lec: use IS_ENABLED() instead of checking for built-in or module
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc
HX
3037}
3038
1def9238
ED
3039static void qdisc_pkt_len_init(struct sk_buff *skb)
3040{
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
757b8b1d 3049 unsigned int hdr_len;
15e5a030 3050 u16 gso_segs = shinfo->gso_segs;
1def9238 3051
757b8b1d
ED
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
1def9238
ED
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3066 }
3067}
3068
bbd8a0d3
KK
3069static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072{
3073 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3074 struct sk_buff *to_free = NULL;
a2da570d 3075 bool contended;
bbd8a0d3
KK
3076 int rc;
3077
a2da570d 3078 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
f9eb8aea 3082 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3083 * often and dequeue packets faster.
79640a4c 3084 */
a2da570d 3085 contended = qdisc_is_running(q);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
bbd8a0d3
KK
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3091 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3094 qdisc_run_begin(q)) {
bbd8a0d3
KK
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
bfe0d029 3100
bfe0d029
ED
3101 qdisc_bstats_update(q, skb);
3102
55a93b3e 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
bbd8a0d3 3108 __qdisc_run(q);
79640a4c 3109 } else
bc135b23 3110 qdisc_run_end(q);
bbd8a0d3
KK
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
520ac30f 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
bbd8a0d3
KK
3122 }
3123 spin_unlock(root_lock);
520ac30f
ED
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
79640a4c
ED
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
bbd8a0d3
KK
3128 return rc;
3129}
3130
86f8515f 3131#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3132static void skb_update_prio(struct sk_buff *skb)
3133{
6977a79d 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3135
91c68ce2 3136 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
5bc1421e
NH
3143}
3144#else
3145#define skb_update_prio(skb)
3146#endif
3147
f60e5990 3148DEFINE_PER_CPU(int, xmit_recursion);
3149EXPORT_SYMBOL(xmit_recursion);
3150
95603e22
MM
3151/**
3152 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3155 * @skb: buffer to transmit
3156 */
0c4b51f0 3157int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3158{
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167}
3168EXPORT_SYMBOL(dev_loopback_xmit);
3169
1f211a1b
DB
3170#ifdef CONFIG_NET_EGRESS
3171static struct sk_buff *
3172sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173{
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3193 kfree_skb(skb);
3194 return NULL;
1f211a1b
DB
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3198 consume_skb(skb);
1f211a1b
DB
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210}
3211#endif /* CONFIG_NET_EGRESS */
3212
638b2a69
JP
3213static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214{
3215#ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238#else
3239 return -1;
3240#endif
3241}
3242
3243static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244{
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
004a5d01 3255 sk_fullsock(sk) &&
638b2a69
JP
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263}
3264
3265struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268{
3269 int queue_index = 0;
3270
3271#ifdef CONFIG_XPS
52bd2d62
ED
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276#endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292}
3293
d29f749e 3294/**
9d08dd3d 3295 * __dev_queue_xmit - transmit a buffer
d29f749e 3296 * @skb: buffer to transmit
9d08dd3d 3297 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
0a59f3a9 3320static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3321{
3322 struct net_device *dev = skb->dev;
dc2b4847 3323 struct netdev_queue *txq;
1da177e4
LT
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
6d1ccff6
ED
3327 skb_reset_mac_header(skb);
3328
e7fd2885
WB
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
4ec93edb
YH
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
1da177e4 3334 */
4ec93edb 3335 rcu_read_lock_bh();
1da177e4 3336
5bc1421e
NH
3337 skb_update_prio(skb);
3338
1f211a1b
DB
3339 qdisc_pkt_len_init(skb);
3340#ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342# ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348# endif
3349#endif
02875878
ED
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
f663dd9a 3358 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3359 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3360
cf66ba58 3361 trace_net_dev_queue(skb);
1da177e4 3362 if (q->enqueue) {
bbd8a0d3 3363 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3364 goto out;
1da177e4
LT
3365 }
3366
3367 /* The device has no queue. Common case for software devices:
3368 loopback, all the sorts of tunnels...
3369
932ff279
HX
3370 Really, it is unlikely that netif_tx_lock protection is necessary
3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3372 counters.)
3373 However, it is possible, that they rely on protection
3374 made by us here.
3375
3376 Check this and shot the lock. It is not prone from deadlocks.
3377 Either shot noqueue qdisc, it is even simpler 8)
3378 */
3379 if (dev->flags & IFF_UP) {
3380 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
c773e847 3382 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3383 if (unlikely(__this_cpu_read(xmit_recursion) >
3384 XMIT_RECURSION_LIMIT))
745e20f1
ED
3385 goto recursion_alert;
3386
1f59533f
JDB
3387 skb = validate_xmit_skb(skb, dev);
3388 if (!skb)
d21fd63e 3389 goto out;
1f59533f 3390
c773e847 3391 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3392
73466498 3393 if (!netif_xmit_stopped(txq)) {
745e20f1 3394 __this_cpu_inc(xmit_recursion);
ce93718f 3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3396 __this_cpu_dec(xmit_recursion);
572a9d7b 3397 if (dev_xmit_complete(rc)) {
c773e847 3398 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3399 goto out;
3400 }
3401 }
c773e847 3402 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 dev->name);
1da177e4
LT
3405 } else {
3406 /* Recursion is detected! It is possible,
745e20f1
ED
3407 * unfortunately
3408 */
3409recursion_alert:
e87cc472
JP
3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 dev->name);
1da177e4
LT
3412 }
3413 }
3414
3415 rc = -ENETDOWN;
d4828d85 3416 rcu_read_unlock_bh();
1da177e4 3417
015f0688 3418 atomic_long_inc(&dev->tx_dropped);
1f59533f 3419 kfree_skb_list(skb);
1da177e4
LT
3420 return rc;
3421out:
d4828d85 3422 rcu_read_unlock_bh();
1da177e4
LT
3423 return rc;
3424}
f663dd9a 3425
2b4aa3ce 3426int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3427{
3428 return __dev_queue_xmit(skb, NULL);
3429}
2b4aa3ce 3430EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3431
f663dd9a
JW
3432int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433{
3434 return __dev_queue_xmit(skb, accel_priv);
3435}
3436EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
1da177e4
LT
3438
3439/*=======================================================================
3440 Receiver routines
3441 =======================================================================*/
3442
6b2bedc3 3443int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3444EXPORT_SYMBOL(netdev_max_backlog);
3445
3b098e2d 3446int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3447int netdev_budget __read_mostly = 300;
3448int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3449
eecfd7c4
ED
3450/* Called with irq disabled */
3451static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453{
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456}
3457
bfb564e7
KK
3458#ifdef CONFIG_RPS
3459
3460/* One global table that all flow-based protocols share. */
6e3f7faf 3461struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3462EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3463u32 rps_cpu_mask __read_mostly;
3464EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3465
c5905afb 3466struct static_key rps_needed __read_mostly;
3df97ba8 3467EXPORT_SYMBOL(rps_needed);
adc9300e 3468
c445477d
BH
3469static struct rps_dev_flow *
3470set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 struct rps_dev_flow *rflow, u16 next_cpu)
3472{
a31196b0 3473 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3474#ifdef CONFIG_RFS_ACCEL
3475 struct netdev_rx_queue *rxqueue;
3476 struct rps_dev_flow_table *flow_table;
3477 struct rps_dev_flow *old_rflow;
3478 u32 flow_id;
3479 u16 rxq_index;
3480 int rc;
3481
3482 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3485 goto out;
3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 if (rxq_index == skb_get_rx_queue(skb))
3488 goto out;
3489
3490 rxqueue = dev->_rx + rxq_index;
3491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 if (!flow_table)
3493 goto out;
61b905da 3494 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 rxq_index, flow_id);
3497 if (rc < 0)
3498 goto out;
3499 old_rflow = rflow;
3500 rflow = &flow_table->flows[flow_id];
c445477d
BH
3501 rflow->filter = rc;
3502 if (old_rflow->filter == rflow->filter)
3503 old_rflow->filter = RPS_NO_FILTER;
3504 out:
3505#endif
3506 rflow->last_qtail =
09994d1b 3507 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3508 }
3509
09994d1b 3510 rflow->cpu = next_cpu;
c445477d
BH
3511 return rflow;
3512}
3513
bfb564e7
KK
3514/*
3515 * get_rps_cpu is called from netif_receive_skb and returns the target
3516 * CPU from the RPS map of the receiving queue for a given skb.
3517 * rcu_read_lock must be held on entry.
3518 */
3519static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 struct rps_dev_flow **rflowp)
3521{
567e4b79
ED
3522 const struct rps_sock_flow_table *sock_flow_table;
3523 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3524 struct rps_dev_flow_table *flow_table;
567e4b79 3525 struct rps_map *map;
bfb564e7 3526 int cpu = -1;
567e4b79 3527 u32 tcpu;
61b905da 3528 u32 hash;
bfb564e7
KK
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 u16 index = skb_get_rx_queue(skb);
567e4b79 3532
62fe0b40
BH
3533 if (unlikely(index >= dev->real_num_rx_queues)) {
3534 WARN_ONCE(dev->real_num_rx_queues > 1,
3535 "%s received packet on queue %u, but number "
3536 "of RX queues is %u\n",
3537 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3538 goto done;
3539 }
567e4b79
ED
3540 rxqueue += index;
3541 }
bfb564e7 3542
567e4b79
ED
3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3546 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3547 if (!flow_table && !map)
bfb564e7
KK
3548 goto done;
3549
2d47b459 3550 skb_reset_network_header(skb);
61b905da
TH
3551 hash = skb_get_hash(skb);
3552 if (!hash)
bfb564e7
KK
3553 goto done;
3554
fec5e652
TH
3555 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 if (flow_table && sock_flow_table) {
fec5e652 3557 struct rps_dev_flow *rflow;
567e4b79
ED
3558 u32 next_cpu;
3559 u32 ident;
3560
3561 /* First check into global flow table if there is a match */
3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 if ((ident ^ hash) & ~rps_cpu_mask)
3564 goto try_rps;
fec5e652 3565
567e4b79
ED
3566 next_cpu = ident & rps_cpu_mask;
3567
3568 /* OK, now we know there is a match,
3569 * we can look at the local (per receive queue) flow table
3570 */
61b905da 3571 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3572 tcpu = rflow->cpu;
3573
fec5e652
TH
3574 /*
3575 * If the desired CPU (where last recvmsg was done) is
3576 * different from current CPU (one in the rx-queue flow
3577 * table entry), switch if one of the following holds:
a31196b0 3578 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3579 * - Current CPU is offline.
3580 * - The current CPU's queue tail has advanced beyond the
3581 * last packet that was enqueued using this table entry.
3582 * This guarantees that all previous packets for the flow
3583 * have been dequeued, thus preserving in order delivery.
3584 */
3585 if (unlikely(tcpu != next_cpu) &&
a31196b0 3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3588 rflow->last_qtail)) >= 0)) {
3589 tcpu = next_cpu;
c445477d 3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3591 }
c445477d 3592
a31196b0 3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3594 *rflowp = rflow;
3595 cpu = tcpu;
3596 goto done;
3597 }
3598 }
3599
567e4b79
ED
3600try_rps:
3601
0a9627f2 3602 if (map) {
8fc54f68 3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3604 if (cpu_online(tcpu)) {
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610done:
0a9627f2
TH
3611 return cpu;
3612}
3613
c445477d
BH
3614#ifdef CONFIG_RFS_ACCEL
3615
3616/**
3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618 * @dev: Device on which the filter was set
3619 * @rxq_index: RX queue index
3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622 *
3623 * Drivers that implement ndo_rx_flow_steer() should periodically call
3624 * this function for each installed filter and remove the filters for
3625 * which it returns %true.
3626 */
3627bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 u32 flow_id, u16 filter_id)
3629{
3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 struct rps_dev_flow_table *flow_table;
3632 struct rps_dev_flow *rflow;
3633 bool expire = true;
a31196b0 3634 unsigned int cpu;
c445477d
BH
3635
3636 rcu_read_lock();
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 if (flow_table && flow_id <= flow_table->mask) {
3639 rflow = &flow_table->flows[flow_id];
3640 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 rflow->last_qtail) <
3644 (int)(10 * flow_table->mask)))
3645 expire = false;
3646 }
3647 rcu_read_unlock();
3648 return expire;
3649}
3650EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652#endif /* CONFIG_RFS_ACCEL */
3653
0a9627f2 3654/* Called from hardirq (IPI) context */
e36fa2f7 3655static void rps_trigger_softirq(void *data)
0a9627f2 3656{
e36fa2f7
ED
3657 struct softnet_data *sd = data;
3658
eecfd7c4 3659 ____napi_schedule(sd, &sd->backlog);
dee42870 3660 sd->received_rps++;
0a9627f2 3661}
e36fa2f7 3662
fec5e652 3663#endif /* CONFIG_RPS */
0a9627f2 3664
e36fa2f7
ED
3665/*
3666 * Check if this softnet_data structure is another cpu one
3667 * If yes, queue it to our IPI list and return 1
3668 * If no, return 0
3669 */
3670static int rps_ipi_queued(struct softnet_data *sd)
3671{
3672#ifdef CONFIG_RPS
903ceff7 3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3674
3675 if (sd != mysd) {
3676 sd->rps_ipi_next = mysd->rps_ipi_list;
3677 mysd->rps_ipi_list = sd;
3678
3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 return 1;
3681 }
3682#endif /* CONFIG_RPS */
3683 return 0;
3684}
3685
99bbc707
WB
3686#ifdef CONFIG_NET_FLOW_LIMIT
3687int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688#endif
3689
3690static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691{
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693 struct sd_flow_limit *fl;
3694 struct softnet_data *sd;
3695 unsigned int old_flow, new_flow;
3696
3697 if (qlen < (netdev_max_backlog >> 1))
3698 return false;
3699
903ceff7 3700 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3701
3702 rcu_read_lock();
3703 fl = rcu_dereference(sd->flow_limit);
3704 if (fl) {
3958afa1 3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3706 old_flow = fl->history[fl->history_head];
3707 fl->history[fl->history_head] = new_flow;
3708
3709 fl->history_head++;
3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712 if (likely(fl->buckets[old_flow]))
3713 fl->buckets[old_flow]--;
3714
3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 fl->count++;
3717 rcu_read_unlock();
3718 return true;
3719 }
3720 }
3721 rcu_read_unlock();
3722#endif
3723 return false;
3724}
3725
0a9627f2
TH
3726/*
3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728 * queue (may be a remote CPU queue).
3729 */
fec5e652
TH
3730static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 unsigned int *qtail)
0a9627f2 3732{
e36fa2f7 3733 struct softnet_data *sd;
0a9627f2 3734 unsigned long flags;
99bbc707 3735 unsigned int qlen;
0a9627f2 3736
e36fa2f7 3737 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3738
3739 local_irq_save(flags);
0a9627f2 3740
e36fa2f7 3741 rps_lock(sd);
e9e4dd32
JA
3742 if (!netif_running(skb->dev))
3743 goto drop;
99bbc707
WB
3744 qlen = skb_queue_len(&sd->input_pkt_queue);
3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3746 if (qlen) {
0a9627f2 3747enqueue:
e36fa2f7 3748 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3749 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3750 rps_unlock(sd);
152102c7 3751 local_irq_restore(flags);
0a9627f2
TH
3752 return NET_RX_SUCCESS;
3753 }
3754
ebda37c2
ED
3755 /* Schedule NAPI for backlog device
3756 * We can use non atomic operation since we own the queue lock
3757 */
3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3759 if (!rps_ipi_queued(sd))
eecfd7c4 3760 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3761 }
3762 goto enqueue;
3763 }
3764
e9e4dd32 3765drop:
dee42870 3766 sd->dropped++;
e36fa2f7 3767 rps_unlock(sd);
0a9627f2 3768
0a9627f2
TH
3769 local_irq_restore(flags);
3770
caf586e5 3771 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3772 kfree_skb(skb);
3773 return NET_RX_DROP;
3774}
1da177e4 3775
ae78dbfa 3776static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3777{
b0e28f1e 3778 int ret;
1da177e4 3779
588f0330 3780 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3781
cf66ba58 3782 trace_netif_rx(skb);
df334545 3783#ifdef CONFIG_RPS
c5905afb 3784 if (static_key_false(&rps_needed)) {
fec5e652 3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3786 int cpu;
3787
cece1945 3788 preempt_disable();
b0e28f1e 3789 rcu_read_lock();
fec5e652
TH
3790
3791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3792 if (cpu < 0)
3793 cpu = smp_processor_id();
fec5e652
TH
3794
3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
b0e28f1e 3797 rcu_read_unlock();
cece1945 3798 preempt_enable();
adc9300e
ED
3799 } else
3800#endif
fec5e652
TH
3801 {
3802 unsigned int qtail;
3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 put_cpu();
3805 }
b0e28f1e 3806 return ret;
1da177e4 3807}
ae78dbfa
BH
3808
3809/**
3810 * netif_rx - post buffer to the network code
3811 * @skb: buffer to post
3812 *
3813 * This function receives a packet from a device driver and queues it for
3814 * the upper (protocol) levels to process. It always succeeds. The buffer
3815 * may be dropped during processing for congestion control or by the
3816 * protocol layers.
3817 *
3818 * return values:
3819 * NET_RX_SUCCESS (no congestion)
3820 * NET_RX_DROP (packet was dropped)
3821 *
3822 */
3823
3824int netif_rx(struct sk_buff *skb)
3825{
3826 trace_netif_rx_entry(skb);
3827
3828 return netif_rx_internal(skb);
3829}
d1b19dff 3830EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3831
3832int netif_rx_ni(struct sk_buff *skb)
3833{
3834 int err;
3835
ae78dbfa
BH
3836 trace_netif_rx_ni_entry(skb);
3837
1da177e4 3838 preempt_disable();
ae78dbfa 3839 err = netif_rx_internal(skb);
1da177e4
LT
3840 if (local_softirq_pending())
3841 do_softirq();
3842 preempt_enable();
3843
3844 return err;
3845}
1da177e4
LT
3846EXPORT_SYMBOL(netif_rx_ni);
3847
1da177e4
LT
3848static void net_tx_action(struct softirq_action *h)
3849{
903ceff7 3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3851
3852 if (sd->completion_queue) {
3853 struct sk_buff *clist;
3854
3855 local_irq_disable();
3856 clist = sd->completion_queue;
3857 sd->completion_queue = NULL;
3858 local_irq_enable();
3859
3860 while (clist) {
3861 struct sk_buff *skb = clist;
3862 clist = clist->next;
3863
547b792c 3864 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 trace_consume_skb(skb);
3867 else
3868 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3869
3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 __kfree_skb(skb);
3872 else
3873 __kfree_skb_defer(skb);
1da177e4 3874 }
15fad714
JDB
3875
3876 __kfree_skb_flush();
1da177e4
LT
3877 }
3878
3879 if (sd->output_queue) {
37437bb2 3880 struct Qdisc *head;
1da177e4
LT
3881
3882 local_irq_disable();
3883 head = sd->output_queue;
3884 sd->output_queue = NULL;
a9cbd588 3885 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3886 local_irq_enable();
3887
3888 while (head) {
37437bb2
DM
3889 struct Qdisc *q = head;
3890 spinlock_t *root_lock;
3891
1da177e4
LT
3892 head = head->next_sched;
3893
5fb66229 3894 root_lock = qdisc_lock(q);
3bcb846c
ED
3895 spin_lock(root_lock);
3896 /* We need to make sure head->next_sched is read
3897 * before clearing __QDISC_STATE_SCHED
3898 */
3899 smp_mb__before_atomic();
3900 clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 qdisc_run(q);
3902 spin_unlock(root_lock);
1da177e4
LT
3903 }
3904 }
3905}
3906
ab95bfe0
JP
3907#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3908 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3909/* This hook is defined here for ATM LANE */
3910int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911 unsigned char *addr) __read_mostly;
4fb019a0 3912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3913#endif
1da177e4 3914
1f211a1b
DB
3915static inline struct sk_buff *
3916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917 struct net_device *orig_dev)
f697c3e8 3918{
e7582bab 3919#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3920 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921 struct tcf_result cl_res;
24824a09 3922
c9e99fd0
DB
3923 /* If there's at least one ingress present somewhere (so
3924 * we get here via enabled static key), remaining devices
3925 * that are not configured with an ingress qdisc will bail
d2788d34 3926 * out here.
c9e99fd0 3927 */
d2788d34 3928 if (!cl)
4577139b 3929 return skb;
f697c3e8
HX
3930 if (*pt_prev) {
3931 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3932 *pt_prev = NULL;
1da177e4
LT
3933 }
3934
3365495c 3935 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3936 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3937 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3938
3b3ae880 3939 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3940 case TC_ACT_OK:
3941 case TC_ACT_RECLASSIFY:
3942 skb->tc_index = TC_H_MIN(cl_res.classid);
3943 break;
3944 case TC_ACT_SHOT:
24ea591d 3945 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3946 kfree_skb(skb);
3947 return NULL;
d2788d34
DB
3948 case TC_ACT_STOLEN:
3949 case TC_ACT_QUEUED:
8a3a4c6e 3950 consume_skb(skb);
d2788d34 3951 return NULL;
27b29f63
AS
3952 case TC_ACT_REDIRECT:
3953 /* skb_mac_header check was done by cls/act_bpf, so
3954 * we can safely push the L2 header back before
3955 * redirecting to another netdev
3956 */
3957 __skb_push(skb, skb->mac_len);
3958 skb_do_redirect(skb);
3959 return NULL;
d2788d34
DB
3960 default:
3961 break;
f697c3e8 3962 }
e7582bab 3963#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3964 return skb;
3965}
1da177e4 3966
ab95bfe0
JP
3967/**
3968 * netdev_rx_handler_register - register receive handler
3969 * @dev: device to register a handler for
3970 * @rx_handler: receive handler to register
93e2c32b 3971 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3972 *
e227867f 3973 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3974 * called from __netif_receive_skb. A negative errno code is returned
3975 * on a failure.
