sim: replace CIA_{GET,SET} with CPU_PC_{GET,SET}
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
CommitLineData
c906108c 1/* MIPS Simulator definition.
32d0add0 2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support.
4
5This file is part of GDB, the GNU debugger.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
4744ac1b
JB
9the Free Software Foundation; either version 3 of the License, or
10(at your option) any later version.
c906108c
SS
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
4744ac1b
JB
17You should have received a copy of the GNU General Public License
18along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#ifndef SIM_MAIN_H
21#define SIM_MAIN_H
22
23/* This simulator doesn't cache the Current Instruction Address */
24/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
25/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
26
c906108c
SS
27/* hobble some common features for moment */
28#define WITH_WATCHPOINTS 1
29#define WITH_MODULO_MEMORY 1
30
31
32#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
33mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
34
35#include "sim-basics.h"
36
37typedef address_word sim_cia;
38
7bebb329
MF
39typedef struct _sim_cpu SIM_CPU;
40
c906108c 41#include "sim-base.h"
4c54fc26 42#include "bfd.h"
c906108c 43
5accf1ff 44/* Deprecated macros and types for manipulating 64bit values. Use
c906108c
SS
45 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
46
47typedef signed64 word64;
48typedef unsigned64 uword64;
49
50#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
51#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
52#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
53#define SET64HI(t) (((uword64)(t))<<32)
54#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
55#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
56
c906108c
SS
57/* Check if a value will fit within a halfword: */
58#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
59
60
61
62/* Floating-point operations: */
63
64#include "sim-fpu.h"
cfe9ea23 65#include "cp1.h"
c906108c
SS
66
67/* FPU registers must be one of the following types. All other values
68 are reserved (and undefined). */
69typedef enum {
70 fmt_single = 0,
71 fmt_double = 1,
72 fmt_word = 4,
73 fmt_long = 5,
3a2b820e 74 fmt_ps = 6,
c906108c
SS
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81} FP_formats;
82
e7e81181
CD
83/* For paired word (pw) operations, the opcode representation is fmt_word,
84 but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
85#define fmt_pw fmt_long
86
c906108c
SS
87/* This should be the COC1 value at the start of the preceding
88 instruction: */
89#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
90
91#ifdef TARGET_ENABLE_FR
92/* FIXME: this should be enabled for all targets, but needs testing first. */
93#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
94 ? ((SR & status_FR) ? 64 : 32) \
95 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
96#else
97#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
98#endif
99
c906108c
SS
100
101
102
103
104/* HI/LO register accesses */
105
106/* For some MIPS targets, the HI/LO registers have certain timing
107 restrictions in that, for instance, a read of a HI register must be
108 separated by at least three instructions from a preceeding read.
109
110 The struct below is used to record the last access by each of A MT,
111 MF or other OP instruction to a HI/LO register. See mips.igen for
112 more details. */
113
114typedef struct _hilo_access {
115 signed64 timestamp;
116 address_word cia;
117} hilo_access;
118
119typedef struct _hilo_history {
120 hilo_access mt;
121 hilo_access mf;
122 hilo_access op;
123} hilo_history;
124
125
126
127
128/* Integer ALU operations: */
129
130#include "sim-alu.h"
131
132#define ALU32_END(ANS) \
133 if (ALU32_HAD_OVERFLOW) \
134 SignalExceptionIntegerOverflow (); \
135 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
136
137
138#define ALU64_END(ANS) \
139 if (ALU64_HAD_OVERFLOW) \
140 SignalExceptionIntegerOverflow (); \
141 (ANS) = ALU64_OVERFLOW_RESULT;
142
143
144
145
146
147/* The following is probably not used for MIPS IV onwards: */
148/* Slots for delayed register updates. For the moment we just have a
149 fixed number of slots (rather than a more generic, dynamic
150 system). This keeps the simulator fast. However, we only allow
151 for the register update to be delayed for a single instruction
152 cycle. */
153#define PSLOTS (8) /* Maximum number of instruction cycles */
154
155typedef struct _pending_write_queue {
156 int in;
157 int out;
158 int total;
159 int slot_delay[PSLOTS];
160 int slot_size[PSLOTS];
161 int slot_bit[PSLOTS];
162 void *slot_dest[PSLOTS];
163 unsigned64 slot_value[PSLOTS];
