* sparc-opc.c: The fcmp v9a instructions take an integer register
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
CommitLineData
edb35c13 1/* Opcode table for the ARC.
ecec4df3 2 Copyright 1994, 1995 Free Software Foundation, Inc.
edb35c13
DE
3 Contributed by Doug Evans (dje@cygnus.com).
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
18
19#include "ansidecl.h"
20#include "opcode/arc.h"
21
22#define INSERT_FN(fn) \
23static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
24 int, const struct arc_operand_value *, long, \
25 const char **))
26#define EXTRACT_FN(fn) \
27static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
28 int, const struct arc_operand_value **, int *))
29
30INSERT_FN (insert_reg);
31INSERT_FN (insert_shimmfinish);
32INSERT_FN (insert_limmfinish);
33INSERT_FN (insert_shimmoffset);
34INSERT_FN (insert_shimmzero);
35INSERT_FN (insert_flag);
36INSERT_FN (insert_flagfinish);
37INSERT_FN (insert_cond);
38INSERT_FN (insert_forcelimm);
39INSERT_FN (insert_reladdr);
1a56be5c 40INSERT_FN (insert_absaddr);
edb35c13
DE
41INSERT_FN (insert_unopmacro);
42INSERT_FN (insert_multshift);
43
44EXTRACT_FN (extract_reg);
45EXTRACT_FN (extract_flag);
46EXTRACT_FN (extract_cond);
ecec4df3 47EXTRACT_FN (extract_reladdr);
edb35c13
DE
48EXTRACT_FN (extract_unopmacro);
49EXTRACT_FN (extract_multshift);
50
51/* Various types of ARC operands, including insn suffixes. */
52
53/* Insn format values:
54
55 'a' REGA register A field
56 'b' REGB register B field
57 'c' REGC register C field
58 'S' SHIMMFINISH finish inserting a shimm value
59 'L' LIMMFINISH finish inserting a limm value
60 'd' SHIMMOFFSET shimm offset in ld,st insns
61 '0' SHIMMZERO 0 shimm value in ld,st insns
62 'f' FLAG F flag
63 'F' FLAGFINISH finish inserting the F flag
64 'G' FLAGINSN insert F flag in "flag" insn
65 'n' DELAY N field (nullify field)
66 'q' COND condition code field
67 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
1a56be5c
DE
68 'B' BRANCH branch address (22 bit pc relative)
69 'J' JUMP jump address (26 bit absolute)
edb35c13
DE
70 'z' SIZE1 size field in ld a,[b,c]
71 'Z' SIZE10 size field in ld a,[b,shimm]
72 'y' SIZE22 size field in st c,[b,shimm]
73 'x' SIGN0 sign extend field ld a,[b,c]
74 'X' SIGN9 sign extend field ld a,[b,shimm]
ecec4df3
DE
75 'w' ADDRESS3 write-back field in ld a,[b,c]
76 'W' ADDRESS12 write-back field in ld a,[b,shimm]
77 'v' ADDRESS24 write-back field in st c,[b,shimm]
1a56be5c
DE
78 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
79 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
80 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
ecec4df3
DE
81 'u' UNSIGNED unsigned multiply
82 's' SATURATION saturation limit in audio arc mac insn
edb35c13 83 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
edb35c13
DE
84
85 The following modifiers may appear between the % and char (eg: %.f):
86
87 '.' MODDOT '.' prefix must be present
88 'r' REG generic register value, for register table
89 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
90
91 Fields are:
92
93 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN
94*/
95
96const struct arc_operand arc_operands[] =
97{
98/* place holder (??? not sure if needed) */
99#define UNUSED 0
100 { 0 },
101
102/* register A or shimm/limm indicator */
103#define REGA (UNUSED + 1)
104 { 'a', 6, ARC_SHIFT_REGA, 0, insert_reg, extract_reg },
105
106/* register B or shimm/limm indicator */
107#define REGB (REGA + 1)
108 { 'b', 6, ARC_SHIFT_REGB, 0, insert_reg, extract_reg },
109
110/* register C or shimm/limm indicator */
111#define REGC (REGB + 1)
112 { 'c', 6, ARC_SHIFT_REGC, 0, insert_reg, extract_reg },
113
114/* fake operand used to insert shimm value into most instructions */
115#define SHIMMFINISH (REGC + 1)
116 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
117
1a56be5c
DE
118/* fake operand used to insert limm value into most instructions;
119 this is also used for .word handling */
edb35c13 120#define LIMMFINISH (SHIMMFINISH + 1)
1a56be5c 121 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
edb35c13
DE
122
123/* shimm operand when there is no reg indicator (ld,st) */
124#define SHIMMOFFSET (LIMMFINISH + 1)
125 { 'd', 9, 0, ARC_OPERAND_SIGNED, insert_shimmoffset, 0 },
126
127/* 0 shimm operand for ld,st insns */
128#define SHIMMZERO (SHIMMOFFSET + 1)
129 { '0', 9, 0, ARC_OPERAND_FAKE, insert_shimmzero, 0 },
130
131/* flag update bit (insertion is defered until we know how) */
132#define FLAG (SHIMMZERO + 1)
133 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
134
135/* fake utility operand to finish 'f' suffix handling */
136#define FLAGFINISH (FLAG + 1)
137 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
138
