macb: Fix merge error.
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
88bae714
AD
92#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93#define IS_TNODE(n) ((n)->bits)
94#define IS_LEAF(n) (!(n)->bits)
2373ce1c 95
35c6edac 96struct key_vector {
64c9b6fb 97 t_key key;
64c9b6fb 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
adaf9816 101 union {
41b489fd 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 103 struct hlist_head leaf;
41b489fd 104 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 105 struct key_vector __rcu *tnode[0];
adaf9816 106 };
19baf839
RO
107};
108
dc35dbed 109struct tnode {
56ca2adf 110 struct rcu_head rcu;
6e22d174
AD
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 113 struct key_vector __rcu *parent;
dc35dbed 114 struct key_vector kv[1];
56ca2adf 115#define tn_bits kv[0].bits
dc35dbed
AD
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
88bae714 143 struct key_vector kv[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
88bae714 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
56ca2adf
AD
162static inline struct tnode *tn_info(struct key_vector *kv)
163{
164 return container_of(kv, struct tnode, kv[0]);
165}
166
64c9b6fb 167/* caller must hold RTNL */
f23e59fb 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 170
64c9b6fb 171/* caller must hold RCU read lock or RTNL */
f23e59fb 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 174
64c9b6fb 175/* wrapper for rcu_assign_pointer */
35c6edac 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 177{
adaf9816 178 if (n)
f23e59fb 179 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
180}
181
f23e59fb 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
183
184/* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 186 */
2e1ac88a 187static inline unsigned long child_length(const struct key_vector *tn)
06801916 188{
64c9b6fb 189 return (1ul << tn->bits) & ~(1ul);
06801916 190}
2373ce1c 191
88bae714
AD
192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
2e1ac88a
AD
194static inline unsigned long get_index(t_key key, struct key_vector *kv)
195{
196 unsigned long index = key ^ kv->key;
197
88bae714
AD
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
2e1ac88a
AD
201 return index >> kv->pos;
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
35c6edac 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 281#define TNODE_VMALLOC_MAX \
35c6edac 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
56ca2adf 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 287
56ca2adf 288 if (!n->tn_bits)
37fd30f2 289 kmem_cache_free(trie_leaf_kmem, n);
56ca2adf 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
37fd30f2
AD
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
56ca2adf 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 297
dc35dbed 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
35c6edac 315static inline void empty_child_inc(struct key_vector *n)
95f60ea3 316{
6e22d174 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
318}
319
35c6edac 320static inline void empty_child_dec(struct key_vector *n)
95f60ea3 321{
6e22d174 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
323}
324
35c6edac 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
dc35dbed
AD
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
2373ce1c
RO
343 return l;
344}
345
35c6edac 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 347{
dc35dbed 348 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 349 unsigned int shift = pos + bits;
dc35dbed 350 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
dc35dbed 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 356 sizeof(struct key_vector *) << bits);
dc35dbed
AD
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
6e22d174 362 tnode->full_children = 1;
dc35dbed 363 else
6e22d174 364 tnode->empty_children = 1ul << bits;
dc35dbed
AD
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
19baf839
RO
371 return tn;
372}
373
e9b44019 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
35c6edac 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 378{
e9b44019 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
380}
381
ff181ed8
AD
382/* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
35c6edac
AD
385static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
19baf839 387{
754baf8d 388 struct key_vector *chi = get_child(tn, i);
ff181ed8 389 int isfull, wasfull;
19baf839 390
2e1ac88a 391 BUG_ON(i >= child_length(tn));
0c7770c7 392
95f60ea3 393 /* update emptyChildren, overflow into fullChildren */
19baf839 394 if (n == NULL && chi != NULL)
95f60ea3
AD
395 empty_child_inc(tn);
396 if (n != NULL && chi == NULL)
397 empty_child_dec(tn);
c877efb2 398
19baf839 399 /* update fullChildren */
ff181ed8 400 wasfull = tnode_full(tn, chi);
19baf839 401 isfull = tnode_full(tn, n);
ff181ed8 402
c877efb2 403 if (wasfull && !isfull)
6e22d174 404 tn_info(tn)->full_children--;
c877efb2 405 else if (!wasfull && isfull)
6e22d174 406 tn_info(tn)->full_children++;
91b9a277 407
5405afd1
AD
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
41b489fd 411 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
412}
413
35c6edac 414static void update_children(struct key_vector *tn)
69fa57b1
AD
415{
416 unsigned long i;
417
418 /* update all of the child parent pointers */
2e1ac88a 419 for (i = child_length(tn); i;) {
754baf8d 420 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434}
435
88bae714
AD
436static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
836a0123 438{
88bae714
AD
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
836a0123 441 else
88bae714 442 put_child(tp, get_index(key, tp), n);
836a0123
AD
443}
444
35c6edac 445static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 446{
56ca2adf 447 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
448}
449
35c6edac
AD
450static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
fc86a93b 452{
56ca2adf
AD
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 455}
0a5c0475 456
35c6edac 457static void tnode_free(struct key_vector *tn)
fc86a93b 458{
56ca2adf 459 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
460
461 while (head) {
462 head = head->next;
41b489fd 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
464 node_free(tn);
465
56ca2adf 466 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
0a5c0475 472 }
0a5c0475
ED
473}
474
88bae714
AD
475static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
69fa57b1 478{
35c6edac 479 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
88bae714 484 put_child_root(tp, tn->key, tn);
69fa57b1
AD
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
2e1ac88a 493 for (i = child_length(tn); i;) {
754baf8d 494 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
88bae714 498 tn = resize(t, inode);
69fa57b1 499 }
8d8e810c 500
88bae714 501 return tp;
69fa57b1
AD
502}
503
88bae714
AD
504static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
19baf839 506{
35c6edac 507 struct key_vector *tn;
69fa57b1 508 unsigned long i;
e9b44019 509 t_key m;
19baf839 510
0c7770c7 511 pr_debug("In inflate\n");
19baf839 512
e9b44019 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 514 if (!tn)
8d8e810c 515 goto notnode;
2f36895a 516
69fa57b1
AD
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
12c081a5
AD
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
2f36895a 524 */
2e1ac88a 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 526 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 527 struct key_vector *node0, *node1;
69fa57b1 528 unsigned long j, k;
c877efb2 529
19baf839 530 /* An empty child */
adaf9816 531 if (inode == NULL)
19baf839
RO
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
adaf9816 535 if (!tnode_full(oldtnode, inode)) {
e9b44019 536 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
537 continue;
538 }
539
69fa57b1
AD
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
19baf839 543 /* An internal node with two children */
19baf839 544 if (inode->bits == 1) {
754baf8d
AD
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 547 continue;
19baf839
RO
548 }
549
91b9a277 550 /* We will replace this node 'inode' with two new
12c081a5 551 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
12c081a5 557 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
12c081a5
AD
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
91b9a277 563 */
