Merge remote-tracking branch 'spi/fix/setup' into spi-linus
[deliverable/linux.git] / net / sched / sch_qfq.c
CommitLineData
0545a303 1/*
462dbc91 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
0545a303 3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
462dbc91 5 * Copyright (c) 2012 Paolo Valente.
0545a303 6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/bitops.h>
15#include <linux/errno.h>
16#include <linux/netdevice.h>
17#include <linux/pkt_sched.h>
18#include <net/sch_generic.h>
19#include <net/pkt_sched.h>
20#include <net/pkt_cls.h>
21
22
462dbc91
PV
23/* Quick Fair Queueing Plus
24 ========================
0545a303 25
26 Sources:
27
462dbc91
PV
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
0545a303 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41/*
42
462dbc91
PV
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
0545a303 57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93/*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97#define QFQ_MAX_SLOTS 32
98
99/*
462dbc91
PV
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
0545a303 102 * group with the smallest index that can support the L_i / r_i configured
462dbc91 103 * for the classes in the aggregate.
0545a303 104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
3015f3d2 108#define QFQ_MAX_INDEX 24
462dbc91 109#define QFQ_MAX_WSHIFT 10
0545a303 110
462dbc91
PV
111#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
0545a303 113
114#define FRAC_BITS 30 /* fixed point arithmetic */
115#define ONE_FP (1UL << FRAC_BITS)
116#define IWSUM (ONE_FP/QFQ_MAX_WSUM)
117
3015f3d2 118#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
462dbc91
PV
119#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
120
121#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
0545a303 122
123/*
124 * Possible group states. These values are used as indexes for the bitmaps
125 * array of struct qfq_queue.
126 */
127enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128
129struct qfq_group;
130
462dbc91
PV
131struct qfq_aggregate;
132
0545a303 133struct qfq_class {
134 struct Qdisc_class_common common;
135
136 unsigned int refcnt;
137 unsigned int filter_cnt;
138
139 struct gnet_stats_basic_packed bstats;
140 struct gnet_stats_queue qstats;
45203a3b 141 struct gnet_stats_rate_est64 rate_est;
0545a303 142 struct Qdisc *qdisc;
462dbc91
PV
143 struct list_head alist; /* Link for active-classes list. */
144 struct qfq_aggregate *agg; /* Parent aggregate. */
145 int deficit; /* DRR deficit counter. */
146};
0545a303 147
462dbc91 148struct qfq_aggregate {
0545a303 149 struct hlist_node next; /* Link for the slot list. */
150 u64 S, F; /* flow timestamps (exact) */
151
152 /* group we belong to. In principle we would need the index,
153 * which is log_2(lmax/weight), but we never reference it
154 * directly, only the group.
155 */
156 struct qfq_group *grp;
157
158 /* these are copied from the flowset. */
462dbc91
PV
159 u32 class_weight; /* Weight of each class in this aggregate. */
160 /* Max pkt size for the classes in this aggregate, DRR quantum. */
161 int lmax;
162
163 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
164 u32 budgetmax; /* Max budget for this aggregate. */
165 u32 initial_budget, budget; /* Initial and current budget. */
166
167 int num_classes; /* Number of classes in this aggr. */
168 struct list_head active; /* DRR queue of active classes. */
169
170 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
0545a303 171};
172
173struct qfq_group {
174 u64 S, F; /* group timestamps (approx). */
175 unsigned int slot_shift; /* Slot shift. */
176 unsigned int index; /* Group index. */
177 unsigned int front; /* Index of the front slot. */
178 unsigned long full_slots; /* non-empty slots */
179
462dbc91 180 /* Array of RR lists of active aggregates. */
0545a303 181 struct hlist_head slots[QFQ_MAX_SLOTS];
182};
183
184struct qfq_sched {
185 struct tcf_proto *filter_list;
186 struct Qdisc_class_hash clhash;
187
462dbc91
PV
188 u64 oldV, V; /* Precise virtual times. */
189 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
190 u32 num_active_agg; /* Num. of active aggregates */
191 u32 wsum; /* weight sum */
0545a303 192
193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
462dbc91
PV
195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196
197 u32 max_agg_classes; /* Max number of classes per aggr. */
198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
0545a303 199};
200
462dbc91
PV
201/*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 * for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 * must be rescheduled for service
207 */
208enum update_reason {enqueue, requeue};
209
0545a303 210static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211{
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219}
220
221static void qfq_purge_queue(struct qfq_class *cl)
222{
223 unsigned int len = cl->qdisc->q.qlen;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_decrease_qlen(cl->qdisc, len);
227}
228
229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232};
233
234/*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
462dbc91 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
0545a303 240{
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
462dbc91 245 size_map = slot_size >> min_slot_shift;
0545a303 246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
462dbc91 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
0545a303 251
252 if (index < 0)
253 index = 0;
254out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259}
260
462dbc91
PV
261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
be72f63b 267{
462dbc91
PV
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273}
274
275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277{
278 struct qfq_aggregate *agg;
462dbc91 279
b67bfe0d 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
462dbc91
PV
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285}
286
be72f63b 287
462dbc91
PV
288/* Update aggregate as a function of the new number of classes. */
289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291{
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
9b99b7e9
PV
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
462dbc91
PV
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317
318 agg->num_classes = new_num_classes;
319}
320
321/* Add class to aggregate. */
322static void qfq_add_to_agg(struct qfq_sched *q,
323 struct qfq_aggregate *agg,
324 struct qfq_class *cl)
325{
326 cl->agg = agg;
327
328 qfq_update_agg(q, agg, agg->num_classes+1);
