[TCP]: Break out send buffer expansion test.
[deliverable/linux.git] / net / ipv4 / tcp_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/module.h>
43#include <linux/smp_lock.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse = 1;
47
48/* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52int sysctl_tcp_tso_win_divisor = 8;
53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56{
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62}
63
64/* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71{
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76}
77
78/* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92static __u16 tcp_advertise_mss(struct sock *sk)
93{
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104}
105
106/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109{
110 s32 delta = tcp_time_stamp - tp->lsndtime;
111 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 u32 cwnd = tp->snd_cwnd;
113
317a76f9 114 tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
1da177e4
LT
115
116 tp->snd_ssthresh = tcp_current_ssthresh(tp);
117 restart_cwnd = min(restart_cwnd, cwnd);
118
119 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
120 cwnd >>= 1;
121 tp->snd_cwnd = max(cwnd, restart_cwnd);
122 tp->snd_cwnd_stamp = tcp_time_stamp;
123 tp->snd_cwnd_used = 0;
124}
125
126static inline void tcp_event_data_sent(struct tcp_sock *tp,
127 struct sk_buff *skb, struct sock *sk)
128{
129 u32 now = tcp_time_stamp;
130
131 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
132 tcp_cwnd_restart(tp, __sk_dst_get(sk));
133
134 tp->lsndtime = now;
135
136 /* If it is a reply for ato after last received
137 * packet, enter pingpong mode.
138 */
139 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
140 tp->ack.pingpong = 1;
141}
142
fc6415bc 143static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
1da177e4
LT
144{
145 struct tcp_sock *tp = tcp_sk(sk);
146
fc6415bc 147 tcp_dec_quickack_mode(tp, pkts);
1da177e4
LT
148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149}
150
151/* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161{
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC1414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208}
209
210/* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215static __inline__ u16 tcp_select_window(struct sock *sk)
216{
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251}
252
253
254/* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266{
267 if (skb != NULL) {
268 struct inet_sock *inet = inet_sk(sk);
269 struct tcp_sock *tp = tcp_sk(sk);
270 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
271 int tcp_header_size = tp->tcp_header_len;
272 struct tcphdr *th;
273 int sysctl_flags;
274 int err;
275
276 BUG_ON(!tcp_skb_pcount(skb));
277
278#define SYSCTL_FLAG_TSTAMPS 0x1
279#define SYSCTL_FLAG_WSCALE 0x2
280#define SYSCTL_FLAG_SACK 0x4
281
317a76f9
SH
282 /* If congestion control is doing timestamping */
283 if (tp->ca_ops->rtt_sample)
284 do_gettimeofday(&skb->stamp);
285
1da177e4
LT
286 sysctl_flags = 0;
287 if (tcb->flags & TCPCB_FLAG_SYN) {
288 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
289 if(sysctl_tcp_timestamps) {
290 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
291 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
292 }
293 if(sysctl_tcp_window_scaling) {
294 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
295 sysctl_flags |= SYSCTL_FLAG_WSCALE;
296 }
297 if(sysctl_tcp_sack) {
298 sysctl_flags |= SYSCTL_FLAG_SACK;
299 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
300 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
301 }
302 } else if (tp->rx_opt.eff_sacks) {
303 /* A SACK is 2 pad bytes, a 2 byte header, plus
304 * 2 32-bit sequence numbers for each SACK block.
305 */
306 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
307 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
308 }
309
317a76f9
SH
310 if (tcp_packets_in_flight(tp) == 0)
311 tcp_ca_event(tp, CA_EVENT_TX_START);
1da177e4
LT
312
313 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
314 skb->h.th = th;
315 skb_set_owner_w(skb, sk);
316
317 /* Build TCP header and checksum it. */
318 th->source = inet->sport;
319 th->dest = inet->dport;
320 th->seq = htonl(tcb->seq);
321 th->ack_seq = htonl(tp->rcv_nxt);
322 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
323 if (tcb->flags & TCPCB_FLAG_SYN) {
324 /* RFC1323: The window in SYN & SYN/ACK segments
325 * is never scaled.
326 */
327 th->window = htons(tp->rcv_wnd);
328 } else {
329 th->window = htons(tcp_select_window(sk));
330 }
331 th->check = 0;
332 th->urg_ptr = 0;
333
334 if (tp->urg_mode &&
335 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
336 th->urg_ptr = htons(tp->snd_up-tcb->seq);
337 th->urg = 1;
338 }
339
340 if (tcb->flags & TCPCB_FLAG_SYN) {
341 tcp_syn_build_options((__u32 *)(th + 1),
342 tcp_advertise_mss(sk),
343 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
344 (sysctl_flags & SYSCTL_FLAG_SACK),
345 (sysctl_flags & SYSCTL_FLAG_WSCALE),
346 tp->rx_opt.rcv_wscale,
347 tcb->when,
348 tp->rx_opt.ts_recent);
349 } else {
350 tcp_build_and_update_options((__u32 *)(th + 1),
351 tp, tcb->when);
352
353 TCP_ECN_send(sk, tp, skb, tcp_header_size);
354 }
355 tp->af_specific->send_check(sk, th, skb->len, skb);
356
357 if (tcb->flags & TCPCB_FLAG_ACK)
fc6415bc 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1da177e4
LT
359
360 if (skb->len != tcp_header_size)
361 tcp_event_data_sent(tp, skb, sk);
362
363 TCP_INC_STATS(TCP_MIB_OUTSEGS);
364
365 err = tp->af_specific->queue_xmit(skb, 0);
366 if (err <= 0)
367 return err;
368
369 tcp_enter_cwr(tp);
370
371 /* NET_XMIT_CN is special. It does not guarantee,
372 * that this packet is lost. It tells that device
373 * is about to start to drop packets or already
374 * drops some packets of the same priority and
375 * invokes us to send less aggressively.
376 */
377 return err == NET_XMIT_CN ? 0 : err;
378 }
379 return -ENOBUFS;
380#undef SYSCTL_FLAG_TSTAMPS
381#undef SYSCTL_FLAG_WSCALE
382#undef SYSCTL_FLAG_SACK
383}
384
385
386/* This routine just queue's the buffer
387 *
388 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
389 * otherwise socket can stall.
390 */
391static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394
395 /* Advance write_seq and place onto the write_queue. */
396 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
397 skb_header_release(skb);
398 __skb_queue_tail(&sk->sk_write_queue, skb);
399 sk_charge_skb(sk, skb);
400
401 /* Queue it, remembering where we must start sending. */
402 if (sk->sk_send_head == NULL)
403 sk->sk_send_head = skb;
404}
405
406static inline void tcp_tso_set_push(struct sk_buff *skb)
407{
408 /* Force push to be on for any TSO frames to workaround
409 * problems with busted implementations like Mac OS-X that
410 * hold off socket receive wakeups until push is seen.