12c081a5
AD
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
69fa57b1 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 568
69fa57b1 569 tnode_free_append(tn, node1);
12c081a5
AD
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
2e1ac88a 575 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
12c081a5 580 }
19baf839 581
12c081a5
AD
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
2f36895a 585
12c081a5
AD
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
2f36895a 590
69fa57b1 591 /* setup the parent pointers into and out of this node */
8d8e810c 592 return replace(t, oldtnode, tn);
2f80b3c8 593nomem:
fc86a93b
AD
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
8d8e810c
AD
596notnode:
597 return NULL;
19baf839
RO
598}
599
88bae714
AD
600static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
19baf839 602{
35c6edac 603 struct key_vector *tn;
12c081a5 604 unsigned long i;
19baf839 605
0c7770c7 606 pr_debug("In halve\n");
c877efb2 607
e9b44019 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 609 if (!tn)
8d8e810c 610 goto notnode;
2f36895a 611
69fa57b1
AD
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
12c081a5
AD
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
2f36895a 619 */
2e1ac88a 620 for (i = child_length(oldtnode); i;) {
754baf8d
AD
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 623 struct key_vector *inode;
2f36895a 624
12c081a5
AD
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
c877efb2 630
2f36895a 631 /* Two nonempty children */
12c081a5 632 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
633 if (!inode)
634 goto nomem;
12c081a5 635 tnode_free_append(tn, inode);
2f36895a 636
12c081a5
AD
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
2f36895a 644 }
19baf839 645
69fa57b1 646 /* setup the parent pointers into and out of this node */
8d8e810c
AD
647 return replace(t, oldtnode, tn);
648nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651notnode:
652 return NULL;
19baf839
RO
653}
654
88bae714
AD
655static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
88bae714 667 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
88bae714
AD
672
673 return tp;
95f60ea3
AD
674}
675
35c6edac 676static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
677{
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
2e1ac88a 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 687 struct key_vector *n = get_child(tn, i);
5405afd1
AD
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709}
710
f05a4819
AD
711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
2e1ac88a 719 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
2e1ac88a 724 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
2e1ac88a 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
735 * tn->full_children;
736 *
2e1ac88a 737 * new_child_length = child_length(tn) * 2;
f05a4819
AD
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 754 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
2e1ac88a 758 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 759 * tn->full_children) >=
2e1ac88a 760 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
761 *
762 * shorten again:
2e1ac88a 763 * 50 * (tn->full_children + child_length(tn) -
f05a4819 764 * tn->empty_children) >= inflate_threshold *
2e1ac88a 765 * child_length(tn)
f05a4819
AD
766 *
767 */
35c6edac 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 769{
2e1ac88a 770 unsigned long used = child_length(tn);
f05a4819
AD
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
88bae714 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
f05a4819 777
95f60ea3
AD
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
781}
782
35c6edac 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 784{
2e1ac88a 785 unsigned long used = child_length(tn);
f05a4819
AD
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
88bae714 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 790 used -= tn_info(tn)->empty_children;
f05a4819 791
95f60ea3
AD
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795}
796
35c6edac 797static inline bool should_collapse(struct key_vector *tn)
95f60ea3 798{
2e1ac88a 799 unsigned long used = child_length(tn);
95f60ea3 800
6e22d174 801 used -= tn_info(tn)->empty_children;
95f60ea3
AD
802
803 /* account for bits == KEYLENGTH case */
6e22d174 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
f05a4819
AD
809}
810
cf3637bb 811#define MAX_WORK 10
88bae714 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 813{
8d8e810c
AD
814#ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816#endif
35c6edac 817 struct key_vector *tp = node_parent(tn);
88bae714 818 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
88bae714 828 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
a80e89d4 833 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
834 tp = inflate(t, tn);
835 if (!tp) {
cf3637bb 836#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 837 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
838#endif
839 break;
840 }
ff181ed8 841
a80e89d4 842 max_work--;
88bae714 843 tn = get_child(tp, cindex);
cf3637bb
AD
844 }
845
846 /* Return if at least one inflate is run */
847 if (max_work != MAX_WORK)
88bae714 848 return node_parent(tn);
cf3637bb 849
f05a4819 850 /* Halve as long as the number of empty children in this
cf3637bb
AD
851 * node is above threshold.
852 */
a80e89d4 853 while (should_halve(tp, tn) && max_work) {
88bae714
AD
854 tp = halve(t, tn);
855 if (!tp) {
cf3637bb 856#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 857 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
858#endif
859 break;
860 }
cf3637bb 861
a80e89d4 862 max_work--;
88bae714 863 tn = get_child(tp, cindex);
ff181ed8 864 }
cf3637bb
AD
865
866 /* Only one child remains */
88bae714
AD
867 if (should_collapse(tn))
868 return collapse(t, tn);
869
870 /* update parent in case inflate or halve failed */
871 tp = node_parent(tn);
5405afd1
AD
872
873 /* Return if at least one deflate was run */
874 if (max_work != MAX_WORK)
88bae714 875 return tp;
5405afd1
AD
876
877 /* push the suffix length to the parent node */
878 if (tn->slen > tn->pos) {
879 unsigned char slen = update_suffix(tn);
880
88bae714 881 if (slen > tp->slen)
5405afd1 882 tp->slen = slen;
cf3637bb 883 }
8d8e810c 884
88bae714 885 return tp;
cf3637bb
AD
886}
887
35c6edac 888static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 889{
88bae714 890 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
891 if (update_suffix(tp) > l->slen)
892 break;
893 tp = node_parent(tp);
894 }
895}
896
35c6edac 897static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 898{
5405afd1
AD
899 /* if this is a new leaf then tn will be NULL and we can sort
900 * out parent suffix lengths as a part of trie_rebalance
901 */
88bae714 902 while (tn->slen < l->slen) {
5405afd1
AD
903 tn->slen = l->slen;
904 tn = node_parent(tn);
905 }
906}
907
2373ce1c 908/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
909static struct key_vector *fib_find_node(struct trie *t,
910 struct key_vector **tp, u32 key)
19baf839 911{
88bae714
AD
912 struct key_vector *pn, *n = t->kv;
913 unsigned long index = 0;
914
915 do {
916 pn = n;
917 n = get_child_rcu(n, index);
918
919 if (!n)
920 break;
939afb06 921
88bae714 922 index = get_cindex(key, n);
939afb06
AD
923
924 /* This bit of code is a bit tricky but it combines multiple
925 * checks into a single check. The prefix consists of the
926 * prefix plus zeros for the bits in the cindex. The index
927 * is the difference between the key and this value. From
928 * this we can actually derive several pieces of data.
d4a975e8 929 * if (index >= (1ul << bits))
939afb06 930 * we have a mismatch in skip bits and failed
b3832117
AD
931 * else
932 * we know the value is cindex
d4a975e8
AD
933 *
934 * This check is safe even if bits == KEYLENGTH due to the
935 * fact that we can only allocate a node with 32 bits if a
936 * long is greater than 32 bits.
939afb06 937 */
d4a975e8
AD
938 if (index >= (1ul << n->bits)) {
939 n = NULL;
940 break;
941 }
939afb06 942
88bae714
AD
943 /* keep searching until we find a perfect match leaf or NULL */
944 } while (IS_TNODE(n));
91b9a277 945
35c6edac 946 *tp = pn;
d4a975e8 947
939afb06 948 return n;
19baf839
RO
949}
950
02525368
AD
951/* Return the first fib alias matching TOS with
952 * priority less than or equal to PRIO.