329 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
330 list_add_tail(&cl->alist, &agg->active);
331 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
332 cl && q->in_serv_agg != agg) /* agg was inactive */
333 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
334 }
be72f63b
PV
335}
336
462dbc91 337static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
be72f63b 338
462dbc91 339static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 340{
462dbc91
PV
341 if (!hlist_unhashed(&agg->nonfull_next))
342 hlist_del_init(&agg->nonfull_next);
343 if (q->in_serv_agg == agg)
344 q->in_serv_agg = qfq_choose_next_agg(q);
345 kfree(agg);
346}
be72f63b 347
462dbc91
PV
348/* Deschedule class from within its parent aggregate. */
349static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
350{
351 struct qfq_aggregate *agg = cl->agg;
be72f63b 352
be72f63b 353
462dbc91
PV
354 list_del(&cl->alist); /* remove from RR queue of the aggregate */
355 if (list_empty(&agg->active)) /* agg is now inactive */
356 qfq_deactivate_agg(q, agg);
be72f63b
PV
357}
358
462dbc91
PV
359/* Remove class from its parent aggregate. */
360static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
3015f3d2 361{
462dbc91 362 struct qfq_aggregate *agg = cl->agg;
3015f3d2 363
462dbc91
PV
364 cl->agg = NULL;
365 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
366 qfq_destroy_agg(q, agg);
367 return;
3015f3d2 368 }
462dbc91
PV
369 qfq_update_agg(q, agg, agg->num_classes-1);
370}
3015f3d2 371
462dbc91
PV
372/* Deschedule class and remove it from its parent aggregate. */
373static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
374{
375 if (cl->qdisc->q.qlen > 0) /* class is active */
376 qfq_deactivate_class(q, cl);
3015f3d2 377
462dbc91 378 qfq_rm_from_agg(q, cl);
3015f3d2
PV
379}
380
462dbc91
PV
381/* Move class to a new aggregate, matching the new class weight and/or lmax */
382static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
383 u32 lmax)
384{
385 struct qfq_sched *q = qdisc_priv(sch);
386 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
387
388 if (new_agg == NULL) { /* create new aggregate */
389 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
390 if (new_agg == NULL)
391 return -ENOBUFS;
392 qfq_init_agg(q, new_agg, lmax, weight);
393 }
394 qfq_deact_rm_from_agg(q, cl);
395 qfq_add_to_agg(q, new_agg, cl);
396
397 return 0;
398}
3015f3d2 399
0545a303 400static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
401 struct nlattr **tca, unsigned long *arg)
402{
403 struct qfq_sched *q = qdisc_priv(sch);
404 struct qfq_class *cl = (struct qfq_class *)*arg;
462dbc91 405 bool existing = false;
0545a303 406 struct nlattr *tb[TCA_QFQ_MAX + 1];
462dbc91 407 struct qfq_aggregate *new_agg = NULL;
0545a303 408 u32 weight, lmax, inv_w;
3015f3d2 409 int err;
d32ae76f 410 int delta_w;
0545a303 411
412 if (tca[TCA_OPTIONS] == NULL) {
413 pr_notice("qfq: no options\n");
414 return -EINVAL;
415 }
416
417 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
418 if (err < 0)
419 return err;
420
421 if (tb[TCA_QFQ_WEIGHT]) {
422 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
423 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
424 pr_notice("qfq: invalid weight %u\n", weight);
425 return -EINVAL;
426 }
427 } else
428 weight = 1;
429
0545a303 430 if (tb[TCA_QFQ_LMAX]) {
431 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
3015f3d2 432 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
0545a303 433 pr_notice("qfq: invalid max length %u\n", lmax);
434 return -EINVAL;
435 }
436 } else
3015f3d2 437 lmax = psched_mtu(qdisc_dev(sch));
0545a303 438
462dbc91
PV
439 inv_w = ONE_FP / weight;
440 weight = ONE_FP / inv_w;
441
442 if (cl != NULL &&
443 lmax == cl->agg->lmax &&
444 weight == cl->agg->class_weight)
445 return 0; /* nothing to change */
446
447 delta_w = weight - (cl ? cl->agg->class_weight : 0);
448
449 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
450 pr_notice("qfq: total weight out of range (%d + %u)\n",
451 delta_w, q->wsum);
452 return -EINVAL;
453 }
454
455 if (cl != NULL) { /* modify existing class */
0545a303 456 if (tca[TCA_RATE]) {
457 err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
458 qdisc_root_sleeping_lock(sch),
459 tca[TCA_RATE]);
460 if (err)
461 return err;
462 }
462dbc91
PV
463 existing = true;
464 goto set_change_agg;
0545a303 465 }
466
462dbc91 467 /* create and init new class */
0545a303 468 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
469 if (cl == NULL)
470 return -ENOBUFS;
471
472 cl->refcnt = 1;
473 cl->common.classid = classid;
462dbc91 474 cl->deficit = lmax;
0545a303 475
476 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
477 &pfifo_qdisc_ops, classid);
478 if (cl->qdisc == NULL)
479 cl->qdisc = &noop_qdisc;
480
481 if (tca[TCA_RATE]) {
482 err = gen_new_estimator(&cl->bstats, &cl->rate_est,
483 qdisc_root_sleeping_lock(sch),
484 tca[TCA_RATE]);
462dbc91
PV
485 if (err)
486 goto destroy_class;
0545a303 487 }
488
489 sch_tree_lock(sch);
490 qdisc_class_hash_insert(&q->clhash, &cl->common);
491 sch_tree_unlock(sch);
492
493 qdisc_class_hash_grow(sch, &q->clhash);
494
462dbc91
PV
495set_change_agg:
496 sch_tree_lock(sch);
497 new_agg = qfq_find_agg(q, lmax, weight);
498 if (new_agg == NULL) { /* create new aggregate */
499 sch_tree_unlock(sch);
500 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
501 if (new_agg == NULL) {
502 err = -ENOBUFS;
503 gen_kill_estimator(&cl->bstats, &cl->rate_est);
504 goto destroy_class;
505 }
506 sch_tree_lock(sch);
507 qfq_init_agg(q, new_agg, lmax, weight);
508 }
509 if (existing)
510 qfq_deact_rm_from_agg(q, cl);
511 qfq_add_to_agg(q, new_agg, cl);
512 sch_tree_unlock(sch);
513
0545a303 514 *arg = (unsigned long)cl;
515 return 0;
462dbc91
PV
516
517destroy_class:
518 qdisc_destroy(cl->qdisc);
519 kfree(cl);
520 return err;
0545a303 521}
522
523static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
524{
525 struct qfq_sched *q = qdisc_priv(sch);
526
462dbc91 527 qfq_rm_from_agg(q, cl);
0545a303 528 gen_kill_estimator(&cl->bstats, &cl->rate_est);
529 qdisc_destroy(cl->qdisc);
530 kfree(cl);
531}
532
533static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
534{
535 struct qfq_sched *q = qdisc_priv(sch);
536 struct qfq_class *cl = (struct qfq_class *)arg;
537
538 if (cl->filter_cnt > 0)
539 return -EBUSY;
540
541 sch_tree_lock(sch);
542
543 qfq_purge_queue(cl);
544 qdisc_class_hash_remove(&q->clhash, &cl->common);
545
546 BUG_ON(--cl->refcnt == 0);
547 /*
548 * This shouldn't happen: we "hold" one cops->get() when called
549 * from tc_ctl_tclass; the destroy method is done from cops->put().