411 */
412 if (tcp_skb_pcount(skb) > 1)
413 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
414}
415
f6302d1d
DM
416static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
417{
418 struct tcp_sock *tp = tcp_sk(sk);
419
420 if (skb->len <= tp->mss_cache_std ||
421 !(sk->sk_route_caps & NETIF_F_TSO)) {
422 /* Avoid the costly divide in the normal
423 * non-TSO case.
424 */
425 skb_shinfo(skb)->tso_segs = 1;
426 skb_shinfo(skb)->tso_size = 0;
427 } else {
428 unsigned int factor;
429
430 factor = skb->len + (tp->mss_cache_std - 1);
431 factor /= tp->mss_cache_std;
432 skb_shinfo(skb)->tso_segs = factor;
433 skb_shinfo(skb)->tso_size = tp->mss_cache_std;
434 }
435}
436
7f4dd0a9
DM
437/* Does SKB fit into the send window? */
438static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
439{
440 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
441
442 return !after(end_seq, tp->snd_una + tp->snd_wnd);
443}
444
445/* Can at least one segment of SKB be sent right now, according to the
446 * congestion window rules? If so, return how many segments are allowed.
447 */
448static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
449{
450 u32 in_flight, cwnd;
451
452 /* Don't be strict about the congestion window for the final FIN. */
453 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
454 return 1;
455
456 in_flight = tcp_packets_in_flight(tp);
457 cwnd = tp->snd_cwnd;
458 if (in_flight < cwnd)
459 return (cwnd - in_flight);
460
461 return 0;
462}
463
f6302d1d
DM
464static inline int tcp_minshall_check(const struct tcp_sock *tp)
465{
466 return after(tp->snd_sml,tp->snd_una) &&
467 !after(tp->snd_sml, tp->snd_nxt);
468}
469
470/* Return 0, if packet can be sent now without violation Nagle's rules:
471 * 1. It is full sized.
7f4dd0a9 472 * 2. Or it contains FIN. (already checked by caller)
f6302d1d
DM
473 * 3. Or TCP_NODELAY was set.
474 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
475 * With Minshall's modification: all sent small packets are ACKed.
476 */
477
478static inline int tcp_nagle_check(const struct tcp_sock *tp,
479 const struct sk_buff *skb,
480 unsigned mss_now, int nonagle)
481{
482 return (skb->len < mss_now &&
f6302d1d
DM
483 ((nonagle&TCP_NAGLE_CORK) ||
484 (!nonagle &&
485 tp->packets_out &&
486 tcp_minshall_check(tp))));
487}
488
7f4dd0a9
DM
489/* Return non-zero if the Nagle test allows this packet to be
490 * sent now.
f6302d1d 491 */
7f4dd0a9
DM
492static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
493 unsigned int cur_mss, int nonagle)
f6302d1d 494{
7f4dd0a9
DM
495 /* Nagle rule does not apply to frames, which sit in the middle of the
496 * write_queue (they have no chances to get new data).
497 *
498 * This is implemented in the callers, where they modify the 'nonagle'
499 * argument based upon the location of SKB in the send queue.
500 */
501 if (nonagle & TCP_NAGLE_PUSH)
502 return 1;
503
504 /* Don't use the nagle rule for urgent data (or for the final FIN). */
505 if (tp->urg_mode ||
506 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
507 return 1;
508
509 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
510 return 1;
511
512 return 0;
513}
f6302d1d 514
7f4dd0a9
DM
515/* This must be invoked the first time we consider transmitting
516 * SKB onto the wire.
517 */
518static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb)
519{
520 int tso_segs = tcp_skb_pcount(skb);
521
522 if (!tso_segs) {
f6302d1d 523 tcp_set_skb_tso_segs(sk, skb);
7f4dd0a9 524 tso_segs = tcp_skb_pcount(skb);
f6302d1d 525 }
7f4dd0a9
DM
526 return tso_segs;
527}
f6302d1d 528
7f4dd0a9
DM
529/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
530 * should be put on the wire right now. If so, it returns the number of
531 * packets allowed by the congestion window.
532 */
533static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
534 unsigned int cur_mss, int nonagle)
535{
536 struct tcp_sock *tp = tcp_sk(sk);
537 unsigned int cwnd_quota;
f6302d1d 538
7f4dd0a9
DM
539 tcp_init_tso_segs(sk, skb);
540
541 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
542 return 0;
543
544 cwnd_quota = tcp_cwnd_test(tp, skb);
545 if (cwnd_quota &&
546 !tcp_snd_wnd_test(tp, skb, cur_mss))
547 cwnd_quota = 0;
548
549 return cwnd_quota;
f6302d1d
DM
550}
551
552static inline int tcp_skb_is_last(const struct sock *sk,
553 const struct sk_buff *skb)
554{
555 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
556}
557
f6302d1d
DM
558int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
559{
560 struct sk_buff *skb = sk->sk_send_head;
561
562 return (skb &&
563 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
564 (tcp_skb_is_last(sk, skb) ?
565 TCP_NAGLE_PUSH :
566 tp->nonagle)));
567}
568
569
1da177e4
LT
570/* Send _single_ skb sitting at the send head. This function requires
571 * true push pending frames to setup probe timer etc.
572 */
573void tcp_push_one(struct sock *sk, unsigned cur_mss)
574{
575 struct tcp_sock *tp = tcp_sk(sk);
576 struct sk_buff *skb = sk->sk_send_head;
577
d5ac99a6 578 if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
1da177e4
LT
579 /* Send it out now. */
580 TCP_SKB_CB(skb)->when = tcp_time_stamp;
581 tcp_tso_set_push(skb);
582 if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
583 sk->sk_send_head = NULL;
584 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
585 tcp_packets_out_inc(sk, tp, skb);
586 return;
587 }
588 }
589}
590
1da177e4
LT
591/* Function to create two new TCP segments. Shrinks the given segment
592 * to the specified size and appends a new segment with the rest of the
593 * packet to the list. This won't be called frequently, I hope.
594 * Remember, these are still headerless SKBs at this point.
