* config.sub, config.guess: Update from upstream sources.
[deliverable/binutils-gdb.git] / sim / v850 / simops.c
CommitLineData
c906108c
SS
1#include "sim-main.h"
2#include "v850_sim.h"
3#include "simops.h"
4
4389ce38
MK
5#include <sys/types.h>
6
c906108c
SS
7#ifdef HAVE_UTIME_H
8#include <utime.h>
9#endif
10
11#ifdef HAVE_TIME_H
12#include <time.h>
13#endif
14
15#ifdef HAVE_UNISTD_H
16#include <unistd.h>
17#endif
18
19#ifdef HAVE_STRING_H
20#include <string.h>
21#else
22#ifdef HAVE_STRINGS_H
23#include <strings.h>
24#endif
25#endif
26
27#include "targ-vals.h"
28
29#include "libiberty.h"
30
31#include <errno.h>
32#if !defined(__GO32__) && !defined(_WIN32)
33#include <sys/stat.h>
34#include <sys/times.h>
35#include <sys/time.h>
36#endif
37
38/* This is an array of the bit positions of registers r20 .. r31 in
39 that order in a prepare/dispose instruction. */
40int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
41/* This is an array of the bit positions of registers r16 .. r31 in
42 that order in a push/pop instruction. */
43int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
44/* This is an array of the bit positions of registers r1 .. r15 in
45 that order in a push/pop instruction. */
46int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
47
48#ifdef DEBUG
49#ifndef SIZE_INSTRUCTION
50#define SIZE_INSTRUCTION 18
51#endif
52
53#ifndef SIZE_VALUES
54#define SIZE_VALUES 11
55#endif
56
57
58unsigned32 trace_values[3];
59int trace_num_values;
60unsigned32 trace_pc;
61const char *trace_name;
62int trace_module;
63
64
65void
66trace_input (name, type, size)
67 char *name;
68 enum op_types type;
69 int size;
70{
71
72 if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
73 return;
74
75 trace_pc = PC;
76 trace_name = name;
77 trace_module = TRACE_ALU_IDX;
78
79 switch (type)
80 {
81 default:
82 case OP_UNKNOWN:
83 case OP_NONE:
84 case OP_TRAP:
85 trace_num_values = 0;
86 break;
87
88 case OP_REG:
89 case OP_REG_REG_MOVE:
90 trace_values[0] = State.regs[OP[0]];
91 trace_num_values = 1;
92 break;
93
94 case OP_BIT_CHANGE:
95 case OP_REG_REG:
96 case OP_REG_REG_CMP:
97 trace_values[0] = State.regs[OP[1]];
98 trace_values[1] = State.regs[OP[0]];
99 trace_num_values = 2;
100 break;
101
102 case OP_IMM_REG:
103 case OP_IMM_REG_CMP:
104 trace_values[0] = SEXT5 (OP[0]);
105 trace_values[1] = OP[1];
106 trace_num_values = 2;
107 break;
108
109 case OP_IMM_REG_MOVE:
110 trace_values[0] = SEXT5 (OP[0]);
111 trace_num_values = 1;
112 break;
113
114 case OP_COND_BR:
115 trace_values[0] = State.pc;
116 trace_values[1] = SEXT9 (OP[0]);
117 trace_values[2] = PSW;
118 trace_num_values = 3;
119 break;
120
121 case OP_LOAD16:
122 trace_values[0] = OP[1] * size;
123 trace_values[1] = State.regs[30];
124 trace_num_values = 2;
125 break;
126
127 case OP_STORE16:
128 trace_values[0] = State.regs[OP[0]];
129 trace_values[1] = OP[1] * size;
130 trace_values[2] = State.regs[30];
131 trace_num_values = 3;
132 break;
133
134 case OP_LOAD32:
135 trace_values[0] = EXTEND16 (OP[2]);
136 trace_values[1] = State.regs[OP[0]];
137 trace_num_values = 2;
138 break;
139
140 case OP_STORE32:
141 trace_values[0] = State.regs[OP[1]];
142 trace_values[1] = EXTEND16 (OP[2]);
143 trace_values[2] = State.regs[OP[0]];
144 trace_num_values = 3;
145 break;
146
147 case OP_JUMP:
148 trace_values[0] = SEXT22 (OP[0]);
149 trace_values[1] = State.pc;
150 trace_num_values = 2;
151 break;
152
153 case OP_IMM_REG_REG:
154 trace_values[0] = EXTEND16 (OP[0]) << size;
155 trace_values[1] = State.regs[OP[1]];
156 trace_num_values = 2;
157 break;
158
159 case OP_IMM16_REG_REG:
160 trace_values[0] = EXTEND16 (OP[2]) << size;
161 trace_values[1] = State.regs[OP[1]];
162 trace_num_values = 2;
163 break;
164
165 case OP_UIMM_REG_REG:
166 trace_values[0] = (OP[0] & 0xffff) << size;
167 trace_values[1] = State.regs[OP[1]];
