* elf-strtab.c (struct elf_strtab_hash_entry): Add u.next.
[deliverable/binutils-gdb.git] / sim / arm / armsupp.c
CommitLineData
c906108c
SS
1/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
2 Copyright (C) 1994 Advanced RISC Machines Ltd.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
17
18#include "armdefs.h"
19#include "armemu.h"
6d358e86 20#include "ansidecl.h"
c906108c 21
ff44f8e3
NC
22/* Definitions for the support routines. */
23
24static ARMword ModeToBank (ARMword);
25static void EnvokeList (ARMul_State *, unsigned long, unsigned long);
dfcd3bfb
JM
26
27struct EventNode
ff44f8e3
NC
28{ /* An event list node. */
29 unsigned (*func) (ARMul_State *); /* The function to call. */
dfcd3bfb
JM
30 struct EventNode *next;
31};
c906108c 32
ff44f8e3 33/* This routine returns the value of a register from a mode. */
c906108c 34
dfcd3bfb
JM
35ARMword
36ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
37{
38 mode &= MODEBITS;
39 if (mode != state->Mode)
c1a72ffd 40 return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
dfcd3bfb
JM
41 else
42 return (state->Reg[reg]);
c906108c
SS
43}
44
ff44f8e3 45/* This routine sets the value of a register for a mode. */
c906108c 46
dfcd3bfb
JM
47void
48ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
49{
50 mode &= MODEBITS;
51 if (mode != state->Mode)
c1a72ffd 52 state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
dfcd3bfb
JM
53 else
54 state->Reg[reg] = value;
c906108c
SS
55}
56
ff44f8e3 57/* This routine returns the value of the PC, mode independently. */
c906108c 58
dfcd3bfb
JM
59ARMword
60ARMul_GetPC (ARMul_State * state)
61{
62 if (state->Mode > SVC26MODE)
ff44f8e3 63 return state->Reg[15];
dfcd3bfb 64 else
ff44f8e3 65 return R15PC;
c906108c
SS
66}
67
ff44f8e3 68/* This routine returns the value of the PC, mode independently. */
c906108c 69
dfcd3bfb
JM
70ARMword
71ARMul_GetNextPC (ARMul_State * state)
72{
73 if (state->Mode > SVC26MODE)
ff44f8e3 74 return state->Reg[15] + isize;
dfcd3bfb 75 else
ff44f8e3 76 return (state->Reg[15] + isize) & R15PCBITS;
c906108c
SS
77}
78
ff44f8e3 79/* This routine sets the value of the PC. */
c906108c 80
dfcd3bfb
JM
81void
82ARMul_SetPC (ARMul_State * state, ARMword value)
83{
84 if (ARMul_MODE32BIT)
85 state->Reg[15] = value & PCBITS;
86 else
87 state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
88 FLUSHPIPE;
c906108c
SS
89}
90
ff44f8e3 91/* This routine returns the value of register 15, mode independently. */
c906108c 92
dfcd3bfb
JM
93ARMword
94ARMul_GetR15 (ARMul_State * state)
95{
96 if (state->Mode > SVC26MODE)
97 return (state->Reg[15]);
98 else
99 return (R15PC | ECC | ER15INT | EMODE);
c906108c
SS
100}
101
ff44f8e3 102/* This routine sets the value of Register 15. */
c906108c 103
dfcd3bfb
JM
104void
105ARMul_SetR15 (ARMul_State * state, ARMword value)
c906108c 106{
dfcd3bfb
JM
107 if (ARMul_MODE32BIT)
108 state->Reg[15] = value & PCBITS;
109 else
110 {
111 state->Reg[15] = value;
112 ARMul_R15Altered (state);
c906108c 113 }
dfcd3bfb 114 FLUSHPIPE;
c906108c
SS
115}
116
ff44f8e3 117/* This routine returns the value of the CPSR. */
c906108c 118
dfcd3bfb
JM
119ARMword
120ARMul_GetCPSR (ARMul_State * state)
c906108c 121{
cf52c765 122 return (CPSR | state->Cpsr);
dfcd3bfb 123}
c906108c 124
ff44f8e3 125/* This routine sets the value of the CPSR. */
c906108c 126
dfcd3bfb
JM
127void
128ARMul_SetCPSR (ARMul_State * state, ARMword value)
129{
4ef2594f 130 state->Cpsr = value;
dfcd3bfb
JM
131 ARMul_CPSRAltered (state);
132}
c906108c 133
ff44f8e3
NC
134/* This routine does all the nasty bits involved in a write to the CPSR,
135 including updating the register bank, given a MSR instruction. */
c906108c 136
dfcd3bfb
JM
137void
138ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
139{
cf52c765 140 state->Cpsr = ARMul_GetCPSR (state);
dac07255
NC
141 if (state->Mode != USER26MODE
142 && state->Mode != USER32MODE)
ff44f8e3
NC
143 {
144 /* In user mode, only write flags. */
4ef2594f
AO
145 if (BIT (16))
146 SETPSR_C (state->Cpsr, rhs);
147 if (BIT (17))
148 SETPSR_X (state->Cpsr, rhs);
149 if (BIT (18))
150 SETPSR_S (state->Cpsr, rhs);
c906108c 151 }
4ef2594f
AO
152 if (BIT (19))
153 SETPSR_F (state->Cpsr, rhs);
dfcd3bfb
JM
154 ARMul_CPSRAltered (state);
155}
c906108c 156
ff44f8e3 157/* Get an SPSR from the specified mode. */
c906108c 158
dfcd3bfb
JM
159ARMword
160ARMul_GetSPSR (ARMul_State * state, ARMword mode)
161{
c1a72ffd
NC
162 ARMword bank = ModeToBank (mode & MODEBITS);
163
164 if (! BANK_CAN_ACCESS_SPSR (bank))
cf52c765 165 return ARMul_GetCPSR (state);
c1a72ffd
NC
166
167 return state->Spsr[bank];
c906108c
SS
168}
169
ff44f8e3 170/* This routine does a write to an SPSR. */
c906108c 171
dfcd3bfb
JM
172void
173ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
174{
c1a72ffd
NC
175 ARMword bank = ModeToBank (mode & MODEBITS);
176
177 if (BANK_CAN_ACCESS_SPSR (bank))
dfcd3bfb 178 state->Spsr[bank] = value;
c906108c
SS
179}
180
ff44f8e3 181/* This routine does a write to the current SPSR, given an MSR instruction. */
c906108c 182
dfcd3bfb
JM
183void
184ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
185{
c1a72ffd 186 if (BANK_CAN_ACCESS_SPSR (state->Bank))
dfcd3bfb 187 {
4ef2594f
AO
188 if (BIT (16))
189 SETPSR_C (state->Spsr[state->Bank], rhs);
190 if (BIT (17))
191 SETPSR_X (state->Spsr[state->Bank], rhs);
192 if (BIT (18))
193 SETPSR_S (state->Spsr[state->Bank], rhs);
194 if (BIT (19))
195 SETPSR_F (state->Spsr[state->Bank], rhs);
c906108c
SS
196 }
197}
198
ff44f8e3
NC
199/* This routine updates the state of the emulator after the Cpsr has been
200 changed. Both the processor flags and register bank are updated. */
c906108c 201
dfcd3bfb
JM
202void
203ARMul_CPSRAltered (ARMul_State * state)
204{
205 ARMword oldmode;
206
207 if (state->prog32Sig == LOW)
208 state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
c1a72ffd 209
dfcd3bfb 210 oldmode = state->Mode;
c1a72ffd 211
dfcd3bfb
JM
212 if (state->Mode != (state->Cpsr & MODEBITS))
213 {
214 state->Mode =
215 ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
c1a72ffd 216
dfcd3bfb 217 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
c906108c 218 }
cf52c765 219 state->Cpsr &= ~MODEBITS;
c906108c 220
dfcd3bfb 221 ASSIGNINT (state->Cpsr & INTBITS);
cf52c765 222 state->Cpsr &= ~INTBITS;
dfcd3bfb 223 ASSIGNN ((state->Cpsr & NBIT) != 0);
cf52c765 224 state->Cpsr &= ~NBIT;
dfcd3bfb 225 ASSIGNZ ((state->Cpsr & ZBIT) != 0);
cf52c765 226 state->Cpsr &= ~ZBIT;
dfcd3bfb 227 ASSIGNC ((state->Cpsr & CBIT) != 0);
cf52c765 228 state->Cpsr &= ~CBIT;
dfcd3bfb 229 ASSIGNV ((state->Cpsr & VBIT) != 0);
cf52c765 230 state->Cpsr &= ~VBIT;
f1129fb8
NC
231 ASSIGNS ((state->Cpsr & SBIT) != 0);
232 state->Cpsr &= ~SBIT;
c906108c 233#ifdef MODET
dfcd3bfb 234 ASSIGNT ((state->Cpsr & TBIT) != 0);
cf52c765 235 state->Cpsr &= ~TBIT;
c906108c
SS
236#endif
237
dfcd3bfb
JM
238 if (oldmode > SVC26MODE)
239 {
240 if (state->Mode <= SVC26MODE)
241 {
242 state->Emulate = CHANGEMODE;
243 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
244 }
c906108c 245 }
dfcd3bfb
JM
246 else
247 {
248 if (state->Mode > SVC26MODE)
249 {
250 state->Emulate = CHANGEMODE;
251 state->Reg[15] = R15PC;
252 }
253 else
254 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
c906108c 255 }
c906108c
SS
256}
257
ff44f8e3
NC
258/* This routine updates the state of the emulator after register 15 has
259 been changed. Both the processor flags and register bank are updated.