3976 *
3977 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3978 *
3979 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3980 */
3981int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3982 rx_handler_func_t *rx_handler,
3983 void *rx_handler_data)
ab95bfe0
JP
3984{
3985 ASSERT_RTNL();
3986
3987 if (dev->rx_handler)
3988 return -EBUSY;
3989
00cfec37 3990 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3991 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3992 rcu_assign_pointer(dev->rx_handler, rx_handler);
3993
3994 return 0;
3995}
3996EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3997
3998/**
3999 * netdev_rx_handler_unregister - unregister receive handler
4000 * @dev: device to unregister a handler from
4001 *
166ec369 4002 * Unregister a receive handler from a device.
ab95bfe0
JP
4003 *
4004 * The caller must hold the rtnl_mutex.
4005 */
4006void netdev_rx_handler_unregister(struct net_device *dev)
4007{
4008
4009 ASSERT_RTNL();
a9b3cd7f 4010 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4011 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4012 * section has a guarantee to see a non NULL rx_handler_data
4013 * as well.
4014 */
4015 synchronize_net();
a9b3cd7f 4016 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4017}
4018EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4019
b4b9e355
MG
4020/*
4021 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4022 * the special handling of PFMEMALLOC skbs.
4023 */
4024static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4025{
4026 switch (skb->protocol) {
2b8837ae
JP
4027 case htons(ETH_P_ARP):
4028 case htons(ETH_P_IP):
4029 case htons(ETH_P_IPV6):
4030 case htons(ETH_P_8021Q):
4031 case htons(ETH_P_8021AD):
b4b9e355
MG
4032 return true;
4033 default:
4034 return false;
4035 }
4036}
4037
e687ad60
PN
4038static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4039 int *ret, struct net_device *orig_dev)
4040{
e7582bab 4041#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4042 if (nf_hook_ingress_active(skb)) {
4043 if (*pt_prev) {
4044 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4045 *pt_prev = NULL;
4046 }
4047
4048 return nf_hook_ingress(skb);
4049 }
e7582bab 4050#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4051 return 0;
4052}
e687ad60 4053
9754e293 4054static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4055{
4056 struct packet_type *ptype, *pt_prev;
ab95bfe0 4057 rx_handler_func_t *rx_handler;
f2ccd8fa 4058 struct net_device *orig_dev;
8a4eb573 4059 bool deliver_exact = false;
1da177e4 4060 int ret = NET_RX_DROP;
252e3346 4061 __be16 type;
1da177e4 4062
588f0330 4063 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4064
cf66ba58 4065 trace_netif_receive_skb(skb);
9b22ea56 4066
cc9bd5ce 4067 orig_dev = skb->dev;
8f903c70 4068
c1d2bbe1 4069 skb_reset_network_header(skb);
fda55eca
ED
4070 if (!skb_transport_header_was_set(skb))
4071 skb_reset_transport_header(skb);
0b5c9db1 4072 skb_reset_mac_len(skb);
1da177e4
LT
4073
4074 pt_prev = NULL;
4075
63d8ea7f 4076another_round:
b6858177 4077 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4078
4079 __this_cpu_inc(softnet_data.processed);
4080
8ad227ff
PM
4081 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4082 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4083 skb = skb_vlan_untag(skb);
bcc6d479 4084 if (unlikely(!skb))
2c17d27c 4085 goto out;
bcc6d479
JP
4086 }
4087
1da177e4
LT
4088#ifdef CONFIG_NET_CLS_ACT
4089 if (skb->tc_verd & TC_NCLS) {
4090 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4091 goto ncls;
4092 }
4093#endif
4094
9754e293 4095 if (pfmemalloc)
b4b9e355
MG
4096 goto skip_taps;
4097
1da177e4 4098 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4099 if (pt_prev)
4100 ret = deliver_skb(skb, pt_prev, orig_dev);
4101 pt_prev = ptype;
4102 }
4103
4104 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4105 if (pt_prev)
4106 ret = deliver_skb(skb, pt_prev, orig_dev);
4107 pt_prev = ptype;
1da177e4
LT
4108 }
4109
b4b9e355 4110skip_taps:
1cf51900 4111#ifdef CONFIG_NET_INGRESS
4577139b 4112 if (static_key_false(&ingress_needed)) {
1f211a1b 4113 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4114 if (!skb)
2c17d27c 4115 goto out;
e687ad60
PN
4116
4117 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4118 goto out;
4577139b 4119 }
1cf51900
PN
4120#endif
4121#ifdef CONFIG_NET_CLS_ACT
4577139b 4122 skb->tc_verd = 0;
1da177e4
LT
4123ncls:
4124#endif
9754e293 4125 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4126 goto drop;
4127
df8a39de 4128 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4129 if (pt_prev) {
4130 ret = deliver_skb(skb, pt_prev, orig_dev);
4131 pt_prev = NULL;
4132 }
48cc32d3 4133 if (vlan_do_receive(&skb))
2425717b
JF
4134 goto another_round;
4135 else if (unlikely(!skb))
2c17d27c 4136 goto out;
2425717b
JF
4137 }
4138
48cc32d3 4139 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4140 if (rx_handler) {
4141 if (pt_prev) {
4142 ret = deliver_skb(skb, pt_prev, orig_dev);
4143 pt_prev = NULL;
4144 }
8a4eb573
JP
4145 switch (rx_handler(&skb)) {
4146 case RX_HANDLER_CONSUMED:
3bc1b1ad 4147 ret = NET_RX_SUCCESS;
2c17d27c 4148 goto out;
8a4eb573 4149 case RX_HANDLER_ANOTHER:
63d8ea7f 4150 goto another_round;
8a4eb573
JP
4151 case RX_HANDLER_EXACT:
4152 deliver_exact = true;
4153 case RX_HANDLER_PASS:
4154 break;
4155 default:
4156 BUG();
4157 }
ab95bfe0 4158 }
1da177e4 4159
df8a39de
JP
4160 if (unlikely(skb_vlan_tag_present(skb))) {
4161 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4162 skb->pkt_type = PACKET_OTHERHOST;
4163 /* Note: we might in the future use prio bits
4164 * and set skb->priority like in vlan_do_receive()
4165 * For the time being, just ignore Priority Code Point
4166 */
4167 skb->vlan_tci = 0;
4168 }
48cc32d3 4169
7866a621
SN
4170 type = skb->protocol;
4171
63d8ea7f 4172 /* deliver only exact match when indicated */
7866a621
SN
4173 if (likely(!deliver_exact)) {
4174 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4175 &ptype_base[ntohs(type) &
4176 PTYPE_HASH_MASK]);
4177 }
1f3c8804 4178
7866a621
SN
4179 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4180 &orig_dev->ptype_specific);
4181
4182 if (unlikely(skb->dev != orig_dev)) {
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &skb->dev->ptype_specific);
1da177e4
LT
4185 }
4186
4187 if (pt_prev) {
1080e512 4188 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4189 goto drop;
1080e512
MT
4190 else
4191 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4192 } else {
b4b9e355 4193drop:
6e7333d3
JW
4194 if (!deliver_exact)
4195 atomic_long_inc(&skb->dev->rx_dropped);
4196 else
4197 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4198 kfree_skb(skb);
4199 /* Jamal, now you will not able to escape explaining
4200 * me how you were going to use this. :-)
4201 */
4202 ret = NET_RX_DROP;
4203 }
4204
2c17d27c 4205out:
9754e293
DM
4206 return ret;
4207}
4208
4209static int __netif_receive_skb(struct sk_buff *skb)
4210{
4211 int ret;
4212
4213 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4214 unsigned long pflags = current->flags;
4215
4216 /*
4217 * PFMEMALLOC skbs are special, they should
4218 * - be delivered to SOCK_MEMALLOC sockets only
4219 * - stay away from userspace
4220 * - have bounded memory usage
4221 *
4222 * Use PF_MEMALLOC as this saves us from propagating the allocation
4223 * context down to all allocation sites.
4224 */
4225 current->flags |= PF_MEMALLOC;
4226 ret = __netif_receive_skb_core(skb, true);
4227 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4228 } else
4229 ret = __netif_receive_skb_core(skb, false);
4230
1da177e4
LT
4231 return ret;
4232}
0a9627f2 4233
ae78dbfa 4234static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4235{
2c17d27c
JA
4236 int ret;
4237
588f0330 4238 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4239
c1f19b51
RC
4240 if (skb_defer_rx_timestamp(skb))
4241 return NET_RX_SUCCESS;
4242
2c17d27c
JA
4243 rcu_read_lock();
4244
df334545 4245#ifdef CONFIG_RPS
c5905afb 4246 if (static_key_false(&rps_needed)) {
3b098e2d 4247 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4248 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4249
3b098e2d
ED
4250 if (cpu >= 0) {
4251 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4252 rcu_read_unlock();
adc9300e 4253 return ret;
3b098e2d 4254 }
fec5e652 4255 }
1e94d72f 4256#endif
2c17d27c
JA
4257 ret = __netif_receive_skb(skb);
4258 rcu_read_unlock();
4259 return ret;
0a9627f2 4260}
ae78dbfa
BH
4261
4262/**
4263 * netif_receive_skb - process receive buffer from network
4264 * @skb: buffer to process
4265 *
4266 * netif_receive_skb() is the main receive data processing function.
4267 * It always succeeds. The buffer may be dropped during processing
4268 * for congestion control or by the protocol layers.
4269 *
4270 * This function may only be called from softirq context and interrupts
4271 * should be enabled.
4272 *
4273 * Return values (usually ignored):
4274 * NET_RX_SUCCESS: no congestion
4275 * NET_RX_DROP: packet was dropped
4276 */
04eb4489 4277int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4278{
4279 trace_netif_receive_skb_entry(skb);
4280
4281 return netif_receive_skb_internal(skb);
4282}
04eb4489 4283EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4284
41852497 4285DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4286
4287/* Network device is going away, flush any packets still pending */
4288static void flush_backlog(struct work_struct *work)
6e583ce5 4289{
6e583ce5 4290 struct sk_buff *skb, *tmp;
145dd5f9
PA
4291 struct softnet_data *sd;
4292
4293 local_bh_disable();
4294 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4295
145dd5f9 4296 local_irq_disable();
e36fa2f7 4297 rps_lock(sd);
6e7676c1 4298 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4299 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4300 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4301 kfree_skb(skb);
76cc8b13 4302 input_queue_head_incr(sd);
6e583ce5 4303 }
6e7676c1 4304 }
e36fa2f7 4305 rps_unlock(sd);
145dd5f9 4306 local_irq_enable();
6e7676c1
CG
4307
4308 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4309 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4310 __skb_unlink(skb, &sd->process_queue);
4311 kfree_skb(skb);
76cc8b13 4312 input_queue_head_incr(sd);
6e7676c1
CG
4313 }
4314 }
145dd5f9
PA
4315 local_bh_enable();
4316}
4317
41852497 4318static void flush_all_backlogs(void)
145dd5f9
PA
4319{
4320 unsigned int cpu;
4321
4322 get_online_cpus();
4323
41852497
ED
4324 for_each_online_cpu(cpu)
4325 queue_work_on(cpu, system_highpri_wq,
4326 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4327
4328 for_each_online_cpu(cpu)
41852497 4329 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4330
4331 put_online_cpus();
6e583ce5
SH
4332}
4333
d565b0a1
HX
4334static int napi_gro_complete(struct sk_buff *skb)
4335{
22061d80 4336 struct packet_offload *ptype;
d565b0a1 4337 __be16 type = skb->protocol;
22061d80 4338 struct list_head *head = &offload_base;
d565b0a1
HX
4339 int err = -ENOENT;
4340
c3c7c254
ED
4341 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4342
fc59f9a3
HX
4343 if (NAPI_GRO_CB(skb)->count == 1) {
4344 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4345 goto out;
fc59f9a3 4346 }
d565b0a1
HX
4347
4348 rcu_read_lock();
4349 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4350 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4351 continue;
4352
299603e8 4353 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4354 break;
4355 }
4356 rcu_read_unlock();
4357
4358 if (err) {
4359 WARN_ON(&ptype->list == head);
4360 kfree_skb(skb);
4361 return NET_RX_SUCCESS;
4362 }
4363
4364out:
ae78dbfa 4365 return netif_receive_skb_internal(skb);
d565b0a1
HX
4366}
4367
2e71a6f8
ED
4368/* napi->gro_list contains packets ordered by age.
4369 * youngest packets at the head of it.
4370 * Complete skbs in reverse order to reduce latencies.
4371 */
4372void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4373{
2e71a6f8 4374 struct sk_buff *skb, *prev = NULL;
d565b0a1 4375
2e71a6f8
ED
4376 /* scan list and build reverse chain */
4377 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4378 skb->prev = prev;
4379 prev = skb;
4380 }
4381
4382 for (skb = prev; skb; skb = prev) {
d565b0a1 4383 skb->next = NULL;
2e71a6f8
ED
4384
4385 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4386 return;
4387
4388 prev = skb->prev;
d565b0a1 4389 napi_gro_complete(skb);
2e71a6f8 4390 napi->gro_count--;
d565b0a1
HX
4391 }
4392
4393 napi->gro_list = NULL;
4394}
86cac58b 4395EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4396
89c5fa33
ED
4397static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4398{
4399 struct sk_buff *p;
4400 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4401 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4402
4403 for (p = napi->gro_list; p; p = p->next) {
4404 unsigned long diffs;
4405
0b4cec8c
TH
4406 NAPI_GRO_CB(p)->flush = 0;
4407
4408 if (hash != skb_get_hash_raw(p)) {
4409 NAPI_GRO_CB(p)->same_flow = 0;
4410 continue;
4411 }
4412
89c5fa33
ED
4413 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4414 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4415 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4416 if (maclen == ETH_HLEN)
4417 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4418 skb_mac_header(skb));
89c5fa33
ED
4419 else if (!diffs)
4420 diffs = memcmp(skb_mac_header(p),
a50e233c 4421 skb_mac_header(skb),
89c5fa33
ED
4422 maclen);
4423 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4424 }
4425}
4426
299603e8
JC
4427static void skb_gro_reset_offset(struct sk_buff *skb)
4428{
4429 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4430 const skb_frag_t *frag0 = &pinfo->frags[0];
4431
4432 NAPI_GRO_CB(skb)->data_offset = 0;
4433 NAPI_GRO_CB(skb)->frag0 = NULL;
4434 NAPI_GRO_CB(skb)->frag0_len = 0;
4435
4436 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4437 pinfo->nr_frags &&
4438 !PageHighMem(skb_frag_page(frag0))) {
4439 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4440 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4441 }
4442}
4443
a50e233c
ED
4444static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4445{
4446 struct skb_shared_info *pinfo = skb_shinfo(skb);
4447
4448 BUG_ON(skb->end - skb->tail < grow);
4449
4450 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4451
4452 skb->data_len -= grow;
4453 skb->tail += grow;
4454
4455 pinfo->frags[0].page_offset += grow;
4456 skb_frag_size_sub(&pinfo->frags[0], grow);
4457
4458 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4459 skb_frag_unref(skb, 0);
4460 memmove(pinfo->frags, pinfo->frags + 1,
4461 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4462 }
4463}
4464
bb728820 4465static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4466{
4467 struct sk_buff **pp = NULL;
22061d80 4468 struct packet_offload *ptype;
d565b0a1 4469 __be16 type = skb->protocol;
22061d80 4470 struct list_head *head = &offload_base;
0da2afd5 4471 int same_flow;
5b252f0c 4472 enum gro_result ret;
a50e233c 4473 int grow;
d565b0a1 4474
9c62a68d 4475 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4476 goto normal;
4477
5a212329 4478 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4479 goto normal;
4480
89c5fa33
ED
4481 gro_list_prepare(napi, skb);
4482
d565b0a1
HX
4483 rcu_read_lock();
4484 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4485 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4486 continue;
4487
86911732 4488 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4489 skb_reset_mac_len(skb);
d565b0a1
HX
4490 NAPI_GRO_CB(skb)->same_flow = 0;
4491 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4492 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4493 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4494 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4495 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4496 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4497
662880f4
TH
4498 /* Setup for GRO checksum validation */
4499 switch (skb->ip_summed) {
4500 case CHECKSUM_COMPLETE:
4501 NAPI_GRO_CB(skb)->csum = skb->csum;
4502 NAPI_GRO_CB(skb)->csum_valid = 1;
4503 NAPI_GRO_CB(skb)->csum_cnt = 0;
4504 break;
4505 case CHECKSUM_UNNECESSARY:
4506 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4507 NAPI_GRO_CB(skb)->csum_valid = 0;
4508 break;
4509 default:
4510 NAPI_GRO_CB(skb)->csum_cnt = 0;
4511 NAPI_GRO_CB(skb)->csum_valid = 0;
4512 }
d565b0a1 4513
f191a1d1 4514 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4515 break;
4516 }
4517 rcu_read_unlock();
4518
4519 if (&ptype->list == head)
4520 goto normal;
4521
0da2afd5 4522 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4523 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4524
d565b0a1
HX
4525 if (pp) {
4526 struct sk_buff *nskb = *pp;
4527
4528 *pp = nskb->next;
4529 nskb->next = NULL;
4530 napi_gro_complete(nskb);
4ae5544f 4531 napi->gro_count--;
d565b0a1
HX
4532 }
4533
0da2afd5 4534 if (same_flow)
d565b0a1
HX
4535 goto ok;
4536
600adc18 4537 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4538 goto normal;
d565b0a1 4539
600adc18
ED
4540 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4541 struct sk_buff *nskb = napi->gro_list;
4542
4543 /* locate the end of the list to select the 'oldest' flow */
4544 while (nskb->next) {
4545 pp = &nskb->next;
4546 nskb = *pp;
4547 }
4548 *pp = NULL;
4549 nskb->next = NULL;
4550 napi_gro_complete(nskb);
4551 } else {
4552 napi->gro_count++;
4553 }
d565b0a1 4554 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4555 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4556 NAPI_GRO_CB(skb)->last = skb;
86911732 4557 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4558 skb->next = napi->gro_list;
4559 napi->gro_list = skb;
5d0d9be8 4560 ret = GRO_HELD;
d565b0a1 4561
ad0f9904 4562pull:
a50e233c
ED
4563 grow = skb_gro_offset(skb) - skb_headlen(skb);
4564 if (grow > 0)
4565 gro_pull_from_frag0(skb, grow);
d565b0a1 4566ok:
5d0d9be8 4567 return ret;
d565b0a1
HX
4568
4569normal:
ad0f9904
HX
4570 ret = GRO_NORMAL;
4571 goto pull;
5d38a079 4572}
96e93eab 4573
bf5a755f
JC
4574struct packet_offload *gro_find_receive_by_type(__be16 type)
4575{
4576 struct list_head *offload_head = &offload_base;
4577 struct packet_offload *ptype;
4578
4579 list_for_each_entry_rcu(ptype, offload_head, list) {
4580 if (ptype->type != type || !ptype->callbacks.gro_receive)
4581 continue;
4582 return ptype;
4583 }
4584 return NULL;
4585}
e27a2f83 4586EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4587
4588struct packet_offload *gro_find_complete_by_type(__be16 type)
4589{
4590 struct list_head *offload_head = &offload_base;
4591 struct packet_offload *ptype;
4592
4593 list_for_each_entry_rcu(ptype, offload_head, list) {
4594 if (ptype->type != type || !ptype->callbacks.gro_complete)
4595 continue;
4596 return ptype;
4597 }
4598 return NULL;
4599}
e27a2f83 4600EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4601
bb728820 4602static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4603{
5d0d9be8
HX
4604 switch (ret) {
4605 case GRO_NORMAL:
ae78dbfa 4606 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4607 ret = GRO_DROP;
4608 break;
5d38a079 4609
5d0d9be8 4610 case GRO_DROP:
5d38a079
HX
4611 kfree_skb(skb);
4612 break;
5b252f0c 4613
daa86548 4614 case GRO_MERGED_FREE:
ce87fc6c
JG
4615 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4616 skb_dst_drop(skb);
d7e8883c 4617 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4618 } else {
d7e8883c 4619 __kfree_skb(skb);
ce87fc6c 4620 }
daa86548
ED
4621 break;
4622
5b252f0c
BH
4623 case GRO_HELD:
4624 case GRO_MERGED:
4625 break;
5d38a079
HX
4626 }
4627
c7c4b3b6 4628 return ret;
5d0d9be8 4629}
5d0d9be8 4630
c7c4b3b6 4631gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4632{
93f93a44 4633 skb_mark_napi_id(skb, napi);
ae78dbfa 4634 trace_napi_gro_receive_entry(skb);
86911732 4635
a50e233c
ED
4636 skb_gro_reset_offset(skb);
4637
89c5fa33 4638 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4639}
4640EXPORT_SYMBOL(napi_gro_receive);
4641
d0c2b0d2 4642static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4643{
93a35f59
ED
4644 if (unlikely(skb->pfmemalloc)) {
4645 consume_skb(skb);
4646 return;
4647 }
96e93eab 4648 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4649 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4650 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4651 skb->vlan_tci = 0;
66c46d74 4652 skb->dev = napi->dev;
6d152e23 4653 skb->skb_iif = 0;
c3caf119
JC
4654 skb->encapsulation = 0;
4655 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4656 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4657
4658 napi->skb = skb;
4659}
96e93eab 4660
76620aaf 4661struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4662{
5d38a079 4663 struct sk_buff *skb = napi->skb;
5d38a079
HX
4664
4665 if (!skb) {
fd11a83d 4666 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4667 if (skb) {
4668 napi->skb = skb;
4669 skb_mark_napi_id(skb, napi);
4670 }
80595d59 4671 }
96e93eab
HX
4672 return skb;
4673}
76620aaf 4674EXPORT_SYMBOL(napi_get_frags);
96e93eab 4675
a50e233c
ED
4676static gro_result_t napi_frags_finish(struct napi_struct *napi,
4677 struct sk_buff *skb,
4678 gro_result_t ret)
96e93eab 4679{
5d0d9be8
HX
4680 switch (ret) {
4681 case GRO_NORMAL:
a50e233c
ED
4682 case GRO_HELD:
4683 __skb_push(skb, ETH_HLEN);
4684 skb->protocol = eth_type_trans(skb, skb->dev);
4685 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4686 ret = GRO_DROP;
86911732 4687 break;
5d38a079 4688
5d0d9be8 4689 case GRO_DROP:
5d0d9be8
HX
4690 case GRO_MERGED_FREE:
4691 napi_reuse_skb(napi, skb);
4692 break;
5b252f0c
BH
4693
4694 case GRO_MERGED:
4695 break;
5d0d9be8 4696 }
5d38a079 4697
c7c4b3b6 4698 return ret;
5d38a079 4699}
5d0d9be8 4700
a50e233c
ED
4701/* Upper GRO stack assumes network header starts at gro_offset=0
4702 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4703 * We copy ethernet header into skb->data to have a common layout.