139/* fake utility operand to set the 'f' flag for the "flag" insn */
140#define FLAGINSN (FLAGFINISH + 1)
141 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
142
143/* branch delay types */
144#define DELAY (FLAGINSN + 1)
145 { 'n', 2, 5, ARC_OPERAND_SUFFIX },
146
147/* conditions */
148#define COND (DELAY + 1)
149 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
150
151/* set `cond_p' to 1 to ensure a constant is treated as a limm */
152#define FORCELIMM (COND + 1)
153 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm },
154
1a56be5c 155/* branch address; b, bl, and lp insns */
edb35c13 156#define BRANCH (FORCELIMM + 1)
1a56be5c
DE
157 { 'B', 20, 7, ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED, insert_reladdr, extract_reladdr },
158
159/* jump address; j insn (this is basically the same as 'L' except that the
160 value is right shifted by 2); this is also used for .word handling */
161#define JUMP (BRANCH + 1)
162 { 'J', 24, 32, ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_absaddr },
edb35c13
DE
163
164/* size field, stored in bit 1,2 */
1a56be5c 165#define SIZE1 (JUMP + 1)
edb35c13
DE
166 { 'z', 2, 1, ARC_OPERAND_SUFFIX },
167
168/* size field, stored in bit 10,11 */
169#define SIZE10 (SIZE1 + 1)
170 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, },
171
172/* size field, stored in bit 22,23 */
173#define SIZE22 (SIZE10 + 1)
174 { 'y', 2, 22, ARC_OPERAND_SUFFIX, },
175
176/* sign extend field, stored in bit 0 */
177#define SIGN0 (SIZE22 + 1)
178 { 'x', 1, 0, ARC_OPERAND_SUFFIX },
179
180/* sign extend field, stored in bit 9 */
181#define SIGN9 (SIGN0 + 1)
182 { 'X', 1, 9, ARC_OPERAND_SUFFIX },
183
184/* address write back, stored in bit 3 */
185#define ADDRESS3 (SIGN9 + 1)
ecec4df3 186 { 'w', 1, 3, ARC_OPERAND_SUFFIX },
edb35c13
DE
187
188/* address write back, stored in bit 12 */
189#define ADDRESS12 (ADDRESS3 + 1)
ecec4df3 190 { 'W', 1, 12, ARC_OPERAND_SUFFIX },
edb35c13
DE
191
192/* address write back, stored in bit 24 */
193#define ADDRESS24 (ADDRESS12 + 1)
ecec4df3 194 { 'v', 1, 24, ARC_OPERAND_SUFFIX },
edb35c13 195
ecec4df3 196/* cache bypass, stored in bit 5 */
edb35c13 197#define CACHEBYPASS5 (ADDRESS24 + 1)
1a56be5c 198 { 'e', 1, 5, ARC_OPERAND_SUFFIX },
edb35c13 199
ecec4df3 200/* cache bypass, stored in bit 14 */
edb35c13 201#define CACHEBYPASS14 (CACHEBYPASS5 + 1)
1a56be5c 202 { 'E', 1, 14, ARC_OPERAND_SUFFIX },
edb35c13 203
ecec4df3 204/* cache bypass, stored in bit 26 */
edb35c13 205#define CACHEBYPASS26 (CACHEBYPASS14 + 1)
1a56be5c 206 { 'D', 1, 26, ARC_OPERAND_SUFFIX },
edb35c13 207
ecec4df3
DE
208/* unsigned multiply */
209#define UNSIGNED (CACHEBYPASS26 + 1)
210 { 'u', 1, 27, ARC_OPERAND_SUFFIX },
211
212/* unsigned multiply */
213#define SATURATION (UNSIGNED + 1)
214 { 's', 1, 28, ARC_OPERAND_SUFFIX },
215
edb35c13 216/* unop macro, used to copy REGB to REGC */
ecec4df3 217#define UNOPMACRO (SATURATION + 1)
edb35c13
DE
218 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
219
edb35c13 220/* '.' modifier ('.' required). */
ecec4df3 221#define MODDOT (UNOPMACRO + 1)
edb35c13
DE
222 { '.', 1, 0, ARC_MOD_DOT },
223
224/* Dummy 'r' modifier for the register table.
225 It's called a "dummy" because there's no point in inserting an 'r' into all
226 the %a/%b/%c occurrences in the insn table. */
227#define REG (MODDOT + 1)
228 { 'r', 6, 0, ARC_MOD_REG },
229
230/* Known auxiliary register modifier (stored in shimm field). */
231#define AUXREG (REG + 1)
232 { 'A', 9, 0, ARC_MOD_AUXREG },
233
234/* end of list place holder */
235 { 0 }
236};
1a56be5c 237\f
edb35c13
DE
238/* Given a format letter, yields the index into `arc_operands'.
239 eg: arc_operand_map['a'] = REGA. */
240unsigned char arc_operand_map[256];
241
242#define I(x) (((x) & 31) << 27)
243#define A(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGA)
244#define B(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGB)
245#define C(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGC)
246#define R(x,b,m) (((x) & (m)) << (b)) /* value X, mask M, at bit B */
247
248/* ARC instructions (sorted by at least the first letter, and equivalent
249 opcodes kept together).
250
251 By recording the insns this way, the table is not hashable on the opcode.
252 That's not a real loss though as there are only a few entries for each
253 insn (ld/st being the exception), which are quickly found and since
254 they're stored together (eg: all `ld' variants are together) very little
255 time is spent on the opcode itself. The slow part is parsing the options,
256 but that's always going to be slow.
257
258 Longer versions of insns must appear before shorter ones (if gas sees
259 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
1a56be5c
DE
260 junk).
