btrace: async support
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
CommitLineData
252b5132 1/* Opcode table for the ARC.
4b95cf5c 2 Copyright (C) 1994-2014 Free Software Foundation, Inc.
252b5132 3 Contributed by Doug Evans (dje@cygnus.com).
bcee8eb8 4
9b201bb5
NC
5 This file is part of libopcodes.
6
7 This library is free software; you can redistribute it and/or modify
252b5132 8 it under the terms of the GNU General Public License as published by
9b201bb5 9 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
10 any later version.
11
9b201bb5
NC
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
252b5132
RH
16
17 You should have received a copy of the GNU General Public License
0d2bcfaf 18 along with this program; if not, write to the Free Software Foundation,
f4321104 19 Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132 20
5bd67f35 21#include "sysdep.h"
252b5132 22#include <stdio.h>
0d2bcfaf 23#include "ansidecl.h"
d943fe33 24#include "bfd.h"
252b5132 25#include "opcode/arc.h"
47b0e7ad 26#include "opintl.h"
252b5132 27
47b0e7ad
NC
28enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
29
30#define OPERANDS 3
31
32enum operand ls_operand[OPERANDS];
33
34struct arc_opcode *arc_ext_opcodes;
35struct arc_ext_operand_value *arc_ext_operands;
36
37#define LS_VALUE 0
38#define LS_DEST 0
39#define LS_BASE 1
40#define LS_OFFSET 2
41
42/* Given a format letter, yields the index into `arc_operands'.
43 eg: arc_operand_map['a'] = REGA. */
44unsigned char arc_operand_map[256];
45
46/* Nonzero if we've seen an 'f' suffix (in certain insns). */
47static int flag_p;
48
49/* Nonzero if we've finished processing the 'f' suffix. */
50static int flagshimm_handled_p;
51
52/* Nonzero if we've seen a 'a' suffix (address writeback). */
53static int addrwb_p;
54
55/* Nonzero if we've seen a 'q' suffix (condition code). */
56static int cond_p;
57
58/* Nonzero if we've inserted a nullify condition. */
59static int nullify_p;
60
61/* The value of the a nullify condition we inserted. */
62static int nullify;
63
64/* Nonzero if we've inserted jumpflags. */
65static int jumpflags_p;
66
67/* Nonzero if we've inserted a shimm. */
68static int shimm_p;
69
70/* The value of the shimm we inserted (each insn only gets one but it can
71 appear multiple times). */
72static int shimm;
73
74/* Nonzero if we've inserted a limm (during assembly) or seen a limm
75 (during disassembly). */
76static int limm_p;
77
78/* The value of the limm we inserted. Each insn only gets one but it can
79 appear multiple times. */
80static long limm;
81\f
252b5132 82#define INSERT_FN(fn) \
47b0e7ad
NC
83static arc_insn fn (arc_insn, const struct arc_operand *, \
84 int, const struct arc_operand_value *, long, \
85 const char **)
86
252b5132 87#define EXTRACT_FN(fn) \
47b0e7ad
NC
88static long fn (arc_insn *, const struct arc_operand *, \
89 int, const struct arc_operand_value **, int *)
252b5132
RH
90
91INSERT_FN (insert_reg);
92INSERT_FN (insert_shimmfinish);
93INSERT_FN (insert_limmfinish);
0d2bcfaf
NC
94INSERT_FN (insert_offset);
95INSERT_FN (insert_base);
96INSERT_FN (insert_st_syntax);
97INSERT_FN (insert_ld_syntax);
98INSERT_FN (insert_addr_wb);
252b5132 99INSERT_FN (insert_flag);
0d2bcfaf 100INSERT_FN (insert_nullify);
252b5132
RH
101INSERT_FN (insert_flagfinish);
102INSERT_FN (insert_cond);
103INSERT_FN (insert_forcelimm);
104INSERT_FN (insert_reladdr);
105INSERT_FN (insert_absaddr);
0d2bcfaf 106INSERT_FN (insert_jumpflags);
252b5132
RH
107INSERT_FN (insert_unopmacro);
108
109EXTRACT_FN (extract_reg);
0d2bcfaf
NC
110EXTRACT_FN (extract_ld_offset);
111EXTRACT_FN (extract_ld_syntax);
112EXTRACT_FN (extract_st_offset);
113EXTRACT_FN (extract_st_syntax);
252b5132
RH
114EXTRACT_FN (extract_flag);
115EXTRACT_FN (extract_cond);
116EXTRACT_FN (extract_reladdr);
0d2bcfaf 117EXTRACT_FN (extract_jumpflags);
252b5132
RH
118EXTRACT_FN (extract_unopmacro);
119
120/* Various types of ARC operands, including insn suffixes. */
121
122/* Insn format values:
123
124 'a' REGA register A field
125 'b' REGB register B field
126 'c' REGC register C field
127 'S' SHIMMFINISH finish inserting a shimm value
128 'L' LIMMFINISH finish inserting a limm value
0d2bcfaf
NC
129 'o' OFFSET offset in st insns
130 'O' OFFSET offset in ld insns
131 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
132 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
133 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
134 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
135 's' BASE base in st insn
252b5132
RH
136 'f' FLAG F flag
137 'F' FLAGFINISH finish inserting the F flag
138 'G' FLAGINSN insert F flag in "flag" insn
139 'n' DELAY N field (nullify field)
140 'q' COND condition code field
141 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
142 'B' BRANCH branch address (22 bit pc relative)
143 'J' JUMP jump address (26 bit absolute)
0d2bcfaf 144 'j' JUMPFLAGS optional high order bits of 'J'
252b5132
RH
145 'z' SIZE1 size field in ld a,[b,c]
146 'Z' SIZE10 size field in ld a,[b,shimm]
147 'y' SIZE22 size field in st c,[b,shimm]
148 'x' SIGN0 sign extend field ld a,[b,c]
149 'X' SIGN9 sign extend field ld a,[b,shimm]
150 'w' ADDRESS3 write-back field in ld a,[b,c]
151 'W' ADDRESS12 write-back field in ld a,[b,shimm]
152 'v' ADDRESS24 write-back field in st c,[b,shimm]
153 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
154 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
155 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
156 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
157
158 The following modifiers may appear between the % and char (eg: %.f):
159
160 '.' MODDOT '.' prefix must be present
161 'r' REG generic register value, for register table
162 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
163
164 Fields are:
165
0d2bcfaf 166 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
252b5132
RH
167
168const struct arc_operand arc_operands[] =
169{
47b0e7ad 170/* Place holder (??? not sure if needed). */
252b5132 171#define UNUSED 0
0d2bcfaf 172 { 0, 0, 0, 0, 0, 0 },
252b5132 173
47b0e7ad 174/* Register A or shimm/limm indicator. */
252b5132 175#define REGA (UNUSED + 1)
0d2bcfaf 176 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 177
47b0e7ad 178/* Register B or shimm/limm indicator. */
252b5132 179#define REGB (REGA + 1)
0d2bcfaf 180 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 181
47b0e7ad 182/* Register C or shimm/limm indicator. */
252b5132 183#define REGC (REGB + 1)
0d2bcfaf 184 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 185
47b0e7ad 186/* Fake operand used to insert shimm value into most instructions. */
252b5132
RH
187#define SHIMMFINISH (REGC + 1)
188 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
189
47b0e7ad 190/* Fake operand used to insert limm value into most instructions. */
252b5132
RH
191#define LIMMFINISH (SHIMMFINISH + 1)
192 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
193
47b0e7ad 194/* Shimm operand when there is no reg indicator (st). */
0d2bcfaf
NC
195#define ST_OFFSET (LIMMFINISH + 1)
196 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
197
47b0e7ad 198/* Shimm operand when there is no reg indicator (ld). */
0d2bcfaf
NC
199#define LD_OFFSET (ST_OFFSET + 1)
200 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
201
47b0e7ad 202/* Operand for base. */
0d2bcfaf
NC
203#define BASE (LD_OFFSET + 1)
204 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
252b5132 205
0d2bcfaf
NC
206/* 0 enforce syntax for st insns. */
207#define SYNTAX_ST_NE (BASE + 1)
208 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
252b5132 209
0d2bcfaf
NC
210/* 1 enforce syntax for ld insns. */
211#define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
212 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
213
214/* 0 enforce syntax for st insns. */
215#define SYNTAX_ST (SYNTAX_LD_NE + 1)
216 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
217
218/* 0 enforce syntax for ld insns. */
219#define SYNTAX_LD (SYNTAX_ST + 1)
220 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
221
47b0e7ad 222/* Flag update bit (insertion is defered until we know how). */
0d2bcfaf 223#define FLAG (SYNTAX_LD + 1)
252b5132
RH
224 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
225
47b0e7ad 226/* Fake utility operand to finish 'f' suffix handling. */