4704 */
4adb9c4a 4705static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4706{
4707 struct sk_buff *skb = napi->skb;
a50e233c
ED
4708 const struct ethhdr *eth;
4709 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4710
4711 napi->skb = NULL;
4712
a50e233c
ED
4713 skb_reset_mac_header(skb);
4714 skb_gro_reset_offset(skb);
4715
4716 eth = skb_gro_header_fast(skb, 0);
4717 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4718 eth = skb_gro_header_slow(skb, hlen, 0);
4719 if (unlikely(!eth)) {
4da46ceb
AC
4720 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4721 __func__, napi->dev->name);
a50e233c
ED
4722 napi_reuse_skb(napi, skb);
4723 return NULL;
4724 }
4725 } else {
4726 gro_pull_from_frag0(skb, hlen);
4727 NAPI_GRO_CB(skb)->frag0 += hlen;
4728 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4729 }
a50e233c
ED
4730 __skb_pull(skb, hlen);
4731
4732 /*
4733 * This works because the only protocols we care about don't require
4734 * special handling.
4735 * We'll fix it up properly in napi_frags_finish()
4736 */
4737 skb->protocol = eth->h_proto;
76620aaf 4738
76620aaf
HX
4739 return skb;
4740}
76620aaf 4741
c7c4b3b6 4742gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4743{
76620aaf 4744 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4745
4746 if (!skb)
c7c4b3b6 4747 return GRO_DROP;
5d0d9be8 4748
ae78dbfa
BH
4749 trace_napi_gro_frags_entry(skb);
4750
89c5fa33 4751 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4752}
5d38a079
HX
4753EXPORT_SYMBOL(napi_gro_frags);
4754
573e8fca
TH
4755/* Compute the checksum from gro_offset and return the folded value
4756 * after adding in any pseudo checksum.
4757 */
4758__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4759{
4760 __wsum wsum;
4761 __sum16 sum;
4762
4763 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4764
4765 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4766 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4767 if (likely(!sum)) {
4768 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4769 !skb->csum_complete_sw)
4770 netdev_rx_csum_fault(skb->dev);
4771 }
4772
4773 NAPI_GRO_CB(skb)->csum = wsum;
4774 NAPI_GRO_CB(skb)->csum_valid = 1;
4775
4776 return sum;
4777}
4778EXPORT_SYMBOL(__skb_gro_checksum_complete);
4779
e326bed2 4780/*
855abcf0 4781 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4782 * Note: called with local irq disabled, but exits with local irq enabled.
4783 */
4784static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4785{
4786#ifdef CONFIG_RPS
4787 struct softnet_data *remsd = sd->rps_ipi_list;
4788
4789 if (remsd) {
4790 sd->rps_ipi_list = NULL;
4791
4792 local_irq_enable();
4793
4794 /* Send pending IPI's to kick RPS processing on remote cpus. */
4795 while (remsd) {
4796 struct softnet_data *next = remsd->rps_ipi_next;
4797
4798 if (cpu_online(remsd->cpu))
c46fff2a 4799 smp_call_function_single_async(remsd->cpu,
fce8ad15 4800 &remsd->csd);
e326bed2
ED
4801 remsd = next;
4802 }
4803 } else
4804#endif
4805 local_irq_enable();
4806}
4807
d75b1ade
ED
4808static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4809{
4810#ifdef CONFIG_RPS
4811 return sd->rps_ipi_list != NULL;
4812#else
4813 return false;
4814#endif
4815}
4816
bea3348e 4817static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4818{
eecfd7c4 4819 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4820 bool again = true;
4821 int work = 0;
1da177e4 4822
e326bed2
ED
4823 /* Check if we have pending ipi, its better to send them now,
4824 * not waiting net_rx_action() end.
4825 */
d75b1ade 4826 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4827 local_irq_disable();
4828 net_rps_action_and_irq_enable(sd);
4829 }
d75b1ade 4830
bea3348e 4831 napi->weight = weight_p;
145dd5f9 4832 while (again) {
1da177e4 4833 struct sk_buff *skb;
6e7676c1
CG
4834
4835 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4836 rcu_read_lock();
6e7676c1 4837 __netif_receive_skb(skb);
2c17d27c 4838 rcu_read_unlock();
76cc8b13 4839 input_queue_head_incr(sd);
145dd5f9 4840 if (++work >= quota)
76cc8b13 4841 return work;
145dd5f9 4842
6e7676c1 4843 }
1da177e4 4844
145dd5f9 4845 local_irq_disable();
e36fa2f7 4846 rps_lock(sd);
11ef7a89 4847 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4848 /*
4849 * Inline a custom version of __napi_complete().
4850 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4851 * and NAPI_STATE_SCHED is the only possible flag set
4852 * on backlog.
4853 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4854 * and we dont need an smp_mb() memory barrier.
4855 */
eecfd7c4 4856 napi->state = 0;
145dd5f9
PA
4857 again = false;
4858 } else {
4859 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4860 &sd->process_queue);
bea3348e 4861 }
e36fa2f7 4862 rps_unlock(sd);
145dd5f9 4863 local_irq_enable();
6e7676c1 4864 }
1da177e4 4865
bea3348e
SH
4866 return work;
4867}
1da177e4 4868
bea3348e
SH
4869/**
4870 * __napi_schedule - schedule for receive
c4ea43c5 4871 * @n: entry to schedule
bea3348e 4872 *
bc9ad166
ED
4873 * The entry's receive function will be scheduled to run.
4874 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4875 */
b5606c2d 4876void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4877{
4878 unsigned long flags;
1da177e4 4879
bea3348e 4880 local_irq_save(flags);
903ceff7 4881 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4882 local_irq_restore(flags);
1da177e4 4883}
bea3348e
SH
4884EXPORT_SYMBOL(__napi_schedule);
4885
bc9ad166
ED
4886/**
4887 * __napi_schedule_irqoff - schedule for receive
4888 * @n: entry to schedule
4889 *
4890 * Variant of __napi_schedule() assuming hard irqs are masked
4891 */
4892void __napi_schedule_irqoff(struct napi_struct *n)
4893{
4894 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4895}
4896EXPORT_SYMBOL(__napi_schedule_irqoff);
4897
d565b0a1
HX
4898void __napi_complete(struct napi_struct *n)
4899{
4900 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4901
d75b1ade 4902 list_del_init(&n->poll_list);
4e857c58 4903 smp_mb__before_atomic();
d565b0a1
HX
4904 clear_bit(NAPI_STATE_SCHED, &n->state);
4905}
4906EXPORT_SYMBOL(__napi_complete);
4907
3b47d303 4908void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4909{
4910 unsigned long flags;
4911
4912 /*
4913 * don't let napi dequeue from the cpu poll list
4914 * just in case its running on a different cpu
4915 */
4916 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4917 return;
4918
3b47d303
ED
4919 if (n->gro_list) {
4920 unsigned long timeout = 0;
d75b1ade 4921
3b47d303
ED
4922 if (work_done)
4923 timeout = n->dev->gro_flush_timeout;
4924
4925 if (timeout)
4926 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4927 HRTIMER_MODE_REL_PINNED);
4928 else
4929 napi_gro_flush(n, false);
4930 }
d75b1ade
ED
4931 if (likely(list_empty(&n->poll_list))) {
4932 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4933 } else {
4934 /* If n->poll_list is not empty, we need to mask irqs */
4935 local_irq_save(flags);
4936 __napi_complete(n);
4937 local_irq_restore(flags);
4938 }
d565b0a1 4939}
3b47d303 4940EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4941
af12fa6e 4942/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4943static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4944{
4945 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4946 struct napi_struct *napi;
4947
4948 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4949 if (napi->napi_id == napi_id)
4950 return napi;
4951
4952 return NULL;
4953}
02d62e86
ED
4954
4955#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4956#define BUSY_POLL_BUDGET 8
02d62e86
ED
4957bool sk_busy_loop(struct sock *sk, int nonblock)
4958{
4959 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4960 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4961 struct napi_struct *napi;
4962 int rc = false;
4963
2a028ecb 4964 rcu_read_lock();
02d62e86
ED
4965
4966 napi = napi_by_id(sk->sk_napi_id);
4967 if (!napi)
4968 goto out;
4969
ce6aea93
ED
4970 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4971 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4972
4973 do {
ce6aea93 4974 rc = 0;
2a028ecb 4975 local_bh_disable();
ce6aea93
ED
4976 if (busy_poll) {
4977 rc = busy_poll(napi);
4978 } else if (napi_schedule_prep(napi)) {
4979 void *have = netpoll_poll_lock(napi);
4980
4981 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4982 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4983 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4984 if (rc == BUSY_POLL_BUDGET) {
4985 napi_complete_done(napi, rc);
4986 napi_schedule(napi);
4987 }
4988 }
4989 netpoll_poll_unlock(have);
4990 }
2a028ecb 4991 if (rc > 0)
02a1d6e7
ED
4992 __NET_ADD_STATS(sock_net(sk),
4993 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4994 local_bh_enable();
02d62e86
ED
4995
4996 if (rc == LL_FLUSH_FAILED)
4997 break; /* permanent failure */
4998
02d62e86 4999 cpu_relax();
02d62e86
ED
5000 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5001 !need_resched() && !busy_loop_timeout(end_time));
5002
5003 rc = !skb_queue_empty(&sk->sk_receive_queue);
5004out:
2a028ecb 5005 rcu_read_unlock();
02d62e86
ED
5006 return rc;
5007}
5008EXPORT_SYMBOL(sk_busy_loop);
5009
5010#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5011
5012void napi_hash_add(struct napi_struct *napi)
5013{
d64b5e85
ED
5014 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5015 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5016 return;
af12fa6e 5017
52bd2d62 5018 spin_lock(&napi_hash_lock);
af12fa6e 5019
52bd2d62
ED
5020 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5021 do {
5022 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5023 napi_gen_id = NR_CPUS + 1;
5024 } while (napi_by_id(napi_gen_id));
5025 napi->napi_id = napi_gen_id;
af12fa6e 5026
52bd2d62
ED
5027 hlist_add_head_rcu(&napi->napi_hash_node,
5028 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5029
52bd2d62 5030 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5031}
5032EXPORT_SYMBOL_GPL(napi_hash_add);
5033
5034/* Warning : caller is responsible to make sure rcu grace period
5035 * is respected before freeing memory containing @napi
5036 */
34cbe27e 5037bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5038{
34cbe27e
ED
5039 bool rcu_sync_needed = false;
5040
af12fa6e
ET
5041 spin_lock(&napi_hash_lock);
5042
34cbe27e
ED
5043 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5044 rcu_sync_needed = true;
af12fa6e 5045 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5046 }
af12fa6e 5047 spin_unlock(&napi_hash_lock);
34cbe27e 5048 return rcu_sync_needed;
af12fa6e
ET
5049}
5050EXPORT_SYMBOL_GPL(napi_hash_del);
5051
3b47d303
ED
5052static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5053{
5054 struct napi_struct *napi;
5055
5056 napi = container_of(timer, struct napi_struct, timer);
5057 if (napi->gro_list)
5058 napi_schedule(napi);
5059
5060 return HRTIMER_NORESTART;
5061}
5062
d565b0a1
HX
5063void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5064 int (*poll)(struct napi_struct *, int), int weight)
5065{
5066 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5067 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5068 napi->timer.function = napi_watchdog;
4ae5544f 5069 napi->gro_count = 0;
d565b0a1 5070 napi->gro_list = NULL;
5d38a079 5071 napi->skb = NULL;
d565b0a1 5072 napi->poll = poll;
82dc3c63
ED
5073 if (weight > NAPI_POLL_WEIGHT)
5074 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5075 weight, dev->name);
d565b0a1
HX
5076 napi->weight = weight;
5077 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5078 napi->dev = dev;
5d38a079 5079#ifdef CONFIG_NETPOLL
d565b0a1
HX
5080 spin_lock_init(&napi->poll_lock);
5081 napi->poll_owner = -1;
5082#endif
5083 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5084 napi_hash_add(napi);
d565b0a1
HX
5085}
5086EXPORT_SYMBOL(netif_napi_add);
5087
3b47d303
ED
5088void napi_disable(struct napi_struct *n)
5089{
5090 might_sleep();
5091 set_bit(NAPI_STATE_DISABLE, &n->state);
5092
5093 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5094 msleep(1);
2d8bff12
NH
5095 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5096 msleep(1);
3b47d303
ED
5097
5098 hrtimer_cancel(&n->timer);
5099
5100 clear_bit(NAPI_STATE_DISABLE, &n->state);
5101}
5102EXPORT_SYMBOL(napi_disable);
5103
93d05d4a 5104/* Must be called in process context */
d565b0a1
HX
5105void netif_napi_del(struct napi_struct *napi)
5106{
93d05d4a
ED
5107 might_sleep();
5108 if (napi_hash_del(napi))
5109 synchronize_net();
d7b06636 5110 list_del_init(&napi->dev_list);
76620aaf 5111 napi_free_frags(napi);
d565b0a1 5112
289dccbe 5113 kfree_skb_list(napi->gro_list);
d565b0a1 5114 napi->gro_list = NULL;
4ae5544f 5115 napi->gro_count = 0;
d565b0a1
HX
5116}
5117EXPORT_SYMBOL(netif_napi_del);
5118
726ce70e
HX
5119static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5120{
5121 void *have;
5122 int work, weight;
5123
5124 list_del_init(&n->poll_list);
5125
5126 have = netpoll_poll_lock(n);
5127
5128 weight = n->weight;
5129
5130 /* This NAPI_STATE_SCHED test is for avoiding a race
5131 * with netpoll's poll_napi(). Only the entity which
5132 * obtains the lock and sees NAPI_STATE_SCHED set will
5133 * actually make the ->poll() call. Therefore we avoid
5134 * accidentally calling ->poll() when NAPI is not scheduled.
5135 */
5136 work = 0;
5137 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5138 work = n->poll(n, weight);
1db19db7 5139 trace_napi_poll(n, work, weight);
726ce70e
HX
5140 }
5141
5142 WARN_ON_ONCE(work > weight);
5143
5144 if (likely(work < weight))
5145 goto out_unlock;
5146
5147 /* Drivers must not modify the NAPI state if they
5148 * consume the entire weight. In such cases this code
5149 * still "owns" the NAPI instance and therefore can
5150 * move the instance around on the list at-will.
5151 */
5152 if (unlikely(napi_disable_pending(n))) {
5153 napi_complete(n);
5154 goto out_unlock;
5155 }
5156
5157 if (n->gro_list) {
5158 /* flush too old packets
5159 * If HZ < 1000, flush all packets.
5160 */
5161 napi_gro_flush(n, HZ >= 1000);
5162 }
5163
001ce546
HX
5164 /* Some drivers may have called napi_schedule
5165 * prior to exhausting their budget.