164} pending_write_queue;
165
166#ifndef PENDING_TRACE
167#define PENDING_TRACE 0
168#endif
169#define PENDING_IN ((CPU)->pending.in)
170#define PENDING_OUT ((CPU)->pending.out)
171#define PENDING_TOTAL ((CPU)->pending.total)
172#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
173#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
174#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
175#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
176#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
177
178/* Invalidate the pending write queue, all pending writes are
179 discarded. */
180
181#define PENDING_INVALIDATE() \
182memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
183
184/* Schedule a write to DEST for N cycles time. For 64 bit
185 destinations, schedule two writes. For floating point registers,
186 the caller should schedule a write to both the dest register and
187 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
188 is updated. */
189
190#define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
191 do { \
192 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
193 sim_engine_abort (SD, CPU, cia, \
194 "PENDING_SCHED - buffer overflow\n"); \
195 if (PENDING_TRACE) \
196 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
197 (unsigned long) cia, (unsigned long) &(DEST), \
198 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
199 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
200 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
201 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
202 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
203 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
204 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
205 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
206 PENDING_TOTAL += 1; \
207 } while (0)
208
209#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
210#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
211
212#define PENDING_TICK() pending_tick (SD, CPU, cia)
213
214#define PENDING_FLUSH() abort () /* think about this one */
215#define PENDING_FP() abort () /* think about this one */
216
217/* For backward compatibility */
218#define PENDING_FILL(R,VAL) \
219do { \
ee7254b0 220 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
c906108c 221 { \
ee7254b0
CD
222 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
223 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
c906108c
SS
224 } \
225 else \
226 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
227} while (0)
228
229
9e52972e
FF
230enum float_operation
231 {
232 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
233 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
234 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
235 };
236
c906108c 237
f4f1b9f1
CD
238/* The internal representation of an MDMX accumulator.
239 Note that 24 and 48 bit accumulator elements are represented in
240 32 or 64 bits. Since the accumulators are 2's complement with
241 overflow suppressed, high-order bits can be ignored in most contexts. */
242
243typedef signed32 signed24;
244typedef signed64 signed48;
245
246typedef union {
247 signed24 ob[8];
248 signed48 qh[4];
249} MDMX_accumulator;
250
251
252/* Conventional system arguments. */
253#define SIM_STATE sim_cpu *cpu, address_word cia
254#define SIM_ARGS CPU, cia
255
c906108c
SS
256struct _sim_cpu {
257
258
259 /* The following are internal simulator state variables: */
c906108c
SS
260 address_word dspc; /* delay-slot PC */
261#define DSPC ((CPU)->dspc)
262
263#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
264#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
265
266
267 /* State of the simulator */
268 unsigned int state;
269 unsigned int dsstate;
270#define STATE ((CPU)->state)
271#define DSSTATE ((CPU)->dsstate)
272
273/* Flags in the "state" variable: */
274#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
275#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
276#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
277#define simPCOC0 (1 << 17) /* COC[1] from current */
278#define simPCOC1 (1 << 18) /* COC[1] from previous */
279#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
280#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
281#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
282#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
283
fb891446 284#ifndef ENGINE_ISSUE_PREFIX_HOOK
c906108c
SS
285#define ENGINE_ISSUE_PREFIX_HOOK() \
286 { \
287 /* Perform any pending writes */ \
288 PENDING_TICK(); \
289 /* Set previous flag, depending on current: */ \
290 if (STATE & simPCOC0) \
291 STATE |= simPCOC1; \
292 else \
293 STATE &= ~simPCOC1; \
294 /* and update the current value: */ \
