rds: rds_ib_device.refcount overflow
[deliverable/linux.git] / net / rds / iw_send.c
CommitLineData
fcd8b7c0
AG
1/*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/in.h>
35#include <linux/device.h>
36#include <linux/dmapool.h>
cb0a6056 37#include <linux/ratelimit.h>
fcd8b7c0
AG
38
39#include "rds.h"
fcd8b7c0
AG
40#include "iw.h"
41
42static void rds_iw_send_rdma_complete(struct rds_message *rm,
43 int wc_status)
44{
45 int notify_status;
46
47 switch (wc_status) {
48 case IB_WC_WR_FLUSH_ERR:
49 return;
50
51 case IB_WC_SUCCESS:
52 notify_status = RDS_RDMA_SUCCESS;
53 break;
54
55 case IB_WC_REM_ACCESS_ERR:
56 notify_status = RDS_RDMA_REMOTE_ERROR;
57 break;
58
59 default:
60 notify_status = RDS_RDMA_OTHER_ERROR;
61 break;
62 }
63 rds_rdma_send_complete(rm, notify_status);
64}
65
66static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
f8b3aaf2 67 struct rm_rdma_op *op)
fcd8b7c0 68{
f8b3aaf2 69 if (op->op_mapped) {
fcd8b7c0 70 ib_dma_unmap_sg(ic->i_cm_id->device,
f8b3aaf2
AG
71 op->op_sg, op->op_nents,
72 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73 op->op_mapped = 0;
fcd8b7c0
AG
74 }
75}
76
77static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
78 struct rds_iw_send_work *send,
79 int wc_status)
80{
81 struct rds_message *rm = send->s_rm;
82
83 rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
84
85 ib_dma_unmap_sg(ic->i_cm_id->device,
6c7cc6e4 86 rm->data.op_sg, rm->data.op_nents,
fcd8b7c0
AG
87 DMA_TO_DEVICE);
88
f8b3aaf2
AG
89 if (rm->rdma.op_active) {
90 rds_iw_send_unmap_rdma(ic, &rm->rdma);
fcd8b7c0
AG
91
92 /* If the user asked for a completion notification on this
93 * message, we can implement three different semantics:
94 * 1. Notify when we received the ACK on the RDS message
95 * that was queued with the RDMA. This provides reliable
96 * notification of RDMA status at the expense of a one-way
97 * packet delay.
98 * 2. Notify when the IB stack gives us the completion event for
99 * the RDMA operation.
100 * 3. Notify when the IB stack gives us the completion event for
101 * the accompanying RDS messages.
102 * Here, we implement approach #3. To implement approach #2,
103 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 * handling in the ACK processing code.
106 *
107 * Note: There's no need to explicitly sync any RDMA buffers using
108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 * operation itself unmapped the RDMA buffers, which takes care
110 * of synching.
