Merge branch 'akpm' (patchbomb from Andrew)
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 97
b299e4f0 98struct rt_trie_node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
5c74501f 113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 114 struct list_head falh;
5c74501f 115 struct rcu_head rcu;
19baf839
RO
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
125 union {
126 struct rcu_head rcu;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
0a5c0475 129 struct rt_trie_node __rcu *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
0a5c0475 154 struct rt_trie_node __rcu *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
b299e4f0 160static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 161 int wasfull);
b299e4f0 162static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
c3059477
JP
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
19baf839 175
e18b890b 176static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 177static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 178
0a5c0475
ED
179/*
180 * caller must hold RTNL
181 */
182static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 183{
0a5c0475
ED
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
189}
190
0a5c0475
ED
191/*
192 * caller must hold RCU read lock or RTNL
193 */
194static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 195{
0a5c0475
ED
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
06801916 200
0a5c0475 201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
202}
203
cf778b00 204/* Same as rcu_assign_pointer
6440cc9e
SH
205 * but that macro() assumes that value is a pointer.
206 */
b299e4f0 207static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 208{
6440cc9e
SH
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 211}
2373ce1c 212
0a5c0475
ED
213/*
214 * caller must hold RTNL
215 */
216static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
217{
218 BUG_ON(i >= 1U << tn->bits);
2373ce1c 219
0a5c0475 220 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
221}
222
0a5c0475
ED
223/*
224 * caller must hold RCU read lock or RTNL
225 */
226static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 227{
0a5c0475 228 BUG_ON(i >= 1U << tn->bits);
19baf839 229
0a5c0475 230 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
231}
232
bb435b8d 233static inline int tnode_child_length(const struct tnode *tn)
19baf839 234{
91b9a277 235 return 1 << tn->bits;
19baf839
RO
236}
237
3b004569 238static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
239{
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241}
242
3b004569 243static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 244{
91b9a277 245 if (offset < KEYLENGTH)
19baf839 246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 247 else
19baf839
RO
248 return 0;
249}
250
251static inline int tkey_equals(t_key a, t_key b)
252{
c877efb2 253 return a == b;
19baf839
RO
254}
255
256static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257{
c877efb2
SH
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
91b9a277
OJ
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 262}
19baf839
RO
263
264static inline int tkey_mismatch(t_key a, int offset, t_key b)
265{
266 t_key diff = a ^ b;
267 int i = offset;
268
c877efb2
SH
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
272 i++;
273 return i;
274}
275
19baf839 276/*
e905a9ed
YH
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
e905a9ed
YH
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
19baf839
RO
288 correct key path.
289
e905a9ed
YH
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
295 call to tkey_sub_equals() in trie_insert().
296
e905a9ed 297 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
298 have many different meanings.
299
e905a9ed 300 Example:
19baf839
RO
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
e905a9ed 304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
91b9a277 314 n->bits = 4
19baf839 315
e905a9ed
YH
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 321 index into the parent's child array. That is, they will be used to find
19baf839
RO
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
e905a9ed 327 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
328 of the bits are really not needed or indeed known in n->key.
329
e905a9ed 330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 331 n's child array, and will of course be different for each child.
e905a9ed 332
c877efb2 333
19baf839
RO
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337*/
338
0c7770c7 339static inline void check_tnode(const struct tnode *tn)
19baf839 340{
0c7770c7 341 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
342}
343
f5026fab
DL
344static const int halve_threshold = 25;
345static const int inflate_threshold = 50;
345aa031 346static const int halve_threshold_root = 15;
80b71b80 347static const int inflate_threshold_root = 30;
2373ce1c
RO
348
349static void __alias_free_mem(struct rcu_head *head)
19baf839 350{
2373ce1c
RO
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
353}
354
2373ce1c 355static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 356{
2373ce1c
RO
357 call_rcu(&fa->rcu, __alias_free_mem);
358}
91b9a277 359
2373ce1c
RO
360static void __leaf_free_rcu(struct rcu_head *head)
361{
bc3c8c1e
SH
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 364}
91b9a277 365
387a5487
SH
366static inline void free_leaf(struct leaf *l)
367{
0c03eca3 368 call_rcu(&l->rcu, __leaf_free_rcu);
387a5487
SH
369}
370
2373ce1c 371static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 372{
bceb0f45 373 kfree_rcu(leaf, rcu);
19baf839
RO
374}
375
8d965444 376static struct tnode *tnode_alloc(size_t size)
f0e36f8c 377{
2373ce1c 378 if (size <= PAGE_SIZE)
8d965444 379 return kzalloc(size, GFP_KERNEL);
15be75cd 380 else
7a1c8e5a 381 return vzalloc(size);
15be75cd 382}
2373ce1c 383
2373ce1c 384static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 385{
2373ce1c 386 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 387 size_t size = sizeof(struct tnode) +
b299e4f0 388 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
00203563
AV
392 else
393 vfree(tn);
f0e36f8c
PM
394}
395
2373ce1c
RO
396static inline void tnode_free(struct tnode *tn)
397{
387a5487
SH
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
550e29bc 401 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
402}
403
e0f7cb8c
JP
404static void tnode_free_safe(struct tnode *tn)
405{
406 BUG_ON(IS_LEAF(tn));
7b85576d
JP
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
c3059477 409 tnode_free_size += sizeof(struct tnode) +
b299e4f0 410 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
411}
412
413static void tnode_free_flush(void)
414{
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
c3059477
JP
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
e0f7cb8c
JP
427}
428
2373ce1c
RO
429static struct leaf *leaf_new(void)
430{
bc3c8c1e 431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437}
438
439static struct leaf_info *leaf_info_new(int plen)
440{
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
5c74501f 444 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448}
449
a07f5f50 450static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 451{
b299e4f0 452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 453 struct tnode *tn = tnode_alloc(sz);
19baf839 454
91b9a277 455 if (tn) {
2373ce1c 456 tn->parent = T_TNODE;
19baf839
RO
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
c877efb2 463
a034ee3c 464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
4ea4bf7e 465 sizeof(struct rt_trie_node *) << bits);
19baf839
RO
466 return tn;
467}
468
19baf839
RO
469/*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
b299e4f0 474static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 475{
c877efb2 476 if (n == NULL || IS_LEAF(n))
19baf839
RO
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480}
481
61648d91 482static inline void put_child(struct tnode *tn, int i,
b299e4f0 483 struct rt_trie_node *n)
19baf839
RO
484{
485 tnode_put_child_reorg(tn, i, n, -1);
486}
487
c877efb2 488 /*
19baf839
RO
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
b299e4f0 493static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 494 int wasfull)
19baf839 495{
0a5c0475 496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
497 int isfull;
498
0c7770c7
SH
499 BUG_ON(i >= 1<<tn->bits);
500
19baf839
RO
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
c877efb2 506
19baf839 507 /* update fullChildren */
91b9a277 508 if (wasfull == -1)
19baf839
RO
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
c877efb2 512 if (wasfull && !isfull)
19baf839 513 tn->full_children--;
c877efb2 514 else if (!wasfull && isfull)
19baf839 515 tn->full_children++;
91b9a277 516
c877efb2 517 if (n)
06801916 518 node_set_parent(n, tn);
19baf839 519
cf778b00 520 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
521}
522
80b71b80 523#define MAX_WORK 10
b299e4f0 524static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
525{
526 int i;
2f80b3c8 527 struct tnode *old_tn;
e6308be8
RO
528 int inflate_threshold_use;
529 int halve_threshold_use;
80b71b80 530 int max_work;
19baf839 531
e905a9ed 532 if (!tn)
19baf839
RO
533 return NULL;
534
0c7770c7
SH
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
19baf839
RO
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 540 tnode_free_safe(tn);
19baf839
RO
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 545 goto one_child;
c877efb2 546 /*
19baf839
RO
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
c877efb2
SH
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 554 * Telecommunications, page 6:
c877efb2 555 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
556 * children in the *doubled* node is at least 'high'."
