Merge branches 'acpi-scan', 'acpi-utils' and 'acpi-pm'
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
85int sysctl_tcp_dsack __read_mostly = 1;
86int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 87int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 89
282f23c6
ED
90/* rfc5961 challenge ack rate limiting */
91int sysctl_tcp_challenge_ack_limit = 100;
92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 102
1da177e4
LT
103#define FLAG_DATA 0x01 /* Incoming frame contained data. */
104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108#define FLAG_DATA_SACKED 0x20 /* New SACK. */
109#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 111#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 115#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9 176 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
a2a385d6 197static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9 199 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 200
463c84b9 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
202}
203
735d3831 204static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 205{
056834d9 206 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
735d3831 210static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
211{
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
735d3831 216static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
217{
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
735d3831 221static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 222{
b82d1bb4 223 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 224 case INET_ECN_NOT_ECT:
bdf1ee5d 225 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
226 * and we already seen ECT on a previous segment,
227 * it is probably a retransmit.
228 */
229 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 230 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
231 break;
232 case INET_ECN_CE:
9890092e
FW
233 if (tcp_ca_needs_ecn((struct sock *)tp))
234 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
235
aae06bf5
ED
236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 /* Better not delay acks, sender can have a very low cwnd */
238 tcp_enter_quickack_mode((struct sock *)tp);
239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 }
9890092e
FW
241 tp->ecn_flags |= TCP_ECN_SEEN;
242 break;
7a269ffa 243 default:
9890092e
FW
244 if (tcp_ca_needs_ecn((struct sock *)tp))
245 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 246 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 247 break;
bdf1ee5d
IJ
248 }
249}
250
735d3831
FW
251static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252{
253 if (tp->ecn_flags & TCP_ECN_OK)
254 __tcp_ecn_check_ce(tp, skb);
255}
256
257static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 258{
056834d9 259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
260 tp->ecn_flags &= ~TCP_ECN_OK;
261}
262
735d3831 263static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 264{
056834d9 265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
266 tp->ecn_flags &= ~TCP_ECN_OK;
267}
268
735d3831 269static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 270{
056834d9 271 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
272 return true;
273 return false;
bdf1ee5d
IJ
274}
275
1da177e4
LT
276/* Buffer size and advertised window tuning.
277 *
278 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
279 */
280
6ae70532 281static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 282{
6ae70532
ED
283 const struct tcp_sock *tp = tcp_sk(sk);
284 int sndmem, per_mss;
285 u32 nr_segs;
286
287 /* Worst case is non GSO/TSO : each frame consumes one skb
288 * and skb->head is kmalloced using power of two area of memory
289 */
290 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
291 MAX_TCP_HEADER +
292 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
293
294 per_mss = roundup_pow_of_two(per_mss) +
295 SKB_DATA_ALIGN(sizeof(struct sk_buff));
296
297 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
298 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
299
300 /* Fast Recovery (RFC 5681 3.2) :
301 * Cubic needs 1.7 factor, rounded to 2 to include
302 * extra cushion (application might react slowly to POLLOUT)
303 */
304 sndmem = 2 * nr_segs * per_mss;
1da177e4 305
06a59ecb
ED
306 if (sk->sk_sndbuf < sndmem)
307 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
308}
309
310/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
311 *
312 * All tcp_full_space() is split to two parts: "network" buffer, allocated
313 * forward and advertised in receiver window (tp->rcv_wnd) and
314 * "application buffer", required to isolate scheduling/application
315 * latencies from network.
316 * window_clamp is maximal advertised window. It can be less than
317 * tcp_full_space(), in this case tcp_full_space() - window_clamp
318 * is reserved for "application" buffer. The less window_clamp is
319 * the smoother our behaviour from viewpoint of network, but the lower
320 * throughput and the higher sensitivity of the connection to losses. 8)
321 *
322 * rcv_ssthresh is more strict window_clamp used at "slow start"
323 * phase to predict further behaviour of this connection.
324 * It is used for two goals:
325 * - to enforce header prediction at sender, even when application
326 * requires some significant "application buffer". It is check #1.
327 * - to prevent pruning of receive queue because of misprediction
328 * of receiver window. Check #2.
329 *
330 * The scheme does not work when sender sends good segments opening
caa20d9a 331 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
332 * in common situations. Otherwise, we have to rely on queue collapsing.
333 */
334
335/* Slow part of check#2. */
9e412ba7 336static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 337{
9e412ba7 338 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 339 /* Optimize this! */
dfd4f0ae
ED
340 int truesize = tcp_win_from_space(skb->truesize) >> 1;
341 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
342
343 while (tp->rcv_ssthresh <= window) {
344 if (truesize <= skb->len)
463c84b9 345 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
346
347 truesize >>= 1;
348 window >>= 1;
349 }
350 return 0;
351}
352
cf533ea5 353static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 354{
9e412ba7
IJ
355 struct tcp_sock *tp = tcp_sk(sk);
356
1da177e4
LT
357 /* Check #1 */
358 if (tp->rcv_ssthresh < tp->window_clamp &&
359 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 360 !sk_under_memory_pressure(sk)) {
1da177e4
LT
361 int incr;
362
363 /* Check #2. Increase window, if skb with such overhead
364 * will fit to rcvbuf in future.
365 */
366 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 367 incr = 2 * tp->advmss;
1da177e4 368 else
9e412ba7 369 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
370
371 if (incr) {
4d846f02 372 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
373 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
374 tp->window_clamp);
463c84b9 375 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
376 }
377 }
378}
379
380/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
381static void tcp_fixup_rcvbuf(struct sock *sk)
382{
e9266a02 383 u32 mss = tcp_sk(sk)->advmss;
e9266a02 384 int rcvmem;
1da177e4 385
85f16525
YC
386 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
387 tcp_default_init_rwnd(mss);
e9266a02 388
b0983d3c
ED
389 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
390 * Allow enough cushion so that sender is not limited by our window
391 */
392 if (sysctl_tcp_moderate_rcvbuf)
393 rcvmem <<= 2;
394
e9266a02
ED
395 if (sk->sk_rcvbuf < rcvmem)
396 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
397}
398
caa20d9a 399/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
400 * established state.
