tcp: tcp_replace_ts_recent() should not be called from tcp_validate_incoming()
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 84int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 98int sysctl_tcp_frto_response __read_mostly;
1da177e4 99
7e380175
AP
100int sysctl_tcp_thin_dupack __read_mostly;
101
ab32ea5d
BH
102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103int sysctl_tcp_abc __read_mostly;
eed530b6 104int sysctl_tcp_early_retrans __read_mostly = 2;
1da177e4 105
1da177e4
LT
106#define FLAG_DATA 0x01 /* Incoming frame contained data. */
107#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111#define FLAG_DATA_SACKED 0x20 /* New SACK. */
112#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 113#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 114#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 115#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 116#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 117#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 118#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
119
120#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 124#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 125
1da177e4 126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 128
e905a9ed 129/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 130 * real world.
e905a9ed 131 */
056834d9 132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 133{
463c84b9 134 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 136 unsigned int len;
1da177e4 137
e905a9ed 138 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
056834d9 143 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
9c70220b 152 len += skb->data - skb_transport_header(skb);
bee7ca9e 153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
463c84b9
ACM
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
1da177e4 167 if (len == lss) {
463c84b9 168 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
169 return;
170 }
171 }
1ef9696c
AK
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
175 }
176}
177
463c84b9 178static void tcp_incr_quickack(struct sock *sk)
1da177e4 179{
463c84b9 180 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 182
056834d9
IJ
183 if (quickacks == 0)
184 quickacks = 2;
463c84b9
ACM
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
187}
188
1b9f4092 189static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 190{
463c84b9
ACM
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
a2a385d6 201static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 202{
463c84b9 203 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 204
463c84b9 205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
206}
207
bdf1ee5d
IJ
208static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209{
056834d9 210 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212}
213
cf533ea5 214static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
215{
216 if (tcp_hdr(skb)->cwr)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221{
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223}
224
7a269ffa 225static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 226{
7a269ffa
ED
227 if (!(tp->ecn_flags & TCP_ECN_OK))
228 return;
229
b82d1bb4 230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 231 case INET_ECN_NOT_ECT:
bdf1ee5d 232 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
235 */
236 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 237 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
238 break;
239 case INET_ECN_CE:
aae06bf5
ED
240 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
241 /* Better not delay acks, sender can have a very low cwnd */
242 tcp_enter_quickack_mode((struct sock *)tp);
243 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244 }
7a269ffa
ED
245 /* fallinto */
246 default:
247 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
248 }
249}
250
cf533ea5 251static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 252{
056834d9 253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
254 tp->ecn_flags &= ~TCP_ECN_OK;
255}
256
cf533ea5 257static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 258{
056834d9 259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
260 tp->ecn_flags &= ~TCP_ECN_OK;
261}
262
a2a385d6 263static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 264{
056834d9 265 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
266 return true;
267 return false;
bdf1ee5d
IJ
268}
269
1da177e4
LT
270/* Buffer size and advertised window tuning.
271 *
272 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
273 */
274
275static void tcp_fixup_sndbuf(struct sock *sk)
276{
87fb4b7b 277 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 278
06a59ecb
ED
279 sndmem *= TCP_INIT_CWND;
280 if (sk->sk_sndbuf < sndmem)
281 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
282}
283
284/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
285 *
286 * All tcp_full_space() is split to two parts: "network" buffer, allocated
287 * forward and advertised in receiver window (tp->rcv_wnd) and
288 * "application buffer", required to isolate scheduling/application
289 * latencies from network.
290 * window_clamp is maximal advertised window. It can be less than
291 * tcp_full_space(), in this case tcp_full_space() - window_clamp
292 * is reserved for "application" buffer. The less window_clamp is
293 * the smoother our behaviour from viewpoint of network, but the lower
294 * throughput and the higher sensitivity of the connection to losses. 8)
295 *
296 * rcv_ssthresh is more strict window_clamp used at "slow start"
297 * phase to predict further behaviour of this connection.
298 * It is used for two goals:
299 * - to enforce header prediction at sender, even when application
300 * requires some significant "application buffer". It is check #1.
301 * - to prevent pruning of receive queue because of misprediction
302 * of receiver window. Check #2.
303 *
304 * The scheme does not work when sender sends good segments opening
caa20d9a 305 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
306 * in common situations. Otherwise, we have to rely on queue collapsing.
307 */
308
309/* Slow part of check#2. */
9e412ba7 310static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 311{
9e412ba7 312 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 313 /* Optimize this! */
dfd4f0ae
ED
314 int truesize = tcp_win_from_space(skb->truesize) >> 1;
315 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
316
317 while (tp->rcv_ssthresh <= window) {
318 if (truesize <= skb->len)
463c84b9 319 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
320
321 truesize >>= 1;
322 window >>= 1;
323 }
324 return 0;
325}
326
cf533ea5 327static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 328{
9e412ba7
IJ
329 struct tcp_sock *tp = tcp_sk(sk);
330
1da177e4
LT
331 /* Check #1 */
332 if (tp->rcv_ssthresh < tp->window_clamp &&
333 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 334 !sk_under_memory_pressure(sk)) {
1da177e4
LT
335 int incr;
336
337 /* Check #2. Increase window, if skb with such overhead
338 * will fit to rcvbuf in future.
339 */
340 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 341 incr = 2 * tp->advmss;
1da177e4 342 else
9e412ba7 343 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
344
345 if (incr) {
4d846f02 346 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
347 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
348 tp->window_clamp);
463c84b9 349 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
350 }
351 }
352}
353
354/* 3. Tuning rcvbuf, when connection enters established state. */
355
356static void tcp_fixup_rcvbuf(struct sock *sk)
357{
e9266a02
ED
358 u32 mss = tcp_sk(sk)->advmss;
359 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
360 int rcvmem;
1da177e4 361
e9266a02
ED
362 /* Limit to 10 segments if mss <= 1460,
363 * or 14600/mss segments, with a minimum of two segments.