550 */
551
552 sch_tree_unlock(sch);
553 return 0;
554}
555
556static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
557{
558 struct qfq_class *cl = qfq_find_class(sch, classid);
559
560 if (cl != NULL)
561 cl->refcnt++;
562
563 return (unsigned long)cl;
564}
565
566static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
567{
568 struct qfq_class *cl = (struct qfq_class *)arg;
569
570 if (--cl->refcnt == 0)
571 qfq_destroy_class(sch, cl);
572}
573
574static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
575{
576 struct qfq_sched *q = qdisc_priv(sch);
577
578 if (cl)
579 return NULL;
580
581 return &q->filter_list;
582}
583
584static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
585 u32 classid)
586{
587 struct qfq_class *cl = qfq_find_class(sch, classid);
588
589 if (cl != NULL)
590 cl->filter_cnt++;
591
592 return (unsigned long)cl;
593}
594
595static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
596{
597 struct qfq_class *cl = (struct qfq_class *)arg;
598
599 cl->filter_cnt--;
600}
601
602static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
603 struct Qdisc *new, struct Qdisc **old)
604{
605 struct qfq_class *cl = (struct qfq_class *)arg;
606
607 if (new == NULL) {
608 new = qdisc_create_dflt(sch->dev_queue,
609 &pfifo_qdisc_ops, cl->common.classid);
610 if (new == NULL)
611 new = &noop_qdisc;
612 }
613
614 sch_tree_lock(sch);
615 qfq_purge_queue(cl);
616 *old = cl->qdisc;
617 cl->qdisc = new;
618 sch_tree_unlock(sch);
619 return 0;
620}
621
622static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
623{
624 struct qfq_class *cl = (struct qfq_class *)arg;
625
626 return cl->qdisc;
627}
628
629static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
630 struct sk_buff *skb, struct tcmsg *tcm)
631{
632 struct qfq_class *cl = (struct qfq_class *)arg;
633 struct nlattr *nest;
634
635 tcm->tcm_parent = TC_H_ROOT;
636 tcm->tcm_handle = cl->common.classid;
637 tcm->tcm_info = cl->qdisc->handle;
638
639 nest = nla_nest_start(skb, TCA_OPTIONS);
640 if (nest == NULL)
641 goto nla_put_failure;
462dbc91
PV
642 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
643 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
1b34ec43 644 goto nla_put_failure;
0545a303 645 return nla_nest_end(skb, nest);
646
647nla_put_failure:
648 nla_nest_cancel(skb, nest);
649 return -EMSGSIZE;
650}
651
652static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
653 struct gnet_dump *d)
654{
655 struct qfq_class *cl = (struct qfq_class *)arg;
656 struct tc_qfq_stats xstats;
657
658 memset(&xstats, 0, sizeof(xstats));
659 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
660
462dbc91
PV
661 xstats.weight = cl->agg->class_weight;
662 xstats.lmax = cl->agg->lmax;
0545a303 663
664 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
665 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
666 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
667 return -1;
668
669 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
670}
671
672static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
673{
674 struct qfq_sched *q = qdisc_priv(sch);
675 struct qfq_class *cl;
0545a303 676 unsigned int i;
677
678 if (arg->stop)
679 return;
680
681 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 682 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
0545a303 683 if (arg->count < arg->skip) {
684 arg->count++;
685 continue;
686 }
687 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
688 arg->stop = 1;
689 return;
690 }
691 arg->count++;
692 }
693 }
694}
695
696static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
697 int *qerr)
698{
699 struct qfq_sched *q = qdisc_priv(sch);
700 struct qfq_class *cl;
701 struct tcf_result res;
702 int result;
703
704 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
705 pr_debug("qfq_classify: found %d\n", skb->priority);
706 cl = qfq_find_class(sch, skb->priority);
707 if (cl != NULL)
708 return cl;
709 }
710
711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
712 result = tc_classify(skb, q->filter_list, &res);
713 if (result >= 0) {
714#ifdef CONFIG_NET_CLS_ACT
715 switch (result) {
716 case TC_ACT_QUEUED:
717 case TC_ACT_STOLEN:
718 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
719 case TC_ACT_SHOT:
720 return NULL;
721 }
722#endif
723 cl = (struct qfq_class *)res.class;
724 if (cl == NULL)
725 cl = qfq_find_class(sch, res.classid);
726 return cl;
727 }
728
729 return NULL;
730}
731
732/* Generic comparison function, handling wraparound. */
733static inline int qfq_gt(u64 a, u64 b)
734{
735 return (s64)(a - b) > 0;
736}
737
738/* Round a precise timestamp to its slotted value. */
739static inline u64 qfq_round_down(u64 ts, unsigned int shift)
740{
741 return ts & ~((1ULL << shift) - 1);
742}
743
744/* return the pointer to the group with lowest index in the bitmap */
745static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
746 unsigned long bitmap)
747{
748 int index = __ffs(bitmap);
749 return &q->groups[index];
750}
751/* Calculate a mask to mimic what would be ffs_from(). */
752static inline unsigned long mask_from(unsigned long bitmap, int from)
753{
754 return bitmap & ~((1UL << from) - 1);
755}
756
757/*
758 * The state computation relies on ER=0, IR=1, EB=2, IB=3
759 * First compute eligibility comparing grp->S, q->V,
