2011-05-24 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
[deliverable/binutils-gdb.git] / opcodes / vax-dis.c
CommitLineData
252b5132 1/* Print VAX instructions.
aa820537 2 Copyright 1995, 1998, 2000, 2001, 2002, 2005, 2007, 2009
220abb21 3 Free Software Foundation, Inc.
252b5132
RH
4 Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
5
9b201bb5
NC
6 This file is part of the GNU opcodes library.
7
8 This library is free software; you can redistribute it and/or modify
4f495e61 9 it under the terms of the GNU General Public License as published by
9b201bb5
NC
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
252b5132 12
9b201bb5
NC
13 It is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
252b5132 17
4f495e61
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
47b0e7ad
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
ec72cfe5
NC
23#include <setjmp.h>
24#include <string.h>
0d8dfecf 25#include "sysdep.h"
252b5132
RH
26#include "opcode/vax.h"
27#include "dis-asm.h"
28
252b5132
RH
29static char *reg_names[] =
30{
31 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
32 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
33};
34
220abb21
AM
35/* Definitions for the function entry mask bits. */
36static char *entry_mask_bit[] =
37{
38 /* Registers 0 and 1 shall not be saved, since they're used to pass back
4f495e61 39 a function's result to its caller... */
220abb21
AM
40 "~r0~", "~r1~",
41 /* Registers 2 .. 11 are normal registers. */
42 "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
43 /* Registers 12 and 13 are argument and frame pointer and must not
44 be saved by using the entry mask. */
45 "~ap~", "~fp~",
46 /* Bits 14 and 15 control integer and decimal overflow. */
47 "IntOvfl", "DecOvfl",
48};
49
252b5132 50/* Sign-extend an (unsigned char). */
252b5132 51#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
252b5132
RH
52
53/* Get a 1 byte signed integer. */
54#define NEXTBYTE(p) \
55 (p += 1, FETCH_DATA (info, p), \
56 COERCE_SIGNED_CHAR(p[-1]))
57
58/* Get a 2 byte signed integer. */
59#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
60#define NEXTWORD(p) \
61 (p += 2, FETCH_DATA (info, p), \
62 COERCE16 ((p[-1] << 8) + p[-2]))
63
64/* Get a 4 byte signed integer. */
65#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
66#define NEXTLONG(p) \
67 (p += 4, FETCH_DATA (info, p), \
68 (COERCE32 ((((((p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
69
70/* Maximum length of an instruction. */
71#define MAXLEN 25
72
252b5132
RH
73struct private
74{
75 /* Points to first byte not fetched. */
ec72cfe5
NC
76 bfd_byte * max_fetched;
77 bfd_byte the_buffer[MAXLEN];
78 bfd_vma insn_start;
79 jmp_buf bailout;
252b5132
RH
80};
81
82/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
83 to ADDR (exclusive) are valid. Returns 1 for success, longjmps
84 on error. */
85#define FETCH_DATA(info, addr) \
86 ((addr) <= ((struct private *)(info->private_data))->max_fetched \
87 ? 1 : fetch_data ((info), (addr)))
88
89static int
47b0e7ad 90fetch_data (struct disassemble_info *info, bfd_byte *addr)
252b5132
RH
91{
92 int status;
93 struct private *priv = (struct private *) info->private_data;
94 bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
95
96 status = (*info->read_memory_func) (start,
97 priv->max_fetched,
98 addr - priv->max_fetched,
99 info);
100 if (status != 0)
101 {
102 (*info->memory_error_func) (status, start, info);