260 This routine should only be called from a 26 bit mode. */
c906108c 261
dfcd3bfb
JM
262void
263ARMul_R15Altered (ARMul_State * state)
c906108c 264{
dfcd3bfb
JM
265 if (state->Mode != R15MODE)
266 {
267 state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
268 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
c906108c 269 }
ff44f8e3 270
dfcd3bfb
JM
271 if (state->Mode > SVC26MODE)
272 state->Emulate = CHANGEMODE;
ff44f8e3 273
dfcd3bfb 274 ASSIGNR15INT (R15INT);
ff44f8e3 275
dfcd3bfb
JM
276 ASSIGNN ((state->Reg[15] & NBIT) != 0);
277 ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
278 ASSIGNC ((state->Reg[15] & CBIT) != 0);
279 ASSIGNV ((state->Reg[15] & VBIT) != 0);
c906108c
SS
280}
281
ff44f8e3
NC
282/* This routine controls the saving and restoring of registers across mode
283 changes. The regbank matrix is largely unused, only rows 13 and 14 are
284 used across all modes, 8 to 14 are used for FIQ, all others use the USER
285 column. It's easier this way. old and new parameter are modes numbers.
286 Notice the side effect of changing the Bank variable. */
c906108c 287
dfcd3bfb
JM
288ARMword
289ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
290{
291 unsigned i;
c1a72ffd
NC
292 ARMword oldbank;
293 ARMword newbank;
294
295 oldbank = ModeToBank (oldmode);
296 newbank = state->Bank = ModeToBank (newmode);
297
ff44f8e3 298 /* Do we really need to do it? */
c1a72ffd 299 if (oldbank != newbank)
ff44f8e3
NC
300 {
301 /* Save away the old registers. */
c1a72ffd 302 switch (oldbank)
ff44f8e3 303 {
dfcd3bfb
JM
304 case USERBANK:
305 case IRQBANK:
306 case SVCBANK:
307 case ABORTBANK:
308 case UNDEFBANK:
c1a72ffd 309 if (newbank == FIQBANK)
dfcd3bfb
JM
310 for (i = 8; i < 13; i++)
311 state->RegBank[USERBANK][i] = state->Reg[i];
c1a72ffd
NC
312 state->RegBank[oldbank][13] = state->Reg[13];
313 state->RegBank[oldbank][14] = state->Reg[14];
dfcd3bfb
JM
314 break;
315 case FIQBANK:
316 for (i = 8; i < 15; i++)
317 state->RegBank[FIQBANK][i] = state->Reg[i];
318 break;
319 case DUMMYBANK:
320 for (i = 8; i < 15; i++)
321 state->RegBank[DUMMYBANK][i] = 0;
322 break;
c1a72ffd
NC
323 default:
324 abort ();
dfcd3bfb 325 }
c1a72ffd 326
ff44f8e3 327 /* Restore the new registers. */
c1a72ffd 328 switch (newbank)
ff44f8e3 329 {
dfcd3bfb
JM
330 case USERBANK:
331 case IRQBANK:
332 case SVCBANK:
333 case ABORTBANK:
334 case UNDEFBANK:
c1a72ffd 335 if (oldbank == FIQBANK)
dfcd3bfb
JM
336 for (i = 8; i < 13; i++)
337 state->Reg[i] = state->RegBank[USERBANK][i];
c1a72ffd
NC
338 state->Reg[13] = state->RegBank[newbank][13];
339 state->Reg[14] = state->RegBank[newbank][14];
dfcd3bfb
JM
340 break;
341 case FIQBANK:
342 for (i = 8; i < 15; i++)
343 state->Reg[i] = state->RegBank[FIQBANK][i];
344 break;
345 case DUMMYBANK:
346 for (i = 8; i < 15; i++)
347 state->Reg[i] = 0;
348 break;
c1a72ffd
NC
349 default:
350 abort ();
ff44f8e3
NC
351 }
352 }
c1a72ffd
NC
353
354 return newmode;
c906108c
SS
355}
356
ff44f8e3
NC
357/* Given a processor mode, this routine returns the
358 register bank that will be accessed in that mode. */
c906108c 359
dfcd3bfb 360static ARMword
c1a72ffd 361ModeToBank (ARMword mode)
dfcd3bfb 362{
c1a72ffd
NC
363 static ARMword bankofmode[] =
364 {
365 USERBANK, FIQBANK, IRQBANK, SVCBANK,
dfcd3bfb
JM