261
262 This table is best viewed on a wide screen (161 columns).
263 I'd prefer to keep it this way. */
edb35c13
DE
264
265/* ??? This table also includes macros: asl, lsl, and mov. The ppc port has
266 a more general facility for dealing with macros which could be used if
267 we need to. */
268/* ??? As an experiment, the "mov" macro appears at the start so it is
269 prefered to "and" when disassembling. At present, the table needn't be
270 sorted, though all opcodes with the same first letter must be kept
271 together. */
272
273const struct arc_opcode arc_opcodes[] = {
ecec4df3 274 { "mac%u%.s%.q%.f %a,%b,%c%F%S%L", I(-4), I(24), ARC_MACH_AUDIO },
edb35c13
DE
275 /* Note that "mov" is really an "and". */
276 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12) },
ecec4df3
DE
277 { "mul%u%.q%.f %a,%b,%c%F%S%L", I(-2), I(28), ARC_MACH_AUDIO },
278 /* ??? This insn allows an optional "0," preceding the args. */
279 /* We can't use %u here because it's not a suffix (the "64" is in the way). */
280 { "mul64%.q%.f %b,%c%F%S%L", I(-1)+A(-1), I(20)+A(-1), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
281 { "mulu64%.q%.f %b,%c%F%S%L", I(-1)+A(-1), I(21)+A(-1), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
edb35c13
DE
282
283 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9) },
284 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8) },
285 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12) },
ecec4df3 286 { "asl%.q%.f %a,%b,%c%F%S%L", I(-1), I(16), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
edb35c13
DE
287 /* Note that "asl" is really an "add". */
288 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8) },
ecec4df3 289 { "asr%.q%.f %a,%b,%c%F%S%L", I(-1), I(18), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
edb35c13
DE
290 { "asr%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(1) },
291 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14) },
292 { "b%q%.n %B", I(-1), I(4) },
293 { "bl%q%.n %B", I(-1), I(5) },
294 { "extb%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(7) },
295 { "extw%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(8) },
296 { "flag%.q %b%G%S%L", I(-1)+A(-1)+C(-1), I(3)+A(ARC_REG_SHIMM_UPDATE)+C(0) },
297 /* %Q: force cond_p=1 --> no shimm values */
1a56be5c
DE
298 /* ??? This insn allows an optional flags spec. */
299 { "j%q%Q%.n%.f %b%J", I(-1)+A(-1)+C(-1)+R(-1,7,1), I(7)+A(0)+C(0)+R(0,7,1) },
edb35c13
DE
300 /* Put opcode 1 ld insns first so shimm gets prefered over limm. */
301 /* "[%b]" is before "[%b,%d]" so 0 offsets don't get printed. */
1a56be5c
DE
302 { "ld%Z%.X%.W%.E %0%a,[%b]%L", I(-1)+R(-1,13,1)+R(-1,0,511), I(1)+R(0,13,1)+R(0,0,511) },
303 { "ld%Z%.X%.W%.E %a,[%b,%d]%S%L", I(-1)+R(-1,13,1), I(1)+R(0,13,1) },
304 { "ld%z%.x%.w%.e %a,[%b,%c]", I(-1)+R(-1,4,1)+R(-1,6,7), I(0)+R(0,4,1)+R(0,6,7) },
edb35c13
DE
305 { "lp%q%.n %B", I(-1), I(6), },
306 { "lr %a,[%Ab]%S%L", I(-1)+C(-1), I(1)+C(0x10) },
307 /* Note that "lsl" is really an "add". */
308 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8) },
ecec4df3 309 { "lsr%.q%.f %a,%b,%c%F%S%L", I(-1), I(17), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
edb35c13
DE
310 { "lsr%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(2) },
311 /* Note that "nop" is really an "xor". */
312 { "nop", 0xffffffff, 0x7fffffff },
313 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13) },
ecec4df3
DE
314 /* ??? The %a here should be %p or something. */
315 { "padc%.q%.f %a,%b,%c%F%S%L", I(-1), I(25), ARC_MACH_GRAPHICS },
316 { "padd%.q%.f %a,%b,%c%F%S%L", I(-1), I(24), ARC_MACH_GRAPHICS },
317 /* Note that "pmov" is really a "pand". */
318 { "pmov%.q%.f %a,%b%F%S%L%U", I(-1), I(28), ARC_MACH_GRAPHICS },
319 { "pand%.q%.f %a,%b,%c%F%S%L", I(-1), I(28), ARC_MACH_GRAPHICS },
320 { "psbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(27), ARC_MACH_GRAPHICS },
321 { "psub%.q%.f %a,%b,%c%F%S%L", I(-1), I(26), ARC_MACH_GRAPHICS },
edb35c13
DE
322 /* Note that "rlc" is really an "adc". */
323 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9) },
ecec4df3 324 { "ror%.q%.f %a,%b,%c%F%S%L", I(-1), I(19), ARC_MACH_HOST+ARC_MACH_GRAPHICS },
edb35c13
DE
325 { "ror%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(3) },
326 { "rrc%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(4) },
327 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11) },
328 { "sexb%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(5) },
329 { "sexw%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(6) },
330 { "sr %c,[%Ab]%S%L", I(-1)+A(-1), I(2)+A(0x10) },
331 /* "[%b]" is before "[%b,%d]" so 0 offsets don't get printed. */
1a56be5c
DE
332 { "st%y%.v%.D %0%c,[%b]%L", I(-1)+R(-1,25,3)+R(-1,21,1)+R(-1,0,511), I(2)+R(0,25,3)+R(0,21,1)+R(0,0,511) },
333 { "st%y%.v%.D %c,[%b,%d]%S%L", I(-1)+R(-1,25,3)+R(-1,21,1), I(2)+R(0,25,3)+R(0,21,1) },
edb35c13 334 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10) },
ecec4df3 335 { "swap%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(9), ARC_MACH_AUDIO },
edb35c13
DE
336 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15) }
337};
1a56be5c 338const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
edb35c13
DE
339
340const struct arc_operand_value arc_reg_names[] =
341{
342 /* Sort this so that the first 61 entries are sequential.
