ipv4: FIB Local/MAIN table collapse
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
88bae714
AD
92#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93#define IS_TNODE(n) ((n)->bits)
94#define IS_LEAF(n) (!(n)->bits)
2373ce1c 95
35c6edac 96struct key_vector {
64c9b6fb 97 t_key key;
64c9b6fb 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
adaf9816 101 union {
41b489fd 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 103 struct hlist_head leaf;
41b489fd 104 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 105 struct key_vector __rcu *tnode[0];
adaf9816 106 };
19baf839
RO
107};
108
dc35dbed 109struct tnode {
56ca2adf 110 struct rcu_head rcu;
6e22d174
AD
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 113 struct key_vector __rcu *parent;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
88bae714 143 struct key_vector kv[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
88bae714 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb 167/* caller must hold RTNL */
f23e59fb 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb 171/* caller must hold RCU read lock or RTNL */
f23e59fb 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816 178 if (n)
f23e59fb 179 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
180}
181
f23e59fb 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
88bae714
AD
192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
2e1ac88a
AD
194static inline unsigned long get_index(t_key key, struct key_vector *kv)
195{
196 unsigned long index = key ^ kv->key;
197
88bae714
AD
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
2e1ac88a
AD
201 return index >> kv->pos;
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
56ca2adf 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 287
56ca2adf 288 if (!n->tn_bits)
37fd30f2 289 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
dc35dbed
AD
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
2373ce1c
RO
343 return l;
344}
345
35c6edac 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 347{
dc35dbed 348 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 349 unsigned int shift = pos + bits;
dc35dbed 350 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
dc35dbed 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 356 sizeof(struct key_vector *) << bits);
dc35dbed
AD
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
6e22d174 362 tnode->full_children = 1;
dc35dbed 363 else
6e22d174 364 tnode->empty_children = 1ul << bits;
dc35dbed
AD
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
19baf839
RO
371 return tn;
372}
373
e9b44019 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
35c6edac 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 378{
e9b44019 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
380}
381
ff181ed8
AD
382/* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
35c6edac
AD
385static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
19baf839 387{
754baf8d 388 struct key_vector *chi = get_child(tn, i);
ff181ed8 389 int isfull, wasfull;
19baf839 390
2e1ac88a 391 BUG_ON(i >= child_length(tn));
0c7770c7 392
95f60ea3 393 /* update emptyChildren, overflow into fullChildren */
19baf839 394 if (n == NULL && chi != NULL)
95f60ea3
AD
395 empty_child_inc(tn);
396 if (n != NULL && chi == NULL)
397 empty_child_dec(tn);
c877efb2 398
19baf839 399 /* update fullChildren */
ff181ed8 400 wasfull = tnode_full(tn, chi);
19baf839 401 isfull = tnode_full(tn, n);
ff181ed8 402
c877efb2 403 if (wasfull && !isfull)
6e22d174 404 tn_info(tn)->full_children--;
c877efb2 405 else if (!wasfull && isfull)
6e22d174 406 tn_info(tn)->full_children++;
91b9a277 407
5405afd1
AD
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
41b489fd 411 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
412}
413
35c6edac 414static void update_children(struct key_vector *tn)
69fa57b1
AD
415{
416 unsigned long i;
417
418 /* update all of the child parent pointers */
2e1ac88a 419 for (i = child_length(tn); i;) {
754baf8d 420 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434}
435
88bae714
AD
436static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
836a0123 438{
88bae714
AD
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
836a0123 441 else
88bae714 442 put_child(tp, get_index(key, tp), n);
836a0123
AD
443}
444
35c6edac 445static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 446{
56ca2adf 447 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
448}
449
35c6edac
AD
450static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
fc86a93b 452{
56ca2adf
AD
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 455}
0a5c0475 456
35c6edac 457static void tnode_free(struct key_vector *tn)
fc86a93b 458{
56ca2adf 459 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
460
461 while (head) {
462 head = head->next;
41b489fd 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
464 node_free(tn);
465
56ca2adf 466 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
0a5c0475 472 }
0a5c0475
ED
473}
474
88bae714
AD
475static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
69fa57b1 478{
35c6edac 479 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
88bae714 484 put_child_root(tp, tn->key, tn);
69fa57b1
AD
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
2e1ac88a 493 for (i = child_length(tn); i;) {
754baf8d 494 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
88bae714 498 tn = resize(t, inode);
69fa57b1 499 }
8d8e810c 500
88bae714 501 return tp;
69fa57b1
AD
502}
503
88bae714
AD
504static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
19baf839 506{
35c6edac 507 struct key_vector *tn;
69fa57b1 508 unsigned long i;
e9b44019 509 t_key m;
19baf839 510
0c7770c7 511 pr_debug("In inflate\n");
19baf839 512
e9b44019 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 514 if (!tn)
8d8e810c 515 goto notnode;
2f36895a 516
69fa57b1
AD
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
12c081a5
AD
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
2f36895a 524 */
2e1ac88a 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 526 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 527 struct key_vector *node0, *node1;
69fa57b1 528 unsigned long j, k;
c877efb2 529
19baf839 530 /* An empty child */
adaf9816 531 if (inode == NULL)
19baf839
RO
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
adaf9816 535 if (!tnode_full(oldtnode, inode)) {
e9b44019 536 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
537 continue;
538 }
539
69fa57b1
AD
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
19baf839 543 /* An internal node with two children */
19baf839 544 if (inode->bits == 1) {
754baf8d
AD
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 547 continue;
19baf839
RO
548 }
549
91b9a277 550 /* We will replace this node 'inode' with two new
12c081a5 551 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
12c081a5 557 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
12c081a5
AD
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
91b9a277 563 */
12c081a5
AD
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
69fa57b1 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 568
69fa57b1 569 tnode_free_append(tn, node1);
12c081a5
AD
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
2e1ac88a 575 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
12c081a5 580 }
19baf839 581
12c081a5
AD
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
2f36895a 585
12c081a5
AD
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
2f36895a 590
69fa57b1 591 /* setup the parent pointers into and out of this node */
8d8e810c 592 return replace(t, oldtnode, tn);
2f80b3c8 593nomem:
fc86a93b
AD
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
8d8e810c
AD
596notnode:
597 return NULL;
19baf839
RO
598}
599
88bae714
AD
600static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
19baf839 602{
35c6edac 603 struct key_vector *tn;
12c081a5 604 unsigned long i;
19baf839 605
0c7770c7 606 pr_debug("In halve\n");
c877efb2 607
e9b44019 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 609 if (!tn)
8d8e810c 610 goto notnode;
2f36895a 611
69fa57b1
AD
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
12c081a5
AD
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
2f36895a 619 */
2e1ac88a 620 for (i = child_length(oldtnode); i;) {
754baf8d
AD
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 623 struct key_vector *inode;
2f36895a 624
12c081a5
AD
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
c877efb2 630
2f36895a 631 /* Two nonempty children */
12c081a5 632 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
633 if (!inode)
634 goto nomem;
12c081a5 635 tnode_free_append(tn, inode);
2f36895a 636
12c081a5
AD
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
2f36895a 644 }
19baf839 645
69fa57b1 646 /* setup the parent pointers into and out of this node */
8d8e810c
AD
647 return replace(t, oldtnode, tn);
648nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651notnode:
652 return NULL;
19baf839
RO
653}
654
88bae714
AD
655static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
88bae714 667 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
88bae714
AD
672
673 return tp;
95f60ea3
AD
674}
675
35c6edac 676static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
677{
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
2e1ac88a 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 687 struct key_vector *n = get_child(tn, i);
5405afd1
AD
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709}
710
f05a4819
AD
711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
2e1ac88a 719 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
2e1ac88a 724 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
2e1ac88a 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
735 * tn->full_children;
736 *
2e1ac88a 737 * new_child_length = child_length(tn) * 2;
f05a4819
AD
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 759 * tn->full_children) >=
2e1ac88a 760 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
761 *
762 * shorten again:
2e1ac88a 763 * 50 * (tn->full_children + child_length(tn) -
f05a4819 764 * tn->empty_children) >= inflate_threshold *
2e1ac88a 765 * child_length(tn)
f05a4819
AD
766 *
767 */
35c6edac 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 769{
2e1ac88a 770 unsigned long used = child_length(tn);
f05a4819
AD
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
88bae714 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
f05a4819 777
95f60ea3
AD
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
781}
782
35c6edac 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 784{
2e1ac88a 785 unsigned long used = child_length(tn);
f05a4819
AD
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
88bae714 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 790 used -= tn_info(tn)->empty_children;
f05a4819 791
95f60ea3
AD
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795}
796
35c6edac 797static inline bool should_collapse(struct key_vector *tn)
95f60ea3 798{
2e1ac88a 799 unsigned long used = child_length(tn);
95f60ea3 800
6e22d174 801 used -= tn_info(tn)->empty_children;
95f60ea3
AD
802
803 /* account for bits == KEYLENGTH case */
6e22d174 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
f05a4819
AD
809}
810
cf3637bb 811#define MAX_WORK 10
88bae714 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
88bae714 818 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
88bae714 828 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
ddb4b9a1 833 while (should_inflate(tp, tn) && max_work--) {
88bae714
AD
834 tp = inflate(t, tn);
835 if (!tp) {
cf3637bb 836#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 837 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
838#endif
839 break;
840 }
ff181ed8 841
88bae714 842 tn = get_child(tp, cindex);
cf3637bb
AD
843 }
844
845 /* Return if at least one inflate is run */
846 if (max_work != MAX_WORK)
88bae714 847 return node_parent(tn);
cf3637bb 848
f05a4819 849 /* Halve as long as the number of empty children in this
cf3637bb
AD
850 * node is above threshold.