5166 */
5167 if (unlikely(!list_empty(&n->poll_list))) {
5168 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5169 n->dev ? n->dev->name : "backlog");
5170 goto out_unlock;
5171 }
5172
726ce70e
HX
5173 list_add_tail(&n->poll_list, repoll);
5174
5175out_unlock:
5176 netpoll_poll_unlock(have);
5177
5178 return work;
5179}
5180
1da177e4
LT
5181static void net_rx_action(struct softirq_action *h)
5182{
903ceff7 5183 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5184 unsigned long time_limit = jiffies + 2;
51b0bded 5185 int budget = netdev_budget;
d75b1ade
ED
5186 LIST_HEAD(list);
5187 LIST_HEAD(repoll);
53fb95d3 5188
1da177e4 5189 local_irq_disable();
d75b1ade
ED
5190 list_splice_init(&sd->poll_list, &list);
5191 local_irq_enable();
1da177e4 5192
ceb8d5bf 5193 for (;;) {
bea3348e 5194 struct napi_struct *n;
1da177e4 5195
ceb8d5bf
HX
5196 if (list_empty(&list)) {
5197 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5198 return;
5199 break;
5200 }
5201
6bd373eb
HX
5202 n = list_first_entry(&list, struct napi_struct, poll_list);
5203 budget -= napi_poll(n, &repoll);
5204
d75b1ade 5205 /* If softirq window is exhausted then punt.
24f8b238
SH
5206 * Allow this to run for 2 jiffies since which will allow
5207 * an average latency of 1.5/HZ.
bea3348e 5208 */
ceb8d5bf
HX
5209 if (unlikely(budget <= 0 ||
5210 time_after_eq(jiffies, time_limit))) {
5211 sd->time_squeeze++;
5212 break;
5213 }
1da177e4 5214 }
d75b1ade 5215
795bb1c0 5216 __kfree_skb_flush();
d75b1ade
ED
5217 local_irq_disable();
5218
5219 list_splice_tail_init(&sd->poll_list, &list);
5220 list_splice_tail(&repoll, &list);
5221 list_splice(&list, &sd->poll_list);
5222 if (!list_empty(&sd->poll_list))
5223 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5224
e326bed2 5225 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5226}
5227
aa9d8560 5228struct netdev_adjacent {
9ff162a8 5229 struct net_device *dev;
5d261913
VF
5230
5231 /* upper master flag, there can only be one master device per list */
9ff162a8 5232 bool master;
5d261913 5233
5d261913
VF
5234 /* counter for the number of times this device was added to us */
5235 u16 ref_nr;
5236
402dae96
VF
5237 /* private field for the users */
5238 void *private;
5239
9ff162a8
JP
5240 struct list_head list;
5241 struct rcu_head rcu;
9ff162a8
JP
5242};
5243
6ea29da1 5244static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5245 struct list_head *adj_list)
9ff162a8 5246{
5d261913 5247 struct netdev_adjacent *adj;
5d261913 5248
2f268f12 5249 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5250 if (adj->dev == adj_dev)
5251 return adj;
9ff162a8
JP
5252 }
5253 return NULL;
5254}
5255
5256/**
5257 * netdev_has_upper_dev - Check if device is linked to an upper device
5258 * @dev: device
5259 * @upper_dev: upper device to check
5260 *
5261 * Find out if a device is linked to specified upper device and return true
5262 * in case it is. Note that this checks only immediate upper device,
5263 * not through a complete stack of devices. The caller must hold the RTNL lock.
5264 */
5265bool netdev_has_upper_dev(struct net_device *dev,
5266 struct net_device *upper_dev)
5267{
5268 ASSERT_RTNL();
5269
6ea29da1 5270 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5271}
5272EXPORT_SYMBOL(netdev_has_upper_dev);
5273
5274/**
5275 * netdev_has_any_upper_dev - Check if device is linked to some device
5276 * @dev: device
5277 *
5278 * Find out if a device is linked to an upper device and return true in case
5279 * it is. The caller must hold the RTNL lock.
5280 */
1d143d9f 5281static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5282{
5283 ASSERT_RTNL();
5284
2f268f12 5285 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5286}
9ff162a8
JP
5287
5288/**
5289 * netdev_master_upper_dev_get - Get master upper device
5290 * @dev: device
5291 *
5292 * Find a master upper device and return pointer to it or NULL in case
5293 * it's not there. The caller must hold the RTNL lock.
5294 */
5295struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5296{
aa9d8560 5297 struct netdev_adjacent *upper;
9ff162a8
JP
5298
5299 ASSERT_RTNL();
5300
2f268f12 5301 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5302 return NULL;
5303
2f268f12 5304 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5305 struct netdev_adjacent, list);
9ff162a8
JP
5306 if (likely(upper->master))
5307 return upper->dev;
5308 return NULL;
5309}
5310EXPORT_SYMBOL(netdev_master_upper_dev_get);
5311
b6ccba4c
VF
5312void *netdev_adjacent_get_private(struct list_head *adj_list)
5313{
5314 struct netdev_adjacent *adj;
5315
5316 adj = list_entry(adj_list, struct netdev_adjacent, list);
5317
5318 return adj->private;
5319}
5320EXPORT_SYMBOL(netdev_adjacent_get_private);
5321
44a40855
VY
5322/**
5323 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5324 * @dev: device
5325 * @iter: list_head ** of the current position
5326 *
5327 * Gets the next device from the dev's upper list, starting from iter
5328 * position. The caller must hold RCU read lock.
5329 */
5330struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5331 struct list_head **iter)
5332{
5333 struct netdev_adjacent *upper;
5334
5335 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5336
5337 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5338
5339 if (&upper->list == &dev->adj_list.upper)
5340 return NULL;
5341
5342 *iter = &upper->list;
5343
5344 return upper->dev;
5345}
5346EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5347
31088a11
VF
5348/**
5349 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5350 * @dev: device
5351 * @iter: list_head ** of the current position
5352 *
5353 * Gets the next device from the dev's upper list, starting from iter
5354 * position. The caller must hold RCU read lock.
5355 */
2f268f12
VF
5356struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5357 struct list_head **iter)
48311f46
VF
5358{
5359 struct netdev_adjacent *upper;
5360
85328240 5361 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5362
5363 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5364
2f268f12 5365 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5366 return NULL;
5367
5368 *iter = &upper->list;
5369
5370 return upper->dev;
5371}
2f268f12 5372EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5373
31088a11
VF
5374/**
5375 * netdev_lower_get_next_private - Get the next ->private from the
5376 * lower neighbour list
5377 * @dev: device
5378 * @iter: list_head ** of the current position
5379 *
5380 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5381 * list, starting from iter position. The caller must hold either hold the
5382 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5383 * list will remain unchanged.
31088a11
VF
5384 */
5385void *netdev_lower_get_next_private(struct net_device *dev,
5386 struct list_head **iter)
5387{
5388 struct netdev_adjacent *lower;
5389
5390 lower = list_entry(*iter, struct netdev_adjacent, list);
5391
5392 if (&lower->list == &dev->adj_list.lower)
5393 return NULL;
5394
6859e7df 5395 *iter = lower->list.next;
31088a11
VF
5396
5397 return lower->private;
5398}
5399EXPORT_SYMBOL(netdev_lower_get_next_private);
5400
5401/**
5402 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5403 * lower neighbour list, RCU
5404 * variant
5405 * @dev: device
5406 * @iter: list_head ** of the current position
5407 *
5408 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5409 * list, starting from iter position. The caller must hold RCU read lock.
5410 */
5411void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5412 struct list_head **iter)
5413{
5414 struct netdev_adjacent *lower;
5415
5416 WARN_ON_ONCE(!rcu_read_lock_held());
5417
5418 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5419
5420 if (&lower->list == &dev->adj_list.lower)
5421 return NULL;
5422
6859e7df 5423 *iter = &lower->list;
31088a11
VF
5424
5425 return lower->private;
5426}
5427EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5428
4085ebe8
VY
5429/**
5430 * netdev_lower_get_next - Get the next device from the lower neighbour
5431 * list
5432 * @dev: device
5433 * @iter: list_head ** of the current position
5434 *
5435 * Gets the next netdev_adjacent from the dev's lower neighbour
5436 * list, starting from iter position. The caller must hold RTNL lock or
5437 * its own locking that guarantees that the neighbour lower
b469139e 5438 * list will remain unchanged.
4085ebe8
VY
5439 */
5440void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5441{
5442 struct netdev_adjacent *lower;
5443
cfdd28be 5444 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5445
5446 if (&lower->list == &dev->adj_list.lower)
5447 return NULL;
5448
cfdd28be 5449 *iter = lower->list.next;
4085ebe8
VY
5450
5451 return lower->dev;
5452}
5453EXPORT_SYMBOL(netdev_lower_get_next);
5454
7ce856aa
JP
5455/**
5456 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5457 * @dev: device
5458 * @iter: list_head ** of the current position
5459 *
5460 * Gets the next netdev_adjacent from the dev's all lower neighbour
5461 * list, starting from iter position. The caller must hold RTNL lock or
5462 * its own locking that guarantees that the neighbour all lower
5463 * list will remain unchanged.
5464 */
5465struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5466{
5467 struct netdev_adjacent *lower;
5468
5469 lower = list_entry(*iter, struct netdev_adjacent, list);
5470
5471 if (&lower->list == &dev->all_adj_list.lower)
5472 return NULL;
5473
5474 *iter = lower->list.next;
5475
5476 return lower->dev;
5477}
5478EXPORT_SYMBOL(netdev_all_lower_get_next);
5479
5480/**
5481 * netdev_all_lower_get_next_rcu - Get the next device from all
5482 * lower neighbour list, RCU variant
5483 * @dev: device
5484 * @iter: list_head ** of the current position
5485 *
5486 * Gets the next netdev_adjacent from the dev's all lower neighbour
5487 * list, starting from iter position. The caller must hold RCU read lock.
5488 */
5489struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5490 struct list_head **iter)
5491{
5492 struct netdev_adjacent *lower;
5493
5494 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5495 struct netdev_adjacent, list);
5496
5497 return lower ? lower->dev : NULL;
5498}
5499EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5500
e001bfad 5501/**
5502 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5503 * lower neighbour list, RCU
5504 * variant
5505 * @dev: device
5506 *
5507 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5508 * list. The caller must hold RCU read lock.
5509 */
5510void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5511{
5512 struct netdev_adjacent *lower;
5513
5514 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5515 struct netdev_adjacent, list);
5516 if (lower)
5517 return lower->private;
5518 return NULL;
5519}
5520EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5521
9ff162a8
JP
5522/**
5523 * netdev_master_upper_dev_get_rcu - Get master upper device
5524 * @dev: device
5525 *
5526 * Find a master upper device and return pointer to it or NULL in case
5527 * it's not there. The caller must hold the RCU read lock.
5528 */
5529struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5530{
aa9d8560 5531 struct netdev_adjacent *upper;
9ff162a8 5532
2f268f12 5533 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5534 struct netdev_adjacent, list);
9ff162a8
JP
5535 if (upper && likely(upper->master))
5536 return upper->dev;
5537 return NULL;
5538}
5539EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5540
0a59f3a9 5541static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5542 struct net_device *adj_dev,
5543 struct list_head *dev_list)
5544{
5545 char linkname[IFNAMSIZ+7];
5546 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5547 "upper_%s" : "lower_%s", adj_dev->name);
5548 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5549 linkname);
5550}
0a59f3a9 5551static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5552 char *name,
5553 struct list_head *dev_list)
5554{
5555 char linkname[IFNAMSIZ+7];
5556 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5557 "upper_%s" : "lower_%s", name);
5558 sysfs_remove_link(&(dev->dev.kobj), linkname);
5559}
5560
7ce64c79
AF
5561static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5562 struct net_device *adj_dev,
5563 struct list_head *dev_list)
5564{
5565 return (dev_list == &dev->adj_list.upper ||
5566 dev_list == &dev->adj_list.lower) &&
5567 net_eq(dev_net(dev), dev_net(adj_dev));
5568}
3ee32707 5569
5d261913
VF
5570static int __netdev_adjacent_dev_insert(struct net_device *dev,
5571 struct net_device *adj_dev,
7863c054 5572 struct list_head *dev_list,
402dae96 5573 void *private, bool master)
5d261913
VF
5574{
5575 struct netdev_adjacent *adj;
842d67a7 5576 int ret;
5d261913 5577
6ea29da1 5578 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5579
5580 if (adj) {
5d261913
VF
5581 adj->ref_nr++;
5582 return 0;
5583 }
5584
5585 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5586 if (!adj)
5587 return -ENOMEM;
5588
5589 adj->dev = adj_dev;
5590 adj->master = master;
5d261913 5591 adj->ref_nr = 1;
402dae96 5592 adj->private = private;
5d261913 5593 dev_hold(adj_dev);
2f268f12
VF
5594
5595 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5596 adj_dev->name, dev->name, adj_dev->name);
5d261913 5597
7ce64c79 5598 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5599 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5600 if (ret)
5601 goto free_adj;
5602 }
5603
7863c054 5604 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5605 if (master) {
5606 ret = sysfs_create_link(&(dev->dev.kobj),
5607 &(adj_dev->dev.kobj), "master");
5608 if (ret)
5831d66e 5609 goto remove_symlinks;
842d67a7 5610
7863c054 5611 list_add_rcu(&adj->list, dev_list);
842d67a7 5612 } else {
7863c054 5613 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5614 }
5d261913
VF
5615
5616 return 0;
842d67a7 5617
5831d66e 5618remove_symlinks:
7ce64c79 5619 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5620 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5621free_adj:
5622 kfree(adj);
974daef7 5623 dev_put(adj_dev);
842d67a7
VF
5624
5625 return ret;
5d261913
VF
5626}
5627
1d143d9f 5628static void __netdev_adjacent_dev_remove(struct net_device *dev,
5629 struct net_device *adj_dev,
5630 struct list_head *dev_list)
5d261913
VF
5631{
5632 struct netdev_adjacent *adj;
5633
6ea29da1 5634 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5635
2f268f12
VF
5636 if (!adj) {
5637 pr_err("tried to remove device %s from %s\n",
5638 dev->name, adj_dev->name);
5d261913 5639 BUG();
2f268f12 5640 }
5d261913
VF
5641
5642 if (adj->ref_nr > 1) {
2f268f12
VF
5643 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5644 adj->ref_nr-1);
5d261913
VF
5645 adj->ref_nr--;
5646 return;
5647 }
5648
842d67a7
VF
5649 if (adj->master)
5650 sysfs_remove_link(&(dev->dev.kobj), "master");
5651
7ce64c79 5652 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5653 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5654
5d261913 5655 list_del_rcu(&adj->list);
2f268f12
VF
5656 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5657 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5658 dev_put(adj_dev);
5659 kfree_rcu(adj, rcu);
5660}
5661
1d143d9f 5662static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5663 struct net_device *upper_dev,
5664 struct list_head *up_list,
5665 struct list_head *down_list,
5666 void *private, bool master)
5d261913
VF
5667{
5668 int ret;
5669
402dae96
VF
5670 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5671 master);
5d261913
VF
5672 if (ret)
5673 return ret;
5674
402dae96
VF
5675 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5676 false);
5d261913 5677 if (ret) {
2f268f12 5678 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5679 return ret;
5680 }
5681
5682 return 0;
5683}
5684
1d143d9f 5685static int __netdev_adjacent_dev_link(struct net_device *dev,
5686 struct net_device *upper_dev)
5d261913 5687{
2f268f12
VF
5688 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5689 &dev->all_adj_list.upper,
5690 &upper_dev->all_adj_list.lower,
402dae96 5691 NULL, false);
5d261913
VF
5692}
5693
1d143d9f 5694static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5695 struct net_device *upper_dev,
5696 struct list_head *up_list,
5697 struct list_head *down_list)
5d261913 5698{
2f268f12
VF
5699 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5700 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5701}
5702
1d143d9f 5703static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5704 struct net_device *upper_dev)
5d261913 5705{
2f268f12
VF
5706 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5707 &dev->all_adj_list.upper,
5708 &upper_dev->all_adj_list.lower);
5709}
5710
1d143d9f 5711static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5712 struct net_device *upper_dev,
5713 void *private, bool master)
2f268f12
VF
5714{
5715 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5716
5717 if (ret)
5718 return ret;
5719
5720 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5721 &dev->adj_list.upper,
5722 &upper_dev->adj_list.lower,
402dae96 5723 private, master);
2f268f12
VF
5724 if (ret) {
5725 __netdev_adjacent_dev_unlink(dev, upper_dev);
5726 return ret;
5727 }
5728
5729 return 0;
5d261913
VF
5730}
5731
1d143d9f 5732static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5733 struct net_device *upper_dev)
2f268f12
VF
5734{
5735 __netdev_adjacent_dev_unlink(dev, upper_dev);
5736 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5737 &dev->adj_list.upper,
5738 &upper_dev->adj_list.lower);
5739}
5d261913 5740
9ff162a8 5741static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5742 struct net_device *upper_dev, bool master,
29bf24af 5743 void *upper_priv, void *upper_info)
9ff162a8 5744{
0e4ead9d 5745 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5746 struct netdev_adjacent *i, *j, *to_i, *to_j;
5747 int ret = 0;
9ff162a8
JP
5748
5749 ASSERT_RTNL();
5750
5751 if (dev == upper_dev)
5752 return -EBUSY;
5753
5754 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5755 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5756 return -EBUSY;
5757
6ea29da1 5758 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5759 return -EEXIST;
5760
5761 if (master && netdev_master_upper_dev_get(dev))
5762 return -EBUSY;
5763
0e4ead9d
JP
5764 changeupper_info.upper_dev = upper_dev;
5765 changeupper_info.master = master;
5766 changeupper_info.linking = true;
29bf24af 5767 changeupper_info.upper_info = upper_info;
0e4ead9d 5768
573c7ba0
JP
5769 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5770 &changeupper_info.info);
5771 ret = notifier_to_errno(ret);
5772 if (ret)
5773 return ret;
5774
6dffb044 5775 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5776 master);
5d261913
VF
5777 if (ret)
5778 return ret;
9ff162a8 5779
5d261913 5780 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5781 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5782 * versa, and don't forget the devices itself. All of these
5783 * links are non-neighbours.
5784 */
2f268f12
VF
5785 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5786 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5787 pr_debug("Interlinking %s with %s, non-neighbour\n",
5788 i->dev->name, j->dev->name);
5d261913
VF
5789 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5790 if (ret)
5791 goto rollback_mesh;
5792 }
5793 }
5794
5795 /* add dev to every upper_dev's upper device */
2f268f12
VF
5796 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5797 pr_debug("linking %s's upper device %s with %s\n",
5798 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5799 ret = __netdev_adjacent_dev_link(dev, i->dev);
5800 if (ret)
5801 goto rollback_upper_mesh;
5802 }
5803
5804 /* add upper_dev to every dev's lower device */
2f268f12
VF
5805 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5806 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5807 i->dev->name, upper_dev->name);
5d261913
VF
5808 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5809 if (ret)
5810 goto rollback_lower_mesh;
5811 }
9ff162a8 5812
b03804e7
IS
5813 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5814 &changeupper_info.info);
5815 ret = notifier_to_errno(ret);
5816 if (ret)
5817 goto rollback_lower_mesh;
5818
9ff162a8 5819 return 0;
5d261913
VF
5820
5821rollback_lower_mesh:
5822 to_i = i;
2f268f12 5823 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5824 if (i == to_i)
5825 break;
5826 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5827 }
5828
5829 i = NULL;
5830
5831rollback_upper_mesh:
5832 to_i = i;
2f268f12 5833 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5834 if (i == to_i)
5835 break;
5836 __netdev_adjacent_dev_unlink(dev, i->dev);
5837 }
5838
5839 i = j = NULL;
5840
5841rollback_mesh:
5842 to_i = i;
5843 to_j = j;
2f268f12
VF
5844 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5845 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5846 if (i == to_i && j == to_j)
5847 break;
5848 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5849 }
5850 if (i == to_i)
5851 break;
5852 }
5853
2f268f12 5854 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5855
5856 return ret;
9ff162a8
JP
5857}
5858
5859/**
5860 * netdev_upper_dev_link - Add a link to the upper device
5861 * @dev: device
5862 * @upper_dev: new upper device
5863 *
5864 * Adds a link to device which is upper to this one. The caller must hold
5865 * the RTNL lock. On a failure a negative errno code is returned.
5866 * On success the reference counts are adjusted and the function
5867 * returns zero.