343 IE: For each i (i<61), arc_reg_names[i].value == i. */
344
345 { "r0", 0, REG }, { "r1", 1, REG }, { "r2", 2, REG }, { "r3", 3, REG },
346 { "r4", 4, REG }, { "r5", 5, REG }, { "r6", 6, REG }, { "r7", 7, REG },
347 { "r8", 8, REG }, { "r9", 9, REG }, { "r10", 10, REG }, { "r11", 11, REG },
348 { "r12", 12, REG }, { "r13", 13, REG }, { "r14", 14, REG }, { "r15", 15, REG },
349 { "r16", 16, REG }, { "r17", 17, REG }, { "r18", 18, REG }, { "r19", 19, REG },
350 { "r20", 20, REG }, { "r21", 21, REG }, { "r22", 22, REG }, { "r23", 23, REG },
351 { "r24", 24, REG }, { "r25", 25, REG }, { "r26", 26, REG }, { "fp", 27, REG },
352 { "sp", 28, REG }, { "ilink1", 29, REG }, { "ilink2", 30, REG }, { "blink", 31, REG },
353 { "r32", 32, REG }, { "r33", 33, REG }, { "r34", 34, REG }, { "r35", 35, REG },
354 { "r36", 36, REG }, { "r37", 37, REG }, { "r38", 38, REG }, { "r39", 39, REG },
355 { "r40", 40, REG }, { "r41", 41, REG }, { "r42", 42, REG }, { "r43", 43, REG },
356 { "r44", 44, REG }, { "r45", 45, REG }, { "r46", 46, REG }, { "r47", 47, REG },
357 { "r48", 48, REG }, { "r49", 49, REG }, { "r50", 50, REG }, { "r51", 51, REG },
358 { "r52", 52, REG }, { "r53", 53, REG }, { "r54", 54, REG }, { "r55", 55, REG },
359 { "r56", 56, REG }, { "r57", 57, REG }, { "r58", 58, REG }, { "r59", 59, REG },
360 { "lp_count", 60, REG },
361
362 /* I'd prefer to output these as "fp" and "sp" by default, but we still need
363 to recognize the canonical values. */
364 { "r27", 27, REG }, { "r28", 28, REG },
365
366 /* Standard auxiliary registers. */
ecec4df3 367 { "status", 0, AUXREG },
edb35c13 368 { "semaphore", 1, AUXREG },
ecec4df3
DE
369 { "lp_start", 2, AUXREG },
370 { "lp_end", 3, AUXREG },
371 { "identity", 4, AUXREG },
372 { "debug", 5, AUXREG },
373
374 /* Host ARC Extensions. */
375 { "mlo", 57, REG, ARC_MACH_HOST },
376 { "mmid", 58, REG, ARC_MACH_HOST },
377 { "mhi", 59, REG, ARC_MACH_HOST },
378 { "ivic", 0x10, AUXREG, ARC_MACH_HOST },
379 { "ivdc", 0x11, AUXREG, ARC_MACH_HOST },
380 { "ivdcn", 0x12, AUXREG, ARC_MACH_HOST },
381 { "flushd", 0x13, AUXREG, ARC_MACH_HOST },
382 { "saha", 0x14, AUXREG, ARC_MACH_HOST },
383 { "gahd", 0x15, AUXREG, ARC_MACH_HOST },
384 { "aahd", 0x16, AUXREG, ARC_MACH_HOST },
385 { "rrcr", 0x17, AUXREG, ARC_MACH_HOST },
386 { "rpcr", 0x18, AUXREG, ARC_MACH_HOST },
387 { "flushdn", 0x19, AUXREG, ARC_MACH_HOST },
388 { "dbgad1", 0x1a, AUXREG, ARC_MACH_HOST },
389 { "dbgad2", 0x1b, AUXREG, ARC_MACH_HOST },
390 { "dbgmde", 0x1c, AUXREG, ARC_MACH_HOST },
391 { "dbgstat", 0x1d, AUXREG, ARC_MACH_HOST },
392 { "wag", 0x1e, AUXREG, ARC_MACH_HOST },
393 { "mulhi", 0x1f, AUXREG, ARC_MACH_HOST },
394 { "intwide", 0x20, AUXREG, ARC_MACH_HOST },
395 { "intgen", 0x21, AUXREG, ARC_MACH_HOST },
396 { "rfsh_n", 0x22, AUXREG, ARC_MACH_HOST },
397
398 /* Graphics ARC Extensions. */
399 { "mlo", 57, REG, ARC_MACH_GRAPHICS },
400 { "mmid", 58, REG, ARC_MACH_GRAPHICS },
401 { "mhi", 59, REG, ARC_MACH_GRAPHICS },
402 { "ivic", 0x10, AUXREG, ARC_MACH_GRAPHICS },
403 { "wag", 0x1e, AUXREG, ARC_MACH_GRAPHICS },
404 { "mulhi", 0x1f, AUXREG, ARC_MACH_GRAPHICS },
405 { "intwide", 0x20, AUXREG, ARC_MACH_GRAPHICS },
406 { "intgen", 0x21, AUXREG, ARC_MACH_GRAPHICS },
407 { "pix", 0x100, AUXREG, ARC_MACH_GRAPHICS },
408 { "scratch", 0x120, AUXREG, ARC_MACH_GRAPHICS },
409
410 /* Audio ARC Extensions. */
411 { "macmode", 39, REG, ARC_MACH_AUDIO },
412 { "rs1", 40, REG, ARC_MACH_AUDIO },
413 { "rs1n", 41, REG, ARC_MACH_AUDIO },
414 { "rs1start", 42, REG, ARC_MACH_AUDIO },
415 { "rs1size", 43, REG, ARC_MACH_AUDIO },
416 { "rs1delta", 44, REG, ARC_MACH_AUDIO },
417 { "rs1pos", 45, REG, ARC_MACH_AUDIO },
418 { "rd1", 46, REG, ARC_MACH_AUDIO },
419 { "rd1n", 47, REG, ARC_MACH_AUDIO },
420 { "rd1d", 48, REG, ARC_MACH_AUDIO },
421 { "rd1pos", 49, REG, ARC_MACH_AUDIO },
422 { "rs2", 50, REG, ARC_MACH_AUDIO },
423 { "rs2n", 51, REG, ARC_MACH_AUDIO },
424 { "rs2start", 52, REG, ARC_MACH_AUDIO },
425 { "rs2size", 53, REG, ARC_MACH_AUDIO },
426 { "rs2delta", 54, REG, ARC_MACH_AUDIO },
427 { "rs2pos", 55, REG, ARC_MACH_AUDIO },
428 { "rd2", 56, REG, ARC_MACH_AUDIO },
429 { "rd2n", 57, REG, ARC_MACH_AUDIO },
430 { "rd2d", 58, REG, ARC_MACH_AUDIO },
431 { "rd2pos", 59, REG, ARC_MACH_AUDIO },
432 { "ivic", 0x10, AUXREG, ARC_MACH_AUDIO },
433 { "wag", 0x1e, AUXREG, ARC_MACH_AUDIO },
434 { "intwide", 0x20, AUXREG, ARC_MACH_AUDIO },
435 { "intgen", 0x21, AUXREG, ARC_MACH_AUDIO },
436 { "bm_sstart", 0x30, AUXREG, ARC_MACH_AUDIO },
437 { "bm_length", 0x31, AUXREG, ARC_MACH_AUDIO },
438 { "bm_rstart", 0x32, AUXREG, ARC_MACH_AUDIO },
439 { "bm_go", 0x33, AUXREG, ARC_MACH_AUDIO },
440 { "xtp_newval", 0x40, AUXREG, ARC_MACH_AUDIO },
441 { "sram", 0x400, AUXREG, ARC_MACH_AUDIO },
442 { "reg_file", 0x800, AUXREG, ARC_MACH_AUDIO },
edb35c13 443};
1a56be5c 444const int arc_reg_names_count = sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
edb35c13
DE
445
446/* The suffix table.