953 */
79e5ad2c
AD
954static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
955 u8 tos, u32 prio)
02525368
AD
956{
957 struct fib_alias *fa;
958
959 if (!fah)
960 return NULL;
961
56315f9e 962 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
963 if (fa->fa_slen < slen)
964 continue;
965 if (fa->fa_slen != slen)
966 break;
02525368
AD
967 if (fa->fa_tos > tos)
968 continue;
969 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
970 return fa;
971 }
972
973 return NULL;
974}
975
35c6edac 976static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 977{
88bae714
AD
978 while (!IS_TRIE(tn))
979 tn = resize(t, tn);
19baf839
RO
980}
981
35c6edac 982static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 983 struct fib_alias *new, t_key key)
19baf839 984{
35c6edac 985 struct key_vector *n, *l;
19baf839 986
d5d6487c 987 l = leaf_new(key, new);
79e5ad2c 988 if (!l)
8d8e810c 989 goto noleaf;
d5d6487c
AD
990
991 /* retrieve child from parent node */
88bae714 992 n = get_child(tp, get_index(key, tp));
19baf839 993
836a0123
AD
994 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
995 *
996 * Add a new tnode here
997 * first tnode need some special handling
998 * leaves us in position for handling as case 3
999 */
1000 if (n) {
35c6edac 1001 struct key_vector *tn;
19baf839 1002
e9b44019 1003 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1004 if (!tn)
1005 goto notnode;
91b9a277 1006
836a0123
AD
1007 /* initialize routes out of node */
1008 NODE_INIT_PARENT(tn, tp);
1009 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1010
836a0123 1011 /* start adding routes into the node */
88bae714 1012 put_child_root(tp, key, tn);
836a0123 1013 node_set_parent(n, tn);
e962f302 1014
836a0123 1015 /* parent now has a NULL spot where the leaf can go */
e962f302 1016 tp = tn;
19baf839 1017 }
91b9a277 1018
836a0123 1019 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1020 NODE_INIT_PARENT(l, tp);
88bae714 1021 put_child_root(tp, key, l);
d5d6487c
AD
1022 trie_rebalance(t, tp);
1023
1024 return 0;
8d8e810c
AD
1025notnode:
1026 node_free(l);
1027noleaf:
1028 return -ENOMEM;
d5d6487c
AD
1029}
1030
35c6edac
AD
1031static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1032 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1033 struct fib_alias *fa, t_key key)
1034{
1035 if (!l)
1036 return fib_insert_node(t, tp, new, key);
1037
1038 if (fa) {
1039 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1040 } else {
d5d6487c
AD
1041 struct fib_alias *last;
1042
1043 hlist_for_each_entry(last, &l->leaf, fa_list) {
1044 if (new->fa_slen < last->fa_slen)
1045 break;
1046 fa = last;
1047 }
1048
1049 if (fa)
1050 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1051 else
1052 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1053 }
2373ce1c 1054
d5d6487c
AD
1055 /* if we added to the tail node then we need to update slen */
1056 if (l->slen < new->fa_slen) {
1057 l->slen = new->fa_slen;
1058 leaf_push_suffix(tp, l);
1059 }
1060
1061 return 0;
19baf839
RO
1062}
1063
d5d6487c 1064/* Caller must hold RTNL. */
16c6cf8b 1065int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1066{
d4a975e8 1067 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1068 struct fib_alias *fa, *new_fa;
35c6edac 1069 struct key_vector *l, *tp;
19baf839 1070 struct fib_info *fi;
79e5ad2c
AD
1071 u8 plen = cfg->fc_dst_len;
1072 u8 slen = KEYLENGTH - plen;
4e902c57 1073 u8 tos = cfg->fc_tos;
d4a975e8 1074 u32 key;
19baf839 1075 int err;
19baf839 1076
5786ec60 1077 if (plen > KEYLENGTH)
19baf839
RO
1078 return -EINVAL;
1079
4e902c57 1080 key = ntohl(cfg->fc_dst);
19baf839 1081
2dfe55b4 1082 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1083
d4a975e8 1084 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1085 return -EINVAL;
1086
4e902c57
TG
1087 fi = fib_create_info(cfg);
1088 if (IS_ERR(fi)) {
1089 err = PTR_ERR(fi);
19baf839 1090 goto err;
4e902c57 1091 }
19baf839 1092
d4a975e8 1093 l = fib_find_node(t, &tp, key);
79e5ad2c 1094 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1095
1096 /* Now fa, if non-NULL, points to the first fib alias
1097 * with the same keys [prefix,tos,priority], if such key already
1098 * exists or to the node before which we will insert new one.
1099 *
1100 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1101 * insert to the tail of the section matching the suffix length
1102 * of the new alias.
19baf839
RO
1103 */
1104
936f6f8e
JA
1105 if (fa && fa->fa_tos == tos &&
1106 fa->fa_info->fib_priority == fi->fib_priority) {
1107 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1108
1109 err = -EEXIST;
4e902c57 1110 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1111 goto out;
1112
936f6f8e
JA
1113 /* We have 2 goals:
1114 * 1. Find exact match for type, scope, fib_info to avoid
1115 * duplicate routes
1116 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1117 */
1118 fa_match = NULL;
1119 fa_first = fa;
56315f9e 1120 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1121 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1122 break;
1123 if (fa->fa_info->fib_priority != fi->fib_priority)
1124 break;
1125 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1126 fa->fa_info == fi) {
1127 fa_match = fa;
1128 break;
1129 }
1130 }
1131
4e902c57 1132 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1133 struct fib_info *fi_drop;
1134 u8 state;
1135
936f6f8e
JA
1136 fa = fa_first;
1137 if (fa_match) {
1138 if (fa == fa_match)
1139 err = 0;
6725033f 1140 goto out;
936f6f8e 1141 }
2373ce1c 1142 err = -ENOBUFS;
e94b1766 1143 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1144 if (new_fa == NULL)
1145 goto out;
19baf839
RO
1146
1147 fi_drop = fa->fa_info;
2373ce1c
RO
1148 new_fa->fa_tos = fa->fa_tos;
1149 new_fa->fa_info = fi;
4e902c57 1150 new_fa->fa_type = cfg->fc_type;
19baf839 1151 state = fa->fa_state;
936f6f8e 1152 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1153 new_fa->fa_slen = fa->fa_slen;
19baf839 1154
8e05fd71
SF
1155 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1156 new_fa->fa_tos,
1157 cfg->fc_type,
f8f21471 1158 cfg->fc_nlflags,
8e05fd71
SF
1159 tb->tb_id);
1160 if (err) {
1161 netdev_switch_fib_ipv4_abort(fi);
1162 kmem_cache_free(fn_alias_kmem, new_fa);
1163 goto out;
1164 }
1165
56315f9e 1166 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1167
2373ce1c 1168 alias_free_mem_rcu(fa);
19baf839
RO
1169
1170 fib_release_info(fi_drop);
1171 if (state & FA_S_ACCESSED)
4ccfe6d4 1172 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1173 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1174 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1175
91b9a277 1176 goto succeeded;
19baf839
RO
1177 }
1178 /* Error if we find a perfect match which
1179 * uses the same scope, type, and nexthop
1180 * information.
1181 */
936f6f8e
JA
1182 if (fa_match)
1183 goto out;
a07f5f50 1184
4e902c57 1185 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1186 fa = fa_first;
19baf839
RO
1187 }
1188 err = -ENOENT;
4e902c57 1189 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1190 goto out;
1191
1192 err = -ENOBUFS;
e94b1766 1193 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1194 if (new_fa == NULL)
1195 goto out;
1196
1197 new_fa->fa_info = fi;
1198 new_fa->fa_tos = tos;
4e902c57 1199 new_fa->fa_type = cfg->fc_type;
19baf839 1200 new_fa->fa_state = 0;
79e5ad2c 1201 new_fa->fa_slen = slen;
19baf839 1202
8e05fd71
SF
1203 /* (Optionally) offload fib entry to switch hardware. */
1204 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
f8f21471
SF
1205 cfg->fc_type,
1206 cfg->fc_nlflags,
1207 tb->tb_id);
8e05fd71
SF
1208 if (err) {
1209 netdev_switch_fib_ipv4_abort(fi);
1210 goto out_free_new_fa;
1211 }
1212
9b6ebad5 1213 /* Insert new entry to the list. */
d5d6487c
AD
1214 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1215 if (err)
8e05fd71 1216 goto out_sw_fib_del;
19baf839 1217
21d8c49e
DM
1218 if (!plen)
1219 tb->tb_num_default++;
1220
4ccfe6d4 1221 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1223 &cfg->fc_nlinfo, 0);
19baf839
RO
1224succeeded:
1225 return 0;
f835e471 1226
8e05fd71
SF
1227out_sw_fib_del:
1228 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1229out_free_new_fa:
1230 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1231out:
1232 fib_release_info(fi);
91b9a277 1233err:
19baf839
RO
1234 return err;
1235}
1236
35c6edac 1237static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1238{
1239 t_key prefix = n->key;
1240
1241 return (key ^ prefix) & (prefix | -prefix);
1242}
1243
345e9b54 1244/* should be called with rcu_read_lock */
22bd5b9b 1245int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1246 struct fib_result *res, int fib_flags)
19baf839 1247{
9f9e636d 1248 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1249#ifdef CONFIG_IP_FIB_TRIE_STATS
1250 struct trie_use_stats __percpu *stats = t->stats;
1251#endif
9f9e636d 1252 const t_key key = ntohl(flp->daddr);
35c6edac 1253 struct key_vector *n, *pn;
79e5ad2c 1254 struct fib_alias *fa;
71e8b67d 1255 unsigned long index;
9f9e636d 1256 t_key cindex;
91b9a277 1257
88bae714
AD
1258 pn = t->kv;
1259 cindex = 0;
1260
1261 n = get_child_rcu(pn, cindex);
c877efb2 1262 if (!n)
345e9b54 1263 return -EAGAIN;
19baf839
RO
1264
1265#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1266 this_cpu_inc(stats->gets);
19baf839
RO
1267#endif
1268
9f9e636d
AD
1269 /* Step 1: Travel to the longest prefix match in the trie */
1270 for (;;) {
88bae714 1271 index = get_cindex(key, n);
9f9e636d
AD
1272
1273 /* This bit of code is a bit tricky but it combines multiple
1274 * checks into a single check. The prefix consists of the
1275 * prefix plus zeros for the "bits" in the prefix. The index
1276 * is the difference between the key and this value. From
1277 * this we can actually derive several pieces of data.