252b5132
RH
227#define FLAGFINISH (FLAG + 1)
228 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
229
47b0e7ad 230/* Fake utility operand to set the 'f' flag for the "flag" insn. */
252b5132
RH
231#define FLAGINSN (FLAGFINISH + 1)
232 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
233
47b0e7ad 234/* Branch delay types. */
252b5132 235#define DELAY (FLAGINSN + 1)
0d2bcfaf 236 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
252b5132 237
47b0e7ad 238/* Conditions. */
252b5132
RH
239#define COND (DELAY + 1)
240 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
241
47b0e7ad 242/* Set `cond_p' to 1 to ensure a constant is treated as a limm. */
252b5132 243#define FORCELIMM (COND + 1)
0d2bcfaf 244 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
252b5132 245
47b0e7ad 246/* Branch address; b, bl, and lp insns. */
252b5132 247#define BRANCH (FORCELIMM + 1)
0d2bcfaf 248 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
252b5132 249
47b0e7ad 250/* Jump address; j insn (this is basically the same as 'L' except that the
0d2bcfaf 251 value is right shifted by 2). */
252b5132 252#define JUMP (BRANCH + 1)
0d2bcfaf
NC
253 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
254
47b0e7ad 255/* Jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
0d2bcfaf
NC
256#define JUMPFLAGS (JUMP + 1)
257 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
252b5132 258
47b0e7ad 259/* Size field, stored in bit 1,2. */
0d2bcfaf
NC
260#define SIZE1 (JUMPFLAGS + 1)
261 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 262
47b0e7ad 263/* Size field, stored in bit 10,11. */
252b5132 264#define SIZE10 (SIZE1 + 1)
0d2bcfaf 265 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 266
47b0e7ad 267/* Size field, stored in bit 22,23. */
252b5132 268#define SIZE22 (SIZE10 + 1)
0d2bcfaf 269 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 270
47b0e7ad 271/* Sign extend field, stored in bit 0. */
252b5132 272#define SIGN0 (SIZE22 + 1)
0d2bcfaf 273 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 274
47b0e7ad 275/* Sign extend field, stored in bit 9. */
252b5132 276#define SIGN9 (SIGN0 + 1)
0d2bcfaf 277 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 278
47b0e7ad 279/* Address write back, stored in bit 3. */
252b5132 280#define ADDRESS3 (SIGN9 + 1)
0d2bcfaf 281 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 282
47b0e7ad 283/* Address write back, stored in bit 12. */
252b5132 284#define ADDRESS12 (ADDRESS3 + 1)
0d2bcfaf 285 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 286
47b0e7ad 287/* Address write back, stored in bit 24. */
252b5132 288#define ADDRESS24 (ADDRESS12 + 1)
0d2bcfaf 289 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 290
47b0e7ad 291/* Cache bypass, stored in bit 5. */
252b5132 292#define CACHEBYPASS5 (ADDRESS24 + 1)
0d2bcfaf 293 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 294
47b0e7ad 295/* Cache bypass, stored in bit 14. */
252b5132 296#define CACHEBYPASS14 (CACHEBYPASS5 + 1)
0d2bcfaf 297 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 298
47b0e7ad 299/* Cache bypass, stored in bit 26. */
252b5132 300#define CACHEBYPASS26 (CACHEBYPASS14 + 1)
0d2bcfaf 301 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 302
47b0e7ad 303/* Unop macro, used to copy REGB to REGC. */
252b5132
RH
304#define UNOPMACRO (CACHEBYPASS26 + 1)
305 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
306
307/* '.' modifier ('.' required). */
308#define MODDOT (UNOPMACRO + 1)
0d2bcfaf 309 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
252b5132
RH
310
311/* Dummy 'r' modifier for the register table.
312 It's called a "dummy" because there's no point in inserting an 'r' into all
313 the %a/%b/%c occurrences in the insn table. */
314#define REG (MODDOT + 1)
0d2bcfaf 315 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
252b5132
RH
316
317/* Known auxiliary register modifier (stored in shimm field). */
318#define AUXREG (REG + 1)
0d2bcfaf 319 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
252b5132 320
47b0e7ad 321/* End of list place holder. */
0d2bcfaf 322 { 0, 0, 0, 0, 0, 0 }
252b5132
RH
323};
324\f
47b0e7ad
NC
325/* Insert a value into a register field.
326 If REG is NULL, then this is actually a constant.
252b5132 327
47b0e7ad 328 We must also handle auxiliary registers for lr/sr insns. */
252b5132 329
47b0e7ad
NC
330static arc_insn
331insert_reg (arc_insn insn,
332 const struct arc_operand *operand,
333 int mods,
334 const struct arc_operand_value *reg,
335 long value,
336 const char **errmsg)
0d2bcfaf 337{
47b0e7ad
NC
338 static char buf[100];
339 enum operand op_type = OP_NONE;
252b5132 340
47b0e7ad
NC
341 if (reg == NULL)
342 {
343 /* We have a constant that also requires a value stored in a register
344 field. Handle these by updating the register field and saving the
345 value for later handling by either %S (shimm) or %L (limm). */
0d2bcfaf 346
47b0e7ad
NC
347 /* Try to use a shimm value before a limm one. */
348 if (ARC_SHIMM_CONST_P (value)
349 /* If we've seen a conditional suffix we have to use a limm. */
350 && !cond_p
351 /* If we already have a shimm value that is different than ours
352 we have to use a limm. */
353 && (!shimm_p || shimm == value))
354 {
355 int marker;
252b5132 356
47b0e7ad
NC
357 op_type = OP_SHIMM;
358 /* Forget about shimm as dest mlm. */
0d2bcfaf 359
47b0e7ad
NC
360 if ('a' != operand->fmt)
361 {
362 shimm_p = 1;
363 shimm = value;
364 flagshimm_handled_p = 1;
365 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
366 }
367 else
368 {
369 /* Don't request flag setting on shimm as dest. */
370 marker = ARC_REG_SHIMM;
371 }
372 insn |= marker << operand->shift;
373 /* insn |= value & 511; - done later. */
374 }
375 /* We have to use a limm. If we've already seen one they must match. */
376 else if (!limm_p || limm == value)
377 {
378 op_type = OP_LIMM;
379 limm_p = 1;
380 limm = value;
381 insn |= ARC_REG_LIMM << operand->shift;
382 /* The constant is stored later. */
383 }
384 else
385 *errmsg = _("unable to fit different valued constants into instruction");
386 }
387 else
388 {
389 /* We have to handle both normal and auxiliary registers. */
0d2bcfaf 390
47b0e7ad
NC
391 if (reg->type == AUXREG)
392 {
393 if (!(mods & ARC_MOD_AUXREG))
394 *errmsg = _("auxiliary register not allowed here");
395 else
396 {
397 if ((insn & I(-1)) == I(2)) /* Check for use validity. */
398 {
399 if (reg->flags & ARC_REGISTER_READONLY)
400 *errmsg = _("attempt to set readonly register");
401 }
402 else
403 {
404 if (reg->flags & ARC_REGISTER_WRITEONLY)
405 *errmsg = _("attempt to read writeonly register");
406 }
407 insn |= ARC_REG_SHIMM << operand->shift;
408 insn |= reg->value << arc_operands[reg->type].shift;
409 }
410 }
411 else
412 {
413 /* check for use validity. */
414 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
415 {
416 if (reg->flags & ARC_REGISTER_READONLY)
417 *errmsg = _("attempt to set readonly register");
418 }
419 if ('a' != operand->fmt)
420 {
421 if (reg->flags & ARC_REGISTER_WRITEONLY)
422 *errmsg = _("attempt to read writeonly register");
423 }
424 /* We should never get an invalid register number here. */
425 if ((unsigned int) reg->value > 60)
426 {
427 sprintf (buf, _("invalid register number `%d'"), reg->value);
428 *errmsg = buf;
429 }
430 insn |= reg->value << operand->shift;
431 op_type = OP_REG;
432 }
433 }
0d2bcfaf 434
47b0e7ad
NC
435 switch (operand->fmt)
436 {
437 case 'a':
438 ls_operand[LS_DEST] = op_type;
439 break;
440 case 's':
441 ls_operand[LS_BASE] = op_type;
442 break;
443 case 'c':
444 if ((insn & I(-1)) == I(2))
445 ls_operand[LS_VALUE] = op_type;
446 else
447 ls_operand[LS_OFFSET] = op_type;
448 break;
449 case 'o': case 'O':
450 ls_operand[LS_OFFSET] = op_type;
451 break;
452 }
0d2bcfaf 453
47b0e7ad
NC
454 return insn;
455}
252b5132 456
47b0e7ad 457/* Called when we see an 'f' flag. */
252b5132 458
47b0e7ad
NC
459static arc_insn
460insert_flag (arc_insn insn,
461 const struct arc_operand *operand ATTRIBUTE_UNUSED,
462 int mods ATTRIBUTE_UNUSED,
463 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
464 long value ATTRIBUTE_UNUSED,
465 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 466{
47b0e7ad
NC
467 /* We can't store anything in the insn until we've parsed the registers.