168 trace_num_values = 2;
169 break;
170
171 case OP_UIMM16_REG_REG:
172 trace_values[0] = (OP[2]) << size;
173 trace_values[1] = State.regs[OP[1]];
174 trace_num_values = 2;
175 break;
176
177 case OP_BIT:
178 trace_num_values = 0;
179 break;
180
181 case OP_EX1:
182 trace_values[0] = PSW;
183 trace_num_values = 1;
184 break;
185
186 case OP_EX2:
187 trace_num_values = 0;
188 break;
189
190 case OP_LDSR:
191 trace_values[0] = State.regs[OP[0]];
192 trace_num_values = 1;
193 break;
194
195 case OP_STSR:
196 trace_values[0] = State.sregs[OP[1]];
197 trace_num_values = 1;
198 }
199
200}
201
202void
203trace_result (int has_result, unsigned32 result)
204{
205 char buf[1000];
206 char *chp;
207
208 buf[0] = '\0';
209 chp = buf;
210
211 /* write out the values saved during the trace_input call */
212 {
213 int i;
214 for (i = 0; i < trace_num_values; i++)
215 {
d62274a3
AC
216 sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "",
217 (long) trace_values[i]);
c906108c
SS
218 chp = strchr (chp, '\0');
219 }
220 while (i++ < 3)
221 {
222 sprintf (chp, "%*s", SIZE_VALUES, "");
223 chp = strchr (chp, '\0');
224 }
225 }
226
227 /* append any result to the end of the buffer */
228 if (has_result)
229 sprintf (chp, " :: 0x%.8lx", (unsigned long)result);
230
231 trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, buf);
232}
233
234void
235trace_output (result)
236 enum op_types result;
237{
238 if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
239 return;
240
241 switch (result)
242 {
243 default:
244 case OP_UNKNOWN:
245 case OP_NONE:
246 case OP_TRAP:
247 case OP_REG:
248 case OP_REG_REG_CMP:
249 case OP_IMM_REG_CMP:
250 case OP_COND_BR:
251 case OP_STORE16:
252 case OP_STORE32:
253 case OP_BIT:
254 case OP_EX2:
255 trace_result (0, 0);
256 break;
257
258 case OP_LOAD16:
259 case OP_STSR:
260 trace_result (1, State.regs[OP[0]]);
261 break;
262
263 case OP_REG_REG:
264 case OP_REG_REG_MOVE:
265 case OP_IMM_REG:
266 case OP_IMM_REG_MOVE:
267 case OP_LOAD32:
268 case OP_EX1:
269 trace_result (1, State.regs[OP[1]]);
270 break;
271
272 case OP_IMM_REG_REG:
273 case OP_UIMM_REG_REG:
274 case OP_IMM16_REG_REG:
275 case OP_UIMM16_REG_REG:
276 trace_result (1, State.regs[OP[1]]);
277 break;
278
279 case OP_JUMP:
280 if (OP[1] != 0)
281 trace_result (1, State.regs[OP[1]]);
282 else
283 trace_result (0, 0);
284 break;
285
286 case OP_LDSR:
287 trace_result (1, State.sregs[OP[1]]);
288 break;
289 }
290}
291#endif
292
293\f
294/* Returns 1 if the specific condition is met, returns 0 otherwise. */
295int
296condition_met (unsigned code)
297{
298 unsigned int psw = PSW;
299
300 switch (code & 0xf)
301 {
302 case 0x0: return ((psw & PSW_OV) != 0);
303 case 0x1: return ((psw & PSW_CY) != 0);
304 case 0x2: return ((psw & PSW_Z) != 0);
305 case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
306 case 0x4: return ((psw & PSW_S) != 0);
307 /*case 0x5: return 1;*/
308 case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
309 case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
310 case 0x8: return ((psw & PSW_OV) == 0);
311 case 0x9: return ((psw & PSW_CY) == 0);
312 case 0xa: return ((psw & PSW_Z) == 0);
313 case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
314 case 0xc: return ((psw & PSW_S) == 0);
315 case 0xd: return ((psw & PSW_SAT) != 0);
316 case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
317 case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
318 }
319
320 return 1;
321}
322
323static unsigned long
324Add32 (unsigned long a1, unsigned long a2, int * carry)
325{
326 unsigned long result = (a1 + a2);
327
328 * carry = (result < a1);
329
330 return result;
331}
332
333static void
0da2b665 334Multiply64 (int sign, unsigned long op0)
c906108c
SS
335{
336 unsigned long op1;
337 unsigned long lo;
338 unsigned long mid1;
339 unsigned long mid2;