557 *
c877efb2
SH
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 563 * multiply the left-hand side by 50.
c877efb2
SH
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
19baf839 568 * children, that is non-null tnodes with a skip value of 0.
c877efb2 569 * All of those will be doubled in the resulting inflated tnode, so
19baf839 570 * we just count them one extra time here.
c877efb2 571 *
19baf839 572 * A clearer way to write this would be:
c877efb2 573 *
19baf839 574 * to_be_doubled = tn->full_children;
c877efb2 575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
c877efb2 580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
19baf839
RO
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
c877efb2 589 *
19baf839
RO
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
c877efb2 593 *
19baf839 594 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 595 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 596 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 597 *
19baf839 598 * expand new_child_length:
c877efb2 599 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 600 * tn->full_children) >=
19baf839 601 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 602 *
19baf839 603 * shorten again:
c877efb2 604 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 605 * tn->empty_children) >= inflate_threshold *
19baf839 606 * tnode_child_length(tn)
c877efb2 607 *
19baf839
RO
608 */
609
610 check_tnode(tn);
c877efb2 611
e6308be8
RO
612 /* Keep root node larger */
613
b299e4f0 614 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
a034ee3c 617 } else {
e6308be8 618 inflate_threshold_use = inflate_threshold;
80b71b80
JL
619 halve_threshold_use = halve_threshold;
620 }
e6308be8 621
80b71b80
JL
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 627
2f80b3c8
RO
628 old_tn = tn;
629 tn = inflate(t, tn);
a07f5f50 630
2f80b3c8
RO
631 if (IS_ERR(tn)) {
632 tn = old_tn;
2f36895a
RO
633#ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635#endif
636 break;
637 }
19baf839
RO
638 }
639
640 check_tnode(tn);
641
80b71b80 642 /* Return if at least one inflate is run */
a034ee3c 643 if (max_work != MAX_WORK)
b299e4f0 644 return (struct rt_trie_node *) tn;
80b71b80 645
19baf839
RO
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
2f36895a 650
80b71b80
JL
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
19baf839 653 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 654 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 655
2f80b3c8
RO
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
2f36895a
RO
660#ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662#endif
663 break;
664 }
665 }
19baf839 666
c877efb2 667
19baf839 668 /* Only one child remains */
80b71b80
JL
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670one_child:
19baf839 671 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 672 struct rt_trie_node *n;
19baf839 673
0a5c0475 674 n = rtnl_dereference(tn->child[i]);
2373ce1c 675 if (!n)
91b9a277 676 continue;
91b9a277
OJ
677
678 /* compress one level */
679
06801916 680 node_set_parent(n, NULL);
e0f7cb8c 681 tnode_free_safe(tn);
91b9a277 682 return n;
19baf839 683 }
80b71b80 684 }
b299e4f0 685 return (struct rt_trie_node *) tn;
19baf839
RO
686}
687
0a5c0475
ED
688
689static void tnode_clean_free(struct tnode *tn)
690{
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700}
701
2f80b3c8 702static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 703{
19baf839
RO
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
0c7770c7 708 pr_debug("In inflate\n");
19baf839
RO
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
0c7770c7 712 if (!tn)
2f80b3c8 713 return ERR_PTR(-ENOMEM);
2f36895a
RO
714
715 /*
c877efb2
SH
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
719 * of tnode is ignored.
720 */
91b9a277
OJ
721
722 for (i = 0; i < olen; i++) {
a07f5f50 723 struct tnode *inode;
2f36895a 724
a07f5f50 725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
ab66b4a7 731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 732
2f36895a
RO
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
2f80b3c8
RO
735 if (!left)
736 goto nomem;
91b9a277 737
2f36895a
RO
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
e905a9ed 741 if (!right) {
2f80b3c8
RO
742 tnode_free(left);
743 goto nomem;
e905a9ed 744 }
2f36895a 745
61648d91
LM
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
748 }
749 }
750
91b9a277 751 for (i = 0; i < olen; i++) {
c95aaf9a 752 struct tnode *inode;
b299e4f0 753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
754 struct tnode *left, *right;
755 int size, j;
c877efb2 756
19baf839
RO
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
c877efb2 763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 764 tn->pos + tn->bits - 1) {
bbe34cf8 765 put_child(tn,
766 tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
767 node);
19baf839
RO
768 continue;
769 }
770
771 /* An internal node with two children */
772 inode = (struct tnode *) node;
773
774 if (inode->bits == 1) {
61648d91
LM
775 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
776 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 777
e0f7cb8c 778 tnode_free_safe(inode);
91b9a277 779 continue;
19baf839
RO
780 }
781
91b9a277
OJ
782 /* An internal node with more than two children */
783
784 /* We will replace this node 'inode' with two new
785 * ones, 'left' and 'right', each with half of the
786 * original children. The two new nodes will have
787 * a position one bit further down the key and this
788 * means that the "significant" part of their keys
789 * (see the discussion near the top of this file)
790 * will differ by one bit, which will be "0" in
791 * left's key and "1" in right's key. Since we are
792 * moving the key position by one step, the bit that
793 * we are moving away from - the bit at position
794 * (inode->pos) - is the one that will differ between
795 * left and right. So... we synthesize that bit in the
796 * two new keys.
797 * The mask 'm' below will be a single "one" bit at
798 * the position (inode->pos)
799 */
19baf839 800
91b9a277
OJ
801 /* Use the old key, but set the new significant
802 * bit to zero.
803 */
2f36895a 804
91b9a277 805 left = (struct tnode *) tnode_get_child(tn, 2*i);
61648d91 806 put_child(tn, 2*i, NULL);
2f36895a 807
91b9a277 808 BUG_ON(!left);
2f36895a 809
91b9a277 810 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
61648d91 811 put_child(tn, 2*i+1, NULL);
19baf839 812
91b9a277 813 BUG_ON(!right);
19baf839 814
91b9a277
OJ
815 size = tnode_child_length(left);
816 for (j = 0; j < size; j++) {
61648d91
LM
817 put_child(left, j, rtnl_dereference(inode->child[j]));
818 put_child(right, j, rtnl_dereference(inode->child[j + size]));
19baf839 819 }
61648d91
LM
820 put_child(tn, 2*i, resize(t, left));
821 put_child(tn, 2*i+1, resize(t, right));
91b9a277 822
e0f7cb8c 823 tnode_free_safe(inode);
19baf839 824 }
e0f7cb8c 825 tnode_free_safe(oldtnode);
19baf839 826 return tn;
2f80b3c8 827nomem:
0a5c0475
ED
828 tnode_clean_free(tn);
829 return ERR_PTR(-ENOMEM);
19baf839
RO
830}
831
2f80b3c8 832static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
833{
834 struct tnode *oldtnode = tn;
b299e4f0 835 struct rt_trie_node *left, *right;
19baf839
RO
836 int i;
837 int olen = tnode_child_length(tn);
838
0c7770c7 839 pr_debug("In halve\n");
c877efb2
SH
840
841 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 842
2f80b3c8
RO
843 if (!tn)
844 return ERR_PTR(-ENOMEM);
2f36895a
RO
845
846 /*
c877efb2
SH
847 * Preallocate and store tnodes before the actual work so we
848 * don't get into an inconsistent state if memory allocation
849 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
850 * of tnode is ignored.
851 */
852
91b9a277 853 for (i = 0; i < olen; i += 2) {
2f36895a
RO
854 left = tnode_get_child(oldtnode, i);
855 right = tnode_get_child(oldtnode, i+1);
c877efb2 856
2f36895a 857 /* Two nonempty children */
0c7770c7 858 if (left && right) {
2f80b3c8 859 struct tnode *newn;
0c7770c7 860
2f80b3c8 861 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
862
863 if (!newn)
2f80b3c8 864 goto nomem;
0c7770c7 865
61648d91 866 put_child(tn, i/2, (struct rt_trie_node *)newn);
2f36895a 867 }
2f36895a 868
2f36895a 869 }
19baf839 870
91b9a277
OJ
871 for (i = 0; i < olen; i += 2) {
872 struct tnode *newBinNode;
873
19baf839
RO
874 left = tnode_get_child(oldtnode, i);
875 right = tnode_get_child(oldtnode, i+1);
c877efb2 876
19baf839
RO
877 /* At least one of the children is empty */
878 if (left == NULL) {
879 if (right == NULL) /* Both are empty */
880 continue;
61648d91 881 put_child(tn, i/2, right);
91b9a277 882 continue;
0c7770c7 883 }
91b9a277
OJ
884
885 if (right == NULL) {
61648d91 886 put_child(tn, i/2, left);
91b9a277
OJ
887 continue;
888 }
c877efb2 889
19baf839 890 /* Two nonempty children */
91b9a277 891 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
61648d91
LM
892 put_child(tn, i/2, NULL);
893 put_child(newBinNode, 0, left);
894 put_child(newBinNode, 1, right);
895 put_child(tn, i/2, resize(t, newBinNode));
19baf839 896 }
e0f7cb8c 897 tnode_free_safe(oldtnode);
19baf839 898 return tn;
2f80b3c8 899nomem:
0a5c0475
ED
900 tnode_clean_free(tn);
901 return ERR_PTR(-ENOMEM);
19baf839
RO
902}
903
772cb712 904/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
905 via get_fa_head and dump */
906
772cb712 907static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 908{
772cb712 909 struct hlist_head *head = &l->list;
19baf839
RO
910 struct leaf_info *li;
911
b67bfe0d 912 hlist_for_each_entry_rcu(li, head, hlist)
c877efb2 913 if (li->plen == plen)
19baf839 914 return li;
91b9a277 915
19baf839
RO
916 return NULL;
917}
918
a07f5f50 919static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 920{
772cb712 921 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 922
91b9a277