1da177e4 364 */
e9266a02
ED
365 if (mss > 1460)
366 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
367
368 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
369 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 370 rcvmem += 128;
e9266a02
ED
371
372 rcvmem *= icwnd;
373
374 if (sk->sk_rcvbuf < rcvmem)
375 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
376}
377
caa20d9a 378/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
379 * established state.
380 */
10467163 381void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
382{
383 struct tcp_sock *tp = tcp_sk(sk);
384 int maxwin;
385
386 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
387 tcp_fixup_rcvbuf(sk);
388 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
389 tcp_fixup_sndbuf(sk);
390
391 tp->rcvq_space.space = tp->rcv_wnd;
392
393 maxwin = tcp_full_space(sk);
394
395 if (tp->window_clamp >= maxwin) {
396 tp->window_clamp = maxwin;
397
398 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
399 tp->window_clamp = max(maxwin -
400 (maxwin >> sysctl_tcp_app_win),
401 4 * tp->advmss);
402 }
403
404 /* Force reservation of one segment. */
405 if (sysctl_tcp_app_win &&
406 tp->window_clamp > 2 * tp->advmss &&
407 tp->window_clamp + tp->advmss > maxwin)
408 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
409
410 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
411 tp->snd_cwnd_stamp = tcp_time_stamp;
412}
413
1da177e4 414/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 415static void tcp_clamp_window(struct sock *sk)
1da177e4 416{
9e412ba7 417 struct tcp_sock *tp = tcp_sk(sk);
6687e988 418 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 419
6687e988 420 icsk->icsk_ack.quick = 0;
1da177e4 421
326f36e9
JH
422 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
423 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
424 !sk_under_memory_pressure(sk) &&
425 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
426 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
427 sysctl_tcp_rmem[2]);
1da177e4 428 }
326f36e9 429 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 430 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
431}
432
40efc6fa
SH
433/* Initialize RCV_MSS value.
434 * RCV_MSS is an our guess about MSS used by the peer.
435 * We haven't any direct information about the MSS.
436 * It's better to underestimate the RCV_MSS rather than overestimate.
437 * Overestimations make us ACKing less frequently than needed.
438 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
439 */
440void tcp_initialize_rcv_mss(struct sock *sk)
441{
cf533ea5 442 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
443 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
444
056834d9 445 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 446 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
447 hint = max(hint, TCP_MIN_MSS);
448
449 inet_csk(sk)->icsk_ack.rcv_mss = hint;
450}
4bc2f18b 451EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 452
1da177e4
LT
453/* Receiver "autotuning" code.
454 *
455 * The algorithm for RTT estimation w/o timestamps is based on
456 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 457 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
458 *
459 * More detail on this code can be found at
631dd1a8 460 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
461 * though this reference is out of date. A new paper
462 * is pending.
463 */
464static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
465{
466 u32 new_sample = tp->rcv_rtt_est.rtt;
467 long m = sample;
468
469 if (m == 0)
470 m = 1;
471
472 if (new_sample != 0) {
473 /* If we sample in larger samples in the non-timestamp
474 * case, we could grossly overestimate the RTT especially
475 * with chatty applications or bulk transfer apps which
476 * are stalled on filesystem I/O.
477 *
478 * Also, since we are only going for a minimum in the
31f34269 479 * non-timestamp case, we do not smooth things out
caa20d9a 480 * else with timestamps disabled convergence takes too
1da177e4
LT
481 * long.
482 */
483 if (!win_dep) {
484 m -= (new_sample >> 3);
485 new_sample += m;
18a223e0
NC
486 } else {
487 m <<= 3;
488 if (m < new_sample)
489 new_sample = m;
490 }
1da177e4 491 } else {
caa20d9a 492 /* No previous measure. */
1da177e4
LT
493 new_sample = m << 3;
494 }
495
496 if (tp->rcv_rtt_est.rtt != new_sample)
497 tp->rcv_rtt_est.rtt = new_sample;
498}
499
500static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
501{
502 if (tp->rcv_rtt_est.time == 0)
503 goto new_measure;
504 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
505 return;
651913ce 506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
507
508new_measure:
509 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
510 tp->rcv_rtt_est.time = tcp_time_stamp;
511}
512
056834d9
IJ
513static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
514 const struct sk_buff *skb)
1da177e4 515{
463c84b9 516 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
517 if (tp->rx_opt.rcv_tsecr &&
518 (TCP_SKB_CB(skb)->end_seq -
463c84b9 519 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
520 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521}
522
523/*
524 * This function should be called every time data is copied to user space.
525 * It calculates the appropriate TCP receive buffer space.
526 */
527void tcp_rcv_space_adjust(struct sock *sk)
528{
529 struct tcp_sock *tp = tcp_sk(sk);
530 int time;
531 int space;
e905a9ed 532
1da177e4
LT
533 if (tp->rcvq_space.time == 0)
534 goto new_measure;
e905a9ed 535
1da177e4 536 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 537 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 538 return;
e905a9ed 539
1da177e4
LT
540 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
541
542 space = max(tp->rcvq_space.space, space);
543
544 if (tp->rcvq_space.space != space) {
545 int rcvmem;
546
547 tp->rcvq_space.space = space;
548
6fcf9412
JH
549 if (sysctl_tcp_moderate_rcvbuf &&
550 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
551 int new_clamp = space;
552
553 /* Receive space grows, normalize in order to
554 * take into account packet headers and sk_buff
555 * structure overhead.