71e8b67d 1278 * if (index >= (1ul << bits))
9f9e636d 1279 * we have a mismatch in skip bits and failed
b3832117
AD
1280 * else
1281 * we know the value is cindex
71e8b67d
AD
1282 *
1283 * This check is safe even if bits == KEYLENGTH due to the
1284 * fact that we can only allocate a node with 32 bits if a
1285 * long is greater than 32 bits.
9f9e636d 1286 */
71e8b67d 1287 if (index >= (1ul << n->bits))
9f9e636d 1288 break;
19baf839 1289
9f9e636d
AD
1290 /* we have found a leaf. Prefixes have already been compared */
1291 if (IS_LEAF(n))
a07f5f50 1292 goto found;
19baf839 1293
9f9e636d
AD
1294 /* only record pn and cindex if we are going to be chopping
1295 * bits later. Otherwise we are just wasting cycles.
91b9a277 1296 */
5405afd1 1297 if (n->slen > n->pos) {
9f9e636d
AD
1298 pn = n;
1299 cindex = index;
91b9a277 1300 }
19baf839 1301
754baf8d 1302 n = get_child_rcu(n, index);
9f9e636d
AD
1303 if (unlikely(!n))
1304 goto backtrace;
1305 }
19baf839 1306
9f9e636d
AD
1307 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1308 for (;;) {
1309 /* record the pointer where our next node pointer is stored */
35c6edac 1310 struct key_vector __rcu **cptr = n->tnode;
19baf839 1311
9f9e636d
AD
1312 /* This test verifies that none of the bits that differ
1313 * between the key and the prefix exist in the region of
1314 * the lsb and higher in the prefix.
91b9a277 1315 */
5405afd1 1316 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1317 goto backtrace;
91b9a277 1318
9f9e636d
AD
1319 /* exit out and process leaf */
1320 if (unlikely(IS_LEAF(n)))
1321 break;
91b9a277 1322
9f9e636d
AD
1323 /* Don't bother recording parent info. Since we are in
1324 * prefix match mode we will have to come back to wherever
1325 * we started this traversal anyway
91b9a277 1326 */
91b9a277 1327
9f9e636d 1328 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1329backtrace:
19baf839 1330#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1331 if (!n)
1332 this_cpu_inc(stats->null_node_hit);
19baf839 1333#endif
9f9e636d
AD
1334 /* If we are at cindex 0 there are no more bits for
1335 * us to strip at this level so we must ascend back
1336 * up one level to see if there are any more bits to
1337 * be stripped there.
1338 */
1339 while (!cindex) {
1340 t_key pkey = pn->key;
1341
88bae714
AD
1342 /* If we don't have a parent then there is
1343 * nothing for us to do as we do not have any
1344 * further nodes to parse.
1345 */
1346 if (IS_TRIE(pn))
345e9b54 1347 return -EAGAIN;
9f9e636d
AD
1348#ifdef CONFIG_IP_FIB_TRIE_STATS
1349 this_cpu_inc(stats->backtrack);
1350#endif
1351 /* Get Child's index */
88bae714 1352 pn = node_parent_rcu(pn);
9f9e636d
AD
1353 cindex = get_index(pkey, pn);
1354 }
1355
1356 /* strip the least significant bit from the cindex */
1357 cindex &= cindex - 1;
1358
1359 /* grab pointer for next child node */
41b489fd 1360 cptr = &pn->tnode[cindex];
c877efb2 1361 }
19baf839 1362 }
9f9e636d 1363
19baf839 1364found:
71e8b67d
AD
1365 /* this line carries forward the xor from earlier in the function */
1366 index = key ^ n->key;
1367
9f9e636d 1368 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1369 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1370 struct fib_info *fi = fa->fa_info;
1371 int nhsel, err;
345e9b54 1372
71e8b67d 1373 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1374 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1375 continue;
79e5ad2c
AD
1376 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1377 continue;
1378 if (fi->fib_dead)
1379 continue;
1380 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1381 continue;
1382 fib_alias_accessed(fa);
1383 err = fib_props[fa->fa_type].error;
1384 if (unlikely(err < 0)) {
345e9b54 1385#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1386 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1387#endif
79e5ad2c
AD
1388 return err;
1389 }
1390 if (fi->fib_flags & RTNH_F_DEAD)
1391 continue;
1392 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1393 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1394
1395 if (nh->nh_flags & RTNH_F_DEAD)
1396 continue;
1397 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1398 continue;
79e5ad2c
AD
1399
1400 if (!(fib_flags & FIB_LOOKUP_NOREF))
1401 atomic_inc(&fi->fib_clntref);
1402
1403 res->prefixlen = KEYLENGTH - fa->fa_slen;
1404 res->nh_sel = nhsel;
1405 res->type = fa->fa_type;
1406 res->scope = fi->fib_scope;
1407 res->fi = fi;
1408 res->table = tb;
1409 res->fa_head = &n->leaf;
345e9b54 1410#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1411 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1412#endif
79e5ad2c 1413 return err;
345e9b54 1414 }
9b6ebad5 1415 }
345e9b54 1416#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1417 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1418#endif
345e9b54 1419 goto backtrace;
19baf839 1420}
6fc01438 1421EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1422
35c6edac
AD
1423static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1424 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1425{
1426 /* record the location of the previous list_info entry */
1427 struct hlist_node **pprev = old->fa_list.pprev;
1428 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1429
1430 /* remove the fib_alias from the list */
1431 hlist_del_rcu(&old->fa_list);
1432
1433 /* if we emptied the list this leaf will be freed and we can sort
1434 * out parent suffix lengths as a part of trie_rebalance
1435 */
1436 if (hlist_empty(&l->leaf)) {
88bae714 1437 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1438 node_free(l);
1439 trie_rebalance(t, tp);
1440 return;
1441 }
1442
1443 /* only access fa if it is pointing at the last valid hlist_node */
1444 if (*pprev)
1445 return;
1446
1447 /* update the trie with the latest suffix length */
1448 l->slen = fa->fa_slen;
1449 leaf_pull_suffix(tp, l);
1450}
1451
1452/* Caller must hold RTNL. */
16c6cf8b 1453int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1454{
1455 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1456 struct fib_alias *fa, *fa_to_delete;
35c6edac 1457 struct key_vector *l, *tp;
79e5ad2c 1458 u8 plen = cfg->fc_dst_len;
79e5ad2c 1459 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1460 u8 tos = cfg->fc_tos;
1461 u32 key;
91b9a277 1462
79e5ad2c 1463 if (plen > KEYLENGTH)
19baf839
RO
1464 return -EINVAL;
1465
4e902c57 1466 key = ntohl(cfg->fc_dst);
19baf839 1467
d4a975e8 1468 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1469 return -EINVAL;
1470
d4a975e8 1471 l = fib_find_node(t, &tp, key);
c877efb2 1472 if (!l)
19baf839
RO
1473 return -ESRCH;
1474
79e5ad2c 1475 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1476 if (!fa)
1477 return -ESRCH;
1478
0c7770c7 1479 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1480
1481 fa_to_delete = NULL;
56315f9e 1482 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1483 struct fib_info *fi = fa->fa_info;
1484
79e5ad2c 1485 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1486 break;
1487
4e902c57
TG
1488 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1489 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1490 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1491 (!cfg->fc_prefsrc ||
1492 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1493 (!cfg->fc_protocol ||
1494 fi->fib_protocol == cfg->fc_protocol) &&
1495 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1496 fa_to_delete = fa;
1497 break;
1498 }
1499 }
1500
91b9a277
OJ
1501 if (!fa_to_delete)
1502 return -ESRCH;
19baf839 1503
8e05fd71
SF
1504 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1505 cfg->fc_type, tb->tb_id);