111 */
112 rds_iw_send_rdma_complete(rm, wc_status);
113
f8b3aaf2
AG
114 if (rm->rdma.op_write)
115 rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
fcd8b7c0 116 else
f8b3aaf2 117 rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
fcd8b7c0
AG
118 }
119
120 /* If anyone waited for this message to get flushed out, wake
121 * them up now */
122 rds_message_unmapped(rm);
123
124 rds_message_put(rm);
125 send->s_rm = NULL;
126}
127
128void rds_iw_send_init_ring(struct rds_iw_connection *ic)
129{
130 struct rds_iw_send_work *send;
131 u32 i;
132
133 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134 struct ib_sge *sge;
135
136 send->s_rm = NULL;
137 send->s_op = NULL;
138 send->s_mapping = NULL;
139
140 send->s_wr.next = NULL;
141 send->s_wr.wr_id = i;
142 send->s_wr.sg_list = send->s_sge;
143 send->s_wr.num_sge = 1;
144 send->s_wr.opcode = IB_WR_SEND;
145 send->s_wr.send_flags = 0;
146 send->s_wr.ex.imm_data = 0;
147
148 sge = rds_iw_data_sge(ic, send->s_sge);
149 sge->lkey = 0;
150
151 sge = rds_iw_header_sge(ic, send->s_sge);
152 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
153 sge->length = sizeof(struct rds_header);
154 sge->lkey = 0;
155
156 send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size);
157 if (IS_ERR(send->s_mr)) {
158 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n");
159 break;
160 }
161
162 send->s_page_list = ib_alloc_fast_reg_page_list(
163 ic->i_cm_id->device, fastreg_message_size);
164 if (IS_ERR(send->s_page_list)) {
165 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n");
166 break;
167 }
168 }
169}
170
171void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
172{
173 struct rds_iw_send_work *send;
174 u32 i;
175
176 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
177 BUG_ON(!send->s_mr);
178 ib_dereg_mr(send->s_mr);
179 BUG_ON(!send->s_page_list);
180 ib_free_fast_reg_page_list(send->s_page_list);
181 if (send->s_wr.opcode == 0xdead)
182 continue;
183 if (send->s_rm)
184 rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
185 if (send->s_op)
186 rds_iw_send_unmap_rdma(ic, send->s_op);
187 }
188}
189
190/*
191 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
192 * operations performed in the send path. As the sender allocs and potentially
193 * unallocs the next free entry in the ring it doesn't alter which is
194 * the next to be freed, which is what this is concerned with.
195 */
196void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
197{
198 struct rds_connection *conn = context;
199 struct rds_iw_connection *ic = conn->c_transport_data;
200 struct ib_wc wc;
201 struct rds_iw_send_work *send;
202 u32 completed;
203 u32 oldest;
204 u32 i;
205 int ret;
206
207 rdsdebug("cq %p conn %p\n", cq, conn);
208 rds_iw_stats_inc(s_iw_tx_cq_call);
209 ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
210 if (ret)
211 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
212
213 while (ib_poll_cq(cq, 1, &wc) > 0) {
214 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
215 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
216 be32_to_cpu(wc.ex.imm_data));
217 rds_iw_stats_inc(s_iw_tx_cq_event);
218
219 if (wc.status != IB_WC_SUCCESS) {
220 printk(KERN_ERR "WC Error: status = %d opcode = %d\n", wc.status, wc.opcode);
221 break;
222 }
223
224 if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
225 ic->i_fastreg_posted = 0;
226 continue;
227 }
228
229 if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) {
230 ic->i_fastreg_posted = 1;
231 continue;
232 }
233
234 if (wc.wr_id == RDS_IW_ACK_WR_ID) {
71fd762f 235 if (time_after(jiffies, ic->i_ack_queued + HZ/2))
fcd8b7c0
AG
236 rds_iw_stats_inc(s_iw_tx_stalled);
237 rds_iw_ack_send_complete(ic);
238 continue;
239 }
240
241 oldest = rds_iw_ring_oldest(&ic->i_send_ring);
242
243 completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
244
245 for (i = 0; i < completed; i++) {
246 send = &ic->i_sends[oldest];
247
248 /* In the error case, wc.opcode sometimes contains garbage */
249 switch (send->s_wr.opcode) {
250 case IB_WR_SEND:
251 if (send->s_rm)
252 rds_iw_send_unmap_rm(ic, send, wc.status);
253 break;
254 case IB_WR_FAST_REG_MR:
255 case IB_WR_RDMA_WRITE:
256 case IB_WR_RDMA_READ:
257 case IB_WR_RDMA_READ_WITH_INV:
258 /* Nothing to be done - the SG list will be unmapped
259 * when the SEND completes. */
260 break;
261 default:
cb0a6056 262 printk_ratelimited(KERN_NOTICE
fcd8b7c0
AG
263 "RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
264 __func__, send->s_wr.opcode);
265 break;
266 }
267
268 send->s_wr.opcode = 0xdead;