556 */
557 space /= tp->advmss;
558 if (!space)
559 space = 1;
87fb4b7b 560 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
561 while (tcp_win_from_space(rcvmem) < tp->advmss)
562 rcvmem += 128;
563 space *= rcvmem;
564 space = min(space, sysctl_tcp_rmem[2]);
565 if (space > sk->sk_rcvbuf) {
566 sk->sk_rcvbuf = space;
567
568 /* Make the window clamp follow along. */
569 tp->window_clamp = new_clamp;
570 }
571 }
572 }
e905a9ed 573
1da177e4
LT
574new_measure:
575 tp->rcvq_space.seq = tp->copied_seq;
576 tp->rcvq_space.time = tcp_time_stamp;
577}
578
579/* There is something which you must keep in mind when you analyze the
580 * behavior of the tp->ato delayed ack timeout interval. When a
581 * connection starts up, we want to ack as quickly as possible. The
582 * problem is that "good" TCP's do slow start at the beginning of data
583 * transmission. The means that until we send the first few ACK's the
584 * sender will sit on his end and only queue most of his data, because
585 * he can only send snd_cwnd unacked packets at any given time. For
586 * each ACK we send, he increments snd_cwnd and transmits more of his
587 * queue. -DaveM
588 */
9e412ba7 589static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 590{
9e412ba7 591 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 592 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
593 u32 now;
594
463c84b9 595 inet_csk_schedule_ack(sk);
1da177e4 596
463c84b9 597 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
598
599 tcp_rcv_rtt_measure(tp);
e905a9ed 600
1da177e4
LT
601 now = tcp_time_stamp;
602
463c84b9 603 if (!icsk->icsk_ack.ato) {
1da177e4
LT
604 /* The _first_ data packet received, initialize
605 * delayed ACK engine.
606 */
463c84b9
ACM
607 tcp_incr_quickack(sk);
608 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 609 } else {
463c84b9 610 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 611
056834d9 612 if (m <= TCP_ATO_MIN / 2) {
1da177e4 613 /* The fastest case is the first. */
463c84b9
ACM
614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
615 } else if (m < icsk->icsk_ack.ato) {
616 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
617 if (icsk->icsk_ack.ato > icsk->icsk_rto)
618 icsk->icsk_ack.ato = icsk->icsk_rto;
619 } else if (m > icsk->icsk_rto) {
caa20d9a 620 /* Too long gap. Apparently sender failed to
1da177e4
LT
621 * restart window, so that we send ACKs quickly.
622 */
463c84b9 623 tcp_incr_quickack(sk);
3ab224be 624 sk_mem_reclaim(sk);
1da177e4
LT
625 }
626 }
463c84b9 627 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
628
629 TCP_ECN_check_ce(tp, skb);
630
631 if (skb->len >= 128)
9e412ba7 632 tcp_grow_window(sk, skb);
1da177e4
LT
633}
634
1da177e4
LT
635/* Called to compute a smoothed rtt estimate. The data fed to this
636 * routine either comes from timestamps, or from segments that were
637 * known _not_ to have been retransmitted [see Karn/Partridge
638 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639 * piece by Van Jacobson.
640 * NOTE: the next three routines used to be one big routine.
641 * To save cycles in the RFC 1323 implementation it was better to break
642 * it up into three procedures. -- erics
643 */
2d2abbab 644static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 645{
6687e988 646 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
647 long m = mrtt; /* RTT */
648
1da177e4
LT
649 /* The following amusing code comes from Jacobson's
650 * article in SIGCOMM '88. Note that rtt and mdev
651 * are scaled versions of rtt and mean deviation.
e905a9ed 652 * This is designed to be as fast as possible
1da177e4
LT
653 * m stands for "measurement".
654 *
655 * On a 1990 paper the rto value is changed to:
656 * RTO = rtt + 4 * mdev
657 *
658 * Funny. This algorithm seems to be very broken.
659 * These formulae increase RTO, when it should be decreased, increase
31f34269 660 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
661 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662 * does not matter how to _calculate_ it. Seems, it was trap
663 * that VJ failed to avoid. 8)
664 */
2de979bd 665 if (m == 0)
1da177e4
LT
666 m = 1;
667 if (tp->srtt != 0) {
668 m -= (tp->srtt >> 3); /* m is now error in rtt est */
669 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
670 if (m < 0) {
671 m = -m; /* m is now abs(error) */
672 m -= (tp->mdev >> 2); /* similar update on mdev */
673 /* This is similar to one of Eifel findings.
674 * Eifel blocks mdev updates when rtt decreases.
675 * This solution is a bit different: we use finer gain
676 * for mdev in this case (alpha*beta).
677 * Like Eifel it also prevents growth of rto,
678 * but also it limits too fast rto decreases,
679 * happening in pure Eifel.
680 */
681 if (m > 0)
682 m >>= 3;
683 } else {
684 m -= (tp->mdev >> 2); /* similar update on mdev */
685 }
686 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
687 if (tp->mdev > tp->mdev_max) {
688 tp->mdev_max = tp->mdev;
689 if (tp->mdev_max > tp->rttvar)
690 tp->rttvar = tp->mdev_max;
691 }
692 if (after(tp->snd_una, tp->rtt_seq)) {
693 if (tp->mdev_max < tp->rttvar)
056834d9 694 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 695 tp->rtt_seq = tp->snd_nxt;
05bb1fad 696 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
697 }
698 } else {
699 /* no previous measure. */
056834d9
IJ
700 tp->srtt = m << 3; /* take the measured time to be rtt */
701 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 702 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
703 tp->rtt_seq = tp->snd_nxt;
704 }
1da177e4
LT
705}
706
707/* Calculate rto without backoff. This is the second half of Van Jacobson's
708 * routine referred to above.