468 Just record the fact that we've got this flag. `insert_reg' will use it
469 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
470 flag_p = 1;
471 return insn;
472}
252b5132 473
47b0e7ad 474/* Called when we see an nullify condition. */
252b5132 475
47b0e7ad
NC
476static arc_insn
477insert_nullify (arc_insn insn,
478 const struct arc_operand *operand,
479 int mods ATTRIBUTE_UNUSED,
480 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
481 long value,
482 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 483{
47b0e7ad
NC
484 nullify_p = 1;
485 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
486 nullify = value;
487 return insn;
252b5132
RH
488}
489
47b0e7ad
NC
490/* Called after completely building an insn to ensure the 'f' flag gets set
491 properly. This is needed because we don't know how to set this flag until
492 we've parsed the registers. */
252b5132 493
47b0e7ad
NC
494static arc_insn
495insert_flagfinish (arc_insn insn,
496 const struct arc_operand *operand,
497 int mods ATTRIBUTE_UNUSED,
498 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
499 long value ATTRIBUTE_UNUSED,
500 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 501{
47b0e7ad 502 if (flag_p && !flagshimm_handled_p)
252b5132 503 {
47b0e7ad
NC
504 if (shimm_p)
505 abort ();
506 flagshimm_handled_p = 1;
507 insn |= (1 << operand->shift);
252b5132 508 }
47b0e7ad 509 return insn;
252b5132
RH
510}
511
47b0e7ad 512/* Called when we see a conditional flag (eg: .eq). */
252b5132 513
47b0e7ad
NC
514static arc_insn
515insert_cond (arc_insn insn,
516 const struct arc_operand *operand,
517 int mods ATTRIBUTE_UNUSED,
518 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
519 long value,
520 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 521{
47b0e7ad
NC
522 cond_p = 1;
523 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
524 return insn;
252b5132
RH
525}
526
47b0e7ad
NC
527/* Used in the "j" instruction to prevent constants from being interpreted as
528 shimm values (which the jump insn doesn't accept). This can also be used
529 to force the use of limm values in other situations (eg: ld r0,[foo] uses
530 this).
531 ??? The mechanism is sound. Access to it is a bit klunky right now. */
252b5132 532
47b0e7ad
NC
533static arc_insn
534insert_forcelimm (arc_insn insn,
535 const struct arc_operand *operand ATTRIBUTE_UNUSED,
536 int mods ATTRIBUTE_UNUSED,
537 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
538 long value ATTRIBUTE_UNUSED,
539 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 540{
47b0e7ad
NC
541 cond_p = 1;
542 return insn;
252b5132
RH
543}
544
47b0e7ad
NC
545static arc_insn
546insert_addr_wb (arc_insn insn,
547 const struct arc_operand *operand,
548 int mods ATTRIBUTE_UNUSED,
549 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
550 long value ATTRIBUTE_UNUSED,
551 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 552{
47b0e7ad
NC
553 addrwb_p = 1 << operand->shift;
554 return insn;
0d2bcfaf
NC
555}
556
557static arc_insn
47b0e7ad
NC
558insert_base (arc_insn insn,
559 const struct arc_operand *operand,
560 int mods,
561 const struct arc_operand_value *reg,
562 long value,
563 const char **errmsg)
0d2bcfaf
NC
564{
565 if (reg != NULL)
566 {
567 arc_insn myinsn;
568 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
569 insn |= B(myinsn);
bcee8eb8 570 ls_operand[LS_BASE] = OP_REG;
0d2bcfaf
NC
571 }
572 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
573 {
574 if (shimm_p && value != shimm)
bcee8eb8 575 {
47b0e7ad 576 /* Convert the previous shimm operand to a limm. */
bcee8eb8
AM
577 limm_p = 1;
578 limm = shimm;
47b0e7ad 579 insn &= ~C(-1); /* We know where the value is in insn. */
bcee8eb8
AM
580 insn |= C(ARC_REG_LIMM);
581 ls_operand[LS_VALUE] = OP_LIMM;
582 }
0d2bcfaf
NC
583 insn |= ARC_REG_SHIMM << operand->shift;
584 shimm_p = 1;
585 shimm = value;
586 ls_operand[LS_BASE] = OP_SHIMM;
d81acc42 587 ls_operand[LS_OFFSET] = OP_SHIMM;
0d2bcfaf
NC
588 }
589 else
590 {
591 if (limm_p && value != limm)
bcee8eb8 592 {
47b0e7ad 593 *errmsg = _("too many long constants");
bcee8eb8
AM
594 return insn;
595 }
0d2bcfaf
NC
596 limm_p = 1;
597 limm = value;
598 insn |= B(ARC_REG_LIMM);
599 ls_operand[LS_BASE] = OP_LIMM;
600 }
601
602 return insn;
603}
604
605/* Used in ld/st insns to handle the offset field. We don't try to
606 match operand syntax here. we catch bad combinations later. */
252b5132
RH
607
608static arc_insn
47b0e7ad
NC
609insert_offset (arc_insn insn,
610 const struct arc_operand *operand,
611 int mods,
612 const struct arc_operand_value *reg,
613 long value,
614 const char **errmsg)
252b5132
RH
615{
616 long minval, maxval;
252b5132
RH
617
618 if (reg != NULL)
619 {
0d2bcfaf
NC
620 arc_insn myinsn;
621 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
622 ls_operand[LS_OFFSET] = OP_REG;
47b0e7ad
NC
623 if (operand->flags & ARC_OPERAND_LOAD) /* Not if store, catch it later. */
624 if ((insn & I(-1)) != I(1)) /* Not if opcode == 1, catch it later. */
625 insn |= C (myinsn);
252b5132
RH
626 }
627 else
628 {
629 /* This is *way* more general than necessary, but maybe some day it'll
630 be useful. */
631 if (operand->flags & ARC_OPERAND_SIGNED)
632 {
633 minval = -(1 << (operand->bits - 1));
634 maxval = (1 << (operand->bits - 1)) - 1;
635 }
636 else
637 {
638 minval = 0;
639 maxval = (1 << operand->bits) - 1;
640 }
0d2bcfaf 641 if ((cond_p && !limm_p) || (value < minval || value > maxval))
252b5132 642 {
bcee8eb8 643 if (limm_p && value != limm)
47b0e7ad
NC
644 *errmsg = _("too many long constants");
645
bcee8eb8
AM
646 else
647 {
648 limm_p = 1;
649 limm = value;
650 if (operand->flags & ARC_OPERAND_STORE)
651 insn |= B(ARC_REG_LIMM);
652 if (operand->flags & ARC_OPERAND_LOAD)
653 insn |= C(ARC_REG_LIMM);
654 ls_operand[LS_OFFSET] = OP_LIMM;
655 }
252b5132
RH
656 }
657 else
bcee8eb8 658 {
0d2bcfaf
NC
659 if ((value < minval || value > maxval))
660 *errmsg = "need too many limms";
bcee8eb8 661 else if (shimm_p && value != shimm)
0d2bcfaf 662 {
47b0e7ad
NC
663 /* Check for bad operand combinations
664 before we lose info about them. */
0d2bcfaf
NC
665 if ((insn & I(-1)) == I(1))
666 {
9f39ef2b 667 *errmsg = _("too many shimms in load");
0d2bcfaf
NC
668 goto out;
669 }
670 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