295 if (GETFCC(0)) \
296 STATE |= simPCOC0; \
297 else \
298 STATE &= ~simPCOC0; \
299 }
fb891446 300#endif /* ENGINE_ISSUE_PREFIX_HOOK */
c906108c
SS
301
302
303/* This is nasty, since we have to rely on matching the register
304 numbers used by GDB. Unfortunately, depending on the MIPS target
305 GDB uses different register numbers. We cannot just include the
306 relevant "gdb/tm.h" link, since GDB may not be configured before
307 the sim world, and also the GDB header file requires too much other
308 state. */
309
310#ifndef TM_MIPS_H
40a5538e 311#define LAST_EMBED_REGNUM (96)
c906108c
SS
312#define NUM_REGS (LAST_EMBED_REGNUM + 1)
313
ee7254b0
CD
314#define FP0_REGNUM 38 /* Floating point register 0 (single float) */
315#define FCRCS_REGNUM 70 /* FP control/status */
316#define FCRIR_REGNUM 71 /* FP implementation/revision */
c906108c
SS
317#endif
318
319
c906108c
SS
320/* To keep this default simulator simple, and fast, we use a direct
321 vector of registers. The internal simulator engine then uses
322 manifests to access the correct slot. */
323
324 unsigned_word registers[LAST_EMBED_REGNUM + 1];
325
326 int register_widths[NUM_REGS];
327#define REGISTERS ((CPU)->registers)
328
329#define GPR (&REGISTERS[0])
330#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
331
c906108c
SS
332#define LO (REGISTERS[33])
333#define HI (REGISTERS[34])
334#define PCIDX 37
335#define PC (REGISTERS[PCIDX])
336#define CAUSE (REGISTERS[36])
337#define SRIDX (32)
338#define SR (REGISTERS[SRIDX]) /* CPU status register */
339#define FCR0IDX (71)
340#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
341#define FCR31IDX (70)
342#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
343#define FCSR (FCR31)
344#define Debug (REGISTERS[86])
345#define DEPC (REGISTERS[87])
346#define EPC (REGISTERS[88])
2d2733fc 347#define ACX (REGISTERS[89])
c906108c 348
40a5538e
CF
349#define AC0LOIDX (33) /* Must be the same register as LO */
350#define AC0HIIDX (34) /* Must be the same register as HI */
351#define AC1LOIDX (90)
352#define AC1HIIDX (91)
353#define AC2LOIDX (92)
354#define AC2HIIDX (93)
355#define AC3LOIDX (94)
356#define AC3HIIDX (95)
357
358#define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
359#define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
360
361#define DSPCRIDX (96) /* DSP control register */
362#define DSPCR (REGISTERS[DSPCRIDX])
363
364#define DSPCR_POS_SHIFT (0)
365#define DSPCR_POS_MASK (0x3f)
366#define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
367
368#define DSPCR_SCOUNT_SHIFT (7)
369#define DSPCR_SCOUNT_MASK (0x3f)
370#define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
371
372#define DSPCR_CARRY_SHIFT (13)
373#define DSPCR_CARRY_MASK (1)
374#define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
375#define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
376
377#define DSPCR_EFI_SHIFT (14)
378#define DSPCR_EFI_MASK (1)
379#define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
380#define DSPCR_EFI (1 << DSPCR_EFI_MASK)
381
382#define DSPCR_OUFLAG_SHIFT (16)
383#define DSPCR_OUFLAG_MASK (0xff)
384#define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
385#define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
386#define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
387#define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
388#define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
389
390#define DSPCR_CCOND_SHIFT (24)
391#define DSPCR_CCOND_MASK (0xf)
392#define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
393
c906108c
SS
394 /* All internal state modified by signal_exception() that may need to be
395 rolled back for passing moment-of-exception image back to gdb. */
396 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
397 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
398 int exc_suspended;
399
400#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
401#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
402#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
403
404 unsigned_word c0_config_reg;
405#define C0_CONFIG ((CPU)->c0_config_reg)
406
407/* The following are pseudonyms for standard registers */
408#define ZERO (REGISTERS[0])
409#define V0 (REGISTERS[2])
410#define A0 (REGISTERS[4])
411#define A1 (REGISTERS[5])
412#define A2 (REGISTERS[6])
413#define A3 (REGISTERS[7])
414#define T8IDX 24
415#define T8 (REGISTERS[T8IDX])
416#define SPIDX 29
417#define SP (REGISTERS[SPIDX])
418#define RAIDX 31
419#define RA (REGISTERS[RAIDX])
420
421 /* While space is allocated in the main registers arrray for some of
422 the COP0 registers, that space isn't sufficient. Unknown COP0
423 registers overflow into the array below */
424
425#define NR_COP0_GPR 32