401 */
10467163 402void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
403{
404 struct tcp_sock *tp = tcp_sk(sk);
405 int maxwin;
406
407 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
408 tcp_fixup_rcvbuf(sk);
409 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 410 tcp_sndbuf_expand(sk);
1da177e4
LT
411
412 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
413 tp->rcvq_space.time = tcp_time_stamp;
414 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
415
416 maxwin = tcp_full_space(sk);
417
418 if (tp->window_clamp >= maxwin) {
419 tp->window_clamp = maxwin;
420
421 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
422 tp->window_clamp = max(maxwin -
423 (maxwin >> sysctl_tcp_app_win),
424 4 * tp->advmss);
425 }
426
427 /* Force reservation of one segment. */
428 if (sysctl_tcp_app_win &&
429 tp->window_clamp > 2 * tp->advmss &&
430 tp->window_clamp + tp->advmss > maxwin)
431 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
432
433 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
434 tp->snd_cwnd_stamp = tcp_time_stamp;
435}
436
1da177e4 437/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 438static void tcp_clamp_window(struct sock *sk)
1da177e4 439{
9e412ba7 440 struct tcp_sock *tp = tcp_sk(sk);
6687e988 441 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 442
6687e988 443 icsk->icsk_ack.quick = 0;
1da177e4 444
326f36e9
JH
445 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
446 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
447 !sk_under_memory_pressure(sk) &&
448 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
449 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
450 sysctl_tcp_rmem[2]);
1da177e4 451 }
326f36e9 452 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 453 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
454}
455
40efc6fa
SH
456/* Initialize RCV_MSS value.
457 * RCV_MSS is an our guess about MSS used by the peer.
458 * We haven't any direct information about the MSS.
459 * It's better to underestimate the RCV_MSS rather than overestimate.
460 * Overestimations make us ACKing less frequently than needed.
461 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
462 */
463void tcp_initialize_rcv_mss(struct sock *sk)
464{
cf533ea5 465 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
466 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
467
056834d9 468 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 469 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
470 hint = max(hint, TCP_MIN_MSS);
471
472 inet_csk(sk)->icsk_ack.rcv_mss = hint;
473}
4bc2f18b 474EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 475
1da177e4
LT
476/* Receiver "autotuning" code.
477 *
478 * The algorithm for RTT estimation w/o timestamps is based on
479 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 480 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
481 *
482 * More detail on this code can be found at
631dd1a8 483 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
484 * though this reference is out of date. A new paper
485 * is pending.
486 */
487static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
488{
489 u32 new_sample = tp->rcv_rtt_est.rtt;
490 long m = sample;
491
492 if (m == 0)
493 m = 1;
494
495 if (new_sample != 0) {
496 /* If we sample in larger samples in the non-timestamp
497 * case, we could grossly overestimate the RTT especially
498 * with chatty applications or bulk transfer apps which
499 * are stalled on filesystem I/O.
500 *
501 * Also, since we are only going for a minimum in the
31f34269 502 * non-timestamp case, we do not smooth things out
caa20d9a 503 * else with timestamps disabled convergence takes too
1da177e4
LT
504 * long.
505 */
506 if (!win_dep) {
507 m -= (new_sample >> 3);
508 new_sample += m;
18a223e0
NC
509 } else {
510 m <<= 3;
511 if (m < new_sample)
512 new_sample = m;
513 }
1da177e4 514 } else {
caa20d9a 515 /* No previous measure. */
1da177e4
LT
516 new_sample = m << 3;
517 }
518
519 if (tp->rcv_rtt_est.rtt != new_sample)
520 tp->rcv_rtt_est.rtt = new_sample;
521}
522
523static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
524{
525 if (tp->rcv_rtt_est.time == 0)
526 goto new_measure;
527 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
528 return;
651913ce 529 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
530
531new_measure:
532 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
533 tp->rcv_rtt_est.time = tcp_time_stamp;
534}
535
056834d9
IJ
536static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
537 const struct sk_buff *skb)
1da177e4 538{
463c84b9 539 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
540 if (tp->rx_opt.rcv_tsecr &&
541 (TCP_SKB_CB(skb)->end_seq -
463c84b9 542 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
543 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
544}
545
546/*
547 * This function should be called every time data is copied to user space.
548 * It calculates the appropriate TCP receive buffer space.
549 */
550void tcp_rcv_space_adjust(struct sock *sk)
551{
552 struct tcp_sock *tp = tcp_sk(sk);
553 int time;
b0983d3c 554 int copied;
e905a9ed 555
1da177e4 556 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 557 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 558 return;
e905a9ed 559
b0983d3c
ED
560 /* Number of bytes copied to user in last RTT */
561 copied = tp->copied_seq - tp->rcvq_space.seq;
562 if (copied <= tp->rcvq_space.space)
563 goto new_measure;
564
565 /* A bit of theory :
566 * copied = bytes received in previous RTT, our base window
567 * To cope with packet losses, we need a 2x factor
568 * To cope with slow start, and sender growing its cwin by 100 %
569 * every RTT, we need a 4x factor, because the ACK we are sending
570 * now is for the next RTT, not the current one :
571 * <prev RTT . ><current RTT .. ><next RTT .... >
572 */
573
574 if (sysctl_tcp_moderate_rcvbuf &&
575 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
576 int rcvwin, rcvmem, rcvbuf;
1da177e4 577
b0983d3c
ED
578 /* minimal window to cope with packet losses, assuming
579 * steady state. Add some cushion because of small variations.