1506
d5d6487c 1507 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1508 &cfg->fc_nlinfo, 0);
91b9a277 1509
21d8c49e
DM
1510 if (!plen)
1511 tb->tb_num_default--;
1512
d5d6487c 1513 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1514
d5d6487c 1515 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1516 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1517
d5d6487c
AD
1518 fib_release_info(fa_to_delete->fa_info);
1519 alias_free_mem_rcu(fa_to_delete);
91b9a277 1520 return 0;
19baf839
RO
1521}
1522
8be33e95 1523/* Scan for the next leaf starting at the provided key value */
35c6edac 1524static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1525{
35c6edac 1526 struct key_vector *pn, *n = *tn;
8be33e95 1527 unsigned long cindex;
82cfbb00 1528
8be33e95 1529 /* this loop is meant to try and find the key in the trie */
88bae714 1530 do {
8be33e95
AD
1531 /* record parent and next child index */
1532 pn = n;
3ec320dd 1533 cindex = key ? get_index(key, pn) : 0;
88bae714
AD
1534
1535 if (cindex >> pn->bits)
1536 break;
82cfbb00 1537
8be33e95 1538 /* descend into the next child */
754baf8d 1539 n = get_child_rcu(pn, cindex++);
88bae714
AD
1540 if (!n)
1541 break;
1542
1543 /* guarantee forward progress on the keys */
1544 if (IS_LEAF(n) && (n->key >= key))
1545 goto found;
1546 } while (IS_TNODE(n));
82cfbb00 1547
8be33e95 1548 /* this loop will search for the next leaf with a greater key */
88bae714 1549 while (!IS_TRIE(pn)) {
8be33e95
AD
1550 /* if we exhausted the parent node we will need to climb */
1551 if (cindex >= (1ul << pn->bits)) {
1552 t_key pkey = pn->key;
82cfbb00 1553
8be33e95 1554 pn = node_parent_rcu(pn);
8be33e95
AD
1555 cindex = get_index(pkey, pn) + 1;
1556 continue;
1557 }
82cfbb00 1558
8be33e95 1559 /* grab the next available node */
754baf8d 1560 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1561 if (!n)
1562 continue;
19baf839 1563
8be33e95
AD
1564 /* no need to compare keys since we bumped the index */
1565 if (IS_LEAF(n))
1566 goto found;
71d67e66 1567
8be33e95
AD
1568 /* Rescan start scanning in new node */
1569 pn = n;
1570 cindex = 0;
1571 }
ec28cf73 1572
8be33e95
AD
1573 *tn = pn;
1574 return NULL; /* Root of trie */
1575found:
1576 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1577 *tn = pn;
8be33e95 1578 return n;
71d67e66
SH
1579}
1580
104616e7
SF
1581/* Caller must hold RTNL */
1582void fib_table_flush_external(struct fib_table *tb)
1583{
1584 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1585 struct key_vector *pn = t->kv;
1586 unsigned long cindex = 1;
1587 struct hlist_node *tmp;
104616e7 1588 struct fib_alias *fa;
104616e7 1589
88bae714
AD
1590 /* walk trie in reverse order */
1591 for (;;) {
1592 struct key_vector *n;
104616e7 1593
88bae714
AD
1594 if (!(cindex--)) {
1595 t_key pkey = pn->key;
104616e7 1596
88bae714
AD
1597 /* cannot resize the trie vector */
1598 if (IS_TRIE(pn))
1599 break;
104616e7 1600
88bae714
AD
1601 /* no need to resize like in flush below */
1602 pn = node_parent(pn);
1603 cindex = get_index(pkey, pn);
104616e7 1604
88bae714
AD
1605 continue;
1606 }
104616e7 1607
88bae714
AD
1608 /* grab the next available node */
1609 n = get_child(pn, cindex);
1610 if (!n)
1611 continue;
104616e7 1612
88bae714
AD
1613 if (IS_TNODE(n)) {
1614 /* record pn and cindex for leaf walking */
1615 pn = n;
1616 cindex = 1ul << n->bits;
104616e7 1617
72be7260 1618 continue;
88bae714 1619 }
72be7260 1620
88bae714
AD
1621 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1622 struct fib_info *fi = fa->fa_info;
1623
1624 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1625 continue;
104616e7 1626
88bae714
AD
1627 netdev_switch_fib_ipv4_del(n->key,
1628 KEYLENGTH - fa->fa_slen,
1629 fi, fa->fa_tos,
1630 fa->fa_type, tb->tb_id);
1631 }
1632 }
104616e7
SF
1633}
1634
8be33e95 1635/* Caller must hold RTNL. */
16c6cf8b 1636int fib_table_flush(struct fib_table *tb)
19baf839 1637{
7289e6dd 1638 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1639 struct key_vector *pn = t->kv;
1640 unsigned long cindex = 1;
7289e6dd
AD
1641 struct hlist_node *tmp;
1642 struct fib_alias *fa;
82cfbb00 1643 int found = 0;
19baf839 1644
88bae714
AD
1645 /* walk trie in reverse order */
1646 for (;;) {
1647 unsigned char slen = 0;
1648 struct key_vector *n;
19baf839 1649
88bae714
AD
1650 if (!(cindex--)) {
1651 t_key pkey = pn->key;
7289e6dd 1652
88bae714
AD
1653 /* cannot resize the trie vector */
1654 if (IS_TRIE(pn))
1655 break;
7289e6dd 1656
88bae714
AD
1657 /* resize completed node */
1658 pn = resize(t, pn);
1659 cindex = get_index(pkey, pn);
7289e6dd 1660
88bae714
AD
1661 continue;
1662 }
7289e6dd 1663
88bae714
AD
1664 /* grab the next available node */
1665 n = get_child(pn, cindex);
1666 if (!n)
1667 continue;
7289e6dd 1668
88bae714
AD
1669 if (IS_TNODE(n)) {
1670 /* record pn and cindex for leaf walking */
1671 pn = n;
1672 cindex = 1ul << n->bits;
7289e6dd 1673
88bae714
AD
1674 continue;
1675 }
7289e6dd 1676
88bae714
AD
1677 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1678 struct fib_info *fi = fa->fa_info;
7289e6dd 1679
88bae714
AD
1680 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1681 slen = fa->fa_slen;
1682 continue;
1683 }
7289e6dd 1684
8e05fd71
SF
1685 netdev_switch_fib_ipv4_del(n->key,
1686 KEYLENGTH - fa->fa_slen,
1687 fi, fa->fa_tos,
1688 fa->fa_type, tb->tb_id);
7289e6dd
AD
1689 hlist_del_rcu(&fa->fa_list);
1690 fib_release_info(fa->fa_info);
1691 alias_free_mem_rcu(fa);
1692 found++;
64c62723
AD
1693 }
1694
88bae714
AD
1695 /* update leaf slen */
1696 n->slen = slen;
7289e6dd 1697
88bae714
AD
1698 if (hlist_empty(&n->leaf)) {
1699 put_child_root(pn, n->key, NULL);
1700 node_free(n);
1701 } else {
1702 leaf_pull_suffix(pn, n);
1703 }
64c62723 1704 }
19baf839 1705
0c7770c7 1706 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1707 return found;
1708}
1709
a7e53531 1710static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1711{
a7e53531 1712 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1713#ifdef CONFIG_IP_FIB_TRIE_STATS
1714 struct trie *t = (struct trie *)tb->tb_data;
1715
1716 free_percpu(t->stats);
1717#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1718 kfree(tb);
1719}
1720
a7e53531
AD
1721void fib_free_table(struct fib_table *tb)
1722{
1723 call_rcu(&tb->rcu, __trie_free_rcu);
1724}
1725
35c6edac 1726static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1727 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1728{
79e5ad2c 1729 __be32 xkey = htonl(l->key);
19baf839 1730 struct fib_alias *fa;
79e5ad2c 1731 int i, s_i;
19baf839 1732
79e5ad2c 1733 s_i = cb->args[4];
19baf839
RO
1734 i = 0;
1735
2373ce1c 1736 /* rcu_read_lock is hold by caller */
79e5ad2c 1737 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1738 if (i < s_i) {
1739 i++;
1740 continue;
1741 }
19baf839 1742
15e47304 1743 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1744 cb->nlh->nlmsg_seq,
1745 RTM_NEWROUTE,
1746 tb->tb_id,
1747 fa->fa_type,
be403ea1 1748 xkey,
9b6ebad5 1749 KEYLENGTH - fa->fa_slen,
19baf839 1750 fa->fa_tos,
64347f78 1751 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1752 cb->args[4] = i;
19baf839
RO
1753 return -1;
1754 }
a88ee229 1755 i++;
19baf839 1756 }
a88ee229 1757
71d67e66 1758 cb->args[4] = i;
19baf839
RO
1759 return skb->len;
1760}
1761
a7e53531 1762/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1763int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1764 struct netlink_callback *cb)
19baf839 1765{
8be33e95 1766 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1767 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1768 /* Dump starting at last key.