103 longjmp (priv->bailout, 1);
104 }
105 else
106 priv->max_fetched = addr;
107
108 return 1;
109}
110
ec72cfe5
NC
111/* Entry mask handling. */
112static unsigned int entry_addr_occupied_slots = 0;
113static unsigned int entry_addr_total_slots = 0;
114static bfd_vma * entry_addr = NULL;
115
116/* Parse the VAX specific disassembler options. These contain function
117 entry addresses, which can be useful to disassemble ROM images, since
118 there's no symbol table. Returns TRUE upon success, FALSE otherwise. */
119
120static bfd_boolean
121parse_disassembler_options (char * options)
122{
123 const char * entry_switch = "entry:";
124
125 while ((options = strstr (options, entry_switch)))
126 {
127 options += strlen (entry_switch);
128
129 /* The greater-than part of the test below is paranoia. */
130 if (entry_addr_occupied_slots >= entry_addr_total_slots)
131 {
132 /* A guesstimate of the number of entries we will have to create. */
133 entry_addr_total_slots +=
134 strlen (options) / (strlen (entry_switch) + 5);
135
136 entry_addr = realloc (entry_addr, sizeof (bfd_vma)
137 * entry_addr_total_slots);
138 }
139
140 if (entry_addr == NULL)
141 return FALSE;
142
143 entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
144 entry_addr_occupied_slots ++;
145 }
146
147 return TRUE;
148}
149
150#if 0 /* FIXME: Ideally the disassembler should have target specific
151 initialisation and termination function pointers. Then
152 parse_disassembler_options could be the init function and
153 free_entry_array (below) could be the termination routine.
154 Until then there is no way for the disassembler to tell us
155 that it has finished and that we no longer need the entry
156 array, so this routine is suppressed for now. It does mean
157 that we leak memory, but only to the extent that we do not
158 free it just before the disassembler is about to terminate
159 anyway. */
160
161/* Free memory allocated to our entry array. */
162
163static void
164free_entry_array (void)
165{
166 if (entry_addr)
167 {
168 free (entry_addr);
169 entry_addr = NULL;
170 entry_addr_occupied_slots = entry_addr_total_slots = 0;
171 }
172}
173#endif
6db7e006
MR
174/* Check if the given address is a known function entry point. This is
175 the case if there is a symbol of the function type at this address.
176 We also check for synthetic symbols as these are used for PLT entries
177 (weak undefined symbols may not have the function type set). Finally
178 the address may have been forced to be treated as an entry point. The
179 latter helps in disassembling ROM images, because there's no symbol
180 table at all. Forced entry points can be given by supplying several
181 -M options to objdump: -M entry:0xffbb7730. */
ec72cfe5
NC
182
183static bfd_boolean
184is_function_entry (struct disassemble_info *info, bfd_vma addr)
185{
186 unsigned int i;
187
6db7e006 188 /* Check if there's a function or PLT symbol at our address. */
ec72cfe5
NC
189 if (info->symbols
190 && info->symbols[0]
6db7e006 191 && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
ec72cfe5
NC
192 && addr == bfd_asymbol_value (info->symbols[0]))
193 return TRUE;
194
195 /* Check for forced function entry address. */
196 for (i = entry_addr_occupied_slots; i--;)
197 if (entry_addr[i] == addr)
198 return TRUE;
199
200 return FALSE;
201}
202
6db7e006
MR
203/* Check if the given address is the last longword of a PLT entry.