366 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
367 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
368 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
c1a72ffd 369 USERBANK, FIQBANK, IRQBANK, SVCBANK,
dfcd3bfb 370 DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
c1a72ffd
NC
371 DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
372 DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
dfcd3bfb
JM
373 };
374
c1a72ffd
NC
375 if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
376 return DUMMYBANK;
377
378 return bankofmode[mode];
dfcd3bfb 379}
c906108c 380
ff44f8e3 381/* Returns the register number of the nth register in a reg list. */
c906108c 382
dfcd3bfb
JM
383unsigned
384ARMul_NthReg (ARMword instr, unsigned number)
385{
386 unsigned bit, upto;
c906108c 387
ff44f8e3 388 for (bit = 0, upto = 0; upto <= number; bit ++)
dfcd3bfb 389 if (BIT (bit))
ff44f8e3
NC
390 upto ++;
391
dfcd3bfb 392 return (bit - 1);
c906108c
SS
393}
394
ff44f8e3 395/* Assigns the N and Z flags depending on the value of result. */
c906108c 396
dfcd3bfb
JM
397void
398ARMul_NegZero (ARMul_State * state, ARMword result)
c906108c 399{
dfcd3bfb
JM
400 if (NEG (result))
401 {
402 SETN;
403 CLEARZ;
404 }
405 else if (result == 0)
406 {
407 CLEARN;
408 SETZ;
409 }
410 else
411 {
412 CLEARN;
413 CLEARZ;
ff44f8e3 414 }
dfcd3bfb 415}
c906108c 416
f743149e 417/* Compute whether an addition of A and B, giving RESULT, overflowed. */
ff44f8e3 418
dfcd3bfb
JM
419int
420AddOverflow (ARMword a, ARMword b, ARMword result)
f743149e
JM
421{
422 return ((NEG (a) && NEG (b) && POS (result))
423 || (POS (a) && POS (b) && NEG (result)));
424}
425
426/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
ff44f8e3 427
dfcd3bfb
JM
428int
429SubOverflow (ARMword a, ARMword b, ARMword result)
f743149e
JM
430{
431 return ((NEG (a) && POS (b) && POS (result))
432 || (POS (a) && NEG (b) && NEG (result)));
433}
434
ff44f8e3 435/* Assigns the C flag after an addition of a and b to give result. */
c906108c 436
dfcd3bfb
JM
437void
438ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
c906108c 439{
dfcd3bfb
JM
440 ASSIGNC ((NEG (a) && NEG (b)) ||
441 (NEG (a) && POS (result)) || (NEG (b) && POS (result)));
442}
c906108c 443
ff44f8e3 444/* Assigns the V flag after an addition of a and b to give result. */
c906108c 445
dfcd3bfb
JM
446void
447ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
c906108c 448{
f743149e
JM
449 ASSIGNV (AddOverflow (a, b, result));
450}
c906108c 451
ff44f8e3 452/* Assigns the C flag after an subtraction of a and b to give result. */
c906108c 453
dfcd3bfb
JM
454void
455ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
c906108c 456{
dfcd3bfb
JM
457 ASSIGNC ((NEG (a) && POS (b)) ||
458 (NEG (a) && POS (result)) || (POS (b) && POS (result)));
c906108c
SS
459}
460
ff44f8e3 461/* Assigns the V flag after an subtraction of a and b to give result. */
c906108c 462
dfcd3bfb
JM
463void
464ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
c906108c 465{
f743149e 466 ASSIGNV (SubOverflow (a, b, result));
c906108c
SS
467}
468
ff44f8e3
NC
469/* This function does the work of generating the addresses used in an
470 LDC instruction. The code here is always post-indexed, it's up to the
471 caller to get the input address correct and to handle base register