580 */
581 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 582
b0983d3c
ED
583 /* If rate increased by 25%,
584 * assume slow start, rcvwin = 3 * copied
585 * If rate increased by 50%,
586 * assume sender can use 2x growth, rcvwin = 4 * copied
587 */
588 if (copied >=
589 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
592 rcvwin <<= 1;
593 else
594 rcvwin += (rcvwin >> 1);
595 }
1da177e4 596
b0983d3c
ED
597 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
598 while (tcp_win_from_space(rcvmem) < tp->advmss)
599 rcvmem += 128;
1da177e4 600
b0983d3c
ED
601 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
602 if (rcvbuf > sk->sk_rcvbuf) {
603 sk->sk_rcvbuf = rcvbuf;
1da177e4 604
b0983d3c
ED
605 /* Make the window clamp follow along. */
606 tp->window_clamp = rcvwin;
1da177e4
LT
607 }
608 }
b0983d3c 609 tp->rcvq_space.space = copied;
e905a9ed 610
1da177e4
LT
611new_measure:
612 tp->rcvq_space.seq = tp->copied_seq;
613 tp->rcvq_space.time = tcp_time_stamp;
614}
615
616/* There is something which you must keep in mind when you analyze the
617 * behavior of the tp->ato delayed ack timeout interval. When a
618 * connection starts up, we want to ack as quickly as possible. The
619 * problem is that "good" TCP's do slow start at the beginning of data
620 * transmission. The means that until we send the first few ACK's the
621 * sender will sit on his end and only queue most of his data, because
622 * he can only send snd_cwnd unacked packets at any given time. For
623 * each ACK we send, he increments snd_cwnd and transmits more of his
624 * queue. -DaveM
625 */
9e412ba7 626static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 627{
9e412ba7 628 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 629 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
630 u32 now;
631
463c84b9 632 inet_csk_schedule_ack(sk);
1da177e4 633
463c84b9 634 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
635
636 tcp_rcv_rtt_measure(tp);
e905a9ed 637
1da177e4
LT
638 now = tcp_time_stamp;
639
463c84b9 640 if (!icsk->icsk_ack.ato) {
1da177e4
LT
641 /* The _first_ data packet received, initialize
642 * delayed ACK engine.
643 */
463c84b9
ACM
644 tcp_incr_quickack(sk);
645 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 646 } else {
463c84b9 647 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 648
056834d9 649 if (m <= TCP_ATO_MIN / 2) {
1da177e4 650 /* The fastest case is the first. */
463c84b9
ACM
651 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
652 } else if (m < icsk->icsk_ack.ato) {
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
654 if (icsk->icsk_ack.ato > icsk->icsk_rto)
655 icsk->icsk_ack.ato = icsk->icsk_rto;
656 } else if (m > icsk->icsk_rto) {
caa20d9a 657 /* Too long gap. Apparently sender failed to
1da177e4
LT
658 * restart window, so that we send ACKs quickly.
659 */
463c84b9 660 tcp_incr_quickack(sk);
3ab224be 661 sk_mem_reclaim(sk);
1da177e4
LT
662 }
663 }
463c84b9 664 icsk->icsk_ack.lrcvtime = now;
1da177e4 665
735d3831 666 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
667
668 if (skb->len >= 128)
9e412ba7 669 tcp_grow_window(sk, skb);
1da177e4
LT
670}
671
1da177e4
LT
672/* Called to compute a smoothed rtt estimate. The data fed to this
673 * routine either comes from timestamps, or from segments that were
674 * known _not_ to have been retransmitted [see Karn/Partridge
675 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
676 * piece by Van Jacobson.
677 * NOTE: the next three routines used to be one big routine.
678 * To save cycles in the RFC 1323 implementation it was better to break
679 * it up into three procedures. -- erics
680 */
740b0f18 681static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 682{
6687e988 683 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
684 long m = mrtt_us; /* RTT */
685 u32 srtt = tp->srtt_us;
1da177e4 686
1da177e4
LT
687 /* The following amusing code comes from Jacobson's
688 * article in SIGCOMM '88. Note that rtt and mdev
689 * are scaled versions of rtt and mean deviation.
e905a9ed 690 * This is designed to be as fast as possible
1da177e4
LT
691 * m stands for "measurement".
692 *
693 * On a 1990 paper the rto value is changed to:
694 * RTO = rtt + 4 * mdev
695 *
696 * Funny. This algorithm seems to be very broken.
697 * These formulae increase RTO, when it should be decreased, increase
31f34269 698 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
699 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
700 * does not matter how to _calculate_ it. Seems, it was trap
701 * that VJ failed to avoid. 8)
702 */
4a5ab4e2
ED
703 if (srtt != 0) {
704 m -= (srtt >> 3); /* m is now error in rtt est */
705 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
706 if (m < 0) {
707 m = -m; /* m is now abs(error) */
740b0f18 708 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
709 /* This is similar to one of Eifel findings.
710 * Eifel blocks mdev updates when rtt decreases.
711 * This solution is a bit different: we use finer gain
712 * for mdev in this case (alpha*beta).
713 * Like Eifel it also prevents growth of rto,
714 * but also it limits too fast rto decreases,
715 * happening in pure Eifel.
716 */
717 if (m > 0)
718 m >>= 3;
719 } else {
740b0f18 720 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 721 }
740b0f18
ED
722 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
723 if (tp->mdev_us > tp->mdev_max_us) {
724 tp->mdev_max_us = tp->mdev_us;
725 if (tp->mdev_max_us > tp->rttvar_us)
726 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
727 }
728 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
729 if (tp->mdev_max_us < tp->rttvar_us)
730 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 731 tp->rtt_seq = tp->snd_nxt;
740b0f18 732 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
733 }
734 } else {
735 /* no previous measure. */
4a5ab4e2 736 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
737 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
738 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
739 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
740 tp->rtt_seq = tp->snd_nxt;
741 }
740b0f18 742 tp->srtt_us = max(1U, srtt);
1da177e4
LT
743}
744
95bd09eb
ED
745/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
746 * Note: TCP stack does not yet implement pacing.