340 unsigned long hi;
341 unsigned long RdLo;
342 unsigned long RdHi;
343 int carry;
344
345 op1 = State.regs[ OP[1] ];
346
347 if (sign)
348 {
349 /* Compute sign of result and adjust operands if necessary. */
350
351 sign = (op0 ^ op1) & 0x80000000;
352
353 if (((signed long) op0) < 0)
354 op0 = - op0;
355
356 if (((signed long) op1) < 0)
357 op1 = - op1;
358 }
359
360 /* We can split the 32x32 into four 16x16 operations. This ensures
361 that we do not lose precision on 32bit only hosts: */
362 lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF));
363 mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
364 mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF));
365 hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
366
367 /* We now need to add all of these results together, taking care
368 to propogate the carries from the additions: */
369 RdLo = Add32 (lo, (mid1 << 16), & carry);
370 RdHi = carry;
371 RdLo = Add32 (RdLo, (mid2 << 16), & carry);
372 RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
373
374 if (sign)
375 {
376 /* Negate result if necessary. */
377
378 RdLo = ~ RdLo;
379 RdHi = ~ RdHi;
380 if (RdLo == 0xFFFFFFFF)
381 {
382 RdLo = 0;
383 RdHi += 1;
384 }
385 else
386 RdLo += 1;
387 }
388
389 /* Don't store into register 0. */
390 if (OP[1])
391 State.regs[ OP[1] ] = RdLo;
392 if (OP[2] >> 11)
393 State.regs[ OP[2] >> 11 ] = RdHi;
394
395 return;
396}
397
398\f
399/* Read a null terminated string from memory, return in a buffer */
400static char *
401fetch_str (sd, addr)
402 SIM_DESC sd;
403 address_word addr;
404{
405 char *buf;
406 int nr = 0;
407 while (sim_core_read_1 (STATE_CPU (sd, 0),
408 PC, read_map, addr + nr) != 0)
409 nr++;
410 buf = NZALLOC (char, nr + 1);
411 sim_read (simulator, addr, buf, nr);
412 return buf;
413}
414
415/* Read a null terminated argument vector from memory, return in a
416 buffer */
417static char **
418fetch_argv (sd, addr)
419 SIM_DESC sd;
420 address_word addr;
421{
422 int max_nr = 64;
423 int nr = 0;
424 char **buf = xmalloc (max_nr * sizeof (char*));
425 while (1)
426 {
427 unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
428 PC, read_map, addr + nr * 4);
429 if (a == 0) break;
430 buf[nr] = fetch_str (sd, a);
431 nr ++;
432 if (nr == max_nr - 1)
433 {
434 max_nr += 50;
435 buf = xrealloc (buf, max_nr * sizeof (char*));
436 }
437 }
438 buf[nr] = 0;
439 return buf;
440}
441
442\f
443/* sst.b */
444int
445OP_380 ()
446{
447 trace_input ("sst.b", OP_STORE16, 1);
448
449 store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
450
451 trace_output (OP_STORE16);
452
453 return 2;
454}
455
456/* sst.h */
457int
458OP_480 ()
459{
460 trace_input ("sst.h", OP_STORE16, 2);
461
462 store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
463
464 trace_output (OP_STORE16);
465
466 return 2;
467}
468
469/* sst.w */
470int
471OP_501 ()
472{
473 trace_input ("sst.w", OP_STORE16, 4);
474
475 store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
476
477 trace_output (OP_STORE16);
478
479 return 2;
480}
481
482/* ld.b */
483int
484OP_700 ()
485{
486 int adr;
487
488 trace_input ("ld.b", OP_LOAD32, 1);
489
490 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
491
492 State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
493
494 trace_output (OP_LOAD32);
495
496 return 4;
497}
498
499/* ld.h */
500int
501OP_720 ()
502{
503 int adr;
504
505 trace_input ("ld.h", OP_LOAD32, 2);
506
507 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
508 adr &= ~0x1;
509
510 State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
511
512 trace_output (OP_LOAD32);
513
514 return 4;
515}
516
517/* ld.w */
518int
519OP_10720 ()
520{
521 int adr;
522
523 trace_input ("ld.w", OP_LOAD32, 4);
524
525 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
526 adr &= ~0x3;
527