269 send->s_wr.num_sge = 1;
71fd762f 270 if (time_after(jiffies, send->s_queued + HZ/2))
fcd8b7c0
AG
271 rds_iw_stats_inc(s_iw_tx_stalled);
272
273 /* If a RDMA operation produced an error, signal this right
274 * away. If we don't, the subsequent SEND that goes with this
275 * RDMA will be canceled with ERR_WFLUSH, and the application
276 * never learn that the RDMA failed. */
277 if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
278 struct rds_message *rm;
279
280 rm = rds_send_get_message(conn, send->s_op);
281 if (rm)
282 rds_iw_send_rdma_complete(rm, wc.status);
283 }
284
285 oldest = (oldest + 1) % ic->i_send_ring.w_nr;
286 }
287
288 rds_iw_ring_free(&ic->i_send_ring, completed);
289
f64f9e71
JP
290 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
291 test_bit(0, &conn->c_map_queued))
fcd8b7c0
AG
292 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
293
294 /* We expect errors as the qp is drained during shutdown */
295 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
296 rds_iw_conn_error(conn,
297 "send completion on %pI4 "
298 "had status %u, disconnecting and reconnecting\n",
299 &conn->c_faddr, wc.status);
300 }
301 }
302}
303
304/*
305 * This is the main function for allocating credits when sending
306 * messages.
307 *
308 * Conceptually, we have two counters:
309 * - send credits: this tells us how many WRs we're allowed
25985edc 310 * to submit without overruning the receiver's queue. For
fcd8b7c0
AG
311 * each SEND WR we post, we decrement this by one.
312 *
313 * - posted credits: this tells us how many WRs we recently
314 * posted to the receive queue. This value is transferred
315 * to the peer as a "credit update" in a RDS header field.
316 * Every time we transmit credits to the peer, we subtract
317 * the amount of transferred credits from this counter.
318 *
319 * It is essential that we avoid situations where both sides have
320 * exhausted their send credits, and are unable to send new credits
321 * to the peer. We achieve this by requiring that we send at least
322 * one credit update to the peer before exhausting our credits.
323 * When new credits arrive, we subtract one credit that is withheld
324 * until we've posted new buffers and are ready to transmit these
325 * credits (see rds_iw_send_add_credits below).
326 *
327 * The RDS send code is essentially single-threaded; rds_send_xmit
328 * grabs c_send_lock to ensure exclusive access to the send ring.
329 * However, the ACK sending code is independent and can race with
330 * message SENDs.
331 *
332 * In the send path, we need to update the counters for send credits
333 * and the counter of posted buffers atomically - when we use the
334 * last available credit, we cannot allow another thread to race us
335 * and grab the posted credits counter. Hence, we have to use a
336 * spinlock to protect the credit counter, or use atomics.
337 *
338 * Spinlocks shared between the send and the receive path are bad,
339 * because they create unnecessary delays. An early implementation
340 * using a spinlock showed a 5% degradation in throughput at some
341 * loads.
342 *
343 * This implementation avoids spinlocks completely, putting both
344 * counters into a single atomic, and updating that atomic using
345 * atomic_add (in the receive path, when receiving fresh credits),
346 * and using atomic_cmpxchg when updating the two counters.
347 */
348int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
7b70d033 349 u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
fcd8b7c0
AG
350{
351 unsigned int avail, posted, got = 0, advertise;
352 long oldval, newval;
353
354 *adv_credits = 0;
355 if (!ic->i_flowctl)
356 return wanted;
357
358try_again:
359 advertise = 0;
360 oldval = newval = atomic_read(&ic->i_credits);
361 posted = IB_GET_POST_CREDITS(oldval);
362 avail = IB_GET_SEND_CREDITS(oldval);
363
11ac1199 364 rdsdebug("wanted=%u credits=%u posted=%u\n",
fcd8b7c0
AG
365 wanted, avail, posted);
366
367 /* The last credit must be used to send a credit update. */
368 if (avail && !posted)
369 avail--;
370
371 if (avail < wanted) {
372 struct rds_connection *conn = ic->i_cm_id->context;
373
374 /* Oops, there aren't that many credits left! */
375 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
376 got = avail;
377 } else {
378 /* Sometimes you get what you want, lalala. */
379 got = wanted;
380 }
381 newval -= IB_SET_SEND_CREDITS(got);
382
383 /*
384 * If need_posted is non-zero, then the caller wants
385 * the posted regardless of whether any send credits are
386 * available.