472 modification. It also handles the Busy-Waiting. */
c906108c 473
dfcd3bfb
JM
474void
475ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
476{
477 unsigned cpab;
478 ARMword data;
c906108c 479
dfcd3bfb 480 UNDEF_LSCPCBaseWb;
ff44f8e3
NC
481
482 if (! CP_ACCESS_ALLOWED (state, CPNum))
dfcd3bfb 483 {
ff44f8e3
NC
484 ARMul_UndefInstr (state, instr);
485 return;
c906108c 486 }
ff44f8e3
NC
487
488 if (ADDREXCEPT (address))
489 INTERNALABORT (address);
490
dfcd3bfb
JM
491 cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
492 while (cpab == ARMul_BUSY)
493 {
494 ARMul_Icycles (state, 1, 0);
ff44f8e3 495
dfcd3bfb
JM
496 if (IntPending (state))
497 {
498 cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
499 return;
500 }
501 else
502 cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
c906108c 503 }
dfcd3bfb
JM
504 if (cpab == ARMul_CANT)
505 {
506 CPTAKEABORT;
507 return;
c906108c 508 }
ff44f8e3 509
dfcd3bfb
JM
510 cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
511 data = ARMul_LoadWordN (state, address);
512 BUSUSEDINCPCN;
ff44f8e3 513
dfcd3bfb
JM
514 if (BIT (21))
515 LSBase = state->Base;
516 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
ff44f8e3 517
dfcd3bfb
JM
518 while (cpab == ARMul_INC)
519 {
520 address += 4;
521 data = ARMul_LoadWordN (state, address);
522 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
c906108c 523 }
ff44f8e3 524
dfcd3bfb 525 if (state->abortSig || state->Aborted)
ff44f8e3 526 TAKEABORT;
dfcd3bfb 527}
c906108c 528
ff44f8e3
NC
529/* This function does the work of generating the addresses used in an
530 STC instruction. The code here is always post-indexed, it's up to the
531 caller to get the input address correct and to handle base register
532 modification. It also handles the Busy-Waiting. */
c906108c 533
dfcd3bfb
JM
534void
535ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
536{
537 unsigned cpab;
538 ARMword data;
c906108c 539
dfcd3bfb 540 UNDEF_LSCPCBaseWb;
ff44f8e3
NC
541
542 if (! CP_ACCESS_ALLOWED (state, CPNum))
dfcd3bfb 543 {
ff44f8e3
NC
544 ARMul_UndefInstr (state, instr);
545 return;
c906108c 546 }
ff44f8e3
NC
547
548 if (ADDREXCEPT (address) || VECTORACCESS (address))
549 INTERNALABORT (address);
550
dfcd3bfb
JM
551 cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
552 while (cpab == ARMul_BUSY)
553 {
554 ARMul_Icycles (state, 1, 0);
555 if (IntPending (state))
556 {
557 cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
558 return;
559 }
560 else
561 cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
c906108c 562 }
ff44f8e3 563
dfcd3bfb
JM
564 if (cpab == ARMul_CANT)
565 {
566 CPTAKEABORT;
567 return;
c906108c
SS
568 }
569#ifndef MODE32
dfcd3bfb 570 if (ADDREXCEPT (address) || VECTORACCESS (address))
ff44f8e3
NC
571 INTERNALABORT (address);
572
c906108c 573#endif
dfcd3bfb
JM
574 BUSUSEDINCPCN;
575 if (BIT (21))
576 LSBase = state->Base;
577 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
578 ARMul_StoreWordN (state, address, data);
ff44f8e3 579
dfcd3bfb
JM
580 while (cpab == ARMul_INC)
581 {
582 address += 4;
583 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
584 ARMul_StoreWordN (state, address, data);
c906108c 585 }
ff44f8e3 586
dfcd3bfb 587 if (state->abortSig || state->Aborted)
ff44f8e3 588 TAKEABORT;
dfcd3bfb 589}
c906108c 590