671 {
47b0e7ad 672 *errmsg = _("too many long constants");
0d2bcfaf
NC
673 goto out;
674 }
47b0e7ad 675 /* Convert what we thought was a shimm to a limm. */
0d2bcfaf
NC
676 limm_p = 1;
677 limm = shimm;
47b0e7ad
NC
678 if (ls_operand[LS_VALUE] == OP_SHIMM
679 && operand->flags & ARC_OPERAND_STORE)
0d2bcfaf
NC
680 {
681 insn &= ~C(-1);
682 insn |= C(ARC_REG_LIMM);
683 ls_operand[LS_VALUE] = OP_LIMM;
684 }
47b0e7ad
NC
685 if (ls_operand[LS_BASE] == OP_SHIMM
686 && operand->flags & ARC_OPERAND_STORE)
0d2bcfaf
NC
687 {
688 insn &= ~B(-1);
689 insn |= B(ARC_REG_LIMM);
690 ls_operand[LS_BASE] = OP_LIMM;
691 }
692 }
693 shimm = value;
694 shimm_p = 1;
695 ls_operand[LS_OFFSET] = OP_SHIMM;
bcee8eb8 696 }
252b5132 697 }
0d2bcfaf 698 out:
252b5132
RH
699 return insn;
700}
701
0d2bcfaf
NC
702/* Used in st insns to do final disasemble syntax check. */
703
704static long
47b0e7ad
NC
705extract_st_syntax (arc_insn *insn,
706 const struct arc_operand *operand ATTRIBUTE_UNUSED,
707 int mods ATTRIBUTE_UNUSED,
708 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
709 int *invalid)
0d2bcfaf
NC
710{
711#define ST_SYNTAX(V,B,O) \
712((ls_operand[LS_VALUE] == (V) && \
713 ls_operand[LS_BASE] == (B) && \
714 ls_operand[LS_OFFSET] == (O)))
bcee8eb8
AM
715
716 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
0d2bcfaf
NC
717 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
718 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
719 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
720 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
721 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
722 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
bcee8eb8 723 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
0d2bcfaf
NC
724 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
725 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
726 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
727 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
728 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
729 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
730 *invalid = 1;
731 return 0;
732}
733
734int
47b0e7ad 735arc_limm_fixup_adjust (arc_insn insn)
0d2bcfaf
NC
736{
737 int retval = 0;
738
47b0e7ad 739 /* Check for st shimm,[limm]. */
0d2bcfaf 740 if ((insn & (I(-1) | C(-1) | B(-1))) ==
bcee8eb8 741 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
0d2bcfaf
NC
742 {
743 retval = insn & 0x1ff;
47b0e7ad 744 if (retval & 0x100) /* Sign extend 9 bit offset. */
0d2bcfaf
NC
745 retval |= ~0x1ff;
746 }
47b0e7ad 747 return -retval; /* Negate offset for return. */
0d2bcfaf
NC
748}
749
750/* Used in st insns to do final syntax check. */
751
752static arc_insn
47b0e7ad
NC
753insert_st_syntax (arc_insn insn,
754 const struct arc_operand *operand ATTRIBUTE_UNUSED,
755 int mods ATTRIBUTE_UNUSED,
756 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
757 long value ATTRIBUTE_UNUSED,
758 const char **errmsg)
0d2bcfaf 759{
47b0e7ad 760 if (ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
0d2bcfaf 761 {
47b0e7ad 762 /* Change an illegal insn into a legal one, it's easier to
0d2bcfaf
NC
763 do it here than to try to handle it during operand scan. */
764 limm_p = 1;
765 limm = shimm;
766 shimm_p = 0;
767 shimm = 0;
768 insn = insn & ~(C(-1) | 511);
769 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
770 ls_operand[LS_VALUE] = OP_LIMM;
771 }
772
47b0e7ad
NC
773 if (ST_SYNTAX (OP_REG, OP_SHIMM, OP_NONE)
774 || ST_SYNTAX (OP_LIMM, OP_SHIMM, OP_NONE))
0d2bcfaf 775 {
47b0e7ad
NC
776 /* Try to salvage this syntax. */
777 if (shimm & 0x1) /* Odd shimms won't work. */
bcee8eb8 778 {
47b0e7ad
NC
779 if (limm_p) /* Do we have a limm already? */
780 *errmsg = _("impossible store");
781
bcee8eb8
AM
782 limm_p = 1;
783 limm = shimm;
784 shimm = 0;
785 shimm_p = 0;
786 insn = insn & ~(B(-1) | 511);
787 insn |= B(ARC_REG_LIMM);
788 ls_operand[LS_BASE] = OP_LIMM;
789 }
790 else
791 {
792 shimm >>= 1;
793 insn = insn & ~511;
794 insn |= shimm;
795 ls_operand[LS_OFFSET] = OP_SHIMM;
796 }
0d2bcfaf
NC
797 }
798 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
47b0e7ad
NC
799 limm += arc_limm_fixup_adjust(insn);
800
801 if (! (ST_SYNTAX (OP_REG,OP_REG,OP_NONE)
802 || ST_SYNTAX (OP_REG,OP_LIMM,OP_NONE)
803 || ST_SYNTAX (OP_REG,OP_REG,OP_SHIMM)
804 || ST_SYNTAX (OP_REG,OP_SHIMM,OP_SHIMM)
805 || (ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
806 || ST_SYNTAX (OP_SHIMM,OP_LIMM,OP_NONE)
807 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE)
808 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_SHIMM)
809 || ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_SHIMM)
810 || ST_SYNTAX (OP_LIMM,OP_SHIMM,OP_SHIMM)
811 || ST_SYNTAX (OP_LIMM,OP_REG,OP_NONE)
812 || ST_SYNTAX (OP_LIMM,OP_REG,OP_SHIMM)))
813 *errmsg = _("st operand error");
0d2bcfaf
NC
814 if (addrwb_p)
815 {
816 if (ls_operand[LS_BASE] != OP_REG)
47b0e7ad 817 *errmsg = _("address writeback not allowed");
0d2bcfaf
NC
818 insn |= addrwb_p;
819 }
820 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
47b0e7ad 821 *errmsg = _("store value must be zero");
0d2bcfaf
NC
822 return insn;
823}
824
825/* Used in ld insns to do final syntax check. */
252b5132
RH
826
827static arc_insn
47b0e7ad
NC
828insert_ld_syntax (arc_insn insn,
829 const struct arc_operand *operand ATTRIBUTE_UNUSED,
830 int mods ATTRIBUTE_UNUSED,
831 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
832 long value ATTRIBUTE_UNUSED,
833 const char **errmsg)
252b5132 834{
47b0e7ad
NC
835#define LD_SYNTAX(D, B, O) \
836 ( (ls_operand[LS_DEST] == (D) \
837 && ls_operand[LS_BASE] == (B) \
838 && ls_operand[LS_OFFSET] == (O)))
0d2bcfaf 839
47b0e7ad 840 int test = insn & I (-1);
0d2bcfaf 841
47b0e7ad 842 if (!(test == I (1)))
bcee8eb8
AM
843 {
844 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
845 || ls_operand[LS_OFFSET] == OP_SHIMM))
47b0e7ad 846 *errmsg = _("invalid load/shimm insn");
bcee8eb8 847 }
0d2bcfaf
NC
848 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
849 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
850 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
851 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
852 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