OJ
923 if (!li)
924 return NULL;
c877efb2 925
91b9a277 926 return &li->falh;
19baf839
RO
927}
928
929static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
930{
e905a9ed 931 struct leaf_info *li = NULL, *last = NULL;
e905a9ed
YH
932
933 if (hlist_empty(head)) {
934 hlist_add_head_rcu(&new->hlist, head);
935 } else {
b67bfe0d 936 hlist_for_each_entry(li, head, hlist) {
e905a9ed
YH
937 if (new->plen > li->plen)
938 break;
939
940 last = li;
941 }
942 if (last)
1d023284 943 hlist_add_behind_rcu(&new->hlist, &last->hlist);
e905a9ed
YH
944 else
945 hlist_add_before_rcu(&new->hlist, &li->hlist);
946 }
19baf839
RO
947}
948
2373ce1c
RO
949/* rcu_read_lock needs to be hold by caller from readside */
950
19baf839
RO
951static struct leaf *
952fib_find_node(struct trie *t, u32 key)
953{
954 int pos;
955 struct tnode *tn;
b299e4f0 956 struct rt_trie_node *n;
19baf839
RO
957
958 pos = 0;
a034ee3c 959 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
960
961 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
962 tn = (struct tnode *) n;
91b9a277 963
19baf839 964 check_tnode(tn);
91b9a277 965
c877efb2 966 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 967 pos = tn->pos + tn->bits;
a07f5f50
SH
968 n = tnode_get_child_rcu(tn,
969 tkey_extract_bits(key,
970 tn->pos,
971 tn->bits));
91b9a277 972 } else
19baf839
RO
973 break;
974 }
975 /* Case we have found a leaf. Compare prefixes */
976
91b9a277
OJ
977 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
978 return (struct leaf *)n;
979
19baf839
RO
980 return NULL;
981}
982
7b85576d 983static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 984{
19baf839 985 int wasfull;
3ed18d76 986 t_key cindex, key;
06801916 987 struct tnode *tp;
19baf839 988
3ed18d76
RO
989 key = tn->key;
990
b299e4f0 991 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
992 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
993 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
e3192690 994 tn = (struct tnode *)resize(t, tn);
a07f5f50 995
e3192690 996 tnode_put_child_reorg(tp, cindex,
b299e4f0 997 (struct rt_trie_node *)tn, wasfull);
91b9a277 998
b299e4f0 999 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1000 if (!tp)
cf778b00 1001 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1002
e0f7cb8c 1003 tnode_free_flush();
06801916 1004 if (!tp)
19baf839 1005 break;
06801916 1006 tn = tp;
19baf839 1007 }
06801916 1008
19baf839 1009 /* Handle last (top) tnode */
7b85576d 1010 if (IS_TNODE(tn))
e3192690 1011 tn = (struct tnode *)resize(t, tn);
19baf839 1012
cf778b00 1013 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1014 tnode_free_flush();
19baf839
RO
1015}
1016
2373ce1c
RO
1017/* only used from updater-side */
1018
fea86ad8 1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1023 struct rt_trie_node *n;
19baf839
RO
1024 struct leaf *l;
1025 int missbit;
c877efb2 1026 struct list_head *fa_head = NULL;
19baf839
RO
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
0a5c0475 1031 n = rtnl_dereference(t->trie);
19baf839 1032
c877efb2
SH
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1035 * and we should just put our new leaf in that.
c877efb2
SH
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1038 * not be the parent's 'pos'+'bits'!
1039 *
c877efb2 1040 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
c877efb2
SH
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
19baf839
RO
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
91b9a277 1053
c877efb2 1054 check_tnode(tn);
91b9a277 1055
c877efb2 1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1057 tp = tn;
91b9a277 1058 pos = tn->pos + tn->bits;
a07f5f50
SH
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
19baf839 1063
06801916 1064 BUG_ON(n && node_parent(n) != tn);
91b9a277 1065 } else
19baf839
RO
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
c877efb2 1072 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1073 */
1074
91b9a277 1075 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
c877efb2 1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1080 l = (struct leaf *) n;
19baf839 1081 li = leaf_info_new(plen);
91b9a277 1082
fea86ad8
SH
1083 if (!li)
1084 return NULL;
19baf839
RO
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
19baf839
RO
1090 l = leaf_new();
1091
fea86ad8
SH
1092 if (!l)
1093 return NULL;
19baf839
RO
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
c877efb2 1098 if (!li) {
387a5487 1099 free_leaf(l);
fea86ad8 1100 return NULL;
f835e471 1101 }
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
19baf839 1106 if (t->trie && n == NULL) {
91b9a277 1107 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1108
b299e4f0 1109 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1110
91b9a277 1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1112 put_child(tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1115 /*
1116 * Add a new tnode here
19baf839
RO
1117 * first tnode need some special handling
1118 */
1119
c877efb2 1120 if (n) {
4c60f1d6 1121 pos = tp ? tp->pos+tp->bits : 0;
19baf839
RO
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
91b9a277 1124 } else {
19baf839 1125 newpos = 0;
c877efb2 1126 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1127 }
19baf839 1128
c877efb2 1129 if (!tn) {
f835e471 1130 free_leaf_info(li);
387a5487 1131 free_leaf(l);
fea86ad8 1132 return NULL;
91b9a277
OJ
1133 }
1134
b299e4f0 1135 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1136
91b9a277 1137 missbit = tkey_extract_bits(key, newpos, 1);
61648d91
LM
1138 put_child(tn, missbit, (struct rt_trie_node *)l);
1139 put_child(tn, 1-missbit, n);
19baf839 1140
c877efb2 1141 if (tp) {
19baf839 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1143 put_child(tp, cindex, (struct rt_trie_node *)tn);
91b9a277 1144 } else {
cf778b00 1145 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1146 tp = tn;
1147 }
1148 }
91b9a277
OJ
1149
1150 if (tp && tp->pos + tp->bits > 32)
058bd4d2
JP
1151 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1152 tp, tp->pos, tp->bits, key, plen);
91b9a277 1153
19baf839 1154 /* Rebalance the trie */
2373ce1c 1155
7b85576d 1156 trie_rebalance(t, tp);
f835e471 1157done:
19baf839
RO
1158 return fa_head;
1159}
1160
d562f1f8
RO
1161/*
1162 * Caller must hold RTNL.
1163 */
16c6cf8b 1164int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1165{
1166 struct trie *t = (struct trie *) tb->tb_data;
1167 struct fib_alias *fa, *new_fa;
c877efb2 1168 struct list_head *fa_head = NULL;
19baf839 1169 struct fib_info *fi;
4e902c57
TG
1170 int plen = cfg->fc_dst_len;
1171 u8 tos = cfg->fc_tos;
19baf839
RO
1172 u32 key, mask;
1173 int err;
1174 struct leaf *l;
1175
1176 if (plen > 32)
1177 return -EINVAL;
1178
4e902c57 1179 key = ntohl(cfg->fc_dst);
19baf839 1180
2dfe55b4 1181 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1182
91b9a277 1183 mask = ntohl(inet_make_mask(plen));
19baf839 1184
c877efb2 1185 if (key & ~mask)
19baf839
RO
1186 return -EINVAL;
1187
1188 key = key & mask;
1189
4e902c57
TG
1190 fi = fib_create_info(cfg);
1191 if (IS_ERR(fi)) {
1192 err = PTR_ERR(fi);
19baf839 1193 goto err;
4e902c57 1194 }
19baf839
RO
1195
1196 l = fib_find_node(t, key);
c877efb2 1197 fa = NULL;
19baf839 1198
c877efb2 1199 if (l) {
19baf839
RO
1200 fa_head = get_fa_head(l, plen);
1201 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1202 }
1203
1204 /* Now fa, if non-NULL, points to the first fib alias
1205 * with the same keys [prefix,tos,priority], if such key already
1206 * exists or to the node before which we will insert new one.
1207 *
1208 * If fa is NULL, we will need to allocate a new one and
1209 * insert to the head of f.
1210 *
1211 * If f is NULL, no fib node matched the destination key
1212 * and we need to allocate a new one of those as well.
1213 */
1214
936f6f8e
JA
1215 if (fa && fa->fa_tos == tos &&
1216 fa->fa_info->fib_priority == fi->fib_priority) {
1217 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1218
1219 err = -EEXIST;
4e902c57 1220 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1221 goto out;
1222
936f6f8e
JA
1223 /* We have 2 goals:
1224 * 1. Find exact match for type, scope, fib_info to avoid
1225 * duplicate routes
1226 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1227 */
1228 fa_match = NULL;
1229 fa_first = fa;
1230 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1231 list_for_each_entry_continue(fa, fa_head, fa_list) {
1232 if (fa->fa_tos != tos)
1233 break;
1234 if (fa->fa_info->fib_priority != fi->fib_priority)
1235 break;
1236 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1237 fa->fa_info == fi) {
1238 fa_match = fa;
1239 break;
1240 }
1241 }
1242
4e902c57 1243 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1244 struct fib_info *fi_drop;
1245 u8 state;
1246
936f6f8e
JA
1247 fa = fa_first;
1248 if (fa_match) {
1249 if (fa == fa_match)
1250 err = 0;
6725033f 1251 goto out;
936f6f8e 1252 }
2373ce1c 1253 err = -ENOBUFS;
e94b1766 1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1255 if (new_fa == NULL)
1256 goto out;
19baf839
RO
1257
1258 fi_drop = fa->fa_info;
2373ce1c
RO
1259 new_fa->fa_tos = fa->fa_tos;
1260 new_fa->fa_info = fi;
4e902c57 1261 new_fa->fa_type = cfg->fc_type;
19baf839 1262 state = fa->fa_state;
936f6f8e 1263 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1264
2373ce1c
RO
1265 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1266 alias_free_mem_rcu(fa);
19baf839
RO
1267
1268 fib_release_info(fi_drop);
1269 if (state & FA_S_ACCESSED)
4ccfe6d4 1270 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1271 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1272 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1273
91b9a277 1274 goto succeeded;
19baf839
RO
1275 }
1276 /* Error if we find a perfect match which
1277 * uses the same scope, type, and nexthop
1278 * information.