595 */
596static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
597{
598 struct tcp_sock *tp = tcp_sk(sk);
599 struct sk_buff *buff;
600 int nsize;
601 u16 flags;
602
603 nsize = skb_headlen(skb) - len;
604 if (nsize < 0)
605 nsize = 0;
606
607 if (skb_cloned(skb) &&
608 skb_is_nonlinear(skb) &&
609 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
610 return -ENOMEM;
611
612 /* Get a new skb... force flag on. */
613 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
614 if (buff == NULL)
615 return -ENOMEM; /* We'll just try again later. */
616 sk_charge_skb(sk, buff);
617
618 /* Correct the sequence numbers. */
619 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
620 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
621 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
622
623 /* PSH and FIN should only be set in the second packet. */
624 flags = TCP_SKB_CB(skb)->flags;
625 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
626 TCP_SKB_CB(buff)->flags = flags;
627 TCP_SKB_CB(buff)->sacked =
628 (TCP_SKB_CB(skb)->sacked &
629 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
630 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
631
632 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
633 /* Copy and checksum data tail into the new buffer. */
634 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
635 nsize, 0);
636
637 skb_trim(skb, len);
638
639 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
640 } else {
641 skb->ip_summed = CHECKSUM_HW;
642 skb_split(skb, buff, len);
643 }
644
645 buff->ip_summed = skb->ip_summed;
646
647 /* Looks stupid, but our code really uses when of
648 * skbs, which it never sent before. --ANK
649 */
650 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
317a76f9 651 buff->stamp = skb->stamp;
1da177e4
LT
652
653 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
654 tp->lost_out -= tcp_skb_pcount(skb);
655 tp->left_out -= tcp_skb_pcount(skb);
656 }
657
658 /* Fix up tso_factor for both original and new SKB. */
d5ac99a6
DM
659 tcp_set_skb_tso_segs(sk, skb);
660 tcp_set_skb_tso_segs(sk, buff);
1da177e4
LT
661
662 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
663 tp->lost_out += tcp_skb_pcount(skb);
664 tp->left_out += tcp_skb_pcount(skb);
665 }
666
667 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
668 tp->lost_out += tcp_skb_pcount(buff);
669 tp->left_out += tcp_skb_pcount(buff);
670 }
671
672 /* Link BUFF into the send queue. */
f44b5271 673 skb_header_release(buff);
1da177e4
LT
674 __skb_append(skb, buff);
675
676 return 0;
677}
678
679/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
680 * eventually). The difference is that pulled data not copied, but
681 * immediately discarded.
682 */
683static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
684{
685 int i, k, eat;
686
687 eat = len;
688 k = 0;
689 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
690 if (skb_shinfo(skb)->frags[i].size <= eat) {
691 put_page(skb_shinfo(skb)->frags[i].page);
692 eat -= skb_shinfo(skb)->frags[i].size;
693 } else {
694 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
695 if (eat) {
696 skb_shinfo(skb)->frags[k].page_offset += eat;
697 skb_shinfo(skb)->frags[k].size -= eat;
698 eat = 0;
699 }
700 k++;
701 }
702 }
703 skb_shinfo(skb)->nr_frags = k;
704
705 skb->tail = skb->data;
706 skb->data_len -= len;
707 skb->len = skb->data_len;
708 return skb->tail;
709}
710
711int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
712{
713 if (skb_cloned(skb) &&
714 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
715 return -ENOMEM;
716
717 if (len <= skb_headlen(skb)) {
718 __skb_pull(skb, len);
719 } else {
720 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
721 return -ENOMEM;
722 }
723
724 TCP_SKB_CB(skb)->seq += len;
725 skb->ip_summed = CHECKSUM_HW;
726
727 skb->truesize -= len;
728 sk->sk_wmem_queued -= len;
729 sk->sk_forward_alloc += len;
730 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
731
732 /* Any change of skb->len requires recalculation of tso
733 * factor and mss.
734 */
735 if (tcp_skb_pcount(skb) > 1)
d5ac99a6 736 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
737
738 return 0;
739}
740
741/* This function synchronize snd mss to current pmtu/exthdr set.
742
743 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
744 for TCP options, but includes only bare TCP header.
745
746 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
747 It is minumum of user_mss and mss received with SYN.
748 It also does not include TCP options.
749
750 tp->pmtu_cookie is last pmtu, seen by this function.
751
752 tp->mss_cache is current effective sending mss, including
753 all tcp options except for SACKs. It is evaluated,
754 taking into account current pmtu, but never exceeds
755 tp->rx_opt.mss_clamp.
756
757 NOTE1. rfc1122 clearly states that advertised MSS
758 DOES NOT include either tcp or ip options.
759
760 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
761 this function. --ANK (980731)
762 */
763
764unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
765{
766 struct tcp_sock *tp = tcp_sk(sk);
767 int mss_now;
768
769 /* Calculate base mss without TCP options:
770 It is MMS_S - sizeof(tcphdr) of rfc1122
771 */
772 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
773
774 /* Clamp it (mss_clamp does not include tcp options) */
775 if (mss_now > tp->rx_opt.mss_clamp)
776 mss_now = tp->rx_opt.mss_clamp;
777
778 /* Now subtract optional transport overhead */
779 mss_now -= tp->ext_header_len;
780
781 /* Then reserve room for full set of TCP options and 8 bytes of data */
782 if (mss_now < 48)
783 mss_now = 48;
784
785 /* Now subtract TCP options size, not including SACKs */
786 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
787
788 /* Bound mss with half of window */
789 if (tp->max_window && mss_now > (tp->max_window>>1))
790 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
791
792 /* And store cached results */
793 tp->pmtu_cookie = pmtu;
794 tp->mss_cache = tp->mss_cache_std = mss_now;
795
796 return mss_now;
797}
798
799/* Compute the current effective MSS, taking SACKs and IP options,
800 * and even PMTU discovery events into account.
801 *
802 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
803 * cannot be large. However, taking into account rare use of URG, this
804 * is not a big flaw.
805 */
806
807unsigned int tcp_current_mss(struct sock *sk, int large)
808{
809 struct tcp_sock *tp = tcp_sk(sk);
810 struct dst_entry *dst = __sk_dst_get(sk);
811 unsigned int do_large, mss_now;
812
813 mss_now = tp->mss_cache_std;
814 if (dst) {
815 u32 mtu = dst_mtu(dst);
816 if (mtu != tp->pmtu_cookie)
817 mss_now = tcp_sync_mss(sk, mtu);
818 }
819
820 do_large = (large &&
821 (sk->sk_route_caps & NETIF_F_TSO) &&
822 !tp->urg_mode);
823
824 if (do_large) {
825 unsigned int large_mss, factor, limit;
826
827 large_mss = 65535 - tp->af_specific->net_header_len -
828 tp->ext_header_len - tp->tcp_header_len;
829
830 if (tp->max_window && large_mss > (tp->max_window>>1))
831 large_mss = max((tp->max_window>>1),
832 68U - tp->tcp_header_len);
833
834 factor = large_mss / mss_now;
835
836 /* Always keep large mss multiple of real mss, but
837 * do not exceed 1/tso_win_divisor of the congestion window
838 * so we can keep the ACK clock ticking and minimize
839 * bursting.
840 */
841 limit = tp->snd_cwnd;
842 if (sysctl_tcp_tso_win_divisor)
843 limit /= sysctl_tcp_tso_win_divisor;
844 limit = max(1U, limit);
845 if (factor > limit)
846 factor = limit;
847
848 tp->mss_cache = mss_now * factor;
849
850 mss_now = tp->mss_cache;
851 }
852
853 if (tp->rx_opt.eff_sacks)
854 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
855 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
856 return mss_now;
857}
858
a762a980
DM
859/* Congestion window validation. (RFC2861) */
860
861static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
862{
863 __u32 packets_out = tp->packets_out;
864
865 if (packets_out >= tp->snd_cwnd) {
866 /* Network is feed fully. */
867 tp->snd_cwnd_used = 0;
868 tp->snd_cwnd_stamp = tcp_time_stamp;
869 } else {
870 /* Network starves. */
871 if (tp->packets_out > tp->snd_cwnd_used)
872 tp->snd_cwnd_used = tp->packets_out;
873
874 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
875 tcp_cwnd_application_limited(sk);
876 }
877}
878
1da177e4
LT
879/* This routine writes packets to the network. It advances the
880 * send_head. This happens as incoming acks open up the remote
881 * window for us.