528 State.regs[ OP[1] ] = load_mem (adr, 4);
529
530 trace_output (OP_LOAD32);
531
532 return 4;
533}
534
535/* st.b */
536int
537OP_740 ()
538{
539 trace_input ("st.b", OP_STORE32, 1);
540
541 store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
542
543 trace_output (OP_STORE32);
544
545 return 4;
546}
547
548/* st.h */
549int
550OP_760 ()
551{
552 int adr;
553
554 trace_input ("st.h", OP_STORE32, 2);
555
556 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
557 adr &= ~1;
558
559 store_mem (adr, 2, State.regs[ OP[1] ]);
560
561 trace_output (OP_STORE32);
562
563 return 4;
564}
565
566/* st.w */
567int
568OP_10760 ()
569{
570 int adr;
571
572 trace_input ("st.w", OP_STORE32, 4);
573
574 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
575 adr &= ~3;
576
577 store_mem (adr, 4, State.regs[ OP[1] ]);
578
579 trace_output (OP_STORE32);
580
581 return 4;
582}
583
584/* add reg, reg */
585int
586OP_1C0 ()
587{
588 unsigned int op0, op1, result, z, s, cy, ov;
589
590 trace_input ("add", OP_REG_REG, 0);
591
592 /* Compute the result. */
593
594 op0 = State.regs[ OP[0] ];
595 op1 = State.regs[ OP[1] ];
596
597 result = op0 + op1;
598
599 /* Compute the condition codes. */
600 z = (result == 0);
601 s = (result & 0x80000000);
602 cy = (result < op0 || result < op1);
603 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
604 && (op0 & 0x80000000) != (result & 0x80000000));
605
606 /* Store the result and condition codes. */
607 State.regs[OP[1]] = result;
608 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
609 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
610 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
611 trace_output (OP_REG_REG);
612
613 return 2;
614}
615
616/* add sign_extend(imm5), reg */
617int
618OP_240 ()
619{
620 unsigned int op0, op1, result, z, s, cy, ov;
621 int temp;
622
623 trace_input ("add", OP_IMM_REG, 0);
624
625 /* Compute the result. */
626 temp = SEXT5 (OP[0]);
627 op0 = temp;
628 op1 = State.regs[OP[1]];
629 result = op0 + op1;
630
631 /* Compute the condition codes. */
632 z = (result == 0);
633 s = (result & 0x80000000);
634 cy = (result < op0 || result < op1);
635 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
636 && (op0 & 0x80000000) != (result & 0x80000000));
637
638 /* Store the result and condition codes. */
639 State.regs[OP[1]] = result;
640 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
641 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
642 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
643 trace_output (OP_IMM_REG);
644
645 return 2;
646}
647
648/* addi sign_extend(imm16), reg, reg */
649int
650OP_600 ()
651{
652 unsigned int op0, op1, result, z, s, cy, ov;
653
654 trace_input ("addi", OP_IMM16_REG_REG, 0);
655
656 /* Compute the result. */
657
658 op0 = EXTEND16 (OP[2]);
659 op1 = State.regs[ OP[0] ];
660 result = op0 + op1;
661
662 /* Compute the condition codes. */
663 z = (result == 0);
664 s = (result & 0x80000000);
665 cy = (result < op0 || result < op1);
666 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
667 && (op0 & 0x80000000) != (result & 0x80000000));
668
669 /* Store the result and condition codes. */
670 State.regs[OP[1]] = result;
671 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
672 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
673 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
674 trace_output (OP_IMM16_REG_REG);
675
676 return 4;
677}
678
679/* sub reg1, reg2 */
680int
681OP_1A0 ()
682{
683 unsigned int op0, op1, result, z, s, cy, ov;
684
685 trace_input ("sub", OP_REG_REG, 0);
686 /* Compute the result. */
687 op0 = State.regs[ OP[0] ];
688 op1 = State.regs[ OP[1] ];
689 result = op1 - op0;
690
691 /* Compute the condition codes. */
692 z = (result == 0);
693 s = (result & 0x80000000);
694 cy = (op1 < op0);
695 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