1279 */
936f6f8e
JA
1280 if (fa_match)
1281 goto out;
a07f5f50 1282
4e902c57 1283 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1284 fa = fa_first;
19baf839
RO
1285 }
1286 err = -ENOENT;
4e902c57 1287 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1288 goto out;
1289
1290 err = -ENOBUFS;
e94b1766 1291 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1292 if (new_fa == NULL)
1293 goto out;
1294
1295 new_fa->fa_info = fi;
1296 new_fa->fa_tos = tos;
4e902c57 1297 new_fa->fa_type = cfg->fc_type;
19baf839 1298 new_fa->fa_state = 0;
19baf839
RO
1299 /*
1300 * Insert new entry to the list.
1301 */
1302
c877efb2 1303 if (!fa_head) {
fea86ad8
SH
1304 fa_head = fib_insert_node(t, key, plen);
1305 if (unlikely(!fa_head)) {
1306 err = -ENOMEM;
f835e471 1307 goto out_free_new_fa;
fea86ad8 1308 }
f835e471 1309 }
19baf839 1310
21d8c49e
DM
1311 if (!plen)
1312 tb->tb_num_default++;
1313
2373ce1c
RO
1314 list_add_tail_rcu(&new_fa->fa_list,
1315 (fa ? &fa->fa_list : fa_head));
19baf839 1316
4ccfe6d4 1317 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1318 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1319 &cfg->fc_nlinfo, 0);
19baf839
RO
1320succeeded:
1321 return 0;
f835e471
RO
1322
1323out_free_new_fa:
1324 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1325out:
1326 fib_release_info(fi);
91b9a277 1327err:
19baf839
RO
1328 return err;
1329}
1330
772cb712 1331/* should be called with rcu_read_lock */
5b470441 1332static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1333 t_key key, const struct flowi4 *flp,
ebc0ffae 1334 struct fib_result *res, int fib_flags)
19baf839 1335{
19baf839
RO
1336 struct leaf_info *li;
1337 struct hlist_head *hhead = &l->list;
c877efb2 1338
b67bfe0d 1339 hlist_for_each_entry_rcu(li, hhead, hlist) {
3be0686b 1340 struct fib_alias *fa;
a07f5f50 1341
5c74501f 1342 if (l->key != (key & li->mask_plen))
19baf839
RO
1343 continue;
1344
3be0686b
DM
1345 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1346 struct fib_info *fi = fa->fa_info;
1347 int nhsel, err;
a07f5f50 1348
22bd5b9b 1349 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1350 continue;
dccd9ecc
DM
1351 if (fi->fib_dead)
1352 continue;
37e826c5 1353 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1354 continue;
1355 fib_alias_accessed(fa);
1356 err = fib_props[fa->fa_type].error;
1357 if (err) {
19baf839 1358#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1359 t->stats.semantic_match_passed++;
3be0686b 1360#endif
1fbc7843 1361 return err;
3be0686b
DM
1362 }
1363 if (fi->fib_flags & RTNH_F_DEAD)
1364 continue;
1365 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1366 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1367
1368 if (nh->nh_flags & RTNH_F_DEAD)
1369 continue;
22bd5b9b 1370 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1371 continue;
1372
1373#ifdef CONFIG_IP_FIB_TRIE_STATS
1374 t->stats.semantic_match_passed++;
1375#endif
5c74501f 1376 res->prefixlen = li->plen;
3be0686b
DM
1377 res->nh_sel = nhsel;
1378 res->type = fa->fa_type;
37e826c5 1379 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1380 res->fi = fi;
1381 res->table = tb;
1382 res->fa_head = &li->falh;
1383 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1384 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1385 return 0;
1386 }
1387 }
1388
1389#ifdef CONFIG_IP_FIB_TRIE_STATS
1390 t->stats.semantic_match_miss++;
19baf839 1391#endif
19baf839 1392 }
a07f5f50 1393
2e655571 1394 return 1;
19baf839
RO
1395}
1396
22bd5b9b 1397int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1398 struct fib_result *res, int fib_flags)
19baf839
RO
1399{
1400 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1401 int ret;
b299e4f0 1402 struct rt_trie_node *n;
19baf839 1403 struct tnode *pn;
3b004569 1404 unsigned int pos, bits;
22bd5b9b 1405 t_key key = ntohl(flp->daddr);
3b004569 1406 unsigned int chopped_off;
19baf839 1407 t_key cindex = 0;
3b004569 1408 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1409 struct tnode *cn;
874ffa8f 1410 t_key pref_mismatch;
91b9a277 1411
2373ce1c 1412 rcu_read_lock();
91b9a277 1413
2373ce1c 1414 n = rcu_dereference(t->trie);
c877efb2 1415 if (!n)
19baf839
RO
1416 goto failed;
1417
1418#ifdef CONFIG_IP_FIB_TRIE_STATS
1419 t->stats.gets++;
1420#endif
1421
1422 /* Just a leaf? */
1423 if (IS_LEAF(n)) {
5b470441 1424 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1425 goto found;
19baf839 1426 }
a07f5f50 1427
19baf839
RO
1428 pn = (struct tnode *) n;
1429 chopped_off = 0;
c877efb2 1430
91b9a277 1431 while (pn) {
19baf839
RO
1432 pos = pn->pos;
1433 bits = pn->bits;
1434
c877efb2 1435 if (!chopped_off)
ab66b4a7
SH
1436 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1437 pos, bits);
19baf839 1438
b902e573 1439 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1440
1441 if (n == NULL) {
1442#ifdef CONFIG_IP_FIB_TRIE_STATS
1443 t->stats.null_node_hit++;
1444#endif
1445 goto backtrace;
1446 }
1447
91b9a277 1448 if (IS_LEAF(n)) {
5b470441 1449 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1450 if (ret > 0)
91b9a277 1451 goto backtrace;
a07f5f50 1452 goto found;
91b9a277
OJ
1453 }
1454
91b9a277 1455 cn = (struct tnode *)n;
19baf839 1456
91b9a277
OJ
1457 /*
1458 * It's a tnode, and we can do some extra checks here if we
1459 * like, to avoid descending into a dead-end branch.
1460 * This tnode is in the parent's child array at index
1461 * key[p_pos..p_pos+p_bits] but potentially with some bits
1462 * chopped off, so in reality the index may be just a
1463 * subprefix, padded with zero at the end.
1464 * We can also take a look at any skipped bits in this
1465 * tnode - everything up to p_pos is supposed to be ok,
1466 * and the non-chopped bits of the index (se previous
1467 * paragraph) are also guaranteed ok, but the rest is
1468 * considered unknown.
1469 *
1470 * The skipped bits are key[pos+bits..cn->pos].
1471 */
19baf839 1472
91b9a277
OJ
1473 /* If current_prefix_length < pos+bits, we are already doing
1474 * actual prefix matching, which means everything from
1475 * pos+(bits-chopped_off) onward must be zero along some
1476 * branch of this subtree - otherwise there is *no* valid
1477 * prefix present. Here we can only check the skipped
1478 * bits. Remember, since we have already indexed into the
1479 * parent's child array, we know that the bits we chopped of
1480 * *are* zero.
1481 */
19baf839 1482
a07f5f50
SH
1483 /* NOTA BENE: Checking only skipped bits
1484 for the new node here */
19baf839 1485
91b9a277
OJ
1486 if (current_prefix_length < pos+bits) {
1487 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1488 cn->pos - current_prefix_length)
1489 || !(cn->child[0]))
91b9a277
OJ
1490 goto backtrace;
1491 }
19baf839 1492
91b9a277
OJ
1493 /*
1494 * If chopped_off=0, the index is fully validated and we
1495 * only need to look at the skipped bits for this, the new,
1496 * tnode. What we actually want to do is to find out if
1497 * these skipped bits match our key perfectly, or if we will
1498 * have to count on finding a matching prefix further down,
1499 * because if we do, we would like to have some way of
1500 * verifying the existence of such a prefix at this point.
1501 */
19baf839 1502
91b9a277
OJ
1503 /* The only thing we can do at this point is to verify that
1504 * any such matching prefix can indeed be a prefix to our
1505 * key, and if the bits in the node we are inspecting that
1506 * do not match our key are not ZERO, this cannot be true.
1507 * Thus, find out where there is a mismatch (before cn->pos)
1508 * and verify that all the mismatching bits are zero in the
1509 * new tnode's key.