ff44f8e3 591/* This function does the Busy-Waiting for an MCR instruction. */
c906108c 592
dfcd3bfb
JM
593void
594ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
595{
596 unsigned cpab;
597
ff44f8e3
NC
598 if (! CP_ACCESS_ALLOWED (state, CPNum))
599 {
600 ARMul_UndefInstr (state, instr);
601 return;
602 }
603
dfcd3bfb 604 cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
c1a72ffd 605
dfcd3bfb
JM
606 while (cpab == ARMul_BUSY)
607 {
608 ARMul_Icycles (state, 1, 0);
c1a72ffd 609
dfcd3bfb
JM
610 if (IntPending (state))
611 {
612 cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
613 return;
614 }
615 else
616 cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
c906108c 617 }
c1a72ffd 618
dfcd3bfb
JM
619 if (cpab == ARMul_CANT)
620 ARMul_Abort (state, ARMul_UndefinedInstrV);
621 else
622 {
623 BUSUSEDINCPCN;
624 ARMul_Ccycles (state, 1, 0);
c906108c 625 }
dfcd3bfb 626}
c906108c 627
ff44f8e3 628/* This function does the Busy-Waiting for an MRC instruction. */
c906108c 629
dfcd3bfb
JM
630ARMword
631ARMul_MRC (ARMul_State * state, ARMword instr)
632{
633 unsigned cpab;
634 ARMword result = 0;
635
ff44f8e3
NC
636 if (! CP_ACCESS_ALLOWED (state, CPNum))
637 {
638 ARMul_UndefInstr (state, instr);
639 return;
640 }
641
dfcd3bfb
JM
642 cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
643 while (cpab == ARMul_BUSY)
644 {
645 ARMul_Icycles (state, 1, 0);
646 if (IntPending (state))
647 {
648 cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
649 return (0);
650 }
651 else
652 cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
c906108c 653 }
dfcd3bfb
JM
654 if (cpab == ARMul_CANT)
655 {
656 ARMul_Abort (state, ARMul_UndefinedInstrV);
ff44f8e3
NC
657 /* Parent will destroy the flags otherwise. */
658 result = ECC;
c906108c 659 }
dfcd3bfb
JM
660 else
661 {
662 BUSUSEDINCPCN;
663 ARMul_Ccycles (state, 1, 0);
664 ARMul_Icycles (state, 1, 0);
c906108c 665 }
ff44f8e3
NC
666
667 return result;
c906108c
SS
668}
669
ff44f8e3 670/* This function does the Busy-Waiting for an CDP instruction. */
c906108c 671
dfcd3bfb
JM
672void
673ARMul_CDP (ARMul_State * state, ARMword instr)
674{
675 unsigned cpab;
676
ff44f8e3
NC
677 if (! CP_ACCESS_ALLOWED (state, CPNum))
678 {
679 ARMul_UndefInstr (state, instr);
680 return;
681 }
682
dfcd3bfb
JM
683 cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
684 while (cpab == ARMul_BUSY)
685 {
686 ARMul_Icycles (state, 1, 0);
687 if (IntPending (state))
688 {
689 cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
690 return;
691 }
692 else
693 cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
c906108c 694 }
dfcd3bfb
JM
695 if (cpab == ARMul_CANT)
696 ARMul_Abort (state, ARMul_UndefinedInstrV);
697 else
698 BUSUSEDN;
c906108c
SS
699}
700
ff44f8e3 701/* This function handles Undefined instructions, as CP isntruction. */
c906108c 702
dfcd3bfb 703void
6d358e86 704ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
c906108c 705{
dfcd3bfb 706 ARMul_Abort (state, ARMul_UndefinedInstrV);
c906108c
SS
707}
708
ff44f8e3 709/* Return TRUE if an interrupt is pending, FALSE otherwise. */
c906108c 710
dfcd3bfb
JM
711unsigned
712IntPending (ARMul_State * state)
713{
714 if (state->Exception)
ff44f8e3
NC
715 {
716 /* Any exceptions. */
dfcd3bfb
JM
717 if (state->NresetSig == LOW)
718 {