747 * FQ packet scheduler can be used to implement cheap but effective
748 * TCP pacing, to smooth the burst on large writes when packets
749 * in flight is significantly lower than cwnd (or rwin)
750 */
751static void tcp_update_pacing_rate(struct sock *sk)
752{
753 const struct tcp_sock *tp = tcp_sk(sk);
754 u64 rate;
755
756 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 757 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
758
759 rate *= max(tp->snd_cwnd, tp->packets_out);
760
740b0f18
ED
761 if (likely(tp->srtt_us))
762 do_div(rate, tp->srtt_us);
95bd09eb 763
ba537427
ED
764 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
765 * without any lock. We want to make sure compiler wont store
766 * intermediate values in this location.
767 */
768 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
769 sk->sk_max_pacing_rate);
95bd09eb
ED
770}
771
1da177e4
LT
772/* Calculate rto without backoff. This is the second half of Van Jacobson's
773 * routine referred to above.
774 */
f7e56a76 775static void tcp_set_rto(struct sock *sk)
1da177e4 776{
463c84b9 777 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
778 /* Old crap is replaced with new one. 8)
779 *
780 * More seriously:
781 * 1. If rtt variance happened to be less 50msec, it is hallucination.
782 * It cannot be less due to utterly erratic ACK generation made
783 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
784 * to do with delayed acks, because at cwnd>2 true delack timeout
785 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 786 * ACKs in some circumstances.
1da177e4 787 */
f1ecd5d9 788 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
789
790 /* 2. Fixups made earlier cannot be right.
791 * If we do not estimate RTO correctly without them,
792 * all the algo is pure shit and should be replaced
caa20d9a 793 * with correct one. It is exactly, which we pretend to do.
1da177e4 794 */
1da177e4 795
ee6aac59
IJ
796 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
797 * guarantees that rto is higher.
798 */
f1ecd5d9 799 tcp_bound_rto(sk);
1da177e4
LT
800}
801
cf533ea5 802__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
803{
804 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
805
22b71c8f 806 if (!cwnd)
442b9635 807 cwnd = TCP_INIT_CWND;
1da177e4
LT
808 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
809}
810
e60402d0
IJ
811/*
812 * Packet counting of FACK is based on in-order assumptions, therefore TCP
813 * disables it when reordering is detected
814 */
4aabd8ef 815void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 816{
85cc391c
IJ
817 /* RFC3517 uses different metric in lost marker => reset on change */
818 if (tcp_is_fack(tp))
819 tp->lost_skb_hint = NULL;
ab56222a 820 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
821}
822
564262c1 823/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
824static void tcp_dsack_seen(struct tcp_sock *tp)
825{
ab56222a 826 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
827}
828
6687e988
ACM
829static void tcp_update_reordering(struct sock *sk, const int metric,
830 const int ts)
1da177e4 831{
6687e988 832 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 833 if (metric > tp->reordering) {
40b215e5
PE
834 int mib_idx;
835
1da177e4
LT
836 tp->reordering = min(TCP_MAX_REORDERING, metric);
837
838 /* This exciting event is worth to be remembered. 8) */
839 if (ts)
40b215e5 840 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 841 else if (tcp_is_reno(tp))
40b215e5 842 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 843 else if (tcp_is_fack(tp))
40b215e5 844 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 845 else
40b215e5
PE
846 mib_idx = LINUX_MIB_TCPSACKREORDER;
847
de0744af 848 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 849#if FASTRETRANS_DEBUG > 1
91df42be
JP
850 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
851 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
852 tp->reordering,
853 tp->fackets_out,
854 tp->sacked_out,
855 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 856#endif
e60402d0 857 tcp_disable_fack(tp);
1da177e4 858 }
eed530b6
YC
859
860 if (metric > 0)
861 tcp_disable_early_retrans(tp);
1da177e4
LT
862}
863
006f582c 864/* This must be called before lost_out is incremented */
c8c213f2
IJ
865static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
866{
006f582c 867 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
868 before(TCP_SKB_CB(skb)->seq,
869 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
870 tp->retransmit_skb_hint = skb;
871
872 if (!tp->lost_out ||
873 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
874 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
875}
876
41ea36e3
IJ
877static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
878{
879 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
880 tcp_verify_retransmit_hint(tp, skb);
881
882 tp->lost_out += tcp_skb_pcount(skb);
883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 }
885}
886
e1aa680f
IJ
887static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
888 struct sk_buff *skb)
006f582c
IJ
889{
890 tcp_verify_retransmit_hint(tp, skb);
891
892 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
893 tp->lost_out += tcp_skb_pcount(skb);
894 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
895 }
896}
897
1da177e4
LT
898/* This procedure tags the retransmission queue when SACKs arrive.
899 *
900 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
901 * Packets in queue with these bits set are counted in variables
902 * sacked_out, retrans_out and lost_out, correspondingly.
903 *
904 * Valid combinations are:
905 * Tag InFlight Description
906 * 0 1 - orig segment is in flight.
907 * S 0 - nothing flies, orig reached receiver.
908 * L 0 - nothing flies, orig lost by net.
909 * R 2 - both orig and retransmit are in flight.
910 * L|R 1 - orig is lost, retransmit is in flight.
911 * S|R 1 - orig reached receiver, retrans is still in flight.
912 * (L|S|R is logically valid, it could occur when L|R is sacked,
913 * but it is equivalent to plain S and code short-curcuits it to S.
914 * L|S is logically invalid, it would mean -1 packet in flight 8))
915 *
916 * These 6 states form finite state machine, controlled by the following events:
917 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
918 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 919 * 3. Loss detection event of two flavors:
1da177e4
LT
920 * A. Scoreboard estimator decided the packet is lost.
921 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
922 * A''. Its FACK modification, head until snd.fack is lost.
923 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
924 * segment was retransmitted.
925 * 4. D-SACK added new rule: D-SACK changes any tag to S.
926 *
927 * It is pleasant to note, that state diagram turns out to be commutative,
928 * so that we are allowed not to be bothered by order of our actions,
929 * when multiple events arrive simultaneously. (see the function below).