bcee8eb8 853 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
0d2bcfaf 854 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
47b0e7ad 855 *errmsg = _("ld operand error");
0d2bcfaf
NC
856 if (addrwb_p)
857 {
858 if (ls_operand[LS_BASE] != OP_REG)
47b0e7ad 859 *errmsg = _("address writeback not allowed");
0d2bcfaf
NC
860 insn |= addrwb_p;
861 }
252b5132
RH
862 return insn;
863}
864
0d2bcfaf
NC
865/* Used in ld insns to do final syntax check. */
866
867static long
47b0e7ad
NC
868extract_ld_syntax (arc_insn *insn,
869 const struct arc_operand *operand ATTRIBUTE_UNUSED,
870 int mods ATTRIBUTE_UNUSED,
871 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
872 int *invalid)
0d2bcfaf
NC
873{
874 int test = insn[0] & I(-1);
875
876 if (!(test == I(1)))
877 {
bcee8eb8
AM
878 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
879 || ls_operand[LS_OFFSET] == OP_SHIMM))
0d2bcfaf
NC
880 *invalid = 1;
881 }
47b0e7ad
NC
882 if (!( (LD_SYNTAX (OP_REG, OP_REG, OP_NONE) && (test == I(1)))
883 || LD_SYNTAX (OP_REG, OP_REG, OP_REG)
884 || LD_SYNTAX (OP_REG, OP_REG, OP_SHIMM)
885 || (LD_SYNTAX (OP_REG, OP_REG, OP_LIMM) && !(test == I(1)))
886 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_REG) && !(test == I(1)))
887 || (LD_SYNTAX (OP_REG, OP_SHIMM, OP_NONE) && (shimm == 0))
888 || LD_SYNTAX (OP_REG, OP_SHIMM, OP_SHIMM)
889 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_NONE) && (test == I(1)))))
0d2bcfaf
NC
890 *invalid = 1;
891 return 0;
892}
893
252b5132
RH
894/* Called at the end of processing normal insns (eg: add) to insert a shimm
895 value (if present) into the insn. */
896
897static arc_insn
47b0e7ad
NC
898insert_shimmfinish (arc_insn insn,
899 const struct arc_operand *operand,
900 int mods ATTRIBUTE_UNUSED,
901 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
902 long value ATTRIBUTE_UNUSED,
903 const char **errmsg ATTRIBUTE_UNUSED)
252b5132
RH
904{
905 if (shimm_p)
906 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
907 return insn;
908}
909
910/* Called at the end of processing normal insns (eg: add) to insert a limm
911 value (if present) into the insn.
912
913 Note that this function is only intended to handle instructions (with 4 byte
914 immediate operands). It is not intended to handle data. */
915
916/* ??? Actually, there's nothing for us to do as we can't call frag_more, the
917 caller must do that. The extract fns take a pointer to two words. The
918 insert fns could be converted and then we could do something useful, but
919 then the reloc handlers would have to know to work on the second word of
920 a 2 word quantity. That's too much so we don't handle them. */
921
922static arc_insn
47b0e7ad
NC
923insert_limmfinish (arc_insn insn,
924 const struct arc_operand *operand ATTRIBUTE_UNUSED,
925 int mods ATTRIBUTE_UNUSED,
926 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
927 long value ATTRIBUTE_UNUSED,
928 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 929{
0d2bcfaf
NC
930 return insn;
931}
932
933static arc_insn
47b0e7ad
NC
934insert_jumpflags (arc_insn insn,
935 const struct arc_operand *operand,
936 int mods ATTRIBUTE_UNUSED,
937 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
938 long value,
939 const char **errmsg)
0d2bcfaf
NC
940{
941 if (!flag_p)
47b0e7ad
NC
942 *errmsg = _("jump flags, but no .f seen");
943
944 else if (!limm_p)
945 *errmsg = _("jump flags, but no limm addr");
946
947 else if (limm & 0xfc000000)
948 *errmsg = _("flag bits of jump address limm lost");
949
950 else if (limm & 0x03000000)
951 *errmsg = _("attempt to set HR bits");
952
953 else if ((value & ((1 << operand->bits) - 1)) != value)
954 *errmsg = _("bad jump flags value");
955
956 jumpflags_p = 1;
bcee8eb8
AM
957 limm = ((limm & ((1 << operand->shift) - 1))
958 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
252b5132
RH
959 return insn;
960}
961
962/* Called at the end of unary operand macros to copy the B field to C. */
963
964static arc_insn
47b0e7ad
NC
965insert_unopmacro (arc_insn insn,
966 const struct arc_operand *operand,
967 int mods ATTRIBUTE_UNUSED,
968 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
969 long value ATTRIBUTE_UNUSED,
970 const char **errmsg ATTRIBUTE_UNUSED)
252b5132
RH
971{
972 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
973 return insn;
974}
975
976/* Insert a relative address for a branch insn (b, bl, or lp). */
977
978static arc_insn
47b0e7ad
NC
979insert_reladdr (arc_insn insn,
980 const struct arc_operand *operand,
981 int mods ATTRIBUTE_UNUSED,
982 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
983 long value,
984 const char **errmsg)
252b5132
RH
985{
986 if (value & 3)
47b0e7ad 987 *errmsg = _("branch address not on 4 byte boundary");
252b5132
RH
988 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
989 return insn;
990}
991
992/* Insert a limm value as a 26 bit address right shifted 2 into the insn.
993
994 Note that this function is only intended to handle instructions (with 4 byte
995 immediate operands). It is not intended to handle data. */
996
0d2bcfaf 997/* ??? Actually, there's little for us to do as we can't call frag_more, the
252b5132
RH
998 caller must do that. The extract fns take a pointer to two words. The
999 insert fns could be converted and then we could do something useful, but
1000 then the reloc handlers would have to know to work on the second word of
0d2bcfaf
NC
1001 a 2 word quantity. That's too much so we don't handle them.
1002
1003 We do check for correct usage of the nullify suffix, or we
1004 set the default correctly, though. */
252b5132
RH
1005
1006static arc_insn
47b0e7ad
NC
1007insert_absaddr (arc_insn insn,
1008 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1009 int mods ATTRIBUTE_UNUSED,
1010 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
1011 long value ATTRIBUTE_UNUSED,
1012 const char **errmsg)
252b5132
RH
1013{
1014 if (limm_p)
0d2bcfaf 1015 {
47b0e7ad
NC
1016 /* If it is a jump and link, .jd must be specified. */
1017 if (insn & R (-1, 9, 1))
0d2bcfaf
NC
1018 {
1019 if (!nullify_p)
47b0e7ad
NC
1020 insn |= 0x02 << 5; /* Default nullify to .jd. */
1021
1022 else if (nullify != 0x02)
1023 *errmsg = _("must specify .jd or no nullify suffix");
0d2bcfaf
NC
1024 }
1025 }
252b5132
RH
1026 return insn;
1027}
1028\f
1029/* Extraction functions.