447 Operands with the same name must be stored together. */
448
449const struct arc_operand_value arc_suffixes[] =
450{
451 /* Entry 0 is special, default values aren't printed by the disassembler. */
452 { "", 0, -1 },
453 { "al", 0, COND },
454 { "ra", 0, COND },
455 { "eq", 1, COND },
456 { "z", 1, COND },
457 { "ne", 2, COND },
458 { "nz", 2, COND },
459 { "p", 3, COND },
460 { "pl", 3, COND },
461 { "n", 4, COND },
462 { "mi", 4, COND },
463 { "c", 5, COND },
464 { "cs", 5, COND },
465 { "lo", 5, COND },
466 { "nc", 6, COND },
467 { "cc", 6, COND },
468 { "hs", 6, COND },
469 { "v", 7, COND },
470 { "vs", 7, COND },
471 { "nv", 8, COND },
472 { "vc", 8, COND },
473 { "gt", 9, COND },
474 { "ge", 10, COND },
475 { "lt", 11, COND },
476 { "le", 12, COND },
477 { "hi", 13, COND },
478 { "ls", 14, COND },
479 { "pnz", 15, COND },
480 { "f", 1, FLAG },
481 { "nd", 0, DELAY },
482 { "d", 1, DELAY },
483 { "jd", 2, DELAY },
1a56be5c
DE
484/*{ "b", 7, SIZEEXT },*/
485/*{ "b", 5, SIZESEX },*/
edb35c13
DE
486 { "b", 1, SIZE1 },
487 { "b", 1, SIZE10 },
488 { "b", 1, SIZE22 },
1a56be5c
DE
489/*{ "w", 8, SIZEEXT },*/
490/*{ "w", 6, SIZESEX },*/
edb35c13
DE
491 { "w", 2, SIZE1 },
492 { "w", 2, SIZE10 },
493 { "w", 2, SIZE22 },
494 { "x", 1, SIGN0 },
495 { "x", 1, SIGN9 },
496 { "a", 1, ADDRESS3 },
497 { "a", 1, ADDRESS12 },
498 { "a", 1, ADDRESS24 },
499 { "di", 1, CACHEBYPASS5 },
500 { "di", 1, CACHEBYPASS14 },
501 { "di", 1, CACHEBYPASS26 },
ecec4df3
DE
502
503 /* Audio ARC Extensions. */
504 /* ??? The values here are guesses. */
505 { "ss", 16, COND, ARC_MACH_AUDIO },
506 { "sc", 17, COND, ARC_MACH_AUDIO },
507 { "mh", 18, COND, ARC_MACH_AUDIO },
508 { "ml", 19, COND, ARC_MACH_AUDIO },
edb35c13 509};
1a56be5c
DE
510const int arc_suffixes_count = sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
511\f
edb35c13
DE
512/* Configuration flags. */
513
514/* Various ARC_HAVE_XXX bits. */
515static int cpu_type;
516
1a56be5c
DE
517/* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
518
519int
520arc_get_opcode_mach (bfd_mach, big_p)
521 int bfd_mach, big_p;
522{
523 static int mach_type_map[] =
524 {
525 ARC_MACH_BASE, ARC_MACH_HOST, ARC_MACH_GRAPHICS, ARC_MACH_AUDIO
526 };
527
528 return mach_type_map[bfd_mach] | (big_p ? ARC_MACH_BIG : 0);
529}
530
edb35c13
DE
531/* Initialize any tables that need it.
532 Must be called once at start up (or when first needed).
533
1a56be5c
DE
534 FLAGS is a set of bits that say what version of the cpu we have,
535 and in particular at least (one of) ARC_MACH_XXX. */
edb35c13
DE
536
537void
ecec4df3
DE
538arc_opcode_init_tables (flags)
539 int flags;
edb35c13
DE
540{
541 register int i,n;
1a56be5c 542 static int map_init_p = 0;
edb35c13 543
ecec4df3
DE
544 cpu_type = flags;
545
1a56be5c
DE
546 /* We may be intentionally called more than once (for example gdb will call
547 us each time the user switches cpu). This table only needs to be init'd
548 once though. */
549 if (!map_init_p)
550 {
551 memset (arc_operand_map, 0, sizeof (arc_operand_map));
552 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
553 for (i = 0; i < n; i++)
554 arc_operand_map[arc_operands[i].fmt] = i;
555 map_init_p = 1;
556 }
ecec4df3 557}
edb35c13 558
ecec4df3
DE
559/* Return non-zero if OPCODE is supported on the specified cpu.