882 *
883 * Returns 1, if no segments are in flight and we have queued segments, but
884 * cannot send anything now because of SWS or another problem.
885 */
a2e2a59c 886static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1da177e4
LT
887{
888 struct tcp_sock *tp = tcp_sk(sk);
92df7b51 889 struct sk_buff *skb;
aa93466b 890 unsigned int tso_segs, cwnd_quota;
92df7b51 891 int sent_pkts;
1da177e4
LT
892
893 /* If we are closed, the bytes will have to remain here.
894 * In time closedown will finish, we empty the write queue and all
895 * will be happy.
896 */
92df7b51
DM
897 if (unlikely(sk->sk_state == TCP_CLOSE))
898 return 0;
1da177e4 899
aa93466b
DM
900 skb = sk->sk_send_head;
901 if (unlikely(!skb))
902 return 0;
903
904 tso_segs = tcp_init_tso_segs(sk, skb);
905 cwnd_quota = tcp_cwnd_test(tp, skb);
92df7b51 906 sent_pkts = 0;
aa93466b
DM
907
908 while (cwnd_quota >= tso_segs) {
909 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
910 (tcp_skb_is_last(sk, skb) ?
911 nonagle : TCP_NAGLE_PUSH))))
912 break;
913
914 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
915 break;
916
917 if (unlikely(skb->len > mss_now)) {
918 if (unlikely(tcp_fragment(sk, skb, mss_now)))
1da177e4 919 break;
92df7b51 920 }
1da177e4 921
92df7b51
DM
922 TCP_SKB_CB(skb)->when = tcp_time_stamp;
923 tcp_tso_set_push(skb);
aa93466b 924 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
92df7b51 925 break;
1da177e4 926
92df7b51
DM
927 /* Advance the send_head. This one is sent out.
928 * This call will increment packets_out.
929 */
930 update_send_head(sk, tp, skb);
1da177e4 931
92df7b51 932 tcp_minshall_update(tp, mss_now, skb);
aa93466b
DM
933 sent_pkts++;
934
935 /* Do not optimize this to use tso_segs. If we chopped up
936 * the packet above, tso_segs will no longer be valid.
937 */
938 cwnd_quota -= tcp_skb_pcount(skb);
939 skb = sk->sk_send_head;
940 if (!skb)
941 break;
942 tso_segs = tcp_init_tso_segs(sk, skb);
92df7b51 943 }
1da177e4 944
aa93466b 945 if (likely(sent_pkts)) {
92df7b51
DM
946 tcp_cwnd_validate(sk, tp);
947 return 0;
1da177e4 948 }
92df7b51
DM
949
950 return !tp->packets_out && sk->sk_send_head;
1da177e4
LT
951}
952
a762a980
DM
953/* Push out any pending frames which were held back due to
954 * TCP_CORK or attempt at coalescing tiny packets.
955 * The socket must be locked by the caller.
956 */
957void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
a2e2a59c 958 unsigned int cur_mss, int nonagle)
a762a980
DM
959{
960 struct sk_buff *skb = sk->sk_send_head;
961
962 if (skb) {
55c97f3e 963 if (tcp_write_xmit(sk, cur_mss, nonagle))
a762a980
DM
964 tcp_check_probe_timer(sk, tp);
965 }
966}
967
1da177e4
LT
968/* This function returns the amount that we can raise the
969 * usable window based on the following constraints
970 *
971 * 1. The window can never be shrunk once it is offered (RFC 793)
972 * 2. We limit memory per socket
973 *
974 * RFC 1122:
975 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
976 * RECV.NEXT + RCV.WIN fixed until:
977 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
978 *
979 * i.e. don't raise the right edge of the window until you can raise
980 * it at least MSS bytes.
981 *
982 * Unfortunately, the recommended algorithm breaks header prediction,
983 * since header prediction assumes th->window stays fixed.
984 *
985 * Strictly speaking, keeping th->window fixed violates the receiver
986 * side SWS prevention criteria. The problem is that under this rule
987 * a stream of single byte packets will cause the right side of the
988 * window to always advance by a single byte.
989 *
990 * Of course, if the sender implements sender side SWS prevention
991 * then this will not be a problem.
992 *
993 * BSD seems to make the following compromise:
994 *
995 * If the free space is less than the 1/4 of the maximum
996 * space available and the free space is less than 1/2 mss,
997 * then set the window to 0.
998 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
999 * Otherwise, just prevent the window from shrinking
1000 * and from being larger than the largest representable value.
1001 *
1002 * This prevents incremental opening of the window in the regime
1003 * where TCP is limited by the speed of the reader side taking
1004 * data out of the TCP receive queue. It does nothing about
1005 * those cases where the window is constrained on the sender side
1006 * because the pipeline is full.
1007 *
1008 * BSD also seems to "accidentally" limit itself to windows that are a
1009 * multiple of MSS, at least until the free space gets quite small.
1010 * This would appear to be a side effect of the mbuf implementation.
1011 * Combining these two algorithms results in the observed behavior
1012 * of having a fixed window size at almost all times.
1013 *
1014 * Below we obtain similar behavior by forcing the offered window to
1015 * a multiple of the mss when it is feasible to do so.
1016 *
1017 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1018 * Regular options like TIMESTAMP are taken into account.
1019 */
1020u32 __tcp_select_window(struct sock *sk)
1021{
1022 struct tcp_sock *tp = tcp_sk(sk);
1023 /* MSS for the peer's data. Previous verions used mss_clamp
1024 * here. I don't know if the value based on our guesses
1025 * of peer's MSS is better for the performance. It's more correct
1026 * but may be worse for the performance because of rcv_mss
1027 * fluctuations. --SAW 1998/11/1
1028 */
1029 int mss = tp->ack.rcv_mss;
1030 int free_space = tcp_space(sk);
1031 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1032 int window;
1033
1034 if (mss > full_space)
1035 mss = full_space;
1036
1037 if (free_space < full_space/2) {
1038 tp->ack.quick = 0;
1039
1040 if (tcp_memory_pressure)
1041 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1042
1043 if (free_space < mss)
1044 return 0;
1045 }
1046
1047 if (free_space > tp->rcv_ssthresh)
1048 free_space = tp->rcv_ssthresh;
1049
1050 /* Don't do rounding if we are using window scaling, since the
1051 * scaled window will not line up with the MSS boundary anyway.
1052 */
1053 window = tp->rcv_wnd;
1054 if (tp->rx_opt.rcv_wscale) {
1055 window = free_space;
1056
1057 /* Advertise enough space so that it won't get scaled away.