760 * then check if someone is blocking us and possibly add EB
761 */
762static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
763{
764 /* if S > V we are not eligible */
765 unsigned int state = qfq_gt(grp->S, q->V);
766 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
767 struct qfq_group *next;
768
769 if (mask) {
770 next = qfq_ffs(q, mask);
771 if (qfq_gt(grp->F, next->F))
772 state |= EB;
773 }
774
775 return state;
776}
777
778
779/*
780 * In principle
781 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
782 * q->bitmaps[src] &= ~mask;
783 * but we should make sure that src != dst
784 */
785static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
786 int src, int dst)
787{
788 q->bitmaps[dst] |= q->bitmaps[src] & mask;
789 q->bitmaps[src] &= ~mask;
790}
791
792static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
793{
794 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
795 struct qfq_group *next;
796
797 if (mask) {
798 next = qfq_ffs(q, mask);
799 if (!qfq_gt(next->F, old_F))
800 return;
801 }
802
803 mask = (1UL << index) - 1;
804 qfq_move_groups(q, mask, EB, ER);
805 qfq_move_groups(q, mask, IB, IR);
806}
807
808/*
809 * perhaps
810 *
811 old_V ^= q->V;
462dbc91 812 old_V >>= q->min_slot_shift;
0545a303 813 if (old_V) {
814 ...
815 }
816 *
817 */
462dbc91 818static void qfq_make_eligible(struct qfq_sched *q)
0545a303 819{
462dbc91
PV
820 unsigned long vslot = q->V >> q->min_slot_shift;
821 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
0545a303 822
823 if (vslot != old_vslot) {
87f1369d
PV
824 unsigned long mask;
825 int last_flip_pos = fls(vslot ^ old_vslot);
826
827 if (last_flip_pos > 31) /* higher than the number of groups */
828 mask = ~0UL; /* make all groups eligible */
829 else
830 mask = (1UL << last_flip_pos) - 1;
831
0545a303 832 qfq_move_groups(q, mask, IR, ER);
833 qfq_move_groups(q, mask, IB, EB);
834 }
835}
836
837
838/*
462dbc91
PV
839 * The index of the slot in which the aggregate is to be inserted must
840 * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
841 * because the start time of the group may be moved backward by one
842 * slot after the aggregate has been inserted, and this would cause
843 * non-empty slots to be right-shifted by one position.
3015f3d2 844 *
462dbc91
PV
845 * If the weight and lmax (max_pkt_size) of the classes do not change,
846 * then QFQ+ does meet the above contraint according to the current
847 * values of its parameters. In fact, if the weight and lmax of the
848 * classes do not change, then, from the theory, QFQ+ guarantees that
849 * the slot index is never higher than
850 * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
851 * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
3015f3d2
PV
852 *
853 * When the weight of a class is increased or the lmax of the class is
462dbc91
PV
854 * decreased, a new aggregate with smaller slot size than the original
855 * parent aggregate of the class may happen to be activated. The
856 * activation of this aggregate should be properly delayed to when the
857 * service of the class has finished in the ideal system tracked by
858 * QFQ+. If the activation of the aggregate is not delayed to this
859 * reference time instant, then this aggregate may be unjustly served
860 * before other aggregates waiting for service. This may cause the
861 * above bound to the slot index to be violated for some of these
862 * unlucky aggregates.
3015f3d2 863 *
462dbc91
PV
864 * Instead of delaying the activation of the new aggregate, which is
865 * quite complex, the following inaccurate but simple solution is used:
866 * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
867 * timestamps of the aggregate are shifted backward so as to let the
868 * slot index become equal to QFQ_MAX_SLOTS-2.
0545a303 869 */
462dbc91 870static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
0545a303 871 u64 roundedS)
872{
873 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
3015f3d2
PV
874 unsigned int i; /* slot index in the bucket list */
875
876 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
877 u64 deltaS = roundedS - grp->S -
878 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
462dbc91
PV
879 agg->S -= deltaS;
880 agg->F -= deltaS;
3015f3d2
PV
881 slot = QFQ_MAX_SLOTS - 2;
882 }
883
884 i = (grp->front + slot) % QFQ_MAX_SLOTS;
0545a303 885
462dbc91 886 hlist_add_head(&agg->next, &grp->slots[i]);
0545a303 887 __set_bit(slot, &grp->full_slots);
888}
889
890/* Maybe introduce hlist_first_entry?? */
462dbc91 891static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
0545a303 892{
893 return hlist_entry(grp->slots[grp->front].first,
462dbc91 894 struct qfq_aggregate, next);
0545a303 895}
896
897/*
898 * remove the entry from the slot
899 */
900static void qfq_front_slot_remove(struct qfq_group *grp)
901{
462dbc91 902 struct qfq_aggregate *agg = qfq_slot_head(grp);
0545a303 903
462dbc91
PV
904 BUG_ON(!agg);
905 hlist_del(&agg->next);
0545a303 906 if (hlist_empty(&grp->slots[grp->front]))
907 __clear_bit(0, &grp->full_slots);
908}
909
910/*
462dbc91
PV
911 * Returns the first aggregate in the first non-empty bucket of the
912 * group. As a side effect, adjusts the bucket list so the first
913 * non-empty bucket is at position 0 in full_slots.