851 */
ddb4b9a1 852 while (should_halve(tp, tn) && max_work--) {
88bae714
AD
853 tp = halve(t, tn);
854 if (!tp) {
cf3637bb 855#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 856 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
857#endif
858 break;
859 }
cf3637bb 860
88bae714 861 tn = get_child(tp, cindex);
ff181ed8 862 }
cf3637bb
AD
863
864 /* Only one child remains */
88bae714
AD
865 if (should_collapse(tn))
866 return collapse(t, tn);
867
868 /* update parent in case inflate or halve failed */
869 tp = node_parent(tn);
5405afd1
AD
870
871 /* Return if at least one deflate was run */
872 if (max_work != MAX_WORK)
88bae714 873 return tp;
5405afd1
AD
874
875 /* push the suffix length to the parent node */
876 if (tn->slen > tn->pos) {
877 unsigned char slen = update_suffix(tn);
878
88bae714 879 if (slen > tp->slen)
5405afd1 880 tp->slen = slen;
cf3637bb 881 }
8d8e810c 882
88bae714 883 return tp;
cf3637bb
AD
884}
885
35c6edac 886static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 887{
88bae714 888 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
889 if (update_suffix(tp) > l->slen)
890 break;
891 tp = node_parent(tp);
892 }
893}
894
35c6edac 895static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 896{
5405afd1
AD
897 /* if this is a new leaf then tn will be NULL and we can sort
898 * out parent suffix lengths as a part of trie_rebalance
899 */
88bae714 900 while (tn->slen < l->slen) {
5405afd1
AD
901 tn->slen = l->slen;
902 tn = node_parent(tn);
903 }
904}
905
2373ce1c 906/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
907static struct key_vector *fib_find_node(struct trie *t,
908 struct key_vector **tp, u32 key)
19baf839 909{
88bae714
AD
910 struct key_vector *pn, *n = t->kv;
911 unsigned long index = 0;
912
913 do {
914 pn = n;
915 n = get_child_rcu(n, index);
916
917 if (!n)
918 break;
939afb06 919
88bae714 920 index = get_cindex(key, n);
939afb06
AD
921
922 /* This bit of code is a bit tricky but it combines multiple
923 * checks into a single check. The prefix consists of the
924 * prefix plus zeros for the bits in the cindex. The index
925 * is the difference between the key and this value. From
926 * this we can actually derive several pieces of data.
d4a975e8 927 * if (index >= (1ul << bits))
939afb06 928 * we have a mismatch in skip bits and failed
b3832117
AD
929 * else
930 * we know the value is cindex
d4a975e8
AD
931 *
932 * This check is safe even if bits == KEYLENGTH due to the
933 * fact that we can only allocate a node with 32 bits if a
934 * long is greater than 32 bits.
939afb06 935 */
d4a975e8
AD
936 if (index >= (1ul << n->bits)) {
937 n = NULL;
938 break;
939 }
939afb06 940
88bae714
AD
941 /* keep searching until we find a perfect match leaf or NULL */
942 } while (IS_TNODE(n));
91b9a277 943
35c6edac 944 *tp = pn;
d4a975e8 945
939afb06 946 return n;
19baf839
RO
947}
948
02525368
AD
949/* Return the first fib alias matching TOS with
950 * priority less than or equal to PRIO.
951 */
79e5ad2c
AD
952static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
953 u8 tos, u32 prio)
02525368
AD
954{
955 struct fib_alias *fa;
956
957 if (!fah)
958 return NULL;
959
56315f9e 960 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
961 if (fa->fa_slen < slen)
962 continue;
963 if (fa->fa_slen != slen)
964 break;
02525368
AD
965 if (fa->fa_tos > tos)
966 continue;
967 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
968 return fa;
969 }
970
971 return NULL;
972}
973
35c6edac 974static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 975{
88bae714
AD
976 while (!IS_TRIE(tn))
977 tn = resize(t, tn);
19baf839
RO
978}
979
35c6edac 980static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 981 struct fib_alias *new, t_key key)
19baf839 982{
35c6edac 983 struct key_vector *n, *l;
19baf839 984
d5d6487c 985 l = leaf_new(key, new);
79e5ad2c 986 if (!l)
8d8e810c 987 goto noleaf;
d5d6487c
AD
988
989 /* retrieve child from parent node */
88bae714 990 n = get_child(tp, get_index(key, tp));
19baf839 991
836a0123
AD
992 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
993 *
994 * Add a new tnode here
995 * first tnode need some special handling
996 * leaves us in position for handling as case 3
997 */
998 if (n) {
35c6edac 999 struct key_vector *tn;
19baf839 1000
e9b44019 1001 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1002 if (!tn)
1003 goto notnode;
91b9a277 1004
836a0123
AD
1005 /* initialize routes out of node */
1006 NODE_INIT_PARENT(tn, tp);
1007 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1008
836a0123 1009 /* start adding routes into the node */
88bae714 1010 put_child_root(tp, key, tn);
836a0123 1011 node_set_parent(n, tn);
e962f302 1012
836a0123 1013 /* parent now has a NULL spot where the leaf can go */
e962f302 1014 tp = tn;
19baf839 1015 }
91b9a277 1016
836a0123 1017 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1018 NODE_INIT_PARENT(l, tp);
88bae714 1019 put_child_root(tp, key, l);
d5d6487c
AD
1020 trie_rebalance(t, tp);
1021
1022 return 0;
8d8e810c
AD
1023notnode:
1024 node_free(l);
1025noleaf:
1026 return -ENOMEM;
d5d6487c
AD
1027}
1028
35c6edac
AD
1029static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1030 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1031 struct fib_alias *fa, t_key key)
1032{
1033 if (!l)
1034 return fib_insert_node(t, tp, new, key);
1035
1036 if (fa) {
1037 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1038 } else {
d5d6487c
AD
1039 struct fib_alias *last;
1040
1041 hlist_for_each_entry(last, &l->leaf, fa_list) {
1042 if (new->fa_slen < last->fa_slen)
1043 break;
1044 fa = last;
1045 }
1046
1047 if (fa)
1048 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1049 else
1050 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1051 }
2373ce1c 1052
d5d6487c
AD
1053 /* if we added to the tail node then we need to update slen */
1054 if (l->slen < new->fa_slen) {
1055 l->slen = new->fa_slen;
1056 leaf_push_suffix(tp, l);
1057 }
1058
1059 return 0;
19baf839
RO
1060}
1061
d5d6487c 1062/* Caller must hold RTNL. */
16c6cf8b 1063int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1064{
d4a975e8 1065 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1066 struct fib_alias *fa, *new_fa;
35c6edac 1067 struct key_vector *l, *tp;
19baf839 1068 struct fib_info *fi;
79e5ad2c
AD
1069 u8 plen = cfg->fc_dst_len;
1070 u8 slen = KEYLENGTH - plen;
4e902c57 1071 u8 tos = cfg->fc_tos;
d4a975e8 1072 u32 key;
19baf839 1073 int err;
19baf839 1074
5786ec60 1075 if (plen > KEYLENGTH)
19baf839
RO
1076 return -EINVAL;
1077
4e902c57 1078 key = ntohl(cfg->fc_dst);
19baf839 1079
2dfe55b4 1080 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1081
d4a975e8 1082 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1083 return -EINVAL;
1084
4e902c57
TG
1085 fi = fib_create_info(cfg);
1086 if (IS_ERR(fi)) {
1087 err = PTR_ERR(fi);
19baf839 1088 goto err;
4e902c57 1089 }
19baf839 1090
d4a975e8 1091 l = fib_find_node(t, &tp, key);
79e5ad2c 1092 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1093
1094 /* Now fa, if non-NULL, points to the first fib alias
1095 * with the same keys [prefix,tos,priority], if such key already
1096 * exists or to the node before which we will insert new one.