387 */
388 if (posted && (got || need_posted)) {
7b70d033 389 advertise = min_t(unsigned int, posted, max_posted);
fcd8b7c0
AG
390 newval -= IB_SET_POST_CREDITS(advertise);
391 }
392
393 /* Finally bill everything */
394 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
395 goto try_again;
396
397 *adv_credits = advertise;
398 return got;
399}
400
401void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
402{
403 struct rds_iw_connection *ic = conn->c_transport_data;
404
405 if (credits == 0)
406 return;
407
11ac1199 408 rdsdebug("credits=%u current=%u%s\n",
fcd8b7c0
AG
409 credits,
410 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
411 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
412
413 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
414 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
415 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
416
417 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
418
419 rds_iw_stats_inc(s_iw_rx_credit_updates);
420}
421
422void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
423{
424 struct rds_iw_connection *ic = conn->c_transport_data;
425
426 if (posted == 0)
427 return;
428
429 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
430
431 /* Decide whether to send an update to the peer now.
432 * If we would send a credit update for every single buffer we
433 * post, we would end up with an ACK storm (ACK arrives,
434 * consumes buffer, we refill the ring, send ACK to remote
435 * advertising the newly posted buffer... ad inf)
436 *
437 * Performance pretty much depends on how often we send
438 * credit updates - too frequent updates mean lots of ACKs.
439 * Too infrequent updates, and the peer will run out of
440 * credits and has to throttle.
441 * For the time being, 16 seems to be a good compromise.
442 */
443 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
444 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
445}
446
447static inline void
448rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
449 struct rds_iw_send_work *send, unsigned int pos,
450 unsigned long buffer, unsigned int length,
451 int send_flags)
452{
453 struct ib_sge *sge;
454
455 WARN_ON(pos != send - ic->i_sends);
456
457 send->s_wr.send_flags = send_flags;
458 send->s_wr.opcode = IB_WR_SEND;
459 send->s_wr.num_sge = 2;
460 send->s_wr.next = NULL;
461 send->s_queued = jiffies;
462 send->s_op = NULL;
463
464 if (length != 0) {
465 sge = rds_iw_data_sge(ic, send->s_sge);
466 sge->addr = buffer;
467 sge->length = length;
468 sge->lkey = rds_iw_local_dma_lkey(ic);
469
470 sge = rds_iw_header_sge(ic, send->s_sge);
471 } else {
472 /* We're sending a packet with no payload. There is only
473 * one SGE */
474 send->s_wr.num_sge = 1;
475 sge = &send->s_sge[0];
476 }
477
478 sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
479 sge->length = sizeof(struct rds_header);
480 sge->lkey = rds_iw_local_dma_lkey(ic);
481}
482
483/*
484 * This can be called multiple times for a given message. The first time
485 * we see a message we map its scatterlist into the IB device so that
486 * we can provide that mapped address to the IB scatter gather entries
487 * in the IB work requests. We translate the scatterlist into a series
488 * of work requests that fragment the message. These work requests complete
489 * in order so we pass ownership of the message to the completion handler
490 * once we send the final fragment.
491 *
492 * The RDS core uses the c_send_lock to only enter this function once
493 * per connection. This makes sure that the tx ring alloc/unalloc pairs
494 * don't get out of sync and confuse the ring.