426 unsigned_word cop0_gpr[NR_COP0_GPR];
427#define COP0_GPR ((CPU)->cop0_gpr)
1a27f959 428#define COP0_BADVADDR (COP0_GPR[8])
c906108c 429
ee7254b0
CD
430 /* While space is allocated for the floating point registers in the
431 main registers array, they are stored separatly. This is because
432 their size may not necessarily match the size of either the
433 general-purpose or system specific registers. */
434#define NR_FGR (32)
435#define FGR_BASE FP0_REGNUM
436 fp_word fgr[NR_FGR];
437#define FGR ((CPU)->fgr)
438
c906108c
SS
439 /* Keep the current format state for each register: */
440 FP_formats fpr_state[32];
441#define FPR_STATE ((CPU)->fpr_state)
442
443 pending_write_queue pending;
444
f4f1b9f1
CD
445 /* The MDMX accumulator (used only for MDMX ASE). */
446 MDMX_accumulator acc;
447#define ACC ((CPU)->acc)
448
c906108c
SS
449 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
450 read-write instructions. It is set when a linked load occurs. It
451 is tested and cleared by the conditional store. It is cleared
452 (during other CPU operations) when a store to the location would
453 no longer be atomic. In particular, it is cleared by exception
454 return instructions. */
455 int llbit;
456#define LLBIT ((CPU)->llbit)
457
458
459/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
460 corruptions caused by using the HI or LO register too close to a
461 following operation is spotted. See mips.igen for more details. */
462
463 hilo_history hi_history;
464#define HIHISTORY (&(CPU)->hi_history)
465 hilo_history lo_history;
466#define LOHISTORY (&(CPU)->lo_history)
467
c906108c
SS
468
469 sim_cpu_base base;
470};
471
472
473/* MIPS specific simulator watch config */
474
bdca5ee4 475void watch_options_install (SIM_DESC sd);
c906108c
SS
476
477struct swatch {
478 sim_event *pc;
479 sim_event *clock;
480 sim_event *cycles;
481};
482
483
484/* FIXME: At present much of the simulator is still static */
485struct sim_state {
486
487 struct swatch watch;
488
7bebb329 489 sim_cpu *cpu[MAX_NR_PROCESSORS];
c906108c 490
c906108c
SS
491 sim_state_base base;
492};
493
494
495
496/* Status information: */
497
498/* TODO : these should be the bitmasks for these bits within the
499 status register. At the moment the following are VR4300
500 bit-positions: */
501#define status_KSU_mask (0x18) /* mask for KSU bits */
502#define status_KSU_shift (3) /* shift for field */
503#define ksu_kernel (0x0)
504#define ksu_supervisor (0x1)
505#define ksu_user (0x2)
506#define ksu_unknown (0x3)
507
508#define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
509
510#define status_IE (1 << 0) /* Interrupt enable */
511#define status_EIE (1 << 16) /* Enable Interrupt Enable */
512#define status_EXL (1 << 1) /* Exception level */
513#define status_RE (1 << 25) /* Reverse Endian in user mode */
514#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
515#define status_SR (1 << 20) /* soft reset or NMI */
516#define status_BEV (1 << 22) /* Location of general exception vectors */
517#define status_TS (1 << 21) /* TLB shutdown has occurred */
518#define status_ERL (1 << 2) /* Error level */
519#define status_IM7 (1 << 15) /* Timer Interrupt Mask */
520#define status_RP (1 << 27) /* Reduced Power mode */
521
522/* Specializations for TX39 family */
523#define status_IEc (1 << 0) /* Interrupt enable (current) */
524#define status_KUc (1 << 1) /* Kernel/User mode */
525#define status_IEp (1 << 2) /* Interrupt enable (previous) */
526#define status_KUp (1 << 3) /* Kernel/User mode */
527#define status_IEo (1 << 4) /* Interrupt enable (old) */
528#define status_KUo (1 << 5) /* Kernel/User mode */
529#define status_IM_mask (0xff) /* Interrupt mask */
530#define status_IM_shift (8)
531#define status_NMI (1 << 20) /* NMI */
532#define status_NMI (1 << 20) /* NMI */
533
d35d4f70
CD
534/* Status bits used by MIPS32/MIPS64. */
535#define status_UX (1 << 5) /* 64-bit user addrs */
536#define status_SX (1 << 6) /* 64-bit supervisor addrs */
537#define status_KX (1 << 7) /* 64-bit kernel addrs */
538#define status_TS (1 << 21) /* TLB shutdown has occurred */
539#define status_PX (1 << 23) /* Enable 64 bit operations */
540#define status_MX (1 << 24) /* Enable MDMX resources */
541#define status_CU0 (1 << 28) /* Coprocessor 0 usable */
542#define status_CU1 (1 << 29) /* Coprocessor 1 usable */
543#define status_CU2 (1 << 30) /* Coprocessor 2 usable */
544#define status_CU3 (1 << 31) /* Coprocessor 3 usable */
7cbea089
CD
545/* Bits reserved for implementations: */
546#define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
d35d4f70 547
c906108c
SS
548#define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
549#define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
550#define cause_CE_mask 0x30000000 /* Coprocessor exception */