204 This longword is data and depending on the value it may interfere
205 with disassembly of further PLT entries. We make use of the fact
206 PLT symbols are marked BSF_SYNTHETIC. */
207static bfd_boolean
208is_plt_tail (struct disassemble_info *info, bfd_vma addr)
209{
210 if (info->symbols
211 && info->symbols[0]
212 && (info->symbols[0]->flags & BSF_SYNTHETIC)
213 && addr == bfd_asymbol_value (info->symbols[0]) + 8)
214 return TRUE;
215
216 return FALSE;
217}
218
47b0e7ad
NC
219static int
220print_insn_mode (const char *d,
221 int size,
222 unsigned char *p0,
223 bfd_vma addr, /* PC for this arg to be relative to. */
224 disassemble_info *info)
225{
226 unsigned char *p = p0;
227 unsigned char mode, reg;
228
229 /* Fetch and interpret mode byte. */
230 mode = (unsigned char) NEXTBYTE (p);
231 reg = mode & 0xF;
232 switch (mode & 0xF0)
233 {
234 case 0x00:
235 case 0x10:
236 case 0x20:
237 case 0x30: /* Literal mode $number. */
238 if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
239 (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
240 else
241 (*info->fprintf_func) (info->stream, "$0x%x", mode);
242 break;
243 case 0x40: /* Index: base-addr[Rn] */
244 p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
245 (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
246 break;
247 case 0x50: /* Register: Rn */
248 (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
249 break;
250 case 0x60: /* Register deferred: (Rn) */
251 (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
252 break;
253 case 0x70: /* Autodecrement: -(Rn) */
254 (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
255 break;
256 case 0x80: /* Autoincrement: (Rn)+ */
257 if (reg == 0xF)
258 { /* Immediate? */
259 int i;
260
261 FETCH_DATA (info, p + size);
262 (*info->fprintf_func) (info->stream, "$0x");
263 if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
264 {
265 int float_word;
266
267 float_word = p[0] | (p[1] << 8);
268 if ((d[1] == 'd' || d[1] == 'f')
269 && (float_word & 0xff80) == 0x8000)
270 {
271 (*info->fprintf_func) (info->stream, "[invalid %c-float]",
272 d[1]);
273 }
274 else
275 {
276 for (i = 0; i < size; i++)
277 (*info->fprintf_func) (info->stream, "%02x",
278 p[size - i - 1]);
279 (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
280 }
281 }
282 else
283 {
284 for (i = 0; i < size; i++)
285 (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
286 }
287 p += size;
288 }
289 else
290 (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
291 break;
292 case 0x90: /* Autoincrement deferred: @(Rn)+ */
293 if (reg == 0xF)
294 (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
295 else
296 (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
297 break;
298 case 0xB0: /* Displacement byte deferred: *displ(Rn). */
299 (*info->fprintf_func) (info->stream, "*");
300 case 0xA0: /* Displacement byte: displ(Rn). */
301 if (reg == 0xF)
302 (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
303 else
304 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
305 reg_names[reg]);
306 break;
307 case 0xD0: /* Displacement word deferred: *displ(Rn). */
308 (*info->fprintf_func) (info->stream, "*");
309 case 0xC0: /* Displacement word: displ(Rn). */
310 if (reg == 0xF)
311 (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
312 else
313 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
314 reg_names[reg]);
315 break;
316 case 0xF0: /* Displacement long deferred: *displ(Rn). */
317 (*info->fprintf_func) (info->stream, "*");
318 case 0xE0: /* Displacement long: displ(Rn). */
319 if (reg == 0xF)
320 (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
321 else
322 (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
323 reg_names[reg]);
324 break;
325 }
326
327 return p - p0;
328}
329
330/* Returns number of bytes "eaten" by the operand, or return -1 if an
331 invalid operand was found, or -2 if an opcode tabel error was
332 found. */
333
334static int
335print_insn_arg (const char *d,
336 unsigned char *p0,
337 bfd_vma addr, /* PC for this arg to be relative to. */
338 disassemble_info *info)
339{
340 int arg_len;