1510 */
19baf839 1511
a07f5f50
SH
1512 /*
1513 * Note: We aren't very concerned about the piece of
1514 * the key that precede pn->pos+pn->bits, since these
1515 * have already been checked. The bits after cn->pos
1516 * aren't checked since these are by definition
1517 * "unknown" at this point. Thus, what we want to see
1518 * is if we are about to enter the "prefix matching"
1519 * state, and in that case verify that the skipped
1520 * bits that will prevail throughout this subtree are
1521 * zero, as they have to be if we are to find a
1522 * matching prefix.
91b9a277
OJ
1523 */
1524
874ffa8f 1525 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1526
a07f5f50
SH
1527 /*
1528 * In short: If skipped bits in this node do not match
1529 * the search key, enter the "prefix matching"
1530 * state.directly.
91b9a277
OJ
1531 */
1532 if (pref_mismatch) {
79cda75a
ED
1533 /* fls(x) = __fls(x) + 1 */
1534 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
91b9a277 1535
874ffa8f 1536 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1537 goto backtrace;
1538
1539 if (current_prefix_length >= cn->pos)
1540 current_prefix_length = mp;
c877efb2 1541 }
a07f5f50 1542
91b9a277
OJ
1543 pn = (struct tnode *)n; /* Descend */
1544 chopped_off = 0;
1545 continue;
1546
19baf839
RO
1547backtrace:
1548 chopped_off++;
1549
1550 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1551 while ((chopped_off <= pn->bits)
1552 && !(cindex & (1<<(chopped_off-1))))
19baf839 1553 chopped_off++;
19baf839
RO
1554
1555 /* Decrease current_... with bits chopped off */
1556 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1557 current_prefix_length = pn->pos + pn->bits
1558 - chopped_off;
91b9a277 1559
19baf839 1560 /*
c877efb2 1561 * Either we do the actual chop off according or if we have
19baf839
RO
1562 * chopped off all bits in this tnode walk up to our parent.
1563 */
1564
91b9a277 1565 if (chopped_off <= pn->bits) {
19baf839 1566 cindex &= ~(1 << (chopped_off-1));
91b9a277 1567 } else {
b299e4f0 1568 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1569 if (!parent)
19baf839 1570 goto failed;
91b9a277 1571
19baf839 1572 /* Get Child's index */
06801916
SH
1573 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1574 pn = parent;
19baf839
RO
1575 chopped_off = 0;
1576
1577#ifdef CONFIG_IP_FIB_TRIE_STATS
1578 t->stats.backtrack++;
1579#endif
1580 goto backtrace;
c877efb2 1581 }
19baf839
RO
1582 }
1583failed:
c877efb2 1584 ret = 1;
19baf839 1585found:
2373ce1c 1586 rcu_read_unlock();
19baf839
RO
1587 return ret;
1588}
6fc01438 1589EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1590
9195bef7
SH
1591/*
1592 * Remove the leaf and return parent.
1593 */
1594static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1595{
b299e4f0 1596 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1597
9195bef7 1598 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1599
c877efb2 1600 if (tp) {
9195bef7 1601 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
61648d91 1602 put_child(tp, cindex, NULL);
7b85576d 1603 trie_rebalance(t, tp);
91b9a277 1604 } else
a9b3cd7f 1605 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1606
387a5487 1607 free_leaf(l);
19baf839
RO
1608}
1609
d562f1f8
RO
1610/*
1611 * Caller must hold RTNL.
1612 */
16c6cf8b 1613int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1614{
1615 struct trie *t = (struct trie *) tb->tb_data;
1616 u32 key, mask;
4e902c57
TG
1617 int plen = cfg->fc_dst_len;
1618 u8 tos = cfg->fc_tos;
19baf839
RO
1619 struct fib_alias *fa, *fa_to_delete;
1620 struct list_head *fa_head;
1621 struct leaf *l;
91b9a277
OJ
1622 struct leaf_info *li;
1623
c877efb2 1624 if (plen > 32)
19baf839
RO
1625 return -EINVAL;
1626
4e902c57 1627 key = ntohl(cfg->fc_dst);
91b9a277 1628 mask = ntohl(inet_make_mask(plen));
19baf839 1629
c877efb2 1630 if (key & ~mask)
19baf839
RO
1631 return -EINVAL;
1632
1633 key = key & mask;
1634 l = fib_find_node(t, key);
1635
c877efb2 1636 if (!l)
19baf839
RO
1637 return -ESRCH;
1638
ad5b3102
IM
1639 li = find_leaf_info(l, plen);
1640
1641 if (!li)
1642 return -ESRCH;
1643
1644 fa_head = &li->falh;
19baf839
RO
1645 fa = fib_find_alias(fa_head, tos, 0);
1646
1647 if (!fa)
1648 return -ESRCH;
1649
0c7770c7 1650 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1651
1652 fa_to_delete = NULL;
936f6f8e
JA
1653 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1654 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1655 struct fib_info *fi = fa->fa_info;
1656
1657 if (fa->fa_tos != tos)
1658 break;
1659
4e902c57
TG
1660 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1661 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1662 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1663 (!cfg->fc_prefsrc ||
1664 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1665 (!cfg->fc_protocol ||
1666 fi->fib_protocol == cfg->fc_protocol) &&
1667 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1668 fa_to_delete = fa;
1669 break;
1670 }
1671 }
1672
91b9a277
OJ
1673 if (!fa_to_delete)
1674 return -ESRCH;
19baf839 1675
91b9a277 1676 fa = fa_to_delete;
4e902c57 1677 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1678 &cfg->fc_nlinfo, 0);
91b9a277 1679
2373ce1c 1680 list_del_rcu(&fa->fa_list);
19baf839 1681
21d8c49e
DM
1682 if (!plen)
1683 tb->tb_num_default--;
1684
91b9a277 1685 if (list_empty(fa_head)) {
2373ce1c 1686 hlist_del_rcu(&li->hlist);
91b9a277 1687 free_leaf_info(li);
2373ce1c 1688 }
19baf839 1689
91b9a277 1690 if (hlist_empty(&l->list))
9195bef7 1691 trie_leaf_remove(t, l);
19baf839 1692
91b9a277 1693 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1694 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1695
2373ce1c
RO
1696 fib_release_info(fa->fa_info);
1697 alias_free_mem_rcu(fa);
91b9a277 1698 return 0;
19baf839
RO
1699}
1700
ef3660ce 1701static int trie_flush_list(struct list_head *head)
19baf839
RO
1702{
1703 struct fib_alias *fa, *fa_node;
1704 int found = 0;
1705
1706 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1707 struct fib_info *fi = fa->fa_info;
19baf839 1708
2373ce1c
RO
1709 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1710 list_del_rcu(&fa->fa_list);
1711 fib_release_info(fa->fa_info);
1712 alias_free_mem_rcu(fa);
19baf839
RO
1713 found++;
1714 }
1715 }
1716 return found;
1717}
1718
ef3660ce 1719static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1720{
1721 int found = 0;
1722 struct hlist_head *lih = &l->list;
b67bfe0d 1723 struct hlist_node *tmp;
19baf839
RO
1724 struct leaf_info *li = NULL;
1725
b67bfe0d 1726 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
ef3660ce 1727 found += trie_flush_list(&li->falh);
19baf839
RO
1728
1729 if (list_empty(&li->falh)) {
2373ce1c 1730 hlist_del_rcu(&li->hlist);
19baf839
RO
1731 free_leaf_info(li);
1732 }
1733 }
1734 return found;
1735}
1736
82cfbb00
SH
1737/*
1738 * Scan for the next right leaf starting at node p->child[idx]
1739 * Since we have back pointer, no recursion necessary.
1740 */
b299e4f0 1741static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1742{
82cfbb00
SH
1743 do {
1744 t_key idx;
c877efb2 1745
c877efb2 1746 if (c)
82cfbb00 1747 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1748 else
82cfbb00 1749 idx = 0;
2373ce1c 1750
82cfbb00
SH
1751 while (idx < 1u << p->bits) {
1752 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1753 if (!c)
91b9a277
OJ
1754 continue;
1755
aab515d7 1756 if (IS_LEAF(c))
82cfbb00 1757 return (struct leaf *) c;
82cfbb00
SH
1758
1759 /* Rescan start scanning in new node */
1760 p = (struct tnode *) c;
1761 idx = 0;
19baf839 1762 }
82cfbb00
SH
1763
1764 /* Node empty, walk back up to parent */
b299e4f0 1765 c = (struct rt_trie_node *) p;
a034ee3c 1766 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1767
1768 return NULL; /* Root of trie */
1769}
1770
82cfbb00
SH
1771static struct leaf *trie_firstleaf(struct trie *t)
1772{
a034ee3c 1773 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1774
1775 if (!n)
1776 return NULL;
1777
1778 if (IS_LEAF(n)) /* trie is just a leaf */
1779 return (struct leaf *) n;
1780
1781 return leaf_walk_rcu(n, NULL);
1782}
1783
1784static struct leaf *trie_nextleaf(struct leaf *l)
1785{
b299e4f0 1786 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1787 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1788
1789 if (!p)
1790 return NULL; /* trie with just one leaf */
1791
1792 return leaf_walk_rcu(p, c);
19baf839
RO
1793}
1794
71d67e66
SH
1795static struct leaf *trie_leafindex(struct trie *t, int index)
1796{
1797 struct leaf *l = trie_firstleaf(t);
1798
ec28cf73 1799 while (l && index-- > 0)
71d67e66 1800 l = trie_nextleaf(l);
ec28cf73 1801
71d67e66
SH
1802 return l;
1803}
1804
1805
d562f1f8
RO
1806/*
1807 * Caller must hold RTNL.