930 *
931 * Reordering detection.
932 * --------------------
933 * Reordering metric is maximal distance, which a packet can be displaced
934 * in packet stream. With SACKs we can estimate it:
935 *
936 * 1. SACK fills old hole and the corresponding segment was not
937 * ever retransmitted -> reordering. Alas, we cannot use it
938 * when segment was retransmitted.
939 * 2. The last flaw is solved with D-SACK. D-SACK arrives
940 * for retransmitted and already SACKed segment -> reordering..
941 * Both of these heuristics are not used in Loss state, when we cannot
942 * account for retransmits accurately.
5b3c9882
IJ
943 *
944 * SACK block validation.
945 * ----------------------
946 *
947 * SACK block range validation checks that the received SACK block fits to
948 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
949 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
950 * it means that the receiver is rather inconsistent with itself reporting
951 * SACK reneging when it should advance SND.UNA. Such SACK block this is
952 * perfectly valid, however, in light of RFC2018 which explicitly states
953 * that "SACK block MUST reflect the newest segment. Even if the newest
954 * segment is going to be discarded ...", not that it looks very clever
955 * in case of head skb. Due to potentional receiver driven attacks, we
956 * choose to avoid immediate execution of a walk in write queue due to
957 * reneging and defer head skb's loss recovery to standard loss recovery
958 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
959 *
960 * Implements also blockage to start_seq wrap-around. Problem lies in the
961 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
962 * there's no guarantee that it will be before snd_nxt (n). The problem
963 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
964 * wrap (s_w):
965 *
966 * <- outs wnd -> <- wrapzone ->
967 * u e n u_w e_w s n_w
968 * | | | | | | |
969 * |<------------+------+----- TCP seqno space --------------+---------->|
970 * ...-- <2^31 ->| |<--------...
971 * ...---- >2^31 ------>| |<--------...
972 *
973 * Current code wouldn't be vulnerable but it's better still to discard such
974 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
975 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
976 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
977 * equal to the ideal case (infinite seqno space without wrap caused issues).
978 *
979 * With D-SACK the lower bound is extended to cover sequence space below
980 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 981 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
982 * for the normal SACK blocks, explained above). But there all simplicity
983 * ends, TCP might receive valid D-SACKs below that. As long as they reside
984 * fully below undo_marker they do not affect behavior in anyway and can
985 * therefore be safely ignored. In rare cases (which are more or less
986 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
987 * fragmentation and packet reordering past skb's retransmission. To consider
988 * them correctly, the acceptable range must be extended even more though
989 * the exact amount is rather hard to quantify. However, tp->max_window can
990 * be used as an exaggerated estimate.
1da177e4 991 */
a2a385d6
ED
992static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
993 u32 start_seq, u32 end_seq)
5b3c9882
IJ
994{
995 /* Too far in future, or reversed (interpretation is ambiguous) */
996 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 997 return false;
5b3c9882
IJ
998
999 /* Nasty start_seq wrap-around check (see comments above) */
1000 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1001 return false;
5b3c9882 1002
564262c1 1003 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1004 * start_seq == snd_una is non-sensical (see comments above)
1005 */
1006 if (after(start_seq, tp->snd_una))
a2a385d6 1007 return true;
5b3c9882
IJ
1008
1009 if (!is_dsack || !tp->undo_marker)
a2a385d6 1010 return false;
5b3c9882
IJ
1011
1012 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1013 if (after(end_seq, tp->snd_una))
a2a385d6 1014 return false;
5b3c9882
IJ
1015
1016 if (!before(start_seq, tp->undo_marker))
a2a385d6 1017 return true;
5b3c9882
IJ
1018
1019 /* Too old */
1020 if (!after(end_seq, tp->undo_marker))
a2a385d6 1021 return false;
5b3c9882
IJ
1022
1023 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1024 * start_seq < undo_marker and end_seq >= undo_marker.
1025 */
1026 return !before(start_seq, end_seq - tp->max_window);
1027}
1028
1c1e87ed 1029/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1030 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1031 * for reordering! Ugly, but should help.
f785a8e2
IJ
1032 *
1033 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1034 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1035 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1036 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1037 */
407ef1de 1038static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1039{
9f58f3b7 1040 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1041 struct tcp_sock *tp = tcp_sk(sk);
1042 struct sk_buff *skb;
f785a8e2 1043 int cnt = 0;
df2e014b 1044 u32 new_low_seq = tp->snd_nxt;
6859d494 1045 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1046
1047 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1048 !after(received_upto, tp->lost_retrans_low) ||
1049 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1050 return;
1c1e87ed
IJ
1051
1052 tcp_for_write_queue(skb, sk) {
1053 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1054
1055 if (skb == tcp_send_head(sk))
1056 break;
f785a8e2 1057 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1058 break;
1059 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1060 continue;
1061
f785a8e2
IJ
1062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1063 continue;
1064
d0af4160
IJ
1065 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1066 * constraint here (see above) but figuring out that at
1067 * least tp->reordering SACK blocks reside between ack_seq
1068 * and received_upto is not easy task to do cheaply with
1069 * the available datastructures.
1070 *
1071 * Whether FACK should check here for tp->reordering segs
1072 * in-between one could argue for either way (it would be
1073 * rather simple to implement as we could count fack_count
1074 * during the walk and do tp->fackets_out - fack_count).