560 Cpu selection is made when calling `arc_opcode_init_tables'. */
561
562int
563arc_opcode_supported (opcode)
564 const struct arc_opcode *opcode;
565{
1a56be5c 566 if (ARC_OPCODE_CPU (opcode->flags) == 0)
ecec4df3 567 return 1;
1a56be5c 568 if (ARC_OPCODE_CPU (opcode->flags) & ARC_HAVE_CPU (cpu_type))
ecec4df3
DE
569 return 1;
570 return 0;
571}
572
573/* Return non-zero if OPVAL is supported on the specified cpu.
574 Cpu selection is made when calling `arc_opcode_init_tables'. */
575
576int
577arc_opval_supported (opval)
578 const struct arc_operand_value *opval;
579{
1a56be5c 580 if (ARC_OPVAL_CPU (opval->flags) == 0)
ecec4df3 581 return 1;
1a56be5c 582 if (ARC_OPVAL_CPU (opval->flags) & ARC_HAVE_CPU (cpu_type))
ecec4df3
DE
583 return 1;
584 return 0;
edb35c13
DE
585}
586\f
587/* Nonzero if we've seen an 'f' suffix (in certain insns). */
588static int flag_p;
589
590/* Nonzero if we've finished processing the 'f' suffix. */
591static int flagshimm_handled_p;
592
593/* Nonzero if we've seen a 'q' suffix (condition code). */
594static int cond_p;
595
596/* Nonzero if we've inserted a shimm. */
597static int shimm_p;
598
599/* The value of the shimm we inserted (each insn only gets one but it can
600 appear multiple times. */
601static int shimm;
602
603/* Nonzero if we've inserted a limm (during assembly) or seen a limm
604 (during disassembly). */
605static int limm_p;
606
607/* The value of the limm we inserted. Each insn only gets one but it can
608 appear multiple times. */
609static long limm;
1a56be5c
DE
610\f
611/* Insertion functions. */
edb35c13
DE
612
613/* Called by the assembler before parsing an instruction. */
614
615void
616arc_opcode_init_insert ()
617{
618 flag_p = 0;
619 flagshimm_handled_p = 0;
620 cond_p = 0;
621 shimm_p = 0;
622 limm_p = 0;
623}
624
625/* Called by the assembler to see if the insn has a limm operand.
626 Also called by the disassembler to see if the insn contains a limm. */
627
628int
629arc_opcode_limm_p (limmp)
630 long *limmp;
631{
632 if (limmp)
633 *limmp = limm;
634 return limm_p;
635}
636
637/* Insert a value into a register field.
638 If REG is NULL, then this is actually a constant.
639
640 We must also handle auxiliary registers for lr/sr insns. */
641
642static arc_insn
643insert_reg (insn, operand, mods, reg, value, errmsg)
644 arc_insn insn;
645 const struct arc_operand *operand;
646 int mods;
647 const struct arc_operand_value *reg;
648 long value;
649 const char **errmsg;
650{
651 static char buf[100];
652
653 if (!reg)
654 {
655 /* We have a constant that also requires a value stored in a register
656 field. Handle these by updating the register field and saving the
657 value for later handling by either %S (shimm) or %L (limm). */
658
659 /* Try to use a shimm value before a limm one. */
660 if (ARC_SHIMM_CONST_P (value)
661 /* If we've seen a conditional suffix we have to use a limm. */
662 && !cond_p
663 /* If we already have a shimm value that is different than ours
664 we have to use a limm. */
665 && (!shimm_p || shimm == value))
666 {
667 int marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
668 flagshimm_handled_p = 1;
669 shimm_p = 1;
670 shimm = value;
671 insn |= marker << operand->shift;
672 /* insn |= value & 511; - done later */
673 }
674 /* We have to use a limm. If we've already seen one they must match. */
675 else if (!limm_p || limm == value)
676 {
677 limm_p = 1;
678 limm = value;
679 insn |= ARC_REG_LIMM << operand->shift;
680 /* The constant is stored later. */
681 }
682 else
683 {
684 *errmsg = "unable to fit different valued constants into instruction";
685 }
686 }
687 else
688 {
689 /* We have to handle both normal and auxiliary registers. */
690
691 if (reg->type == AUXREG)
692 {
693 if (!(mods & ARC_MOD_AUXREG))
694 *errmsg = "auxiliary register not allowed here";
695 else
696 {
697 insn |= ARC_REG_SHIMM << operand->shift;
698 insn |= reg->value << arc_operands[reg->type].shift;
699 }
700 }
701 else
702 {
703 /* We should never get an invalid register number here. */
704 if ((unsigned int) reg->value > 60)
705 {
706 sprintf (buf, "invalid register number `%d'", reg->value);
707 *errmsg = buf;
708 }
709 else
710 insn |= reg->value << operand->shift;
711 }
712 }
713
714 return insn;
715}
716
717/* Called when we see an 'f' flag. */
718
719static arc_insn
720insert_flag (insn, operand, mods, reg, value, errmsg)
721 arc_insn insn;
722 const struct arc_operand *operand;
723 int mods;
724 const struct arc_operand_value *reg;
725 long value;
726 const char **errmsg;
727{
728 /* We can't store anything in the insn until we've parsed the registers.
729 Just record the fact that we've got this flag. `insert_reg' will use it
730 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
731 flag_p = 1;
732
733 return insn;
734}
735
736/* Called after completely building an insn to ensure the 'f' flag gets set
737 properly. This is needed because we don't know how to set this flag until
738 we've parsed the registers. */
739
740static arc_insn
741insert_flagfinish (insn, operand, mods, reg, value, errmsg)
742 arc_insn insn;
743 const struct arc_operand *operand;
744 int mods;
745 const struct arc_operand_value *reg;
746 long value;
747 const char **errmsg;
748{
749 if (flag_p && !flagshimm_handled_p)
750 {
751 if (shimm_p)
752 abort ();
753 flagshimm_handled_p = 1;
754 insn |= (1 << operand->shift);
755 }
756 return insn;
757}
758
759/* Called when we see a conditional flag (eg: .eq). */
760
761static arc_insn
762insert_cond (insn, operand, mods, reg, value, errmsg)
763 arc_insn insn;
764 const struct arc_operand *operand;
765 int mods;
766 const struct arc_operand_value *reg;
767 long value;
768 const char **errmsg;
769{
770 cond_p = 1;
771 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
772 return insn;
773}
774
775/* Used in the "j" instruction to prevent constants from being interpreted as
776 shimm values (which the jump insn doesn't accept). This can also be used
777 to force the use of limm values in other situations (eg: ld r0,[foo] uses
778 this).