1058 * Import case: prevent zero window announcement if
1059 * 1<<rcv_wscale > mss.
1060 */
1061 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1062 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1063 << tp->rx_opt.rcv_wscale);
1064 } else {
1065 /* Get the largest window that is a nice multiple of mss.
1066 * Window clamp already applied above.
1067 * If our current window offering is within 1 mss of the
1068 * free space we just keep it. This prevents the divide
1069 * and multiply from happening most of the time.
1070 * We also don't do any window rounding when the free space
1071 * is too small.
1072 */
1073 if (window <= free_space - mss || window > free_space)
1074 window = (free_space/mss)*mss;
1075 }
1076
1077 return window;
1078}
1079
1080/* Attempt to collapse two adjacent SKB's during retransmission. */
1081static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1082{
1083 struct tcp_sock *tp = tcp_sk(sk);
1084 struct sk_buff *next_skb = skb->next;
1085
1086 /* The first test we must make is that neither of these two
1087 * SKB's are still referenced by someone else.
1088 */
1089 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1090 int skb_size = skb->len, next_skb_size = next_skb->len;
1091 u16 flags = TCP_SKB_CB(skb)->flags;
1092
1093 /* Also punt if next skb has been SACK'd. */
1094 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1095 return;
1096
1097 /* Next skb is out of window. */
1098 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1099 return;
1100
1101 /* Punt if not enough space exists in the first SKB for
1102 * the data in the second, or the total combined payload
1103 * would exceed the MSS.
1104 */
1105 if ((next_skb_size > skb_tailroom(skb)) ||
1106 ((skb_size + next_skb_size) > mss_now))
1107 return;
1108
1109 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1110 tcp_skb_pcount(next_skb) != 1);
1111
1112 /* Ok. We will be able to collapse the packet. */
1113 __skb_unlink(next_skb, next_skb->list);
1114
1115 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1116
1117 if (next_skb->ip_summed == CHECKSUM_HW)
1118 skb->ip_summed = CHECKSUM_HW;
1119
1120 if (skb->ip_summed != CHECKSUM_HW)
1121 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1122
1123 /* Update sequence range on original skb. */
1124 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1125
1126 /* Merge over control information. */
1127 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1128 TCP_SKB_CB(skb)->flags = flags;
1129
1130 /* All done, get rid of second SKB and account for it so
1131 * packet counting does not break.
1132 */
1133 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1134 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1135 tp->retrans_out -= tcp_skb_pcount(next_skb);
1136 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1137 tp->lost_out -= tcp_skb_pcount(next_skb);
1138 tp->left_out -= tcp_skb_pcount(next_skb);
1139 }
1140 /* Reno case is special. Sigh... */
1141 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1142 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1143 tp->left_out -= tcp_skb_pcount(next_skb);
1144 }
1145
1146 /* Not quite right: it can be > snd.fack, but
1147 * it is better to underestimate fackets.
1148 */
1149 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1150 tcp_packets_out_dec(tp, next_skb);
1151 sk_stream_free_skb(sk, next_skb);
1152 }
1153}
1154
1155/* Do a simple retransmit without using the backoff mechanisms in
1156 * tcp_timer. This is used for path mtu discovery.
1157 * The socket is already locked here.
1158 */
1159void tcp_simple_retransmit(struct sock *sk)
1160{
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 struct sk_buff *skb;
1163 unsigned int mss = tcp_current_mss(sk, 0);
1164 int lost = 0;
1165
1166 sk_stream_for_retrans_queue(skb, sk) {
1167 if (skb->len > mss &&
1168 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1169 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1171 tp->retrans_out -= tcp_skb_pcount(skb);
1172 }
1173 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1174 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1175 tp->lost_out += tcp_skb_pcount(skb);
1176 lost = 1;
1177 }
1178 }
1179 }
1180
1181 if (!lost)
1182 return;
1183
1184 tcp_sync_left_out(tp);
1185
1186 /* Don't muck with the congestion window here.
1187 * Reason is that we do not increase amount of _data_
1188 * in network, but units changed and effective
1189 * cwnd/ssthresh really reduced now.
1190 */
1191 if (tp->ca_state != TCP_CA_Loss) {
1192 tp->high_seq = tp->snd_nxt;
1193 tp->snd_ssthresh = tcp_current_ssthresh(tp);
1194 tp->prior_ssthresh = 0;
1195 tp->undo_marker = 0;
1196 tcp_set_ca_state(tp, TCP_CA_Loss);
1197 }
1198 tcp_xmit_retransmit_queue(sk);
1199}
1200
1201/* This retransmits one SKB. Policy decisions and retransmit queue
1202 * state updates are done by the caller. Returns non-zero if an
1203 * error occurred which prevented the send.
1204 */
1205int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1206{
1207 struct tcp_sock *tp = tcp_sk(sk);
1208 unsigned int cur_mss = tcp_current_mss(sk, 0);
1209 int err;
1210
1211 /* Do not sent more than we queued. 1/4 is reserved for possible
1212 * copying overhead: frgagmentation, tunneling, mangling etc.
1213 */
1214 if (atomic_read(&sk->sk_wmem_alloc) >
1215 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1216 return -EAGAIN;
1217
1218 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1219 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1220 BUG();
1221
1222 if (sk->sk_route_caps & NETIF_F_TSO) {
1223 sk->sk_route_caps &= ~NETIF_F_TSO;
1224 sock_set_flag(sk, SOCK_NO_LARGESEND);
1225 tp->mss_cache = tp->mss_cache_std;
1226 }
1227
1228 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1229 return -ENOMEM;
1230 }
1231
1232 /* If receiver has shrunk his window, and skb is out of
1233 * new window, do not retransmit it. The exception is the
1234 * case, when window is shrunk to zero. In this case
1235 * our retransmit serves as a zero window probe.
1236 */
1237 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1238 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1239 return -EAGAIN;
1240
1241 if (skb->len > cur_mss) {
1242 int old_factor = tcp_skb_pcount(skb);
1243 int new_factor;
1244
1245 if (tcp_fragment(sk, skb, cur_mss))
1246 return -ENOMEM; /* We'll try again later. */
1247
1248 /* New SKB created, account for it. */
1249 new_factor = tcp_skb_pcount(skb);
1250 tp->packets_out -= old_factor - new_factor;
1251 tp->packets_out += tcp_skb_pcount(skb->next);
1252 }
1253
1254 /* Collapse two adjacent packets if worthwhile and we can. */
1255 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1256 (skb->len < (cur_mss >> 1)) &&
1257 (skb->next != sk->sk_send_head) &&
1258 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1259 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1260 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1261 (sysctl_tcp_retrans_collapse != 0))
1262 tcp_retrans_try_collapse(sk, skb, cur_mss);
1263
1264 if(tp->af_specific->rebuild_header(sk))
1265 return -EHOSTUNREACH; /* Routing failure or similar. */
1266
1267 /* Some Solaris stacks overoptimize and ignore the FIN on a
1268 * retransmit when old data is attached. So strip it off
1269 * since it is cheap to do so and saves bytes on the network.