551#define cause_CE_shift 28
552#define cause_EXC2_mask 0x00070000
553#define cause_EXC2_shift 16
554#define cause_IP7 (1 << 15) /* Interrupt pending */
555#define cause_SIOP (1 << 12) /* SIO pending */
556#define cause_IP3 (1 << 11) /* Int 0 pending */
557#define cause_IP2 (1 << 10) /* Int 1 pending */
558
559#define cause_EXC_mask (0x1c) /* Exception code */
560#define cause_EXC_shift (2)
561
562#define cause_SW0 (1 << 8) /* Software interrupt 0 */
563#define cause_SW1 (1 << 9) /* Software interrupt 1 */
564#define cause_IP_mask (0x3f) /* Interrupt pending field */
565#define cause_IP_shift (10)
566
567#define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
568#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
569
570
571/* NOTE: We keep the following status flags as bit values (1 for true,
572 0 for false). This allows them to be used in binary boolean
573 operations without worrying about what exactly the non-zero true
574 value is. */
575
576/* UserMode */
577#ifdef SUBTARGET_R3900
578#define UserMode ((SR & status_KUc) ? 1 : 0)
579#else
580#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
581#endif /* SUBTARGET_R3900 */
582
583/* BigEndianMem */
584/* Hardware configuration. Affects endianness of LoadMemory and
585 StoreMemory and the endianness of Kernel and Supervisor mode
586 execution. The value is 0 for little-endian; 1 for big-endian. */
587#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
588/*(state & simBE) ? 1 : 0)*/
589
590/* ReverseEndian */
591/* This mode is selected if in User mode with the RE bit being set in
592 SR (Status Register). It reverses the endianness of load and store
593 instructions. */
594#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
595
596/* BigEndianCPU */
597/* The endianness for load and store instructions (0=little;1=big). In
598 User mode this endianness may be switched by setting the state_RE
599 bit in the SR register. Thus, BigEndianCPU may be computed as
600 (BigEndianMem EOR ReverseEndian). */
601#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
602
603
604
605/* Exceptions: */
606
607/* NOTE: These numbers depend on the processor architecture being
608 simulated: */
609enum ExceptionCause {
610 Interrupt = 0,
611 TLBModification = 1,
612 TLBLoad = 2,
613 TLBStore = 3,
614 AddressLoad = 4,
615 AddressStore = 5,
616 InstructionFetch = 6,
617 DataReference = 7,
618 SystemCall = 8,
619 BreakPoint = 9,
620 ReservedInstruction = 10,
621 CoProcessorUnusable = 11,
622 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
623 Trap = 13,
624 FPE = 15,
d35d4f70
CD
625 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
626 MDMX = 22,
c906108c 627 Watch = 23,
d35d4f70
CD
628 MCheck = 24,
629 CacheErr = 30,
630 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
c906108c
SS
631
632
633/* The following exception code is actually private to the simulator
634 world. It is *NOT* a processor feature, and is used to signal
635 run-time errors in the simulator. */
636 SimulatorFault = 0xFFFFFFFF
637};
638
639#define TLB_REFILL (0)
640#define TLB_INVALID (1)
641
642
643/* The following break instructions are reserved for use by the
644 simulator. The first is used to halt the simulation. The second
645 is used by gdb for break-points. NOTE: Care must be taken, since
646 this value may be used in later revisions of the MIPS ISA. */
647#define HALT_INSTRUCTION_MASK (0x03FFFFC0)
648
649#define HALT_INSTRUCTION (0x03ff000d)
650#define HALT_INSTRUCTION2 (0x0000ffcd)
651
652
653#define BREAKPOINT_INSTRUCTION (0x0005000d)
654#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
655
656
657
658void interrupt_event (SIM_DESC sd, void *data);
659
660void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
661#define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
662#define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
663#define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
664#define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
665#define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
666#define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
667#define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
668#define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
669#define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
3ad6f714 670#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
c906108c
SS
671#define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
672#define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
673#define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
674#define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
675#define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