709 */
4aabd8ef 710void tcp_set_rto(struct sock *sk)
1da177e4 711{
463c84b9 712 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
713 /* Old crap is replaced with new one. 8)
714 *
715 * More seriously:
716 * 1. If rtt variance happened to be less 50msec, it is hallucination.
717 * It cannot be less due to utterly erratic ACK generation made
718 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719 * to do with delayed acks, because at cwnd>2 true delack timeout
720 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 721 * ACKs in some circumstances.
1da177e4 722 */
f1ecd5d9 723 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
724
725 /* 2. Fixups made earlier cannot be right.
726 * If we do not estimate RTO correctly without them,
727 * all the algo is pure shit and should be replaced
caa20d9a 728 * with correct one. It is exactly, which we pretend to do.
1da177e4 729 */
1da177e4 730
ee6aac59
IJ
731 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732 * guarantees that rto is higher.
733 */
f1ecd5d9 734 tcp_bound_rto(sk);
1da177e4
LT
735}
736
cf533ea5 737__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
738{
739 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
740
22b71c8f 741 if (!cwnd)
442b9635 742 cwnd = TCP_INIT_CWND;
1da177e4
LT
743 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744}
745
e60402d0
IJ
746/*
747 * Packet counting of FACK is based on in-order assumptions, therefore TCP
748 * disables it when reordering is detected
749 */
4aabd8ef 750void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 751{
85cc391c
IJ
752 /* RFC3517 uses different metric in lost marker => reset on change */
753 if (tcp_is_fack(tp))
754 tp->lost_skb_hint = NULL;
ab56222a 755 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
756}
757
564262c1 758/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
759static void tcp_dsack_seen(struct tcp_sock *tp)
760{
ab56222a 761 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
762}
763
6687e988
ACM
764static void tcp_update_reordering(struct sock *sk, const int metric,
765 const int ts)
1da177e4 766{
6687e988 767 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 768 if (metric > tp->reordering) {
40b215e5
PE
769 int mib_idx;
770
1da177e4
LT
771 tp->reordering = min(TCP_MAX_REORDERING, metric);
772
773 /* This exciting event is worth to be remembered. 8) */
774 if (ts)
40b215e5 775 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 776 else if (tcp_is_reno(tp))
40b215e5 777 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 778 else if (tcp_is_fack(tp))
40b215e5 779 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 780 else
40b215e5
PE
781 mib_idx = LINUX_MIB_TCPSACKREORDER;
782
de0744af 783 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 784#if FASTRETRANS_DEBUG > 1
91df42be
JP
785 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787 tp->reordering,
788 tp->fackets_out,
789 tp->sacked_out,
790 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 791#endif
e60402d0 792 tcp_disable_fack(tp);
1da177e4 793 }
eed530b6
YC
794
795 if (metric > 0)
796 tcp_disable_early_retrans(tp);
1da177e4
LT
797}
798
006f582c 799/* This must be called before lost_out is incremented */
c8c213f2
IJ
800static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
801{
006f582c 802 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
803 before(TCP_SKB_CB(skb)->seq,
804 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
805 tp->retransmit_skb_hint = skb;
806
807 if (!tp->lost_out ||
808 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
809 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
810}
811
41ea36e3
IJ
812static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
813{
814 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
815 tcp_verify_retransmit_hint(tp, skb);
816
817 tp->lost_out += tcp_skb_pcount(skb);
818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819 }
820}
821
e1aa680f
IJ
822static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
823 struct sk_buff *skb)
006f582c
IJ
824{
825 tcp_verify_retransmit_hint(tp, skb);
826
827 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
828 tp->lost_out += tcp_skb_pcount(skb);
829 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830 }
831}
832
1da177e4
LT
833/* This procedure tags the retransmission queue when SACKs arrive.
834 *
835 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836 * Packets in queue with these bits set are counted in variables
837 * sacked_out, retrans_out and lost_out, correspondingly.
838 *
839 * Valid combinations are:
840 * Tag InFlight Description
841 * 0 1 - orig segment is in flight.
842 * S 0 - nothing flies, orig reached receiver.
843 * L 0 - nothing flies, orig lost by net.
844 * R 2 - both orig and retransmit are in flight.
845 * L|R 1 - orig is lost, retransmit is in flight.
846 * S|R 1 - orig reached receiver, retrans is still in flight.
847 * (L|S|R is logically valid, it could occur when L|R is sacked,
848 * but it is equivalent to plain S and code short-curcuits it to S.
849 * L|S is logically invalid, it would mean -1 packet in flight 8))
850 *
851 * These 6 states form finite state machine, controlled by the following events:
852 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 854 * 3. Loss detection event of two flavors:
1da177e4
LT
855 * A. Scoreboard estimator decided the packet is lost.
856 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
857 * A''. Its FACK modification, head until snd.fack is lost.
858 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
859 * segment was retransmitted.
860 * 4. D-SACK added new rule: D-SACK changes any tag to S.
861 *
862 * It is pleasant to note, that state diagram turns out to be commutative,
863 * so that we are allowed not to be bothered by order of our actions,
864 * when multiple events arrive simultaneously. (see the function below).
865 *
866 * Reordering detection.
867 * --------------------
868 * Reordering metric is maximal distance, which a packet can be displaced
869 * in packet stream. With SACKs we can estimate it:
870 *
871 * 1. SACK fills old hole and the corresponding segment was not
872 * ever retransmitted -> reordering. Alas, we cannot use it
873 * when segment was retransmitted.
874 * 2. The last flaw is solved with D-SACK. D-SACK arrives
875 * for retransmitted and already SACKed segment -> reordering..
876 * Both of these heuristics are not used in Loss state, when we cannot
877 * account for retransmits accurately.
5b3c9882
IJ
878 *
879 * SACK block validation.