696 && (op1 & 0x80000000) != (result & 0x80000000));
697
698 /* Store the result and condition codes. */
699 State.regs[OP[1]] = result;
700 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
701 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
702 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
703 trace_output (OP_REG_REG);
704
705 return 2;
706}
707
708/* subr reg1, reg2 */
709int
710OP_180 ()
711{
712 unsigned int op0, op1, result, z, s, cy, ov;
713
714 trace_input ("subr", OP_REG_REG, 0);
715 /* Compute the result. */
716 op0 = State.regs[ OP[0] ];
717 op1 = State.regs[ OP[1] ];
718 result = op0 - op1;
719
720 /* Compute the condition codes. */
721 z = (result == 0);
722 s = (result & 0x80000000);
723 cy = (op0 < op1);
724 ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
725 && (op0 & 0x80000000) != (result & 0x80000000));
726
727 /* Store the result and condition codes. */
728 State.regs[OP[1]] = result;
729 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
730 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
731 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
732 trace_output (OP_REG_REG);
733
734 return 2;
735}
736
737/* sxh reg1 */
738int
739OP_E0 ()
740{
741 trace_input ("mulh", OP_REG_REG, 0);
742
743 State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
744
745 trace_output (OP_REG_REG);
746
747 return 2;
748}
749
750/* mulh sign_extend(imm5), reg2 */
751int
752OP_2E0 ()
753{
754 trace_input ("mulh", OP_IMM_REG, 0);
755
756 State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
757
758 trace_output (OP_IMM_REG);
759
760 return 2;
761}
762
763/* mulhi imm16, reg1, reg2 */
764int
765OP_6E0 ()
766{
767 trace_input ("mulhi", OP_IMM16_REG_REG, 0);
768
769 State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
770
771 trace_output (OP_IMM16_REG_REG);
772
773 return 4;
774}
775
c906108c
SS
776/* cmp reg, reg */
777int
778OP_1E0 ()
779{
780 unsigned int op0, op1, result, z, s, cy, ov;
781
782 trace_input ("cmp", OP_REG_REG_CMP, 0);
783 /* Compute the result. */
784 op0 = State.regs[ OP[0] ];
785 op1 = State.regs[ OP[1] ];
786 result = op1 - op0;
787
788 /* Compute the condition codes. */
789 z = (result == 0);
790 s = (result & 0x80000000);
791 cy = (op1 < op0);
792 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
793 && (op1 & 0x80000000) != (result & 0x80000000));
794
795 /* Set condition codes. */
796 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
797 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
798 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
799 trace_output (OP_REG_REG_CMP);
800
801 return 2;
802}
803
804/* cmp sign_extend(imm5), reg */
805int
806OP_260 ()
807{
808 unsigned int op0, op1, result, z, s, cy, ov;
809 int temp;
810
811 /* Compute the result. */
812 trace_input ("cmp", OP_IMM_REG_CMP, 0);
813 temp = SEXT5 (OP[0]);
814 op0 = temp;
815 op1 = State.regs[OP[1]];
816 result = op1 - op0;
817
818 /* Compute the condition codes. */
819 z = (result == 0);
820 s = (result & 0x80000000);
821 cy = (op1 < op0);
822 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
823 && (op1 & 0x80000000) != (result & 0x80000000));
824
825 /* Set condition codes. */
826 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
827 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
828 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
829 trace_output (OP_IMM_REG_CMP);
830
831 return 2;
832}
833
834/* setf cccc,reg2 */
835int
836OP_7E0 ()
837{
838 trace_input ("setf", OP_EX1, 0);
839
840 State.regs[ OP[1] ] = condition_met (OP[0]);
841
842 trace_output (OP_EX1);
843
844 return 4;
845}
846
847/* satadd reg,reg */
848int
849OP_C0 ()
850{
851 unsigned int op0, op1, result, z, s, cy, ov, sat;
852
853 trace_input ("satadd", OP_REG_REG, 0);
854 /* Compute the result. */