1097 *
1098 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1099 * insert to the tail of the section matching the suffix length
1100 * of the new alias.
19baf839
RO
1101 */
1102
936f6f8e
JA
1103 if (fa && fa->fa_tos == tos &&
1104 fa->fa_info->fib_priority == fi->fib_priority) {
1105 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1106
1107 err = -EEXIST;
4e902c57 1108 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1109 goto out;
1110
936f6f8e
JA
1111 /* We have 2 goals:
1112 * 1. Find exact match for type, scope, fib_info to avoid
1113 * duplicate routes
1114 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1115 */
1116 fa_match = NULL;
1117 fa_first = fa;
56315f9e 1118 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1119 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1120 break;
1121 if (fa->fa_info->fib_priority != fi->fib_priority)
1122 break;
0ddcf43d
AD
1123 /* duplicate entry from another table */
1124 if (WARN_ON(fa->tb_id != tb->tb_id))
1125 continue;
936f6f8e 1126 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1127 fa->fa_info == fi) {
1128 fa_match = fa;
1129 break;
1130 }
1131 }
1132
4e902c57 1133 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1134 struct fib_info *fi_drop;
1135 u8 state;
1136
936f6f8e
JA
1137 fa = fa_first;
1138 if (fa_match) {
1139 if (fa == fa_match)
1140 err = 0;
6725033f 1141 goto out;
936f6f8e 1142 }
2373ce1c 1143 err = -ENOBUFS;
e94b1766 1144 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1145 if (new_fa == NULL)
1146 goto out;
19baf839
RO
1147
1148 fi_drop = fa->fa_info;
2373ce1c
RO
1149 new_fa->fa_tos = fa->fa_tos;
1150 new_fa->fa_info = fi;
4e902c57 1151 new_fa->fa_type = cfg->fc_type;
19baf839 1152 state = fa->fa_state;
936f6f8e 1153 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1154 new_fa->fa_slen = fa->fa_slen;
19baf839 1155
8e05fd71
SF
1156 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1157 new_fa->fa_tos,
1158 cfg->fc_type,
f8f21471 1159 cfg->fc_nlflags,
8e05fd71
SF
1160 tb->tb_id);
1161 if (err) {
1162 netdev_switch_fib_ipv4_abort(fi);
1163 kmem_cache_free(fn_alias_kmem, new_fa);
1164 goto out;
1165 }
1166
56315f9e 1167 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1168
2373ce1c 1169 alias_free_mem_rcu(fa);
19baf839
RO
1170
1171 fib_release_info(fi_drop);
1172 if (state & FA_S_ACCESSED)
4ccfe6d4 1173 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1174 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1175 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1176
91b9a277 1177 goto succeeded;
19baf839
RO
1178 }
1179 /* Error if we find a perfect match which
1180 * uses the same scope, type, and nexthop
1181 * information.
1182 */
936f6f8e
JA
1183 if (fa_match)
1184 goto out;
a07f5f50 1185
4e902c57 1186 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1187 fa = fa_first;
19baf839
RO
1188 }
1189 err = -ENOENT;
4e902c57 1190 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1191 goto out;
1192
1193 err = -ENOBUFS;
e94b1766 1194 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1195 if (new_fa == NULL)
1196 goto out;
1197
1198 new_fa->fa_info = fi;
1199 new_fa->fa_tos = tos;
4e902c57 1200 new_fa->fa_type = cfg->fc_type;
19baf839 1201 new_fa->fa_state = 0;
79e5ad2c 1202 new_fa->fa_slen = slen;
0ddcf43d 1203 new_fa->tb_id = tb->tb_id;
19baf839 1204
8e05fd71
SF
1205 /* (Optionally) offload fib entry to switch hardware. */
1206 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
f8f21471
SF
1207 cfg->fc_type,
1208 cfg->fc_nlflags,
1209 tb->tb_id);
8e05fd71
SF
1210 if (err) {
1211 netdev_switch_fib_ipv4_abort(fi);
1212 goto out_free_new_fa;
1213 }
1214
9b6ebad5 1215 /* Insert new entry to the list. */
d5d6487c
AD
1216 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1217 if (err)
8e05fd71 1218 goto out_sw_fib_del;
19baf839 1219
21d8c49e
DM
1220 if (!plen)
1221 tb->tb_num_default++;
1222
4ccfe6d4 1223 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1224 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
b8f55831 1225 &cfg->fc_nlinfo, 0);
19baf839
RO
1226succeeded:
1227 return 0;
f835e471 1228
8e05fd71
SF
1229out_sw_fib_del:
1230 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1231out_free_new_fa:
1232 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1233out:
1234 fib_release_info(fi);
91b9a277 1235err:
19baf839
RO
1236 return err;
1237}
1238
35c6edac 1239static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1240{
1241 t_key prefix = n->key;
1242
1243 return (key ^ prefix) & (prefix | -prefix);
1244}
1245
345e9b54 1246/* should be called with rcu_read_lock */
22bd5b9b 1247int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1248 struct fib_result *res, int fib_flags)
19baf839 1249{
0ddcf43d 1250 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1251#ifdef CONFIG_IP_FIB_TRIE_STATS
1252 struct trie_use_stats __percpu *stats = t->stats;
1253#endif
9f9e636d 1254 const t_key key = ntohl(flp->daddr);
35c6edac 1255 struct key_vector *n, *pn;
79e5ad2c 1256 struct fib_alias *fa;
71e8b67d 1257 unsigned long index;
9f9e636d 1258 t_key cindex;
91b9a277 1259
88bae714
AD
1260 pn = t->kv;
1261 cindex = 0;
1262
1263 n = get_child_rcu(pn, cindex);
c877efb2 1264 if (!n)
345e9b54 1265 return -EAGAIN;
19baf839
RO
1266
1267#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1268 this_cpu_inc(stats->gets);
19baf839
RO
1269#endif
1270
9f9e636d
AD
1271 /* Step 1: Travel to the longest prefix match in the trie */
1272 for (;;) {
88bae714 1273 index = get_cindex(key, n);
9f9e636d
AD
1274
1275 /* This bit of code is a bit tricky but it combines multiple
1276 * checks into a single check. The prefix consists of the
1277 * prefix plus zeros for the "bits" in the prefix. The index
1278 * is the difference between the key and this value. From
1279 * this we can actually derive several pieces of data.
71e8b67d 1280 * if (index >= (1ul << bits))
9f9e636d 1281 * we have a mismatch in skip bits and failed
b3832117
AD
1282 * else
1283 * we know the value is cindex
71e8b67d
AD
1284 *
1285 * This check is safe even if bits == KEYLENGTH due to the
1286 * fact that we can only allocate a node with 32 bits if a
1287 * long is greater than 32 bits.
9f9e636d 1288 */
71e8b67d 1289 if (index >= (1ul << n->bits))
9f9e636d 1290 break;
19baf839 1291
9f9e636d
AD
1292 /* we have found a leaf. Prefixes have already been compared */
1293 if (IS_LEAF(n))
a07f5f50 1294 goto found;
19baf839 1295
9f9e636d
AD
1296 /* only record pn and cindex if we are going to be chopping
1297 * bits later. Otherwise we are just wasting cycles.
91b9a277 1298 */
5405afd1 1299 if (n->slen > n->pos) {
9f9e636d
AD
1300 pn = n;
1301 cindex = index;
91b9a277 1302 }
19baf839 1303
754baf8d 1304 n = get_child_rcu(n, index);
9f9e636d
AD
1305 if (unlikely(!n))
1306 goto backtrace;
1307 }
19baf839 1308
9f9e636d
AD
1309 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1310 for (;;) {
1311 /* record the pointer where our next node pointer is stored */
35c6edac 1312 struct key_vector __rcu **cptr = n->tnode;
19baf839 1313
9f9e636d
AD
1314 /* This test verifies that none of the bits that differ
1315 * between the key and the prefix exist in the region of
1316 * the lsb and higher in the prefix.