880 * ----------------------
881 *
882 * SACK block range validation checks that the received SACK block fits to
883 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
885 * it means that the receiver is rather inconsistent with itself reporting
886 * SACK reneging when it should advance SND.UNA. Such SACK block this is
887 * perfectly valid, however, in light of RFC2018 which explicitly states
888 * that "SACK block MUST reflect the newest segment. Even if the newest
889 * segment is going to be discarded ...", not that it looks very clever
890 * in case of head skb. Due to potentional receiver driven attacks, we
891 * choose to avoid immediate execution of a walk in write queue due to
892 * reneging and defer head skb's loss recovery to standard loss recovery
893 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
894 *
895 * Implements also blockage to start_seq wrap-around. Problem lies in the
896 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897 * there's no guarantee that it will be before snd_nxt (n). The problem
898 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
899 * wrap (s_w):
900 *
901 * <- outs wnd -> <- wrapzone ->
902 * u e n u_w e_w s n_w
903 * | | | | | | |
904 * |<------------+------+----- TCP seqno space --------------+---------->|
905 * ...-- <2^31 ->| |<--------...
906 * ...---- >2^31 ------>| |<--------...
907 *
908 * Current code wouldn't be vulnerable but it's better still to discard such
909 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912 * equal to the ideal case (infinite seqno space without wrap caused issues).
913 *
914 * With D-SACK the lower bound is extended to cover sequence space below
915 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 916 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
917 * for the normal SACK blocks, explained above). But there all simplicity
918 * ends, TCP might receive valid D-SACKs below that. As long as they reside
919 * fully below undo_marker they do not affect behavior in anyway and can
920 * therefore be safely ignored. In rare cases (which are more or less
921 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922 * fragmentation and packet reordering past skb's retransmission. To consider
923 * them correctly, the acceptable range must be extended even more though
924 * the exact amount is rather hard to quantify. However, tp->max_window can
925 * be used as an exaggerated estimate.
1da177e4 926 */
a2a385d6
ED
927static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
928 u32 start_seq, u32 end_seq)
5b3c9882
IJ
929{
930 /* Too far in future, or reversed (interpretation is ambiguous) */
931 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 932 return false;
5b3c9882
IJ
933
934 /* Nasty start_seq wrap-around check (see comments above) */
935 if (!before(start_seq, tp->snd_nxt))
a2a385d6 936 return false;
5b3c9882 937
564262c1 938 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
939 * start_seq == snd_una is non-sensical (see comments above)
940 */
941 if (after(start_seq, tp->snd_una))
a2a385d6 942 return true;
5b3c9882
IJ
943
944 if (!is_dsack || !tp->undo_marker)
a2a385d6 945 return false;
5b3c9882
IJ
946
947 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 948 if (after(end_seq, tp->snd_una))
a2a385d6 949 return false;
5b3c9882
IJ
950
951 if (!before(start_seq, tp->undo_marker))
a2a385d6 952 return true;
5b3c9882
IJ
953
954 /* Too old */
955 if (!after(end_seq, tp->undo_marker))
a2a385d6 956 return false;
5b3c9882
IJ
957
958 /* Undo_marker boundary crossing (overestimates a lot). Known already:
959 * start_seq < undo_marker and end_seq >= undo_marker.
960 */
961 return !before(start_seq, end_seq - tp->max_window);
962}
963
1c1e87ed 964/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 965 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 966 * for reordering! Ugly, but should help.
f785a8e2
IJ
967 *
968 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
970 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 972 */
407ef1de 973static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 974{
9f58f3b7 975 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
976 struct tcp_sock *tp = tcp_sk(sk);
977 struct sk_buff *skb;
f785a8e2 978 int cnt = 0;
df2e014b 979 u32 new_low_seq = tp->snd_nxt;
6859d494 980 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
981
982 if (!tcp_is_fack(tp) || !tp->retrans_out ||
983 !after(received_upto, tp->lost_retrans_low) ||
984 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 985 return;
1c1e87ed
IJ
986
987 tcp_for_write_queue(skb, sk) {
988 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
989
990 if (skb == tcp_send_head(sk))
991 break;
f785a8e2 992 if (cnt == tp->retrans_out)
1c1e87ed
IJ
993 break;
994 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
995 continue;
996
f785a8e2
IJ
997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
998 continue;
999
d0af4160
IJ
1000 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1001 * constraint here (see above) but figuring out that at
1002 * least tp->reordering SACK blocks reside between ack_seq
1003 * and received_upto is not easy task to do cheaply with
1004 * the available datastructures.
1005 *
1006 * Whether FACK should check here for tp->reordering segs
1007 * in-between one could argue for either way (it would be
1008 * rather simple to implement as we could count fack_count
1009 * during the walk and do tp->fackets_out - fack_count).
1010 */
1011 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1013 tp->retrans_out -= tcp_skb_pcount(skb);
1014
006f582c 1015 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1016 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1017 } else {
df2e014b 1018 if (before(ack_seq, new_low_seq))
b08d6cb2 1019 new_low_seq = ack_seq;
f785a8e2 1020 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1021 }
1022 }
b08d6cb2
IJ
1023
1024 if (tp->retrans_out)
1025 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1026}
5b3c9882 1027
a2a385d6
ED
1028static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1029 struct tcp_sack_block_wire *sp, int num_sacks,
1030 u32 prior_snd_una)
d06e021d 1031{
1ed83465 1032 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1033 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1034 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1035 bool dup_sack = false;
d06e021d
DM
1036
1037 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1038 dup_sack = true;
e60402d0 1039 tcp_dsack_seen(tp);
de0744af 1040 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1041 } else if (num_sacks > 1) {
d3e2ce3b
HH
1042 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1043 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1044
1045 if (!after(end_seq_0, end_seq_1) &&
1046 !before(start_seq_0, start_seq_1)) {
a2a385d6 1047 dup_sack = true;
e60402d0 1048 tcp_dsack_seen(tp);
de0744af
PE
1049 NET_INC_STATS_BH(sock_net(sk),
1050 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1051 }
1052 }
1053
1054 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1055 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1056 !after(end_seq_0, prior_snd_una) &&
1057 after(end_seq_0, tp->undo_marker))
1058 tp->undo_retrans--;
1059
1060 return dup_sack;
1061}
1062
a1197f5a
IJ
1063struct tcp_sacktag_state {
1064 int reord;
1065 int fack_count;
1066 int flag;
1067};
1068
d1935942
IJ
1069/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070 * the incoming SACK may not exactly match but we can find smaller MSS
1071 * aligned portion of it that matches. Therefore we might need to fragment
1072 * which may fail and creates some hassle (caller must handle error case
1073 * returns).