5868 */
5869int netdev_upper_dev_link(struct net_device *dev,
5870 struct net_device *upper_dev)
5871{
29bf24af 5872 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5873}
5874EXPORT_SYMBOL(netdev_upper_dev_link);
5875
5876/**
5877 * netdev_master_upper_dev_link - Add a master link to the upper device
5878 * @dev: device
5879 * @upper_dev: new upper device
6dffb044 5880 * @upper_priv: upper device private
29bf24af 5881 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5882 *
5883 * Adds a link to device which is upper to this one. In this case, only
5884 * one master upper device can be linked, although other non-master devices
5885 * might be linked as well. The caller must hold the RTNL lock.
5886 * On a failure a negative errno code is returned. On success the reference
5887 * counts are adjusted and the function returns zero.
5888 */
5889int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5890 struct net_device *upper_dev,
29bf24af 5891 void *upper_priv, void *upper_info)
9ff162a8 5892{
29bf24af
JP
5893 return __netdev_upper_dev_link(dev, upper_dev, true,
5894 upper_priv, upper_info);
9ff162a8
JP
5895}
5896EXPORT_SYMBOL(netdev_master_upper_dev_link);
5897
5898/**
5899 * netdev_upper_dev_unlink - Removes a link to upper device
5900 * @dev: device
5901 * @upper_dev: new upper device
5902 *
5903 * Removes a link to device which is upper to this one. The caller must hold
5904 * the RTNL lock.
5905 */
5906void netdev_upper_dev_unlink(struct net_device *dev,
5907 struct net_device *upper_dev)
5908{
0e4ead9d 5909 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5910 struct netdev_adjacent *i, *j;
9ff162a8
JP
5911 ASSERT_RTNL();
5912
0e4ead9d
JP
5913 changeupper_info.upper_dev = upper_dev;
5914 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5915 changeupper_info.linking = false;
5916
573c7ba0
JP
5917 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5918 &changeupper_info.info);
5919
2f268f12 5920 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5921
5922 /* Here is the tricky part. We must remove all dev's lower
5923 * devices from all upper_dev's upper devices and vice
5924 * versa, to maintain the graph relationship.
5925 */
2f268f12
VF
5926 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5927 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5928 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5929
5930 /* remove also the devices itself from lower/upper device
5931 * list
5932 */
2f268f12 5933 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5934 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5935
2f268f12 5936 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5937 __netdev_adjacent_dev_unlink(dev, i->dev);
5938
0e4ead9d
JP
5939 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5940 &changeupper_info.info);
9ff162a8
JP
5941}
5942EXPORT_SYMBOL(netdev_upper_dev_unlink);
5943
61bd3857
MS
5944/**
5945 * netdev_bonding_info_change - Dispatch event about slave change
5946 * @dev: device
4a26e453 5947 * @bonding_info: info to dispatch
61bd3857
MS
5948 *
5949 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5950 * The caller must hold the RTNL lock.
5951 */
5952void netdev_bonding_info_change(struct net_device *dev,
5953 struct netdev_bonding_info *bonding_info)
5954{
5955 struct netdev_notifier_bonding_info info;
5956
5957 memcpy(&info.bonding_info, bonding_info,
5958 sizeof(struct netdev_bonding_info));
5959 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5960 &info.info);
5961}
5962EXPORT_SYMBOL(netdev_bonding_info_change);
5963
2ce1ee17 5964static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5965{
5966 struct netdev_adjacent *iter;
5967
5968 struct net *net = dev_net(dev);
5969
5970 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5971 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5972 continue;
5973 netdev_adjacent_sysfs_add(iter->dev, dev,
5974 &iter->dev->adj_list.lower);
5975 netdev_adjacent_sysfs_add(dev, iter->dev,
5976 &dev->adj_list.upper);
5977 }
5978
5979 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5980 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5981 continue;
5982 netdev_adjacent_sysfs_add(iter->dev, dev,
5983 &iter->dev->adj_list.upper);
5984 netdev_adjacent_sysfs_add(dev, iter->dev,
5985 &dev->adj_list.lower);
5986 }
5987}
5988
2ce1ee17 5989static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5990{
5991 struct netdev_adjacent *iter;
5992
5993 struct net *net = dev_net(dev);
5994
5995 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5996 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5997 continue;
5998 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5999 &iter->dev->adj_list.lower);
6000 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6001 &dev->adj_list.upper);
6002 }
6003
6004 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6005 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6006 continue;
6007 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6008 &iter->dev->adj_list.upper);
6009 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6010 &dev->adj_list.lower);
6011 }
6012}
6013
5bb025fa 6014void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6015{
5bb025fa 6016 struct netdev_adjacent *iter;
402dae96 6017
4c75431a
AF
6018 struct net *net = dev_net(dev);
6019
5bb025fa 6020 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6021 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6022 continue;
5bb025fa
VF
6023 netdev_adjacent_sysfs_del(iter->dev, oldname,
6024 &iter->dev->adj_list.lower);
6025 netdev_adjacent_sysfs_add(iter->dev, dev,
6026 &iter->dev->adj_list.lower);
6027 }
402dae96 6028
5bb025fa 6029 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6030 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6031 continue;
5bb025fa
VF
6032 netdev_adjacent_sysfs_del(iter->dev, oldname,
6033 &iter->dev->adj_list.upper);
6034 netdev_adjacent_sysfs_add(iter->dev, dev,
6035 &iter->dev->adj_list.upper);
6036 }
402dae96 6037}
402dae96
VF
6038
6039void *netdev_lower_dev_get_private(struct net_device *dev,
6040 struct net_device *lower_dev)
6041{
6042 struct netdev_adjacent *lower;
6043
6044 if (!lower_dev)
6045 return NULL;
6ea29da1 6046 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6047 if (!lower)
6048 return NULL;
6049
6050 return lower->private;
6051}
6052EXPORT_SYMBOL(netdev_lower_dev_get_private);
6053
4085ebe8 6054
952fcfd0 6055int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6056{
6057 struct net_device *lower = NULL;
6058 struct list_head *iter;
6059 int max_nest = -1;
6060 int nest;
6061
6062 ASSERT_RTNL();
6063
6064 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6065 nest = dev_get_nest_level(lower);
4085ebe8
VY
6066 if (max_nest < nest)
6067 max_nest = nest;
6068 }
6069
952fcfd0 6070 return max_nest + 1;
4085ebe8
VY
6071}
6072EXPORT_SYMBOL(dev_get_nest_level);
6073
04d48266
JP
6074/**
6075 * netdev_lower_change - Dispatch event about lower device state change
6076 * @lower_dev: device
6077 * @lower_state_info: state to dispatch
6078 *
6079 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6080 * The caller must hold the RTNL lock.
6081 */
6082void netdev_lower_state_changed(struct net_device *lower_dev,
6083 void *lower_state_info)
6084{
6085 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6086
6087 ASSERT_RTNL();
6088 changelowerstate_info.lower_state_info = lower_state_info;
6089 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6090 &changelowerstate_info.info);
6091}
6092EXPORT_SYMBOL(netdev_lower_state_changed);
6093
18bfb924
JP
6094int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6095 struct neighbour *n)
6096{
6097 struct net_device *lower_dev, *stop_dev;
6098 struct list_head *iter;
6099 int err;
6100
6101 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6102 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6103 continue;
6104 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6105 if (err) {
6106 stop_dev = lower_dev;
6107 goto rollback;
6108 }
6109 }
6110 return 0;
6111
6112rollback:
6113 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6114 if (lower_dev == stop_dev)
6115 break;
6116 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6117 continue;
6118 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6119 }
6120 return err;
6121}
6122EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6123
6124void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6125 struct neighbour *n)
6126{
6127 struct net_device *lower_dev;
6128 struct list_head *iter;
6129
6130 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6131 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6132 continue;
6133 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6134 }
6135}
6136EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6137
b6c40d68
PM
6138static void dev_change_rx_flags(struct net_device *dev, int flags)
6139{
d314774c
SH
6140 const struct net_device_ops *ops = dev->netdev_ops;
6141
d2615bf4 6142 if (ops->ndo_change_rx_flags)
d314774c 6143 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6144}
6145
991fb3f7 6146static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6147{
b536db93 6148 unsigned int old_flags = dev->flags;
d04a48b0
EB
6149 kuid_t uid;
6150 kgid_t gid;
1da177e4 6151
24023451
PM
6152 ASSERT_RTNL();
6153
dad9b335
WC
6154 dev->flags |= IFF_PROMISC;
6155 dev->promiscuity += inc;
6156 if (dev->promiscuity == 0) {
6157 /*
6158 * Avoid overflow.
6159 * If inc causes overflow, untouch promisc and return error.
6160 */
6161 if (inc < 0)
6162 dev->flags &= ~IFF_PROMISC;
6163 else {
6164 dev->promiscuity -= inc;
7b6cd1ce
JP
6165 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6166 dev->name);
dad9b335
WC
6167 return -EOVERFLOW;
6168 }
6169 }
52609c0b 6170 if (dev->flags != old_flags) {
7b6cd1ce
JP
6171 pr_info("device %s %s promiscuous mode\n",
6172 dev->name,
6173 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6174 if (audit_enabled) {
6175 current_uid_gid(&uid, &gid);
7759db82
KHK
6176 audit_log(current->audit_context, GFP_ATOMIC,
6177 AUDIT_ANOM_PROMISCUOUS,
6178 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6179 dev->name, (dev->flags & IFF_PROMISC),
6180 (old_flags & IFF_PROMISC),
e1760bd5 6181 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6182 from_kuid(&init_user_ns, uid),
6183 from_kgid(&init_user_ns, gid),
7759db82 6184 audit_get_sessionid(current));
8192b0c4 6185 }
24023451 6186
b6c40d68 6187 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6188 }
991fb3f7
ND
6189 if (notify)
6190 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6191 return 0;
1da177e4
LT
6192}
6193
4417da66
PM
6194/**
6195 * dev_set_promiscuity - update promiscuity count on a device
6196 * @dev: device
6197 * @inc: modifier
6198 *
6199 * Add or remove promiscuity from a device. While the count in the device
6200 * remains above zero the interface remains promiscuous. Once it hits zero
6201 * the device reverts back to normal filtering operation. A negative inc
6202 * value is used to drop promiscuity on the device.
dad9b335 6203 * Return 0 if successful or a negative errno code on error.
4417da66 6204 */
dad9b335 6205int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6206{
b536db93 6207 unsigned int old_flags = dev->flags;
dad9b335 6208 int err;
4417da66 6209
991fb3f7 6210 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6211 if (err < 0)
dad9b335 6212 return err;
4417da66
PM
6213 if (dev->flags != old_flags)
6214 dev_set_rx_mode(dev);
dad9b335 6215 return err;
4417da66 6216}
d1b19dff 6217EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6218
991fb3f7 6219static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6220{
991fb3f7 6221 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6222
24023451
PM
6223 ASSERT_RTNL();
6224
1da177e4 6225 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6226 dev->allmulti += inc;
6227 if (dev->allmulti == 0) {
6228 /*
6229 * Avoid overflow.
6230 * If inc causes overflow, untouch allmulti and return error.
6231 */
6232 if (inc < 0)
6233 dev->flags &= ~IFF_ALLMULTI;
6234 else {
6235 dev->allmulti -= inc;
7b6cd1ce
JP
6236 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6237 dev->name);
dad9b335
WC
6238 return -EOVERFLOW;
6239 }
6240 }
24023451 6241 if (dev->flags ^ old_flags) {
b6c40d68 6242 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6243 dev_set_rx_mode(dev);
991fb3f7
ND
6244 if (notify)
6245 __dev_notify_flags(dev, old_flags,
6246 dev->gflags ^ old_gflags);
24023451 6247 }
dad9b335 6248 return 0;
4417da66 6249}
991fb3f7
ND
6250
6251/**
6252 * dev_set_allmulti - update allmulti count on a device
6253 * @dev: device
6254 * @inc: modifier
6255 *
6256 * Add or remove reception of all multicast frames to a device. While the
6257 * count in the device remains above zero the interface remains listening
6258 * to all interfaces. Once it hits zero the device reverts back to normal
6259 * filtering operation. A negative @inc value is used to drop the counter
6260 * when releasing a resource needing all multicasts.
6261 * Return 0 if successful or a negative errno code on error.
6262 */
6263
6264int dev_set_allmulti(struct net_device *dev, int inc)
6265{
6266 return __dev_set_allmulti(dev, inc, true);
6267}
d1b19dff 6268EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6269
6270/*
6271 * Upload unicast and multicast address lists to device and
6272 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6273 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6274 * are present.
6275 */
6276void __dev_set_rx_mode(struct net_device *dev)
6277{
d314774c
SH
6278 const struct net_device_ops *ops = dev->netdev_ops;
6279
4417da66
PM
6280 /* dev_open will call this function so the list will stay sane. */
6281 if (!(dev->flags&IFF_UP))
6282 return;
6283
6284 if (!netif_device_present(dev))
40b77c94 6285 return;
4417da66 6286
01789349 6287 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6288 /* Unicast addresses changes may only happen under the rtnl,
6289 * therefore calling __dev_set_promiscuity here is safe.
6290 */
32e7bfc4 6291 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6292 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6293 dev->uc_promisc = true;
32e7bfc4 6294 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6295 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6296 dev->uc_promisc = false;
4417da66 6297 }
4417da66 6298 }
01789349
JP
6299
6300 if (ops->ndo_set_rx_mode)
6301 ops->ndo_set_rx_mode(dev);
4417da66
PM
6302}
6303
6304void dev_set_rx_mode(struct net_device *dev)
6305{
b9e40857 6306 netif_addr_lock_bh(dev);
4417da66 6307 __dev_set_rx_mode(dev);
b9e40857 6308 netif_addr_unlock_bh(dev);
1da177e4
LT
6309}
6310
f0db275a
SH
6311/**
6312 * dev_get_flags - get flags reported to userspace
6313 * @dev: device
6314 *
6315 * Get the combination of flag bits exported through APIs to userspace.
6316 */
95c96174 6317unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6318{
95c96174 6319 unsigned int flags;
1da177e4
LT
6320
6321 flags = (dev->flags & ~(IFF_PROMISC |
6322 IFF_ALLMULTI |
b00055aa
SR
6323 IFF_RUNNING |
6324 IFF_LOWER_UP |
6325 IFF_DORMANT)) |
1da177e4
LT
6326 (dev->gflags & (IFF_PROMISC |
6327 IFF_ALLMULTI));
6328
b00055aa
SR
6329 if (netif_running(dev)) {
6330 if (netif_oper_up(dev))
6331 flags |= IFF_RUNNING;
6332 if (netif_carrier_ok(dev))
6333 flags |= IFF_LOWER_UP;
6334 if (netif_dormant(dev))
6335 flags |= IFF_DORMANT;
6336 }
1da177e4
LT
6337
6338 return flags;
6339}
d1b19dff 6340EXPORT_SYMBOL(dev_get_flags);
1da177e4 6341
bd380811 6342int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6343{
b536db93 6344 unsigned int old_flags = dev->flags;
bd380811 6345 int ret;
1da177e4 6346
24023451
PM
6347 ASSERT_RTNL();
6348
1da177e4
LT
6349 /*
6350 * Set the flags on our device.
6351 */
6352
6353 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6354 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6355 IFF_AUTOMEDIA)) |
6356 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6357 IFF_ALLMULTI));
6358
6359 /*
6360 * Load in the correct multicast list now the flags have changed.
6361 */
6362
b6c40d68
PM
6363 if ((old_flags ^ flags) & IFF_MULTICAST)
6364 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6365
4417da66 6366 dev_set_rx_mode(dev);
1da177e4
LT
6367
6368 /*
6369 * Have we downed the interface. We handle IFF_UP ourselves
6370 * according to user attempts to set it, rather than blindly
6371 * setting it.
6372 */
6373
6374 ret = 0;
d215d10f 6375 if ((old_flags ^ flags) & IFF_UP)
bd380811 6376 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6377
1da177e4 6378 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6379 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6380 unsigned int old_flags = dev->flags;
d1b19dff 6381
1da177e4 6382 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6383
6384 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6385 if (dev->flags != old_flags)
6386 dev_set_rx_mode(dev);
1da177e4
LT
6387 }
6388
6389 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6390 is important. Some (broken) drivers set IFF_PROMISC, when
6391 IFF_ALLMULTI is requested not asking us and not reporting.
6392 */
6393 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6394 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6395
1da177e4 6396 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6397 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6398 }
6399
bd380811
PM
6400 return ret;
6401}
6402
a528c219
ND
6403void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6404 unsigned int gchanges)
bd380811
PM
6405{
6406 unsigned int changes = dev->flags ^ old_flags;
6407
a528c219 6408 if (gchanges)
7f294054 6409 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6410
bd380811
PM
6411 if (changes & IFF_UP) {
6412 if (dev->flags & IFF_UP)
6413 call_netdevice_notifiers(NETDEV_UP, dev);
6414 else
6415 call_netdevice_notifiers(NETDEV_DOWN, dev);
6416 }
6417
6418 if (dev->flags & IFF_UP &&
be9efd36
JP
6419 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6420 struct netdev_notifier_change_info change_info;
6421
6422 change_info.flags_changed = changes;
6423 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6424 &change_info.info);
6425 }
bd380811
PM
6426}
6427
6428/**
6429 * dev_change_flags - change device settings
6430 * @dev: device
6431 * @flags: device state flags
6432 *
6433 * Change settings on device based state flags. The flags are
6434 * in the userspace exported format.
6435 */
b536db93 6436int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6437{
b536db93 6438 int ret;
991fb3f7 6439 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6440
6441 ret = __dev_change_flags(dev, flags);
6442 if (ret < 0)
6443 return ret;
6444
991fb3f7 6445 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6446 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6447 return ret;
6448}
d1b19dff 6449EXPORT_SYMBOL(dev_change_flags);
1da177e4 6450
2315dc91
VF
6451static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6452{
6453 const struct net_device_ops *ops = dev->netdev_ops;
6454
6455 if (ops->ndo_change_mtu)
6456 return ops->ndo_change_mtu(dev, new_mtu);
6457
6458 dev->mtu = new_mtu;
6459 return 0;
6460}
6461
f0db275a
SH
6462/**
6463 * dev_set_mtu - Change maximum transfer unit
6464 * @dev: device
6465 * @new_mtu: new transfer unit
6466 *
6467 * Change the maximum transfer size of the network device.
6468 */
1da177e4
LT
6469int dev_set_mtu(struct net_device *dev, int new_mtu)
6470{
2315dc91 6471 int err, orig_mtu;
1da177e4
LT
6472
6473 if (new_mtu == dev->mtu)
6474 return 0;
6475
6476 /* MTU must be positive. */
6477 if (new_mtu < 0)
6478 return -EINVAL;
6479
6480 if (!netif_device_present(dev))
6481 return -ENODEV;
6482
1d486bfb
VF
6483 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6484 err = notifier_to_errno(err);
6485 if (err)
6486 return err;
d314774c 6487
2315dc91
VF
6488 orig_mtu = dev->mtu;
6489 err = __dev_set_mtu(dev, new_mtu);
d314774c 6490
2315dc91
VF
6491 if (!err) {
6492 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6493 err = notifier_to_errno(err);
6494 if (err) {
6495 /* setting mtu back and notifying everyone again,
6496 * so that they have a chance to revert changes.