1769 * Note: 0.0.0.0/0 (ie default) is first key.
1770 */
8be33e95
AD
1771 int count = cb->args[2];
1772 t_key key = cb->args[3];
a88ee229 1773
8be33e95 1774 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1775 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1776 cb->args[3] = key;
1777 cb->args[2] = count;
a88ee229 1778 return -1;
19baf839 1779 }
d5ce8a0e 1780
71d67e66 1781 ++count;
8be33e95
AD
1782 key = l->key + 1;
1783
71d67e66
SH
1784 memset(&cb->args[4], 0,
1785 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1786
1787 /* stop loop if key wrapped back to 0 */
1788 if (key < l->key)
1789 break;
19baf839 1790 }
8be33e95 1791
8be33e95
AD
1792 cb->args[3] = key;
1793 cb->args[2] = count;
1794
19baf839 1795 return skb->len;
19baf839
RO
1796}
1797
5348ba85 1798void __init fib_trie_init(void)
7f9b8052 1799{
a07f5f50
SH
1800 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1801 sizeof(struct fib_alias),
bc3c8c1e
SH
1802 0, SLAB_PANIC, NULL);
1803
1804 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1805 LEAF_SIZE,
bc3c8c1e 1806 0, SLAB_PANIC, NULL);
7f9b8052 1807}
19baf839 1808
5348ba85 1809struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1810{
1811 struct fib_table *tb;
1812 struct trie *t;
1813
88bae714 1814 tb = kzalloc(sizeof(*tb) + sizeof(struct trie), GFP_KERNEL);
19baf839
RO
1815 if (tb == NULL)
1816 return NULL;
1817
1818 tb->tb_id = id;
971b893e 1819 tb->tb_default = -1;
21d8c49e 1820 tb->tb_num_default = 0;
19baf839
RO
1821
1822 t = (struct trie *) tb->tb_data;
88bae714
AD
1823 t->kv[0].pos = KEYLENGTH;
1824 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1825#ifdef CONFIG_IP_FIB_TRIE_STATS
1826 t->stats = alloc_percpu(struct trie_use_stats);
1827 if (!t->stats) {
1828 kfree(tb);
1829 tb = NULL;
1830 }
1831#endif
19baf839 1832
19baf839
RO
1833 return tb;
1834}
1835
cb7b593c
SH
1836#ifdef CONFIG_PROC_FS
1837/* Depth first Trie walk iterator */
1838struct fib_trie_iter {
1c340b2f 1839 struct seq_net_private p;
3d3b2d25 1840 struct fib_table *tb;
35c6edac 1841 struct key_vector *tnode;
a034ee3c
ED
1842 unsigned int index;
1843 unsigned int depth;
cb7b593c 1844};
19baf839 1845
35c6edac 1846static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1847{
98293e8d 1848 unsigned long cindex = iter->index;
88bae714
AD
1849 struct key_vector *pn = iter->tnode;
1850 t_key pkey;
6640e697 1851
cb7b593c
SH
1852 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1853 iter->tnode, iter->index, iter->depth);
19baf839 1854
88bae714
AD
1855 while (!IS_TRIE(pn)) {
1856 while (cindex < child_length(pn)) {
1857 struct key_vector *n = get_child_rcu(pn, cindex++);
1858
1859 if (!n)
1860 continue;
1861
cb7b593c 1862 if (IS_LEAF(n)) {
88bae714
AD
1863 iter->tnode = pn;
1864 iter->index = cindex;
cb7b593c
SH
1865 } else {
1866 /* push down one level */
adaf9816 1867 iter->tnode = n;
cb7b593c
SH
1868 iter->index = 0;
1869 ++iter->depth;
1870 }
88bae714 1871
cb7b593c
SH
1872 return n;
1873 }
19baf839 1874
88bae714
AD
1875 /* Current node exhausted, pop back up */
1876 pkey = pn->key;
1877 pn = node_parent_rcu(pn);
1878 cindex = get_index(pkey, pn) + 1;
cb7b593c 1879 --iter->depth;
19baf839 1880 }
cb7b593c 1881
88bae714
AD
1882 /* record root node so further searches know we are done */
1883 iter->tnode = pn;
1884 iter->index = 0;
1885
cb7b593c 1886 return NULL;
19baf839
RO
1887}
1888
35c6edac
AD
1889static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1890 struct trie *t)
19baf839 1891{
88bae714 1892 struct key_vector *n, *pn = t->kv;
5ddf0eb2 1893
132adf54 1894 if (!t)
5ddf0eb2
RO
1895 return NULL;
1896
88bae714 1897 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 1898 if (!n)
5ddf0eb2 1899 return NULL;
19baf839 1900
3d3b2d25 1901 if (IS_TNODE(n)) {
adaf9816 1902 iter->tnode = n;
3d3b2d25
SH
1903 iter->index = 0;
1904 iter->depth = 1;
1905 } else {
88bae714 1906 iter->tnode = pn;
3d3b2d25
SH
1907 iter->index = 0;
1908 iter->depth = 0;
91b9a277 1909 }
3d3b2d25
SH
1910
1911 return n;
cb7b593c 1912}
91b9a277 1913
cb7b593c
SH
1914static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1915{
35c6edac 1916 struct key_vector *n;
cb7b593c 1917 struct fib_trie_iter iter;
91b9a277 1918
cb7b593c 1919 memset(s, 0, sizeof(*s));
91b9a277 1920
cb7b593c 1921 rcu_read_lock();
3d3b2d25 1922 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1923 if (IS_LEAF(n)) {
79e5ad2c 1924 struct fib_alias *fa;
93672292 1925
cb7b593c
SH
1926 s->leaves++;
1927 s->totdepth += iter.depth;
1928 if (iter.depth > s->maxdepth)
1929 s->maxdepth = iter.depth;
93672292 1930
79e5ad2c 1931 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1932 ++s->prefixes;
cb7b593c 1933 } else {
cb7b593c 1934 s->tnodes++;
adaf9816
AD
1935 if (n->bits < MAX_STAT_DEPTH)
1936 s->nodesizes[n->bits]++;
6e22d174 1937 s->nullpointers += tn_info(n)->empty_children;
19baf839 1938 }
19baf839 1939 }
2373ce1c 1940 rcu_read_unlock();
19baf839
RO
1941}
1942
cb7b593c
SH
1943/*
1944 * This outputs /proc/net/fib_triestats
1945 */
1946static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1947{
a034ee3c 1948 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1949
cb7b593c
SH
1950 if (stat->leaves)
1951 avdepth = stat->totdepth*100 / stat->leaves;
1952 else
1953 avdepth = 0;
91b9a277 1954
a07f5f50
SH
1955 seq_printf(seq, "\tAver depth: %u.%02d\n",
1956 avdepth / 100, avdepth % 100);
cb7b593c 1957 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1958
cb7b593c 1959 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1960 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1961
1962 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1963 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1964
187b5188 1965 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1966 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1967
06ef921d
RO
1968 max = MAX_STAT_DEPTH;
1969 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1970 max--;
19baf839 1971
cb7b593c 1972 pointers = 0;
f585a991 1973 for (i = 1; i < max; i++)
cb7b593c 1974 if (stat->nodesizes[i] != 0) {
187b5188 1975 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1976 pointers += (1<<i) * stat->nodesizes[i];
1977 }
1978 seq_putc(seq, '\n');
187b5188 1979 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1980
35c6edac 1981 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
1982 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1983 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1984}
2373ce1c 1985
cb7b593c 1986#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1987static void trie_show_usage(struct seq_file *seq,
8274a97a 1988 const struct trie_use_stats __percpu *stats)
66a2f7fd 1989{
8274a97a
AD
1990 struct trie_use_stats s = { 0 };
1991 int cpu;
1992
1993 /* loop through all of the CPUs and gather up the stats */
1994 for_each_possible_cpu(cpu) {
1995 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1996
1997 s.gets += pcpu->gets;
1998 s.backtrack += pcpu->backtrack;
1999 s.semantic_match_passed += pcpu->semantic_match_passed;
2000 s.semantic_match_miss += pcpu->semantic_match_miss;
2001 s.null_node_hit += pcpu->null_node_hit;
2002 s.resize_node_skipped += pcpu->resize_node_skipped;
2003 }
2004
66a2f7fd 2005 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2006 seq_printf(seq, "gets = %u\n", s.gets);