832d11c5
IJ
1074 *
1075 * FIXME: this could be merged to shift decision code
d1935942 1076 */
0f79efdc 1077static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1078 u32 start_seq, u32 end_seq)
d1935942 1079{
a2a385d6
ED
1080 int err;
1081 bool in_sack;
d1935942 1082 unsigned int pkt_len;
adb92db8 1083 unsigned int mss;
d1935942
IJ
1084
1085 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087
1088 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1089 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1090 mss = tcp_skb_mss(skb);
d1935942
IJ
1091 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1092
adb92db8 1093 if (!in_sack) {
d1935942 1094 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1095 if (pkt_len < mss)
1096 pkt_len = mss;
1097 } else {
d1935942 1098 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1099 if (pkt_len < mss)
1100 return -EINVAL;
1101 }
1102
1103 /* Round if necessary so that SACKs cover only full MSSes
1104 * and/or the remaining small portion (if present)
1105 */
1106 if (pkt_len > mss) {
1107 unsigned int new_len = (pkt_len / mss) * mss;
1108 if (!in_sack && new_len < pkt_len) {
1109 new_len += mss;
1110 if (new_len > skb->len)
1111 return 0;
1112 }
1113 pkt_len = new_len;
1114 }
1115 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1116 if (err < 0)
1117 return err;
1118 }
1119
1120 return in_sack;
1121}
1122
cc9a672e
NC
1123/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124static u8 tcp_sacktag_one(struct sock *sk,
1125 struct tcp_sacktag_state *state, u8 sacked,
1126 u32 start_seq, u32 end_seq,
a2a385d6 1127 bool dup_sack, int pcount)
9e10c47c 1128{
6859d494 1129 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1130 int fack_count = state->fack_count;
9e10c47c
IJ
1131
1132 /* Account D-SACK for retransmitted packet. */
1133 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1134 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1135 after(end_seq, tp->undo_marker))
9e10c47c 1136 tp->undo_retrans--;
ede9f3b1 1137 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1138 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1139 }
1140
1141 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1142 if (!after(end_seq, tp->snd_una))
a1197f5a 1143 return sacked;
9e10c47c
IJ
1144
1145 if (!(sacked & TCPCB_SACKED_ACKED)) {
1146 if (sacked & TCPCB_SACKED_RETRANS) {
1147 /* If the segment is not tagged as lost,
1148 * we do not clear RETRANS, believing
1149 * that retransmission is still in flight.
1150 */
1151 if (sacked & TCPCB_LOST) {
a1197f5a 1152 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1153 tp->lost_out -= pcount;
1154 tp->retrans_out -= pcount;
9e10c47c
IJ
1155 }
1156 } else {
1157 if (!(sacked & TCPCB_RETRANS)) {
1158 /* New sack for not retransmitted frame,
1159 * which was in hole. It is reordering.
1160 */
cc9a672e 1161 if (before(start_seq,
9e10c47c 1162 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1163 state->reord = min(fack_count,
1164 state->reord);
9e10c47c
IJ
1165
1166 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
cc9a672e 1167 if (!after(end_seq, tp->frto_highmark))
a1197f5a 1168 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1169 }
1170
1171 if (sacked & TCPCB_LOST) {
a1197f5a 1172 sacked &= ~TCPCB_LOST;
f58b22fd 1173 tp->lost_out -= pcount;
9e10c47c
IJ
1174 }
1175 }
1176
a1197f5a
IJ
1177 sacked |= TCPCB_SACKED_ACKED;
1178 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1179 tp->sacked_out += pcount;
9e10c47c 1180
f58b22fd 1181 fack_count += pcount;
9e10c47c
IJ
1182
1183 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1185 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1186 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1187
1188 if (fack_count > tp->fackets_out)
1189 tp->fackets_out = fack_count;
9e10c47c
IJ
1190 }
1191
1192 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1193 * frames and clear it. undo_retrans is decreased above, L|R frames
1194 * are accounted above as well.
1195 */
a1197f5a
IJ
1196 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1197 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1198 tp->retrans_out -= pcount;
9e10c47c
IJ
1199 }
1200
a1197f5a 1201 return sacked;
9e10c47c
IJ
1202}
1203
daef52ba
NC
1204/* Shift newly-SACKed bytes from this skb to the immediately previous
1205 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1206 */
a2a385d6
ED
1207static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1208 struct tcp_sacktag_state *state,
1209 unsigned int pcount, int shifted, int mss,
1210 bool dup_sack)
832d11c5
IJ
1211{
1212 struct tcp_sock *tp = tcp_sk(sk);
50133161 1213 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1214 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1215 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1216
1217 BUG_ON(!pcount);
1218
4c90d3b3
NC
1219 /* Adjust counters and hints for the newly sacked sequence
1220 * range but discard the return value since prev is already
1221 * marked. We must tag the range first because the seq
1222 * advancement below implicitly advances
1223 * tcp_highest_sack_seq() when skb is highest_sack.