1075 */
1076 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1078 tp->retrans_out -= tcp_skb_pcount(skb);
1079
006f582c 1080 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1081 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1082 } else {
df2e014b 1083 if (before(ack_seq, new_low_seq))
b08d6cb2 1084 new_low_seq = ack_seq;
f785a8e2 1085 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1086 }
1087 }
b08d6cb2
IJ
1088
1089 if (tp->retrans_out)
1090 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1091}
5b3c9882 1092
a2a385d6
ED
1093static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 struct tcp_sack_block_wire *sp, int num_sacks,
1095 u32 prior_snd_una)
d06e021d 1096{
1ed83465 1097 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1100 bool dup_sack = false;
d06e021d
DM
1101
1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1103 dup_sack = true;
e60402d0 1104 tcp_dsack_seen(tp);
de0744af 1105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1106 } else if (num_sacks > 1) {
d3e2ce3b
HH
1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1109
1110 if (!after(end_seq_0, end_seq_1) &&
1111 !before(start_seq_0, start_seq_1)) {
a2a385d6 1112 dup_sack = true;
e60402d0 1113 tcp_dsack_seen(tp);
de0744af
PE
1114 NET_INC_STATS_BH(sock_net(sk),
1115 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1116 }
1117 }
1118
1119 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1121 !after(end_seq_0, prior_snd_una) &&
1122 after(end_seq_0, tp->undo_marker))
1123 tp->undo_retrans--;
1124
1125 return dup_sack;
1126}
1127
a1197f5a 1128struct tcp_sacktag_state {
740b0f18
ED
1129 int reord;
1130 int fack_count;
1131 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1132 int flag;
a1197f5a
IJ
1133};
1134
d1935942
IJ
1135/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136 * the incoming SACK may not exactly match but we can find smaller MSS
1137 * aligned portion of it that matches. Therefore we might need to fragment
1138 * which may fail and creates some hassle (caller must handle error case
1139 * returns).
832d11c5
IJ
1140 *
1141 * FIXME: this could be merged to shift decision code
d1935942 1142 */
0f79efdc 1143static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1144 u32 start_seq, u32 end_seq)
d1935942 1145{
a2a385d6
ED
1146 int err;
1147 bool in_sack;
d1935942 1148 unsigned int pkt_len;
adb92db8 1149 unsigned int mss;
d1935942
IJ
1150
1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153
1154 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1156 mss = tcp_skb_mss(skb);
d1935942
IJ
1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158
adb92db8 1159 if (!in_sack) {
d1935942 1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1161 if (pkt_len < mss)
1162 pkt_len = mss;
1163 } else {
d1935942 1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1165 if (pkt_len < mss)
1166 return -EINVAL;
1167 }
1168
1169 /* Round if necessary so that SACKs cover only full MSSes
1170 * and/or the remaining small portion (if present)
1171 */
1172 if (pkt_len > mss) {
1173 unsigned int new_len = (pkt_len / mss) * mss;
1174 if (!in_sack && new_len < pkt_len) {
1175 new_len += mss;
2cd0d743 1176 if (new_len >= skb->len)
adb92db8
IJ
1177 return 0;
1178 }
1179 pkt_len = new_len;
1180 }
6cc55e09 1181 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1182 if (err < 0)
1183 return err;
1184 }
1185
1186 return in_sack;
1187}
1188
cc9a672e
NC
1189/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1190static u8 tcp_sacktag_one(struct sock *sk,
1191 struct tcp_sacktag_state *state, u8 sacked,
1192 u32 start_seq, u32 end_seq,
740b0f18
ED
1193 int dup_sack, int pcount,
1194 const struct skb_mstamp *xmit_time)
9e10c47c 1195{
6859d494 1196 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1197 int fack_count = state->fack_count;
9e10c47c
IJ
1198
1199 /* Account D-SACK for retransmitted packet. */
1200 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1201 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1202 after(end_seq, tp->undo_marker))
9e10c47c 1203 tp->undo_retrans--;
ede9f3b1 1204 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1205 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1206 }
1207
1208 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1209 if (!after(end_seq, tp->snd_una))
a1197f5a 1210 return sacked;
9e10c47c
IJ
1211
1212 if (!(sacked & TCPCB_SACKED_ACKED)) {
1213 if (sacked & TCPCB_SACKED_RETRANS) {
1214 /* If the segment is not tagged as lost,
1215 * we do not clear RETRANS, believing
1216 * that retransmission is still in flight.
1217 */
1218 if (sacked & TCPCB_LOST) {
a1197f5a 1219 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1220 tp->lost_out -= pcount;
1221 tp->retrans_out -= pcount;
9e10c47c
IJ
1222 }
1223 } else {
1224 if (!(sacked & TCPCB_RETRANS)) {
1225 /* New sack for not retransmitted frame,
1226 * which was in hole. It is reordering.
1227 */
cc9a672e 1228 if (before(start_seq,
9e10c47c 1229 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1230 state->reord = min(fack_count,
1231 state->reord);
e33099f9
YC
1232 if (!after(end_seq, tp->high_seq))
1233 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42 1234 /* Pick the earliest sequence sacked for RTT */
740b0f18
ED
1235 if (state->rtt_us < 0) {
1236 struct skb_mstamp now;
1237
1238 skb_mstamp_get(&now);
1239 state->rtt_us = skb_mstamp_us_delta(&now,
1240 xmit_time);
1241 }
9e10c47c
IJ
1242 }
1243
1244 if (sacked & TCPCB_LOST) {
a1197f5a 1245 sacked &= ~TCPCB_LOST;
f58b22fd 1246 tp->lost_out -= pcount;
9e10c47c
IJ
1247 }
1248 }
1249
a1197f5a
IJ
1250 sacked |= TCPCB_SACKED_ACKED;
1251 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1252 tp->sacked_out += pcount;
9e10c47c 1253
f58b22fd 1254 fack_count += pcount;
9e10c47c
IJ
1255
1256 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1257 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1258 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1259 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1260
1261 if (fack_count > tp->fackets_out)
1262 tp->fackets_out = fack_count;
9e10c47c
IJ
1263 }
1264
1265 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1266 * frames and clear it. undo_retrans is decreased above, L|R frames
1267 * are accounted above as well.
