[NET]: Introduce inet_connection_sock
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
66#include <linux/config.h>
67#include <linux/mm.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
74
75int sysctl_tcp_timestamps = 1;
76int sysctl_tcp_window_scaling = 1;
77int sysctl_tcp_sack = 1;
78int sysctl_tcp_fack = 1;
79int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn;
81int sysctl_tcp_dsack = 1;
82int sysctl_tcp_app_win = 31;
83int sysctl_tcp_adv_win_scale = 2;
84
85int sysctl_tcp_stdurg;
86int sysctl_tcp_rfc1337;
87int sysctl_tcp_max_orphans = NR_FILE;
88int sysctl_tcp_frto;
89int sysctl_tcp_nometrics_save;
1da177e4
LT
90
91int sysctl_tcp_moderate_rcvbuf = 1;
92
1da177e4
LT
93#define FLAG_DATA 0x01 /* Incoming frame contained data. */
94#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98#define FLAG_DATA_SACKED 0x20 /* New SACK. */
99#define FLAG_ECE 0x40 /* ECE in this ACK */
100#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111
112#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113
114/* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
116 */
463c84b9
ACM
117static inline void tcp_measure_rcv_mss(struct sock *sk,
118 const struct sk_buff *skb)
1da177e4 119{
463c84b9
ACM
120 struct inet_connection_sock *icsk = inet_csk(sk);
121 const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 unsigned int len;
1da177e4 123
463c84b9 124 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
125
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
128 */
129 len = skb->len;
463c84b9
ACM
130 if (len >= icsk->icsk_ack.rcv_mss) {
131 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
132 } else {
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
135 *
136 * "len" is invariant segment length, including TCP header.
137 */
138 len += skb->data - skb->h.raw;
139 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
144 */
145 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
150 */
463c84b9
ACM
151 len -= tcp_sk(sk)->tcp_header_len;
152 icsk->icsk_ack.last_seg_size = len;
1da177e4 153 if (len == lss) {
463c84b9 154 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
155 return;
156 }
157 }
463c84b9 158 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
159 }
160}
161
463c84b9 162static void tcp_incr_quickack(struct sock *sk)
1da177e4 163{
463c84b9
ACM
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
166
167 if (quickacks==0)
168 quickacks=2;
463c84b9
ACM
169 if (quickacks > icsk->icsk_ack.quick)
170 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
171}
172
463c84b9 173void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 174{
463c84b9
ACM
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 tcp_incr_quickack(sk);
177 icsk->icsk_ack.pingpong = 0;
178 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
179}
180
181/* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
183 */
184
463c84b9 185static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 const struct inet_connection_sock *icsk = inet_csk(sk);
188 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
189}
190
191/* Buffer size and advertised window tuning.
192 *
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
194 */
195
196static void tcp_fixup_sndbuf(struct sock *sk)
197{
198 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 sizeof(struct sk_buff);
200
201 if (sk->sk_sndbuf < 3 * sndmem)
202 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
203}
204
205/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
206 *
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
216 *
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
224 *
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
228 */
229
230/* Slow part of check#2. */
463c84b9
ACM
231static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 const struct sk_buff *skb)
1da177e4
LT
233{
234 /* Optimize this! */
235 int truesize = tcp_win_from_space(skb->truesize)/2;
236 int window = tcp_full_space(sk)/2;
237
238 while (tp->rcv_ssthresh <= window) {
239 if (truesize <= skb->len)
463c84b9 240 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
241
242 truesize >>= 1;
243 window >>= 1;
244 }
245 return 0;
246}
247
248static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 struct sk_buff *skb)
250{
251 /* Check #1 */
252 if (tp->rcv_ssthresh < tp->window_clamp &&
253 (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 !tcp_memory_pressure) {
255 int incr;
256
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
259 */
260 if (tcp_win_from_space(skb->truesize) <= skb->len)
261 incr = 2*tp->advmss;
262 else
263 incr = __tcp_grow_window(sk, tp, skb);
264
265 if (incr) {
266 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 267 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
268 }
269 }
270}
271
272/* 3. Tuning rcvbuf, when connection enters established state. */
273
274static void tcp_fixup_rcvbuf(struct sock *sk)
275{
276 struct tcp_sock *tp = tcp_sk(sk);
277 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
278
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
282 */
283 while (tcp_win_from_space(rcvmem) < tp->advmss)
284 rcvmem += 128;
285 if (sk->sk_rcvbuf < 4 * rcvmem)
286 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
287}
288
289/* 4. Try to fixup all. It is made iimediately after connection enters
290 * established state.
291 */
292static void tcp_init_buffer_space(struct sock *sk)
293{
294 struct tcp_sock *tp = tcp_sk(sk);
295 int maxwin;
296
297 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 tcp_fixup_rcvbuf(sk);
299 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 tcp_fixup_sndbuf(sk);
301
302 tp->rcvq_space.space = tp->rcv_wnd;
303
304 maxwin = tcp_full_space(sk);
305
306 if (tp->window_clamp >= maxwin) {
307 tp->window_clamp = maxwin;
308
309 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 tp->window_clamp = max(maxwin -
311 (maxwin >> sysctl_tcp_app_win),
312 4 * tp->advmss);
313 }
314
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win &&
317 tp->window_clamp > 2 * tp->advmss &&
318 tp->window_clamp + tp->advmss > maxwin)
319 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
320
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 tp->snd_cwnd_stamp = tcp_time_stamp;
323}
324
1da177e4
LT
325/* 5. Recalculate window clamp after socket hit its memory bounds. */
326static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
327{
328 struct sk_buff *skb;
329 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
330 int ofo_win = 0;
331
463c84b9 332 inet_csk(sk)->icsk_ack.quick = 0;
1da177e4
LT
333
334 skb_queue_walk(&tp->out_of_order_queue, skb) {
335 ofo_win += skb->len;
336 }
337
338 /* If overcommit is due to out of order segments,
339 * do not clamp window. Try to expand rcvbuf instead.
340 */
341 if (ofo_win) {
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
348 }
349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
350 app_win += ofo_win;
351 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
352 app_win >>= 1;
463c84b9
ACM
353 if (app_win > inet_csk(sk)->icsk_ack.rcv_mss)
354 app_win -= inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
355 app_win = max(app_win, 2U*tp->advmss);
356
357 if (!ofo_win)
358 tp->window_clamp = min(tp->window_clamp, app_win);
359 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
360 }
361}
362
363/* Receiver "autotuning" code.
364 *
365 * The algorithm for RTT estimation w/o timestamps is based on
366 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
367 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
368 *
369 * More detail on this code can be found at
370 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
371 * though this reference is out of date. A new paper
372 * is pending.
373 */
374static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
375{
376 u32 new_sample = tp->rcv_rtt_est.rtt;
377 long m = sample;
378
379 if (m == 0)
380 m = 1;
381
382 if (new_sample != 0) {
383 /* If we sample in larger samples in the non-timestamp
384 * case, we could grossly overestimate the RTT especially
385 * with chatty applications or bulk transfer apps which
386 * are stalled on filesystem I/O.
387 *
388 * Also, since we are only going for a minimum in the
389 * non-timestamp case, we do not smoothe things out
390 * else with timestamps disabled convergance takes too
391 * long.
392 */
393 if (!win_dep) {
394 m -= (new_sample >> 3);
395 new_sample += m;
396 } else if (m < new_sample)
397 new_sample = m << 3;
398 } else {
399 /* No previous mesaure. */
400 new_sample = m << 3;
401 }
402
403 if (tp->rcv_rtt_est.rtt != new_sample)
404 tp->rcv_rtt_est.rtt = new_sample;
405}
406
407static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
408{
409 if (tp->rcv_rtt_est.time == 0)
410 goto new_measure;
411 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
412 return;
413 tcp_rcv_rtt_update(tp,
414 jiffies - tp->rcv_rtt_est.time,
415 1);
416
417new_measure:
418 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
419 tp->rcv_rtt_est.time = tcp_time_stamp;
420}
421
463c84b9 422static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 423{
463c84b9 424 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
425 if (tp->rx_opt.rcv_tsecr &&
426 (TCP_SKB_CB(skb)->end_seq -
463c84b9 427 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
428 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
429}
430
431/*
432 * This function should be called every time data is copied to user space.
433 * It calculates the appropriate TCP receive buffer space.
434 */
435void tcp_rcv_space_adjust(struct sock *sk)
436{
437 struct tcp_sock *tp = tcp_sk(sk);
438 int time;
439 int space;
440
441 if (tp->rcvq_space.time == 0)
442 goto new_measure;
443
444 time = tcp_time_stamp - tp->rcvq_space.time;
445 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
446 tp->rcv_rtt_est.rtt == 0)
447 return;
448
449 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
450
451 space = max(tp->rcvq_space.space, space);
452
453 if (tp->rcvq_space.space != space) {
454 int rcvmem;
455
456 tp->rcvq_space.space = space;
457
458 if (sysctl_tcp_moderate_rcvbuf) {
459 int new_clamp = space;
460
461 /* Receive space grows, normalize in order to
462 * take into account packet headers and sk_buff
463 * structure overhead.
464 */
465 space /= tp->advmss;
466 if (!space)
467 space = 1;
468 rcvmem = (tp->advmss + MAX_TCP_HEADER +
469 16 + sizeof(struct sk_buff));
470 while (tcp_win_from_space(rcvmem) < tp->advmss)
471 rcvmem += 128;
472 space *= rcvmem;
473 space = min(space, sysctl_tcp_rmem[2]);
474 if (space > sk->sk_rcvbuf) {
475 sk->sk_rcvbuf = space;
476
477 /* Make the window clamp follow along. */
478 tp->window_clamp = new_clamp;
479 }
480 }
481 }
482
483new_measure:
484 tp->rcvq_space.seq = tp->copied_seq;
485 tp->rcvq_space.time = tcp_time_stamp;
486}
487
488/* There is something which you must keep in mind when you analyze the
489 * behavior of the tp->ato delayed ack timeout interval. When a
490 * connection starts up, we want to ack as quickly as possible. The
491 * problem is that "good" TCP's do slow start at the beginning of data
492 * transmission. The means that until we send the first few ACK's the
493 * sender will sit on his end and only queue most of his data, because
494 * he can only send snd_cwnd unacked packets at any given time. For
495 * each ACK we send, he increments snd_cwnd and transmits more of his
496 * queue. -DaveM
497 */
498static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
499{
463c84b9 500 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
501 u32 now;
502
463c84b9 503 inet_csk_schedule_ack(sk);
1da177e4 504
463c84b9 505 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
506
507 tcp_rcv_rtt_measure(tp);
508
509 now = tcp_time_stamp;
510
463c84b9 511 if (!icsk->icsk_ack.ato) {
1da177e4
LT
512 /* The _first_ data packet received, initialize
513 * delayed ACK engine.
514 */
463c84b9
ACM
515 tcp_incr_quickack(sk);
516 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 517 } else {
463c84b9 518 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
519
520 if (m <= TCP_ATO_MIN/2) {
521 /* The fastest case is the first. */
463c84b9
ACM
522 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
523 } else if (m < icsk->icsk_ack.ato) {
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
525 if (icsk->icsk_ack.ato > icsk->icsk_rto)
526 icsk->icsk_ack.ato = icsk->icsk_rto;
527 } else if (m > icsk->icsk_rto) {
1da177e4
LT
528 /* Too long gap. Apparently sender falled to
529 * restart window, so that we send ACKs quickly.
530 */
463c84b9 531 tcp_incr_quickack(sk);
1da177e4
LT
532 sk_stream_mem_reclaim(sk);
533 }
534 }
463c84b9 535 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
536
537 TCP_ECN_check_ce(tp, skb);
538
539 if (skb->len >= 128)
540 tcp_grow_window(sk, tp, skb);
541}
542
1da177e4
LT
543/* Called to compute a smoothed rtt estimate. The data fed to this
544 * routine either comes from timestamps, or from segments that were
545 * known _not_ to have been retransmitted [see Karn/Partridge
546 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
547 * piece by Van Jacobson.
548 * NOTE: the next three routines used to be one big routine.
549 * To save cycles in the RFC 1323 implementation it was better to break
550 * it up into three procedures. -- erics
551 */
317a76f9 552static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
1da177e4
LT
553{
554 long m = mrtt; /* RTT */
555
1da177e4
LT
556 /* The following amusing code comes from Jacobson's
557 * article in SIGCOMM '88. Note that rtt and mdev
558 * are scaled versions of rtt and mean deviation.
559 * This is designed to be as fast as possible
560 * m stands for "measurement".
561 *
562 * On a 1990 paper the rto value is changed to:
563 * RTO = rtt + 4 * mdev
564 *
565 * Funny. This algorithm seems to be very broken.
566 * These formulae increase RTO, when it should be decreased, increase
567 * too slowly, when it should be incresed fastly, decrease too fastly
568 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
569 * does not matter how to _calculate_ it. Seems, it was trap
570 * that VJ failed to avoid. 8)
571 */
572 if(m == 0)
573 m = 1;
574 if (tp->srtt != 0) {
575 m -= (tp->srtt >> 3); /* m is now error in rtt est */
576 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
577 if (m < 0) {
578 m = -m; /* m is now abs(error) */
579 m -= (tp->mdev >> 2); /* similar update on mdev */
580 /* This is similar to one of Eifel findings.
581 * Eifel blocks mdev updates when rtt decreases.
582 * This solution is a bit different: we use finer gain
583 * for mdev in this case (alpha*beta).
584 * Like Eifel it also prevents growth of rto,
585 * but also it limits too fast rto decreases,
586 * happening in pure Eifel.
587 */
588 if (m > 0)
589 m >>= 3;
590 } else {
591 m -= (tp->mdev >> 2); /* similar update on mdev */
592 }
593 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
594 if (tp->mdev > tp->mdev_max) {
595 tp->mdev_max = tp->mdev;
596 if (tp->mdev_max > tp->rttvar)
597 tp->rttvar = tp->mdev_max;
598 }
599 if (after(tp->snd_una, tp->rtt_seq)) {
600 if (tp->mdev_max < tp->rttvar)
601 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
602 tp->rtt_seq = tp->snd_nxt;
603 tp->mdev_max = TCP_RTO_MIN;
604 }
605 } else {
606 /* no previous measure. */
607 tp->srtt = m<<3; /* take the measured time to be rtt */
608 tp->mdev = m<<1; /* make sure rto = 3*rtt */
609 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
610 tp->rtt_seq = tp->snd_nxt;
611 }
612
317a76f9
SH
613 if (tp->ca_ops->rtt_sample)
614 tp->ca_ops->rtt_sample(tp, *usrtt);
1da177e4
LT
615}
616
617/* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
619 */
463c84b9 620static inline void tcp_set_rto(struct sock *sk)
1da177e4 621{
463c84b9 622 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
623 /* Old crap is replaced with new one. 8)
624 *
625 * More seriously:
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some curcumstances.
632 */
463c84b9 633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
634
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exaclty, which we pretend to do.
639 */
640}
641
642/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
644 */
463c84b9 645static inline void tcp_bound_rto(struct sock *sk)
1da177e4 646{
463c84b9
ACM
647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
649}
650
651/* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654 */
655void tcp_update_metrics(struct sock *sk)
656{
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct dst_entry *dst = __sk_dst_get(sk);
659
660 if (sysctl_tcp_nometrics_save)
661 return;
662
663 dst_confirm(dst);
664
665 if (dst && (dst->flags&DST_HOST)) {
666 int m;
667
463c84b9 668 if (inet_csk(sk)->icsk_backoff || !tp->srtt) {
1da177e4
LT
669 /* This session failed to estimate rtt. Why?
670 * Probably, no packets returned in time.
671 * Reset our results.
672 */
673 if (!(dst_metric_locked(dst, RTAX_RTT)))
674 dst->metrics[RTAX_RTT-1] = 0;
675 return;
676 }
677
678 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
679
680 /* If newly calculated rtt larger than stored one,
681 * store new one. Otherwise, use EWMA. Remember,
682 * rtt overestimation is always better than underestimation.