2007 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2008 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2009 s.semantic_match_passed);
2010 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2011 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2012 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2013}
66a2f7fd
SH
2014#endif /* CONFIG_IP_FIB_TRIE_STATS */
2015
3d3b2d25 2016static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2017{
3d3b2d25
SH
2018 if (tb->tb_id == RT_TABLE_LOCAL)
2019 seq_puts(seq, "Local:\n");
2020 else if (tb->tb_id == RT_TABLE_MAIN)
2021 seq_puts(seq, "Main:\n");
2022 else
2023 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2024}
19baf839 2025
3d3b2d25 2026
cb7b593c
SH
2027static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2028{
1c340b2f 2029 struct net *net = (struct net *)seq->private;
3d3b2d25 2030 unsigned int h;
877a9bff 2031
d717a9a6 2032 seq_printf(seq,
a07f5f50
SH
2033 "Basic info: size of leaf:"
2034 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2035 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2036
3d3b2d25
SH
2037 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2038 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2039 struct fib_table *tb;
2040
b67bfe0d 2041 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2042 struct trie *t = (struct trie *) tb->tb_data;
2043 struct trie_stat stat;
877a9bff 2044
3d3b2d25
SH
2045 if (!t)
2046 continue;
2047
2048 fib_table_print(seq, tb);
2049
2050 trie_collect_stats(t, &stat);
2051 trie_show_stats(seq, &stat);
2052#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2053 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2054#endif
2055 }
2056 }
19baf839 2057
cb7b593c 2058 return 0;
19baf839
RO
2059}
2060
cb7b593c 2061static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2062{
de05c557 2063 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2064}
2065
9a32144e 2066static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2067 .owner = THIS_MODULE,
2068 .open = fib_triestat_seq_open,
2069 .read = seq_read,
2070 .llseek = seq_lseek,
b6fcbdb4 2071 .release = single_release_net,
cb7b593c
SH
2072};
2073
35c6edac 2074static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2075{
1218854a
YH
2076 struct fib_trie_iter *iter = seq->private;
2077 struct net *net = seq_file_net(seq);
cb7b593c 2078 loff_t idx = 0;
3d3b2d25 2079 unsigned int h;
cb7b593c 2080
3d3b2d25
SH
2081 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2082 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2083 struct fib_table *tb;
cb7b593c 2084
b67bfe0d 2085 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2086 struct key_vector *n;
3d3b2d25
SH
2087
2088 for (n = fib_trie_get_first(iter,
2089 (struct trie *) tb->tb_data);
2090 n; n = fib_trie_get_next(iter))
2091 if (pos == idx++) {
2092 iter->tb = tb;
2093 return n;
2094 }
2095 }
cb7b593c 2096 }
3d3b2d25 2097
19baf839
RO
2098 return NULL;
2099}
2100
cb7b593c 2101static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2102 __acquires(RCU)
19baf839 2103{
cb7b593c 2104 rcu_read_lock();
1218854a 2105 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2106}
2107
cb7b593c 2108static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2109{
cb7b593c 2110 struct fib_trie_iter *iter = seq->private;
1218854a 2111 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2112 struct fib_table *tb = iter->tb;
2113 struct hlist_node *tb_node;
2114 unsigned int h;
35c6edac 2115 struct key_vector *n;
cb7b593c 2116
19baf839 2117 ++*pos;
3d3b2d25
SH
2118 /* next node in same table */
2119 n = fib_trie_get_next(iter);
2120 if (n)
2121 return n;
19baf839 2122
3d3b2d25
SH
2123 /* walk rest of this hash chain */
2124 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2125 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2126 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2127 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2128 if (n)
2129 goto found;
2130 }
19baf839 2131
3d3b2d25
SH
2132 /* new hash chain */
2133 while (++h < FIB_TABLE_HASHSZ) {
2134 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2135 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2136 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2137 if (n)
2138 goto found;
2139 }
2140 }
cb7b593c 2141 return NULL;
3d3b2d25
SH
2142
2143found:
2144 iter->tb = tb;
2145 return n;
cb7b593c 2146}
19baf839 2147
cb7b593c 2148static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2149 __releases(RCU)
19baf839 2150{
cb7b593c
SH
2151 rcu_read_unlock();
2152}
91b9a277 2153
cb7b593c
SH
2154static void seq_indent(struct seq_file *seq, int n)
2155{
a034ee3c
ED
2156 while (n-- > 0)
2157 seq_puts(seq, " ");
cb7b593c 2158}
19baf839 2159
28d36e37 2160static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2161{
132adf54 2162 switch (s) {
cb7b593c
SH
2163 case RT_SCOPE_UNIVERSE: return "universe";
2164 case RT_SCOPE_SITE: return "site";
2165 case RT_SCOPE_LINK: return "link";
2166 case RT_SCOPE_HOST: return "host";
2167 case RT_SCOPE_NOWHERE: return "nowhere";
2168 default:
28d36e37 2169 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2170 return buf;
2171 }
2172}
19baf839 2173
36cbd3dc 2174static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2175 [RTN_UNSPEC] = "UNSPEC",
2176 [RTN_UNICAST] = "UNICAST",
2177 [RTN_LOCAL] = "LOCAL",
2178 [RTN_BROADCAST] = "BROADCAST",
2179 [RTN_ANYCAST] = "ANYCAST",
2180 [RTN_MULTICAST] = "MULTICAST",
2181 [RTN_BLACKHOLE] = "BLACKHOLE",
2182 [RTN_UNREACHABLE] = "UNREACHABLE",
2183 [RTN_PROHIBIT] = "PROHIBIT",
2184 [RTN_THROW] = "THROW",
2185 [RTN_NAT] = "NAT",
2186 [RTN_XRESOLVE] = "XRESOLVE",
2187};
19baf839 2188
a034ee3c 2189static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2190{
cb7b593c
SH
2191 if (t < __RTN_MAX && rtn_type_names[t])
2192 return rtn_type_names[t];
28d36e37 2193 snprintf(buf, len, "type %u", t);
cb7b593c 2194 return buf;
19baf839
RO
2195}
2196
cb7b593c
SH
2197/* Pretty print the trie */
2198static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2199{
cb7b593c 2200 const struct fib_trie_iter *iter = seq->private;
35c6edac 2201 struct key_vector *n = v;
c877efb2 2202
88bae714 2203 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2204 fib_table_print(seq, iter->tb);
095b8501 2205
cb7b593c 2206 if (IS_TNODE(n)) {
adaf9816 2207 __be32 prf = htonl(n->key);
91b9a277 2208
e9b44019
AD
2209 seq_indent(seq, iter->depth-1);
2210 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2211 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2212 tn_info(n)->full_children,
2213 tn_info(n)->empty_children);
cb7b593c 2214 } else {
adaf9816 2215 __be32 val = htonl(n->key);
79e5ad2c 2216 struct fib_alias *fa;
cb7b593c
SH
2217
2218 seq_indent(seq, iter->depth);
673d57e7 2219 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2220
79e5ad2c
AD
2221 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2222 char buf1[32], buf2[32];
2223
2224 seq_indent(seq, iter->depth + 1);
2225 seq_printf(seq, " /%zu %s %s",
2226 KEYLENGTH - fa->fa_slen,
2227 rtn_scope(buf1, sizeof(buf1),
2228 fa->fa_info->fib_scope),
2229 rtn_type(buf2, sizeof(buf2),
2230 fa->fa_type));
2231 if (fa->fa_tos)