1030
1031 The suffix extraction functions' return value is redundant since it can be
1032 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1033 a suffix table entry for the "false" case, so values of zero must be
1034 obtained from the return value (*OPVAL == NULL). */
1035
252b5132
RH
1036/* Called by the disassembler before printing an instruction. */
1037
1038void
47b0e7ad
NC
1039arc_opcode_init_extract (void)
1040{
1041 arc_opcode_init_insert ();
1042}
1043
1044static const struct arc_operand_value *
1045lookup_register (int type, long regno)
252b5132 1046{
47b0e7ad
NC
1047 const struct arc_operand_value *r,*end;
1048 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1049
1050 while (ext_oper)
1051 {
1052 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1053 return (&ext_oper->operand);
1054 ext_oper = ext_oper->next;
1055 }
1056
1057 if (type == REG)
1058 return &arc_reg_names[regno];
1059
1060 /* ??? This is a little slow and can be speeded up. */
1061 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1062 r < end; ++r)
1063 if (type == r->type && regno == r->value)
1064 return r;
1065 return 0;
252b5132
RH
1066}
1067
1068/* As we're extracting registers, keep an eye out for the 'f' indicator
1069 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1070 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1071
1072 We must also handle auxiliary registers for lr/sr insns. They are just
1073 constants with special names. */
1074
1075static long
47b0e7ad
NC
1076extract_reg (arc_insn *insn,
1077 const struct arc_operand *operand,
1078 int mods,
1079 const struct arc_operand_value **opval,
1080 int *invalid ATTRIBUTE_UNUSED)
252b5132
RH
1081{
1082 int regno;
1083 long value;
0d2bcfaf 1084 enum operand op_type;
252b5132
RH
1085
1086 /* Get the register number. */
0d2bcfaf 1087 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
252b5132
RH
1088
1089 /* Is it a constant marker? */
1090 if (regno == ARC_REG_SHIMM)
1091 {
0d2bcfaf 1092 op_type = OP_SHIMM;
47b0e7ad 1093 /* Always return zero if dest is a shimm mlm. */
0d2bcfaf
NC
1094
1095 if ('a' != operand->fmt)
1096 {
1097 value = *insn & 511;
1098 if ((operand->flags & ARC_OPERAND_SIGNED)
1099 && (value & 256))
1100 value -= 512;
1101 if (!flagshimm_handled_p)
1102 flag_p = 0;
1103 flagshimm_handled_p = 1;
1104 }
1105 else
47b0e7ad 1106 value = 0;
252b5132
RH
1107 }
1108 else if (regno == ARC_REG_SHIMM_UPDATE)
1109 {
0d2bcfaf
NC
1110 op_type = OP_SHIMM;
1111
47b0e7ad 1112 /* Always return zero if dest is a shimm mlm. */
0d2bcfaf
NC
1113 if ('a' != operand->fmt)
1114 {
1115 value = *insn & 511;
1116 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1117 value -= 512;
1118 }
1119 else
47b0e7ad
NC
1120 value = 0;
1121
252b5132
RH
1122 flag_p = 1;
1123 flagshimm_handled_p = 1;
1124 }
1125 else if (regno == ARC_REG_LIMM)
1126 {
0d2bcfaf 1127 op_type = OP_LIMM;
252b5132
RH
1128 value = insn[1];
1129 limm_p = 1;
47b0e7ad
NC
1130
1131 /* If this is a jump instruction (j,jl), show new pc correctly. */
bcee8eb8 1132 if (0x07 == ((*insn & I(-1)) >> 27))
47b0e7ad 1133 value = (value & 0xffffff);
252b5132 1134 }
47b0e7ad 1135
252b5132
RH
1136 /* It's a register, set OPVAL (that's the only way we distinguish registers
1137 from constants here). */
1138 else
1139 {
1140 const struct arc_operand_value *reg = lookup_register (REG, regno);
47b0e7ad 1141
0d2bcfaf 1142 op_type = OP_REG;
252b5132 1143
47b0e7ad
NC
1144 if (reg == NULL)
1145 abort ();
1146 if (opval != NULL)
1147 *opval = reg;
1148 value = regno;
1149 }
1150
1151 /* If this field takes an auxiliary register, see if it's a known one. */
1152 if ((mods & ARC_MOD_AUXREG)
1153 && ARC_REG_CONSTANT_P (regno))
1154 {
1155 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1156
1157 /* This is really a constant, but tell the caller it has a special
1158 name. */
1159 if (reg != NULL && opval != NULL)
1160 *opval = reg;
1161 }
1162
1163 switch(operand->fmt)
1164 {
1165 case 'a':
1166 ls_operand[LS_DEST] = op_type;
1167 break;
1168 case 's':
1169 ls_operand[LS_BASE] = op_type;
1170 break;
1171 case 'c':
1172 if ((insn[0]& I(-1)) == I(2))
1173 ls_operand[LS_VALUE] = op_type;
1174 else
1175 ls_operand[LS_OFFSET] = op_type;
1176 break;
1177 case 'o': case 'O':
1178 ls_operand[LS_OFFSET] = op_type;
1179 break;
1180 }
1181
1182 return value;
1183}
1184
1185/* Return the value of the "flag update" field for shimm insns.
1186 This value is actually stored in the register field. */
1187
1188static long
1189extract_flag (arc_insn *insn,
1190 const struct arc_operand *operand,
1191 int mods ATTRIBUTE_UNUSED,
1192 const struct arc_operand_value **opval,
1193 int *invalid ATTRIBUTE_UNUSED)
1194{
1195 int f;
1196 const struct arc_operand_value *val;
1197
1198 if (flagshimm_handled_p)
1199 f = flag_p != 0;
1200 else
1201 f = (*insn & (1 << operand->shift)) != 0;
1202
1203 /* There is no text for zero values. */
1204 if (f == 0)
1205 return 0;
1206 flag_p = 1;
1207 val = arc_opcode_lookup_suffix (operand, 1);
1208 if (opval != NULL && val != NULL)
1209 *opval = val;
1210 return val->value;
1211}
1212
1213/* Extract the condition code (if it exists).
1214 If we've seen a shimm value in this insn (meaning that the insn can't have
1215 a condition code field), then we don't store anything in OPVAL and return
1216 zero. */
1217
1218static long
1219extract_cond (arc_insn *insn,
1220 const struct arc_operand *operand,
1221 int mods ATTRIBUTE_UNUSED,
1222 const struct arc_operand_value **opval,
1223 int *invalid ATTRIBUTE_UNUSED)
1224{
1225 long cond;
1226 const struct arc_operand_value *val;
1227
1228 if (flagshimm_handled_p)
1229 return 0;
1230
1231 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1232 val = arc_opcode_lookup_suffix (operand, cond);
1233
1234 /* Ignore NULL values of `val'. Several condition code values are
1235 reserved for extensions. */
1236 if (opval != NULL && val != NULL)
1237 *opval = val;
1238 return cond;
1239}
1240
1241/* Extract a branch address.
1242 We return the value as a real address (not right shifted by 2). */
1243
1244static long
1245extract_reladdr (arc_insn *insn,
1246 const struct arc_operand *operand,
1247 int mods ATTRIBUTE_UNUSED,
1248 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1249 int *invalid ATTRIBUTE_UNUSED)
1250{
1251 long addr;
1252
1253 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1254 if ((operand->flags & ARC_OPERAND_SIGNED)
1255 && (addr & (1 << (operand->bits - 1))))
1256 addr -= 1 << operand->bits;
1257 return addr << 2;
1258}
1259
1260/* Extract the flags bits from a j or jl long immediate. */
1261
1262static long
1263extract_jumpflags (arc_insn *insn,
1264 const struct arc_operand *operand,
1265 int mods ATTRIBUTE_UNUSED,
1266 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1267 int *invalid)
1268{
1269 if (!flag_p || !limm_p)
1270 *invalid = 1;
1271 return ((flag_p && limm_p)
1272 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1273}
1274
1275/* Extract st insn's offset. */
1276
1277static long
1278extract_st_offset (arc_insn *insn,
1279 const struct arc_operand *operand,
1280 int mods ATTRIBUTE_UNUSED,
1281 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1282 int *invalid)
1283{
1284 int value = 0;
1285
1286 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1287 {
1288 value = insn[0] & 511;
1289 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1290 value -= 512;
1291 if (value)
1292 ls_operand[LS_OFFSET] = OP_SHIMM;
1293 }
1294 else
1295 *invalid = 1;
1296
1297 return value;
1298}
1299
1300/* Extract ld insn's offset. */
1301
1302static long
1303extract_ld_offset (arc_insn *insn,
1304 const struct arc_operand *operand,
1305 int mods,
1306 const struct arc_operand_value **opval,
1307 int *invalid)
1308{
1309 int test = insn[0] & I(-1);
1310 int value;
1311
1312 if (test)
1313 {
1314 value = insn[0] & 511;
1315 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1316 value -= 512;
1317 if (value)
1318 ls_operand[LS_OFFSET] = OP_SHIMM;
1319
1320 return value;
1321 }
1322 /* If it isn't in the insn, it's concealed behind reg 'c'. */
1323 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1324 mods, opval, invalid);
1325}
1326
1327/* The only thing this does is set the `invalid' flag if B != C.