683 */
684 if (!(dst_metric_locked(dst, RTAX_RTT))) {
685 if (m <= 0)
686 dst->metrics[RTAX_RTT-1] = tp->srtt;
687 else
688 dst->metrics[RTAX_RTT-1] -= (m>>3);
689 }
690
691 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
692 if (m < 0)
693 m = -m;
694
695 /* Scale deviation to rttvar fixed point */
696 m >>= 1;
697 if (m < tp->mdev)
698 m = tp->mdev;
699
700 if (m >= dst_metric(dst, RTAX_RTTVAR))
701 dst->metrics[RTAX_RTTVAR-1] = m;
702 else
703 dst->metrics[RTAX_RTTVAR-1] -=
704 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
705 }
706
707 if (tp->snd_ssthresh >= 0xFFFF) {
708 /* Slow start still did not finish. */
709 if (dst_metric(dst, RTAX_SSTHRESH) &&
710 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
711 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
712 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
713 if (!dst_metric_locked(dst, RTAX_CWND) &&
714 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
715 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
716 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
717 tp->ca_state == TCP_CA_Open) {
718 /* Cong. avoidance phase, cwnd is reliable. */
719 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
720 dst->metrics[RTAX_SSTHRESH-1] =
721 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
722 if (!dst_metric_locked(dst, RTAX_CWND))
723 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
724 } else {
725 /* Else slow start did not finish, cwnd is non-sense,
726 ssthresh may be also invalid.
727 */
728 if (!dst_metric_locked(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
730 if (dst->metrics[RTAX_SSTHRESH-1] &&
731 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
732 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
733 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
734 }
735
736 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
737 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
738 tp->reordering != sysctl_tcp_reordering)
739 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
740 }
741 }
742}
743
744/* Numbers are taken from RFC2414. */
745__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
746{
747 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
748
749 if (!cwnd) {
c1b4a7e6 750 if (tp->mss_cache > 1460)
1da177e4
LT
751 cwnd = 2;
752 else
c1b4a7e6 753 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
754 }
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756}
757
758/* Initialize metrics on socket. */
759
760static void tcp_init_metrics(struct sock *sk)
761{
762 struct tcp_sock *tp = tcp_sk(sk);
763 struct dst_entry *dst = __sk_dst_get(sk);
764
765 if (dst == NULL)
766 goto reset;
767
768 dst_confirm(dst);
769
770 if (dst_metric_locked(dst, RTAX_CWND))
771 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
772 if (dst_metric(dst, RTAX_SSTHRESH)) {
773 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
774 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
775 tp->snd_ssthresh = tp->snd_cwnd_clamp;
776 }
777 if (dst_metric(dst, RTAX_REORDERING) &&
778 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
779 tp->rx_opt.sack_ok &= ~2;
780 tp->reordering = dst_metric(dst, RTAX_REORDERING);
781 }
782
783 if (dst_metric(dst, RTAX_RTT) == 0)
784 goto reset;
785
786 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
787 goto reset;
788
789 /* Initial rtt is determined from SYN,SYN-ACK.
790 * The segment is small and rtt may appear much
791 * less than real one. Use per-dst memory
792 * to make it more realistic.
793 *
794 * A bit of theory. RTT is time passed after "normal" sized packet
795 * is sent until it is ACKed. In normal curcumstances sending small
796 * packets force peer to delay ACKs and calculation is correct too.
797 * The algorithm is adaptive and, provided we follow specs, it
798 * NEVER underestimate RTT. BUT! If peer tries to make some clever
799 * tricks sort of "quick acks" for time long enough to decrease RTT
800 * to low value, and then abruptly stops to do it and starts to delay
801 * ACKs, wait for troubles.
802 */
803 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
804 tp->srtt = dst_metric(dst, RTAX_RTT);
805 tp->rtt_seq = tp->snd_nxt;
806 }
807 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
808 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
809 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
810 }
463c84b9
ACM
811 tcp_set_rto(sk);
812 tcp_bound_rto(sk);
813 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
814 goto reset;
815 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
816 tp->snd_cwnd_stamp = tcp_time_stamp;
817 return;
818
819reset:
820 /* Play conservative. If timestamps are not
821 * supported, TCP will fail to recalculate correct
822 * rtt, if initial rto is too small. FORGET ALL AND RESET!
823 */
824 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
825 tp->srtt = 0;
826 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 827 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
828 }
829}
830
831static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
832{
833 if (metric > tp->reordering) {
834 tp->reordering = min(TCP_MAX_REORDERING, metric);
835
836 /* This exciting event is worth to be remembered. 8) */
837 if (ts)
838 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
839 else if (IsReno(tp))
840 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
841 else if (IsFack(tp))
842 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
843 else
844 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
845#if FASTRETRANS_DEBUG > 1
846 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
847 tp->rx_opt.sack_ok, tp->ca_state,
848 tp->reordering,
849 tp->fackets_out,
850 tp->sacked_out,
851 tp->undo_marker ? tp->undo_retrans : 0);
852#endif
853 /* Disable FACK yet. */
854 tp->rx_opt.sack_ok &= ~2;
855 }
856}
857
858/* This procedure tags the retransmission queue when SACKs arrive.
859 *
860 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861 * Packets in queue with these bits set are counted in variables
862 * sacked_out, retrans_out and lost_out, correspondingly.
863 *
864 * Valid combinations are:
865 * Tag InFlight Description
866 * 0 1 - orig segment is in flight.
867 * S 0 - nothing flies, orig reached receiver.
868 * L 0 - nothing flies, orig lost by net.
869 * R 2 - both orig and retransmit are in flight.
870 * L|R 1 - orig is lost, retransmit is in flight.
871 * S|R 1 - orig reached receiver, retrans is still in flight.
872 * (L|S|R is logically valid, it could occur when L|R is sacked,
873 * but it is equivalent to plain S and code short-curcuits it to S.
874 * L|S is logically invalid, it would mean -1 packet in flight 8))
875 *
876 * These 6 states form finite state machine, controlled by the following events:
877 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879 * 3. Loss detection event of one of three flavors:
880 * A. Scoreboard estimator decided the packet is lost.
881 * A'. Reno "three dupacks" marks head of queue lost.
882 * A''. Its FACK modfication, head until snd.fack is lost.
883 * B. SACK arrives sacking data transmitted after never retransmitted
884 * hole was sent out.
885 * C. SACK arrives sacking SND.NXT at the moment, when the
886 * segment was retransmitted.
887 * 4. D-SACK added new rule: D-SACK changes any tag to S.
888 *
889 * It is pleasant to note, that state diagram turns out to be commutative,
890 * so that we are allowed not to be bothered by order of our actions,
891 * when multiple events arrive simultaneously. (see the function below).
892 *
893 * Reordering detection.
894 * --------------------
895 * Reordering metric is maximal distance, which a packet can be displaced
896 * in packet stream. With SACKs we can estimate it:
897 *
898 * 1. SACK fills old hole and the corresponding segment was not
899 * ever retransmitted -> reordering. Alas, we cannot use it
900 * when segment was retransmitted.
901 * 2. The last flaw is solved with D-SACK. D-SACK arrives
902 * for retransmitted and already SACKed segment -> reordering..
903 * Both of these heuristics are not used in Loss state, when we cannot
904 * account for retransmits accurately.
905 */
906static int
907tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
908{
909 struct tcp_sock *tp = tcp_sk(sk);
910 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
911 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
912 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
913 int reord = tp->packets_out;
914 int prior_fackets;
915 u32 lost_retrans = 0;
916 int flag = 0;
917 int i;
918
919 /* So, SACKs for already sent large segments will be lost.
920 * Not good, but alternative is to resegment the queue. */
921 if (sk->sk_route_caps & NETIF_F_TSO) {
922 sk->sk_route_caps &= ~NETIF_F_TSO;
923 sock_set_flag(sk, SOCK_NO_LARGESEND);
c1b4a7e6 924 tp->mss_cache = tp->mss_cache;
1da177e4
LT
925 }
926
927 if (!tp->sacked_out)
928 tp->fackets_out = 0;
929 prior_fackets = tp->fackets_out;
930
931 for (i=0; i<num_sacks; i++, sp++) {
932 struct sk_buff *skb;
933 __u32 start_seq = ntohl(sp->start_seq);
934 __u32 end_seq = ntohl(sp->end_seq);
935 int fack_count = 0;
936 int dup_sack = 0;
937
938 /* Check for D-SACK. */
939 if (i == 0) {
940 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
941
942 if (before(start_seq, ack)) {
943 dup_sack = 1;
944 tp->rx_opt.sack_ok |= 4;
945 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
946 } else if (num_sacks > 1 &&
947 !after(end_seq, ntohl(sp[1].end_seq)) &&
948 !before(start_seq, ntohl(sp[1].start_seq))) {
949 dup_sack = 1;
950 tp->rx_opt.sack_ok |= 4;
951 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
952 }
953
954 /* D-SACK for already forgotten data...
955 * Do dumb counting. */
956 if (dup_sack &&
957 !after(end_seq, prior_snd_una) &&
958 after(end_seq, tp->undo_marker))
959 tp->undo_retrans--;
960
961 /* Eliminate too old ACKs, but take into
962 * account more or less fresh ones, they can
963 * contain valid SACK info.
964 */
965 if (before(ack, prior_snd_una - tp->max_window))
966 return 0;
967 }
968
969 /* Event "B" in the comment above. */
970 if (after(end_seq, tp->high_seq))
971 flag |= FLAG_DATA_LOST;
972
973 sk_stream_for_retrans_queue(skb, sk) {
974 u8 sacked = TCP_SKB_CB(skb)->sacked;
975 int in_sack;
976
977 /* The retransmission queue is always in order, so
978 * we can short-circuit the walk early.
979 */
980 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
981 break;
982
983 fack_count += tcp_skb_pcount(skb);
984
985 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
986 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
987
988 /* Account D-SACK for retransmitted packet. */
989 if ((dup_sack && in_sack) &&
990 (sacked & TCPCB_RETRANS) &&
991 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
992 tp->undo_retrans--;
993
994 /* The frame is ACKed. */
995 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
996 if (sacked&TCPCB_RETRANS) {
997 if ((dup_sack && in_sack) &&
998 (sacked&TCPCB_SACKED_ACKED))
999 reord = min(fack_count, reord);
1000 } else {
1001 /* If it was in a hole, we detected reordering. */
1002 if (fack_count < prior_fackets &&
1003 !(sacked&TCPCB_SACKED_ACKED))
1004 reord = min(fack_count, reord);
1005 }
1006
1007 /* Nothing to do; acked frame is about to be dropped. */
1008 continue;
1009 }
1010
1011 if ((sacked&TCPCB_SACKED_RETRANS) &&
1012 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1013 (!lost_retrans || after(end_seq, lost_retrans)))
1014 lost_retrans = end_seq;
1015
1016 if (!in_sack)
1017 continue;
1018
1019 if (!(sacked&TCPCB_SACKED_ACKED)) {
1020 if (sacked & TCPCB_SACKED_RETRANS) {
1021 /* If the segment is not tagged as lost,
1022 * we do not clear RETRANS, believing
1023 * that retransmission is still in flight.
1024 */
1025 if (sacked & TCPCB_LOST) {
1026 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1027 tp->lost_out -= tcp_skb_pcount(skb);
1028 tp->retrans_out -= tcp_skb_pcount(skb);
1029 }
1030 } else {
1031 /* New sack for not retransmitted frame,
1032 * which was in hole. It is reordering.
1033 */
1034 if (!(sacked & TCPCB_RETRANS) &&
1035 fack_count < prior_fackets)
1036 reord = min(fack_count, reord);
1037
1038 if (sacked & TCPCB_LOST) {
1039 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1040 tp->lost_out -= tcp_skb_pcount(skb);
1041 }
1042 }
1043
1044 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1045 flag |= FLAG_DATA_SACKED;
1046 tp->sacked_out += tcp_skb_pcount(skb);
1047
1048 if (fack_count > tp->fackets_out)
1049 tp->fackets_out = fack_count;
1050 } else {
1051 if (dup_sack && (sacked&TCPCB_RETRANS))
1052 reord = min(fack_count, reord);
1053 }
1054
1055 /* D-SACK. We can detect redundant retransmission
1056 * in S|R and plain R frames and clear it.
1057 * undo_retrans is decreased above, L|R frames
1058 * are accounted above as well.
1059 */
1060 if (dup_sack &&
1061 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1062 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1063 tp->retrans_out -= tcp_skb_pcount(skb);
1064 }
1065 }
1066 }
1067
1068 /* Check for lost retransmit. This superb idea is
1069 * borrowed from "ratehalving". Event "C".
1070 * Later note: FACK people cheated me again 8),
1071 * we have to account for reordering! Ugly,
1072 * but should help.
1073 */
1074 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1075 struct sk_buff *skb;
1076
1077 sk_stream_for_retrans_queue(skb, sk) {
1078 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1079 break;
1080 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1081 continue;
1082 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1083 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1084 (IsFack(tp) ||
1085 !before(lost_retrans,
1086 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1087 tp->mss_cache))) {
1da177e4
LT
1088 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1089 tp->retrans_out -= tcp_skb_pcount(skb);
1090
1091 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1092 tp->lost_out += tcp_skb_pcount(skb);
1093 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1094 flag |= FLAG_DATA_SACKED;
1095 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1096 }
1097 }
1098 }
1099 }
1100
1101 tp->left_out = tp->sacked_out + tp->lost_out;
1102
1103 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1104 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1105
1106#if FASTRETRANS_DEBUG > 0
1107 BUG_TRAP((int)tp->sacked_out >= 0);
1108 BUG_TRAP((int)tp->lost_out >= 0);
1109 BUG_TRAP((int)tp->retrans_out >= 0);
1110 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1111#endif
1112 return flag;
1113}
1114
1115/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1116 * segments to see from the next ACKs whether any data was really missing.
1117 * If the RTO was spurious, new ACKs should arrive.
1118 */
1119void tcp_enter_frto(struct sock *sk)
1120{
1121 struct tcp_sock *tp = tcp_sk(sk);
1122 struct sk_buff *skb;
1123
1124 tp->frto_counter = 1;
1125
1126 if (tp->ca_state <= TCP_CA_Disorder ||
1127 tp->snd_una == tp->high_seq ||
463c84b9 1128 (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1da177e4 1129 tp->prior_ssthresh = tcp_current_ssthresh(tp);
317a76f9
SH
1130 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1131 tcp_ca_event(tp, CA_EVENT_FRTO);
1da177e4
LT
1132 }
1133
1134 /* Have to clear retransmission markers here to keep the bookkeeping
1135 * in shape, even though we are not yet in Loss state.
1136 * If something was really lost, it is eventually caught up
1137 * in tcp_enter_frto_loss.
1138 */
1139 tp->retrans_out = 0;
1140 tp->undo_marker = tp->snd_una;
1141 tp->undo_retrans = 0;
1142
1143 sk_stream_for_retrans_queue(skb, sk) {
1144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1145 }
1146 tcp_sync_left_out(tp);
1147
1148 tcp_set_ca_state(tp, TCP_CA_Open);
1149 tp->frto_highmark = tp->snd_nxt;
1150}
1151
1152/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1153 * which indicates that we should follow the traditional RTO recovery,
1154 * i.e. mark everything lost and do go-back-N retransmission.
1155 */
1156static void tcp_enter_frto_loss(struct sock *sk)
1157{
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct sk_buff *skb;
1160 int cnt = 0;
1161
1162 tp->sacked_out = 0;
1163 tp->lost_out = 0;
1164 tp->fackets_out = 0;
1165
1166 sk_stream_for_retrans_queue(skb, sk) {
1167 cnt += tcp_skb_pcount(skb);
1168 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1169 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1170
1171 /* Do not mark those segments lost that were
1172 * forward transmitted after RTO
1173 */
1174 if (!after(TCP_SKB_CB(skb)->end_seq,
1175 tp->frto_highmark)) {
1176 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1177 tp->lost_out += tcp_skb_pcount(skb);
1178 }
1179 } else {
1180 tp->sacked_out += tcp_skb_pcount(skb);
1181 tp->fackets_out = cnt;
1182 }
1183 }
1184 tcp_sync_left_out(tp);
1185
1186 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1187 tp->snd_cwnd_cnt = 0;
1188 tp->snd_cwnd_stamp = tcp_time_stamp;
1189 tp->undo_marker = 0;
1190 tp->frto_counter = 0;
1191
1192 tp->reordering = min_t(unsigned int, tp->reordering,
1193 sysctl_tcp_reordering);
1194 tcp_set_ca_state(tp, TCP_CA_Loss);
1195 tp->high_seq = tp->frto_highmark;
1196 TCP_ECN_queue_cwr(tp);
1da177e4
LT
1197}
1198
1199void tcp_clear_retrans(struct tcp_sock *tp)
1200{
1201 tp->left_out = 0;
1202 tp->retrans_out = 0;
1203
1204 tp->fackets_out = 0;
1205 tp->sacked_out = 0;
1206 tp->lost_out = 0;
1207
1208 tp->undo_marker = 0;
1209 tp->undo_retrans = 0;
1210}
1211
1212/* Enter Loss state. If "how" is not zero, forget all SACK information
1213 * and reset tags completely, otherwise preserve SACKs. If receiver
1214 * dropped its ofo queue, we will know this due to reneging detection.