2232 seq_printf(seq, " tos=%d", fa->fa_tos);
2233 seq_putc(seq, '\n');
cb7b593c 2234 }
19baf839 2235 }
cb7b593c 2236
19baf839
RO
2237 return 0;
2238}
2239
f690808e 2240static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2241 .start = fib_trie_seq_start,
2242 .next = fib_trie_seq_next,
2243 .stop = fib_trie_seq_stop,
2244 .show = fib_trie_seq_show,
19baf839
RO
2245};
2246
cb7b593c 2247static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2248{
1c340b2f
DL
2249 return seq_open_net(inode, file, &fib_trie_seq_ops,
2250 sizeof(struct fib_trie_iter));
19baf839
RO
2251}
2252
9a32144e 2253static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2254 .owner = THIS_MODULE,
2255 .open = fib_trie_seq_open,
2256 .read = seq_read,
2257 .llseek = seq_lseek,
1c340b2f 2258 .release = seq_release_net,
19baf839
RO
2259};
2260
8315f5d8
SH
2261struct fib_route_iter {
2262 struct seq_net_private p;
8be33e95 2263 struct fib_table *main_tb;
35c6edac 2264 struct key_vector *tnode;
8315f5d8
SH
2265 loff_t pos;
2266 t_key key;
2267};
2268
35c6edac
AD
2269static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2270 loff_t pos)
8315f5d8 2271{
8be33e95 2272 struct fib_table *tb = iter->main_tb;
35c6edac 2273 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2274 struct trie *t;
2275 t_key key;
8315f5d8 2276
8be33e95
AD
2277 /* use cache location of next-to-find key */
2278 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2279 pos -= iter->pos;
8be33e95
AD
2280 key = iter->key;
2281 } else {
2282 t = (struct trie *)tb->tb_data;
88bae714 2283 iter->tnode = t->kv;
8315f5d8 2284 iter->pos = 0;
8be33e95 2285 key = 0;
8315f5d8
SH
2286 }
2287
8be33e95
AD
2288 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2289 key = l->key + 1;
8315f5d8 2290 iter->pos++;
8be33e95
AD
2291
2292 if (pos-- <= 0)
2293 break;
2294
2295 l = NULL;
2296
2297 /* handle unlikely case of a key wrap */
2298 if (!key)
2299 break;
8315f5d8
SH
2300 }
2301
2302 if (l)
8be33e95 2303 iter->key = key; /* remember it */
8315f5d8
SH
2304 else
2305 iter->pos = 0; /* forget it */
2306
2307 return l;
2308}
2309
2310static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2311 __acquires(RCU)
2312{
2313 struct fib_route_iter *iter = seq->private;
2314 struct fib_table *tb;
8be33e95 2315 struct trie *t;
8315f5d8
SH
2316
2317 rcu_read_lock();
8be33e95 2318
1218854a 2319 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2320 if (!tb)
2321 return NULL;
2322
8be33e95
AD
2323 iter->main_tb = tb;
2324
2325 if (*pos != 0)
2326 return fib_route_get_idx(iter, *pos);
2327
2328 t = (struct trie *)tb->tb_data;
88bae714 2329 iter->tnode = t->kv;
8be33e95
AD
2330 iter->pos = 0;
2331 iter->key = 0;
2332
2333 return SEQ_START_TOKEN;
8315f5d8
SH
2334}
2335
2336static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2337{
2338 struct fib_route_iter *iter = seq->private;
35c6edac 2339 struct key_vector *l = NULL;
8be33e95 2340 t_key key = iter->key;
8315f5d8
SH
2341
2342 ++*pos;
8be33e95
AD
2343
2344 /* only allow key of 0 for start of sequence */
2345 if ((v == SEQ_START_TOKEN) || key)
2346 l = leaf_walk_rcu(&iter->tnode, key);
2347
2348 if (l) {
2349 iter->key = l->key + 1;
8315f5d8 2350 iter->pos++;
8be33e95
AD
2351 } else {
2352 iter->pos = 0;
8315f5d8
SH
2353 }
2354
8315f5d8
SH
2355 return l;
2356}
2357
2358static void fib_route_seq_stop(struct seq_file *seq, void *v)
2359 __releases(RCU)
2360{
2361 rcu_read_unlock();
2362}
2363
a034ee3c 2364static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2365{
a034ee3c 2366 unsigned int flags = 0;
19baf839 2367
a034ee3c
ED
2368 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2369 flags = RTF_REJECT;
cb7b593c
SH
2370 if (fi && fi->fib_nh->nh_gw)
2371 flags |= RTF_GATEWAY;
32ab5f80 2372 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2373 flags |= RTF_HOST;
2374 flags |= RTF_UP;
2375 return flags;
19baf839
RO
2376}
2377
cb7b593c
SH
2378/*
2379 * This outputs /proc/net/route.
2380 * The format of the file is not supposed to be changed
a034ee3c 2381 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2382 * legacy utilities
2383 */
2384static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2385{
79e5ad2c 2386 struct fib_alias *fa;
35c6edac 2387 struct key_vector *l = v;
9b6ebad5 2388 __be32 prefix;
19baf839 2389
cb7b593c
SH
2390 if (v == SEQ_START_TOKEN) {
2391 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2392 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2393 "\tWindow\tIRTT");
2394 return 0;
2395 }
19baf839 2396
9b6ebad5
AD
2397 prefix = htonl(l->key);
2398
79e5ad2c
AD
2399 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2400 const struct fib_info *fi = fa->fa_info;
2401 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2402 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2403
79e5ad2c
AD
2404 if ((fa->fa_type == RTN_BROADCAST) ||
2405 (fa->fa_type == RTN_MULTICAST))
2406 continue;
19baf839 2407
79e5ad2c
AD
2408 seq_setwidth(seq, 127);
2409
2410 if (fi)
2411 seq_printf(seq,
2412 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2413 "%d\t%08X\t%d\t%u\t%u",
2414 fi->fib_dev ? fi->fib_dev->name : "*",
2415 prefix,
2416 fi->fib_nh->nh_gw, flags, 0, 0,
2417 fi->fib_priority,
2418 mask,
2419 (fi->fib_advmss ?
2420 fi->fib_advmss + 40 : 0),
2421 fi->fib_window,
2422 fi->fib_rtt >> 3);
2423 else
2424 seq_printf(seq,
2425 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2426 "%d\t%08X\t%d\t%u\t%u",
2427 prefix, 0, flags, 0, 0, 0,
2428 mask, 0, 0, 0);
19baf839 2429
79e5ad2c 2430 seq_pad(seq, '\n');
19baf839
RO
2431 }
2432
2433 return 0;
2434}
2435
f690808e 2436static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2437 .start = fib_route_seq_start,
2438 .next = fib_route_seq_next,
2439 .stop = fib_route_seq_stop,
cb7b593c 2440 .show = fib_route_seq_show,
19baf839
RO
2441};
2442
cb7b593c 2443static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2444{
1c340b2f 2445 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2446 sizeof(struct fib_route_iter));
19baf839
RO
2447}
2448
9a32144e 2449static const struct file_operations fib_route_fops = {
cb7b593c
SH
2450 .owner = THIS_MODULE,
2451 .open = fib_route_seq_open,
2452 .read = seq_read,
2453 .llseek = seq_lseek,
1c340b2f 2454 .release = seq_release_net,
19baf839
RO
2455};
2456
61a02653 2457int __net_init fib_proc_init(struct net *net)
19baf839 2458{
d4beaa66 2459 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2460 goto out1;
2461
d4beaa66
G
2462 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2463 &fib_triestat_fops))
cb7b593c
SH
2464 goto out2;
2465
d4beaa66 2466 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2467 goto out3;
2468
19baf839 2469 return 0;
cb7b593c
SH
2470
2471out3:
ece31ffd 2472 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2473out2:
ece31ffd 2474 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2475out1:
2476 return -ENOMEM;
19baf839
RO
2477}
2478
61a02653 2479void __net_exit fib_proc_exit(struct net *net)
19baf839 2480{
ece31ffd
G
2481 remove_proc_entry("fib_trie", net->proc_net);
2482 remove_proc_entry("fib_triestat", net->proc_net);
2483 remove_proc_entry("route", net->proc_net);
19baf839
RO
2484}
2485
2486#endif /* CONFIG_PROC_FS */
This page took 0.98287 seconds and 5 git commands to generate.