495 */
496int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
497 unsigned int hdr_off, unsigned int sg, unsigned int off)
498{
499 struct rds_iw_connection *ic = conn->c_transport_data;
500 struct ib_device *dev = ic->i_cm_id->device;
501 struct rds_iw_send_work *send = NULL;
502 struct rds_iw_send_work *first;
503 struct rds_iw_send_work *prev;
504 struct ib_send_wr *failed_wr;
505 struct scatterlist *scat;
506 u32 pos;
507 u32 i;
508 u32 work_alloc;
509 u32 credit_alloc;
510 u32 posted;
511 u32 adv_credits = 0;
512 int send_flags = 0;
513 int sent;
514 int ret;
515 int flow_controlled = 0;
516
517 BUG_ON(off % RDS_FRAG_SIZE);
518 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
519
520 /* Fastreg support */
f64f9e71 521 if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
fcd8b7c0
AG
522 ret = -EAGAIN;
523 goto out;
524 }
525
526 /* FIXME we may overallocate here */
527 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
528 i = 1;
529 else
530 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
531
532 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
533 if (work_alloc == 0) {
534 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
535 rds_iw_stats_inc(s_iw_tx_ring_full);
536 ret = -ENOMEM;
537 goto out;
538 }
539
540 credit_alloc = work_alloc;
541 if (ic->i_flowctl) {
7b70d033 542 credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
fcd8b7c0
AG
543 adv_credits += posted;
544 if (credit_alloc < work_alloc) {
545 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
546 work_alloc = credit_alloc;
547 flow_controlled++;
548 }
549 if (work_alloc == 0) {
d39e0602 550 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
fcd8b7c0
AG
551 rds_iw_stats_inc(s_iw_tx_throttle);
552 ret = -ENOMEM;
553 goto out;
554 }
555 }
556
557 /* map the message the first time we see it */
8690bfa1 558 if (!ic->i_rm) {
fcd8b7c0
AG
559 /*
560 printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
561 be16_to_cpu(rm->m_inc.i_hdr.h_dport),
562 rm->m_inc.i_hdr.h_flags,
563 be32_to_cpu(rm->m_inc.i_hdr.h_len));
564 */
6c7cc6e4
AG
565 if (rm->data.op_nents) {
566 rm->data.op_count = ib_dma_map_sg(dev,
567 rm->data.op_sg,
568 rm->data.op_nents,
569 DMA_TO_DEVICE);
570 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
571 if (rm->data.op_count == 0) {
fcd8b7c0
AG
572 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
573 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
574 ret = -ENOMEM; /* XXX ? */
575 goto out;
576 }
577 } else {
6c7cc6e4 578 rm->data.op_count = 0;
fcd8b7c0
AG
579 }
580
581 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
582 ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
583 rds_message_addref(rm);
d655a9fb
WW
584 rm->data.op_dmasg = 0;
585 rm->data.op_dmaoff = 0;
fcd8b7c0
AG
586 ic->i_rm = rm;
587
588 /* Finalize the header */
589 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
590 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
591 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
592 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
593
594 /* If it has a RDMA op, tell the peer we did it. This is
595 * used by the peer to release use-once RDMA MRs. */
f8b3aaf2 596 if (rm->rdma.op_active) {
fcd8b7c0
AG
597 struct rds_ext_header_rdma ext_hdr;
598
f8b3aaf2 599 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
fcd8b7c0
AG
600 rds_message_add_extension(&rm->m_inc.i_hdr,
601 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
602 }
603 if (rm->m_rdma_cookie) {
604 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
605 rds_rdma_cookie_key(rm->m_rdma_cookie),
606 rds_rdma_cookie_offset(rm->m_rdma_cookie));
607 }
608
609 /* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
610 * we should not do this unless we have a chance of at least
611 * sticking the header into the send ring. Which is why we
612 * should call rds_iw_ring_alloc first. */
613 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
614 rds_message_make_checksum(&rm->m_inc.i_hdr);
615
616 /*
617 * Update adv_credits since we reset the ACK_REQUIRED bit.