1215 */
1216void tcp_enter_loss(struct sock *sk, int how)
1217{
1218 struct tcp_sock *tp = tcp_sk(sk);
1219 struct sk_buff *skb;
1220 int cnt = 0;
1221
1222 /* Reduce ssthresh if it has not yet been made inside this window. */
1223 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
463c84b9 1224 (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1da177e4 1225 tp->prior_ssthresh = tcp_current_ssthresh(tp);
317a76f9
SH
1226 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1227 tcp_ca_event(tp, CA_EVENT_LOSS);
1da177e4
LT
1228 }
1229 tp->snd_cwnd = 1;
1230 tp->snd_cwnd_cnt = 0;
1231 tp->snd_cwnd_stamp = tcp_time_stamp;
1232
1233 tcp_clear_retrans(tp);
1234
1235 /* Push undo marker, if it was plain RTO and nothing
1236 * was retransmitted. */
1237 if (!how)
1238 tp->undo_marker = tp->snd_una;
1239
1240 sk_stream_for_retrans_queue(skb, sk) {
1241 cnt += tcp_skb_pcount(skb);
1242 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1243 tp->undo_marker = 0;
1244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1248 tp->lost_out += tcp_skb_pcount(skb);
1249 } else {
1250 tp->sacked_out += tcp_skb_pcount(skb);
1251 tp->fackets_out = cnt;
1252 }
1253 }
1254 tcp_sync_left_out(tp);
1255
1256 tp->reordering = min_t(unsigned int, tp->reordering,
1257 sysctl_tcp_reordering);
1258 tcp_set_ca_state(tp, TCP_CA_Loss);
1259 tp->high_seq = tp->snd_nxt;
1260 TCP_ECN_queue_cwr(tp);
1261}
1262
463c84b9 1263static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1264{
1265 struct sk_buff *skb;
1266
1267 /* If ACK arrived pointing to a remembered SACK,
1268 * it means that our remembered SACKs do not reflect
1269 * real state of receiver i.e.
1270 * receiver _host_ is heavily congested (or buggy).
1271 * Do processing similar to RTO timeout.
1272 */
1273 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1274 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1275 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1276
1277 tcp_enter_loss(sk, 1);
463c84b9 1278 inet_csk(sk)->icsk_retransmits++;
1da177e4 1279 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9
ACM
1280 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1281 inet_csk(sk)->icsk_rto);
1da177e4
LT
1282 return 1;
1283 }
1284 return 0;
1285}
1286
1287static inline int tcp_fackets_out(struct tcp_sock *tp)
1288{
1289 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1290}
1291
463c84b9 1292static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1293{
463c84b9 1294 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1295}
1296
1297static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1298{
1299 return tp->packets_out &&
463c84b9 1300 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1301}
1302
1303/* Linux NewReno/SACK/FACK/ECN state machine.
1304 * --------------------------------------
1305 *
1306 * "Open" Normal state, no dubious events, fast path.
1307 * "Disorder" In all the respects it is "Open",
1308 * but requires a bit more attention. It is entered when
1309 * we see some SACKs or dupacks. It is split of "Open"
1310 * mainly to move some processing from fast path to slow one.
1311 * "CWR" CWND was reduced due to some Congestion Notification event.
1312 * It can be ECN, ICMP source quench, local device congestion.
1313 * "Recovery" CWND was reduced, we are fast-retransmitting.
1314 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1315 *
1316 * tcp_fastretrans_alert() is entered:
1317 * - each incoming ACK, if state is not "Open"
1318 * - when arrived ACK is unusual, namely:
1319 * * SACK
1320 * * Duplicate ACK.
1321 * * ECN ECE.
1322 *
1323 * Counting packets in flight is pretty simple.
1324 *
1325 * in_flight = packets_out - left_out + retrans_out
1326 *
1327 * packets_out is SND.NXT-SND.UNA counted in packets.
1328 *
1329 * retrans_out is number of retransmitted segments.
1330 *
1331 * left_out is number of segments left network, but not ACKed yet.
1332 *
1333 * left_out = sacked_out + lost_out
1334 *
1335 * sacked_out: Packets, which arrived to receiver out of order
1336 * and hence not ACKed. With SACKs this number is simply
1337 * amount of SACKed data. Even without SACKs
1338 * it is easy to give pretty reliable estimate of this number,
1339 * counting duplicate ACKs.
1340 *
1341 * lost_out: Packets lost by network. TCP has no explicit
1342 * "loss notification" feedback from network (for now).
1343 * It means that this number can be only _guessed_.
1344 * Actually, it is the heuristics to predict lossage that
1345 * distinguishes different algorithms.
1346 *
1347 * F.e. after RTO, when all the queue is considered as lost,
1348 * lost_out = packets_out and in_flight = retrans_out.
1349 *
1350 * Essentially, we have now two algorithms counting
1351 * lost packets.
1352 *
1353 * FACK: It is the simplest heuristics. As soon as we decided
1354 * that something is lost, we decide that _all_ not SACKed
1355 * packets until the most forward SACK are lost. I.e.
1356 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1357 * It is absolutely correct estimate, if network does not reorder
1358 * packets. And it loses any connection to reality when reordering
1359 * takes place. We use FACK by default until reordering
1360 * is suspected on the path to this destination.
1361 *
1362 * NewReno: when Recovery is entered, we assume that one segment
1363 * is lost (classic Reno). While we are in Recovery and
1364 * a partial ACK arrives, we assume that one more packet
1365 * is lost (NewReno). This heuristics are the same in NewReno
1366 * and SACK.
1367 *
1368 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1369 * deflation etc. CWND is real congestion window, never inflated, changes
1370 * only according to classic VJ rules.
1371 *
1372 * Really tricky (and requiring careful tuning) part of algorithm
1373 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1374 * The first determines the moment _when_ we should reduce CWND and,
1375 * hence, slow down forward transmission. In fact, it determines the moment
1376 * when we decide that hole is caused by loss, rather than by a reorder.
1377 *
1378 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1379 * holes, caused by lost packets.
1380 *
1381 * And the most logically complicated part of algorithm is undo
1382 * heuristics. We detect false retransmits due to both too early
1383 * fast retransmit (reordering) and underestimated RTO, analyzing
1384 * timestamps and D-SACKs. When we detect that some segments were
1385 * retransmitted by mistake and CWND reduction was wrong, we undo
1386 * window reduction and abort recovery phase. This logic is hidden
1387 * inside several functions named tcp_try_undo_<something>.
1388 */
1389
1390/* This function decides, when we should leave Disordered state
1391 * and enter Recovery phase, reducing congestion window.
1392 *
1393 * Main question: may we further continue forward transmission
1394 * with the same cwnd?
1395 */
1396static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1397{
1398 __u32 packets_out;
1399
1400 /* Trick#1: The loss is proven. */
1401 if (tp->lost_out)
1402 return 1;
1403
1404 /* Not-A-Trick#2 : Classic rule... */
1405 if (tcp_fackets_out(tp) > tp->reordering)
1406 return 1;
1407
1408 /* Trick#3 : when we use RFC2988 timer restart, fast
1409 * retransmit can be triggered by timeout of queue head.
1410 */
1411 if (tcp_head_timedout(sk, tp))
1412 return 1;
1413
1414 /* Trick#4: It is still not OK... But will it be useful to delay
1415 * recovery more?
1416 */
1417 packets_out = tp->packets_out;
1418 if (packets_out <= tp->reordering &&
1419 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1420 !tcp_may_send_now(sk, tp)) {
1421 /* We have nothing to send. This connection is limited
1422 * either by receiver window or by application.
1423 */
1424 return 1;
1425 }
1426
1427 return 0;
1428}
1429
1430/* If we receive more dupacks than we expected counting segments
1431 * in assumption of absent reordering, interpret this as reordering.
1432 * The only another reason could be bug in receiver TCP.
1433 */
1434static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1435{
1436 u32 holes;
1437
1438 holes = max(tp->lost_out, 1U);
1439 holes = min(holes, tp->packets_out);
1440
1441 if ((tp->sacked_out + holes) > tp->packets_out) {
1442 tp->sacked_out = tp->packets_out - holes;
1443 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1444 }
1445}
1446
1447/* Emulate SACKs for SACKless connection: account for a new dupack. */
1448
1449static void tcp_add_reno_sack(struct tcp_sock *tp)
1450{
1451 tp->sacked_out++;
1452 tcp_check_reno_reordering(tp, 0);
1453 tcp_sync_left_out(tp);
1454}
1455
1456/* Account for ACK, ACKing some data in Reno Recovery phase. */
1457
1458static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1459{
1460 if (acked > 0) {
1461 /* One ACK acked hole. The rest eat duplicate ACKs. */
1462 if (acked-1 >= tp->sacked_out)
1463 tp->sacked_out = 0;
1464 else
1465 tp->sacked_out -= acked-1;
1466 }
1467 tcp_check_reno_reordering(tp, acked);
1468 tcp_sync_left_out(tp);
1469}
1470
1471static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1472{
1473 tp->sacked_out = 0;
1474 tp->left_out = tp->lost_out;
1475}
1476
1477/* Mark head of queue up as lost. */
1478static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1479 int packets, u32 high_seq)
1480{
1481 struct sk_buff *skb;
1482 int cnt = packets;
1483
1484 BUG_TRAP(cnt <= tp->packets_out);
1485
1486 sk_stream_for_retrans_queue(skb, sk) {
1487 cnt -= tcp_skb_pcount(skb);
1488 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1489 break;
1490 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1491 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492 tp->lost_out += tcp_skb_pcount(skb);
1493 }
1494 }
1495 tcp_sync_left_out(tp);
1496}
1497
1498/* Account newly detected lost packet(s) */
1499
1500static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1501{
1502 if (IsFack(tp)) {
1503 int lost = tp->fackets_out - tp->reordering;
1504 if (lost <= 0)
1505 lost = 1;
1506 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1507 } else {
1508 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1509 }
1510
1511 /* New heuristics: it is possible only after we switched
1512 * to restart timer each time when something is ACKed.
1513 * Hence, we can detect timed out packets during fast
1514 * retransmit without falling to slow start.
1515 */
1516 if (tcp_head_timedout(sk, tp)) {
1517 struct sk_buff *skb;
1518
1519 sk_stream_for_retrans_queue(skb, sk) {
463c84b9 1520 if (tcp_skb_timedout(sk, skb) &&
1da177e4
LT
1521 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1522 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1523 tp->lost_out += tcp_skb_pcount(skb);
1524 }
1525 }
1526 tcp_sync_left_out(tp);
1527 }
1528}
1529
1530/* CWND moderation, preventing bursts due to too big ACKs
1531 * in dubious situations.
1532 */
1533static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1534{
1535 tp->snd_cwnd = min(tp->snd_cwnd,
1536 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1537 tp->snd_cwnd_stamp = tcp_time_stamp;
1538}
1539
1540/* Decrease cwnd each second ack. */
1da177e4
LT
1541static void tcp_cwnd_down(struct tcp_sock *tp)
1542{
1543 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1544
1545 tp->snd_cwnd_cnt = decr&1;
1546 decr >>= 1;
1547
317a76f9 1548 if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1da177e4
LT
1549 tp->snd_cwnd -= decr;
1550
1551 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1552 tp->snd_cwnd_stamp = tcp_time_stamp;
1553}
1554
1555/* Nothing was retransmitted or returned timestamp is less
1556 * than timestamp of the first retransmission.
1557 */
1558static inline int tcp_packet_delayed(struct tcp_sock *tp)
1559{
1560 return !tp->retrans_stamp ||
1561 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1562 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1563}
1564
1565/* Undo procedures. */
1566
1567#if FASTRETRANS_DEBUG > 1
1568static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1569{
1570 struct inet_sock *inet = inet_sk(sk);
1571 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1572 msg,
1573 NIPQUAD(inet->daddr), ntohs(inet->dport),
1574 tp->snd_cwnd, tp->left_out,
1575 tp->snd_ssthresh, tp->prior_ssthresh,
1576 tp->packets_out);
1577}
1578#else
1579#define DBGUNDO(x...) do { } while (0)
1580#endif
1581
1582static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1583{
1584 if (tp->prior_ssthresh) {
317a76f9
SH
1585 if (tp->ca_ops->undo_cwnd)
1586 tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1da177e4
LT
1587 else
1588 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1589
1590 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1591 tp->snd_ssthresh = tp->prior_ssthresh;
1592 TCP_ECN_withdraw_cwr(tp);
1593 }
1594 } else {
1595 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1596 }
1597 tcp_moderate_cwnd(tp);
1598 tp->snd_cwnd_stamp = tcp_time_stamp;
1599}
1600
1601static inline int tcp_may_undo(struct tcp_sock *tp)
1602{
1603 return tp->undo_marker &&
1604 (!tp->undo_retrans || tcp_packet_delayed(tp));
1605}
1606
1607/* People celebrate: "We love our President!" */
1608static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1609{
1610 if (tcp_may_undo(tp)) {
1611 /* Happy end! We did not retransmit anything
1612 * or our original transmission succeeded.
1613 */
1614 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1615 tcp_undo_cwr(tp, 1);
1616 if (tp->ca_state == TCP_CA_Loss)
1617 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1618 else
1619 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1620 tp->undo_marker = 0;
1621 }
1622 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1623 /* Hold old state until something *above* high_seq
1624 * is ACKed. For Reno it is MUST to prevent false
1625 * fast retransmits (RFC2582). SACK TCP is safe. */
1626 tcp_moderate_cwnd(tp);
1627 return 1;
1628 }
1629 tcp_set_ca_state(tp, TCP_CA_Open);
1630 return 0;
1631}
1632
1633/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1634static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1635{
1636 if (tp->undo_marker && !tp->undo_retrans) {
1637 DBGUNDO(sk, tp, "D-SACK");
1638 tcp_undo_cwr(tp, 1);
1639 tp->undo_marker = 0;
1640 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1641 }
1642}
1643
1644/* Undo during fast recovery after partial ACK. */
1645
1646static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1647 int acked)
1648{
1649 /* Partial ACK arrived. Force Hoe's retransmit. */
1650 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1651
1652 if (tcp_may_undo(tp)) {
1653 /* Plain luck! Hole if filled with delayed
1654 * packet, rather than with a retransmit.
1655 */
1656 if (tp->retrans_out == 0)
1657 tp->retrans_stamp = 0;
1658
1659 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1660
1661 DBGUNDO(sk, tp, "Hoe");
1662 tcp_undo_cwr(tp, 0);
1663 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1664
1665 /* So... Do not make Hoe's retransmit yet.
1666 * If the first packet was delayed, the rest
1667 * ones are most probably delayed as well.