91b9a277 1317 */
5405afd1 1318 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1319 goto backtrace;
91b9a277 1320
9f9e636d
AD
1321 /* exit out and process leaf */
1322 if (unlikely(IS_LEAF(n)))
1323 break;
91b9a277 1324
9f9e636d
AD
1325 /* Don't bother recording parent info. Since we are in
1326 * prefix match mode we will have to come back to wherever
1327 * we started this traversal anyway
91b9a277 1328 */
91b9a277 1329
9f9e636d 1330 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1331backtrace:
19baf839 1332#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1333 if (!n)
1334 this_cpu_inc(stats->null_node_hit);
19baf839 1335#endif
9f9e636d
AD
1336 /* If we are at cindex 0 there are no more bits for
1337 * us to strip at this level so we must ascend back
1338 * up one level to see if there are any more bits to
1339 * be stripped there.
1340 */
1341 while (!cindex) {
1342 t_key pkey = pn->key;
1343
88bae714
AD
1344 /* If we don't have a parent then there is
1345 * nothing for us to do as we do not have any
1346 * further nodes to parse.
1347 */
1348 if (IS_TRIE(pn))
345e9b54 1349 return -EAGAIN;
9f9e636d
AD
1350#ifdef CONFIG_IP_FIB_TRIE_STATS
1351 this_cpu_inc(stats->backtrack);
1352#endif
1353 /* Get Child's index */
88bae714 1354 pn = node_parent_rcu(pn);
9f9e636d
AD
1355 cindex = get_index(pkey, pn);
1356 }
1357
1358 /* strip the least significant bit from the cindex */
1359 cindex &= cindex - 1;
1360
1361 /* grab pointer for next child node */
41b489fd 1362 cptr = &pn->tnode[cindex];
c877efb2 1363 }
19baf839 1364 }
9f9e636d 1365
19baf839 1366found:
71e8b67d
AD
1367 /* this line carries forward the xor from earlier in the function */
1368 index = key ^ n->key;
1369
9f9e636d 1370 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1371 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1372 struct fib_info *fi = fa->fa_info;
1373 int nhsel, err;
345e9b54 1374
71e8b67d 1375 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1376 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1377 continue;
79e5ad2c
AD
1378 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1379 continue;
1380 if (fi->fib_dead)
1381 continue;
1382 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1383 continue;
1384 fib_alias_accessed(fa);
1385 err = fib_props[fa->fa_type].error;
1386 if (unlikely(err < 0)) {
345e9b54 1387#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1388 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1389#endif
79e5ad2c
AD
1390 return err;
1391 }
1392 if (fi->fib_flags & RTNH_F_DEAD)
1393 continue;
1394 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1395 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1396
1397 if (nh->nh_flags & RTNH_F_DEAD)
1398 continue;
1399 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1400 continue;
79e5ad2c
AD
1401
1402 if (!(fib_flags & FIB_LOOKUP_NOREF))
1403 atomic_inc(&fi->fib_clntref);
1404
1405 res->prefixlen = KEYLENGTH - fa->fa_slen;
1406 res->nh_sel = nhsel;
1407 res->type = fa->fa_type;
1408 res->scope = fi->fib_scope;
1409 res->fi = fi;
1410 res->table = tb;
1411 res->fa_head = &n->leaf;
345e9b54 1412#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1413 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1414#endif
79e5ad2c 1415 return err;
345e9b54 1416 }
9b6ebad5 1417 }
345e9b54 1418#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1419 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1420#endif
345e9b54 1421 goto backtrace;
19baf839 1422}
6fc01438 1423EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1424
35c6edac
AD
1425static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1426 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1427{
1428 /* record the location of the previous list_info entry */
1429 struct hlist_node **pprev = old->fa_list.pprev;
1430 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1431
1432 /* remove the fib_alias from the list */
1433 hlist_del_rcu(&old->fa_list);
1434
1435 /* if we emptied the list this leaf will be freed and we can sort
1436 * out parent suffix lengths as a part of trie_rebalance
1437 */
1438 if (hlist_empty(&l->leaf)) {
88bae714 1439 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1440 node_free(l);
1441 trie_rebalance(t, tp);
1442 return;
1443 }
1444
1445 /* only access fa if it is pointing at the last valid hlist_node */
1446 if (*pprev)
1447 return;
1448
1449 /* update the trie with the latest suffix length */
1450 l->slen = fa->fa_slen;
1451 leaf_pull_suffix(tp, l);
1452}
1453
1454/* Caller must hold RTNL. */
16c6cf8b 1455int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1456{
1457 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1458 struct fib_alias *fa, *fa_to_delete;
35c6edac 1459 struct key_vector *l, *tp;
79e5ad2c 1460 u8 plen = cfg->fc_dst_len;
79e5ad2c 1461 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1462 u8 tos = cfg->fc_tos;
1463 u32 key;
91b9a277 1464
79e5ad2c 1465 if (plen > KEYLENGTH)
19baf839
RO
1466 return -EINVAL;
1467
4e902c57 1468 key = ntohl(cfg->fc_dst);
19baf839 1469
d4a975e8 1470 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1471 return -EINVAL;
1472
d4a975e8 1473 l = fib_find_node(t, &tp, key);
c877efb2 1474 if (!l)
19baf839
RO
1475 return -ESRCH;
1476
79e5ad2c 1477 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1478 if (!fa)
1479 return -ESRCH;
1480
0c7770c7 1481 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1482
1483 fa_to_delete = NULL;
56315f9e 1484 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1485 struct fib_info *fi = fa->fa_info;
1486
79e5ad2c 1487 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1488 break;
1489
0ddcf43d
AD
1490 if (fa->tb_id != tb->tb_id)
1491 continue;
1492
4e902c57
TG
1493 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1494 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1495 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1496 (!cfg->fc_prefsrc ||
1497 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1498 (!cfg->fc_protocol ||
1499 fi->fib_protocol == cfg->fc_protocol) &&
1500 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1501 fa_to_delete = fa;
1502 break;
1503 }
1504 }
1505
91b9a277
OJ
1506 if (!fa_to_delete)
1507 return -ESRCH;
19baf839 1508
8e05fd71
SF
1509 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1510 cfg->fc_type, tb->tb_id);
1511
d5d6487c 1512 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1513 &cfg->fc_nlinfo, 0);
91b9a277 1514
21d8c49e
DM
1515 if (!plen)
1516 tb->tb_num_default--;
1517
d5d6487c 1518 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1519
d5d6487c 1520 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1521 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1522
d5d6487c
AD
1523 fib_release_info(fa_to_delete->fa_info);
1524 alias_free_mem_rcu(fa_to_delete);
91b9a277 1525 return 0;
19baf839
RO
1526}
1527
8be33e95 1528/* Scan for the next leaf starting at the provided key value */
35c6edac 1529static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1530{
35c6edac 1531 struct key_vector *pn, *n = *tn;
8be33e95 1532 unsigned long cindex;
82cfbb00 1533
8be33e95 1534 /* this loop is meant to try and find the key in the trie */
88bae714 1535 do {
8be33e95
AD
1536 /* record parent and next child index */
1537 pn = n;
3ec320dd 1538 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1539
1540 if (cindex >> pn->bits)
1541 break;
82cfbb00 1542
8be33e95 1543 /* descend into the next child */
754baf8d 1544 n = get_child_rcu(pn, cindex++);
88bae714
AD
1545 if (!n)
1546 break;
1547
1548 /* guarantee forward progress on the keys */
1549 if (IS_LEAF(n) && (n->key >= key))
1550 goto found;
1551 } while (IS_TNODE(n));
82cfbb00 1552
8be33e95 1553 /* this loop will search for the next leaf with a greater key */
88bae714 1554 while (!IS_TRIE(pn)) {
8be33e95
AD
1555 /* if we exhausted the parent node we will need to climb */
1556 if (cindex >= (1ul << pn->bits)) {
1557 t_key pkey = pn->key;
82cfbb00 1558
8be33e95 1559 pn = node_parent_rcu(pn);
8be33e95
AD
1560 cindex = get_index(pkey, pn) + 1;
1561 continue;
1562 }
82cfbb00 1563
8be33e95 1564 /* grab the next available node */
754baf8d 1565 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1566 if (!n)
1567 continue;
19baf839 1568
8be33e95
AD
1569 /* no need to compare keys since we bumped the index */
1570 if (IS_LEAF(n))
1571 goto found;
71d67e66 1572
8be33e95
AD
1573 /* Rescan start scanning in new node */
1574 pn = n;
1575 cindex = 0;
1576 }
ec28cf73 1577
8be33e95
AD
1578 *tn = pn;
1579 return NULL; /* Root of trie */
1580found:
1581 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1582 *tn = pn;