1224 */
1225 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1226 start_seq, end_seq, dup_sack, pcount);
1227
1228 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1229 tp->lost_cnt_hint += pcount;
1230
832d11c5
IJ
1231 TCP_SKB_CB(prev)->end_seq += shifted;
1232 TCP_SKB_CB(skb)->seq += shifted;
1233
1234 skb_shinfo(prev)->gso_segs += pcount;
1235 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1236 skb_shinfo(skb)->gso_segs -= pcount;
1237
1238 /* When we're adding to gso_segs == 1, gso_size will be zero,
1239 * in theory this shouldn't be necessary but as long as DSACK
1240 * code can come after this skb later on it's better to keep
1241 * setting gso_size to something.
1242 */
1243 if (!skb_shinfo(prev)->gso_size) {
1244 skb_shinfo(prev)->gso_size = mss;
1245 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1246 }
1247
1248 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249 if (skb_shinfo(skb)->gso_segs <= 1) {
1250 skb_shinfo(skb)->gso_size = 0;
1251 skb_shinfo(skb)->gso_type = 0;
1252 }
1253
832d11c5
IJ
1254 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1256
832d11c5
IJ
1257 if (skb->len > 0) {
1258 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1260 return false;
832d11c5
IJ
1261 }
1262
1263 /* Whole SKB was eaten :-) */
1264
92ee76b6
IJ
1265 if (skb == tp->retransmit_skb_hint)
1266 tp->retransmit_skb_hint = prev;
1267 if (skb == tp->scoreboard_skb_hint)
1268 tp->scoreboard_skb_hint = prev;
1269 if (skb == tp->lost_skb_hint) {
1270 tp->lost_skb_hint = prev;
1271 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1272 }
1273
4de075e0 1274 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1275 if (skb == tcp_highest_sack(sk))
1276 tcp_advance_highest_sack(sk, skb);
1277
1278 tcp_unlink_write_queue(skb, sk);
1279 sk_wmem_free_skb(sk, skb);
1280
111cc8b9
IJ
1281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1282
a2a385d6 1283 return true;
832d11c5
IJ
1284}
1285
1286/* I wish gso_size would have a bit more sane initialization than
1287 * something-or-zero which complicates things
1288 */
cf533ea5 1289static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1290{
775ffabf 1291 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1292}
1293
1294/* Shifting pages past head area doesn't work */
cf533ea5 1295static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1296{
1297 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1298}
1299
1300/* Try collapsing SACK blocks spanning across multiple skbs to a single
1301 * skb.
1302 */
1303static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1304 struct tcp_sacktag_state *state,
832d11c5 1305 u32 start_seq, u32 end_seq,
a2a385d6 1306 bool dup_sack)
832d11c5
IJ
1307{
1308 struct tcp_sock *tp = tcp_sk(sk);
1309 struct sk_buff *prev;
1310 int mss;
1311 int pcount = 0;
1312 int len;
1313 int in_sack;
1314
1315 if (!sk_can_gso(sk))
1316 goto fallback;
1317
1318 /* Normally R but no L won't result in plain S */
1319 if (!dup_sack &&
9969ca5f 1320 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1321 goto fallback;
1322 if (!skb_can_shift(skb))
1323 goto fallback;
1324 /* This frame is about to be dropped (was ACKed). */
1325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326 goto fallback;
1327
1328 /* Can only happen with delayed DSACK + discard craziness */
1329 if (unlikely(skb == tcp_write_queue_head(sk)))
1330 goto fallback;
1331 prev = tcp_write_queue_prev(sk, skb);
1332
1333 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1334 goto fallback;
1335
1336 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338
1339 if (in_sack) {
1340 len = skb->len;
1341 pcount = tcp_skb_pcount(skb);
775ffabf 1342 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1343
1344 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1345 * drop this restriction as unnecessary
1346 */
775ffabf 1347 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1348 goto fallback;
1349 } else {
1350 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1351 goto noop;
1352 /* CHECKME: This is non-MSS split case only?, this will
1353 * cause skipped skbs due to advancing loop btw, original
1354 * has that feature too
1355 */
1356 if (tcp_skb_pcount(skb) <= 1)
1357 goto noop;
1358
1359 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360 if (!in_sack) {
1361 /* TODO: head merge to next could be attempted here
1362 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363 * though it might not be worth of the additional hassle
1364 *
1365 * ...we can probably just fallback to what was done
1366 * previously. We could try merging non-SACKed ones
1367 * as well but it probably isn't going to buy off
1368 * because later SACKs might again split them, and
1369 * it would make skb timestamp tracking considerably
1370 * harder problem.
1371 */
1372 goto fallback;
1373 }
1374
1375 len = end_seq - TCP_SKB_CB(skb)->seq;
1376 BUG_ON(len < 0);
1377 BUG_ON(len > skb->len);
1378
1379 /* MSS boundaries should be honoured or else pcount will
1380 * severely break even though it makes things bit trickier.