676#define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
d35d4f70
CD
677#define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
678#define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
679#define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
680#define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
c906108c
SS
681
682/* Co-processor accesses */
683
3ad6f714
CD
684/* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
685#define COP_Usable(coproc_num) (coproc_num == 1)
686
bdca5ee4
TT
687void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
688void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
689unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
690uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
c906108c
SS
691
692#define COP_LW(coproc_num,coproc_reg,memword) \
693cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
694#define COP_LD(coproc_num,coproc_reg,memword) \
695cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
696#define COP_SW(coproc_num,coproc_reg) \
697cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
698#define COP_SD(coproc_num,coproc_reg) \
699cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
700
701
bdca5ee4 702void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction);
c906108c
SS
703#define DecodeCoproc(instruction) \
704decode_coproc (SD, CPU, cia, (instruction))
705
8030f857 706int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
c906108c
SS
707
708
18d8a52d
CD
709/* FPR access. */
710unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
711#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
712void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
713#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
3a2b820e
CD
714unsigned64 ps_lower (SIM_STATE, unsigned64 op);
715#define PSLower(op) ps_lower (SIM_ARGS, op)
716unsigned64 ps_upper (SIM_STATE, unsigned64 op);
717#define PSUpper(op) ps_upper (SIM_ARGS, op)
718unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
719#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
18d8a52d
CD
720
721
cfe9ea23
CD
722/* FCR access. */
723unsigned_word value_fcr (SIM_STATE, int fcr);
724#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
725void store_fcr (SIM_STATE, int fcr, unsigned_word value);
726#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
727void test_fcsr (SIM_STATE);
728#define TestFCSR() test_fcsr (SIM_ARGS)
729
730
18d8a52d 731/* FPU operations. */
cfe9ea23
CD
732void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
733#define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
ba46ddd0
CD
734unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
735#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
736unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
737#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
738unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
739#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
740unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
741#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
742unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
743#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
744unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
745#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
746unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
747#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
748unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
749#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
f3c08b7e
CD
750unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
751#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
752unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
753 unsigned64 op3, FP_formats fmt);
754#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
755unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
756 unsigned64 op3, FP_formats fmt);
757#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
758unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
759 unsigned64 op3, FP_formats fmt);
760#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
761unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
762 unsigned64 op3, FP_formats fmt);
763#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
18d8a52d
CD
764unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
765#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
3a2b820e
CD
766unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
767 FP_formats to);
768#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
18d8a52d
CD
769
770
e7e81181
CD
771/* MIPS-3D ASE operations. */
772#define CompareAbs(op1,op2,fmt,cond,cc) \
773fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
774unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