1808 */
16c6cf8b 1809int fib_table_flush(struct fib_table *tb)
19baf839
RO
1810{
1811 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1812 struct leaf *l, *ll = NULL;
82cfbb00 1813 int found = 0;
19baf839 1814
82cfbb00 1815 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1816 found += trie_flush_leaf(l);
19baf839
RO
1817
1818 if (ll && hlist_empty(&ll->list))
9195bef7 1819 trie_leaf_remove(t, ll);
19baf839
RO
1820 ll = l;
1821 }
1822
1823 if (ll && hlist_empty(&ll->list))
9195bef7 1824 trie_leaf_remove(t, ll);
19baf839 1825
0c7770c7 1826 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1827 return found;
1828}
1829
4aa2c466
PE
1830void fib_free_table(struct fib_table *tb)
1831{
1832 kfree(tb);
1833}
1834
a07f5f50
SH
1835static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1836 struct fib_table *tb,
19baf839
RO
1837 struct sk_buff *skb, struct netlink_callback *cb)
1838{
1839 int i, s_i;
1840 struct fib_alias *fa;
32ab5f80 1841 __be32 xkey = htonl(key);
19baf839 1842
71d67e66 1843 s_i = cb->args[5];
19baf839
RO
1844 i = 0;
1845
2373ce1c
RO
1846 /* rcu_read_lock is hold by caller */
1847
1848 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1849 if (i < s_i) {
1850 i++;
1851 continue;
1852 }
19baf839 1853
15e47304 1854 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1855 cb->nlh->nlmsg_seq,
1856 RTM_NEWROUTE,
1857 tb->tb_id,
1858 fa->fa_type,
be403ea1 1859 xkey,
19baf839
RO
1860 plen,
1861 fa->fa_tos,
64347f78 1862 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1863 cb->args[5] = i;
19baf839 1864 return -1;
91b9a277 1865 }
19baf839
RO
1866 i++;
1867 }
71d67e66 1868 cb->args[5] = i;
19baf839
RO
1869 return skb->len;
1870}
1871
a88ee229
SH
1872static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1873 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1874{
a88ee229 1875 struct leaf_info *li;
a88ee229 1876 int i, s_i;
19baf839 1877
71d67e66 1878 s_i = cb->args[4];
a88ee229 1879 i = 0;
19baf839 1880
a88ee229 1881 /* rcu_read_lock is hold by caller */
b67bfe0d 1882 hlist_for_each_entry_rcu(li, &l->list, hlist) {
a88ee229
SH
1883 if (i < s_i) {
1884 i++;
19baf839 1885 continue;
a88ee229 1886 }
91b9a277 1887
a88ee229 1888 if (i > s_i)
71d67e66 1889 cb->args[5] = 0;
19baf839 1890
a88ee229 1891 if (list_empty(&li->falh))
19baf839
RO
1892 continue;
1893
a88ee229 1894 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1895 cb->args[4] = i;
19baf839
RO
1896 return -1;
1897 }
a88ee229 1898 i++;
19baf839 1899 }
a88ee229 1900
71d67e66 1901 cb->args[4] = i;
19baf839
RO
1902 return skb->len;
1903}
1904
16c6cf8b
SH
1905int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1906 struct netlink_callback *cb)
19baf839 1907{
a88ee229 1908 struct leaf *l;
19baf839 1909 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1910 t_key key = cb->args[2];
71d67e66 1911 int count = cb->args[3];
19baf839 1912
2373ce1c 1913 rcu_read_lock();
d5ce8a0e
SH
1914 /* Dump starting at last key.
1915 * Note: 0.0.0.0/0 (ie default) is first key.
1916 */
71d67e66 1917 if (count == 0)
d5ce8a0e
SH
1918 l = trie_firstleaf(t);
1919 else {
71d67e66
SH
1920 /* Normally, continue from last key, but if that is missing
1921 * fallback to using slow rescan
1922 */
d5ce8a0e 1923 l = fib_find_node(t, key);
71d67e66
SH
1924 if (!l)
1925 l = trie_leafindex(t, count);
d5ce8a0e 1926 }
a88ee229 1927
d5ce8a0e
SH
1928 while (l) {
1929 cb->args[2] = l->key;
a88ee229 1930 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1931 cb->args[3] = count;
a88ee229 1932 rcu_read_unlock();
a88ee229 1933 return -1;
19baf839 1934 }
d5ce8a0e 1935
71d67e66 1936 ++count;
d5ce8a0e 1937 l = trie_nextleaf(l);
71d67e66
SH
1938 memset(&cb->args[4], 0,
1939 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1940 }
71d67e66 1941 cb->args[3] = count;
2373ce1c 1942 rcu_read_unlock();
a88ee229 1943
19baf839 1944 return skb->len;
19baf839
RO
1945}
1946
5348ba85 1947void __init fib_trie_init(void)
7f9b8052 1948{
a07f5f50
SH
1949 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1950 sizeof(struct fib_alias),
bc3c8c1e
SH
1951 0, SLAB_PANIC, NULL);
1952
1953 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1954 max(sizeof(struct leaf),
1955 sizeof(struct leaf_info)),
1956 0, SLAB_PANIC, NULL);
7f9b8052 1957}
19baf839 1958
7f9b8052 1959
5348ba85 1960struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1961{
1962 struct fib_table *tb;
1963 struct trie *t;
1964
19baf839
RO
1965 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1966 GFP_KERNEL);
1967 if (tb == NULL)
1968 return NULL;
1969
1970 tb->tb_id = id;
971b893e 1971 tb->tb_default = -1;
21d8c49e 1972 tb->tb_num_default = 0;
19baf839
RO
1973
1974 t = (struct trie *) tb->tb_data;
c28a1cf4 1975 memset(t, 0, sizeof(*t));
19baf839 1976
19baf839
RO
1977 return tb;
1978}
1979
cb7b593c
SH
1980#ifdef CONFIG_PROC_FS
1981/* Depth first Trie walk iterator */
1982struct fib_trie_iter {
1c340b2f 1983 struct seq_net_private p;
3d3b2d25 1984 struct fib_table *tb;
cb7b593c 1985 struct tnode *tnode;
a034ee3c
ED
1986 unsigned int index;
1987 unsigned int depth;
cb7b593c 1988};
19baf839 1989
b299e4f0 1990static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1991{
cb7b593c 1992 struct tnode *tn = iter->tnode;
a034ee3c 1993 unsigned int cindex = iter->index;
cb7b593c 1994 struct tnode *p;
19baf839 1995
6640e697
EB
1996 /* A single entry routing table */
1997 if (!tn)
1998 return NULL;
1999
cb7b593c
SH
2000 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2001 iter->tnode, iter->index, iter->depth);
2002rescan:
2003 while (cindex < (1<<tn->bits)) {
b299e4f0 2004 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2005
cb7b593c
SH
2006 if (n) {
2007 if (IS_LEAF(n)) {
2008 iter->tnode = tn;
2009 iter->index = cindex + 1;
2010 } else {
2011 /* push down one level */
2012 iter->tnode = (struct tnode *) n;
2013 iter->index = 0;
2014 ++iter->depth;
2015 }
2016 return n;
2017 }
19baf839 2018
cb7b593c
SH
2019 ++cindex;
2020 }
91b9a277 2021
cb7b593c 2022 /* Current node exhausted, pop back up */
b299e4f0 2023 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2024 if (p) {
2025 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2026 tn = p;
2027 --iter->depth;
2028 goto rescan;
19baf839 2029 }
cb7b593c
SH
2030
2031 /* got root? */
2032 return NULL;
19baf839
RO
2033}
2034
b299e4f0 2035static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2036 struct trie *t)
19baf839 2037{
b299e4f0 2038 struct rt_trie_node *n;
5ddf0eb2 2039
132adf54 2040 if (!t)
5ddf0eb2
RO
2041 return NULL;
2042
2043 n = rcu_dereference(t->trie);
3d3b2d25 2044 if (!n)
5ddf0eb2 2045 return NULL;
19baf839 2046
3d3b2d25
SH
2047 if (IS_TNODE(n)) {
2048 iter->tnode = (struct tnode *) n;
2049 iter->index = 0;
2050 iter->depth = 1;
2051 } else {
2052 iter->tnode = NULL;
2053 iter->index = 0;
2054 iter->depth = 0;
91b9a277 2055 }
3d3b2d25
SH
2056
2057 return n;
cb7b593c 2058}
91b9a277 2059
cb7b593c
SH
2060static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061{
b299e4f0 2062 struct rt_trie_node *n;
cb7b593c 2063 struct fib_trie_iter iter;
91b9a277 2064
cb7b593c 2065 memset(s, 0, sizeof(*s));
91b9a277 2066
cb7b593c 2067 rcu_read_lock();
3d3b2d25 2068 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2069 if (IS_LEAF(n)) {
93672292
SH
2070 struct leaf *l = (struct leaf *)n;
2071 struct leaf_info *li;
93672292 2072
cb7b593c
SH
2073 s->leaves++;
2074 s->totdepth += iter.depth;
2075 if (iter.depth > s->maxdepth)
2076 s->maxdepth = iter.depth;
93672292 2077
b67bfe0d 2078 hlist_for_each_entry_rcu(li, &l->list, hlist)
93672292 2079 ++s->prefixes;
cb7b593c
SH
2080 } else {
2081 const struct tnode *tn = (const struct tnode *) n;
2082 int i;
2083
2084 s->tnodes++;
132adf54 2085 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2086 s->nodesizes[tn->bits]++;
2087
cb7b593c
SH
2088 for (i = 0; i < (1<<tn->bits); i++)
2089 if (!tn->child[i])
2090 s->nullpointers++;
19baf839 2091 }
19baf839 2092 }
2373ce1c 2093 rcu_read_unlock();