1268 */
a1197f5a
IJ
1269 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1270 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1271 tp->retrans_out -= pcount;
9e10c47c
IJ
1272 }
1273
a1197f5a 1274 return sacked;
9e10c47c
IJ
1275}
1276
daef52ba
NC
1277/* Shift newly-SACKed bytes from this skb to the immediately previous
1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1279 */
a2a385d6
ED
1280static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1281 struct tcp_sacktag_state *state,
1282 unsigned int pcount, int shifted, int mss,
1283 bool dup_sack)
832d11c5
IJ
1284{
1285 struct tcp_sock *tp = tcp_sk(sk);
50133161 1286 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1287 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1288 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1289
1290 BUG_ON(!pcount);
1291
4c90d3b3
NC
1292 /* Adjust counters and hints for the newly sacked sequence
1293 * range but discard the return value since prev is already
1294 * marked. We must tag the range first because the seq
1295 * advancement below implicitly advances
1296 * tcp_highest_sack_seq() when skb is highest_sack.
1297 */
1298 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1299 start_seq, end_seq, dup_sack, pcount,
740b0f18 1300 &skb->skb_mstamp);
4c90d3b3
NC
1301
1302 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1303 tp->lost_cnt_hint += pcount;
1304
832d11c5
IJ
1305 TCP_SKB_CB(prev)->end_seq += shifted;
1306 TCP_SKB_CB(skb)->seq += shifted;
1307
cd7d8498
ED
1308 tcp_skb_pcount_add(prev, pcount);
1309 BUG_ON(tcp_skb_pcount(skb) < pcount);
1310 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1311
1312 /* When we're adding to gso_segs == 1, gso_size will be zero,
1313 * in theory this shouldn't be necessary but as long as DSACK
1314 * code can come after this skb later on it's better to keep
1315 * setting gso_size to something.
1316 */
1317 if (!skb_shinfo(prev)->gso_size) {
1318 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1319 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1320 }
1321
1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
cd7d8498 1323 if (tcp_skb_pcount(skb) <= 1) {
832d11c5 1324 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1325 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1326 }
1327
832d11c5
IJ
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330
832d11c5
IJ
1331 if (skb->len > 0) {
1332 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1334 return false;
832d11c5
IJ
1335 }
1336
1337 /* Whole SKB was eaten :-) */
1338
92ee76b6
IJ
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 }
1345
5e8a402f
ED
1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 TCP_SKB_CB(prev)->end_seq++;
1349
832d11c5
IJ
1350 if (skb == tcp_highest_sack(sk))
1351 tcp_advance_highest_sack(sk, skb);
1352
1353 tcp_unlink_write_queue(skb, sk);
1354 sk_wmem_free_skb(sk, skb);
1355
111cc8b9
IJ
1356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1357
a2a385d6 1358 return true;
832d11c5
IJ
1359}
1360
1361/* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
cf533ea5 1364static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1365{
775ffabf 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1367}
1368
1369/* Shifting pages past head area doesn't work */
cf533ea5 1370static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1371{
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373}
1374
1375/* Try collapsing SACK blocks spanning across multiple skbs to a single
1376 * skb.
1377 */
1378static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1379 struct tcp_sacktag_state *state,
832d11c5 1380 u32 start_seq, u32 end_seq,
a2a385d6 1381 bool dup_sack)
832d11c5
IJ
1382{
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev;
1385 int mss;
1386 int pcount = 0;
1387 int len;
1388 int in_sack;
1389
1390 if (!sk_can_gso(sk))
1391 goto fallback;
1392
1393 /* Normally R but no L won't result in plain S */
1394 if (!dup_sack &&
9969ca5f 1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1396 goto fallback;
1397 if (!skb_can_shift(skb))
1398 goto fallback;
1399 /* This frame is about to be dropped (was ACKed). */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401 goto fallback;
1402
1403 /* Can only happen with delayed DSACK + discard craziness */
1404 if (unlikely(skb == tcp_write_queue_head(sk)))
1405 goto fallback;
1406 prev = tcp_write_queue_prev(sk, skb);
1407
1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409 goto fallback;
1410
1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1412 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1413
1414 if (in_sack) {
1415 len = skb->len;
1416 pcount = tcp_skb_pcount(skb);
775ffabf 1417 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1418
1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 * drop this restriction as unnecessary
1421 */
775ffabf 1422 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1423 goto fallback;
1424 } else {
1425 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1426 goto noop;
1427 /* CHECKME: This is non-MSS split case only?, this will
1428 * cause skipped skbs due to advancing loop btw, original
1429 * has that feature too
1430 */
1431 if (tcp_skb_pcount(skb) <= 1)
1432 goto noop;
1433
1434 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1435 if (!in_sack) {
1436 /* TODO: head merge to next could be attempted here
1437 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1438 * though it might not be worth of the additional hassle
1439 *
1440 * ...we can probably just fallback to what was done
1441 * previously. We could try merging non-SACKed ones
1442 * as well but it probably isn't going to buy off
1443 * because later SACKs might again split them, and
1444 * it would make skb timestamp tracking considerably
1445 * harder problem.
1446 */
1447 goto fallback;
1448 }
1449
1450 len = end_seq - TCP_SKB_CB(skb)->seq;
1451 BUG_ON(len < 0);
1452 BUG_ON(len > skb->len);
1453
1454 /* MSS boundaries should be honoured or else pcount will
1455 * severely break even though it makes things bit trickier.