855 op0 = State.regs[ OP[0] ];
856 op1 = State.regs[ OP[1] ];
857 result = op0 + op1;
858
859 /* Compute the condition codes. */
860 z = (result == 0);
861 s = (result & 0x80000000);
862 cy = (result < op0 || result < op1);
863 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
864 && (op0 & 0x80000000) != (result & 0x80000000));
865 sat = ov;
866
867 /* Store the result and condition codes. */
868 State.regs[OP[1]] = result;
869 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
870 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
871 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
872 | (sat ? PSW_SAT : 0));
873
874 /* Handle saturated results. */
875 if (sat && s)
876 State.regs[OP[1]] = 0x80000000;
877 else if (sat)
878 State.regs[OP[1]] = 0x7fffffff;
879 trace_output (OP_REG_REG);
880
881 return 2;
882}
883
884/* satadd sign_extend(imm5), reg */
885int
886OP_220 ()
887{
888 unsigned int op0, op1, result, z, s, cy, ov, sat;
889
890 int temp;
891
892 trace_input ("satadd", OP_IMM_REG, 0);
893
894 /* Compute the result. */
895 temp = SEXT5 (OP[0]);
896 op0 = temp;
897 op1 = State.regs[OP[1]];
898 result = op0 + op1;
899
900 /* Compute the condition codes. */
901 z = (result == 0);
902 s = (result & 0x80000000);
903 cy = (result < op0 || result < op1);
904 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
905 && (op0 & 0x80000000) != (result & 0x80000000));
906 sat = ov;
907
908 /* Store the result and condition codes. */
909 State.regs[OP[1]] = result;
910 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
911 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
912 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
913 | (sat ? PSW_SAT : 0));
914
915 /* Handle saturated results. */
916 if (sat && s)
917 State.regs[OP[1]] = 0x80000000;
918 else if (sat)
919 State.regs[OP[1]] = 0x7fffffff;
920 trace_output (OP_IMM_REG);
921
922 return 2;
923}
924
925/* satsub reg1, reg2 */
926int
927OP_A0 ()
928{
929 unsigned int op0, op1, result, z, s, cy, ov, sat;
930
931 trace_input ("satsub", OP_REG_REG, 0);
932
933 /* Compute the result. */
934 op0 = State.regs[ OP[0] ];
935 op1 = State.regs[ OP[1] ];
936 result = op1 - op0;
937
938 /* Compute the condition codes. */
939 z = (result == 0);
940 s = (result & 0x80000000);
941 cy = (op1 < op0);
942 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
943 && (op1 & 0x80000000) != (result & 0x80000000));
944 sat = ov;
945
946 /* Store the result and condition codes. */
947 State.regs[OP[1]] = result;
948 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
949 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
950 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
951 | (sat ? PSW_SAT : 0));
952
953 /* Handle saturated results. */
954 if (sat && s)
955 State.regs[OP[1]] = 0x80000000;
956 else if (sat)
957 State.regs[OP[1]] = 0x7fffffff;
958 trace_output (OP_REG_REG);
959 return 2;
960}
961
962/* satsubi sign_extend(imm16), reg */
963int
964OP_660 ()
965{
966 unsigned int op0, op1, result, z, s, cy, ov, sat;
967 int temp;
968
969 trace_input ("satsubi", OP_IMM_REG, 0);
970
971 /* Compute the result. */
972 temp = EXTEND16 (OP[2]);
973 op0 = temp;
974 op1 = State.regs[ OP[0] ];
975 result = op1 - op0;
976
977 /* Compute the condition codes. */
978 z = (result == 0);
979 s = (result & 0x80000000);
980 cy = (op1 < op0);
981 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
982 && (op1 & 0x80000000) != (result & 0x80000000));
983 sat = ov;
984
985 /* Store the result and condition codes. */
986 State.regs[OP[1]] = result;
987 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
988 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
989 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
990 | (sat ? PSW_SAT : 0));
991
992 /* Handle saturated results. */
993 if (sat && s)
994 State.regs[OP[1]] = 0x80000000;