779 ??? The mechanism is sound. Access to it is a bit klunky right now. */
780
781static arc_insn
782insert_forcelimm (insn, operand, mods, reg, value, errmsg)
783 arc_insn insn;
784 const struct arc_operand *operand;
785 int mods;
786 const struct arc_operand_value *reg;
787 long value;
788 const char **errmsg;
789{
790 cond_p = 1;
791 return insn;
792}
793
794/* Used in ld/st insns to handle the shimm offset field. */
795
796static arc_insn
797insert_shimmoffset (insn, operand, mods, reg, value, errmsg)
798 arc_insn insn;
799 const struct arc_operand *operand;
800 int mods;
801 const struct arc_operand_value *reg;
802 long value;
803 const char **errmsg;
804{
805 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
806 return insn;
807}
808
809/* Used in ld/st insns when the shimm offset is 0. */
810
811static arc_insn
812insert_shimmzero (insn, operand, mods, reg, value, errmsg)
813 arc_insn insn;
814 const struct arc_operand *operand;
815 int mods;
816 const struct arc_operand_value *reg;
817 long value;
818 const char **errmsg;
819{
820 shimm_p = 1;
821 shimm = 0;
822 return insn;
823}
824
825/* Called at the end of processing normal insns (eg: add) to insert a shimm
826 value (if present) into the insn. */
827
828static arc_insn
829insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
830 arc_insn insn;
831 const struct arc_operand *operand;
832 int mods;
833 const struct arc_operand_value *reg;
834 long value;
835 const char **errmsg;
836{
837 if (shimm_p)
838 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
839 return insn;
840}
841
842/* Called at the end of processing normal insns (eg: add) to insert a limm
1a56be5c
DE
843 value (if present) into the insn.
844
845 Note that this function is only intended to handle instructions (with 4 byte
846 immediate operands). It is not intended to handle data. */
847
848/* ??? Actually, there's nothing for us to do as we can't call frag_more, the
849 caller must do that. The extract fns take a pointer to two words. The
850 insert fns could be converted and then we could do something useful, but
851 then the reloc handlers would have to know to work on the second word of
852 a 2 word quantity. That's too much so we don't handle them. */
edb35c13
DE
853
854static arc_insn
855insert_limmfinish (insn, operand, mods, reg, value, errmsg)
856 arc_insn insn;
857 const struct arc_operand *operand;
858 int mods;
859 const struct arc_operand_value *reg;
860 long value;
861 const char **errmsg;
862{
863 if (limm_p)
1a56be5c
DE
864 /* FIXME: put an abort here and see what happens. */
865 ; /* nothing to do, gas does it */
edb35c13
DE
866 return insn;
867}
868
869/* Called at the end of unary operand macros to copy the B field to C. */
870
871static arc_insn
872insert_unopmacro (insn, operand, mods, reg, value, errmsg)
873 arc_insn insn;
874 const struct arc_operand *operand;
875 int mods;
876 const struct arc_operand_value *reg;
877 long value;
878 const char **errmsg;
879{
880 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
881 return insn;
882}
883
884/* Insert a relative address for a branch insn (b, bl, or lp). */
885
886static arc_insn
887insert_reladdr (insn, operand, mods, reg, value, errmsg)
888 arc_insn insn;
889 const struct arc_operand *operand;
890 int mods;
891 const struct arc_operand_value *reg;
892 long value;
893 const char **errmsg;
894{
ecec4df3
DE
895 if (value & 3)
896 *errmsg = "branch address not on 4 byte boundary";
897 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
edb35c13
DE
898 return insn;
899}
1a56be5c
DE
900
901/* Insert a limm value as a 26 bit address right shifted 2 into the insn.
902
903 Note that this function is only intended to handle instructions (with 4 byte
904 immediate operands). It is not intended to handle data. */
905
906/* ??? Actually, there's nothing for us to do as we can't call frag_more, the
907 caller must do that. The extract fns take a pointer to two words. The
908 insert fns could be converted and then we could do something useful, but
909 then the reloc handlers would have to know to work on the second word of
910 a 2 word quantity. That's too much so we don't handle them. */
911
912static arc_insn
913insert_absaddr (insn, operand, mods, reg, value, errmsg)
914 arc_insn insn;
915 const struct arc_operand *operand;
916 int mods;
917 const struct arc_operand_value *reg;
918 long value;
919 const char **errmsg;
920{
921 if (limm_p)
922 /* FIXME: put an abort here and see what happens. */
923 ; /* nothing to do */
924 return insn;
925}
edb35c13
DE
926\f
927/* Extraction functions.