8be33e95 1583 return n;
71d67e66
SH
1584}
1585
0ddcf43d
AD
1586static void fib_trie_free(struct fib_table *tb)
1587{
1588 struct trie *t = (struct trie *)tb->tb_data;
1589 struct key_vector *pn = t->kv;
1590 unsigned long cindex = 1;
1591 struct hlist_node *tmp;
1592 struct fib_alias *fa;
1593
1594 /* walk trie in reverse order and free everything */
1595 for (;;) {
1596 struct key_vector *n;
1597
1598 if (!(cindex--)) {
1599 t_key pkey = pn->key;
1600
1601 if (IS_TRIE(pn))
1602 break;
1603
1604 n = pn;
1605 pn = node_parent(pn);
1606
1607 /* drop emptied tnode */
1608 put_child_root(pn, n->key, NULL);
1609 node_free(n);
1610
1611 cindex = get_index(pkey, pn);
1612
1613 continue;
1614 }
1615
1616 /* grab the next available node */
1617 n = get_child(pn, cindex);
1618 if (!n)
1619 continue;
1620
1621 if (IS_TNODE(n)) {
1622 /* record pn and cindex for leaf walking */
1623 pn = n;
1624 cindex = 1ul << n->bits;
1625
1626 continue;
1627 }
1628
1629 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1630 hlist_del_rcu(&fa->fa_list);
1631 alias_free_mem_rcu(fa);
1632 }
1633
1634 put_child_root(pn, n->key, NULL);
1635 node_free(n);
1636 }
1637
1638#ifdef CONFIG_IP_FIB_TRIE_STATS
1639 free_percpu(t->stats);
1640#endif
1641 kfree(tb);
1642}
1643
1644struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1645{
1646 struct trie *ot = (struct trie *)oldtb->tb_data;
1647 struct key_vector *l, *tp = ot->kv;
1648 struct fib_table *local_tb;
1649 struct fib_alias *fa;
1650 struct trie *lt;
1651 t_key key = 0;
1652
1653 if (oldtb->tb_data == oldtb->__data)
1654 return oldtb;
1655
1656 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1657 if (!local_tb)
1658 return NULL;
1659
1660 lt = (struct trie *)local_tb->tb_data;
1661
1662 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1663 struct key_vector *local_l = NULL, *local_tp;
1664
1665 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1666 struct fib_alias *new_fa;
1667
1668 if (local_tb->tb_id != fa->tb_id)
1669 continue;
1670
1671 /* clone fa for new local table */
1672 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1673 if (!new_fa)
1674 goto out;
1675
1676 memcpy(new_fa, fa, sizeof(*fa));
1677
1678 /* insert clone into table */
1679 if (!local_l)
1680 local_l = fib_find_node(lt, &local_tp, l->key);
1681
1682 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1683 NULL, l->key))
1684 goto out;
1685 }
1686
1687 /* stop loop if key wrapped back to 0 */
1688 key = l->key + 1;
1689 if (key < l->key)
1690 break;
1691 }
1692
1693 return local_tb;
1694out:
1695 fib_trie_free(local_tb);
1696
1697 return NULL;
1698}
1699
104616e7
SF
1700/* Caller must hold RTNL */
1701void fib_table_flush_external(struct fib_table *tb)
1702{
1703 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1704 struct key_vector *pn = t->kv;
1705 unsigned long cindex = 1;
1706 struct hlist_node *tmp;
104616e7 1707 struct fib_alias *fa;
104616e7 1708
88bae714
AD
1709 /* walk trie in reverse order */
1710 for (;;) {
0ddcf43d 1711 unsigned char slen = 0;
88bae714 1712 struct key_vector *n;
104616e7 1713
88bae714
AD
1714 if (!(cindex--)) {
1715 t_key pkey = pn->key;
104616e7 1716
88bae714
AD
1717 /* cannot resize the trie vector */
1718 if (IS_TRIE(pn))
1719 break;
104616e7 1720
0ddcf43d
AD
1721 /* resize completed node */
1722 pn = resize(t, pn);
88bae714 1723 cindex = get_index(pkey, pn);
104616e7 1724
88bae714
AD
1725 continue;
1726 }
104616e7 1727
88bae714
AD
1728 /* grab the next available node */
1729 n = get_child(pn, cindex);
1730 if (!n)
1731 continue;
104616e7 1732
88bae714
AD
1733 if (IS_TNODE(n)) {
1734 /* record pn and cindex for leaf walking */
1735 pn = n;
1736 cindex = 1ul << n->bits;
104616e7 1737
72be7260 1738 continue;
88bae714 1739 }
72be7260 1740
88bae714
AD
1741 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1742 struct fib_info *fi = fa->fa_info;
1743
0ddcf43d
AD
1744 /* if alias was cloned to local then we just
1745 * need to remove the local copy from main
1746 */
1747 if (tb->tb_id != fa->tb_id) {
1748 hlist_del_rcu(&fa->fa_list);
1749 alias_free_mem_rcu(fa);
1750 continue;
1751 }
1752
1753 /* record local slen */
1754 slen = fa->fa_slen;
1755
88bae714
AD
1756 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1757 continue;
104616e7 1758
88bae714
AD
1759 netdev_switch_fib_ipv4_del(n->key,
1760 KEYLENGTH - fa->fa_slen,
1761 fi, fa->fa_tos,
1762 fa->fa_type, tb->tb_id);
1763 }
0ddcf43d
AD
1764
1765 /* update leaf slen */
1766 n->slen = slen;
1767
1768 if (hlist_empty(&n->leaf)) {
1769 put_child_root(pn, n->key, NULL);
1770 node_free(n);
1771 } else {
1772 leaf_pull_suffix(pn, n);
1773 }
88bae714 1774 }
104616e7
SF
1775}
1776
8be33e95 1777/* Caller must hold RTNL. */
16c6cf8b 1778int fib_table_flush(struct fib_table *tb)
19baf839 1779{
7289e6dd 1780 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1781 struct key_vector *pn = t->kv;
1782 unsigned long cindex = 1;
7289e6dd
AD
1783 struct hlist_node *tmp;
1784 struct fib_alias *fa;
82cfbb00 1785 int found = 0;
19baf839 1786
88bae714
AD
1787 /* walk trie in reverse order */
1788 for (;;) {
1789 unsigned char slen = 0;
1790 struct key_vector *n;
19baf839 1791
88bae714
AD
1792 if (!(cindex--)) {
1793 t_key pkey = pn->key;
7289e6dd 1794
88bae714
AD
1795 /* cannot resize the trie vector */
1796 if (IS_TRIE(pn))
1797 break;
7289e6dd 1798
88bae714
AD
1799 /* resize completed node */
1800 pn = resize(t, pn);
1801 cindex = get_index(pkey, pn);
7289e6dd 1802
88bae714
AD
1803 continue;
1804 }
7289e6dd 1805
88bae714
AD
1806 /* grab the next available node */
1807 n = get_child(pn, cindex);
1808 if (!n)
1809 continue;
7289e6dd 1810
88bae714
AD
1811 if (IS_TNODE(n)) {
1812 /* record pn and cindex for leaf walking */
1813 pn = n;
1814 cindex = 1ul << n->bits;
7289e6dd 1815
88bae714
AD
1816 continue;
1817 }
7289e6dd 1818
88bae714
AD
1819 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1820 struct fib_info *fi = fa->fa_info;
7289e6dd 1821
88bae714
AD
1822 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1823 slen = fa->fa_slen;
1824 continue;
1825 }
7289e6dd 1826
8e05fd71
SF
1827 netdev_switch_fib_ipv4_del(n->key,
1828 KEYLENGTH - fa->fa_slen,
1829 fi, fa->fa_tos,
1830 fa->fa_type, tb->tb_id);
7289e6dd
AD
1831 hlist_del_rcu(&fa->fa_list);
1832 fib_release_info(fa->fa_info);
1833 alias_free_mem_rcu(fa);
1834 found++;
64c62723
AD
1835 }
1836
88bae714
AD
1837 /* update leaf slen */
1838 n->slen = slen;
7289e6dd 1839
88bae714
AD
1840 if (hlist_empty(&n->leaf)) {
1841 put_child_root(pn, n->key, NULL);
1842 node_free(n);
1843 } else {
1844 leaf_pull_suffix(pn, n);
1845 }
64c62723 1846 }
19baf839 1847
0c7770c7 1848 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1849 return found;
1850}
1851
a7e53531 1852static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1853{
a7e53531 1854 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1855#ifdef CONFIG_IP_FIB_TRIE_STATS
1856 struct trie *t = (struct trie *)tb->tb_data;
1857
0ddcf43d
AD
1858 if (tb->tb_data == tb->__data)
1859 free_percpu(t->stats);
8274a97a 1860#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1861 kfree(tb);
1862}
1863
a7e53531
AD
1864void fib_free_table(struct fib_table *tb)
1865{
1866 call_rcu(&tb->rcu, __trie_free_rcu);
1867}
1868
35c6edac 1869static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1870 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1871{
79e5ad2c 1872 __be32 xkey = htonl(l->key);
19baf839 1873 struct fib_alias *fa;
79e5ad2c 1874 int i, s_i;
19baf839 1875
79e5ad2c 1876 s_i = cb->args[4];
19baf839
RO
1877 i = 0;
1878
2373ce1c 1879 /* rcu_read_lock is hold by caller */
79e5ad2c 1880 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1881 if (i < s_i) {
1882 i++;
1883 continue;
1884 }
19baf839 1885
0ddcf43d
AD
1886 if (tb->tb_id != fa->tb_id) {
1887 i++;
1888 continue;
1889 }
1890
15e47304 1891 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1892 cb->nlh->nlmsg_seq,
1893 RTM_NEWROUTE,
1894 tb->tb_id,
1895 fa->fa_type,
be403ea1 1896 xkey,
9b6ebad5 1897 KEYLENGTH - fa->fa_slen,
19baf839 1898 fa->fa_tos,
64347f78 1899 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1900 cb->args[4] = i;
19baf839
RO
1901 return -1;
1902 }
a88ee229 1903 i++;
19baf839 1904 }
a88ee229 1905
71d67e66 1906 cb->args[4] = i;
19baf839
RO
1907 return skb->len;
1908}
1909
a7e53531 1910/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1911int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1912 struct netlink_callback *cb)
19baf839 1913{
8be33e95 1914 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1915 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1916 /* Dump starting at last key.