1270 */
1271 if(skb->len > 0 &&
1272 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1273 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1274 if (!pskb_trim(skb, 0)) {
1275 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1276 skb_shinfo(skb)->tso_segs = 1;
1277 skb_shinfo(skb)->tso_size = 0;
1278 skb->ip_summed = CHECKSUM_NONE;
1279 skb->csum = 0;
1280 }
1281 }
1282
1283 /* Make a copy, if the first transmission SKB clone we made
1284 * is still in somebody's hands, else make a clone.
1285 */
1286 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1287 tcp_tso_set_push(skb);
1288
1289 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1290 pskb_copy(skb, GFP_ATOMIC):
1291 skb_clone(skb, GFP_ATOMIC)));
1292
1293 if (err == 0) {
1294 /* Update global TCP statistics. */
1295 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1296
1297 tp->total_retrans++;
1298
1299#if FASTRETRANS_DEBUG > 0
1300 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1301 if (net_ratelimit())
1302 printk(KERN_DEBUG "retrans_out leaked.\n");
1303 }
1304#endif
1305 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1306 tp->retrans_out += tcp_skb_pcount(skb);
1307
1308 /* Save stamp of the first retransmit. */
1309 if (!tp->retrans_stamp)
1310 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1311
1312 tp->undo_retrans++;
1313
1314 /* snd_nxt is stored to detect loss of retransmitted segment,
1315 * see tcp_input.c tcp_sacktag_write_queue().
1316 */
1317 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1318 }
1319 return err;
1320}
1321
1322/* This gets called after a retransmit timeout, and the initially
1323 * retransmitted data is acknowledged. It tries to continue
1324 * resending the rest of the retransmit queue, until either
1325 * we've sent it all or the congestion window limit is reached.
1326 * If doing SACK, the first ACK which comes back for a timeout
1327 * based retransmit packet might feed us FACK information again.
1328 * If so, we use it to avoid unnecessarily retransmissions.
1329 */
1330void tcp_xmit_retransmit_queue(struct sock *sk)
1331{
1332 struct tcp_sock *tp = tcp_sk(sk);
1333 struct sk_buff *skb;
1334 int packet_cnt = tp->lost_out;
1335
1336 /* First pass: retransmit lost packets. */
1337 if (packet_cnt) {
1338 sk_stream_for_retrans_queue(skb, sk) {
1339 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1340
1341 /* Assume this retransmit will generate
1342 * only one packet for congestion window
1343 * calculation purposes. This works because
1344 * tcp_retransmit_skb() will chop up the
1345 * packet to be MSS sized and all the
1346 * packet counting works out.
1347 */
1348 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1349 return;
1350
1351 if (sacked&TCPCB_LOST) {
1352 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1353 if (tcp_retransmit_skb(sk, skb))
1354 return;
1355 if (tp->ca_state != TCP_CA_Loss)
1356 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1357 else
1358 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1359
1360 if (skb ==
1361 skb_peek(&sk->sk_write_queue))
1362 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1363 }
1364
1365 packet_cnt -= tcp_skb_pcount(skb);
1366 if (packet_cnt <= 0)
1367 break;
1368 }
1369 }
1370 }
1371
1372 /* OK, demanded retransmission is finished. */
1373
1374 /* Forward retransmissions are possible only during Recovery. */
1375 if (tp->ca_state != TCP_CA_Recovery)
1376 return;
1377
1378 /* No forward retransmissions in Reno are possible. */
1379 if (!tp->rx_opt.sack_ok)
1380 return;
1381
1382 /* Yeah, we have to make difficult choice between forward transmission
1383 * and retransmission... Both ways have their merits...
1384 *
1385 * For now we do not retransmit anything, while we have some new
1386 * segments to send.
1387 */
1388
1389 if (tcp_may_send_now(sk, tp))
1390 return;
1391
1392 packet_cnt = 0;
1393
1394 sk_stream_for_retrans_queue(skb, sk) {
1395 /* Similar to the retransmit loop above we
1396 * can pretend that the retransmitted SKB
1397 * we send out here will be composed of one
1398 * real MSS sized packet because tcp_retransmit_skb()
1399 * will fragment it if necessary.
1400 */
1401 if (++packet_cnt > tp->fackets_out)
1402 break;
1403
1404 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1405 break;
1406
1407 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1408 continue;
1409
1410 /* Ok, retransmit it. */
1411 if (tcp_retransmit_skb(sk, skb))
1412 break;
1413
1414 if (skb == skb_peek(&sk->sk_write_queue))
1415 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1416
1417 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1418 }
1419}
1420
1421
1422/* Send a fin. The caller locks the socket for us. This cannot be
1423 * allowed to fail queueing a FIN frame under any circumstances.
1424 */
1425void tcp_send_fin(struct sock *sk)
1426{
1427 struct tcp_sock *tp = tcp_sk(sk);
1428 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1429 int mss_now;
1430
1431 /* Optimization, tack on the FIN if we have a queue of
1432 * unsent frames. But be careful about outgoing SACKS
1433 * and IP options.
1434 */
1435 mss_now = tcp_current_mss(sk, 1);
1436
1437 if (sk->sk_send_head != NULL) {
1438 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1439 TCP_SKB_CB(skb)->end_seq++;
1440 tp->write_seq++;
1441 } else {
1442 /* Socket is locked, keep trying until memory is available. */
1443 for (;;) {
1444 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1445 if (skb)
1446 break;
1447 yield();
1448 }
1449
1450 /* Reserve space for headers and prepare control bits. */
1451 skb_reserve(skb, MAX_TCP_HEADER);
1452 skb->csum = 0;
1453 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1454 TCP_SKB_CB(skb)->sacked = 0;
1455 skb_shinfo(skb)->tso_segs = 1;
1456 skb_shinfo(skb)->tso_size = 0;
1457
1458 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1459 TCP_SKB_CB(skb)->seq = tp->write_seq;
1460 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1461 tcp_queue_skb(sk, skb);
1462 }
1463 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1464}
1465
1466/* We get here when a process closes a file descriptor (either due to
1467 * an explicit close() or as a byproduct of exit()'ing) and there
1468 * was unread data in the receive queue. This behavior is recommended
1469 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1470 */
1471void tcp_send_active_reset(struct sock *sk, int priority)
1472{
1473 struct tcp_sock *tp = tcp_sk(sk);
1474 struct sk_buff *skb;
1475
1476 /* NOTE: No TCP options attached and we never retransmit this. */
1477 skb = alloc_skb(MAX_TCP_HEADER, priority);
1478 if (!skb) {
1479 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1480 return;
1481 }
1482
1483 /* Reserve space for headers and prepare control bits. */
1484 skb_reserve(skb, MAX_TCP_HEADER);
1485 skb->csum = 0;
1486 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1487 TCP_SKB_CB(skb)->sacked = 0;
1488 skb_shinfo(skb)->tso_segs = 1;
1489 skb_shinfo(skb)->tso_size = 0;
1490
1491 /* Send it off. */
1492 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1493 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1494 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1495 if (tcp_transmit_skb(sk, skb))
1496 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1497}
1498
1499/* WARNING: This routine must only be called when we have already sent
1500 * a SYN packet that crossed the incoming SYN that caused this routine
1501 * to get called. If this assumption fails then the initial rcv_wnd
1502 * and rcv_wscale values will not be correct.