1668 */
1669 failed = 0;
1670 }
1671 return failed;
1672}
1673
1674/* Undo during loss recovery after partial ACK. */
1675static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1676{
1677 if (tcp_may_undo(tp)) {
1678 struct sk_buff *skb;
1679 sk_stream_for_retrans_queue(skb, sk) {
1680 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1681 }
1682 DBGUNDO(sk, tp, "partial loss");
1683 tp->lost_out = 0;
1684 tp->left_out = tp->sacked_out;
1685 tcp_undo_cwr(tp, 1);
1686 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1687 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1688 tp->undo_marker = 0;
1689 if (!IsReno(tp))
1690 tcp_set_ca_state(tp, TCP_CA_Open);
1691 return 1;
1692 }
1693 return 0;
1694}
1695
1696static inline void tcp_complete_cwr(struct tcp_sock *tp)
1697{
317a76f9 1698 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1699 tp->snd_cwnd_stamp = tcp_time_stamp;
317a76f9 1700 tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1701}
1702
1703static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1704{
1705 tp->left_out = tp->sacked_out;
1706
1707 if (tp->retrans_out == 0)
1708 tp->retrans_stamp = 0;
1709
1710 if (flag&FLAG_ECE)
1711 tcp_enter_cwr(tp);
1712
1713 if (tp->ca_state != TCP_CA_CWR) {
1714 int state = TCP_CA_Open;
1715
1716 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1717 state = TCP_CA_Disorder;
1718
1719 if (tp->ca_state != state) {
1720 tcp_set_ca_state(tp, state);
1721 tp->high_seq = tp->snd_nxt;
1722 }
1723 tcp_moderate_cwnd(tp);
1724 } else {
1725 tcp_cwnd_down(tp);
1726 }
1727}
1728
1729/* Process an event, which can update packets-in-flight not trivially.
1730 * Main goal of this function is to calculate new estimate for left_out,
1731 * taking into account both packets sitting in receiver's buffer and
1732 * packets lost by network.
1733 *
1734 * Besides that it does CWND reduction, when packet loss is detected
1735 * and changes state of machine.
1736 *
1737 * It does _not_ decide what to send, it is made in function
1738 * tcp_xmit_retransmit_queue().
1739 */
1740static void
1741tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1742 int prior_packets, int flag)
1743{
1744 struct tcp_sock *tp = tcp_sk(sk);
1745 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1746
1747 /* Some technical things:
1748 * 1. Reno does not count dupacks (sacked_out) automatically. */
1749 if (!tp->packets_out)
1750 tp->sacked_out = 0;
1751 /* 2. SACK counts snd_fack in packets inaccurately. */
1752 if (tp->sacked_out == 0)
1753 tp->fackets_out = 0;
1754
1755 /* Now state machine starts.
1756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1757 if (flag&FLAG_ECE)
1758 tp->prior_ssthresh = 0;
1759
1760 /* B. In all the states check for reneging SACKs. */
463c84b9 1761 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
1762 return;
1763
1764 /* C. Process data loss notification, provided it is valid. */
1765 if ((flag&FLAG_DATA_LOST) &&
1766 before(tp->snd_una, tp->high_seq) &&
1767 tp->ca_state != TCP_CA_Open &&
1768 tp->fackets_out > tp->reordering) {
1769 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1770 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1771 }
1772
1773 /* D. Synchronize left_out to current state. */
1774 tcp_sync_left_out(tp);
1775
1776 /* E. Check state exit conditions. State can be terminated
1777 * when high_seq is ACKed. */
1778 if (tp->ca_state == TCP_CA_Open) {
1779 if (!sysctl_tcp_frto)
1780 BUG_TRAP(tp->retrans_out == 0);
1781 tp->retrans_stamp = 0;
1782 } else if (!before(tp->snd_una, tp->high_seq)) {
1783 switch (tp->ca_state) {
1784 case TCP_CA_Loss:
463c84b9 1785 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1786 if (tcp_try_undo_recovery(sk, tp))
1787 return;
1788 break;
1789
1790 case TCP_CA_CWR:
1791 /* CWR is to be held something *above* high_seq
1792 * is ACKed for CWR bit to reach receiver. */
1793 if (tp->snd_una != tp->high_seq) {
1794 tcp_complete_cwr(tp);
1795 tcp_set_ca_state(tp, TCP_CA_Open);
1796 }
1797 break;
1798
1799 case TCP_CA_Disorder:
1800 tcp_try_undo_dsack(sk, tp);
1801 if (!tp->undo_marker ||
1802 /* For SACK case do not Open to allow to undo
1803 * catching for all duplicate ACKs. */
1804 IsReno(tp) || tp->snd_una != tp->high_seq) {
1805 tp->undo_marker = 0;
1806 tcp_set_ca_state(tp, TCP_CA_Open);
1807 }
1808 break;
1809
1810 case TCP_CA_Recovery:
1811 if (IsReno(tp))
1812 tcp_reset_reno_sack(tp);
1813 if (tcp_try_undo_recovery(sk, tp))
1814 return;
1815 tcp_complete_cwr(tp);
1816 break;
1817 }
1818 }
1819
1820 /* F. Process state. */
1821 switch (tp->ca_state) {
1822 case TCP_CA_Recovery:
1823 if (prior_snd_una == tp->snd_una) {
1824 if (IsReno(tp) && is_dupack)
1825 tcp_add_reno_sack(tp);
1826 } else {
1827 int acked = prior_packets - tp->packets_out;
1828 if (IsReno(tp))
1829 tcp_remove_reno_sacks(sk, tp, acked);
1830 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1831 }
1832 break;
1833 case TCP_CA_Loss:
1834 if (flag&FLAG_DATA_ACKED)
463c84b9 1835 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1836 if (!tcp_try_undo_loss(sk, tp)) {
1837 tcp_moderate_cwnd(tp);
1838 tcp_xmit_retransmit_queue(sk);
1839 return;
1840 }
1841 if (tp->ca_state != TCP_CA_Open)
1842 return;
1843 /* Loss is undone; fall through to processing in Open state. */
1844 default:
1845 if (IsReno(tp)) {
1846 if (tp->snd_una != prior_snd_una)
1847 tcp_reset_reno_sack(tp);
1848 if (is_dupack)
1849 tcp_add_reno_sack(tp);
1850 }
1851
1852 if (tp->ca_state == TCP_CA_Disorder)
1853 tcp_try_undo_dsack(sk, tp);
1854
1855 if (!tcp_time_to_recover(sk, tp)) {
1856 tcp_try_to_open(sk, tp, flag);
1857 return;
1858 }
1859
1860 /* Otherwise enter Recovery state */
1861
1862 if (IsReno(tp))
1863 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1864 else
1865 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1866
1867 tp->high_seq = tp->snd_nxt;
1868 tp->prior_ssthresh = 0;
1869 tp->undo_marker = tp->snd_una;
1870 tp->undo_retrans = tp->retrans_out;
1871
1872 if (tp->ca_state < TCP_CA_CWR) {
1873 if (!(flag&FLAG_ECE))
1874 tp->prior_ssthresh = tcp_current_ssthresh(tp);
317a76f9 1875 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1da177e4
LT
1876 TCP_ECN_queue_cwr(tp);
1877 }
1878
1879 tp->snd_cwnd_cnt = 0;
1880 tcp_set_ca_state(tp, TCP_CA_Recovery);
1881 }
1882
1883 if (is_dupack || tcp_head_timedout(sk, tp))
1884 tcp_update_scoreboard(sk, tp);
1885 tcp_cwnd_down(tp);
1886 tcp_xmit_retransmit_queue(sk);
1887}
1888
1889/* Read draft-ietf-tcplw-high-performance before mucking
1890 * with this code. (Superceeds RFC1323)
1891 */
463c84b9 1892static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1da177e4 1893{
1da177e4
LT
1894 /* RTTM Rule: A TSecr value received in a segment is used to
1895 * update the averaged RTT measurement only if the segment
1896 * acknowledges some new data, i.e., only if it advances the
1897 * left edge of the send window.
1898 *
1899 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1900 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1901 *
1902 * Changed: reset backoff as soon as we see the first valid sample.
1903 * If we do not, we get strongly overstimated rto. With timestamps
1904 * samples are accepted even from very old segments: f.e., when rtt=1
1905 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1906 * answer arrives rto becomes 120 seconds! If at least one of segments
1907 * in window is lost... Voila. --ANK (010210)
1908 */
463c84b9
ACM
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
317a76f9 1911 tcp_rtt_estimator(tp, seq_rtt, usrtt);
463c84b9
ACM
1912 tcp_set_rto(sk);
1913 inet_csk(sk)->icsk_backoff = 0;
1914 tcp_bound_rto(sk);
1da177e4
LT
1915}
1916
463c84b9 1917static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1da177e4
LT
1918{
1919 /* We don't have a timestamp. Can only use
1920 * packets that are not retransmitted to determine
1921 * rtt estimates. Also, we must not reset the
1922 * backoff for rto until we get a non-retransmitted
1923 * packet. This allows us to deal with a situation
1924 * where the network delay has increased suddenly.
1925 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1926 */
1927
1928 if (flag & FLAG_RETRANS_DATA_ACKED)
1929 return;
1930
463c84b9
ACM
1931 tcp_rtt_estimator(tcp_sk(sk), seq_rtt, usrtt);
1932 tcp_set_rto(sk);
1933 inet_csk(sk)->icsk_backoff = 0;
1934 tcp_bound_rto(sk);
1da177e4
LT
1935}
1936
463c84b9
ACM
1937static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1938 const s32 seq_rtt, u32 *usrtt)
1da177e4 1939{
463c84b9 1940 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1941 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1942 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
463c84b9 1943 tcp_ack_saw_tstamp(sk, usrtt, flag);
1da177e4 1944 else if (seq_rtt >= 0)
463c84b9 1945 tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1da177e4
LT
1946}
1947
317a76f9
SH
1948static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1949 u32 in_flight, int good)
1da177e4 1950{
317a76f9 1951 tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1da177e4
LT
1952 tp->snd_cwnd_stamp = tcp_time_stamp;
1953}
1954
1da177e4
LT
1955/* Restart timer after forward progress on connection.
1956 * RFC2988 recommends to restart timer to now+rto.
1957 */
1958
1959static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1960{
1961 if (!tp->packets_out) {
463c84b9 1962 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 1963 } else {
463c84b9 1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto);
1da177e4
LT
1965 }
1966}
1967
1da177e4
LT
1968static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1969 __u32 now, __s32 *seq_rtt)
1970{
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1973 __u32 seq = tp->snd_una;
1974 __u32 packets_acked;
1975 int acked = 0;
1976
1977 /* If we get here, the whole TSO packet has not been
1978 * acked.
1979 */
1980 BUG_ON(!after(scb->end_seq, seq));
1981
1982 packets_acked = tcp_skb_pcount(skb);
1983 if (tcp_trim_head(sk, skb, seq - scb->seq))
1984 return 0;
1985 packets_acked -= tcp_skb_pcount(skb);
1986
1987 if (packets_acked) {
1988 __u8 sacked = scb->sacked;
1989
1990 acked |= FLAG_DATA_ACKED;
1991 if (sacked) {
1992 if (sacked & TCPCB_RETRANS) {
1993 if (sacked & TCPCB_SACKED_RETRANS)
1994 tp->retrans_out -= packets_acked;
1995 acked |= FLAG_RETRANS_DATA_ACKED;
1996 *seq_rtt = -1;
1997 } else if (*seq_rtt < 0)
1998 *seq_rtt = now - scb->when;
1999 if (sacked & TCPCB_SACKED_ACKED)
2000 tp->sacked_out -= packets_acked;
2001 if (sacked & TCPCB_LOST)
2002 tp->lost_out -= packets_acked;
2003 if (sacked & TCPCB_URG) {
2004 if (tp->urg_mode &&
2005 !before(seq, tp->snd_up))
2006 tp->urg_mode = 0;
2007 }
2008 } else if (*seq_rtt < 0)
2009 *seq_rtt = now - scb->when;
2010
2011 if (tp->fackets_out) {
2012 __u32 dval = min(tp->fackets_out, packets_acked);
2013 tp->fackets_out -= dval;
2014 }
2015 tp->packets_out -= packets_acked;
2016
2017 BUG_ON(tcp_skb_pcount(skb) == 0);
2018 BUG_ON(!before(scb->seq, scb->end_seq));
2019 }
2020
2021 return acked;
2022}
2023
2024
2025/* Remove acknowledged frames from the retransmission queue. */
317a76f9 2026static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
1da177e4
LT
2027{
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 struct sk_buff *skb;
2030 __u32 now = tcp_time_stamp;
2031 int acked = 0;
2032 __s32 seq_rtt = -1;
317a76f9
SH
2033 struct timeval usnow;
2034 u32 pkts_acked = 0;
2035
2036 if (seq_usrtt)
2037 do_gettimeofday(&usnow);
1da177e4
LT
2038
2039 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2040 skb != sk->sk_send_head) {
2041 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2042 __u8 sacked = scb->sacked;
2043
2044 /* If our packet is before the ack sequence we can
2045 * discard it as it's confirmed to have arrived at
2046 * the other end.
2047 */
2048 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2049 if (tcp_skb_pcount(skb) > 1 &&
2050 after(tp->snd_una, scb->seq))
1da177e4
LT
2051 acked |= tcp_tso_acked(sk, skb,
2052 now, &seq_rtt);
2053 break;
2054 }
2055
2056 /* Initial outgoing SYN's get put onto the write_queue
2057 * just like anything else we transmit. It is not
2058 * true data, and if we misinform our callers that
2059 * this ACK acks real data, we will erroneously exit
2060 * connection startup slow start one packet too
2061 * quickly. This is severely frowned upon behavior.
2062 */
2063 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2064 acked |= FLAG_DATA_ACKED;
317a76f9 2065 ++pkts_acked;
1da177e4
LT
2066 } else {
2067 acked |= FLAG_SYN_ACKED;
2068 tp->retrans_stamp = 0;
2069 }
2070
2071 if (sacked) {
2072 if (sacked & TCPCB_RETRANS) {
2073 if(sacked & TCPCB_SACKED_RETRANS)
2074 tp->retrans_out -= tcp_skb_pcount(skb);
2075 acked |= FLAG_RETRANS_DATA_ACKED;
2076 seq_rtt = -1;
2077 } else if (seq_rtt < 0)
2078 seq_rtt = now - scb->when;
317a76f9
SH
2079 if (seq_usrtt)
2080 *seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2081 + (usnow.tv_usec - skb->stamp.tv_usec);
2082
1da177e4
LT
2083 if (sacked & TCPCB_SACKED_ACKED)
2084 tp->sacked_out -= tcp_skb_pcount(skb);
2085 if (sacked & TCPCB_LOST)
2086 tp->lost_out -= tcp_skb_pcount(skb);
2087 if (sacked & TCPCB_URG) {
2088 if (tp->urg_mode &&
2089 !before(scb->end_seq, tp->snd_up))
2090 tp->urg_mode = 0;
2091 }
2092 } else if (seq_rtt < 0)
2093 seq_rtt = now - scb->when;
2094 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2095 tcp_packets_out_dec(tp, skb);
8728b834 2096 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4
LT
2097 sk_stream_free_skb(sk, skb);
2098 }
2099
2100 if (acked&FLAG_ACKED) {
463c84b9 2101 tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
1da177e4 2102 tcp_ack_packets_out(sk, tp);
317a76f9
SH
2103
2104 if (tp->ca_ops->pkts_acked)
2105 tp->ca_ops->pkts_acked(tp, pkts_acked);
1da177e4
LT
2106 }
2107
2108#if FASTRETRANS_DEBUG > 0
2109 BUG_TRAP((int)tp->sacked_out >= 0);
2110 BUG_TRAP((int)tp->lost_out >= 0);
2111 BUG_TRAP((int)tp->retrans_out >= 0);
2112 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2113 if (tp->lost_out) {
2114 printk(KERN_DEBUG "Leak l=%u %d\n",
2115 tp->lost_out, tp->ca_state);
2116 tp->lost_out = 0;
2117 }
2118 if (tp->sacked_out) {
2119 printk(KERN_DEBUG "Leak s=%u %d\n",
2120 tp->sacked_out, tp->ca_state);
2121 tp->sacked_out = 0;
2122 }
2123 if (tp->retrans_out) {
2124 printk(KERN_DEBUG "Leak r=%u %d\n",
2125 tp->retrans_out, tp->ca_state);
2126 tp->retrans_out = 0;
2127 }
2128 }
2129#endif
2130 *seq_rtt_p = seq_rtt;
2131 return acked;
2132}
2133
2134static void tcp_ack_probe(struct sock *sk)
2135{
463c84b9
ACM
2136 const struct tcp_sock *tp = tcp_sk(sk);
2137 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2138
2139 /* Was it a usable window open? */
2140
2141 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2142 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2143 icsk->icsk_backoff = 0;
2144 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2145 /* Socket must be waked up by subsequent tcp_data_snd_check().