1917 * Note: 0.0.0.0/0 (ie default) is first key.
1918 */
8be33e95
AD
1919 int count = cb->args[2];
1920 t_key key = cb->args[3];
a88ee229 1921
8be33e95 1922 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1923 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1924 cb->args[3] = key;
1925 cb->args[2] = count;
a88ee229 1926 return -1;
19baf839 1927 }
d5ce8a0e 1928
71d67e66 1929 ++count;
8be33e95
AD
1930 key = l->key + 1;
1931
71d67e66
SH
1932 memset(&cb->args[4], 0,
1933 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1934
1935 /* stop loop if key wrapped back to 0 */
1936 if (key < l->key)
1937 break;
19baf839 1938 }
8be33e95 1939
8be33e95
AD
1940 cb->args[3] = key;
1941 cb->args[2] = count;
1942
19baf839 1943 return skb->len;
19baf839
RO
1944}
1945
5348ba85 1946void __init fib_trie_init(void)
7f9b8052 1947{
a07f5f50
SH
1948 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1949 sizeof(struct fib_alias),
bc3c8c1e
SH
1950 0, SLAB_PANIC, NULL);
1951
1952 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1953 LEAF_SIZE,
bc3c8c1e 1954 0, SLAB_PANIC, NULL);
7f9b8052 1955}
19baf839 1956
0ddcf43d 1957struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1958{
1959 struct fib_table *tb;
1960 struct trie *t;
0ddcf43d
AD
1961 size_t sz = sizeof(*tb);
1962
1963 if (!alias)
1964 sz += sizeof(struct trie);
19baf839 1965
0ddcf43d 1966 tb = kzalloc(sz, GFP_KERNEL);
19baf839
RO
1967 if (tb == NULL)
1968 return NULL;
1969
1970 tb->tb_id = id;
971b893e 1971 tb->tb_default = -1;
21d8c49e 1972 tb->tb_num_default = 0;
0ddcf43d
AD
1973 tb->tb_data = (alias ? alias->__data : tb->__data);
1974
1975 if (alias)
1976 return tb;
19baf839
RO
1977
1978 t = (struct trie *) tb->tb_data;
88bae714
AD
1979 t->kv[0].pos = KEYLENGTH;
1980 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1981#ifdef CONFIG_IP_FIB_TRIE_STATS
1982 t->stats = alloc_percpu(struct trie_use_stats);
1983 if (!t->stats) {
1984 kfree(tb);
1985 tb = NULL;
1986 }
1987#endif
19baf839 1988
19baf839
RO
1989 return tb;
1990}
1991
cb7b593c
SH
1992#ifdef CONFIG_PROC_FS
1993/* Depth first Trie walk iterator */
1994struct fib_trie_iter {
1c340b2f 1995 struct seq_net_private p;
3d3b2d25 1996 struct fib_table *tb;
35c6edac 1997 struct key_vector *tnode;
a034ee3c
ED
1998 unsigned int index;
1999 unsigned int depth;
cb7b593c 2000};
19baf839 2001
35c6edac 2002static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2003{
98293e8d 2004 unsigned long cindex = iter->index;
88bae714
AD
2005 struct key_vector *pn = iter->tnode;
2006 t_key pkey;
6640e697 2007
cb7b593c
SH
2008 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2009 iter->tnode, iter->index, iter->depth);
19baf839 2010
88bae714
AD
2011 while (!IS_TRIE(pn)) {
2012 while (cindex < child_length(pn)) {
2013 struct key_vector *n = get_child_rcu(pn, cindex++);
2014
2015 if (!n)
2016 continue;
2017
cb7b593c 2018 if (IS_LEAF(n)) {
88bae714
AD
2019 iter->tnode = pn;
2020 iter->index = cindex;
cb7b593c
SH
2021 } else {
2022 /* push down one level */
adaf9816 2023 iter->tnode = n;
cb7b593c
SH
2024 iter->index = 0;
2025 ++iter->depth;
2026 }
88bae714 2027
cb7b593c
SH
2028 return n;
2029 }
19baf839 2030
88bae714
AD
2031 /* Current node exhausted, pop back up */
2032 pkey = pn->key;
2033 pn = node_parent_rcu(pn);
2034 cindex = get_index(pkey, pn) + 1;
cb7b593c 2035 --iter->depth;
19baf839 2036 }
cb7b593c 2037
88bae714
AD
2038 /* record root node so further searches know we are done */
2039 iter->tnode = pn;
2040 iter->index = 0;
2041
cb7b593c 2042 return NULL;
19baf839
RO
2043}
2044
35c6edac
AD
2045static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2046 struct trie *t)
19baf839 2047{
88bae714 2048 struct key_vector *n, *pn = t->kv;
5ddf0eb2 2049
132adf54 2050 if (!t)
5ddf0eb2
RO
2051 return NULL;
2052
88bae714 2053 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2054 if (!n)
5ddf0eb2 2055 return NULL;
19baf839 2056
3d3b2d25 2057 if (IS_TNODE(n)) {
adaf9816 2058 iter->tnode = n;
3d3b2d25
SH
2059 iter->index = 0;
2060 iter->depth = 1;
2061 } else {
88bae714 2062 iter->tnode = pn;
3d3b2d25
SH
2063 iter->index = 0;
2064 iter->depth = 0;
91b9a277 2065 }
3d3b2d25
SH
2066
2067 return n;
cb7b593c 2068}
91b9a277 2069
cb7b593c
SH
2070static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2071{
35c6edac 2072 struct key_vector *n;
cb7b593c 2073 struct fib_trie_iter iter;
91b9a277 2074
cb7b593c 2075 memset(s, 0, sizeof(*s));
91b9a277 2076
cb7b593c 2077 rcu_read_lock();
3d3b2d25 2078 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2079 if (IS_LEAF(n)) {
79e5ad2c 2080 struct fib_alias *fa;
93672292 2081
cb7b593c
SH
2082 s->leaves++;
2083 s->totdepth += iter.depth;
2084 if (iter.depth > s->maxdepth)
2085 s->maxdepth = iter.depth;
93672292 2086
79e5ad2c 2087 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2088 ++s->prefixes;
cb7b593c 2089 } else {
cb7b593c 2090 s->tnodes++;
adaf9816
AD
2091 if (n->bits < MAX_STAT_DEPTH)
2092 s->nodesizes[n->bits]++;
6e22d174 2093 s->nullpointers += tn_info(n)->empty_children;
19baf839 2094 }
19baf839 2095 }
2373ce1c 2096 rcu_read_unlock();
19baf839
RO
2097}
2098
cb7b593c
SH
2099/*
2100 * This outputs /proc/net/fib_triestats
2101 */
2102static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2103{
a034ee3c 2104 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2105
cb7b593c
SH
2106 if (stat->leaves)
2107 avdepth = stat->totdepth*100 / stat->leaves;
2108 else
2109 avdepth = 0;
91b9a277 2110
a07f5f50
SH
2111 seq_printf(seq, "\tAver depth: %u.%02d\n",
2112 avdepth / 100, avdepth % 100);
cb7b593c 2113 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2114
cb7b593c 2115 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2116 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2117
2118 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2119 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2120
187b5188 2121 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2122 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2123
06ef921d
RO
2124 max = MAX_STAT_DEPTH;
2125 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2126 max--;
19baf839 2127
cb7b593c 2128 pointers = 0;
f585a991 2129 for (i = 1; i < max; i++)
cb7b593c 2130 if (stat->nodesizes[i] != 0) {
187b5188 2131 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2132 pointers += (1<<i) * stat->nodesizes[i];
2133 }
2134 seq_putc(seq, '\n');
187b5188 2135 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2136
35c6edac 2137 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2138 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2139 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2140}
2373ce1c 2141
cb7b593c 2142#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2143static void trie_show_usage(struct seq_file *seq,
8274a97a 2144 const struct trie_use_stats __percpu *stats)
66a2f7fd 2145{
8274a97a
AD
2146 struct trie_use_stats s = { 0 };
2147 int cpu;
2148
2149 /* loop through all of the CPUs and gather up the stats */
2150 for_each_possible_cpu(cpu) {
2151 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2152
2153 s.gets += pcpu->gets;
2154 s.backtrack += pcpu->backtrack;
2155 s.semantic_match_passed += pcpu->semantic_match_passed;
2156 s.semantic_match_miss += pcpu->semantic_match_miss;
2157 s.null_node_hit += pcpu->null_node_hit;