719 ARMul_Abort (state, ARMul_ResetV);
ff44f8e3 720 return TRUE;
dfcd3bfb
JM
721 }
722 else if (!state->NfiqSig && !FFLAG)
723 {
724 ARMul_Abort (state, ARMul_FIQV);
ff44f8e3 725 return TRUE;
dfcd3bfb
JM
726 }
727 else if (!state->NirqSig && !IFLAG)
728 {
729 ARMul_Abort (state, ARMul_IRQV);
ff44f8e3 730 return TRUE;
dfcd3bfb 731 }
c906108c 732 }
ff44f8e3
NC
733
734 return FALSE;
dfcd3bfb 735}
c906108c 736
ff44f8e3 737/* Align a word access to a non word boundary. */
c906108c 738
dfcd3bfb 739ARMword
6d358e86
NC
740ARMul_Align (state, address, data)
741 ARMul_State * state ATTRIBUTE_UNUSED;
742 ARMword address;
743 ARMword data;
744{
745 /* This code assumes the address is really unaligned,
746 as a shift by 32 is undefined in C. */
c906108c 747
ff44f8e3 748 address = (address & 3) << 3; /* Get the word address. */
dfcd3bfb 749 return ((data >> address) | (data << (32 - address))); /* rot right */
c906108c
SS
750}
751
ff44f8e3
NC
752/* This routine is used to call another routine after a certain number of
753 cycles have been executed. The first parameter is the number of cycles
754 delay before the function is called, the second argument is a pointer
755 to the function. A delay of zero doesn't work, just call the function. */
c906108c 756
dfcd3bfb
JM
757void
758ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
ff44f8e3 759 unsigned (*what) (ARMul_State *))
dfcd3bfb
JM
760{
761 unsigned long when;
762 struct EventNode *event;
763
764 if (state->EventSet++ == 0)
765 state->Now = ARMul_Time (state);
766 when = (state->Now + delay) % EVENTLISTSIZE;
767 event = (struct EventNode *) malloc (sizeof (struct EventNode));
768 event->func = what;
769 event->next = *(state->EventPtr + when);
770 *(state->EventPtr + when) = event;
c906108c
SS
771}
772
ff44f8e3
NC
773/* This routine is called at the beginning of
774 every cycle, to envoke scheduled events. */
c906108c 775
dfcd3bfb
JM
776void
777ARMul_EnvokeEvent (ARMul_State * state)
778{
779 static unsigned long then;
780
781 then = state->Now;
782 state->Now = ARMul_Time (state) % EVENTLISTSIZE;
ff44f8e3
NC
783 if (then < state->Now)
784 /* Schedule events. */
dfcd3bfb
JM
785 EnvokeList (state, then, state->Now);
786 else if (then > state->Now)
ff44f8e3
NC
787 {
788 /* Need to wrap around the list. */
dfcd3bfb
JM
789 EnvokeList (state, then, EVENTLISTSIZE - 1L);
790 EnvokeList (state, 0L, state->Now);
c906108c 791 }
dfcd3bfb 792}
c906108c 793
ff44f8e3
NC
794/* Envokes all the entries in a range. */
795
dfcd3bfb
JM
796static void
797EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
dfcd3bfb 798{
dfcd3bfb
JM
799 for (; from <= to; from++)
800 {
ff44f8e3
NC
801 struct EventNode *anevent;
802
dfcd3bfb
JM
803 anevent = *(state->EventPtr + from);
804 while (anevent)
805 {
806 (anevent->func) (state);
807 state->EventSet--;
808 anevent = anevent->next;
809 }
810 *(state->EventPtr + from) = NULL;
c906108c 811 }
dfcd3bfb 812}
c906108c 813
ff44f8e3 814/* This routine is returns the number of clock ticks since the last reset. */
c906108c 815
dfcd3bfb
JM
816unsigned long
817ARMul_Time (ARMul_State * state)
818{
819 return (state->NumScycles + state->NumNcycles +
820 state->NumIcycles + state->NumCcycles + state->NumFcycles);
c906108c 821}
This page took 0.137398 seconds and 4 git commands to generate.