928
929 The suffix extraction functions' return value is redundant since it can be
930 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
931 a suffix table entry for the "false" case, so values of zero must be
932 obtained from the return value (*OPVAL == NULL). */
933
934static const struct arc_operand_value *lookup_register (int type, long regno);
935
936/* Called by the disassembler before printing an instruction. */
937
938void
939arc_opcode_init_extract ()
940{
941 flag_p = 0;
942 flagshimm_handled_p = 0;
943 shimm_p = 0;
944 limm_p = 0;
945}
946
947/* As we're extracting registers, keep an eye out for the 'f' indicator
948 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
949 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
950
951 We must also handle auxiliary registers for lr/sr insns. They are just
952 constants with special names. */
953
954static long
955extract_reg (insn, operand, mods, opval, invalid)
956 arc_insn *insn;
957 const struct arc_operand *operand;
958 int mods;
959 const struct arc_operand_value **opval;
960 int *invalid;
961{
962 int regno;
963 long value;
964
965 /* Get the register number. */
966 regno = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
967
968 /* Is it a constant marker? */
969 if (regno == ARC_REG_SHIMM)
970 {
971 value = insn[0] & 511;
972 if ((operand->flags & ARC_OPERAND_SIGNED)
973 && (value & 256))
974 value -= 512;
975 flagshimm_handled_p = 1;
976 }
977 else if (regno == ARC_REG_SHIMM_UPDATE)
978 {
979 value = insn[0] & 511;
980 if ((operand->flags & ARC_OPERAND_SIGNED)
981 && (value & 256))
982 value -= 512;
983 flag_p = 1;
984 flagshimm_handled_p = 1;
985 }
986 else if (regno == ARC_REG_LIMM)
987 {
988 value = insn[1];
989 limm_p = 1;
990 }
991 /* It's a register, set OPVAL (that's the only way we distinguish registers
992 from constants here). */
993 else
994 {
995 const struct arc_operand_value *reg = lookup_register (REG, regno);
996
997 if (!reg)
998 abort ();
999 if (opval)
1000 *opval = reg;
1001 value = regno;
1002 }
1003
1004 /* If this field takes an auxiliary register, see if it's a known one. */
1005 if ((mods & ARC_MOD_AUXREG)
1006 && ARC_REG_CONSTANT_P (regno))
1007 {
1008 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1009
1010 /* This is really a constant, but tell the caller it has a special
1011 name. */
1012 if (reg && opval)
1013 *opval = reg;
1014 }
1015
1016 return value;
1017}
1018
1019/* Return the value of the "flag update" field for shimm insns.
1020 This value is actually stored in the register field. */
1021
1022static long
1023extract_flag (insn, operand, mods, opval, invalid)
1024 arc_insn *insn;
1025 const struct arc_operand *operand;
1026 int mods;
1027 const struct arc_operand_value **opval;
1028 int *invalid;
1029{
1030 int f;
1031 const struct arc_operand_value *val;
1032
1033 if (flagshimm_handled_p)
1034 f = flag_p != 0;
1035 else
1036 f = (insn[0] & (1 << operand->shift)) != 0;
1037
1038 /* There is no text for zero values. */
1039 if (f == 0)
1040 return 0;
1041
1042 val = arc_opcode_lookup_suffix (operand, 1);
1043 if (opval && val)
1044 *opval = val;
1045 return val->value;
1046}
1047
1048/* Extract the condition code (if it exists).
1049 If we've seen a shimm value in this insn (meaning that the insn can't have
1050 a condition code field), then we don't store anything in OPVAL and return
1051 zero. */
1052
1053static long
1054extract_cond (insn, operand, mods, opval, invalid)
1055 arc_insn *insn;
1056 const struct arc_operand *operand;
1057 int mods;
1058 const struct arc_operand_value **opval;
1059 int *invalid;
1060{
1061 long cond;
1062 const struct arc_operand_value *val;
1063
1064 if (flagshimm_handled_p)
1065 return 0;
1066
1067 cond = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
1068 val = arc_opcode_lookup_suffix (operand, cond);
1069
1a56be5c
DE
1070 /* Ignore NULL values of `val'. Several condition code values are
1071 reserved for extensions. */
edb35c13
DE
1072 if (opval && val)
1073 *opval = val;
1074 return cond;
1075}
1076
ecec4df3
DE
1077/* Extract a branch address.
1078 We return the value as a real address (not right shifted by 2). */
1079
1080static long
1081extract_reladdr (insn, operand, mods, opval, invalid)
1082 arc_insn *insn;
1083 const struct arc_operand *operand;
1084 int mods;
1085 const struct arc_operand_value **opval;
1086 int *invalid;
1087{
1088 long addr;
1089
1090 addr = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
1091 if ((operand->flags & ARC_OPERAND_SIGNED)
1092 && (addr & (1 << (operand->bits - 1))))
1093 addr -= 1 << operand->bits;
1094
1095 return addr << 2;
1096}
1097
edb35c13
DE
1098/* The only thing this does is set the `invalid' flag if B != C.
1099 This is needed because the "mov" macro appears before it's real insn "and"
1100 and we don't want the disassembler to confuse them. */
1101
1102static long
1103extract_unopmacro (insn, operand, mods, opval, invalid)
1104 arc_insn *insn;
1105 const struct arc_operand *operand;
1106 int mods;
1107 const struct arc_operand_value **opval;
1108 int *invalid;
1109{
1110 /* ??? This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1111 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1112 printed as "and"s. */
1113 if (((insn[0] >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1114 != ((insn[0] >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1115 if (invalid)
1116 *invalid = 1;
1117
1118 return 0;
1119}
1120
edb35c13
DE
1121/* Utility for the extraction functions to return the index into
1122 `arc_suffixes'. */
1123
1124const struct arc_operand_value *
1125arc_opcode_lookup_suffix (type, value)
1126 const struct arc_operand *type;
1127 int value;
1128{
1129 register const struct arc_operand_value *v,*end;
1130
1131 /* ??? This is a little slow and can be speeded up. */
1132
1133 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1134 if (type == &arc_operands[v->type]
1135 && value == v->value)
1136 return v;
1137 return 0;
1138}
1139
1140static const struct arc_operand_value *
1141lookup_register (type, regno)
1142 int type;
1143 long regno;
1144{
1145 register const struct arc_operand_value *r,*end;
1146
1147 if (type == REG)
1148 return &arc_reg_names[regno];
1149
1150 /* ??? This is a little slow and can be speeded up. */
1151
1152 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1153 r < end; ++r)
1154 if (type == r->type && regno == r->value)
1155 return r;
1156 return 0;
1157}
This page took 0.176908 seconds and 4 git commands to generate.