19baf839
RO
2094}
2095
cb7b593c
SH
2096/*
2097 * This outputs /proc/net/fib_triestats
2098 */
2099static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2100{
a034ee3c 2101 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2102
cb7b593c
SH
2103 if (stat->leaves)
2104 avdepth = stat->totdepth*100 / stat->leaves;
2105 else
2106 avdepth = 0;
91b9a277 2107
a07f5f50
SH
2108 seq_printf(seq, "\tAver depth: %u.%02d\n",
2109 avdepth / 100, avdepth % 100);
cb7b593c 2110 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2111
cb7b593c 2112 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2113 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2114
2115 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2116 bytes += sizeof(struct leaf_info) * stat->prefixes;
2117
187b5188 2118 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2119 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2120
06ef921d
RO
2121 max = MAX_STAT_DEPTH;
2122 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2123 max--;
19baf839 2124
cb7b593c 2125 pointers = 0;
f585a991 2126 for (i = 1; i < max; i++)
cb7b593c 2127 if (stat->nodesizes[i] != 0) {
187b5188 2128 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2129 pointers += (1<<i) * stat->nodesizes[i];
2130 }
2131 seq_putc(seq, '\n');
187b5188 2132 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2133
b299e4f0 2134 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2135 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2136 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2137}
2373ce1c 2138
cb7b593c 2139#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2140static void trie_show_usage(struct seq_file *seq,
2141 const struct trie_use_stats *stats)
2142{
2143 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2144 seq_printf(seq, "gets = %u\n", stats->gets);
2145 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2146 seq_printf(seq, "semantic match passed = %u\n",
2147 stats->semantic_match_passed);
2148 seq_printf(seq, "semantic match miss = %u\n",
2149 stats->semantic_match_miss);
2150 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2151 seq_printf(seq, "skipped node resize = %u\n\n",
2152 stats->resize_node_skipped);
cb7b593c 2153}
66a2f7fd
SH
2154#endif /* CONFIG_IP_FIB_TRIE_STATS */
2155
3d3b2d25 2156static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2157{
3d3b2d25
SH
2158 if (tb->tb_id == RT_TABLE_LOCAL)
2159 seq_puts(seq, "Local:\n");
2160 else if (tb->tb_id == RT_TABLE_MAIN)
2161 seq_puts(seq, "Main:\n");
2162 else
2163 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2164}
19baf839 2165
3d3b2d25 2166
cb7b593c
SH
2167static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2168{
1c340b2f 2169 struct net *net = (struct net *)seq->private;
3d3b2d25 2170 unsigned int h;
877a9bff 2171
d717a9a6 2172 seq_printf(seq,
a07f5f50
SH
2173 "Basic info: size of leaf:"
2174 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2175 sizeof(struct leaf), sizeof(struct tnode));
2176
3d3b2d25
SH
2177 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2178 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2179 struct fib_table *tb;
2180
b67bfe0d 2181 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2182 struct trie *t = (struct trie *) tb->tb_data;
2183 struct trie_stat stat;
877a9bff 2184
3d3b2d25
SH
2185 if (!t)
2186 continue;
2187
2188 fib_table_print(seq, tb);
2189
2190 trie_collect_stats(t, &stat);
2191 trie_show_stats(seq, &stat);
2192#ifdef CONFIG_IP_FIB_TRIE_STATS
2193 trie_show_usage(seq, &t->stats);
2194#endif
2195 }
2196 }
19baf839 2197
cb7b593c 2198 return 0;
19baf839
RO
2199}
2200
cb7b593c 2201static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2202{
de05c557 2203 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2204}
2205
9a32144e 2206static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2207 .owner = THIS_MODULE,
2208 .open = fib_triestat_seq_open,
2209 .read = seq_read,
2210 .llseek = seq_lseek,
b6fcbdb4 2211 .release = single_release_net,
cb7b593c
SH
2212};
2213
b299e4f0 2214static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2215{
1218854a
YH
2216 struct fib_trie_iter *iter = seq->private;
2217 struct net *net = seq_file_net(seq);
cb7b593c 2218 loff_t idx = 0;
3d3b2d25 2219 unsigned int h;
cb7b593c 2220
3d3b2d25
SH
2221 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2222 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2223 struct fib_table *tb;
cb7b593c 2224
b67bfe0d 2225 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
b299e4f0 2226 struct rt_trie_node *n;
3d3b2d25
SH
2227
2228 for (n = fib_trie_get_first(iter,
2229 (struct trie *) tb->tb_data);
2230 n; n = fib_trie_get_next(iter))
2231 if (pos == idx++) {
2232 iter->tb = tb;
2233 return n;
2234 }
2235 }
cb7b593c 2236 }
3d3b2d25 2237
19baf839
RO
2238 return NULL;
2239}
2240
cb7b593c 2241static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2242 __acquires(RCU)
19baf839 2243{
cb7b593c 2244 rcu_read_lock();
1218854a 2245 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2246}
2247
cb7b593c 2248static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2249{
cb7b593c 2250 struct fib_trie_iter *iter = seq->private;
1218854a 2251 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2252 struct fib_table *tb = iter->tb;
2253 struct hlist_node *tb_node;
2254 unsigned int h;
b299e4f0 2255 struct rt_trie_node *n;
cb7b593c 2256
19baf839 2257 ++*pos;
3d3b2d25
SH
2258 /* next node in same table */
2259 n = fib_trie_get_next(iter);
2260 if (n)
2261 return n;
19baf839 2262
3d3b2d25
SH
2263 /* walk rest of this hash chain */
2264 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2265 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2266 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2267 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2268 if (n)
2269 goto found;
2270 }
19baf839 2271
3d3b2d25
SH
2272 /* new hash chain */
2273 while (++h < FIB_TABLE_HASHSZ) {
2274 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2275 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2276 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2277 if (n)
2278 goto found;
2279 }
2280 }
cb7b593c 2281 return NULL;
3d3b2d25
SH
2282
2283found:
2284 iter->tb = tb;
2285 return n;
cb7b593c 2286}
19baf839 2287
cb7b593c 2288static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2289 __releases(RCU)
19baf839 2290{
cb7b593c
SH
2291 rcu_read_unlock();
2292}
91b9a277 2293
cb7b593c
SH
2294static void seq_indent(struct seq_file *seq, int n)
2295{
a034ee3c
ED
2296 while (n-- > 0)
2297 seq_puts(seq, " ");
cb7b593c 2298}
19baf839 2299
28d36e37 2300static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2301{
132adf54 2302 switch (s) {
cb7b593c
SH
2303 case RT_SCOPE_UNIVERSE: return "universe";
2304 case RT_SCOPE_SITE: return "site";
2305 case RT_SCOPE_LINK: return "link";
2306 case RT_SCOPE_HOST: return "host";
2307 case RT_SCOPE_NOWHERE: return "nowhere";
2308 default:
28d36e37 2309 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2310 return buf;
2311 }
2312}
19baf839 2313
36cbd3dc 2314static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2315 [RTN_UNSPEC] = "UNSPEC",
2316 [RTN_UNICAST] = "UNICAST",
2317 [RTN_LOCAL] = "LOCAL",
2318 [RTN_BROADCAST] = "BROADCAST",
2319 [RTN_ANYCAST] = "ANYCAST",
2320 [RTN_MULTICAST] = "MULTICAST",
2321 [RTN_BLACKHOLE] = "BLACKHOLE",
2322 [RTN_UNREACHABLE] = "UNREACHABLE",
2323 [RTN_PROHIBIT] = "PROHIBIT",
2324 [RTN_THROW] = "THROW",
2325 [RTN_NAT] = "NAT",
2326 [RTN_XRESOLVE] = "XRESOLVE",
2327};
19baf839 2328
a034ee3c 2329static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2330{
cb7b593c
SH
2331 if (t < __RTN_MAX && rtn_type_names[t])
2332 return rtn_type_names[t];
28d36e37 2333 snprintf(buf, len, "type %u", t);
cb7b593c 2334 return buf;
19baf839
RO
2335}
2336
cb7b593c
SH
2337/* Pretty print the trie */
2338static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2339{