618 */
7b70d033 619 rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
fcd8b7c0
AG
620 adv_credits += posted;
621 BUG_ON(adv_credits > 255);
735f61e6 622 }
fcd8b7c0
AG
623
624 send = &ic->i_sends[pos];
625 first = send;
626 prev = NULL;
d655a9fb 627 scat = &rm->data.op_sg[rm->data.op_dmasg];
fcd8b7c0
AG
628 sent = 0;
629 i = 0;
630
631 /* Sometimes you want to put a fence between an RDMA
632 * READ and the following SEND.
633 * We could either do this all the time
634 * or when requested by the user. Right now, we let
635 * the application choose.
636 */
f8b3aaf2 637 if (rm->rdma.op_active && rm->rdma.op_fence)
fcd8b7c0
AG
638 send_flags = IB_SEND_FENCE;
639
640 /*
641 * We could be copying the header into the unused tail of the page.
642 * That would need to be changed in the future when those pages might
643 * be mapped userspace pages or page cache pages. So instead we always
644 * use a second sge and our long-lived ring of mapped headers. We send
645 * the header after the data so that the data payload can be aligned on
646 * the receiver.
647 */
648
649 /* handle a 0-len message */
650 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
651 rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
652 goto add_header;
653 }
654
655 /* if there's data reference it with a chain of work reqs */
6c7cc6e4 656 for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
fcd8b7c0
AG
657 unsigned int len;
658
659 send = &ic->i_sends[pos];
660
d655a9fb
WW
661 len = min(RDS_FRAG_SIZE,
662 ib_sg_dma_len(dev, scat) - rm->data.op_dmaoff);
fcd8b7c0 663 rds_iw_xmit_populate_wr(ic, send, pos,
d655a9fb
WW
664 ib_sg_dma_address(dev, scat) + rm->data.op_dmaoff, len,
665 send_flags);
fcd8b7c0
AG
666
667 /*
668 * We want to delay signaling completions just enough to get
669 * the batching benefits but not so much that we create dead time
670 * on the wire.
671 */
672 if (ic->i_unsignaled_wrs-- == 0) {
673 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
674 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
675 }
676
677 ic->i_unsignaled_bytes -= len;
678 if (ic->i_unsignaled_bytes <= 0) {
679 ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
680 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
681 }
682
683 /*
684 * Always signal the last one if we're stopping due to flow control.
685 */
686 if (flow_controlled && i == (work_alloc-1))
687 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
688
689 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
690 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
691
692 sent += len;
d655a9fb
WW
693 rm->data.op_dmaoff += len;
694 if (rm->data.op_dmaoff == ib_sg_dma_len(dev, scat)) {
fcd8b7c0 695 scat++;
d655a9fb
WW
696 rm->data.op_dmaoff = 0;
697 rm->data.op_dmasg++;
fcd8b7c0
AG
698 }
699
700add_header:
701 /* Tack on the header after the data. The header SGE should already
702 * have been set up to point to the right header buffer. */
703 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
704
705 if (0) {
706 struct rds_header *hdr = &ic->i_send_hdrs[pos];
707
708 printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
709 be16_to_cpu(hdr->h_dport),
710 hdr->h_flags,
711 be32_to_cpu(hdr->h_len));
712 }
713 if (adv_credits) {
714 struct rds_header *hdr = &ic->i_send_hdrs[pos];
715
716 /* add credit and redo the header checksum */
717 hdr->h_credit = adv_credits;
718 rds_message_make_checksum(hdr);
719 adv_credits = 0;
720 rds_iw_stats_inc(s_iw_tx_credit_updates);
721 }
722
723 if (prev)
724 prev->s_wr.next = &send->s_wr;
725 prev = send;
726
727 pos = (pos + 1) % ic->i_send_ring.w_nr;
728 }
729
730 /* Account the RDS header in the number of bytes we sent, but just once.