2146 * This function is not for random using!
2147 */
2148 } else {
463c84b9
ACM
2149 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2150 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX));
1da177e4
LT
2151 }
2152}
2153
2154static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2155{
2156 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2157 tp->ca_state != TCP_CA_Open);
2158}
2159
2160static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2161{
2162 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2163 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2164}
2165
2166/* Check that window update is acceptable.
2167 * The function assumes that snd_una<=ack<=snd_next.
2168 */
463c84b9
ACM
2169static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2170 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2171{
2172 return (after(ack, tp->snd_una) ||
2173 after(ack_seq, tp->snd_wl1) ||
2174 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2175}
2176
2177/* Update our send window.
2178 *
2179 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2180 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2181 */
2182static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2183 struct sk_buff *skb, u32 ack, u32 ack_seq)
2184{
2185 int flag = 0;
2186 u32 nwin = ntohs(skb->h.th->window);
2187
2188 if (likely(!skb->h.th->syn))
2189 nwin <<= tp->rx_opt.snd_wscale;
2190
2191 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2192 flag |= FLAG_WIN_UPDATE;
2193 tcp_update_wl(tp, ack, ack_seq);
2194
2195 if (tp->snd_wnd != nwin) {
2196 tp->snd_wnd = nwin;
2197
2198 /* Note, it is the only place, where
2199 * fast path is recovered for sending TCP.
2200 */
2201 tcp_fast_path_check(sk, tp);
2202
2203 if (nwin > tp->max_window) {
2204 tp->max_window = nwin;
2205 tcp_sync_mss(sk, tp->pmtu_cookie);
2206 }
2207 }
2208 }
2209
2210 tp->snd_una = ack;
2211
2212 return flag;
2213}
2214
2215static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2216{
2217 struct tcp_sock *tp = tcp_sk(sk);
2218
2219 tcp_sync_left_out(tp);
2220
2221 if (tp->snd_una == prior_snd_una ||
2222 !before(tp->snd_una, tp->frto_highmark)) {
2223 /* RTO was caused by loss, start retransmitting in
2224 * go-back-N slow start
2225 */
2226 tcp_enter_frto_loss(sk);
2227 return;
2228 }
2229
2230 if (tp->frto_counter == 1) {
2231 /* First ACK after RTO advances the window: allow two new
2232 * segments out.
2233 */
2234 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2235 } else {
2236 /* Also the second ACK after RTO advances the window.
2237 * The RTO was likely spurious. Reduce cwnd and continue
2238 * in congestion avoidance
2239 */
2240 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2241 tcp_moderate_cwnd(tp);
2242 }
2243
2244 /* F-RTO affects on two new ACKs following RTO.
2245 * At latest on third ACK the TCP behavor is back to normal.
2246 */
2247 tp->frto_counter = (tp->frto_counter + 1) % 3;
2248}
2249
1da177e4
LT
2250/* This routine deals with incoming acks, but not outgoing ones. */
2251static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2252{
2253 struct tcp_sock *tp = tcp_sk(sk);
2254 u32 prior_snd_una = tp->snd_una;
2255 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2256 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2257 u32 prior_in_flight;
2258 s32 seq_rtt;
317a76f9 2259 s32 seq_usrtt = 0;
1da177e4
LT
2260 int prior_packets;
2261
2262 /* If the ack is newer than sent or older than previous acks
2263 * then we can probably ignore it.
2264 */
2265 if (after(ack, tp->snd_nxt))
2266 goto uninteresting_ack;
2267
2268 if (before(ack, prior_snd_una))
2269 goto old_ack;
2270
2271 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2272 /* Window is constant, pure forward advance.
2273 * No more checks are required.
2274 * Note, we use the fact that SND.UNA>=SND.WL2.
2275 */
2276 tcp_update_wl(tp, ack, ack_seq);
2277 tp->snd_una = ack;
1da177e4
LT
2278 flag |= FLAG_WIN_UPDATE;
2279
317a76f9
SH
2280 tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2281
1da177e4
LT
2282 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2283 } else {
2284 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2285 flag |= FLAG_DATA;
2286 else
2287 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2288
2289 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2290
2291 if (TCP_SKB_CB(skb)->sacked)
2292 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2293
2294 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2295 flag |= FLAG_ECE;
2296
317a76f9 2297 tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
1da177e4
LT
2298 }
2299
2300 /* We passed data and got it acked, remove any soft error
2301 * log. Something worked...
2302 */
2303 sk->sk_err_soft = 0;
2304 tp->rcv_tstamp = tcp_time_stamp;
2305 prior_packets = tp->packets_out;
2306 if (!prior_packets)
2307 goto no_queue;
2308
2309 prior_in_flight = tcp_packets_in_flight(tp);
2310
2311 /* See if we can take anything off of the retransmit queue. */
317a76f9
SH
2312 flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2313 tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
1da177e4
LT
2314
2315 if (tp->frto_counter)
2316 tcp_process_frto(sk, prior_snd_una);
2317
2318 if (tcp_ack_is_dubious(tp, flag)) {
2319 /* Advanve CWND, if state allows this. */
317a76f9
SH
2320 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2321 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2322 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2323 } else {
317a76f9
SH
2324 if ((flag & FLAG_DATA_ACKED))
2325 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2326 }
2327
2328 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2329 dst_confirm(sk->sk_dst_cache);
2330
2331 return 1;
2332
2333no_queue:
2334 tp->probes_out = 0;
2335
2336 /* If this ack opens up a zero window, clear backoff. It was
2337 * being used to time the probes, and is probably far higher than
2338 * it needs to be for normal retransmission.
2339 */
2340 if (sk->sk_send_head)
2341 tcp_ack_probe(sk);
2342 return 1;
2343
2344old_ack:
2345 if (TCP_SKB_CB(skb)->sacked)
2346 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2347
2348uninteresting_ack:
2349 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2350 return 0;
2351}
2352
2353
2354/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2355 * But, this can also be called on packets in the established flow when
2356 * the fast version below fails.
2357 */
2358void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2359{
2360 unsigned char *ptr;
2361 struct tcphdr *th = skb->h.th;
2362 int length=(th->doff*4)-sizeof(struct tcphdr);
2363
2364 ptr = (unsigned char *)(th + 1);
2365 opt_rx->saw_tstamp = 0;
2366
2367 while(length>0) {
2368 int opcode=*ptr++;
2369 int opsize;
2370
2371 switch (opcode) {
2372 case TCPOPT_EOL:
2373 return;
2374 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2375 length--;
2376 continue;
2377 default:
2378 opsize=*ptr++;
2379 if (opsize < 2) /* "silly options" */
2380 return;
2381 if (opsize > length)
2382 return; /* don't parse partial options */
2383 switch(opcode) {
2384 case TCPOPT_MSS:
2385 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2386 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2387 if (in_mss) {
2388 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2389 in_mss = opt_rx->user_mss;
2390 opt_rx->mss_clamp = in_mss;
2391 }
2392 }
2393 break;
2394 case TCPOPT_WINDOW:
2395 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2396 if (sysctl_tcp_window_scaling) {
2397 __u8 snd_wscale = *(__u8 *) ptr;
2398 opt_rx->wscale_ok = 1;
2399 if (snd_wscale > 14) {
2400 if(net_ratelimit())
2401 printk(KERN_INFO "tcp_parse_options: Illegal window "
2402 "scaling value %d >14 received.\n",
2403 snd_wscale);
2404 snd_wscale = 14;
2405 }
2406 opt_rx->snd_wscale = snd_wscale;
2407 }
2408 break;
2409 case TCPOPT_TIMESTAMP:
2410 if(opsize==TCPOLEN_TIMESTAMP) {
2411 if ((estab && opt_rx->tstamp_ok) ||
2412 (!estab && sysctl_tcp_timestamps)) {
2413 opt_rx->saw_tstamp = 1;
2414 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2415 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2416 }
2417 }
2418 break;
2419 case TCPOPT_SACK_PERM:
2420 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2421 if (sysctl_tcp_sack) {
2422 opt_rx->sack_ok = 1;
2423 tcp_sack_reset(opt_rx);
2424 }
2425 }
2426 break;
2427
2428 case TCPOPT_SACK:
2429 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2430 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2431 opt_rx->sack_ok) {
2432 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2433 }
2434 };
2435 ptr+=opsize-2;
2436 length-=opsize;
2437 };
2438 }
2439}
2440
2441/* Fast parse options. This hopes to only see timestamps.
2442 * If it is wrong it falls back on tcp_parse_options().
2443 */
2444static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2445 struct tcp_sock *tp)
2446{
2447 if (th->doff == sizeof(struct tcphdr)>>2) {
2448 tp->rx_opt.saw_tstamp = 0;
2449 return 0;
2450 } else if (tp->rx_opt.tstamp_ok &&
2451 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2452 __u32 *ptr = (__u32 *)(th + 1);
2453 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2454 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2455 tp->rx_opt.saw_tstamp = 1;
2456 ++ptr;
2457 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2458 ++ptr;
2459 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2460 return 1;
2461 }
2462 }
2463 tcp_parse_options(skb, &tp->rx_opt, 1);
2464 return 1;
2465}
2466
2467static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2468{
2469 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2470 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2471}
2472
2473static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2474{
2475 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2476 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2477 * extra check below makes sure this can only happen
2478 * for pure ACK frames. -DaveM
2479 *
2480 * Not only, also it occurs for expired timestamps.
2481 */
2482
2483 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2484 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2485 tcp_store_ts_recent(tp);
2486 }
2487}
2488
2489/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2490 *
2491 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2492 * it can pass through stack. So, the following predicate verifies that
2493 * this segment is not used for anything but congestion avoidance or
2494 * fast retransmit. Moreover, we even are able to eliminate most of such
2495 * second order effects, if we apply some small "replay" window (~RTO)
2496 * to timestamp space.
2497 *
2498 * All these measures still do not guarantee that we reject wrapped ACKs
2499 * on networks with high bandwidth, when sequence space is recycled fastly,
2500 * but it guarantees that such events will be very rare and do not affect
2501 * connection seriously. This doesn't look nice, but alas, PAWS is really
2502 * buggy extension.
2503 *
2504 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2505 * states that events when retransmit arrives after original data are rare.
2506 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2507 * the biggest problem on large power networks even with minor reordering.
2508 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2509 * up to bandwidth of 18Gigabit/sec. 8) ]
2510 */
2511
463c84b9 2512static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2513{
463c84b9 2514 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2515 struct tcphdr *th = skb->h.th;
2516 u32 seq = TCP_SKB_CB(skb)->seq;
2517 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2518
2519 return (/* 1. Pure ACK with correct sequence number. */
2520 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2521
2522 /* 2. ... and duplicate ACK. */
2523 ack == tp->snd_una &&
2524
2525 /* 3. ... and does not update window. */
2526 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2527
2528 /* 4. ... and sits in replay window. */
463c84b9 2529 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2530}
2531
463c84b9 2532static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2533{
463c84b9 2534 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2535 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2536 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2537 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2538}
2539
2540/* Check segment sequence number for validity.
2541 *
2542 * Segment controls are considered valid, if the segment
2543 * fits to the window after truncation to the window. Acceptability
2544 * of data (and SYN, FIN, of course) is checked separately.
2545 * See tcp_data_queue(), for example.
2546 *
2547 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2548 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2549 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2550 * (borrowed from freebsd)
2551 */
2552
2553static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2554{
2555 return !before(end_seq, tp->rcv_wup) &&
2556 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2557}
2558
2559/* When we get a reset we do this. */
2560static void tcp_reset(struct sock *sk)
2561{
2562 /* We want the right error as BSD sees it (and indeed as we do). */
2563 switch (sk->sk_state) {
2564 case TCP_SYN_SENT:
2565 sk->sk_err = ECONNREFUSED;
2566 break;
2567 case TCP_CLOSE_WAIT:
2568 sk->sk_err = EPIPE;
2569 break;
2570 case TCP_CLOSE:
2571 return;
2572 default:
2573 sk->sk_err = ECONNRESET;
2574 }
2575
2576 if (!sock_flag(sk, SOCK_DEAD))
2577 sk->sk_error_report(sk);
2578
2579 tcp_done(sk);
2580}
2581
2582/*
2583 * Process the FIN bit. This now behaves as it is supposed to work
2584 * and the FIN takes effect when it is validly part of sequence
2585 * space. Not before when we get holes.
2586 *
2587 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2588 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2589 * TIME-WAIT)
2590 *
2591 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2592 * close and we go into CLOSING (and later onto TIME-WAIT)
2593 *
2594 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2595 */
2596static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2597{
2598 struct tcp_sock *tp = tcp_sk(sk);
2599
463c84b9 2600 inet_csk_schedule_ack(sk);
1da177e4
LT
2601
2602 sk->sk_shutdown |= RCV_SHUTDOWN;
2603 sock_set_flag(sk, SOCK_DONE);
2604
2605 switch (sk->sk_state) {
2606 case TCP_SYN_RECV:
2607 case TCP_ESTABLISHED:
2608 /* Move to CLOSE_WAIT */
2609 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 2610 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
2611 break;
2612
2613 case TCP_CLOSE_WAIT:
2614 case TCP_CLOSING:
2615 /* Received a retransmission of the FIN, do
2616 * nothing.
2617 */
2618 break;
2619 case TCP_LAST_ACK:
2620 /* RFC793: Remain in the LAST-ACK state. */
2621 break;
2622
2623 case TCP_FIN_WAIT1:
2624 /* This case occurs when a simultaneous close
2625 * happens, we must ack the received FIN and
2626 * enter the CLOSING state.
2627 */
2628 tcp_send_ack(sk);
2629 tcp_set_state(sk, TCP_CLOSING);
2630 break;
2631 case TCP_FIN_WAIT2:
2632 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2633 tcp_send_ack(sk);
2634 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2635 break;
2636 default:
2637 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2638 * cases we should never reach this piece of code.
2639 */
2640 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2641 __FUNCTION__, sk->sk_state);
2642 break;
2643 };
2644
2645 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2646 * Probably, we should reset in this case. For now drop them.
2647 */
2648 __skb_queue_purge(&tp->out_of_order_queue);
2649 if (tp->rx_opt.sack_ok)
2650 tcp_sack_reset(&tp->rx_opt);
2651 sk_stream_mem_reclaim(sk);
2652
2653 if (!sock_flag(sk, SOCK_DEAD)) {
2654 sk->sk_state_change(sk);
2655
2656 /* Do not send POLL_HUP for half duplex close. */
2657 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2658 sk->sk_state == TCP_CLOSE)
2659 sk_wake_async(sk, 1, POLL_HUP);
2660 else
2661 sk_wake_async(sk, 1, POLL_IN);
2662 }
2663}
2664
2665static __inline__ int
2666tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2667{
2668 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2669 if (before(seq, sp->start_seq))
2670 sp->start_seq = seq;
2671 if (after(end_seq, sp->end_seq))
2672 sp->end_seq = end_seq;
2673 return 1;
2674 }
2675 return 0;
2676}
2677
2678static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2679{
2680 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2681 if (before(seq, tp->rcv_nxt))
2682 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2683 else
2684 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2685
2686 tp->rx_opt.dsack = 1;
2687 tp->duplicate_sack[0].start_seq = seq;
2688 tp->duplicate_sack[0].end_seq = end_seq;
2689 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2690 }
2691}
2692
2693static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2694{
2695 if (!tp->rx_opt.dsack)
2696 tcp_dsack_set(tp, seq, end_seq);
2697 else
2698 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2699}
2700
2701static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2702{
2703 struct tcp_sock *tp = tcp_sk(sk);
2704
2705 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2706 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2707 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 2708 tcp_enter_quickack_mode(sk);
1da177e4
LT
2709
2710 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2711 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2712
2713 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2714 end_seq = tp->rcv_nxt;
2715 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2716 }
2717 }
2718
2719 tcp_send_ack(sk);
2720}
2721
2722/* These routines update the SACK block as out-of-order packets arrive or
2723 * in-order packets close up the sequence space.
2724 */
2725static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2726{
2727 int this_sack;
2728 struct tcp_sack_block *sp = &tp->selective_acks[0];
2729 struct tcp_sack_block *swalk = sp+1;
2730
2731 /* See if the recent change to the first SACK eats into
2732 * or hits the sequence space of other SACK blocks, if so coalesce.