775#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
776unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
777#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
778unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
779#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
780unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
781#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
782unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
783#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
784unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
785#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
786
787
f4f1b9f1
CD
788/* MDMX access. */
789
790typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
791#define ob_fmtsel(sel) (((sel)<<1)|0x0)
792#define qh_fmtsel(sel) (((sel)<<2)|0x1)
793
794#define fmt_mdmx fmt_uninterpreted
795
796#define MX_VECT_AND (0)
797#define MX_VECT_NOR (1)
798#define MX_VECT_OR (2)
799#define MX_VECT_XOR (3)
800#define MX_VECT_SLL (4)
801#define MX_VECT_SRL (5)
f4f1b9f1
CD
802#define MX_VECT_ADD (6)
803#define MX_VECT_SUB (7)
804#define MX_VECT_MIN (8)
805#define MX_VECT_MAX (9)
806#define MX_VECT_MUL (10)
807#define MX_VECT_MSGN (11)
808#define MX_VECT_SRA (12)
7cbea089
CD
809#define MX_VECT_ABSD (13) /* SB-1 only. */
810#define MX_VECT_AVG (14) /* SB-1 only. */
f4f1b9f1
CD
811
812unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
813#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
814#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
815#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
816#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
817#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
818#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
819#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
820#define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
821#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
822#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
823#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
824#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
825#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
7cbea089
CD
826#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
827#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
f4f1b9f1
CD
828
829#define MX_C_EQ 0x1
830#define MX_C_LT 0x4
831
832void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
833#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
834
835unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
836#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
837
838#define MX_VECT_ADDA (0)
839#define MX_VECT_ADDL (1)
840#define MX_VECT_MULA (2)
841#define MX_VECT_MULL (3)
842#define MX_VECT_MULS (4)
843#define MX_VECT_MULSL (5)
844#define MX_VECT_SUBA (6)
845#define MX_VECT_SUBL (7)
7cbea089 846#define MX_VECT_ABSDA (8) /* SB-1 only. */
f4f1b9f1
CD
847
848void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
849#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
850#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
851#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
852#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
853#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
854#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
855#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
856#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
7cbea089 857#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
f4f1b9f1
CD
858
859#define MX_FMT_OB (0)
860#define MX_FMT_QH (1)
861
862/* The following codes chosen to indicate the units of shift. */
863#define MX_RAC_L (0)
864#define MX_RAC_M (1)
865#define MX_RAC_H (2)
866
867unsigned64 mdmx_rac_op (SIM_STATE, int, int);
868#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
869
870void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
871#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
872void mdmx_wach (SIM_STATE, int, unsigned64);
873#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
874
875#define MX_RND_AS (0)
876#define MX_RND_AU (1)
877#define MX_RND_ES (2)
878#define MX_RND_EU (3)
879#define MX_RND_ZS (4)
880#define MX_RND_ZU (5)
881
882unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
883#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
884#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
885#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
886#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
887#define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
888#define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
889
890unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