0545a303 914 */
462dbc91 915static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
0545a303 916{
917 unsigned int i;
918
919 pr_debug("qfq slot_scan: grp %u full %#lx\n",
920 grp->index, grp->full_slots);
921
922 if (grp->full_slots == 0)
923 return NULL;
924
925 i = __ffs(grp->full_slots); /* zero based */
926 if (i > 0) {
927 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
928 grp->full_slots >>= i;
929 }
930
931 return qfq_slot_head(grp);
932}
933
934/*
935 * adjust the bucket list. When the start time of a group decreases,
936 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
937 * move the objects. The mask of occupied slots must be shifted
938 * because we use ffs() to find the first non-empty slot.
939 * This covers decreases in the group's start time, but what about
940 * increases of the start time ?
941 * Here too we should make sure that i is less than 32
942 */
943static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
944{
945 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
946
947 grp->full_slots <<= i;
948 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
949}
950
462dbc91 951static void qfq_update_eligible(struct qfq_sched *q)
0545a303 952{
953 struct qfq_group *grp;
954 unsigned long ineligible;
955
956 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
957 if (ineligible) {
958 if (!q->bitmaps[ER]) {
959 grp = qfq_ffs(q, ineligible);
960 if (qfq_gt(grp->S, q->V))
961 q->V = grp->S;
962 }
462dbc91 963 qfq_make_eligible(q);
0545a303 964 }
965}
966
462dbc91
PV
967/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
968static void agg_dequeue(struct qfq_aggregate *agg,
969 struct qfq_class *cl, unsigned int len)
0545a303 970{
462dbc91 971 qdisc_dequeue_peeked(cl->qdisc);
0545a303 972
462dbc91 973 cl->deficit -= (int) len;
0545a303 974
462dbc91
PV
975 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
976 list_del(&cl->alist);
977 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
978 cl->deficit += agg->lmax;
979 list_move_tail(&cl->alist, &agg->active);
0545a303 980 }
462dbc91
PV
981}
982
983static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
984 struct qfq_class **cl,
985 unsigned int *len)
986{
987 struct sk_buff *skb;
0545a303 988
462dbc91
PV
989 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
990 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
991 if (skb == NULL)
992 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
993 else
994 *len = qdisc_pkt_len(skb);
995
996 return skb;
997}
998
999/* Update F according to the actual service received by the aggregate. */
1000static inline void charge_actual_service(struct qfq_aggregate *agg)
1001{
9b99b7e9
PV
1002 /* Compute the service received by the aggregate, taking into
1003 * account that, after decreasing the number of classes in
1004 * agg, it may happen that
1005 * agg->initial_budget - agg->budget > agg->bugdetmax
1006 */
1007 u32 service_received = min(agg->budgetmax,
1008 agg->initial_budget - agg->budget);
462dbc91
PV
1009
1010 agg->F = agg->S + (u64)service_received * agg->inv_w;
0545a303 1011}
1012
88d4f419
PV
1013/* Assign a reasonable start time for a new aggregate in group i.
1014 * Admissible values for \hat(F) are multiples of \sigma_i
1015 * no greater than V+\sigma_i . Larger values mean that
1016 * we had a wraparound so we consider the timestamp to be stale.
1017 *
1018 * If F is not stale and F >= V then we set S = F.
1019 * Otherwise we should assign S = V, but this may violate
1020 * the ordering in EB (see [2]). So, if we have groups in ER,
1021 * set S to the F_j of the first group j which would be blocking us.
1022 * We are guaranteed not to move S backward because
1023 * otherwise our group i would still be blocked.
1024 */
1025static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1026{
1027 unsigned long mask;
1028 u64 limit, roundedF;
1029 int slot_shift = agg->grp->slot_shift;
1030
1031 roundedF = qfq_round_down(agg->F, slot_shift);
1032 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1033
1034 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1035 /* timestamp was stale */
1036 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1037 if (mask) {
1038 struct qfq_group *next = qfq_ffs(q, mask);
1039 if (qfq_gt(roundedF, next->F)) {
1040 if (qfq_gt(limit, next->F))
1041 agg->S = next->F;
1042 else /* preserve timestamp correctness */
1043 agg->S = limit;
1044 return;
1045 }
1046 }
1047 agg->S = q->V;
1048 } else /* timestamp is not stale */
1049 agg->S = agg->F;
1050}
1051
1052/* Update the timestamps of agg before scheduling/rescheduling it for
1053 * service. In particular, assign to agg->F its maximum possible
1054 * value, i.e., the virtual finish time with which the aggregate
1055 * should be labeled if it used all its budget once in service.
1056 */
1057static inline void
1058qfq_update_agg_ts(struct qfq_sched *q,
1059 struct qfq_aggregate *agg, enum update_reason reason)
1060{
1061 if (reason != requeue)
1062 qfq_update_start(q, agg);
1063 else /* just charge agg for the service received */
1064 agg->S = agg->F;
1065
1066 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1067}
2f3b89a1
PV
1068
1069static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1070
0545a303 1071static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1072{
1073 struct qfq_sched *q = qdisc_priv(sch);
462dbc91 1074 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
0545a303 1075 struct qfq_class *cl;
462dbc91
PV
1076 struct sk_buff *skb = NULL;
1077 /* next-packet len, 0 means no more active classes in in-service agg */
1078 unsigned int len = 0;
0545a303 1079
462dbc91 1080 if (in_serv_agg == NULL)
0545a303 1081 return NULL;
1082
462dbc91
PV
1083 if (!list_empty(&in_serv_agg->active))
1084 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1085
462dbc91
PV
1086 /*
1087 * If there are no active classes in the in-service aggregate,
1088 * or if the aggregate has not enough budget to serve its next
1089 * class, then choose the next aggregate to serve.