6497 */
6498 __dev_set_mtu(dev, orig_mtu);
6499 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6500 }
6501 }
1da177e4
LT
6502 return err;
6503}
d1b19dff 6504EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6505
cbda10fa
VD
6506/**
6507 * dev_set_group - Change group this device belongs to
6508 * @dev: device
6509 * @new_group: group this device should belong to
6510 */
6511void dev_set_group(struct net_device *dev, int new_group)
6512{
6513 dev->group = new_group;
6514}
6515EXPORT_SYMBOL(dev_set_group);
6516
f0db275a
SH
6517/**
6518 * dev_set_mac_address - Change Media Access Control Address
6519 * @dev: device
6520 * @sa: new address
6521 *
6522 * Change the hardware (MAC) address of the device
6523 */
1da177e4
LT
6524int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6525{
d314774c 6526 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6527 int err;
6528
d314774c 6529 if (!ops->ndo_set_mac_address)
1da177e4
LT
6530 return -EOPNOTSUPP;
6531 if (sa->sa_family != dev->type)
6532 return -EINVAL;
6533 if (!netif_device_present(dev))
6534 return -ENODEV;
d314774c 6535 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6536 if (err)
6537 return err;
fbdeca2d 6538 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6539 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6540 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6541 return 0;
1da177e4 6542}
d1b19dff 6543EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6544
4bf84c35
JP
6545/**
6546 * dev_change_carrier - Change device carrier
6547 * @dev: device
691b3b7e 6548 * @new_carrier: new value
4bf84c35
JP
6549 *
6550 * Change device carrier
6551 */
6552int dev_change_carrier(struct net_device *dev, bool new_carrier)
6553{
6554 const struct net_device_ops *ops = dev->netdev_ops;
6555
6556 if (!ops->ndo_change_carrier)
6557 return -EOPNOTSUPP;
6558 if (!netif_device_present(dev))
6559 return -ENODEV;
6560 return ops->ndo_change_carrier(dev, new_carrier);
6561}
6562EXPORT_SYMBOL(dev_change_carrier);
6563
66b52b0d
JP
6564/**
6565 * dev_get_phys_port_id - Get device physical port ID
6566 * @dev: device
6567 * @ppid: port ID
6568 *
6569 * Get device physical port ID
6570 */
6571int dev_get_phys_port_id(struct net_device *dev,
02637fce 6572 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6573{
6574 const struct net_device_ops *ops = dev->netdev_ops;
6575
6576 if (!ops->ndo_get_phys_port_id)
6577 return -EOPNOTSUPP;
6578 return ops->ndo_get_phys_port_id(dev, ppid);
6579}
6580EXPORT_SYMBOL(dev_get_phys_port_id);
6581
db24a904
DA
6582/**
6583 * dev_get_phys_port_name - Get device physical port name
6584 * @dev: device
6585 * @name: port name
ed49e650 6586 * @len: limit of bytes to copy to name
db24a904
DA
6587 *
6588 * Get device physical port name
6589 */
6590int dev_get_phys_port_name(struct net_device *dev,
6591 char *name, size_t len)
6592{
6593 const struct net_device_ops *ops = dev->netdev_ops;
6594
6595 if (!ops->ndo_get_phys_port_name)
6596 return -EOPNOTSUPP;
6597 return ops->ndo_get_phys_port_name(dev, name, len);
6598}
6599EXPORT_SYMBOL(dev_get_phys_port_name);
6600
d746d707
AK
6601/**
6602 * dev_change_proto_down - update protocol port state information
6603 * @dev: device
6604 * @proto_down: new value
6605 *
6606 * This info can be used by switch drivers to set the phys state of the
6607 * port.
6608 */
6609int dev_change_proto_down(struct net_device *dev, bool proto_down)
6610{
6611 const struct net_device_ops *ops = dev->netdev_ops;
6612
6613 if (!ops->ndo_change_proto_down)
6614 return -EOPNOTSUPP;
6615 if (!netif_device_present(dev))
6616 return -ENODEV;
6617 return ops->ndo_change_proto_down(dev, proto_down);
6618}
6619EXPORT_SYMBOL(dev_change_proto_down);
6620
a7862b45
BB
6621/**
6622 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6623 * @dev: device
6624 * @fd: new program fd or negative value to clear
6625 *
6626 * Set or clear a bpf program for a device
6627 */
6628int dev_change_xdp_fd(struct net_device *dev, int fd)
6629{
6630 const struct net_device_ops *ops = dev->netdev_ops;
6631 struct bpf_prog *prog = NULL;
6632 struct netdev_xdp xdp = {};
6633 int err;
6634
6635 if (!ops->ndo_xdp)
6636 return -EOPNOTSUPP;
6637 if (fd >= 0) {
6638 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6639 if (IS_ERR(prog))
6640 return PTR_ERR(prog);
6641 }
6642
6643 xdp.command = XDP_SETUP_PROG;
6644 xdp.prog = prog;
6645 err = ops->ndo_xdp(dev, &xdp);
6646 if (err < 0 && prog)
6647 bpf_prog_put(prog);
6648
6649 return err;
6650}
6651EXPORT_SYMBOL(dev_change_xdp_fd);
6652
1da177e4
LT
6653/**
6654 * dev_new_index - allocate an ifindex
c4ea43c5 6655 * @net: the applicable net namespace
1da177e4
LT
6656 *
6657 * Returns a suitable unique value for a new device interface
6658 * number. The caller must hold the rtnl semaphore or the
6659 * dev_base_lock to be sure it remains unique.
6660 */
881d966b 6661static int dev_new_index(struct net *net)
1da177e4 6662{
aa79e66e 6663 int ifindex = net->ifindex;
1da177e4
LT
6664 for (;;) {
6665 if (++ifindex <= 0)
6666 ifindex = 1;
881d966b 6667 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6668 return net->ifindex = ifindex;
1da177e4
LT
6669 }
6670}
6671
1da177e4 6672/* Delayed registration/unregisteration */
3b5b34fd 6673static LIST_HEAD(net_todo_list);
200b916f 6674DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6675
6f05f629 6676static void net_set_todo(struct net_device *dev)
1da177e4 6677{
1da177e4 6678 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6679 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6680}
6681
9b5e383c 6682static void rollback_registered_many(struct list_head *head)
93ee31f1 6683{
e93737b0 6684 struct net_device *dev, *tmp;
5cde2829 6685 LIST_HEAD(close_head);
9b5e383c 6686
93ee31f1
DL
6687 BUG_ON(dev_boot_phase);
6688 ASSERT_RTNL();
6689
e93737b0 6690 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6691 /* Some devices call without registering
e93737b0
KK
6692 * for initialization unwind. Remove those
6693 * devices and proceed with the remaining.
9b5e383c
ED
6694 */
6695 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6696 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6697 dev->name, dev);
93ee31f1 6698
9b5e383c 6699 WARN_ON(1);
e93737b0
KK
6700 list_del(&dev->unreg_list);
6701 continue;
9b5e383c 6702 }
449f4544 6703 dev->dismantle = true;
9b5e383c 6704 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6705 }
93ee31f1 6706
44345724 6707 /* If device is running, close it first. */
5cde2829
EB
6708 list_for_each_entry(dev, head, unreg_list)
6709 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6710 dev_close_many(&close_head, true);
93ee31f1 6711
44345724 6712 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6713 /* And unlink it from device chain. */
6714 unlist_netdevice(dev);
93ee31f1 6715
9b5e383c
ED
6716 dev->reg_state = NETREG_UNREGISTERING;
6717 }
41852497 6718 flush_all_backlogs();
93ee31f1
DL
6719
6720 synchronize_net();
6721
9b5e383c 6722 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6723 struct sk_buff *skb = NULL;
6724
9b5e383c
ED
6725 /* Shutdown queueing discipline. */
6726 dev_shutdown(dev);
93ee31f1
DL
6727
6728
9b5e383c
ED
6729 /* Notify protocols, that we are about to destroy
6730 this device. They should clean all the things.
6731 */
6732 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6733
395eea6c
MB
6734 if (!dev->rtnl_link_ops ||
6735 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6736 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6737 GFP_KERNEL);
6738
9b5e383c
ED
6739 /*
6740 * Flush the unicast and multicast chains
6741 */
a748ee24 6742 dev_uc_flush(dev);
22bedad3 6743 dev_mc_flush(dev);
93ee31f1 6744
9b5e383c
ED
6745 if (dev->netdev_ops->ndo_uninit)
6746 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6747
395eea6c
MB
6748 if (skb)
6749 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6750
9ff162a8
JP
6751 /* Notifier chain MUST detach us all upper devices. */
6752 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6753
9b5e383c
ED
6754 /* Remove entries from kobject tree */
6755 netdev_unregister_kobject(dev);
024e9679
AD
6756#ifdef CONFIG_XPS
6757 /* Remove XPS queueing entries */
6758 netif_reset_xps_queues_gt(dev, 0);
6759#endif
9b5e383c 6760 }
93ee31f1 6761
850a545b 6762 synchronize_net();
395264d5 6763
a5ee1551 6764 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6765 dev_put(dev);
6766}
6767
6768static void rollback_registered(struct net_device *dev)
6769{
6770 LIST_HEAD(single);
6771
6772 list_add(&dev->unreg_list, &single);
6773 rollback_registered_many(&single);
ceaaec98 6774 list_del(&single);
93ee31f1
DL
6775}
6776
fd867d51
JW
6777static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6778 struct net_device *upper, netdev_features_t features)
6779{
6780 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6781 netdev_features_t feature;
5ba3f7d6 6782 int feature_bit;
fd867d51 6783
5ba3f7d6
JW
6784 for_each_netdev_feature(&upper_disables, feature_bit) {
6785 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6786 if (!(upper->wanted_features & feature)
6787 && (features & feature)) {
6788 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6789 &feature, upper->name);
6790 features &= ~feature;
6791 }
6792 }
6793
6794 return features;
6795}
6796
6797static void netdev_sync_lower_features(struct net_device *upper,
6798 struct net_device *lower, netdev_features_t features)
6799{
6800 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6801 netdev_features_t feature;
5ba3f7d6 6802 int feature_bit;
fd867d51 6803
5ba3f7d6
JW
6804 for_each_netdev_feature(&upper_disables, feature_bit) {
6805 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6806 if (!(features & feature) && (lower->features & feature)) {
6807 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6808 &feature, lower->name);
6809 lower->wanted_features &= ~feature;
6810 netdev_update_features(lower);
6811
6812 if (unlikely(lower->features & feature))
6813 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6814 &feature, lower->name);
6815 }
6816 }
6817}
6818
c8f44aff
MM
6819static netdev_features_t netdev_fix_features(struct net_device *dev,
6820 netdev_features_t features)
b63365a2 6821{
57422dc5
MM
6822 /* Fix illegal checksum combinations */
6823 if ((features & NETIF_F_HW_CSUM) &&
6824 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6825 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6826 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6827 }
6828
b63365a2 6829 /* TSO requires that SG is present as well. */
ea2d3688 6830 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6831 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6832 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6833 }
6834
ec5f0615
PS
6835 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6836 !(features & NETIF_F_IP_CSUM)) {
6837 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6838 features &= ~NETIF_F_TSO;
6839 features &= ~NETIF_F_TSO_ECN;
6840 }
6841
6842 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6843 !(features & NETIF_F_IPV6_CSUM)) {
6844 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6845 features &= ~NETIF_F_TSO6;
6846 }
6847
b1dc497b
AD
6848 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6849 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6850 features &= ~NETIF_F_TSO_MANGLEID;
6851
31d8b9e0
BH
6852 /* TSO ECN requires that TSO is present as well. */
6853 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6854 features &= ~NETIF_F_TSO_ECN;
6855
212b573f
MM
6856 /* Software GSO depends on SG. */
6857 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6858 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6859 features &= ~NETIF_F_GSO;
6860 }
6861
acd1130e 6862 /* UFO needs SG and checksumming */
b63365a2 6863 if (features & NETIF_F_UFO) {
79032644 6864 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6865 if (!(features & NETIF_F_HW_CSUM) &&
6866 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6867 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6868 netdev_dbg(dev,
acd1130e 6869 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6870 features &= ~NETIF_F_UFO;
6871 }
6872
6873 if (!(features & NETIF_F_SG)) {
6f404e44 6874 netdev_dbg(dev,
acd1130e 6875 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6876 features &= ~NETIF_F_UFO;
6877 }
6878 }
6879
802ab55a
AD
6880 /* GSO partial features require GSO partial be set */
6881 if ((features & dev->gso_partial_features) &&
6882 !(features & NETIF_F_GSO_PARTIAL)) {
6883 netdev_dbg(dev,
6884 "Dropping partially supported GSO features since no GSO partial.\n");
6885 features &= ~dev->gso_partial_features;
6886 }
6887
d0290214
JP
6888#ifdef CONFIG_NET_RX_BUSY_POLL
6889 if (dev->netdev_ops->ndo_busy_poll)
6890 features |= NETIF_F_BUSY_POLL;
6891 else
6892#endif
6893 features &= ~NETIF_F_BUSY_POLL;
6894
b63365a2
HX
6895 return features;
6896}
b63365a2 6897
6cb6a27c 6898int __netdev_update_features(struct net_device *dev)
5455c699 6899{
fd867d51 6900 struct net_device *upper, *lower;
c8f44aff 6901 netdev_features_t features;
fd867d51 6902 struct list_head *iter;
e7868a85 6903 int err = -1;
5455c699 6904
87267485
MM
6905 ASSERT_RTNL();
6906
5455c699
MM
6907 features = netdev_get_wanted_features(dev);
6908
6909 if (dev->netdev_ops->ndo_fix_features)
6910 features = dev->netdev_ops->ndo_fix_features(dev, features);
6911
6912 /* driver might be less strict about feature dependencies */
6913 features = netdev_fix_features(dev, features);
6914
fd867d51
JW
6915 /* some features can't be enabled if they're off an an upper device */
6916 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6917 features = netdev_sync_upper_features(dev, upper, features);
6918
5455c699 6919 if (dev->features == features)
e7868a85 6920 goto sync_lower;
5455c699 6921
c8f44aff
MM
6922 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6923 &dev->features, &features);
5455c699
MM
6924
6925 if (dev->netdev_ops->ndo_set_features)
6926 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6927 else
6928 err = 0;
5455c699 6929
6cb6a27c 6930 if (unlikely(err < 0)) {
5455c699 6931 netdev_err(dev,
c8f44aff
MM
6932 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6933 err, &features, &dev->features);
17b85d29
NA
6934 /* return non-0 since some features might have changed and
6935 * it's better to fire a spurious notification than miss it
6936 */
6937 return -1;
6cb6a27c
MM
6938 }
6939
e7868a85 6940sync_lower:
fd867d51
JW
6941 /* some features must be disabled on lower devices when disabled
6942 * on an upper device (think: bonding master or bridge)
6943 */
6944 netdev_for_each_lower_dev(dev, lower, iter)
6945 netdev_sync_lower_features(dev, lower, features);
6946
6cb6a27c
MM
6947 if (!err)
6948 dev->features = features;
6949
e7868a85 6950 return err < 0 ? 0 : 1;
6cb6a27c
MM
6951}
6952
afe12cc8
MM
6953/**
6954 * netdev_update_features - recalculate device features
6955 * @dev: the device to check
6956 *
6957 * Recalculate dev->features set and send notifications if it
6958 * has changed. Should be called after driver or hardware dependent
6959 * conditions might have changed that influence the features.
6960 */
6cb6a27c
MM
6961void netdev_update_features(struct net_device *dev)
6962{
6963 if (__netdev_update_features(dev))
6964 netdev_features_change(dev);
5455c699
MM
6965}
6966EXPORT_SYMBOL(netdev_update_features);
6967
afe12cc8
MM
6968/**
6969 * netdev_change_features - recalculate device features
6970 * @dev: the device to check
6971 *
6972 * Recalculate dev->features set and send notifications even
6973 * if they have not changed. Should be called instead of
6974 * netdev_update_features() if also dev->vlan_features might
6975 * have changed to allow the changes to be propagated to stacked
6976 * VLAN devices.
6977 */
6978void netdev_change_features(struct net_device *dev)
6979{
6980 __netdev_update_features(dev);
6981 netdev_features_change(dev);
6982}
6983EXPORT_SYMBOL(netdev_change_features);
6984
fc4a7489
PM
6985/**
6986 * netif_stacked_transfer_operstate - transfer operstate
6987 * @rootdev: the root or lower level device to transfer state from
6988 * @dev: the device to transfer operstate to
6989 *
6990 * Transfer operational state from root to device. This is normally
6991 * called when a stacking relationship exists between the root
6992 * device and the device(a leaf device).
6993 */
6994void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6995 struct net_device *dev)
6996{
6997 if (rootdev->operstate == IF_OPER_DORMANT)
6998 netif_dormant_on(dev);
6999 else
7000 netif_dormant_off(dev);
7001
7002 if (netif_carrier_ok(rootdev)) {
7003 if (!netif_carrier_ok(dev))
7004 netif_carrier_on(dev);
7005 } else {
7006 if (netif_carrier_ok(dev))
7007 netif_carrier_off(dev);
7008 }
7009}
7010EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7011
a953be53 7012#ifdef CONFIG_SYSFS
1b4bf461
ED
7013static int netif_alloc_rx_queues(struct net_device *dev)
7014{
1b4bf461 7015 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7016 struct netdev_rx_queue *rx;
10595902 7017 size_t sz = count * sizeof(*rx);
1b4bf461 7018
bd25fa7b 7019 BUG_ON(count < 1);
1b4bf461 7020
10595902
PG
7021 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7022 if (!rx) {
7023 rx = vzalloc(sz);
7024 if (!rx)
7025 return -ENOMEM;
7026 }
bd25fa7b
TH
7027 dev->_rx = rx;
7028
bd25fa7b 7029 for (i = 0; i < count; i++)
fe822240 7030 rx[i].dev = dev;
1b4bf461
ED
7031 return 0;
7032}
bf264145 7033#endif
1b4bf461 7034
aa942104
CG
7035static void netdev_init_one_queue(struct net_device *dev,
7036 struct netdev_queue *queue, void *_unused)
7037{
7038 /* Initialize queue lock */
7039 spin_lock_init(&queue->_xmit_lock);
7040 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7041 queue->xmit_lock_owner = -1;
b236da69 7042 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7043 queue->dev = dev;
114cf580
TH
7044#ifdef CONFIG_BQL
7045 dql_init(&queue->dql, HZ);
7046#endif
aa942104
CG
7047}
7048
60877a32
ED
7049static void netif_free_tx_queues(struct net_device *dev)
7050{
4cb28970 7051 kvfree(dev->_tx);
60877a32
ED
7052}
7053
e6484930
TH
7054static int netif_alloc_netdev_queues(struct net_device *dev)
7055{
7056 unsigned int count = dev->num_tx_queues;
7057 struct netdev_queue *tx;
60877a32 7058 size_t sz = count * sizeof(*tx);
e6484930 7059
d339727c
ED
7060 if (count < 1 || count > 0xffff)
7061 return -EINVAL;
62b5942a 7062
60877a32
ED
7063 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7064 if (!tx) {
7065 tx = vzalloc(sz);
7066 if (!tx)
7067 return -ENOMEM;
7068 }
e6484930 7069 dev->_tx = tx;
1d24eb48 7070
e6484930
TH
7071 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7072 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7073
7074 return 0;
e6484930
TH
7075}
7076
a2029240
DV
7077void netif_tx_stop_all_queues(struct net_device *dev)
7078{
7079 unsigned int i;
7080
7081 for (i = 0; i < dev->num_tx_queues; i++) {
7082 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7083 netif_tx_stop_queue(txq);
7084 }
7085}
7086EXPORT_SYMBOL(netif_tx_stop_all_queues);
7087
1da177e4
LT
7088/**
7089 * register_netdevice - register a network device
7090 * @dev: device to register
7091 *
7092 * Take a completed network device structure and add it to the kernel
7093 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7094 * chain. 0 is returned on success. A negative errno code is returned
7095 * on a failure to set up the device, or if the name is a duplicate.
7096 *
7097 * Callers must hold the rtnl semaphore. You may want
7098 * register_netdev() instead of this.
7099 *
7100 * BUGS:
7101 * The locking appears insufficient to guarantee two parallel registers
7102 * will not get the same name.