2158 s.resize_node_skipped += pcpu->resize_node_skipped;
2159 }
2160
66a2f7fd 2161 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2162 seq_printf(seq, "gets = %u\n", s.gets);
2163 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2164 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2165 s.semantic_match_passed);
2166 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2167 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2168 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2169}
66a2f7fd
SH
2170#endif /* CONFIG_IP_FIB_TRIE_STATS */
2171
3d3b2d25 2172static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2173{
3d3b2d25
SH
2174 if (tb->tb_id == RT_TABLE_LOCAL)
2175 seq_puts(seq, "Local:\n");
2176 else if (tb->tb_id == RT_TABLE_MAIN)
2177 seq_puts(seq, "Main:\n");
2178 else
2179 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2180}
19baf839 2181
3d3b2d25 2182
cb7b593c
SH
2183static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2184{
1c340b2f 2185 struct net *net = (struct net *)seq->private;
3d3b2d25 2186 unsigned int h;
877a9bff 2187
d717a9a6 2188 seq_printf(seq,
a07f5f50
SH
2189 "Basic info: size of leaf:"
2190 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2191 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2192
3d3b2d25
SH
2193 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2194 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2195 struct fib_table *tb;
2196
b67bfe0d 2197 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2198 struct trie *t = (struct trie *) tb->tb_data;
2199 struct trie_stat stat;
877a9bff 2200
3d3b2d25
SH
2201 if (!t)
2202 continue;
2203
2204 fib_table_print(seq, tb);
2205
2206 trie_collect_stats(t, &stat);
2207 trie_show_stats(seq, &stat);
2208#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2209 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2210#endif
2211 }
2212 }
19baf839 2213
cb7b593c 2214 return 0;
19baf839
RO
2215}
2216
cb7b593c 2217static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2218{
de05c557 2219 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2220}
2221
9a32144e 2222static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2223 .owner = THIS_MODULE,
2224 .open = fib_triestat_seq_open,
2225 .read = seq_read,
2226 .llseek = seq_lseek,
b6fcbdb4 2227 .release = single_release_net,
cb7b593c
SH
2228};
2229
35c6edac 2230static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2231{
1218854a
YH
2232 struct fib_trie_iter *iter = seq->private;
2233 struct net *net = seq_file_net(seq);
cb7b593c 2234 loff_t idx = 0;
3d3b2d25 2235 unsigned int h;
cb7b593c 2236
3d3b2d25
SH
2237 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2238 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2239 struct fib_table *tb;
cb7b593c 2240
b67bfe0d 2241 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2242 struct key_vector *n;
3d3b2d25
SH
2243
2244 for (n = fib_trie_get_first(iter,
2245 (struct trie *) tb->tb_data);
2246 n; n = fib_trie_get_next(iter))
2247 if (pos == idx++) {
2248 iter->tb = tb;
2249 return n;
2250 }
2251 }
cb7b593c 2252 }
3d3b2d25 2253
19baf839
RO
2254 return NULL;
2255}
2256
cb7b593c 2257static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2258 __acquires(RCU)
19baf839 2259{
cb7b593c 2260 rcu_read_lock();
1218854a 2261 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2262}
2263
cb7b593c 2264static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2265{
cb7b593c 2266 struct fib_trie_iter *iter = seq->private;
1218854a 2267 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2268 struct fib_table *tb = iter->tb;
2269 struct hlist_node *tb_node;
2270 unsigned int h;
35c6edac 2271 struct key_vector *n;
cb7b593c 2272
19baf839 2273 ++*pos;
3d3b2d25
SH
2274 /* next node in same table */
2275 n = fib_trie_get_next(iter);
2276 if (n)
2277 return n;
19baf839 2278
3d3b2d25
SH
2279 /* walk rest of this hash chain */
2280 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2281 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2282 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2283 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2284 if (n)
2285 goto found;
2286 }
19baf839 2287
3d3b2d25
SH
2288 /* new hash chain */
2289 while (++h < FIB_TABLE_HASHSZ) {
2290 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2291 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
2296 }
cb7b593c 2297 return NULL;
3d3b2d25
SH
2298
2299found:
2300 iter->tb = tb;
2301 return n;
cb7b593c 2302}
19baf839 2303
cb7b593c 2304static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2305 __releases(RCU)
19baf839 2306{
cb7b593c
SH
2307 rcu_read_unlock();
2308}
91b9a277 2309
cb7b593c
SH
2310static void seq_indent(struct seq_file *seq, int n)
2311{
a034ee3c
ED
2312 while (n-- > 0)
2313 seq_puts(seq, " ");
cb7b593c 2314}
19baf839 2315
28d36e37 2316static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2317{
132adf54 2318 switch (s) {
cb7b593c
SH
2319 case RT_SCOPE_UNIVERSE: return "universe";
2320 case RT_SCOPE_SITE: return "site";
2321 case RT_SCOPE_LINK: return "link";
2322 case RT_SCOPE_HOST: return "host";
2323 case RT_SCOPE_NOWHERE: return "nowhere";
2324 default:
28d36e37 2325 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2326 return buf;
2327 }
2328}
19baf839 2329
36cbd3dc 2330static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2331 [RTN_UNSPEC] = "UNSPEC",
2332 [RTN_UNICAST] = "UNICAST",
2333 [RTN_LOCAL] = "LOCAL",
2334 [RTN_BROADCAST] = "BROADCAST",
2335 [RTN_ANYCAST] = "ANYCAST",
2336 [RTN_MULTICAST] = "MULTICAST",
2337 [RTN_BLACKHOLE] = "BLACKHOLE",
2338 [RTN_UNREACHABLE] = "UNREACHABLE",
2339 [RTN_PROHIBIT] = "PROHIBIT",
2340 [RTN_THROW] = "THROW",
2341 [RTN_NAT] = "NAT",
2342 [RTN_XRESOLVE] = "XRESOLVE",
2343};
19baf839 2344
a034ee3c 2345static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2346{
cb7b593c
SH
2347 if (t < __RTN_MAX && rtn_type_names[t])
2348 return rtn_type_names[t];
28d36e37 2349 snprintf(buf, len, "type %u", t);
cb7b593c 2350 return buf;
19baf839
RO
2351}
2352
cb7b593c
SH
2353/* Pretty print the trie */
2354static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2355{
cb7b593c 2356 const struct fib_trie_iter *iter = seq->private;
35c6edac 2357 struct key_vector *n = v;
c877efb2 2358
88bae714 2359 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2360 fib_table_print(seq, iter->tb);
095b8501 2361
cb7b593c 2362 if (IS_TNODE(n)) {
adaf9816 2363 __be32 prf = htonl(n->key);
91b9a277 2364
e9b44019
AD
2365 seq_indent(seq, iter->depth-1);
2366 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2367 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2368 tn_info(n)->full_children,
2369 tn_info(n)->empty_children);
cb7b593c 2370 } else {
adaf9816 2371 __be32 val = htonl(n->key);
79e5ad2c 2372 struct fib_alias *fa;
cb7b593c
SH
2373
2374 seq_indent(seq, iter->depth);
673d57e7 2375 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2376
79e5ad2c
AD
2377 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2378 char buf1[32], buf2[32];
2379
2380 seq_indent(seq, iter->depth + 1);
2381 seq_printf(seq, " /%zu %s %s",
2382 KEYLENGTH - fa->fa_slen,
2383 rtn_scope(buf1, sizeof(buf1),
2384 fa->fa_info->fib_scope),
2385 rtn_type(buf2, sizeof(buf2),
2386 fa->fa_type));