1456 * Optimize common case to avoid most of the divides
1457 */
1458 mss = tcp_skb_mss(skb);
1459
1460 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1461 * drop this restriction as unnecessary
1462 */
775ffabf 1463 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1464 goto fallback;
1465
1466 if (len == mss) {
1467 pcount = 1;
1468 } else if (len < mss) {
1469 goto noop;
1470 } else {
1471 pcount = len / mss;
1472 len = pcount * mss;
1473 }
1474 }
1475
4648dc97
NC
1476 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1477 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1478 goto fallback;
1479
832d11c5
IJ
1480 if (!skb_shift(prev, skb, len))
1481 goto fallback;
9ec06ff5 1482 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1483 goto out;
1484
1485 /* Hole filled allows collapsing with the next as well, this is very
1486 * useful when hole on every nth skb pattern happens
1487 */
1488 if (prev == tcp_write_queue_tail(sk))
1489 goto out;
1490 skb = tcp_write_queue_next(sk, prev);
1491
f0bc52f3
IJ
1492 if (!skb_can_shift(skb) ||
1493 (skb == tcp_send_head(sk)) ||
1494 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1495 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1496 goto out;
1497
1498 len = skb->len;
1499 if (skb_shift(prev, skb, len)) {
1500 pcount += tcp_skb_pcount(skb);
9ec06ff5 1501 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1502 }
1503
1504out:
a1197f5a 1505 state->fack_count += pcount;
832d11c5
IJ
1506 return prev;
1507
1508noop:
1509 return skb;
1510
1511fallback:
111cc8b9 1512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1513 return NULL;
1514}
1515
68f8353b
IJ
1516static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1517 struct tcp_sack_block *next_dup,
a1197f5a 1518 struct tcp_sacktag_state *state,
68f8353b 1519 u32 start_seq, u32 end_seq,
a2a385d6 1520 bool dup_sack_in)
68f8353b 1521{
832d11c5
IJ
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 struct sk_buff *tmp;
1524
68f8353b
IJ
1525 tcp_for_write_queue_from(skb, sk) {
1526 int in_sack = 0;
a2a385d6 1527 bool dup_sack = dup_sack_in;
68f8353b
IJ
1528
1529 if (skb == tcp_send_head(sk))
1530 break;
1531
1532 /* queue is in-order => we can short-circuit the walk early */
1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534 break;
1535
1536 if ((next_dup != NULL) &&
1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 in_sack = tcp_match_skb_to_sack(sk, skb,
1539 next_dup->start_seq,
1540 next_dup->end_seq);
1541 if (in_sack > 0)
a2a385d6 1542 dup_sack = true;
68f8353b
IJ
1543 }
1544
832d11c5
IJ
1545 /* skb reference here is a bit tricky to get right, since
1546 * shifting can eat and free both this skb and the next,
1547 * so not even _safe variant of the loop is enough.
1548 */
1549 if (in_sack <= 0) {
a1197f5a
IJ
1550 tmp = tcp_shift_skb_data(sk, skb, state,
1551 start_seq, end_seq, dup_sack);
832d11c5
IJ
1552 if (tmp != NULL) {
1553 if (tmp != skb) {
1554 skb = tmp;
1555 continue;
1556 }
1557
1558 in_sack = 0;
1559 } else {
1560 in_sack = tcp_match_skb_to_sack(sk, skb,
1561 start_seq,
1562 end_seq);
1563 }
1564 }
1565
68f8353b
IJ
1566 if (unlikely(in_sack < 0))
1567 break;
1568
832d11c5 1569 if (in_sack) {
cc9a672e
NC
1570 TCP_SKB_CB(skb)->sacked =
1571 tcp_sacktag_one(sk,
1572 state,
1573 TCP_SKB_CB(skb)->sacked,
1574 TCP_SKB_CB(skb)->seq,
1575 TCP_SKB_CB(skb)->end_seq,
1576 dup_sack,
59c9af42 1577 tcp_skb_pcount(skb),
740b0f18 1578 &skb->skb_mstamp);
68f8353b 1579
832d11c5
IJ
1580 if (!before(TCP_SKB_CB(skb)->seq,
1581 tcp_highest_sack_seq(tp)))
1582 tcp_advance_highest_sack(sk, skb);
1583 }
1584
a1197f5a 1585 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1586 }
1587 return skb;
1588}
1589
1590/* Avoid all extra work that is being done by sacktag while walking in
1591 * a normal way
1592 */
1593static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1594 struct tcp_sacktag_state *state,
1595 u32 skip_to_seq)
68f8353b
IJ
1596{
1597 tcp_for_write_queue_from(skb, sk) {
1598 if (skb == tcp_send_head(sk))
1599 break;
1600
e8bae275 1601 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1602 break;
d152a7d8 1603
a1197f5a 1604 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1605 }
1606 return skb;
1607}
1608
1609static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1610 struct sock *sk,
1611 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1612 struct tcp_sacktag_state *state,
1613 u32 skip_to_seq)
68f8353b
IJ
1614{
1615 if (next_dup == NULL)
1616 return skb;
1617
1618 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1619 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1620 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1621 next_dup->start_seq, next_dup->end_seq,
1622 1);
68f8353b
IJ
1623 }
1624
1625 return skb;
1626}
1627
cf533ea5 1628static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1629{
1630 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1631}
1632
1da177e4 1633static int
cf533ea5 1634tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
740b0f18 1635 u32 prior_snd_una, long *sack_rtt_us)
1da177e4
LT
1636{
1637 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1638 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1639 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1640 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1641 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1642 struct tcp_sack_block *cache;
a1197f5a 1643 struct tcp_sacktag_state state;
68f8353b 1644 struct sk_buff *skb;
4389dded 1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1646 int used_sacks;
a2a385d6 1647 bool found_dup_sack = false;
68f8353b 1648 int i, j;
fda03fbb 1649 int first_sack_index;
1da177e4 1650
a1197f5a
IJ
1651 state.flag = 0;
1652 state.reord = tp->packets_out;
740b0f18 1653 state.rtt_us = -1L;
a1197f5a 1654
d738cd8f 1655 if (!tp->sacked_out) {
de83c058
IJ
1656 if (WARN_ON(tp->fackets_out))
1657 tp->fackets_out = 0;
6859d494 1658 tcp_highest_sack_reset(sk);
d738cd8f 1659 }
1da177e4 1660
1ed83465 1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1662 num_sacks, prior_snd_una);
1663 if (found_dup_sack)
a1197f5a 1664 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1665
1666 /* Eliminate too old ACKs, but take into
1667 * account more or less fresh ones, they can
1668 * contain valid SACK info.
1669 */
1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1671 return 0;
1672