1381 * Optimize common case to avoid most of the divides
1382 */
1383 mss = tcp_skb_mss(skb);
1384
1385 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1386 * drop this restriction as unnecessary
1387 */
775ffabf 1388 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1389 goto fallback;
1390
1391 if (len == mss) {
1392 pcount = 1;
1393 } else if (len < mss) {
1394 goto noop;
1395 } else {
1396 pcount = len / mss;
1397 len = pcount * mss;
1398 }
1399 }
1400
4648dc97
NC
1401 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1403 goto fallback;
1404
832d11c5
IJ
1405 if (!skb_shift(prev, skb, len))
1406 goto fallback;
9ec06ff5 1407 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1408 goto out;
1409
1410 /* Hole filled allows collapsing with the next as well, this is very
1411 * useful when hole on every nth skb pattern happens
1412 */
1413 if (prev == tcp_write_queue_tail(sk))
1414 goto out;
1415 skb = tcp_write_queue_next(sk, prev);
1416
f0bc52f3
IJ
1417 if (!skb_can_shift(skb) ||
1418 (skb == tcp_send_head(sk)) ||
1419 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1420 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1421 goto out;
1422
1423 len = skb->len;
1424 if (skb_shift(prev, skb, len)) {
1425 pcount += tcp_skb_pcount(skb);
9ec06ff5 1426 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1427 }
1428
1429out:
a1197f5a 1430 state->fack_count += pcount;
832d11c5
IJ
1431 return prev;
1432
1433noop:
1434 return skb;
1435
1436fallback:
111cc8b9 1437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1438 return NULL;
1439}
1440
68f8353b
IJ
1441static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1442 struct tcp_sack_block *next_dup,
a1197f5a 1443 struct tcp_sacktag_state *state,
68f8353b 1444 u32 start_seq, u32 end_seq,
a2a385d6 1445 bool dup_sack_in)
68f8353b 1446{
832d11c5
IJ
1447 struct tcp_sock *tp = tcp_sk(sk);
1448 struct sk_buff *tmp;
1449
68f8353b
IJ
1450 tcp_for_write_queue_from(skb, sk) {
1451 int in_sack = 0;
a2a385d6 1452 bool dup_sack = dup_sack_in;
68f8353b
IJ
1453
1454 if (skb == tcp_send_head(sk))
1455 break;
1456
1457 /* queue is in-order => we can short-circuit the walk early */
1458 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1459 break;
1460
1461 if ((next_dup != NULL) &&
1462 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1463 in_sack = tcp_match_skb_to_sack(sk, skb,
1464 next_dup->start_seq,
1465 next_dup->end_seq);
1466 if (in_sack > 0)
a2a385d6 1467 dup_sack = true;
68f8353b
IJ
1468 }
1469
832d11c5
IJ
1470 /* skb reference here is a bit tricky to get right, since
1471 * shifting can eat and free both this skb and the next,
1472 * so not even _safe variant of the loop is enough.
1473 */
1474 if (in_sack <= 0) {
a1197f5a
IJ
1475 tmp = tcp_shift_skb_data(sk, skb, state,
1476 start_seq, end_seq, dup_sack);
832d11c5
IJ
1477 if (tmp != NULL) {
1478 if (tmp != skb) {
1479 skb = tmp;
1480 continue;
1481 }
1482
1483 in_sack = 0;
1484 } else {
1485 in_sack = tcp_match_skb_to_sack(sk, skb,
1486 start_seq,
1487 end_seq);
1488 }
1489 }
1490
68f8353b
IJ
1491 if (unlikely(in_sack < 0))
1492 break;
1493
832d11c5 1494 if (in_sack) {
cc9a672e
NC
1495 TCP_SKB_CB(skb)->sacked =
1496 tcp_sacktag_one(sk,
1497 state,
1498 TCP_SKB_CB(skb)->sacked,
1499 TCP_SKB_CB(skb)->seq,
1500 TCP_SKB_CB(skb)->end_seq,
1501 dup_sack,
1502 tcp_skb_pcount(skb));
68f8353b 1503
832d11c5
IJ
1504 if (!before(TCP_SKB_CB(skb)->seq,
1505 tcp_highest_sack_seq(tp)))
1506 tcp_advance_highest_sack(sk, skb);
1507 }
1508
a1197f5a 1509 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1510 }
1511 return skb;
1512}
1513
1514/* Avoid all extra work that is being done by sacktag while walking in
1515 * a normal way
1516 */
1517static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1518 struct tcp_sacktag_state *state,
1519 u32 skip_to_seq)
68f8353b
IJ
1520{
1521 tcp_for_write_queue_from(skb, sk) {
1522 if (skb == tcp_send_head(sk))
1523 break;
1524
e8bae275 1525 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1526 break;
d152a7d8 1527
a1197f5a 1528 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1529 }
1530 return skb;
1531}
1532
1533static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1534 struct sock *sk,
1535 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1536 struct tcp_sacktag_state *state,
1537 u32 skip_to_seq)
68f8353b
IJ
1538{
1539 if (next_dup == NULL)
1540 return skb;
1541
1542 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1543 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1544 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1545 next_dup->start_seq, next_dup->end_seq,
1546 1);
68f8353b
IJ
1547 }
1548
1549 return skb;
1550}
1551
cf533ea5 1552static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1553{
1554 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555}
1556
1da177e4 1557static int
cf533ea5 1558tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1559 u32 prior_snd_una)
1da177e4 1560{
6687e988 1561 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1562 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1563 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1564 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1565 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1566 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1567 struct tcp_sack_block *cache;
a1197f5a 1568 struct tcp_sacktag_state state;
68f8353b 1569 struct sk_buff *skb;
4389dded 1570 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1571 int used_sacks;
a2a385d6 1572 bool found_dup_sack = false;
68f8353b 1573 int i, j;
fda03fbb 1574 int first_sack_index;
1da177e4 1575
a1197f5a
IJ
1576 state.flag = 0;
1577 state.reord = tp->packets_out;
1578
d738cd8f 1579 if (!tp->sacked_out) {
de83c058
IJ
1580 if (WARN_ON(tp->fackets_out))
1581 tp->fackets_out = 0;
6859d494 1582 tcp_highest_sack_reset(sk);
d738cd8f 1583 }
1da177e4 1584
1ed83465 1585 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1586 num_sacks, prior_snd_una);
1587 if (found_dup_sack)
a1197f5a 1588 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1589
1590 /* Eliminate too old ACKs, but take into
1591 * account more or less fresh ones, they can
1592 * contain valid SACK info.
1593 */
1594 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1595 return 0;
1596