2387 if (fa->fa_tos)
2388 seq_printf(seq, " tos=%d", fa->fa_tos);
2389 seq_putc(seq, '\n');
cb7b593c 2390 }
19baf839 2391 }
cb7b593c 2392
19baf839
RO
2393 return 0;
2394}
2395
f690808e 2396static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2397 .start = fib_trie_seq_start,
2398 .next = fib_trie_seq_next,
2399 .stop = fib_trie_seq_stop,
2400 .show = fib_trie_seq_show,
19baf839
RO
2401};
2402
cb7b593c 2403static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2404{
1c340b2f
DL
2405 return seq_open_net(inode, file, &fib_trie_seq_ops,
2406 sizeof(struct fib_trie_iter));
19baf839
RO
2407}
2408
9a32144e 2409static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2410 .owner = THIS_MODULE,
2411 .open = fib_trie_seq_open,
2412 .read = seq_read,
2413 .llseek = seq_lseek,
1c340b2f 2414 .release = seq_release_net,
19baf839
RO
2415};
2416
8315f5d8
SH
2417struct fib_route_iter {
2418 struct seq_net_private p;
8be33e95 2419 struct fib_table *main_tb;
35c6edac 2420 struct key_vector *tnode;
8315f5d8
SH
2421 loff_t pos;
2422 t_key key;
2423};
2424
35c6edac
AD
2425static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2426 loff_t pos)
8315f5d8 2427{
8be33e95 2428 struct fib_table *tb = iter->main_tb;
35c6edac 2429 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2430 struct trie *t;
2431 t_key key;
8315f5d8 2432
8be33e95
AD
2433 /* use cache location of next-to-find key */
2434 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2435 pos -= iter->pos;
8be33e95
AD
2436 key = iter->key;
2437 } else {
2438 t = (struct trie *)tb->tb_data;
88bae714 2439 iter->tnode = t->kv;
8315f5d8 2440 iter->pos = 0;
8be33e95 2441 key = 0;
8315f5d8
SH
2442 }
2443
8be33e95
AD
2444 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2445 key = l->key + 1;
8315f5d8 2446 iter->pos++;
8be33e95
AD
2447
2448 if (pos-- <= 0)
2449 break;
2450
2451 l = NULL;
2452
2453 /* handle unlikely case of a key wrap */
2454 if (!key)
2455 break;
8315f5d8
SH
2456 }
2457
2458 if (l)
8be33e95 2459 iter->key = key; /* remember it */
8315f5d8
SH
2460 else
2461 iter->pos = 0; /* forget it */
2462
2463 return l;
2464}
2465
2466static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2467 __acquires(RCU)
2468{
2469 struct fib_route_iter *iter = seq->private;
2470 struct fib_table *tb;
8be33e95 2471 struct trie *t;
8315f5d8
SH
2472
2473 rcu_read_lock();
8be33e95 2474
1218854a 2475 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2476 if (!tb)
2477 return NULL;
2478
8be33e95
AD
2479 iter->main_tb = tb;
2480
2481 if (*pos != 0)
2482 return fib_route_get_idx(iter, *pos);
2483
2484 t = (struct trie *)tb->tb_data;
88bae714 2485 iter->tnode = t->kv;
8be33e95
AD
2486 iter->pos = 0;
2487 iter->key = 0;
2488
2489 return SEQ_START_TOKEN;
8315f5d8
SH
2490}
2491
2492static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2493{
2494 struct fib_route_iter *iter = seq->private;
35c6edac 2495 struct key_vector *l = NULL;
8be33e95 2496 t_key key = iter->key;
8315f5d8
SH
2497
2498 ++*pos;
8be33e95
AD
2499
2500 /* only allow key of 0 for start of sequence */
2501 if ((v == SEQ_START_TOKEN) || key)
2502 l = leaf_walk_rcu(&iter->tnode, key);
2503
2504 if (l) {
2505 iter->key = l->key + 1;
8315f5d8 2506 iter->pos++;
8be33e95
AD
2507 } else {
2508 iter->pos = 0;
8315f5d8
SH
2509 }
2510
8315f5d8
SH
2511 return l;
2512}
2513
2514static void fib_route_seq_stop(struct seq_file *seq, void *v)
2515 __releases(RCU)
2516{
2517 rcu_read_unlock();
2518}
2519
a034ee3c 2520static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2521{
a034ee3c 2522 unsigned int flags = 0;
19baf839 2523
a034ee3c
ED
2524 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2525 flags = RTF_REJECT;
cb7b593c
SH
2526 if (fi && fi->fib_nh->nh_gw)
2527 flags |= RTF_GATEWAY;
32ab5f80 2528 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2529 flags |= RTF_HOST;
2530 flags |= RTF_UP;
2531 return flags;
19baf839
RO
2532}
2533
cb7b593c
SH
2534/*
2535 * This outputs /proc/net/route.
2536 * The format of the file is not supposed to be changed
a034ee3c 2537 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2538 * legacy utilities
2539 */
2540static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2541{
79e5ad2c 2542 struct fib_alias *fa;
35c6edac 2543 struct key_vector *l = v;
9b6ebad5 2544 __be32 prefix;
19baf839 2545
cb7b593c
SH
2546 if (v == SEQ_START_TOKEN) {
2547 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2548 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2549 "\tWindow\tIRTT");
2550 return 0;
2551 }
19baf839 2552
9b6ebad5
AD
2553 prefix = htonl(l->key);
2554
79e5ad2c
AD
2555 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2556 const struct fib_info *fi = fa->fa_info;
2557 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2558 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2559
79e5ad2c
AD
2560 if ((fa->fa_type == RTN_BROADCAST) ||
2561 (fa->fa_type == RTN_MULTICAST))
2562 continue;
19baf839 2563
79e5ad2c
AD
2564 seq_setwidth(seq, 127);
2565
2566 if (fi)
2567 seq_printf(seq,
2568 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2569 "%d\t%08X\t%d\t%u\t%u",
2570 fi->fib_dev ? fi->fib_dev->name : "*",
2571 prefix,
2572 fi->fib_nh->nh_gw, flags, 0, 0,
2573 fi->fib_priority,
2574 mask,
2575 (fi->fib_advmss ?
2576 fi->fib_advmss + 40 : 0),
2577 fi->fib_window,
2578 fi->fib_rtt >> 3);
2579 else
2580 seq_printf(seq,
2581 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2582 "%d\t%08X\t%d\t%u\t%u",
2583 prefix, 0, flags, 0, 0, 0,
2584 mask, 0, 0, 0);
19baf839 2585
79e5ad2c 2586 seq_pad(seq, '\n');
19baf839
RO
2587 }
2588
2589 return 0;
2590}
2591
f690808e 2592static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2593 .start = fib_route_seq_start,
2594 .next = fib_route_seq_next,
2595 .stop = fib_route_seq_stop,
cb7b593c 2596 .show = fib_route_seq_show,
19baf839
RO
2597};
2598
cb7b593c 2599static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2600{
1c340b2f 2601 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2602 sizeof(struct fib_route_iter));
19baf839
RO
2603}
2604
9a32144e 2605static const struct file_operations fib_route_fops = {
cb7b593c
SH
2606 .owner = THIS_MODULE,
2607 .open = fib_route_seq_open,
2608 .read = seq_read,
2609 .llseek = seq_lseek,
1c340b2f 2610 .release = seq_release_net,
19baf839
RO
2611};
2612
61a02653 2613int __net_init fib_proc_init(struct net *net)
19baf839 2614{
d4beaa66 2615 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2616 goto out1;
2617
d4beaa66
G
2618 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2619 &fib_triestat_fops))
cb7b593c
SH
2620 goto out2;
2621
d4beaa66 2622 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2623 goto out3;
2624
19baf839 2625 return 0;
cb7b593c
SH
2626
2627out3:
ece31ffd 2628 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2629out2:
ece31ffd 2630 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2631out1:
2632 return -ENOMEM;
19baf839
RO
2633}
2634
61a02653 2635void __net_exit fib_proc_exit(struct net *net)
19baf839 2636{
ece31ffd
G
2637 remove_proc_entry("fib_trie", net->proc_net);
2638 remove_proc_entry("fib_triestat", net->proc_net);
2639 remove_proc_entry("route", net->proc_net);
19baf839
RO
2640}
2641
2642#endif /* CONFIG_PROC_FS */
This page took 1.011025 seconds and 5 git commands to generate.