891#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
892
893
c906108c
SS
894
895/* Memory accesses */
896
897/* The following are generic to all versions of the MIPS architecture
898 to date: */
899
900/* Memory Access Types (for CCA): */
901#define Uncached (0)
902#define CachedNoncoherent (1)
903#define CachedCoherent (2)
904#define Cached (3)
905
906#define isINSTRUCTION (1 == 0) /* FALSE */
907#define isDATA (1 == 1) /* TRUE */
908#define isLOAD (1 == 0) /* FALSE */
909#define isSTORE (1 == 1) /* TRUE */
910#define isREAL (1 == 0) /* FALSE */
911#define isRAW (1 == 1) /* TRUE */
912/* The parameter HOST (isTARGET / isHOST) is ignored */
913#define isTARGET (1 == 0) /* FALSE */
914/* #define isHOST (1 == 1) TRUE */
915
916/* The "AccessLength" specifications for Loads and Stores. NOTE: This
917 is the number of bytes minus 1. */
918#define AccessLength_BYTE (0)
919#define AccessLength_HALFWORD (1)
920#define AccessLength_TRIPLEBYTE (2)
921#define AccessLength_WORD (3)
922#define AccessLength_QUINTIBYTE (4)
923#define AccessLength_SEXTIBYTE (5)
924#define AccessLength_SEPTIBYTE (6)
925#define AccessLength_DOUBLEWORD (7)
926#define AccessLength_QUADWORD (15)
927
928#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
929 ? AccessLength_DOUBLEWORD /*7*/ \
930 : AccessLength_WORD /*3*/)
931#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
932
933
bdca5ee4 934INLINE_SIM_MAIN (int) address_translation (SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw);
c906108c
SS
935#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
936address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
937
bdca5ee4 938INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
c906108c
SS
939#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
940load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
941
bdca5ee4 942INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
c906108c
SS
943#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
944store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
945
bdca5ee4 946INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
c906108c
SS
947#define CacheOp(op,pAddr,vAddr,instruction) \
948cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
949
bdca5ee4 950INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
c906108c
SS
951#define SyncOperation(stype) \
952sync_operation (SD, CPU, cia, (stype))
953
bdca5ee4 954INLINE_SIM_MAIN (void) prefetch (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint);
c906108c
SS
955#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
956prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
957
402586aa
CD
958void unpredictable_action (sim_cpu *cpu, address_word cia);
959#define NotWordValue(val) not_word_value (SD_, (val))
960#define Unpredictable() unpredictable (SD_)
f4f1b9f1 961#define UnpredictableResult() /* For now, do nothing. */
b96e7ef1 962
bdca5ee4 963INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
c906108c 964#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
bdca5ee4 965INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
c906108c
SS
966#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
967#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
968
bdca5ee4 969void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...);
c906108c
SS
970extern FILE *tracefh;
971
40a5538e
CF
972extern int DSPLO_REGNUM[4];
973extern int DSPHI_REGNUM[4];
974
bdca5ee4 975INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
c906108c
SS
976extern SIM_CORE_SIGNAL_FN mips_core_signal;
977
bdca5ee4
TT
978char* pr_addr (SIM_ADDR addr);
979char* pr_uword64 (uword64 addr);
c906108c
SS
980
981
4c0deff4 982#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
4c0deff4 983
c906108c
SS
984void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
985void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
986void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
987
4c54fc26
CD
988#ifdef MIPS_MACH_MULTI
989extern int mips_mach_multi(SIM_DESC sd);
990#define MIPS_MACH(SD) mips_mach_multi(SD)
991#else
992#define MIPS_MACH(SD) MIPS_MACH_DEFAULT
993#endif
c906108c 994
0e1b7197
RS
995/* Macros for determining whether a MIPS IV or MIPS V part is subject
996 to the hi/lo restrictions described in mips.igen. */
997
998#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
999 (MIPS_MACH (SD) != bfd_mach_mips5500)
1000
1001#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1002 (MIPS_MACH (SD) != bfd_mach_mips5500)
1003
1004#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1005 (MIPS_MACH (SD) != bfd_mach_mips5500)
1006
c906108c
SS
1007#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1008#include "sim-main.c"
1009#endif
1010
1011#endif
This page took 0.68376 seconds and 4 git commands to generate.