7103 */
7104
7105int register_netdevice(struct net_device *dev)
7106{
1da177e4 7107 int ret;
d314774c 7108 struct net *net = dev_net(dev);
1da177e4
LT
7109
7110 BUG_ON(dev_boot_phase);
7111 ASSERT_RTNL();
7112
b17a7c17
SH
7113 might_sleep();
7114
1da177e4
LT
7115 /* When net_device's are persistent, this will be fatal. */
7116 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7117 BUG_ON(!net);
1da177e4 7118
f1f28aa3 7119 spin_lock_init(&dev->addr_list_lock);
cf508b12 7120 netdev_set_addr_lockdep_class(dev);
1da177e4 7121
828de4f6 7122 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7123 if (ret < 0)
7124 goto out;
7125
1da177e4 7126 /* Init, if this function is available */
d314774c
SH
7127 if (dev->netdev_ops->ndo_init) {
7128 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7129 if (ret) {
7130 if (ret > 0)
7131 ret = -EIO;
90833aa4 7132 goto out;
1da177e4
LT
7133 }
7134 }
4ec93edb 7135
f646968f
PM
7136 if (((dev->hw_features | dev->features) &
7137 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7138 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7139 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7140 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7141 ret = -EINVAL;
7142 goto err_uninit;
7143 }
7144
9c7dafbf
PE
7145 ret = -EBUSY;
7146 if (!dev->ifindex)
7147 dev->ifindex = dev_new_index(net);
7148 else if (__dev_get_by_index(net, dev->ifindex))
7149 goto err_uninit;
7150
5455c699
MM
7151 /* Transfer changeable features to wanted_features and enable
7152 * software offloads (GSO and GRO).
7153 */
7154 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7155 dev->features |= NETIF_F_SOFT_FEATURES;
7156 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7157
cbc53e08 7158 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7159 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7160
7f348a60
AD
7161 /* If IPv4 TCP segmentation offload is supported we should also
7162 * allow the device to enable segmenting the frame with the option
7163 * of ignoring a static IP ID value. This doesn't enable the
7164 * feature itself but allows the user to enable it later.
7165 */
cbc53e08
AD
7166 if (dev->hw_features & NETIF_F_TSO)
7167 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7168 if (dev->vlan_features & NETIF_F_TSO)
7169 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7170 if (dev->mpls_features & NETIF_F_TSO)
7171 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7172 if (dev->hw_enc_features & NETIF_F_TSO)
7173 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7174
1180e7d6 7175 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7176 */
1180e7d6 7177 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7178
ee579677
PS
7179 /* Make NETIF_F_SG inheritable to tunnel devices.
7180 */
802ab55a 7181 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7182
0d89d203
SH
7183 /* Make NETIF_F_SG inheritable to MPLS.
7184 */
7185 dev->mpls_features |= NETIF_F_SG;
7186
7ffbe3fd
JB
7187 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7188 ret = notifier_to_errno(ret);
7189 if (ret)
7190 goto err_uninit;
7191
8b41d188 7192 ret = netdev_register_kobject(dev);
b17a7c17 7193 if (ret)
7ce1b0ed 7194 goto err_uninit;
b17a7c17
SH
7195 dev->reg_state = NETREG_REGISTERED;
7196
6cb6a27c 7197 __netdev_update_features(dev);
8e9b59b2 7198
1da177e4
LT
7199 /*
7200 * Default initial state at registry is that the
7201 * device is present.
7202 */
7203
7204 set_bit(__LINK_STATE_PRESENT, &dev->state);
7205
8f4cccbb
BH
7206 linkwatch_init_dev(dev);
7207
1da177e4 7208 dev_init_scheduler(dev);
1da177e4 7209 dev_hold(dev);
ce286d32 7210 list_netdevice(dev);
7bf23575 7211 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7212
948b337e
JP
7213 /* If the device has permanent device address, driver should
7214 * set dev_addr and also addr_assign_type should be set to
7215 * NET_ADDR_PERM (default value).
7216 */
7217 if (dev->addr_assign_type == NET_ADDR_PERM)
7218 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7219
1da177e4 7220 /* Notify protocols, that a new device appeared. */
056925ab 7221 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7222 ret = notifier_to_errno(ret);
93ee31f1
DL
7223 if (ret) {
7224 rollback_registered(dev);
7225 dev->reg_state = NETREG_UNREGISTERED;
7226 }
d90a909e
EB
7227 /*
7228 * Prevent userspace races by waiting until the network
7229 * device is fully setup before sending notifications.
7230 */
a2835763
PM
7231 if (!dev->rtnl_link_ops ||
7232 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7233 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7234
7235out:
7236 return ret;
7ce1b0ed
HX
7237
7238err_uninit:
d314774c
SH
7239 if (dev->netdev_ops->ndo_uninit)
7240 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7241 goto out;
1da177e4 7242}
d1b19dff 7243EXPORT_SYMBOL(register_netdevice);
1da177e4 7244
937f1ba5
BH
7245/**
7246 * init_dummy_netdev - init a dummy network device for NAPI
7247 * @dev: device to init
7248 *
7249 * This takes a network device structure and initialize the minimum
7250 * amount of fields so it can be used to schedule NAPI polls without
7251 * registering a full blown interface. This is to be used by drivers
7252 * that need to tie several hardware interfaces to a single NAPI
7253 * poll scheduler due to HW limitations.
7254 */
7255int init_dummy_netdev(struct net_device *dev)
7256{
7257 /* Clear everything. Note we don't initialize spinlocks
7258 * are they aren't supposed to be taken by any of the
7259 * NAPI code and this dummy netdev is supposed to be
7260 * only ever used for NAPI polls
7261 */
7262 memset(dev, 0, sizeof(struct net_device));
7263
7264 /* make sure we BUG if trying to hit standard
7265 * register/unregister code path
7266 */
7267 dev->reg_state = NETREG_DUMMY;
7268
937f1ba5
BH
7269 /* NAPI wants this */
7270 INIT_LIST_HEAD(&dev->napi_list);
7271
7272 /* a dummy interface is started by default */
7273 set_bit(__LINK_STATE_PRESENT, &dev->state);
7274 set_bit(__LINK_STATE_START, &dev->state);
7275
29b4433d
ED
7276 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7277 * because users of this 'device' dont need to change
7278 * its refcount.
7279 */
7280
937f1ba5
BH
7281 return 0;
7282}
7283EXPORT_SYMBOL_GPL(init_dummy_netdev);
7284
7285
1da177e4
LT
7286/**
7287 * register_netdev - register a network device
7288 * @dev: device to register
7289 *
7290 * Take a completed network device structure and add it to the kernel
7291 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7292 * chain. 0 is returned on success. A negative errno code is returned
7293 * on a failure to set up the device, or if the name is a duplicate.
7294 *
38b4da38 7295 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7296 * and expands the device name if you passed a format string to
7297 * alloc_netdev.
7298 */
7299int register_netdev(struct net_device *dev)
7300{
7301 int err;
7302
7303 rtnl_lock();
1da177e4 7304 err = register_netdevice(dev);
1da177e4
LT
7305 rtnl_unlock();
7306 return err;
7307}
7308EXPORT_SYMBOL(register_netdev);
7309
29b4433d
ED
7310int netdev_refcnt_read(const struct net_device *dev)
7311{
7312 int i, refcnt = 0;
7313
7314 for_each_possible_cpu(i)
7315 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7316 return refcnt;
7317}
7318EXPORT_SYMBOL(netdev_refcnt_read);
7319
2c53040f 7320/**
1da177e4 7321 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7322 * @dev: target net_device
1da177e4
LT
7323 *
7324 * This is called when unregistering network devices.
7325 *
7326 * Any protocol or device that holds a reference should register
7327 * for netdevice notification, and cleanup and put back the
7328 * reference if they receive an UNREGISTER event.
7329 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7330 * call dev_put.
1da177e4
LT
7331 */
7332static void netdev_wait_allrefs(struct net_device *dev)
7333{
7334 unsigned long rebroadcast_time, warning_time;
29b4433d 7335 int refcnt;
1da177e4 7336
e014debe
ED
7337 linkwatch_forget_dev(dev);
7338
1da177e4 7339 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7340 refcnt = netdev_refcnt_read(dev);
7341
7342 while (refcnt != 0) {
1da177e4 7343 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7344 rtnl_lock();
1da177e4
LT
7345
7346 /* Rebroadcast unregister notification */
056925ab 7347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7348
748e2d93 7349 __rtnl_unlock();
0115e8e3 7350 rcu_barrier();
748e2d93
ED
7351 rtnl_lock();
7352
0115e8e3 7353 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7354 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7355 &dev->state)) {
7356 /* We must not have linkwatch events
7357 * pending on unregister. If this
7358 * happens, we simply run the queue
7359 * unscheduled, resulting in a noop
7360 * for this device.
7361 */
7362 linkwatch_run_queue();
7363 }
7364
6756ae4b 7365 __rtnl_unlock();
1da177e4
LT
7366
7367 rebroadcast_time = jiffies;
7368 }
7369
7370 msleep(250);
7371
29b4433d
ED
7372 refcnt = netdev_refcnt_read(dev);
7373
1da177e4 7374 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7375 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7376 dev->name, refcnt);
1da177e4
LT
7377 warning_time = jiffies;
7378 }
7379 }
7380}
7381
7382/* The sequence is:
7383 *
7384 * rtnl_lock();
7385 * ...
7386 * register_netdevice(x1);
7387 * register_netdevice(x2);
7388 * ...
7389 * unregister_netdevice(y1);
7390 * unregister_netdevice(y2);
7391 * ...
7392 * rtnl_unlock();
7393 * free_netdev(y1);
7394 * free_netdev(y2);
7395 *
58ec3b4d 7396 * We are invoked by rtnl_unlock().
1da177e4 7397 * This allows us to deal with problems:
b17a7c17 7398 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7399 * without deadlocking with linkwatch via keventd.
7400 * 2) Since we run with the RTNL semaphore not held, we can sleep
7401 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7402 *
7403 * We must not return until all unregister events added during
7404 * the interval the lock was held have been completed.
1da177e4 7405 */
1da177e4
LT
7406void netdev_run_todo(void)
7407{
626ab0e6 7408 struct list_head list;
1da177e4 7409
1da177e4 7410 /* Snapshot list, allow later requests */
626ab0e6 7411 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7412
7413 __rtnl_unlock();
626ab0e6 7414
0115e8e3
ED
7415
7416 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7417 if (!list_empty(&list))
7418 rcu_barrier();
7419
1da177e4
LT
7420 while (!list_empty(&list)) {
7421 struct net_device *dev
e5e26d75 7422 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7423 list_del(&dev->todo_list);
7424
748e2d93 7425 rtnl_lock();
0115e8e3 7426 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7427 __rtnl_unlock();
0115e8e3 7428
b17a7c17 7429 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7430 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7431 dev->name, dev->reg_state);
7432 dump_stack();
7433 continue;
7434 }
1da177e4 7435
b17a7c17 7436 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7437
b17a7c17 7438 netdev_wait_allrefs(dev);
1da177e4 7439
b17a7c17 7440 /* paranoia */
29b4433d 7441 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7442 BUG_ON(!list_empty(&dev->ptype_all));
7443 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7444 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7445 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7446 WARN_ON(dev->dn_ptr);
1da177e4 7447
b17a7c17
SH
7448 if (dev->destructor)
7449 dev->destructor(dev);
9093bbb2 7450
50624c93
EB
7451 /* Report a network device has been unregistered */
7452 rtnl_lock();
7453 dev_net(dev)->dev_unreg_count--;
7454 __rtnl_unlock();
7455 wake_up(&netdev_unregistering_wq);
7456
9093bbb2
SH
7457 /* Free network device */
7458 kobject_put(&dev->dev.kobj);
1da177e4 7459 }
1da177e4
LT
7460}
7461
9256645a
JW
7462/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7463 * all the same fields in the same order as net_device_stats, with only
7464 * the type differing, but rtnl_link_stats64 may have additional fields
7465 * at the end for newer counters.
3cfde79c 7466 */
77a1abf5
ED
7467void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7468 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7469{
7470#if BITS_PER_LONG == 64
9256645a 7471 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7472 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7473 /* zero out counters that only exist in rtnl_link_stats64 */
7474 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7475 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7476#else
9256645a 7477 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7478 const unsigned long *src = (const unsigned long *)netdev_stats;
7479 u64 *dst = (u64 *)stats64;
7480
9256645a 7481 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7482 for (i = 0; i < n; i++)
7483 dst[i] = src[i];
9256645a
JW
7484 /* zero out counters that only exist in rtnl_link_stats64 */
7485 memset((char *)stats64 + n * sizeof(u64), 0,
7486 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7487#endif
7488}
77a1abf5 7489EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7490
eeda3fd6
SH
7491/**
7492 * dev_get_stats - get network device statistics
7493 * @dev: device to get statistics from
28172739 7494 * @storage: place to store stats
eeda3fd6 7495 *
d7753516
BH
7496 * Get network statistics from device. Return @storage.
7497 * The device driver may provide its own method by setting
7498 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7499 * otherwise the internal statistics structure is used.
eeda3fd6 7500 */
d7753516
BH
7501struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7502 struct rtnl_link_stats64 *storage)
7004bf25 7503{
eeda3fd6
SH
7504 const struct net_device_ops *ops = dev->netdev_ops;
7505
28172739
ED
7506 if (ops->ndo_get_stats64) {
7507 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7508 ops->ndo_get_stats64(dev, storage);
7509 } else if (ops->ndo_get_stats) {
3cfde79c 7510 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7511 } else {
7512 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7513 }
caf586e5 7514 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7515 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7516 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7517 return storage;
c45d286e 7518}
eeda3fd6 7519EXPORT_SYMBOL(dev_get_stats);
c45d286e 7520
24824a09 7521struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7522{
24824a09 7523 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7524
24824a09
ED
7525#ifdef CONFIG_NET_CLS_ACT
7526 if (queue)
7527 return queue;
7528 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7529 if (!queue)
7530 return NULL;
7531 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7532 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7533 queue->qdisc_sleeping = &noop_qdisc;
7534 rcu_assign_pointer(dev->ingress_queue, queue);
7535#endif
7536 return queue;
bb949fbd
DM
7537}
7538
2c60db03
ED
7539static const struct ethtool_ops default_ethtool_ops;
7540
d07d7507
SG
7541void netdev_set_default_ethtool_ops(struct net_device *dev,
7542 const struct ethtool_ops *ops)
7543{
7544 if (dev->ethtool_ops == &default_ethtool_ops)
7545 dev->ethtool_ops = ops;
7546}
7547EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7548
74d332c1
ED
7549void netdev_freemem(struct net_device *dev)
7550{
7551 char *addr = (char *)dev - dev->padded;
7552
4cb28970 7553 kvfree(addr);
74d332c1
ED
7554}
7555
1da177e4 7556/**
36909ea4 7557 * alloc_netdev_mqs - allocate network device
c835a677
TG
7558 * @sizeof_priv: size of private data to allocate space for
7559 * @name: device name format string
7560 * @name_assign_type: origin of device name
7561 * @setup: callback to initialize device
7562 * @txqs: the number of TX subqueues to allocate
7563 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7564 *
7565 * Allocates a struct net_device with private data area for driver use
90e51adf 7566 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7567 * for each queue on the device.
1da177e4 7568 */
36909ea4 7569struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7570 unsigned char name_assign_type,
36909ea4
TH
7571 void (*setup)(struct net_device *),
7572 unsigned int txqs, unsigned int rxqs)
1da177e4 7573{
1da177e4 7574 struct net_device *dev;
7943986c 7575 size_t alloc_size;
1ce8e7b5 7576 struct net_device *p;
1da177e4 7577
b6fe17d6
SH
7578 BUG_ON(strlen(name) >= sizeof(dev->name));
7579
36909ea4 7580 if (txqs < 1) {
7b6cd1ce 7581 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7582 return NULL;
7583 }
7584
a953be53 7585#ifdef CONFIG_SYSFS
36909ea4 7586 if (rxqs < 1) {
7b6cd1ce 7587 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7588 return NULL;
7589 }
7590#endif
7591
fd2ea0a7 7592 alloc_size = sizeof(struct net_device);
d1643d24
AD
7593 if (sizeof_priv) {
7594 /* ensure 32-byte alignment of private area */
1ce8e7b5 7595 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7596 alloc_size += sizeof_priv;
7597 }
7598 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7599 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7600
74d332c1
ED
7601 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7602 if (!p)
7603 p = vzalloc(alloc_size);
62b5942a 7604 if (!p)
1da177e4 7605 return NULL;
1da177e4 7606
1ce8e7b5 7607 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7608 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7609
29b4433d
ED
7610 dev->pcpu_refcnt = alloc_percpu(int);
7611 if (!dev->pcpu_refcnt)
74d332c1 7612 goto free_dev;
ab9c73cc 7613
ab9c73cc 7614 if (dev_addr_init(dev))
29b4433d 7615 goto free_pcpu;
ab9c73cc 7616
22bedad3 7617 dev_mc_init(dev);
a748ee24 7618 dev_uc_init(dev);
ccffad25 7619
c346dca1 7620 dev_net_set(dev, &init_net);
1da177e4 7621
8d3bdbd5 7622 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7623 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7624
8d3bdbd5
DM
7625 INIT_LIST_HEAD(&dev->napi_list);
7626 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7627 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7628 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7629 INIT_LIST_HEAD(&dev->adj_list.upper);
7630 INIT_LIST_HEAD(&dev->adj_list.lower);
7631 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7632 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7633 INIT_LIST_HEAD(&dev->ptype_all);
7634 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7635#ifdef CONFIG_NET_SCHED
7636 hash_init(dev->qdisc_hash);
7637#endif
02875878 7638 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7639 setup(dev);
7640
a813104d 7641 if (!dev->tx_queue_len) {
f84bb1ea 7642 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7643 dev->tx_queue_len = 1;
7644 }
906470c1 7645
36909ea4
TH
7646 dev->num_tx_queues = txqs;
7647 dev->real_num_tx_queues = txqs;
ed9af2e8 7648 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7649 goto free_all;
e8a0464c 7650
a953be53 7651#ifdef CONFIG_SYSFS
36909ea4
TH
7652 dev->num_rx_queues = rxqs;
7653 dev->real_num_rx_queues = rxqs;
fe822240 7654 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7655 goto free_all;
df334545 7656#endif
0a9627f2 7657
1da177e4 7658 strcpy(dev->name, name);
c835a677 7659 dev->name_assign_type = name_assign_type;
cbda10fa 7660 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7661 if (!dev->ethtool_ops)
7662 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7663
7664 nf_hook_ingress_init(dev);
7665
1da177e4 7666 return dev;
ab9c73cc 7667
8d3bdbd5
DM
7668free_all:
7669 free_netdev(dev);
7670 return NULL;
7671
29b4433d
ED
7672free_pcpu:
7673 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7674free_dev:
7675 netdev_freemem(dev);
ab9c73cc 7676 return NULL;
1da177e4 7677}
36909ea4 7678EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7679
7680/**
7681 * free_netdev - free network device
7682 * @dev: device
7683 *
4ec93edb
YH
7684 * This function does the last stage of destroying an allocated device
7685 * interface. The reference to the device object is released.
1da177e4 7686 * If this is the last reference then it will be freed.
93d05d4a 7687 * Must be called in process context.
1da177e4
LT
7688 */
7689void free_netdev(struct net_device *dev)
7690{
d565b0a1
HX
7691 struct napi_struct *p, *n;
7692
93d05d4a 7693 might_sleep();
60877a32 7694 netif_free_tx_queues(dev);
a953be53 7695#ifdef CONFIG_SYSFS
10595902 7696 kvfree(dev->_rx);
fe822240 7697#endif
e8a0464c 7698
33d480ce 7699 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7700
f001fde5
JP
7701 /* Flush device addresses */
7702 dev_addr_flush(dev);
7703
d565b0a1
HX
7704 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7705 netif_napi_del(p);
7706
29b4433d
ED
7707 free_percpu(dev->pcpu_refcnt);
7708 dev->pcpu_refcnt = NULL;
7709
3041a069 7710 /* Compatibility with error handling in drivers */
1da177e4 7711 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7712 netdev_freemem(dev);
1da177e4
LT
7713 return;
7714 }
7715
7716 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7717 dev->reg_state = NETREG_RELEASED;
7718
43cb76d9
GKH
7719 /* will free via device release */
7720 put_device(&dev->dev);
1da177e4 7721}
d1b19dff 7722EXPORT_SYMBOL(free_netdev);
4ec93edb 7723
f0db275a
SH
7724/**
7725 * synchronize_net - Synchronize with packet receive processing
7726 *
7727 * Wait for packets currently being received to be done.