731 * The caller has no concept of fragmentation. */
732 if (hdr_off == 0)
733 sent += sizeof(struct rds_header);
734
735 /* if we finished the message then send completion owns it */
6c7cc6e4 736 if (scat == &rm->data.op_sg[rm->data.op_count]) {
fcd8b7c0
AG
737 prev->s_rm = ic->i_rm;
738 prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
739 ic->i_rm = NULL;
740 }
741
742 if (i < work_alloc) {
743 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
744 work_alloc = i;
745 }
746 if (ic->i_flowctl && i < credit_alloc)
747 rds_iw_send_add_credits(conn, credit_alloc - i);
748
749 /* XXX need to worry about failed_wr and partial sends. */
750 failed_wr = &first->s_wr;
751 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
752 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
753 first, &first->s_wr, ret, failed_wr);
754 BUG_ON(failed_wr != &first->s_wr);
755 if (ret) {
756 printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
757 "returned %d\n", &conn->c_faddr, ret);
758 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
759 if (prev->s_rm) {
760 ic->i_rm = prev->s_rm;
761 prev->s_rm = NULL;
762 }
763 goto out;
764 }
765
766 ret = sent;
767out:
768 BUG_ON(adv_credits);
769 return ret;
770}
771
772static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr)
773{
774 BUG_ON(nent > send->s_page_list->max_page_list_len);
775 /*
776 * Perform a WR for the fast_reg_mr. Each individual page
777 * in the sg list is added to the fast reg page list and placed
778 * inside the fast_reg_mr WR.
779 */
780 send->s_wr.opcode = IB_WR_FAST_REG_MR;
781 send->s_wr.wr.fast_reg.length = len;
782 send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey;
783 send->s_wr.wr.fast_reg.page_list = send->s_page_list;
784 send->s_wr.wr.fast_reg.page_list_len = nent;
404bb72a 785 send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
fcd8b7c0
AG
786 send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE;
787 send->s_wr.wr.fast_reg.iova_start = sg_addr;
788
789 ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
790}
791
f8b3aaf2 792int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
fcd8b7c0
AG
793{
794 struct rds_iw_connection *ic = conn->c_transport_data;
795 struct rds_iw_send_work *send = NULL;
796 struct rds_iw_send_work *first;
797 struct rds_iw_send_work *prev;
798 struct ib_send_wr *failed_wr;
799 struct rds_iw_device *rds_iwdev;
800 struct scatterlist *scat;
801 unsigned long len;
f8b3aaf2 802 u64 remote_addr = op->op_remote_addr;
fcd8b7c0
AG
803 u32 pos, fr_pos;
804 u32 work_alloc;
805 u32 i;
806 u32 j;
807 int sent;
808 int ret;
809 int num_sge;
810
811 rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);
812
813 /* map the message the first time we see it */
f8b3aaf2
AG
814 if (!op->op_mapped) {
815 op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
816 op->op_sg, op->op_nents, (op->op_write) ?
817 DMA_TO_DEVICE : DMA_FROM_DEVICE);
818 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
819 if (op->op_count == 0) {
fcd8b7c0
AG
820 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
821 ret = -ENOMEM; /* XXX ? */
822 goto out;
823 }
824
f8b3aaf2 825 op->op_mapped = 1;
fcd8b7c0
AG
826 }
827
f8b3aaf2 828 if (!op->op_write) {
fcd8b7c0
AG
829 /* Alloc space on the send queue for the fastreg */
830 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
831 if (work_alloc != 1) {
832 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
833 rds_iw_stats_inc(s_iw_tx_ring_full);
834 ret = -ENOMEM;
835 goto out;
836 }
837 }
838
839 /*
840 * Instead of knowing how to return a partial rdma read/write we insist that there
841 * be enough work requests to send the entire message.