1090 */
1091 if (len == 0 || in_serv_agg->budget < len) {
1092 charge_actual_service(in_serv_agg);
1093
1094 /* recharge the budget of the aggregate */
1095 in_serv_agg->initial_budget = in_serv_agg->budget =
1096 in_serv_agg->budgetmax;
1097
2f3b89a1 1098 if (!list_empty(&in_serv_agg->active)) {
462dbc91
PV
1099 /*
1100 * Still active: reschedule for
1101 * service. Possible optimization: if no other
1102 * aggregate is active, then there is no point
1103 * in rescheduling this aggregate, and we can
1104 * just keep it as the in-service one. This
1105 * should be however a corner case, and to
1106 * handle it, we would need to maintain an
1107 * extra num_active_aggs field.
1108 */
2f3b89a1
PV
1109 qfq_update_agg_ts(q, in_serv_agg, requeue);
1110 qfq_schedule_agg(q, in_serv_agg);
1111 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
462dbc91
PV
1112 q->in_serv_agg = NULL;
1113 return NULL;
1114 }
1115
1116 /*
1117 * If we get here, there are other aggregates queued:
1118 * choose the new aggregate to serve.
1119 */
1120 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1121 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1122 }
462dbc91
PV
1123 if (!skb)
1124 return NULL;
0545a303 1125
1126 sch->q.qlen--;
1127 qdisc_bstats_update(sch, skb);
1128
462dbc91 1129 agg_dequeue(in_serv_agg, cl, len);
a0143efa
PV
1130 /* If lmax is lowered, through qfq_change_class, for a class
1131 * owning pending packets with larger size than the new value
1132 * of lmax, then the following condition may hold.
1133 */
1134 if (unlikely(in_serv_agg->budget < len))
1135 in_serv_agg->budget = 0;
1136 else
1137 in_serv_agg->budget -= len;
1138
0545a303 1139 q->V += (u64)len * IWSUM;
1140 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
462dbc91
PV
1141 len, (unsigned long long) in_serv_agg->F,
1142 (unsigned long long) q->V);
0545a303 1143
462dbc91
PV
1144 return skb;
1145}
0545a303 1146
462dbc91
PV
1147static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1148{
1149 struct qfq_group *grp;
1150 struct qfq_aggregate *agg, *new_front_agg;
1151 u64 old_F;
0545a303 1152
462dbc91
PV
1153 qfq_update_eligible(q);
1154 q->oldV = q->V;
1155
1156 if (!q->bitmaps[ER])
1157 return NULL;
1158
1159 grp = qfq_ffs(q, q->bitmaps[ER]);
1160 old_F = grp->F;
1161
1162 agg = qfq_slot_head(grp);
0545a303 1163
462dbc91
PV
1164 /* agg starts to be served, remove it from schedule */
1165 qfq_front_slot_remove(grp);
1166
1167 new_front_agg = qfq_slot_scan(grp);
1168
1169 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1170 __clear_bit(grp->index, &q->bitmaps[ER]);
1171 else {
1172 u64 roundedS = qfq_round_down(new_front_agg->S,
1173 grp->slot_shift);
1174 unsigned int s;
1175
1176 if (grp->S == roundedS)
1177 return agg;
1178 grp->S = roundedS;
1179 grp->F = roundedS + (2ULL << grp->slot_shift);
1180 __clear_bit(grp->index, &q->bitmaps[ER]);
1181 s = qfq_calc_state(q, grp);
1182 __set_bit(grp->index, &q->bitmaps[s]);
0545a303 1183 }
1184
462dbc91 1185 qfq_unblock_groups(q, grp->index, old_F);
0545a303 1186
462dbc91 1187 return agg;
0545a303 1188}
1189
0545a303 1190static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1191{
1192 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1193 struct qfq_class *cl;
462dbc91 1194 struct qfq_aggregate *agg;
f54ba779 1195 int err = 0;
0545a303 1196
1197 cl = qfq_classify(skb, sch, &err);
1198 if (cl == NULL) {
1199 if (err & __NET_XMIT_BYPASS)
1200 sch->qstats.drops++;
1201 kfree_skb(skb);
1202 return err;
1203 }
1204 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1205
462dbc91 1206 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
3015f3d2 1207 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
462dbc91
PV
1208 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1209 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1210 qdisc_pkt_len(skb));
1211 if (err)
1212 return err;
3015f3d2
PV
1213 }
1214
0545a303 1215 err = qdisc_enqueue(skb, cl->qdisc);
1216 if (unlikely(err != NET_XMIT_SUCCESS)) {
1217 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1218 if (net_xmit_drop_count(err)) {
1219 cl->qstats.drops++;
1220 sch->qstats.drops++;
1221 }
1222 return err;
1223 }
1224
1225 bstats_update(&cl->bstats, skb);
1226 ++sch->q.qlen;
1227
462dbc91
PV
1228 agg = cl->agg;
1229 /* if the queue was not empty, then done here */
1230 if (cl->qdisc->q.qlen != 1) {
1231 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1232 list_first_entry(&agg->active, struct qfq_class, alist)
1233 == cl && cl->deficit < qdisc_pkt_len(skb))
1234 list_move_tail(&cl->alist, &agg->active);
1235
0545a303 1236 return err;
462dbc91
PV
1237 }
1238
1239 /* schedule class for service within the aggregate */
1240 cl->deficit = agg->lmax;
1241 list_add_tail(&cl->alist, &agg->active);
0545a303 1242
2f3b89a1
PV
1243 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1244 q->in_serv_agg == agg)
1245 return err; /* non-empty or in service, nothing else to do */
462dbc91 1246
2f3b89a1 1247 qfq_activate_agg(q, agg, enqueue);
be72f63b
PV
1248
1249 return err;
1250}
1251
1252/*
462dbc91 1253 * Schedule aggregate according to its timestamps.