2733 */
2734 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2735 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2736 int i;
2737
2738 /* Zap SWALK, by moving every further SACK up by one slot.
2739 * Decrease num_sacks.
2740 */
2741 tp->rx_opt.num_sacks--;
2742 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2743 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2744 sp[i] = sp[i+1];
2745 continue;
2746 }
2747 this_sack++, swalk++;
2748 }
2749}
2750
2751static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2752{
2753 __u32 tmp;
2754
2755 tmp = sack1->start_seq;
2756 sack1->start_seq = sack2->start_seq;
2757 sack2->start_seq = tmp;
2758
2759 tmp = sack1->end_seq;
2760 sack1->end_seq = sack2->end_seq;
2761 sack2->end_seq = tmp;
2762}
2763
2764static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2765{
2766 struct tcp_sock *tp = tcp_sk(sk);
2767 struct tcp_sack_block *sp = &tp->selective_acks[0];
2768 int cur_sacks = tp->rx_opt.num_sacks;
2769 int this_sack;
2770
2771 if (!cur_sacks)
2772 goto new_sack;
2773
2774 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2775 if (tcp_sack_extend(sp, seq, end_seq)) {
2776 /* Rotate this_sack to the first one. */
2777 for (; this_sack>0; this_sack--, sp--)
2778 tcp_sack_swap(sp, sp-1);
2779 if (cur_sacks > 1)
2780 tcp_sack_maybe_coalesce(tp);
2781 return;
2782 }
2783 }
2784
2785 /* Could not find an adjacent existing SACK, build a new one,
2786 * put it at the front, and shift everyone else down. We
2787 * always know there is at least one SACK present already here.
2788 *
2789 * If the sack array is full, forget about the last one.
2790 */
2791 if (this_sack >= 4) {
2792 this_sack--;
2793 tp->rx_opt.num_sacks--;
2794 sp--;
2795 }
2796 for(; this_sack > 0; this_sack--, sp--)
2797 *sp = *(sp-1);
2798
2799new_sack:
2800 /* Build the new head SACK, and we're done. */
2801 sp->start_seq = seq;
2802 sp->end_seq = end_seq;
2803 tp->rx_opt.num_sacks++;
2804 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2805}
2806
2807/* RCV.NXT advances, some SACKs should be eaten. */
2808
2809static void tcp_sack_remove(struct tcp_sock *tp)
2810{
2811 struct tcp_sack_block *sp = &tp->selective_acks[0];
2812 int num_sacks = tp->rx_opt.num_sacks;
2813 int this_sack;
2814
2815 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 2816 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
2817 tp->rx_opt.num_sacks = 0;
2818 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2819 return;
2820 }
2821
2822 for(this_sack = 0; this_sack < num_sacks; ) {
2823 /* Check if the start of the sack is covered by RCV.NXT. */
2824 if (!before(tp->rcv_nxt, sp->start_seq)) {
2825 int i;
2826
2827 /* RCV.NXT must cover all the block! */
2828 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2829
2830 /* Zap this SACK, by moving forward any other SACKS. */
2831 for (i=this_sack+1; i < num_sacks; i++)
2832 tp->selective_acks[i-1] = tp->selective_acks[i];
2833 num_sacks--;
2834 continue;
2835 }
2836 this_sack++;
2837 sp++;
2838 }
2839 if (num_sacks != tp->rx_opt.num_sacks) {
2840 tp->rx_opt.num_sacks = num_sacks;
2841 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2842 }
2843}
2844
2845/* This one checks to see if we can put data from the
2846 * out_of_order queue into the receive_queue.
2847 */
2848static void tcp_ofo_queue(struct sock *sk)
2849{
2850 struct tcp_sock *tp = tcp_sk(sk);
2851 __u32 dsack_high = tp->rcv_nxt;
2852 struct sk_buff *skb;
2853
2854 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2855 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2856 break;
2857
2858 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2859 __u32 dsack = dsack_high;
2860 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2861 dsack_high = TCP_SKB_CB(skb)->end_seq;
2862 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2863 }
2864
2865 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2866 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 2867 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
2868 __kfree_skb(skb);
2869 continue;
2870 }
2871 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2872 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2873 TCP_SKB_CB(skb)->end_seq);
2874
8728b834 2875 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
2876 __skb_queue_tail(&sk->sk_receive_queue, skb);
2877 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2878 if(skb->h.th->fin)
2879 tcp_fin(skb, sk, skb->h.th);
2880 }
2881}
2882
2883static int tcp_prune_queue(struct sock *sk);
2884
2885static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2886{
2887 struct tcphdr *th = skb->h.th;
2888 struct tcp_sock *tp = tcp_sk(sk);
2889 int eaten = -1;
2890
2891 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2892 goto drop;
2893
1da177e4
LT
2894 __skb_pull(skb, th->doff*4);
2895
2896 TCP_ECN_accept_cwr(tp, skb);
2897
2898 if (tp->rx_opt.dsack) {
2899 tp->rx_opt.dsack = 0;
2900 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2901 4 - tp->rx_opt.tstamp_ok);
2902 }
2903
2904 /* Queue data for delivery to the user.
2905 * Packets in sequence go to the receive queue.
2906 * Out of sequence packets to the out_of_order_queue.
2907 */
2908 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2909 if (tcp_receive_window(tp) == 0)
2910 goto out_of_window;
2911
2912 /* Ok. In sequence. In window. */
2913 if (tp->ucopy.task == current &&
2914 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2915 sock_owned_by_user(sk) && !tp->urg_data) {
2916 int chunk = min_t(unsigned int, skb->len,
2917 tp->ucopy.len);
2918
2919 __set_current_state(TASK_RUNNING);
2920
2921 local_bh_enable();
2922 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2923 tp->ucopy.len -= chunk;
2924 tp->copied_seq += chunk;
2925 eaten = (chunk == skb->len && !th->fin);
2926 tcp_rcv_space_adjust(sk);
2927 }
2928 local_bh_disable();
2929 }
2930
2931 if (eaten <= 0) {
2932queue_and_out:
2933 if (eaten < 0 &&
2934 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2935 !sk_stream_rmem_schedule(sk, skb))) {
2936 if (tcp_prune_queue(sk) < 0 ||
2937 !sk_stream_rmem_schedule(sk, skb))
2938 goto drop;
2939 }
2940 sk_stream_set_owner_r(skb, sk);
2941 __skb_queue_tail(&sk->sk_receive_queue, skb);
2942 }
2943 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2944 if(skb->len)
2945 tcp_event_data_recv(sk, tp, skb);
2946 if(th->fin)
2947 tcp_fin(skb, sk, th);
2948
b03efcfb 2949 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
2950 tcp_ofo_queue(sk);
2951
2952 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2953 * gap in queue is filled.
2954 */
b03efcfb 2955 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 2956 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
2957 }
2958
2959 if (tp->rx_opt.num_sacks)
2960 tcp_sack_remove(tp);
2961
2962 tcp_fast_path_check(sk, tp);
2963
2964 if (eaten > 0)
2965 __kfree_skb(skb);
2966 else if (!sock_flag(sk, SOCK_DEAD))
2967 sk->sk_data_ready(sk, 0);
2968 return;
2969 }
2970
2971 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2972 /* A retransmit, 2nd most common case. Force an immediate ack. */
2973 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2974 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2975
2976out_of_window:
463c84b9
ACM
2977 tcp_enter_quickack_mode(sk);
2978 inet_csk_schedule_ack(sk);
1da177e4
LT
2979drop:
2980 __kfree_skb(skb);
2981 return;
2982 }
2983
2984 /* Out of window. F.e. zero window probe. */
2985 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2986 goto out_of_window;
2987
463c84b9 2988 tcp_enter_quickack_mode(sk);
1da177e4
LT
2989
2990 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2991 /* Partial packet, seq < rcv_next < end_seq */
2992 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2993 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2994 TCP_SKB_CB(skb)->end_seq);
2995
2996 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2997
2998 /* If window is closed, drop tail of packet. But after
2999 * remembering D-SACK for its head made in previous line.
3000 */
3001 if (!tcp_receive_window(tp))
3002 goto out_of_window;
3003 goto queue_and_out;
3004 }
3005
3006 TCP_ECN_check_ce(tp, skb);
3007
3008 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3009 !sk_stream_rmem_schedule(sk, skb)) {
3010 if (tcp_prune_queue(sk) < 0 ||
3011 !sk_stream_rmem_schedule(sk, skb))
3012 goto drop;
3013 }
3014
3015 /* Disable header prediction. */
3016 tp->pred_flags = 0;
463c84b9 3017 inet_csk_schedule_ack(sk);
1da177e4
LT
3018
3019 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3020 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3021
3022 sk_stream_set_owner_r(skb, sk);
3023
3024 if (!skb_peek(&tp->out_of_order_queue)) {
3025 /* Initial out of order segment, build 1 SACK. */
3026 if (tp->rx_opt.sack_ok) {
3027 tp->rx_opt.num_sacks = 1;
3028 tp->rx_opt.dsack = 0;
3029 tp->rx_opt.eff_sacks = 1;
3030 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3031 tp->selective_acks[0].end_seq =
3032 TCP_SKB_CB(skb)->end_seq;
3033 }
3034 __skb_queue_head(&tp->out_of_order_queue,skb);
3035 } else {
3036 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3037 u32 seq = TCP_SKB_CB(skb)->seq;
3038 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3039
3040 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3041 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3042
3043 if (!tp->rx_opt.num_sacks ||
3044 tp->selective_acks[0].end_seq != seq)
3045 goto add_sack;
3046
3047 /* Common case: data arrive in order after hole. */
3048 tp->selective_acks[0].end_seq = end_seq;
3049 return;
3050 }
3051
3052 /* Find place to insert this segment. */
3053 do {
3054 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3055 break;
3056 } while ((skb1 = skb1->prev) !=
3057 (struct sk_buff*)&tp->out_of_order_queue);
3058
3059 /* Do skb overlap to previous one? */
3060 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3061 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3062 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3063 /* All the bits are present. Drop. */
3064 __kfree_skb(skb);
3065 tcp_dsack_set(tp, seq, end_seq);
3066 goto add_sack;
3067 }
3068 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3069 /* Partial overlap. */
3070 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3071 } else {
3072 skb1 = skb1->prev;
3073 }
3074 }
3075 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3076
3077 /* And clean segments covered by new one as whole. */
3078 while ((skb1 = skb->next) !=
3079 (struct sk_buff*)&tp->out_of_order_queue &&
3080 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3081 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3082 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3083 break;
3084 }
8728b834 3085 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3086 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3087 __kfree_skb(skb1);
3088 }
3089
3090add_sack:
3091 if (tp->rx_opt.sack_ok)
3092 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3093 }
3094}
3095
3096/* Collapse contiguous sequence of skbs head..tail with
3097 * sequence numbers start..end.
3098 * Segments with FIN/SYN are not collapsed (only because this
3099 * simplifies code)
3100 */
3101static void
8728b834
DM
3102tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3103 struct sk_buff *head, struct sk_buff *tail,
3104 u32 start, u32 end)
1da177e4
LT
3105{
3106 struct sk_buff *skb;
3107
3108 /* First, check that queue is collapsable and find
3109 * the point where collapsing can be useful. */
3110 for (skb = head; skb != tail; ) {
3111 /* No new bits? It is possible on ofo queue. */
3112 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3113 struct sk_buff *next = skb->next;
8728b834 3114 __skb_unlink(skb, list);
1da177e4
LT
3115 __kfree_skb(skb);
3116 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3117 skb = next;
3118 continue;
3119 }
3120
3121 /* The first skb to collapse is:
3122 * - not SYN/FIN and
3123 * - bloated or contains data before "start" or
3124 * overlaps to the next one.
3125 */
3126 if (!skb->h.th->syn && !skb->h.th->fin &&
3127 (tcp_win_from_space(skb->truesize) > skb->len ||
3128 before(TCP_SKB_CB(skb)->seq, start) ||
3129 (skb->next != tail &&
3130 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3131 break;
3132
3133 /* Decided to skip this, advance start seq. */
3134 start = TCP_SKB_CB(skb)->end_seq;
3135 skb = skb->next;
3136 }
3137 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3138 return;
3139
3140 while (before(start, end)) {
3141 struct sk_buff *nskb;
3142 int header = skb_headroom(skb);
3143 int copy = SKB_MAX_ORDER(header, 0);
3144
3145 /* Too big header? This can happen with IPv6. */
3146 if (copy < 0)
3147 return;
3148 if (end-start < copy)
3149 copy = end-start;
3150 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3151 if (!nskb)
3152 return;
3153 skb_reserve(nskb, header);
3154 memcpy(nskb->head, skb->head, header);
3155 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3156 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3157 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3158 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3159 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3160 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3161 sk_stream_set_owner_r(nskb, sk);
3162
3163 /* Copy data, releasing collapsed skbs. */
3164 while (copy > 0) {
3165 int offset = start - TCP_SKB_CB(skb)->seq;
3166 int size = TCP_SKB_CB(skb)->end_seq - start;
3167
3168 if (offset < 0) BUG();
3169 if (size > 0) {
3170 size = min(copy, size);
3171 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3172 BUG();
3173 TCP_SKB_CB(nskb)->end_seq += size;
3174 copy -= size;
3175 start += size;
3176 }
3177 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3178 struct sk_buff *next = skb->next;
8728b834 3179 __skb_unlink(skb, list);
1da177e4
LT
3180 __kfree_skb(skb);
3181 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3182 skb = next;
3183 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3184 return;
3185 }
3186 }
3187 }
3188}
3189
3190/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3191 * and tcp_collapse() them until all the queue is collapsed.
3192 */
3193static void tcp_collapse_ofo_queue(struct sock *sk)
3194{
3195 struct tcp_sock *tp = tcp_sk(sk);
3196 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3197 struct sk_buff *head;
3198 u32 start, end;
3199
3200 if (skb == NULL)
3201 return;
3202
3203 start = TCP_SKB_CB(skb)->seq;
3204 end = TCP_SKB_CB(skb)->end_seq;
3205 head = skb;
3206
3207 for (;;) {
3208 skb = skb->next;
3209
3210 /* Segment is terminated when we see gap or when
3211 * we are at the end of all the queue. */
3212 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3213 after(TCP_SKB_CB(skb)->seq, end) ||
3214 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3215 tcp_collapse(sk, &tp->out_of_order_queue,
3216 head, skb, start, end);
1da177e4
LT
3217 head = skb;
3218 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3219 break;
3220 /* Start new segment */
3221 start = TCP_SKB_CB(skb)->seq;
3222 end = TCP_SKB_CB(skb)->end_seq;
3223 } else {
3224 if (before(TCP_SKB_CB(skb)->seq, start))
3225 start = TCP_SKB_CB(skb)->seq;
3226 if (after(TCP_SKB_CB(skb)->end_seq, end))
3227 end = TCP_SKB_CB(skb)->end_seq;
3228 }
3229 }
3230}
3231
3232/* Reduce allocated memory if we can, trying to get
3233 * the socket within its memory limits again.
3234 *
3235 * Return less than zero if we should start dropping frames
3236 * until the socket owning process reads some of the data
3237 * to stabilize the situation.
3238 */
3239static int tcp_prune_queue(struct sock *sk)
3240{
3241 struct tcp_sock *tp = tcp_sk(sk);
3242
3243 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3244
3245 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3246
3247 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3248 tcp_clamp_window(sk, tp);
3249 else if (tcp_memory_pressure)
3250 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3251
3252 tcp_collapse_ofo_queue(sk);
8728b834
DM
3253 tcp_collapse(sk, &sk->sk_receive_queue,
3254 sk->sk_receive_queue.next,
1da177e4
LT
3255 (struct sk_buff*)&sk->sk_receive_queue,
3256 tp->copied_seq, tp->rcv_nxt);
3257 sk_stream_mem_reclaim(sk);
3258
3259 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3260 return 0;
3261
3262 /* Collapsing did not help, destructive actions follow.
3263 * This must not ever occur. */
3264
3265 /* First, purge the out_of_order queue. */
b03efcfb
DM
3266 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3267 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3268 __skb_queue_purge(&tp->out_of_order_queue);
3269
3270 /* Reset SACK state. A conforming SACK implementation will
3271 * do the same at a timeout based retransmit. When a connection
3272 * is in a sad state like this, we care only about integrity
3273 * of the connection not performance.