1328 This is needed because the "mov" macro appears before it's real insn "and"
1329 and we don't want the disassembler to confuse them. */
1330
1331static long
1332extract_unopmacro (arc_insn *insn,
1333 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1334 int mods ATTRIBUTE_UNUSED,
1335 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1336 int *invalid)
1337{
1338 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1339 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1340 printed as "and"s. */
1341 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1342 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1343 if (invalid != NULL)
1344 *invalid = 1;
1345 return 0;
1346}
1347\f
1348/* ARC instructions.
1349
1350 Longer versions of insns must appear before shorter ones (if gas sees
1351 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
1352 junk). This isn't necessary for `ld' because of the trailing ']'.
1353
1354 Instructions that are really macros based on other insns must appear
1355 before the real insn so they're chosen when disassembling. Eg: The `mov'
1356 insn is really the `and' insn. */
1357
1358struct arc_opcode arc_opcodes[] =
1359{
1360 /* Base case instruction set (core versions 5-8). */
1361
1362 /* "mov" is really an "and". */
1363 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
1364 /* "asl" is really an "add". */
1365 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1366 /* "lsl" is really an "add". */
1367 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1368 /* "nop" is really an "xor". */
1369 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
1370 /* "rlc" is really an "adc". */
1371 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
1372 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
1373 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
1374 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
1375 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
1376 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
1377 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1378 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1379 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
1380 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
1381 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
1382 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
1383 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
1384 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
1385 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
1386 optional flags spec. */
1387 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1388 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1389 /* This insn allows an optional flags spec. */
1390 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1391 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1392 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
1393 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1394 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
1395 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1396 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1397 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
1398 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
1399 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
1400 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
1401 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
1402 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
1403 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
1404 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
1405 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
1406 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
1407 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
1408 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1409 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1410 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1411 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
1412 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
1413};
1414
1415const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
1416
1417const struct arc_operand_value arc_reg_names[] =
1418{
1419 /* Core register set r0-r63. */
1420
1421 /* r0-r28 - general purpose registers. */
1422 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
1423 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
1424 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
1425 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
1426 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
1427 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
1428 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
1429 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
1430 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
1431 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
1432 /* Maskable interrupt link register. */
1433 { "ilink1", 29, REG, 0 },
1434 /* Maskable interrupt link register. */
1435 { "ilink2", 30, REG, 0 },
1436 /* Branch-link register. */
1437 { "blink", 31, REG, 0 },
1438
1439 /* r32-r59 reserved for extensions. */
1440 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
1441 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
1442 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
1443 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
1444 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
1445 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
1446 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
1447 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
1448 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
1449 { "r59", 59, REG, 0 },
1450
1451 /* Loop count register (24 bits). */
1452 { "lp_count", 60, REG, 0 },
1453 /* Short immediate data indicator setting flags. */
1454 { "r61", 61, REG, ARC_REGISTER_READONLY },
1455 /* Long immediate data indicator setting flags. */
1456 { "r62", 62, REG, ARC_REGISTER_READONLY },
1457 /* Short immediate data indicator not setting flags. */
1458 { "r63", 63, REG, ARC_REGISTER_READONLY },
1459
1460 /* Small-data base register. */
1461 { "gp", 26, REG, 0 },
1462 /* Frame pointer. */
1463 { "fp", 27, REG, 0 },
1464 /* Stack pointer. */
1465 { "sp", 28, REG, 0 },
1466
1467 { "r29", 29, REG, 0 },
1468 { "r30", 30, REG, 0 },
1469 { "r31", 31, REG, 0 },
1470 { "r60", 60, REG, 0 },
1471
1472 /* Auxiliary register set. */
1473
1474 /* Auxiliary register address map:
1475 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
1476 0xfffffeff-0x80000000 - customer limm allocation
1477 0x7fffffff-0x00000100 - ARC limm allocation
1478 0x000000ff-0x00000000 - ARC shimm allocation */
1479
1480 /* Base case auxiliary registers (shimm address). */
1481 { "status", 0x00, AUXREG, 0 },
1482 { "semaphore", 0x01, AUXREG, 0 },
1483 { "lp_start", 0x02, AUXREG, 0 },
1484 { "lp_end", 0x03, AUXREG, 0 },
1485 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
1486 { "debug", 0x05, AUXREG, 0 },
1487};
1488
1489const int arc_reg_names_count =
1490 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
1491
1492/* The suffix table.
1493 Operands with the same name must be stored together. */
1494
1495const struct arc_operand_value arc_suffixes[] =
1496{
1497 /* Entry 0 is special, default values aren't printed by the disassembler. */
1498 { "", 0, -1, 0 },
1499
1500 /* Base case condition codes. */
1501 { "al", 0, COND, 0 },
1502 { "ra", 0, COND, 0 },
1503 { "eq", 1, COND, 0 },
1504 { "z", 1, COND, 0 },
1505 { "ne", 2, COND, 0 },
1506 { "nz", 2, COND, 0 },
1507 { "pl", 3, COND, 0 },
1508 { "p", 3, COND, 0 },
1509 { "mi", 4, COND, 0 },
1510 { "n", 4, COND, 0 },
1511 { "cs", 5, COND, 0 },
1512 { "c", 5, COND, 0 },
1513 { "lo", 5, COND, 0 },
1514 { "cc", 6, COND, 0 },
1515 { "nc", 6, COND, 0 },
1516 { "hs", 6, COND, 0 },
1517 { "vs", 7, COND, 0 },
1518 { "v", 7, COND, 0 },
1519 { "vc", 8, COND, 0 },
1520 { "nv", 8, COND, 0 },
1521 { "gt", 9, COND, 0 },
1522 { "ge", 10, COND, 0 },
1523 { "lt", 11, COND, 0 },
1524 { "le", 12, COND, 0 },
1525 { "hi", 13, COND, 0 },
1526 { "ls", 14, COND, 0 },
1527 { "pnz", 15, COND, 0 },
1528
1529 /* Condition codes 16-31 reserved for extensions. */
1530
1531 { "f", 1, FLAG, 0 },
1532
1533 { "nd", ARC_DELAY_NONE, DELAY, 0 },
1534 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
1535 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
1536
1537 { "b", 1, SIZE1, 0 },
1538 { "b", 1, SIZE10, 0 },
1539 { "b", 1, SIZE22, 0 },
1540 { "w", 2, SIZE1, 0 },
1541 { "w", 2, SIZE10, 0 },
1542 { "w", 2, SIZE22, 0 },
1543 { "x", 1, SIGN0, 0 },
1544 { "x", 1, SIGN9, 0 },
1545 { "a", 1, ADDRESS3, 0 },
1546 { "a", 1, ADDRESS12, 0 },
1547 { "a", 1, ADDRESS24, 0 },
252b5132 1548
47b0e7ad
NC
1549 { "di", 1, CACHEBYPASS5, 0 },
1550 { "di", 1, CACHEBYPASS14, 0 },
1551 { "di", 1, CACHEBYPASS26, 0 },
1552};
252b5132 1553
47b0e7ad
NC
1554const int arc_suffixes_count =
1555 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
252b5132 1556
47b0e7ad
NC
1557/* Indexed by first letter of opcode. Points to chain of opcodes with same
1558 first letter. */
1559static struct arc_opcode *opcode_map[26 + 1];
252b5132 1560
47b0e7ad
NC
1561/* Indexed by insn code. Points to chain of opcodes with same insn code. */
1562static struct arc_opcode *icode_map[32];
1563\f
1564/* Configuration flags. */
252b5132 1565
47b0e7ad
NC
1566/* Various ARC_HAVE_XXX bits. */
1567static int cpu_type;
252b5132 1568
47b0e7ad 1569/* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
252b5132 1570
47b0e7ad
NC
1571int
1572arc_get_opcode_mach (int bfd_mach, int big_p)
1573{
1574 static int mach_type_map[] =
1575 {
1576 ARC_MACH_5,
1577 ARC_MACH_6,
1578 ARC_MACH_7,
1579 ARC_MACH_8
1580 };
1581 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
252b5132
RH
1582}
1583
47b0e7ad
NC
1584/* Initialize any tables that need it.