be72f63b 1254 */
462dbc91 1255static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 1256{
462dbc91 1257 struct qfq_group *grp = agg->grp;
be72f63b
PV
1258 u64 roundedS;
1259 int s;
1260
462dbc91 1261 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1262
1263 /*
462dbc91
PV
1264 * Insert agg in the correct bucket.
1265 * If agg->S >= grp->S we don't need to adjust the
0545a303 1266 * bucket list and simply go to the insertion phase.
1267 * Otherwise grp->S is decreasing, we must make room
1268 * in the bucket list, and also recompute the group state.
1269 * Finally, if there were no flows in this group and nobody
1270 * was in ER make sure to adjust V.
1271 */
1272 if (grp->full_slots) {
462dbc91 1273 if (!qfq_gt(grp->S, agg->S))
0545a303 1274 goto skip_update;
1275
462dbc91 1276 /* create a slot for this agg->S */
0545a303 1277 qfq_slot_rotate(grp, roundedS);
1278 /* group was surely ineligible, remove */
1279 __clear_bit(grp->index, &q->bitmaps[IR]);
1280 __clear_bit(grp->index, &q->bitmaps[IB]);
40dd2d54
PV
1281 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1282 q->in_serv_agg == NULL)
0545a303 1283 q->V = roundedS;
1284
1285 grp->S = roundedS;
1286 grp->F = roundedS + (2ULL << grp->slot_shift);
1287 s = qfq_calc_state(q, grp);
1288 __set_bit(grp->index, &q->bitmaps[s]);
1289
1290 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1291 s, q->bitmaps[s],
462dbc91
PV
1292 (unsigned long long) agg->S,
1293 (unsigned long long) agg->F,
0545a303 1294 (unsigned long long) q->V);
1295
1296skip_update:
462dbc91 1297 qfq_slot_insert(grp, agg, roundedS);
0545a303 1298}
1299
1300
462dbc91
PV
1301/* Update agg ts and schedule agg for service */
1302static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1303 enum update_reason reason)
1304{
2f3b89a1
PV
1305 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1306
462dbc91 1307 qfq_update_agg_ts(q, agg, reason);
2f3b89a1
PV
1308 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1309 q->in_serv_agg = agg; /* start serving this aggregate */
1310 /* update V: to be in service, agg must be eligible */
1311 q->oldV = q->V = agg->S;
1312 } else if (agg != q->in_serv_agg)
1313 qfq_schedule_agg(q, agg);
462dbc91
PV
1314}
1315
0545a303 1316static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
462dbc91 1317 struct qfq_aggregate *agg)
0545a303 1318{
1319 unsigned int i, offset;
1320 u64 roundedS;
1321
462dbc91 1322 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1323 offset = (roundedS - grp->S) >> grp->slot_shift;
462dbc91 1324
0545a303 1325 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1326
462dbc91 1327 hlist_del(&agg->next);
0545a303 1328 if (hlist_empty(&grp->slots[i]))
1329 __clear_bit(offset, &grp->full_slots);
1330}
1331
1332/*
462dbc91
PV
1333 * Called to forcibly deschedule an aggregate. If the aggregate is
1334 * not in the front bucket, or if the latter has other aggregates in
1335 * the front bucket, we can simply remove the aggregate with no other
1336 * side effects.
0545a303 1337 * Otherwise we must propagate the event up.
1338 */
462dbc91 1339static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
0545a303 1340{
462dbc91 1341 struct qfq_group *grp = agg->grp;
0545a303 1342 unsigned long mask;
1343 u64 roundedS;
1344 int s;
1345
462dbc91
PV
1346 if (agg == q->in_serv_agg) {
1347 charge_actual_service(agg);
1348 q->in_serv_agg = qfq_choose_next_agg(q);
1349 return;
1350 }
1351
1352 agg->F = agg->S;
1353 qfq_slot_remove(q, grp, agg);
0545a303 1354
1355 if (!grp->full_slots) {
1356 __clear_bit(grp->index, &q->bitmaps[IR]);
1357 __clear_bit(grp->index, &q->bitmaps[EB]);
1358 __clear_bit(grp->index, &q->bitmaps[IB]);
1359
1360 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1361 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1362 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1363 if (mask)
1364 mask = ~((1UL << __fls(mask)) - 1);
1365 else
1366 mask = ~0UL;
1367 qfq_move_groups(q, mask, EB, ER);
1368 qfq_move_groups(q, mask, IB, IR);
1369 }
1370 __clear_bit(grp->index, &q->bitmaps[ER]);
1371 } else if (hlist_empty(&grp->slots[grp->front])) {
462dbc91
PV
1372 agg = qfq_slot_scan(grp);
1373 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1374 if (grp->S != roundedS) {
1375 __clear_bit(grp->index, &q->bitmaps[ER]);
1376 __clear_bit(grp->index, &q->bitmaps[IR]);
1377 __clear_bit(grp->index, &q->bitmaps[EB]);
1378 __clear_bit(grp->index, &q->bitmaps[IB]);
1379 grp->S = roundedS;
1380 grp->F = roundedS + (2ULL << grp->slot_shift);
1381 s = qfq_calc_state(q, grp);
1382 __set_bit(grp->index, &q->bitmaps[s]);
1383 }
1384 }
0545a303 1385}
1386
1387static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1388{