1503 */
1504int tcp_send_synack(struct sock *sk)
1505{
1506 struct sk_buff* skb;
1507
1508 skb = skb_peek(&sk->sk_write_queue);
1509 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1510 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1511 return -EFAULT;
1512 }
1513 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1514 if (skb_cloned(skb)) {
1515 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1516 if (nskb == NULL)
1517 return -ENOMEM;
1518 __skb_unlink(skb, &sk->sk_write_queue);
1519 skb_header_release(nskb);
1520 __skb_queue_head(&sk->sk_write_queue, nskb);
1521 sk_stream_free_skb(sk, skb);
1522 sk_charge_skb(sk, nskb);
1523 skb = nskb;
1524 }
1525
1526 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1527 TCP_ECN_send_synack(tcp_sk(sk), skb);
1528 }
1529 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1530 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1531}
1532
1533/*
1534 * Prepare a SYN-ACK.
1535 */
1536struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
60236fdd 1537 struct request_sock *req)
1da177e4 1538{
2e6599cb 1539 struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 struct tcphdr *th;
1542 int tcp_header_size;
1543 struct sk_buff *skb;
1544
1545 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1546 if (skb == NULL)
1547 return NULL;
1548
1549 /* Reserve space for headers. */
1550 skb_reserve(skb, MAX_TCP_HEADER);
1551
1552 skb->dst = dst_clone(dst);
1553
1554 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2e6599cb
ACM
1555 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1556 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1da177e4 1557 /* SACK_PERM is in the place of NOP NOP of TS */
2e6599cb 1558 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1da177e4
LT
1559 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1560
1561 memset(th, 0, sizeof(struct tcphdr));
1562 th->syn = 1;
1563 th->ack = 1;
1564 if (dst->dev->features&NETIF_F_TSO)
2e6599cb 1565 ireq->ecn_ok = 0;
1da177e4
LT
1566 TCP_ECN_make_synack(req, th);
1567 th->source = inet_sk(sk)->sport;
2e6599cb
ACM
1568 th->dest = ireq->rmt_port;
1569 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1da177e4
LT
1570 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1571 TCP_SKB_CB(skb)->sacked = 0;
1572 skb_shinfo(skb)->tso_segs = 1;
1573 skb_shinfo(skb)->tso_size = 0;
1574 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2e6599cb 1575 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1da177e4
LT
1576 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1577 __u8 rcv_wscale;
1578 /* Set this up on the first call only */
1579 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1580 /* tcp_full_space because it is guaranteed to be the first packet */
1581 tcp_select_initial_window(tcp_full_space(sk),
2e6599cb 1582 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1da177e4
LT
1583 &req->rcv_wnd,
1584 &req->window_clamp,
2e6599cb 1585 ireq->wscale_ok,
1da177e4 1586 &rcv_wscale);
2e6599cb 1587 ireq->rcv_wscale = rcv_wscale;
1da177e4
LT
1588 }
1589
1590 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1591 th->window = htons(req->rcv_wnd);
1592
1593 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2e6599cb
ACM
1594 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1595 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1da177e4
LT
1596 TCP_SKB_CB(skb)->when,
1597 req->ts_recent);
1598
1599 skb->csum = 0;
1600 th->doff = (tcp_header_size >> 2);
1601 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1602 return skb;
1603}
1604
1605/*
1606 * Do all connect socket setups that can be done AF independent.
1607 */
1608static inline void tcp_connect_init(struct sock *sk)
1609{
1610 struct dst_entry *dst = __sk_dst_get(sk);
1611 struct tcp_sock *tp = tcp_sk(sk);
1612 __u8 rcv_wscale;
1613
1614 /* We'll fix this up when we get a response from the other end.
1615 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1616 */
1617 tp->tcp_header_len = sizeof(struct tcphdr) +
1618 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1619
1620 /* If user gave his TCP_MAXSEG, record it to clamp */
1621 if (tp->rx_opt.user_mss)
1622 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1623 tp->max_window = 0;
1624 tcp_sync_mss(sk, dst_mtu(dst));
1625
1626 if (!tp->window_clamp)
1627 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1628 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1629 tcp_initialize_rcv_mss(sk);
1da177e4
LT
1630
1631 tcp_select_initial_window(tcp_full_space(sk),
1632 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1633 &tp->rcv_wnd,
1634 &tp->window_clamp,
1635 sysctl_tcp_window_scaling,
1636 &rcv_wscale);
1637
1638 tp->rx_opt.rcv_wscale = rcv_wscale;
1639 tp->rcv_ssthresh = tp->rcv_wnd;
1640
1641 sk->sk_err = 0;
1642 sock_reset_flag(sk, SOCK_DONE);
1643 tp->snd_wnd = 0;
1644 tcp_init_wl(tp, tp->write_seq, 0);
1645 tp->snd_una = tp->write_seq;
1646 tp->snd_sml = tp->write_seq;
1647 tp->rcv_nxt = 0;
1648 tp->rcv_wup = 0;
1649 tp->copied_seq = 0;
1650
1651 tp->rto = TCP_TIMEOUT_INIT;
1652 tp->retransmits = 0;
1653 tcp_clear_retrans(tp);
1654}
1655
1656/*
1657 * Build a SYN and send it off.
1658 */
1659int tcp_connect(struct sock *sk)
1660{
1661 struct tcp_sock *tp = tcp_sk(sk);
1662 struct sk_buff *buff;
1663
1664 tcp_connect_init(sk);
1665
1666 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1667 if (unlikely(buff == NULL))
1668 return -ENOBUFS;
1669
1670 /* Reserve space for headers. */
1671 skb_reserve(buff, MAX_TCP_HEADER);
1672
1673 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1674 TCP_ECN_send_syn(sk, tp, buff);
1675 TCP_SKB_CB(buff)->sacked = 0;
1676 skb_shinfo(buff)->tso_segs = 1;
1677 skb_shinfo(buff)->tso_size = 0;
1678 buff->csum = 0;
1679 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1680 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1681 tp->snd_nxt = tp->write_seq;
1682 tp->pushed_seq = tp->write_seq;
1da177e4
LT
1683
1684 /* Send it off. */
1685 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1686 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1687 skb_header_release(buff);
1688 __skb_queue_tail(&sk->sk_write_queue, buff);
1689 sk_charge_skb(sk, buff);
1690 tp->packets_out += tcp_skb_pcount(buff);
1691 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1692 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1693
1694 /* Timer for repeating the SYN until an answer. */
1695 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1696 return 0;
1697}
1698
1699/* Send out a delayed ack, the caller does the policy checking
1700 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1701 * for details.