1585 Must be called once at start up (or when first needed).
252b5132 1586
47b0e7ad
NC
1587 FLAGS is a set of bits that say what version of the cpu we have,
1588 and in particular at least (one of) ARC_MACH_XXX. */
1589
1590void
1591arc_opcode_init_tables (int flags)
252b5132 1592{
47b0e7ad 1593 static int init_p = 0;
252b5132 1594
47b0e7ad 1595 cpu_type = flags;
252b5132 1596
47b0e7ad
NC
1597 /* We may be intentionally called more than once (for example gdb will call
1598 us each time the user switches cpu). These tables only need to be init'd
1599 once though. */
1600 if (!init_p)
1601 {
1602 int i,n;
252b5132 1603
47b0e7ad
NC
1604 memset (arc_operand_map, 0, sizeof (arc_operand_map));
1605 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
1606 for (i = 0; i < n; ++i)
1607 arc_operand_map[arc_operands[i].fmt] = i;
252b5132 1608
47b0e7ad
NC
1609 memset (opcode_map, 0, sizeof (opcode_map));
1610 memset (icode_map, 0, sizeof (icode_map));
1611 /* Scan the table backwards so macros appear at the front. */
1612 for (i = arc_opcodes_count - 1; i >= 0; --i)
1613 {
1614 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
1615 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
252b5132 1616
47b0e7ad
NC
1617 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
1618 opcode_map[opcode_hash] = &arc_opcodes[i];
252b5132 1619
47b0e7ad
NC
1620 arc_opcodes[i].next_dis = icode_map[icode_hash];
1621 icode_map[icode_hash] = &arc_opcodes[i];
1622 }
1623
1624 init_p = 1;
1625 }
252b5132
RH
1626}
1627
47b0e7ad
NC
1628/* Return non-zero if OPCODE is supported on the specified cpu.
1629 Cpu selection is made when calling `arc_opcode_init_tables'. */
1630
1631int
1632arc_opcode_supported (const struct arc_opcode *opcode)
0d2bcfaf 1633{
47b0e7ad
NC
1634 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
1635 return 1;
1636 return 0;
0d2bcfaf
NC
1637}
1638
47b0e7ad 1639/* Return the first insn in the chain for assembling INSN. */
0d2bcfaf 1640
47b0e7ad
NC
1641const struct arc_opcode *
1642arc_opcode_lookup_asm (const char *insn)
0d2bcfaf 1643{
47b0e7ad
NC
1644 return opcode_map[ARC_HASH_OPCODE (insn)];
1645}
0d2bcfaf 1646
47b0e7ad
NC
1647/* Return the first insn in the chain for disassembling INSN. */
1648
1649const struct arc_opcode *
1650arc_opcode_lookup_dis (unsigned int insn)
1651{
1652 return icode_map[ARC_HASH_ICODE (insn)];
0d2bcfaf
NC
1653}
1654
47b0e7ad 1655/* Called by the assembler before parsing an instruction. */
0d2bcfaf 1656
47b0e7ad
NC
1657void
1658arc_opcode_init_insert (void)
0d2bcfaf 1659{
47b0e7ad 1660 int i;
0d2bcfaf 1661
47b0e7ad
NC
1662 for(i = 0; i < OPERANDS; i++)
1663 ls_operand[i] = OP_NONE;
1664
1665 flag_p = 0;
1666 flagshimm_handled_p = 0;
1667 cond_p = 0;
1668 addrwb_p = 0;
1669 shimm_p = 0;
1670 limm_p = 0;
1671 jumpflags_p = 0;
1672 nullify_p = 0;
1673 nullify = 0; /* The default is important. */
0d2bcfaf
NC
1674}
1675
47b0e7ad
NC
1676/* Called by the assembler to see if the insn has a limm operand.
1677 Also called by the disassembler to see if the insn contains a limm. */
252b5132 1678
47b0e7ad
NC
1679int
1680arc_opcode_limm_p (long *limmp)
252b5132 1681{
47b0e7ad
NC
1682 if (limmp)
1683 *limmp = limm;
1684 return limm_p;
252b5132
RH
1685}
1686
1687/* Utility for the extraction functions to return the index into
1688 `arc_suffixes'. */
1689
1690const struct arc_operand_value *
47b0e7ad 1691arc_opcode_lookup_suffix (const struct arc_operand *type, int value)
252b5132 1692{
47b0e7ad 1693 const struct arc_operand_value *v,*end;
0d2bcfaf
NC
1694 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1695
1696 while (ext_oper)
1697 {
1698 if (type == &arc_operands[ext_oper->operand.type]
1699 && value == ext_oper->operand.value)
1700 return (&ext_oper->operand);
1701 ext_oper = ext_oper->next;
1702 }
252b5132
RH
1703
1704 /* ??? This is a little slow and can be speeded up. */
252b5132
RH
1705 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1706 if (type == &arc_operands[v->type]
1707 && value == v->value)
1708 return v;
1709 return 0;
1710}
1711
0d2bcfaf 1712int
47b0e7ad 1713arc_insn_is_j (arc_insn insn)
0d2bcfaf
NC
1714{
1715 return (insn & (I(-1))) == I(0x7);
1716}
1717
1718int
47b0e7ad 1719arc_insn_not_jl (arc_insn insn)
0d2bcfaf 1720{
bcee8eb8
AM
1721 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1722 != (I(0x7) | R(-1,9,1)));
0d2bcfaf
NC
1723}
1724
1725int
47b0e7ad 1726arc_operand_type (int opertype)
0d2bcfaf
NC
1727{
1728 switch (opertype)
1729 {
1730 case 0:
47b0e7ad 1731 return COND;
0d2bcfaf
NC
1732 break;
1733 case 1:
47b0e7ad 1734 return REG;
0d2bcfaf
NC
1735 break;
1736 case 2:
47b0e7ad 1737 return AUXREG;
0d2bcfaf
NC
1738 break;
1739 }
1740 return -1;
1741}
1742
1743struct arc_operand_value *
47b0e7ad 1744get_ext_suffix (char *s)
0d2bcfaf
NC
1745{
1746 struct arc_ext_operand_value *suffix = arc_ext_operands;
1747
1748 while (suffix)
1749 {
1750 if ((COND == suffix->operand.type)
1751 && !strcmp(s,suffix->operand.name))
1752 return(&suffix->operand);
1753 suffix = suffix->next;
1754 }
bcee8eb8 1755 return NULL;
0d2bcfaf
NC
1756}
1757
1758int
47b0e7ad 1759arc_get_noshortcut_flag (void)
0d2bcfaf 1760{
bcee8eb8 1761 return ARC_REGISTER_NOSHORT_CUT;
0d2bcfaf 1762}
This page took 0.733427 seconds and 4 git commands to generate.