341
342 /* Check validity of addressing length. */
343 switch (d[1])
344 {
345 case 'b' : arg_len = 1; break;
346 case 'd' : arg_len = 8; break;
347 case 'f' : arg_len = 4; break;
348 case 'g' : arg_len = 8; break;
349 case 'h' : arg_len = 16; break;
350 case 'l' : arg_len = 4; break;
351 case 'o' : arg_len = 16; break;
352 case 'w' : arg_len = 2; break;
353 case 'q' : arg_len = 8; break;
354 default : abort ();
355 }
356
357 /* Branches have no mode byte. */
358 if (d[0] == 'b')
359 {
360 unsigned char *p = p0;
361
362 if (arg_len == 1)
363 (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
364 else
365 (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
366
367 return p - p0;
368 }
369
370 return print_insn_mode (d, arg_len, p0, addr, info);
371}
372
252b5132
RH
373/* Print the vax instruction at address MEMADDR in debugged memory,
374 on INFO->STREAM. Returns length of the instruction, in bytes. */
375
376int
47b0e7ad 377print_insn_vax (bfd_vma memaddr, disassemble_info *info)
252b5132 378{
ec72cfe5 379 static bfd_boolean parsed_disassembler_options = FALSE;
252b5132 380 const struct vot *votp;
fc05c67f 381 const char *argp;
252b5132
RH
382 unsigned char *arg;
383 struct private priv;
384 bfd_byte *buffer = priv.the_buffer;
385
47b0e7ad 386 info->private_data = & priv;
252b5132
RH
387 priv.max_fetched = priv.the_buffer;
388 priv.insn_start = memaddr;
fc05c67f 389
ec72cfe5
NC
390 if (! parsed_disassembler_options
391 && info->disassembler_options != NULL)
392 {
393 parse_disassembler_options (info->disassembler_options);
394
395 /* To avoid repeated parsing of these options. */
396 parsed_disassembler_options = TRUE;
397 }
398
252b5132 399 if (setjmp (priv.bailout) != 0)
47b0e7ad
NC
400 /* Error return. */
401 return -1;
252b5132 402
fc05c67f 403 argp = NULL;
bbe6d95f
AM
404 /* Check if the info buffer has more than one byte left since
405 the last opcode might be a single byte with no argument data. */
406 if (info->buffer_length - (memaddr - info->buffer_vma) > 1)
407 {
408 FETCH_DATA (info, buffer + 2);
409 }
410 else
411 {
412 FETCH_DATA (info, buffer + 1);
413 buffer[1] = 0;
414 }
415
220abb21 416 /* Decode function entry mask. */
ec72cfe5 417 if (is_function_entry (info, memaddr))
220abb21
AM
418 {
419 int i = 0;
420 int register_mask = buffer[1] << 8 | buffer[0];
421
4f495e61 422 (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
220abb21
AM
423 register_mask);
424
425 for (i = 15; i >= 0; i--)
426 if (register_mask & (1 << i))
427 (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
428
429 (*info->fprintf_func) (info->stream, " >");
430
431 return 2;
432 }
433
6db7e006
MR
434 /* Decode PLT entry offset longword. */
435 if (is_plt_tail (info, memaddr))
436 {
437 int offset;
438
439 FETCH_DATA (info, buffer + 4);
440 offset = buffer[3] << 24 | buffer[2] << 16 | buffer[1] << 8 | buffer[0];
441 (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
442
443 return 4;
444 }
445
252b5132
RH
446 for (votp = &votstrs[0]; votp->name[0]; votp++)
447 {
47b0e7ad 448 vax_opcodeT opcode = votp->detail.code;
252b5132
RH
449
450 /* 2 byte codes match 2 buffer pos. */
451 if ((bfd_byte) opcode == buffer[0]
452 && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
453 {
454 argp = votp->detail.args;
455 break;
456 }
457 }
458 if (argp == NULL)
459 {
460 /* Handle undefined instructions. */
461 (*info->fprintf_func) (info->stream, ".word 0x%x",
462 (buffer[0] << 8) + buffer[1]);
463 return 2;
464 }
465
466 /* Point at first byte of argument data, and at descriptor for first
467 argument. */
468 arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
469
470 /* Make sure we have it in mem */
471 FETCH_DATA (info, arg);
472
473 (*info->fprintf_func) (info->stream, "%s", votp->name);
474 if (*argp)
475 (*info->fprintf_func) (info->stream, " ");
476
477 while (*argp)
478 {
479 arg += print_insn_arg (argp, arg, memaddr + arg - buffer, info);
480 argp += 2;
481 if (*argp)
482 (*info->fprintf_func) (info->stream, ",");
483 }
484
485 return arg - buffer;
486}
487
This page took 0.524537 seconds and 4 git commands to generate.