1702 */
1703void tcp_send_delayed_ack(struct sock *sk)
1704{
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 int ato = tp->ack.ato;
1707 unsigned long timeout;
1708
1709 if (ato > TCP_DELACK_MIN) {
1710 int max_ato = HZ/2;
1711
1712 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1713 max_ato = TCP_DELACK_MAX;
1714
1715 /* Slow path, intersegment interval is "high". */
1716
1717 /* If some rtt estimate is known, use it to bound delayed ack.
1718 * Do not use tp->rto here, use results of rtt measurements
1719 * directly.
1720 */
1721 if (tp->srtt) {
1722 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1723
1724 if (rtt < max_ato)
1725 max_ato = rtt;
1726 }
1727
1728 ato = min(ato, max_ato);
1729 }
1730
1731 /* Stay within the limit we were given */
1732 timeout = jiffies + ato;
1733
1734 /* Use new timeout only if there wasn't a older one earlier. */
1735 if (tp->ack.pending&TCP_ACK_TIMER) {
1736 /* If delack timer was blocked or is about to expire,
1737 * send ACK now.
1738 */
1739 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1740 tcp_send_ack(sk);
1741 return;
1742 }
1743
1744 if (!time_before(timeout, tp->ack.timeout))
1745 timeout = tp->ack.timeout;
1746 }
1747 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1748 tp->ack.timeout = timeout;
1749 sk_reset_timer(sk, &tp->delack_timer, timeout);
1750}
1751
1752/* This routine sends an ack and also updates the window. */
1753void tcp_send_ack(struct sock *sk)
1754{
1755 /* If we have been reset, we may not send again. */
1756 if (sk->sk_state != TCP_CLOSE) {
1757 struct tcp_sock *tp = tcp_sk(sk);
1758 struct sk_buff *buff;
1759
1760 /* We are not putting this on the write queue, so
1761 * tcp_transmit_skb() will set the ownership to this
1762 * sock.
1763 */
1764 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1765 if (buff == NULL) {
1766 tcp_schedule_ack(tp);
1767 tp->ack.ato = TCP_ATO_MIN;
1768 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1769 return;
1770 }
1771
1772 /* Reserve space for headers and prepare control bits. */
1773 skb_reserve(buff, MAX_TCP_HEADER);
1774 buff->csum = 0;
1775 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1776 TCP_SKB_CB(buff)->sacked = 0;
1777 skb_shinfo(buff)->tso_segs = 1;
1778 skb_shinfo(buff)->tso_size = 0;
1779
1780 /* Send it off, this clears delayed acks for us. */
1781 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1782 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1783 tcp_transmit_skb(sk, buff);
1784 }
1785}
1786
1787/* This routine sends a packet with an out of date sequence
1788 * number. It assumes the other end will try to ack it.
1789 *
1790 * Question: what should we make while urgent mode?
1791 * 4.4BSD forces sending single byte of data. We cannot send
1792 * out of window data, because we have SND.NXT==SND.MAX...
1793 *
1794 * Current solution: to send TWO zero-length segments in urgent mode:
1795 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1796 * out-of-date with SND.UNA-1 to probe window.
1797 */
1798static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1799{
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 struct sk_buff *skb;
1802
1803 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1804 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1805 if (skb == NULL)
1806 return -1;
1807
1808 /* Reserve space for headers and set control bits. */
1809 skb_reserve(skb, MAX_TCP_HEADER);
1810 skb->csum = 0;
1811 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1812 TCP_SKB_CB(skb)->sacked = urgent;
1813 skb_shinfo(skb)->tso_segs = 1;
1814 skb_shinfo(skb)->tso_size = 0;
1815
1816 /* Use a previous sequence. This should cause the other
1817 * end to send an ack. Don't queue or clone SKB, just
1818 * send it.
1819 */
1820 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1821 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1822 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1823 return tcp_transmit_skb(sk, skb);
1824}
1825
1826int tcp_write_wakeup(struct sock *sk)
1827{
1828 if (sk->sk_state != TCP_CLOSE) {
1829 struct tcp_sock *tp = tcp_sk(sk);
1830 struct sk_buff *skb;
1831
1832 if ((skb = sk->sk_send_head) != NULL &&
1833 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1834 int err;
1835 unsigned int mss = tcp_current_mss(sk, 0);
1836 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1837
1838 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1839 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1840
1841 /* We are probing the opening of a window
1842 * but the window size is != 0
1843 * must have been a result SWS avoidance ( sender )
1844 */
1845 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1846 skb->len > mss) {
1847 seg_size = min(seg_size, mss);
1848 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1849 if (tcp_fragment(sk, skb, seg_size))
1850 return -1;
1851 /* SWS override triggered forced fragmentation.
1852 * Disable TSO, the connection is too sick. */
1853 if (sk->sk_route_caps & NETIF_F_TSO) {
1854 sock_set_flag(sk, SOCK_NO_LARGESEND);
1855 sk->sk_route_caps &= ~NETIF_F_TSO;
1856 tp->mss_cache = tp->mss_cache_std;
1857 }
1858 } else if (!tcp_skb_pcount(skb))
d5ac99a6 1859 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
1860
1861 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1862 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1863 tcp_tso_set_push(skb);
1864 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1865 if (!err) {
1866 update_send_head(sk, tp, skb);
1867 }
1868 return err;
1869 } else {
1870 if (tp->urg_mode &&
1871 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
1872 tcp_xmit_probe_skb(sk, TCPCB_URG);
1873 return tcp_xmit_probe_skb(sk, 0);
1874 }
1875 }
1876 return -1;
1877}
1878
1879/* A window probe timeout has occurred. If window is not closed send
1880 * a partial packet else a zero probe.
1881 */
1882void tcp_send_probe0(struct sock *sk)
1883{
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 int err;
1886
1887 err = tcp_write_wakeup(sk);
1888
1889 if (tp->packets_out || !sk->sk_send_head) {
1890 /* Cancel probe timer, if it is not required. */
1891 tp->probes_out = 0;
1892 tp->backoff = 0;
1893 return;
1894 }
1895
1896 if (err <= 0) {
1897 if (tp->backoff < sysctl_tcp_retries2)
1898 tp->backoff++;
1899 tp->probes_out++;
1900 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1901 min(tp->rto << tp->backoff, TCP_RTO_MAX));
1902 } else {
1903 /* If packet was not sent due to local congestion,
1904 * do not backoff and do not remember probes_out.
1905 * Let local senders to fight for local resources.
1906 *
1907 * Use accumulated backoff yet.
1908 */
1909 if (!tp->probes_out)
1910 tp->probes_out=1;
1911 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1912 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
1913 }
1914}
1915
1916EXPORT_SYMBOL(tcp_connect);
1917EXPORT_SYMBOL(tcp_make_synack);
1918EXPORT_SYMBOL(tcp_simple_retransmit);
1919EXPORT_SYMBOL(tcp_sync_mss);
This page took 0.125498 seconds and 5 git commands to generate.