da177e4
LT
8134 if (dev_proc_init())
8135 goto out;
8136
8b41d188 8137 if (netdev_kobject_init())
1da177e4
LT
8138 goto out;
8139
8140 INIT_LIST_HEAD(&ptype_all);
82d8a867 8141 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8142 INIT_LIST_HEAD(&ptype_base[i]);
8143
62532da9
VY
8144 INIT_LIST_HEAD(&offload_base);
8145
881d966b
EB
8146 if (register_pernet_subsys(&netdev_net_ops))
8147 goto out;
1da177e4
LT
8148
8149 /*
8150 * Initialise the packet receive queues.
8151 */
8152
6f912042 8153 for_each_possible_cpu(i) {
e36fa2f7 8154 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8155
e36fa2f7 8156 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8157 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8158 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8159 sd->output_queue_tailp = &sd->output_queue;
df334545 8160#ifdef CONFIG_RPS
e36fa2f7
ED
8161 sd->csd.func = rps_trigger_softirq;
8162 sd->csd.info = sd;
e36fa2f7 8163 sd->cpu = i;
1e94d72f 8164#endif
0a9627f2 8165
e36fa2f7
ED
8166 sd->backlog.poll = process_backlog;
8167 sd->backlog.weight = weight_p;
1da177e4
LT
8168 }
8169
1da177e4
LT
8170 dev_boot_phase = 0;
8171
505d4f73
EB
8172 /* The loopback device is special if any other network devices
8173 * is present in a network namespace the loopback device must
8174 * be present. Since we now dynamically allocate and free the
8175 * loopback device ensure this invariant is maintained by
8176 * keeping the loopback device as the first device on the
8177 * list of network devices. Ensuring the loopback devices
8178 * is the first device that appears and the last network device
8179 * that disappears.
8180 */
8181 if (register_pernet_device(&loopback_net_ops))
8182 goto out;
8183
8184 if (register_pernet_device(&default_device_ops))
8185 goto out;
8186
962cf36c
CM
8187 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8188 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8189
8190 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8191 dst_subsys_init();
1da177e4
LT
8192 rc = 0;
8193out:
8194 return rc;
8195}
8196
8197subsys_initcall(net_dev_init);
This page took 1.981055 seconds and 5 git commands to generate.