3274 */
3275 if (tp->rx_opt.sack_ok)
3276 tcp_sack_reset(&tp->rx_opt);
3277 sk_stream_mem_reclaim(sk);
3278 }
3279
3280 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3281 return 0;
3282
3283 /* If we are really being abused, tell the caller to silently
3284 * drop receive data on the floor. It will get retransmitted
3285 * and hopefully then we'll have sufficient space.
3286 */
3287 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3288
3289 /* Massive buffer overcommit. */
3290 tp->pred_flags = 0;
3291 return -1;
3292}
3293
3294
3295/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3296 * As additional protections, we do not touch cwnd in retransmission phases,
3297 * and if application hit its sndbuf limit recently.
3298 */
3299void tcp_cwnd_application_limited(struct sock *sk)
3300{
3301 struct tcp_sock *tp = tcp_sk(sk);
3302
3303 if (tp->ca_state == TCP_CA_Open &&
3304 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3305 /* Limited by application or receiver window. */
3306 u32 win_used = max(tp->snd_cwnd_used, 2U);
3307 if (win_used < tp->snd_cwnd) {
3308 tp->snd_ssthresh = tcp_current_ssthresh(tp);
3309 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3310 }
3311 tp->snd_cwnd_used = 0;
3312 }
3313 tp->snd_cwnd_stamp = tcp_time_stamp;
3314}
3315
0d9901df
DM
3316static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3317{
3318 /* If the user specified a specific send buffer setting, do
3319 * not modify it.
3320 */
3321 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3322 return 0;
3323
3324 /* If we are under global TCP memory pressure, do not expand. */
3325 if (tcp_memory_pressure)
3326 return 0;
3327
3328 /* If we are under soft global TCP memory pressure, do not expand. */
3329 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3330 return 0;
3331
3332 /* If we filled the congestion window, do not expand. */
3333 if (tp->packets_out >= tp->snd_cwnd)
3334 return 0;
3335
3336 return 1;
3337}
1da177e4
LT
3338
3339/* When incoming ACK allowed to free some skb from write_queue,
3340 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3341 * on the exit from tcp input handler.
3342 *
3343 * PROBLEM: sndbuf expansion does not work well with largesend.
3344 */
3345static void tcp_new_space(struct sock *sk)
3346{
3347 struct tcp_sock *tp = tcp_sk(sk);
3348
0d9901df 3349 if (tcp_should_expand_sndbuf(sk, tp)) {
c1b4a7e6 3350 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3351 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3352 demanded = max_t(unsigned int, tp->snd_cwnd,
3353 tp->reordering + 1);
3354 sndmem *= 2*demanded;
3355 if (sndmem > sk->sk_sndbuf)
3356 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3357 tp->snd_cwnd_stamp = tcp_time_stamp;
3358 }
3359
3360 sk->sk_write_space(sk);
3361}
3362
3363static inline void tcp_check_space(struct sock *sk)
3364{
3365 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3366 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3367 if (sk->sk_socket &&
3368 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3369 tcp_new_space(sk);
3370 }
3371}
3372
55c97f3e 3373static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3374{
55c97f3e 3375 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3376 tcp_check_space(sk);
3377}
3378
3379/*
3380 * Check if sending an ack is needed.
3381 */
3382static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3383{
3384 struct tcp_sock *tp = tcp_sk(sk);
3385
3386 /* More than one full frame received... */
463c84b9 3387 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3388 /* ... and right edge of window advances far enough.
3389 * (tcp_recvmsg() will send ACK otherwise). Or...
3390 */
3391 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3392 /* We ACK each frame or... */
463c84b9 3393 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3394 /* We have out of order data. */
3395 (ofo_possible &&
3396 skb_peek(&tp->out_of_order_queue))) {
3397 /* Then ack it now */
3398 tcp_send_ack(sk);
3399 } else {
3400 /* Else, send delayed ack. */
3401 tcp_send_delayed_ack(sk);
3402 }
3403}
3404
3405static __inline__ void tcp_ack_snd_check(struct sock *sk)
3406{
463c84b9 3407 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3408 /* We sent a data segment already. */
3409 return;
3410 }
3411 __tcp_ack_snd_check(sk, 1);
3412}
3413
3414/*
3415 * This routine is only called when we have urgent data
3416 * signalled. Its the 'slow' part of tcp_urg. It could be
3417 * moved inline now as tcp_urg is only called from one
3418 * place. We handle URGent data wrong. We have to - as
3419 * BSD still doesn't use the correction from RFC961.
3420 * For 1003.1g we should support a new option TCP_STDURG to permit
3421 * either form (or just set the sysctl tcp_stdurg).
3422 */
3423
3424static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3425{
3426 struct tcp_sock *tp = tcp_sk(sk);
3427 u32 ptr = ntohs(th->urg_ptr);
3428
3429 if (ptr && !sysctl_tcp_stdurg)
3430 ptr--;
3431 ptr += ntohl(th->seq);
3432
3433 /* Ignore urgent data that we've already seen and read. */
3434 if (after(tp->copied_seq, ptr))
3435 return;
3436
3437 /* Do not replay urg ptr.
3438 *
3439 * NOTE: interesting situation not covered by specs.
3440 * Misbehaving sender may send urg ptr, pointing to segment,
3441 * which we already have in ofo queue. We are not able to fetch
3442 * such data and will stay in TCP_URG_NOTYET until will be eaten
3443 * by recvmsg(). Seems, we are not obliged to handle such wicked
3444 * situations. But it is worth to think about possibility of some
3445 * DoSes using some hypothetical application level deadlock.
3446 */
3447 if (before(ptr, tp->rcv_nxt))
3448 return;
3449
3450 /* Do we already have a newer (or duplicate) urgent pointer? */
3451 if (tp->urg_data && !after(ptr, tp->urg_seq))
3452 return;
3453
3454 /* Tell the world about our new urgent pointer. */
3455 sk_send_sigurg(sk);
3456
3457 /* We may be adding urgent data when the last byte read was
3458 * urgent. To do this requires some care. We cannot just ignore
3459 * tp->copied_seq since we would read the last urgent byte again
3460 * as data, nor can we alter copied_seq until this data arrives
3461 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3462 *
3463 * NOTE. Double Dutch. Rendering to plain English: author of comment
3464 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3465 * and expect that both A and B disappear from stream. This is _wrong_.
3466 * Though this happens in BSD with high probability, this is occasional.
3467 * Any application relying on this is buggy. Note also, that fix "works"
3468 * only in this artificial test. Insert some normal data between A and B and we will
3469 * decline of BSD again. Verdict: it is better to remove to trap
3470 * buggy users.
3471 */
3472 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3473 !sock_flag(sk, SOCK_URGINLINE) &&
3474 tp->copied_seq != tp->rcv_nxt) {
3475 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3476 tp->copied_seq++;
3477 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3478 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3479 __kfree_skb(skb);
3480 }
3481 }
3482
3483 tp->urg_data = TCP_URG_NOTYET;
3484 tp->urg_seq = ptr;
3485
3486 /* Disable header prediction. */
3487 tp->pred_flags = 0;
3488}
3489
3490/* This is the 'fast' part of urgent handling. */
3491static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3492{
3493 struct tcp_sock *tp = tcp_sk(sk);
3494
3495 /* Check if we get a new urgent pointer - normally not. */
3496 if (th->urg)
3497 tcp_check_urg(sk,th);
3498
3499 /* Do we wait for any urgent data? - normally not... */
3500 if (tp->urg_data == TCP_URG_NOTYET) {
3501 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3502 th->syn;
3503
3504 /* Is the urgent pointer pointing into this packet? */
3505 if (ptr < skb->len) {
3506 u8 tmp;
3507 if (skb_copy_bits(skb, ptr, &tmp, 1))
3508 BUG();
3509 tp->urg_data = TCP_URG_VALID | tmp;
3510 if (!sock_flag(sk, SOCK_DEAD))
3511 sk->sk_data_ready(sk, 0);
3512 }
3513 }
3514}
3515
3516static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3517{
3518 struct tcp_sock *tp = tcp_sk(sk);
3519 int chunk = skb->len - hlen;
3520 int err;
3521
3522 local_bh_enable();
3523 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3524 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3525 else
3526 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3527 tp->ucopy.iov);
3528
3529 if (!err) {
3530 tp->ucopy.len -= chunk;
3531 tp->copied_seq += chunk;
3532 tcp_rcv_space_adjust(sk);
3533 }
3534
3535 local_bh_disable();
3536 return err;
3537}
3538
3539static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3540{
3541 int result;
3542
3543 if (sock_owned_by_user(sk)) {
3544 local_bh_enable();
3545 result = __tcp_checksum_complete(skb);
3546 local_bh_disable();
3547 } else {
3548 result = __tcp_checksum_complete(skb);
3549 }
3550 return result;
3551}
3552
3553static __inline__ int
3554tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3555{
3556 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3557 __tcp_checksum_complete_user(sk, skb);
3558}
3559
3560/*
3561 * TCP receive function for the ESTABLISHED state.
3562 *
3563 * It is split into a fast path and a slow path. The fast path is
3564 * disabled when:
3565 * - A zero window was announced from us - zero window probing
3566 * is only handled properly in the slow path.
3567 * - Out of order segments arrived.
3568 * - Urgent data is expected.
3569 * - There is no buffer space left
3570 * - Unexpected TCP flags/window values/header lengths are received
3571 * (detected by checking the TCP header against pred_flags)
3572 * - Data is sent in both directions. Fast path only supports pure senders
3573 * or pure receivers (this means either the sequence number or the ack
3574 * value must stay constant)
3575 * - Unexpected TCP option.
3576 *
3577 * When these conditions are not satisfied it drops into a standard
3578 * receive procedure patterned after RFC793 to handle all cases.
3579 * The first three cases are guaranteed by proper pred_flags setting,
3580 * the rest is checked inline. Fast processing is turned on in
3581 * tcp_data_queue when everything is OK.
3582 */
3583int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3584 struct tcphdr *th, unsigned len)
3585{
3586 struct tcp_sock *tp = tcp_sk(sk);
3587
3588 /*
3589 * Header prediction.
3590 * The code loosely follows the one in the famous
3591 * "30 instruction TCP receive" Van Jacobson mail.
3592 *
3593 * Van's trick is to deposit buffers into socket queue
3594 * on a device interrupt, to call tcp_recv function
3595 * on the receive process context and checksum and copy
3596 * the buffer to user space. smart...
3597 *
3598 * Our current scheme is not silly either but we take the
3599 * extra cost of the net_bh soft interrupt processing...
3600 * We do checksum and copy also but from device to kernel.
3601 */
3602
3603 tp->rx_opt.saw_tstamp = 0;
3604
3605 /* pred_flags is 0xS?10 << 16 + snd_wnd
3606 * if header_predition is to be made
3607 * 'S' will always be tp->tcp_header_len >> 2
3608 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3609 * turn it off (when there are holes in the receive
3610 * space for instance)
3611 * PSH flag is ignored.
3612 */
3613
3614 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3615 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3616 int tcp_header_len = tp->tcp_header_len;
3617
3618 /* Timestamp header prediction: tcp_header_len
3619 * is automatically equal to th->doff*4 due to pred_flags
3620 * match.
3621 */
3622
3623 /* Check timestamp */
3624 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3625 __u32 *ptr = (__u32 *)(th + 1);
3626
3627 /* No? Slow path! */
3628 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3629 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3630 goto slow_path;
3631
3632 tp->rx_opt.saw_tstamp = 1;
3633 ++ptr;
3634 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3635 ++ptr;
3636 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3637
3638 /* If PAWS failed, check it more carefully in slow path */
3639 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3640 goto slow_path;
3641
3642 /* DO NOT update ts_recent here, if checksum fails
3643 * and timestamp was corrupted part, it will result
3644 * in a hung connection since we will drop all
3645 * future packets due to the PAWS test.
3646 */
3647 }
3648
3649 if (len <= tcp_header_len) {
3650 /* Bulk data transfer: sender */
3651 if (len == tcp_header_len) {
3652 /* Predicted packet is in window by definition.
3653 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3654 * Hence, check seq<=rcv_wup reduces to:
3655 */
3656 if (tcp_header_len ==
3657 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3658 tp->rcv_nxt == tp->rcv_wup)
3659 tcp_store_ts_recent(tp);
3660
463c84b9 3661 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3662
3663 /* We know that such packets are checksummed
3664 * on entry.
3665 */
3666 tcp_ack(sk, skb, 0);
3667 __kfree_skb(skb);
55c97f3e 3668 tcp_data_snd_check(sk, tp);
1da177e4
LT
3669 return 0;
3670 } else { /* Header too small */
3671 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3672 goto discard;
3673 }
3674 } else {
3675 int eaten = 0;
3676
3677 if (tp->ucopy.task == current &&
3678 tp->copied_seq == tp->rcv_nxt &&
3679 len - tcp_header_len <= tp->ucopy.len &&
3680 sock_owned_by_user(sk)) {
3681 __set_current_state(TASK_RUNNING);
3682
3683 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3684 /* Predicted packet is in window by definition.
3685 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3686 * Hence, check seq<=rcv_wup reduces to:
3687 */
3688 if (tcp_header_len ==
3689 (sizeof(struct tcphdr) +
3690 TCPOLEN_TSTAMP_ALIGNED) &&
3691 tp->rcv_nxt == tp->rcv_wup)
3692 tcp_store_ts_recent(tp);
3693
463c84b9 3694 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3695
3696 __skb_pull(skb, tcp_header_len);
3697 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3698 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3699 eaten = 1;
3700 }
3701 }
3702 if (!eaten) {
3703 if (tcp_checksum_complete_user(sk, skb))
3704 goto csum_error;
3705
3706 /* Predicted packet is in window by definition.
3707 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3708 * Hence, check seq<=rcv_wup reduces to:
3709 */
3710 if (tcp_header_len ==
3711 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3712 tp->rcv_nxt == tp->rcv_wup)
3713 tcp_store_ts_recent(tp);
3714
463c84b9 3715 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3716
3717 if ((int)skb->truesize > sk->sk_forward_alloc)
3718 goto step5;
3719
3720 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3721
3722 /* Bulk data transfer: receiver */
3723 __skb_pull(skb,tcp_header_len);
3724 __skb_queue_tail(&sk->sk_receive_queue, skb);
3725 sk_stream_set_owner_r(skb, sk);
3726 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3727 }
3728
3729 tcp_event_data_recv(sk, tp, skb);
3730
3731 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3732 /* Well, only one small jumplet in fast path... */
3733 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 3734 tcp_data_snd_check(sk, tp);
463c84b9 3735 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
3736 goto no_ack;
3737 }
3738
31432412 3739 __tcp_ack_snd_check(sk, 0);
1da177e4
LT
3740no_ack:
3741 if (eaten)
3742 __kfree_skb(skb);
3743 else
3744 sk->sk_data_ready(sk, 0);
3745 return 0;
3746 }
3747 }
3748
3749slow_path:
3750 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3751 goto csum_error;
3752
3753 /*
3754 * RFC1323: H1. Apply PAWS check first.
3755 */
3756 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 3757 tcp_paws_discard(sk, skb)) {
1da177e4
LT
3758 if (!th->rst) {
3759 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3760 tcp_send_dupack(sk, skb);
3761 goto discard;
3762 }
3763 /* Resets are accepted even if PAWS failed.
3764
3765 ts_recent update must be made after we are sure
3766 that the packet is in window.
3767 */
3768 }
3769
3770 /*
3771 * Standard slow path.
3772 */
3773
3774 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3775 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3776 * (RST) segments are validated by checking their SEQ-fields."
3777 * And page 69: "If an incoming segment is not acceptable,
3778 * an acknowledgment should be sent in reply (unless the RST bit
3779 * is set, if so drop the segment and return)".