cb7b593c 2340 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2341 struct rt_trie_node *n = v;
c877efb2 2342
3d3b2d25
SH
2343 if (!node_parent_rcu(n))
2344 fib_table_print(seq, iter->tb);
095b8501 2345
cb7b593c
SH
2346 if (IS_TNODE(n)) {
2347 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2348 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2349
1d25cd6c 2350 seq_indent(seq, iter->depth-1);
673d57e7
HH
2351 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2352 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2353 tn->empty_children);
e905a9ed 2354
cb7b593c
SH
2355 } else {
2356 struct leaf *l = (struct leaf *) n;
1328042e 2357 struct leaf_info *li;
32ab5f80 2358 __be32 val = htonl(l->key);
cb7b593c
SH
2359
2360 seq_indent(seq, iter->depth);
673d57e7 2361 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2362
b67bfe0d 2363 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1328042e
SH
2364 struct fib_alias *fa;
2365
2366 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2367 char buf1[32], buf2[32];
2368
2369 seq_indent(seq, iter->depth+1);
2370 seq_printf(seq, " /%d %s %s", li->plen,
2371 rtn_scope(buf1, sizeof(buf1),
37e826c5 2372 fa->fa_info->fib_scope),
1328042e
SH
2373 rtn_type(buf2, sizeof(buf2),
2374 fa->fa_type));
2375 if (fa->fa_tos)
b9c4d82a 2376 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2377 seq_putc(seq, '\n');
cb7b593c
SH
2378 }
2379 }
19baf839 2380 }
cb7b593c 2381
19baf839
RO
2382 return 0;
2383}
2384
f690808e 2385static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2386 .start = fib_trie_seq_start,
2387 .next = fib_trie_seq_next,
2388 .stop = fib_trie_seq_stop,
2389 .show = fib_trie_seq_show,
19baf839
RO
2390};
2391
cb7b593c 2392static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2393{
1c340b2f
DL
2394 return seq_open_net(inode, file, &fib_trie_seq_ops,
2395 sizeof(struct fib_trie_iter));
19baf839
RO
2396}
2397
9a32144e 2398static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2399 .owner = THIS_MODULE,
2400 .open = fib_trie_seq_open,
2401 .read = seq_read,
2402 .llseek = seq_lseek,
1c340b2f 2403 .release = seq_release_net,
19baf839
RO
2404};
2405
8315f5d8
SH
2406struct fib_route_iter {
2407 struct seq_net_private p;
2408 struct trie *main_trie;
2409 loff_t pos;
2410 t_key key;
2411};
2412
2413static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2414{
2415 struct leaf *l = NULL;
2416 struct trie *t = iter->main_trie;
2417
2418 /* use cache location of last found key */
2419 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2420 pos -= iter->pos;
2421 else {
2422 iter->pos = 0;
2423 l = trie_firstleaf(t);
2424 }
2425
2426 while (l && pos-- > 0) {
2427 iter->pos++;
2428 l = trie_nextleaf(l);
2429 }
2430
2431 if (l)
2432 iter->key = pos; /* remember it */
2433 else
2434 iter->pos = 0; /* forget it */
2435
2436 return l;
2437}
2438
2439static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2440 __acquires(RCU)
2441{
2442 struct fib_route_iter *iter = seq->private;
2443 struct fib_table *tb;
2444
2445 rcu_read_lock();
1218854a 2446 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2447 if (!tb)
2448 return NULL;
2449
2450 iter->main_trie = (struct trie *) tb->tb_data;
2451 if (*pos == 0)
2452 return SEQ_START_TOKEN;
2453 else
2454 return fib_route_get_idx(iter, *pos - 1);
2455}
2456
2457static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2458{
2459 struct fib_route_iter *iter = seq->private;
2460 struct leaf *l = v;
2461
2462 ++*pos;
2463 if (v == SEQ_START_TOKEN) {
2464 iter->pos = 0;
2465 l = trie_firstleaf(iter->main_trie);
2466 } else {
2467 iter->pos++;
2468 l = trie_nextleaf(l);
2469 }
2470
2471 if (l)
2472 iter->key = l->key;
2473 else
2474 iter->pos = 0;
2475 return l;
2476}
2477
2478static void fib_route_seq_stop(struct seq_file *seq, void *v)
2479 __releases(RCU)
2480{
2481 rcu_read_unlock();
2482}
2483
a034ee3c 2484static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2485{
a034ee3c 2486 unsigned int flags = 0;
19baf839 2487
a034ee3c
ED
2488 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2489 flags = RTF_REJECT;
cb7b593c
SH
2490 if (fi && fi->fib_nh->nh_gw)
2491 flags |= RTF_GATEWAY;
32ab5f80 2492 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2493 flags |= RTF_HOST;
2494 flags |= RTF_UP;
2495 return flags;
19baf839
RO
2496}
2497
cb7b593c
SH
2498/*
2499 * This outputs /proc/net/route.
2500 * The format of the file is not supposed to be changed
a034ee3c 2501 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2502 * legacy utilities
2503 */
2504static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2505{
cb7b593c 2506 struct leaf *l = v;
1328042e 2507 struct leaf_info *li;
19baf839 2508
cb7b593c
SH
2509 if (v == SEQ_START_TOKEN) {
2510 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2511 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2512 "\tWindow\tIRTT");
2513 return 0;
2514 }
19baf839 2515
b67bfe0d 2516 hlist_for_each_entry_rcu(li, &l->list, hlist) {
cb7b593c 2517 struct fib_alias *fa;
32ab5f80 2518 __be32 mask, prefix;
91b9a277 2519
cb7b593c
SH
2520 mask = inet_make_mask(li->plen);
2521 prefix = htonl(l->key);
19baf839 2522
cb7b593c 2523 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2524 const struct fib_info *fi = fa->fa_info;
a034ee3c 2525 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2526
cb7b593c
SH
2527 if (fa->fa_type == RTN_BROADCAST
2528 || fa->fa_type == RTN_MULTICAST)
2529 continue;
19baf839 2530
652586df
TH
2531 seq_setwidth(seq, 127);
2532
cb7b593c 2533 if (fi)
5e659e4c
PE
2534 seq_printf(seq,
2535 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2536 "%d\t%08X\t%d\t%u\t%u",
cb7b593c
SH
2537 fi->fib_dev ? fi->fib_dev->name : "*",
2538 prefix,
2539 fi->fib_nh->nh_gw, flags, 0, 0,
2540 fi->fib_priority,
2541 mask,
a07f5f50
SH
2542 (fi->fib_advmss ?
2543 fi->fib_advmss + 40 : 0),
cb7b593c 2544 fi->fib_window,
652586df 2545 fi->fib_rtt >> 3);
cb7b593c 2546 else
5e659e4c
PE
2547 seq_printf(seq,
2548 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2549 "%d\t%08X\t%d\t%u\t%u",
cb7b593c 2550 prefix, 0, flags, 0, 0, 0,
652586df 2551 mask, 0, 0, 0);
19baf839 2552
652586df 2553 seq_pad(seq, '\n');
cb7b593c 2554 }
19baf839
RO
2555 }
2556
2557 return 0;
2558}
2559
f690808e 2560static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2561 .start = fib_route_seq_start,
2562 .next = fib_route_seq_next,
2563 .stop = fib_route_seq_stop,
cb7b593c 2564 .show = fib_route_seq_show,
19baf839
RO
2565};
2566
cb7b593c 2567static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2568{
1c340b2f 2569 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2570 sizeof(struct fib_route_iter));
19baf839
RO
2571}
2572
9a32144e 2573static const struct file_operations fib_route_fops = {
cb7b593c
SH
2574 .owner = THIS_MODULE,
2575 .open = fib_route_seq_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
1c340b2f 2578 .release = seq_release_net,
19baf839
RO
2579};
2580
61a02653 2581int __net_init fib_proc_init(struct net *net)
19baf839 2582{
d4beaa66 2583 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2584 goto out1;
2585
d4beaa66
G
2586 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2587 &fib_triestat_fops))
cb7b593c
SH
2588 goto out2;
2589
d4beaa66 2590 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2591 goto out3;
2592
19baf839 2593 return 0;
cb7b593c
SH
2594
2595out3:
ece31ffd 2596 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2597out2:
ece31ffd 2598 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2599out1:
2600 return -ENOMEM;
19baf839
RO
2601}
2602
61a02653 2603void __net_exit fib_proc_exit(struct net *net)
19baf839 2604{
ece31ffd
G
2605 remove_proc_entry("fib_trie", net->proc_net);
2606 remove_proc_entry("fib_triestat", net->proc_net);
2607 remove_proc_entry("route", net->proc_net);
19baf839
RO
2608}
2609
2610#endif /* CONFIG_PROC_FS */
This page took 0.95344 seconds and 5 git commands to generate.