7728 * Does not block later packets from starting.
7729 */
4ec93edb 7730void synchronize_net(void)
1da177e4
LT
7731{
7732 might_sleep();
be3fc413
ED
7733 if (rtnl_is_locked())
7734 synchronize_rcu_expedited();
7735 else
7736 synchronize_rcu();
1da177e4 7737}
d1b19dff 7738EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7739
7740/**
44a0873d 7741 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7742 * @dev: device
44a0873d 7743 * @head: list
6ebfbc06 7744 *
1da177e4 7745 * This function shuts down a device interface and removes it
d59b54b1 7746 * from the kernel tables.
44a0873d 7747 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7748 *
7749 * Callers must hold the rtnl semaphore. You may want
7750 * unregister_netdev() instead of this.
7751 */
7752
44a0873d 7753void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7754{
a6620712
HX
7755 ASSERT_RTNL();
7756
44a0873d 7757 if (head) {
9fdce099 7758 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7759 } else {
7760 rollback_registered(dev);
7761 /* Finish processing unregister after unlock */
7762 net_set_todo(dev);
7763 }
1da177e4 7764}
44a0873d 7765EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7766
9b5e383c
ED
7767/**
7768 * unregister_netdevice_many - unregister many devices
7769 * @head: list of devices
87757a91
ED
7770 *
7771 * Note: As most callers use a stack allocated list_head,
7772 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7773 */
7774void unregister_netdevice_many(struct list_head *head)
7775{
7776 struct net_device *dev;
7777
7778 if (!list_empty(head)) {
7779 rollback_registered_many(head);
7780 list_for_each_entry(dev, head, unreg_list)
7781 net_set_todo(dev);
87757a91 7782 list_del(head);
9b5e383c
ED
7783 }
7784}
63c8099d 7785EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7786
1da177e4
LT
7787/**
7788 * unregister_netdev - remove device from the kernel
7789 * @dev: device
7790 *
7791 * This function shuts down a device interface and removes it
d59b54b1 7792 * from the kernel tables.
1da177e4
LT
7793 *
7794 * This is just a wrapper for unregister_netdevice that takes
7795 * the rtnl semaphore. In general you want to use this and not
7796 * unregister_netdevice.
7797 */
7798void unregister_netdev(struct net_device *dev)
7799{
7800 rtnl_lock();
7801 unregister_netdevice(dev);
7802 rtnl_unlock();
7803}
1da177e4
LT
7804EXPORT_SYMBOL(unregister_netdev);
7805
ce286d32
EB
7806/**
7807 * dev_change_net_namespace - move device to different nethost namespace
7808 * @dev: device
7809 * @net: network namespace
7810 * @pat: If not NULL name pattern to try if the current device name
7811 * is already taken in the destination network namespace.
7812 *
7813 * This function shuts down a device interface and moves it
7814 * to a new network namespace. On success 0 is returned, on
7815 * a failure a netagive errno code is returned.
7816 *
7817 * Callers must hold the rtnl semaphore.
7818 */
7819
7820int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7821{
ce286d32
EB
7822 int err;
7823
7824 ASSERT_RTNL();
7825
7826 /* Don't allow namespace local devices to be moved. */
7827 err = -EINVAL;
7828 if (dev->features & NETIF_F_NETNS_LOCAL)
7829 goto out;
7830
7831 /* Ensure the device has been registrered */
ce286d32
EB
7832 if (dev->reg_state != NETREG_REGISTERED)
7833 goto out;
7834
7835 /* Get out if there is nothing todo */
7836 err = 0;
878628fb 7837 if (net_eq(dev_net(dev), net))
ce286d32
EB
7838 goto out;
7839
7840 /* Pick the destination device name, and ensure
7841 * we can use it in the destination network namespace.
7842 */
7843 err = -EEXIST;
d9031024 7844 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7845 /* We get here if we can't use the current device name */
7846 if (!pat)
7847 goto out;
828de4f6 7848 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7849 goto out;
7850 }
7851
7852 /*
7853 * And now a mini version of register_netdevice unregister_netdevice.
7854 */
7855
7856 /* If device is running close it first. */
9b772652 7857 dev_close(dev);
ce286d32
EB
7858
7859 /* And unlink it from device chain */
7860 err = -ENODEV;
7861 unlist_netdevice(dev);
7862
7863 synchronize_net();
7864
7865 /* Shutdown queueing discipline. */
7866 dev_shutdown(dev);
7867
7868 /* Notify protocols, that we are about to destroy
7869 this device. They should clean all the things.
3b27e105
DL
7870
7871 Note that dev->reg_state stays at NETREG_REGISTERED.
7872 This is wanted because this way 8021q and macvlan know
7873 the device is just moving and can keep their slaves up.
ce286d32
EB
7874 */
7875 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7876 rcu_barrier();
7877 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7878 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7879
7880 /*
7881 * Flush the unicast and multicast chains
7882 */
a748ee24 7883 dev_uc_flush(dev);
22bedad3 7884 dev_mc_flush(dev);
ce286d32 7885
4e66ae2e
SH
7886 /* Send a netdev-removed uevent to the old namespace */
7887 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7888 netdev_adjacent_del_links(dev);
4e66ae2e 7889
ce286d32 7890 /* Actually switch the network namespace */
c346dca1 7891 dev_net_set(dev, net);
ce286d32 7892
ce286d32 7893 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7894 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7895 dev->ifindex = dev_new_index(net);
ce286d32 7896
4e66ae2e
SH
7897 /* Send a netdev-add uevent to the new namespace */
7898 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7899 netdev_adjacent_add_links(dev);
4e66ae2e 7900
8b41d188 7901 /* Fixup kobjects */
a1b3f594 7902 err = device_rename(&dev->dev, dev->name);
8b41d188 7903 WARN_ON(err);
ce286d32
EB
7904
7905 /* Add the device back in the hashes */
7906 list_netdevice(dev);
7907
7908 /* Notify protocols, that a new device appeared. */
7909 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7910
d90a909e
EB
7911 /*
7912 * Prevent userspace races by waiting until the network
7913 * device is fully setup before sending notifications.
7914 */
7f294054 7915 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7916
ce286d32
EB
7917 synchronize_net();
7918 err = 0;
7919out:
7920 return err;
7921}
463d0183 7922EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7923
1da177e4
LT
7924static int dev_cpu_callback(struct notifier_block *nfb,
7925 unsigned long action,
7926 void *ocpu)
7927{
7928 struct sk_buff **list_skb;
1da177e4
LT
7929 struct sk_buff *skb;
7930 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7931 struct softnet_data *sd, *oldsd;
7932
8bb78442 7933 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7934 return NOTIFY_OK;
7935
7936 local_irq_disable();
7937 cpu = smp_processor_id();
7938 sd = &per_cpu(softnet_data, cpu);
7939 oldsd = &per_cpu(softnet_data, oldcpu);
7940
7941 /* Find end of our completion_queue. */
7942 list_skb = &sd->completion_queue;
7943 while (*list_skb)
7944 list_skb = &(*list_skb)->next;
7945 /* Append completion queue from offline CPU. */
7946 *list_skb = oldsd->completion_queue;
7947 oldsd->completion_queue = NULL;
7948
1da177e4 7949 /* Append output queue from offline CPU. */
a9cbd588
CG
7950 if (oldsd->output_queue) {
7951 *sd->output_queue_tailp = oldsd->output_queue;
7952 sd->output_queue_tailp = oldsd->output_queue_tailp;
7953 oldsd->output_queue = NULL;
7954 oldsd->output_queue_tailp = &oldsd->output_queue;
7955 }
ac64da0b
ED
7956 /* Append NAPI poll list from offline CPU, with one exception :
7957 * process_backlog() must be called by cpu owning percpu backlog.
7958 * We properly handle process_queue & input_pkt_queue later.
7959 */
7960 while (!list_empty(&oldsd->poll_list)) {
7961 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7962 struct napi_struct,
7963 poll_list);
7964
7965 list_del_init(&napi->poll_list);
7966 if (napi->poll == process_backlog)
7967 napi->state = 0;
7968 else
7969 ____napi_schedule(sd, napi);
264524d5 7970 }
1da177e4
LT
7971
7972 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7973 local_irq_enable();
7974
7975 /* Process offline CPU's input_pkt_queue */
76cc8b13 7976 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7977 netif_rx_ni(skb);
76cc8b13 7978 input_queue_head_incr(oldsd);
fec5e652 7979 }
ac64da0b 7980 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7981 netif_rx_ni(skb);
76cc8b13
TH
7982 input_queue_head_incr(oldsd);
7983 }
1da177e4
LT
7984
7985 return NOTIFY_OK;
7986}
1da177e4
LT
7987
7988
7f353bf2 7989/**
b63365a2
HX
7990 * netdev_increment_features - increment feature set by one
7991 * @all: current feature set
7992 * @one: new feature set
7993 * @mask: mask feature set
7f353bf2
HX
7994 *
7995 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7996 * @one to the master device with current feature set @all. Will not
7997 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7998 */
c8f44aff
MM
7999netdev_features_t netdev_increment_features(netdev_features_t all,
8000 netdev_features_t one, netdev_features_t mask)
b63365a2 8001{
c8cd0989 8002 if (mask & NETIF_F_HW_CSUM)
a188222b 8003 mask |= NETIF_F_CSUM_MASK;
1742f183 8004 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8005
a188222b 8006 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8007 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8008
1742f183 8009 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8010 if (all & NETIF_F_HW_CSUM)
8011 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8012
8013 return all;
8014}
b63365a2 8015EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8016
430f03cd 8017static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8018{
8019 int i;
8020 struct hlist_head *hash;
8021
8022 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8023 if (hash != NULL)
8024 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8025 INIT_HLIST_HEAD(&hash[i]);
8026
8027 return hash;
8028}
8029
881d966b 8030/* Initialize per network namespace state */
4665079c 8031static int __net_init netdev_init(struct net *net)
881d966b 8032{
734b6541
RM
8033 if (net != &init_net)
8034 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8035
30d97d35
PE
8036 net->dev_name_head = netdev_create_hash();
8037 if (net->dev_name_head == NULL)
8038 goto err_name;
881d966b 8039
30d97d35
PE
8040 net->dev_index_head = netdev_create_hash();
8041 if (net->dev_index_head == NULL)
8042 goto err_idx;
881d966b
EB
8043
8044 return 0;
30d97d35
PE
8045
8046err_idx:
8047 kfree(net->dev_name_head);
8048err_name:
8049 return -ENOMEM;
881d966b
EB
8050}
8051
f0db275a
SH
8052/**
8053 * netdev_drivername - network driver for the device
8054 * @dev: network device
f0db275a
SH
8055 *
8056 * Determine network driver for device.
8057 */
3019de12 8058const char *netdev_drivername(const struct net_device *dev)
6579e57b 8059{
cf04a4c7
SH
8060 const struct device_driver *driver;
8061 const struct device *parent;
3019de12 8062 const char *empty = "";
6579e57b
AV
8063
8064 parent = dev->dev.parent;
6579e57b 8065 if (!parent)
3019de12 8066 return empty;
6579e57b
AV
8067
8068 driver = parent->driver;
8069 if (driver && driver->name)
3019de12
DM
8070 return driver->name;
8071 return empty;
6579e57b
AV
8072}
8073
6ea754eb
JP
8074static void __netdev_printk(const char *level, const struct net_device *dev,
8075 struct va_format *vaf)
256df2f3 8076{
b004ff49 8077 if (dev && dev->dev.parent) {
6ea754eb
JP
8078 dev_printk_emit(level[1] - '0',
8079 dev->dev.parent,
8080 "%s %s %s%s: %pV",
8081 dev_driver_string(dev->dev.parent),
8082 dev_name(dev->dev.parent),
8083 netdev_name(dev), netdev_reg_state(dev),
8084 vaf);
b004ff49 8085 } else if (dev) {
6ea754eb
JP
8086 printk("%s%s%s: %pV",
8087 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8088 } else {
6ea754eb 8089 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8090 }
256df2f3
JP
8091}
8092
6ea754eb
JP
8093void netdev_printk(const char *level, const struct net_device *dev,
8094 const char *format, ...)
256df2f3
JP
8095{
8096 struct va_format vaf;
8097 va_list args;
256df2f3
JP
8098
8099 va_start(args, format);
8100
8101 vaf.fmt = format;
8102 vaf.va = &args;
8103
6ea754eb 8104 __netdev_printk(level, dev, &vaf);
b004ff49 8105
256df2f3 8106 va_end(args);
256df2f3
JP
8107}
8108EXPORT_SYMBOL(netdev_printk);
8109
8110#define define_netdev_printk_level(func, level) \
6ea754eb 8111void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8112{ \
256df2f3
JP
8113 struct va_format vaf; \
8114 va_list args; \
8115 \
8116 va_start(args, fmt); \
8117 \
8118 vaf.fmt = fmt; \
8119 vaf.va = &args; \
8120 \
6ea754eb 8121 __netdev_printk(level, dev, &vaf); \
b004ff49 8122 \
256df2f3 8123 va_end(args); \
256df2f3
JP
8124} \
8125EXPORT_SYMBOL(func);
8126
8127define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8128define_netdev_printk_level(netdev_alert, KERN_ALERT);
8129define_netdev_printk_level(netdev_crit, KERN_CRIT);
8130define_netdev_printk_level(netdev_err, KERN_ERR);
8131define_netdev_printk_level(netdev_warn, KERN_WARNING);
8132define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8133define_netdev_printk_level(netdev_info, KERN_INFO);
8134
4665079c 8135static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8136{
8137 kfree(net->dev_name_head);
8138 kfree(net->dev_index_head);
8139}
8140
022cbae6 8141static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8142 .init = netdev_init,
8143 .exit = netdev_exit,
8144};
8145
4665079c 8146static void __net_exit default_device_exit(struct net *net)
ce286d32 8147{
e008b5fc 8148 struct net_device *dev, *aux;
ce286d32 8149 /*
e008b5fc 8150 * Push all migratable network devices back to the
ce286d32
EB
8151 * initial network namespace
8152 */
8153 rtnl_lock();
e008b5fc 8154 for_each_netdev_safe(net, dev, aux) {
ce286d32 8155 int err;
aca51397 8156 char fb_name[IFNAMSIZ];
ce286d32
EB
8157
8158 /* Ignore unmoveable devices (i.e. loopback) */
8159 if (dev->features & NETIF_F_NETNS_LOCAL)
8160 continue;
8161
e008b5fc
EB
8162 /* Leave virtual devices for the generic cleanup */
8163 if (dev->rtnl_link_ops)
8164 continue;
d0c082ce 8165
25985edc 8166 /* Push remaining network devices to init_net */
aca51397
PE
8167 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8168 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8169 if (err) {
7b6cd1ce
JP
8170 pr_emerg("%s: failed to move %s to init_net: %d\n",
8171 __func__, dev->name, err);
aca51397 8172 BUG();
ce286d32
EB
8173 }
8174 }
8175 rtnl_unlock();
8176}
8177
50624c93
EB
8178static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8179{
8180 /* Return with the rtnl_lock held when there are no network
8181 * devices unregistering in any network namespace in net_list.
8182 */
8183 struct net *net;
8184 bool unregistering;
ff960a73 8185 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8186
ff960a73 8187 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8188 for (;;) {
50624c93
EB
8189 unregistering = false;
8190 rtnl_lock();
8191 list_for_each_entry(net, net_list, exit_list) {
8192 if (net->dev_unreg_count > 0) {
8193 unregistering = true;
8194 break;
8195 }
8196 }
8197 if (!unregistering)
8198 break;
8199 __rtnl_unlock();
ff960a73
PZ
8200
8201 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8202 }
ff960a73 8203 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8204}
8205
04dc7f6b
EB
8206static void __net_exit default_device_exit_batch(struct list_head *net_list)
8207{
8208 /* At exit all network devices most be removed from a network
b595076a 8209 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8210 * Do this across as many network namespaces as possible to
8211 * improve batching efficiency.
8212 */
8213 struct net_device *dev;
8214 struct net *net;
8215 LIST_HEAD(dev_kill_list);
8216
50624c93
EB
8217 /* To prevent network device cleanup code from dereferencing
8218 * loopback devices or network devices that have been freed
8219 * wait here for all pending unregistrations to complete,
8220 * before unregistring the loopback device and allowing the
8221 * network namespace be freed.
8222 *
8223 * The netdev todo list containing all network devices
8224 * unregistrations that happen in default_device_exit_batch
8225 * will run in the rtnl_unlock() at the end of
8226 * default_device_exit_batch.
8227 */
8228 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8229 list_for_each_entry(net, net_list, exit_list) {
8230 for_each_netdev_reverse(net, dev) {
b0ab2fab 8231 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8232 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8233 else
8234 unregister_netdevice_queue(dev, &dev_kill_list);
8235 }
8236 }
8237 unregister_netdevice_many(&dev_kill_list);
8238 rtnl_unlock();
8239}
8240
022cbae6 8241static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8242 .exit = default_device_exit,
04dc7f6b 8243 .exit_batch = default_device_exit_batch,
ce286d32
EB
8244};
8245
1da177e4
LT
8246/*
8247 * Initialize the DEV module. At boot time this walks the device list and
8248 * unhooks any devices that fail to initialise (normally hardware not
8249 * present) and leaves us with a valid list of present and active devices.
8250 *
8251 */
8252
8253/*
8254 * This is called single threaded during boot, so no need
8255 * to take the rtnl semaphore.
8256 */
8257static int __init net_dev_init(void)
8258{
8259 int i, rc = -ENOMEM;
8260
8261 BUG_ON(!dev_boot_phase);
8262
1da177e4
LT
8263 if (dev_proc_init())
8264 goto out;
8265
8b41d188 8266 if (netdev_kobject_init())
1da177e4
LT
8267 goto out;
8268
8269 INIT_LIST_HEAD(&ptype_all);
82d8a867 8270 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8271 INIT_LIST_HEAD(&ptype_base[i]);
8272
62532da9
VY
8273 INIT_LIST_HEAD(&offload_base);
8274
881d966b
EB
8275 if (register_pernet_subsys(&netdev_net_ops))
8276 goto out;
1da177e4
LT
8277
8278 /*
8279 * Initialise the packet receive queues.
8280 */
8281
6f912042 8282 for_each_possible_cpu(i) {
41852497 8283 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8284 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8285
41852497
ED
8286 INIT_WORK(flush, flush_backlog);
8287
e36fa2f7 8288 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8289 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8290 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8291 sd->output_queue_tailp = &sd->output_queue;
df334545 8292#ifdef CONFIG_RPS
e36fa2f7
ED
8293 sd->csd.func = rps_trigger_softirq;
8294 sd->csd.info = sd;
e36fa2f7 8295 sd->cpu = i;
1e94d72f 8296#endif
0a9627f2 8297
e36fa2f7
ED
8298 sd->backlog.poll = process_backlog;
8299 sd->backlog.weight = weight_p;
1da177e4
LT
8300 }
8301
1da177e4
LT
8302 dev_boot_phase = 0;
8303
505d4f73
EB
8304 /* The loopback device is special if any other network devices
8305 * is present in a network namespace the loopback device must
8306 * be present. Since we now dynamically allocate and free the
8307 * loopback device ensure this invariant is maintained by
8308 * keeping the loopback device as the first device on the
8309 * list of network devices. Ensuring the loopback devices
8310 * is the first device that appears and the last network device
8311 * that disappears.
8312 */
8313 if (register_pernet_device(&loopback_net_ops))
8314 goto out;
8315
8316 if (register_pernet_device(&default_device_ops))
8317 goto out;
8318
962cf36c
CM
8319 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8320 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8321
8322 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8323 dst_subsys_init();
1da177e4
LT
8324 rc = 0;
8325out:
8326 return rc;
8327}
8328
8329subsys_initcall(net_dev_init);
This page took 2.379914 seconds and 5 git commands to generate.