3780 */
3781 if (!th->rst)
3782 tcp_send_dupack(sk, skb);
3783 goto discard;
3784 }
3785
3786 if(th->rst) {
3787 tcp_reset(sk);
3788 goto discard;
3789 }
3790
3791 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3792
3793 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3794 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3795 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3796 tcp_reset(sk);
3797 return 1;
3798 }
3799
3800step5:
3801 if(th->ack)
3802 tcp_ack(sk, skb, FLAG_SLOWPATH);
3803
463c84b9 3804 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3805
3806 /* Process urgent data. */
3807 tcp_urg(sk, skb, th);
3808
3809 /* step 7: process the segment text */
3810 tcp_data_queue(sk, skb);
3811
55c97f3e 3812 tcp_data_snd_check(sk, tp);
1da177e4
LT
3813 tcp_ack_snd_check(sk);
3814 return 0;
3815
3816csum_error:
3817 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3818
3819discard:
3820 __kfree_skb(skb);
3821 return 0;
3822}
3823
3824static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3825 struct tcphdr *th, unsigned len)
3826{
3827 struct tcp_sock *tp = tcp_sk(sk);
3828 int saved_clamp = tp->rx_opt.mss_clamp;
3829
3830 tcp_parse_options(skb, &tp->rx_opt, 0);
3831
3832 if (th->ack) {
3833 /* rfc793:
3834 * "If the state is SYN-SENT then
3835 * first check the ACK bit
3836 * If the ACK bit is set
3837 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3838 * a reset (unless the RST bit is set, if so drop
3839 * the segment and return)"
3840 *
3841 * We do not send data with SYN, so that RFC-correct
3842 * test reduces to:
3843 */
3844 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3845 goto reset_and_undo;
3846
3847 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3848 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3849 tcp_time_stamp)) {
3850 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3851 goto reset_and_undo;
3852 }
3853
3854 /* Now ACK is acceptable.
3855 *
3856 * "If the RST bit is set
3857 * If the ACK was acceptable then signal the user "error:
3858 * connection reset", drop the segment, enter CLOSED state,
3859 * delete TCB, and return."
3860 */
3861
3862 if (th->rst) {
3863 tcp_reset(sk);
3864 goto discard;
3865 }
3866
3867 /* rfc793:
3868 * "fifth, if neither of the SYN or RST bits is set then
3869 * drop the segment and return."
3870 *
3871 * See note below!
3872 * --ANK(990513)
3873 */
3874 if (!th->syn)
3875 goto discard_and_undo;
3876
3877 /* rfc793:
3878 * "If the SYN bit is on ...
3879 * are acceptable then ...
3880 * (our SYN has been ACKed), change the connection
3881 * state to ESTABLISHED..."
3882 */
3883
3884 TCP_ECN_rcv_synack(tp, th);
3885 if (tp->ecn_flags&TCP_ECN_OK)
3886 sock_set_flag(sk, SOCK_NO_LARGESEND);
3887
3888 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3889 tcp_ack(sk, skb, FLAG_SLOWPATH);
3890
3891 /* Ok.. it's good. Set up sequence numbers and
3892 * move to established.
3893 */
3894 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3895 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3896
3897 /* RFC1323: The window in SYN & SYN/ACK segments is
3898 * never scaled.
3899 */
3900 tp->snd_wnd = ntohs(th->window);
3901 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3902
3903 if (!tp->rx_opt.wscale_ok) {
3904 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3905 tp->window_clamp = min(tp->window_clamp, 65535U);
3906 }
3907
3908 if (tp->rx_opt.saw_tstamp) {
3909 tp->rx_opt.tstamp_ok = 1;
3910 tp->tcp_header_len =
3911 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3912 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3913 tcp_store_ts_recent(tp);
3914 } else {
3915 tp->tcp_header_len = sizeof(struct tcphdr);
3916 }
3917
3918 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3919 tp->rx_opt.sack_ok |= 2;
3920
3921 tcp_sync_mss(sk, tp->pmtu_cookie);
3922 tcp_initialize_rcv_mss(sk);
3923
3924 /* Remember, tcp_poll() does not lock socket!
3925 * Change state from SYN-SENT only after copied_seq
3926 * is initialized. */
3927 tp->copied_seq = tp->rcv_nxt;
3928 mb();
3929 tcp_set_state(sk, TCP_ESTABLISHED);
3930
3931 /* Make sure socket is routed, for correct metrics. */
3932 tp->af_specific->rebuild_header(sk);
3933
3934 tcp_init_metrics(sk);
3935
317a76f9
SH
3936 tcp_init_congestion_control(tp);
3937
1da177e4
LT
3938 /* Prevent spurious tcp_cwnd_restart() on first data
3939 * packet.
3940 */
3941 tp->lsndtime = tcp_time_stamp;
3942
3943 tcp_init_buffer_space(sk);
3944
3945 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 3946 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
3947
3948 if (!tp->rx_opt.snd_wscale)
3949 __tcp_fast_path_on(tp, tp->snd_wnd);
3950 else
3951 tp->pred_flags = 0;
3952
3953 if (!sock_flag(sk, SOCK_DEAD)) {
3954 sk->sk_state_change(sk);
3955 sk_wake_async(sk, 0, POLL_OUT);
3956 }
3957
463c84b9 3958 if (sk->sk_write_pending || tp->defer_accept || inet_csk(sk)->icsk_ack.pingpong) {
1da177e4
LT
3959 /* Save one ACK. Data will be ready after
3960 * several ticks, if write_pending is set.
3961 *
3962 * It may be deleted, but with this feature tcpdumps
3963 * look so _wonderfully_ clever, that I was not able
3964 * to stand against the temptation 8) --ANK
3965 */
463c84b9
ACM
3966 inet_csk_schedule_ack(sk);
3967 inet_csk(sk)->icsk_ack.lrcvtime = tcp_time_stamp;
3968 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3969 tcp_incr_quickack(sk);
3970 tcp_enter_quickack_mode(sk);
3971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, TCP_DELACK_MAX);
1da177e4
LT
3972
3973discard:
3974 __kfree_skb(skb);
3975 return 0;
3976 } else {
3977 tcp_send_ack(sk);
3978 }
3979 return -1;
3980 }
3981
3982 /* No ACK in the segment */
3983
3984 if (th->rst) {
3985 /* rfc793:
3986 * "If the RST bit is set
3987 *
3988 * Otherwise (no ACK) drop the segment and return."
3989 */
3990
3991 goto discard_and_undo;
3992 }
3993
3994 /* PAWS check. */
3995 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
3996 goto discard_and_undo;
3997
3998 if (th->syn) {
3999 /* We see SYN without ACK. It is attempt of
4000 * simultaneous connect with crossed SYNs.
4001 * Particularly, it can be connect to self.
4002 */
4003 tcp_set_state(sk, TCP_SYN_RECV);
4004
4005 if (tp->rx_opt.saw_tstamp) {
4006 tp->rx_opt.tstamp_ok = 1;
4007 tcp_store_ts_recent(tp);
4008 tp->tcp_header_len =
4009 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4010 } else {
4011 tp->tcp_header_len = sizeof(struct tcphdr);
4012 }
4013
4014 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4015 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4016
4017 /* RFC1323: The window in SYN & SYN/ACK segments is
4018 * never scaled.
4019 */
4020 tp->snd_wnd = ntohs(th->window);
4021 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4022 tp->max_window = tp->snd_wnd;
4023
4024 TCP_ECN_rcv_syn(tp, th);
4025 if (tp->ecn_flags&TCP_ECN_OK)
4026 sock_set_flag(sk, SOCK_NO_LARGESEND);
4027
4028 tcp_sync_mss(sk, tp->pmtu_cookie);
4029 tcp_initialize_rcv_mss(sk);
4030
4031
4032 tcp_send_synack(sk);
4033#if 0
4034 /* Note, we could accept data and URG from this segment.
4035 * There are no obstacles to make this.
4036 *
4037 * However, if we ignore data in ACKless segments sometimes,
4038 * we have no reasons to accept it sometimes.
4039 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4040 * is not flawless. So, discard packet for sanity.
4041 * Uncomment this return to process the data.
4042 */
4043 return -1;
4044#else
4045 goto discard;
4046#endif
4047 }
4048 /* "fifth, if neither of the SYN or RST bits is set then
4049 * drop the segment and return."
4050 */
4051
4052discard_and_undo:
4053 tcp_clear_options(&tp->rx_opt);
4054 tp->rx_opt.mss_clamp = saved_clamp;
4055 goto discard;
4056
4057reset_and_undo:
4058 tcp_clear_options(&tp->rx_opt);
4059 tp->rx_opt.mss_clamp = saved_clamp;
4060 return 1;
4061}
4062
4063
4064/*
4065 * This function implements the receiving procedure of RFC 793 for
4066 * all states except ESTABLISHED and TIME_WAIT.
4067 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4068 * address independent.
4069 */
4070
4071int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4072 struct tcphdr *th, unsigned len)
4073{
4074 struct tcp_sock *tp = tcp_sk(sk);
4075 int queued = 0;
4076
4077 tp->rx_opt.saw_tstamp = 0;
4078
4079 switch (sk->sk_state) {
4080 case TCP_CLOSE:
4081 goto discard;
4082
4083 case TCP_LISTEN:
4084 if(th->ack)
4085 return 1;
4086
4087 if(th->rst)
4088 goto discard;
4089
4090 if(th->syn) {
4091 if(tp->af_specific->conn_request(sk, skb) < 0)
4092 return 1;
4093
1da177e4
LT
4094 /* Now we have several options: In theory there is
4095 * nothing else in the frame. KA9Q has an option to
4096 * send data with the syn, BSD accepts data with the
4097 * syn up to the [to be] advertised window and
4098 * Solaris 2.1 gives you a protocol error. For now
4099 * we just ignore it, that fits the spec precisely
4100 * and avoids incompatibilities. It would be nice in
4101 * future to drop through and process the data.
4102 *
4103 * Now that TTCP is starting to be used we ought to
4104 * queue this data.
4105 * But, this leaves one open to an easy denial of
4106 * service attack, and SYN cookies can't defend
4107 * against this problem. So, we drop the data
4108 * in the interest of security over speed.
4109 */
4110 goto discard;
4111 }
4112 goto discard;
4113
4114 case TCP_SYN_SENT:
1da177e4
LT
4115 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4116 if (queued >= 0)
4117 return queued;
4118
4119 /* Do step6 onward by hand. */
4120 tcp_urg(sk, skb, th);
4121 __kfree_skb(skb);
55c97f3e 4122 tcp_data_snd_check(sk, tp);
1da177e4
LT
4123 return 0;
4124 }
4125
4126 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4127 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4128 if (!th->rst) {
4129 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4130 tcp_send_dupack(sk, skb);
4131 goto discard;
4132 }
4133 /* Reset is accepted even if it did not pass PAWS. */
4134 }
4135
4136 /* step 1: check sequence number */
4137 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4138 if (!th->rst)
4139 tcp_send_dupack(sk, skb);
4140 goto discard;
4141 }
4142
4143 /* step 2: check RST bit */
4144 if(th->rst) {
4145 tcp_reset(sk);
4146 goto discard;
4147 }
4148
4149 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4150
4151 /* step 3: check security and precedence [ignored] */
4152
4153 /* step 4:
4154 *
4155 * Check for a SYN in window.
4156 */
4157 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4158 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4159 tcp_reset(sk);
4160 return 1;
4161 }
4162
4163 /* step 5: check the ACK field */
4164 if (th->ack) {
4165 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4166
4167 switch(sk->sk_state) {
4168 case TCP_SYN_RECV:
4169 if (acceptable) {
4170 tp->copied_seq = tp->rcv_nxt;
4171 mb();
4172 tcp_set_state(sk, TCP_ESTABLISHED);
4173 sk->sk_state_change(sk);
4174
4175 /* Note, that this wakeup is only for marginal
4176 * crossed SYN case. Passively open sockets
4177 * are not waked up, because sk->sk_sleep ==
4178 * NULL and sk->sk_socket == NULL.
4179 */
4180 if (sk->sk_socket) {
4181 sk_wake_async(sk,0,POLL_OUT);
4182 }
4183
4184 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4185 tp->snd_wnd = ntohs(th->window) <<
4186 tp->rx_opt.snd_wscale;
4187 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4188 TCP_SKB_CB(skb)->seq);
4189
4190 /* tcp_ack considers this ACK as duplicate
4191 * and does not calculate rtt.
4192 * Fix it at least with timestamps.
4193 */
4194 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4195 !tp->srtt)
463c84b9 4196 tcp_ack_saw_tstamp(sk, 0, 0);
1da177e4
LT
4197
4198 if (tp->rx_opt.tstamp_ok)
4199 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4200
4201 /* Make sure socket is routed, for
4202 * correct metrics.
4203 */
4204 tp->af_specific->rebuild_header(sk);
4205
4206 tcp_init_metrics(sk);
4207
317a76f9
SH
4208 tcp_init_congestion_control(tp);
4209
1da177e4
LT
4210 /* Prevent spurious tcp_cwnd_restart() on
4211 * first data packet.
4212 */
4213 tp->lsndtime = tcp_time_stamp;
4214
4215 tcp_initialize_rcv_mss(sk);
4216 tcp_init_buffer_space(sk);
4217 tcp_fast_path_on(tp);
4218 } else {
4219 return 1;
4220 }
4221 break;
4222
4223 case TCP_FIN_WAIT1:
4224 if (tp->snd_una == tp->write_seq) {
4225 tcp_set_state(sk, TCP_FIN_WAIT2);
4226 sk->sk_shutdown |= SEND_SHUTDOWN;
4227 dst_confirm(sk->sk_dst_cache);
4228
4229 if (!sock_flag(sk, SOCK_DEAD))
4230 /* Wake up lingering close() */
4231 sk->sk_state_change(sk);
4232 else {
4233 int tmo;
4234
4235 if (tp->linger2 < 0 ||
4236 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4237 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4238 tcp_done(sk);
4239 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4240 return 1;
4241 }
4242
463c84b9 4243 tmo = tcp_fin_time(sk);
1da177e4 4244 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4245 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4246 } else if (th->fin || sock_owned_by_user(sk)) {
4247 /* Bad case. We could lose such FIN otherwise.
4248 * It is not a big problem, but it looks confusing
4249 * and not so rare event. We still can lose it now,
4250 * if it spins in bh_lock_sock(), but it is really
4251 * marginal case.
4252 */
463c84b9 4253 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4254 } else {
4255 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4256 goto discard;
4257 }
4258 }
4259 }
4260 break;
4261
4262 case TCP_CLOSING:
4263 if (tp->snd_una == tp->write_seq) {
4264 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4265 goto discard;
4266 }
4267 break;
4268
4269 case TCP_LAST_ACK:
4270 if (tp->snd_una == tp->write_seq) {
4271 tcp_update_metrics(sk);
4272 tcp_done(sk);
4273 goto discard;
4274 }
4275 break;
4276 }
4277 } else
4278 goto discard;
4279
4280 /* step 6: check the URG bit */
4281 tcp_urg(sk, skb, th);
4282
4283 /* step 7: process the segment text */
4284 switch (sk->sk_state) {
4285 case TCP_CLOSE_WAIT:
4286 case TCP_CLOSING:
4287 case TCP_LAST_ACK:
4288 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4289 break;
4290 case TCP_FIN_WAIT1:
4291 case TCP_FIN_WAIT2:
4292 /* RFC 793 says to queue data in these states,
4293 * RFC 1122 says we MUST send a reset.
4294 * BSD 4.4 also does reset.
4295 */
4296 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4297 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4298 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4299 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4300 tcp_reset(sk);
4301 return 1;
4302 }
4303 }
4304 /* Fall through */
4305 case TCP_ESTABLISHED:
4306 tcp_data_queue(sk, skb);
4307 queued = 1;
4308 break;
4309 }
4310
4311 /* tcp_data could move socket to TIME-WAIT */
4312 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4313 tcp_data_snd_check(sk, tp);
1da177e4
LT
4314 tcp_ack_snd_check(sk);
4315 }
4316
4317 if (!queued) {
4318discard:
4319 __kfree_skb(skb);
4320 }
4321 return 0;
4322}
4323
4324EXPORT_SYMBOL(sysctl_tcp_ecn);
4325EXPORT_SYMBOL(sysctl_tcp_reordering);
4326EXPORT_SYMBOL(tcp_parse_options);
4327EXPORT_SYMBOL(tcp_rcv_established);
4328EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.236971 seconds and 5 git commands to generate.