1389 struct qfq_sched *q = qdisc_priv(sch);
1390 struct qfq_class *cl = (struct qfq_class *)arg;
1391
1392 if (cl->qdisc->q.qlen == 0)
1393 qfq_deactivate_class(q, cl);
1394}
1395
462dbc91
PV
1396static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1397 struct hlist_head *slot)
1398{
1399 struct qfq_aggregate *agg;
462dbc91
PV
1400 struct qfq_class *cl;
1401 unsigned int len;
1402
b67bfe0d 1403 hlist_for_each_entry(agg, slot, next) {
462dbc91
PV
1404 list_for_each_entry(cl, &agg->active, alist) {
1405
1406 if (!cl->qdisc->ops->drop)
1407 continue;
1408
1409 len = cl->qdisc->ops->drop(cl->qdisc);
1410 if (len > 0) {
1411 if (cl->qdisc->q.qlen == 0)
1412 qfq_deactivate_class(q, cl);
1413
1414 return len;
1415 }
1416 }
1417 }
1418 return 0;
1419}
1420
0545a303 1421static unsigned int qfq_drop(struct Qdisc *sch)
1422{
1423 struct qfq_sched *q = qdisc_priv(sch);
1424 struct qfq_group *grp;
1425 unsigned int i, j, len;
1426
1427 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1428 grp = &q->groups[i];
1429 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
462dbc91
PV
1430 len = qfq_drop_from_slot(q, &grp->slots[j]);
1431 if (len > 0) {
1432 sch->q.qlen--;
1433 return len;
0545a303 1434 }
1435 }
462dbc91 1436
0545a303 1437 }
1438
1439 return 0;
1440}
1441
1442static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1443{
1444 struct qfq_sched *q = qdisc_priv(sch);
1445 struct qfq_group *grp;
1446 int i, j, err;
462dbc91 1447 u32 max_cl_shift, maxbudg_shift, max_classes;
0545a303 1448
1449 err = qdisc_class_hash_init(&q->clhash);
1450 if (err < 0)
1451 return err;
1452
462dbc91
PV
1453 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1454 max_classes = QFQ_MAX_AGG_CLASSES;
1455 else
1456 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1457 /* max_cl_shift = floor(log_2(max_classes)) */
1458 max_cl_shift = __fls(max_classes);
1459 q->max_agg_classes = 1<<max_cl_shift;
1460
1461 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1462 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1463 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1464
0545a303 1465 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1466 grp = &q->groups[i];
1467 grp->index = i;
462dbc91 1468 grp->slot_shift = q->min_slot_shift + i;
0545a303 1469 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1470 INIT_HLIST_HEAD(&grp->slots[j]);
1471 }
1472
462dbc91
PV
1473 INIT_HLIST_HEAD(&q->nonfull_aggs);
1474
0545a303 1475 return 0;
1476}
1477
1478static void qfq_reset_qdisc(struct Qdisc *sch)
1479{
1480 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1481 struct qfq_class *cl;
462dbc91 1482 unsigned int i;
0545a303 1483
462dbc91 1484 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1485 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
462dbc91 1486 if (cl->qdisc->q.qlen > 0)
0545a303 1487 qfq_deactivate_class(q, cl);
0545a303 1488
0545a303 1489 qdisc_reset(cl->qdisc);
462dbc91 1490 }
0545a303 1491 }
1492 sch->q.qlen = 0;
1493}
1494
1495static void qfq_destroy_qdisc(struct Qdisc *sch)
1496{
1497 struct qfq_sched *q = qdisc_priv(sch);
1498 struct qfq_class *cl;
b67bfe0d 1499 struct hlist_node *next;
0545a303 1500 unsigned int i;
1501
1502 tcf_destroy_chain(&q->filter_list);
1503
1504 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1505 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
0545a303 1506 common.hnode) {
1507 qfq_destroy_class(sch, cl);
1508 }
1509 }
1510 qdisc_class_hash_destroy(&q->clhash);
1511}
1512
1513static const struct Qdisc_class_ops qfq_class_ops = {
1514 .change = qfq_change_class,
1515 .delete = qfq_delete_class,
1516 .get = qfq_get_class,
1517 .put = qfq_put_class,
1518 .tcf_chain = qfq_tcf_chain,
1519 .bind_tcf = qfq_bind_tcf,
1520 .unbind_tcf = qfq_unbind_tcf,
1521 .graft = qfq_graft_class,
1522 .leaf = qfq_class_leaf,
1523 .qlen_notify = qfq_qlen_notify,
1524 .dump = qfq_dump_class,
1525 .dump_stats = qfq_dump_class_stats,
1526 .walk = qfq_walk,
1527};
1528
1529static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1530 .cl_ops = &qfq_class_ops,
1531 .id = "qfq",
1532 .priv_size = sizeof(struct qfq_sched),
1533 .enqueue = qfq_enqueue,
1534 .dequeue = qfq_dequeue,
1535 .peek = qdisc_peek_dequeued,
1536 .drop = qfq_drop,
1537 .init = qfq_init_qdisc,
1538 .reset = qfq_reset_qdisc,
1539 .destroy = qfq_destroy_qdisc,
1540 .owner = THIS_MODULE,
1541};
1542
1543static int __init qfq_init(void)
1544{
1545 return register_qdisc(&qfq_qdisc_ops);
1546}
1547
1548static void __exit qfq_exit(void)
1549{
1550 unregister_qdisc(&qfq_qdisc_ops);
1551}
1552
1553module_init(qfq_init);
1554module_exit(qfq_exit);
1555MODULE_LICENSE("GPL");
This page took 0.386148 seconds and 5 git commands to generate.