842 */
f8b3aaf2 843 i = ceil(op->op_count, rds_iwdev->max_sge);
fcd8b7c0
AG
844
845 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
846 if (work_alloc != i) {
847 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
848 rds_iw_stats_inc(s_iw_tx_ring_full);
849 ret = -ENOMEM;
850 goto out;
851 }
852
853 send = &ic->i_sends[pos];
f8b3aaf2 854 if (!op->op_write) {
fcd8b7c0
AG
855 first = prev = &ic->i_sends[fr_pos];
856 } else {
857 first = send;
858 prev = NULL;
859 }
f8b3aaf2 860 scat = &op->op_sg[0];
fcd8b7c0 861 sent = 0;
f8b3aaf2 862 num_sge = op->op_count;
fcd8b7c0 863
f8b3aaf2 864 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
fcd8b7c0
AG
865 send->s_wr.send_flags = 0;
866 send->s_queued = jiffies;
867
868 /*
869 * We want to delay signaling completions just enough to get
870 * the batching benefits but not so much that we create dead time on the wire.
871 */
872 if (ic->i_unsignaled_wrs-- == 0) {
873 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
874 send->s_wr.send_flags = IB_SEND_SIGNALED;
875 }
876
877 /* To avoid the need to have the plumbing to invalidate the fastreg_mr used
878 * for local access after RDS is finished with it, using
879 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
880 */
f8b3aaf2 881 if (op->op_write)
fcd8b7c0
AG
882 send->s_wr.opcode = IB_WR_RDMA_WRITE;
883 else
884 send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV;
885
886 send->s_wr.wr.rdma.remote_addr = remote_addr;
f8b3aaf2 887 send->s_wr.wr.rdma.rkey = op->op_rkey;
fcd8b7c0
AG
888 send->s_op = op;
889
890 if (num_sge > rds_iwdev->max_sge) {
891 send->s_wr.num_sge = rds_iwdev->max_sge;
892 num_sge -= rds_iwdev->max_sge;
893 } else
894 send->s_wr.num_sge = num_sge;
895
896 send->s_wr.next = NULL;
897
898 if (prev)
899 prev->s_wr.next = &send->s_wr;
900
f8b3aaf2 901 for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
fcd8b7c0
AG
902 len = ib_sg_dma_len(ic->i_cm_id->device, scat);
903
904 if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV)
905 send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat);
906 else {
907 send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
908 send->s_sge[j].length = len;
909 send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
910 }
911
912 sent += len;
913 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
914 remote_addr += len;
915
916 scat++;
917 }
918
919 if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
920 send->s_wr.num_sge = 1;
921 send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
922 send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
923 send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
924 }
925
926 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
927 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
928
929 prev = send;
930 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
931 send = ic->i_sends;
932 }
933
934 /* if we finished the message then send completion owns it */
f8b3aaf2 935 if (scat == &op->op_sg[op->op_count])
fcd8b7c0
AG
936 first->s_wr.send_flags = IB_SEND_SIGNALED;
937
938 if (i < work_alloc) {
939 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
940 work_alloc = i;
941 }
942
943 /* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
944 * recommended. Putting the lkey on the wire is a security hole, as it can
945 * allow for memory access to all of memory on the remote system. Some
946 * adapters do not allow using the lkey for this at all. To bypass this use a
947 * fastreg_mr (or possibly a dma_mr)
948 */
f8b3aaf2 949 if (!op->op_write) {
fcd8b7c0 950 rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos],
f8b3aaf2 951 op->op_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr);
fcd8b7c0
AG
952 work_alloc++;
953 }
954
955 failed_wr = &first->s_wr;
956 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
957 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
958 first, &first->s_wr, ret, failed_wr);
959 BUG_ON(failed_wr != &first->s_wr);
960 if (ret) {
961 printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
962 "returned %d\n", &conn->c_faddr, ret);
963 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
964 goto out;
965 }
966
967out:
968 return ret;
969}
970
971void rds_iw_xmit_complete(struct rds_connection *conn)
972{
973 struct rds_iw_connection *ic = conn->c_transport_data;
974
975 /* We may have a pending ACK or window update we were unable
976 * to send previously (due to flow control). Try again. */
977 rds_iw_attempt_ack(ic);
978}
This page took 0.409323 seconds and 5 git commands to generate.