995 else if (sat)
996 State.regs[OP[1]] = 0x7fffffff;
997 trace_output (OP_IMM_REG);
998
999 return 4;
1000}
1001
1002/* satsubr reg,reg */
1003int
1004OP_80 ()
1005{
1006 unsigned int op0, op1, result, z, s, cy, ov, sat;
1007
1008 trace_input ("satsubr", OP_REG_REG, 0);
1009
1010 /* Compute the result. */
1011 op0 = State.regs[ OP[0] ];
1012 op1 = State.regs[ OP[1] ];
1013 result = op0 - op1;
1014
1015 /* Compute the condition codes. */
1016 z = (result == 0);
1017 s = (result & 0x80000000);
1018 cy = (result < op0);
1019 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
1020 && (op1 & 0x80000000) != (result & 0x80000000));
1021 sat = ov;
1022
1023 /* Store the result and condition codes. */
1024 State.regs[OP[1]] = result;
1025 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
1026 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1027 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
1028 | (sat ? PSW_SAT : 0));
1029
1030 /* Handle saturated results. */
1031 if (sat && s)
1032 State.regs[OP[1]] = 0x80000000;
1033 else if (sat)
1034 State.regs[OP[1]] = 0x7fffffff;
1035 trace_output (OP_REG_REG);
1036
1037 return 2;
1038}
1039
1040/* tst reg,reg */
1041int
1042OP_160 ()
1043{
1044 unsigned int op0, op1, result, z, s;
1045
1046 trace_input ("tst", OP_REG_REG_CMP, 0);
1047
1048 /* Compute the result. */
1049 op0 = State.regs[ OP[0] ];
1050 op1 = State.regs[ OP[1] ];
1051 result = op0 & op1;
1052
1053 /* Compute the condition codes. */
1054 z = (result == 0);
1055 s = (result & 0x80000000);
1056
1057 /* Store the condition codes. */
1058 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1059 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1060 trace_output (OP_REG_REG_CMP);
1061
1062 return 2;
1063}
1064
1065/* mov sign_extend(imm5), reg */
1066int
1067OP_200 ()
1068{
1069 int value = SEXT5 (OP[0]);
1070
1071 trace_input ("mov", OP_IMM_REG_MOVE, 0);
1072
1073 State.regs[ OP[1] ] = value;
1074
1075 trace_output (OP_IMM_REG_MOVE);
1076
1077 return 2;
1078}
1079
1080/* movhi imm16, reg, reg */
1081int
1082OP_640 ()
1083{
1084 trace_input ("movhi", OP_UIMM16_REG_REG, 16);
1085
1086 State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
1087
1088 trace_output (OP_UIMM16_REG_REG);
1089
1090 return 4;
1091}
1092
1093/* sar zero_extend(imm5),reg1 */
1094int
1095OP_2A0 ()
1096{
1097 unsigned int op0, op1, result, z, s, cy;
1098
1099 trace_input ("sar", OP_IMM_REG, 0);
1100 op0 = OP[0];
1101 op1 = State.regs[ OP[1] ];
1102 result = (signed)op1 >> op0;
1103
1104 /* Compute the condition codes. */
1105 z = (result == 0);
1106 s = (result & 0x80000000);
1107 cy = (op1 & (1 << (op0 - 1)));
1108
1109 /* Store the result and condition codes. */
1110 State.regs[ OP[1] ] = result;
1111 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1112 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1113 | (cy ? PSW_CY : 0));
1114 trace_output (OP_IMM_REG);
1115
1116 return 2;
1117}
1118
1119/* sar reg1, reg2 */
1120int
1121OP_A007E0 ()
1122{
1123 unsigned int op0, op1, result, z, s, cy;
1124
1125 trace_input ("sar", OP_REG_REG, 0);
1126
1127 op0 = State.regs[ OP[0] ] & 0x1f;
1128 op1 = State.regs[ OP[1] ];
1129 result = (signed)op1 >> op0;
1130
1131 /* Compute the condition codes. */
1132 z = (result == 0);
1133 s = (result & 0x80000000);
1134 cy = (op1 & (1 << (op0 - 1)));
1135
1136 /* Store the result and condition codes. */
1137 State.regs[OP[1]] = result;
1138 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1139 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1140 | (cy ? PSW_CY : 0));
1141 trace_output (OP_REG_REG);
1142
1143 return 4;
1144}
1145
1146/* shl zero_extend(imm5),reg1 */
1147int
1148OP_2C0 ()
1149{
1150 unsigned int op0, op1, result, z, s, cy;
1151
1152 trace_input ("shl", OP_IMM_REG, 0);
1153 op0 = OP[0];
1154 op1 = State.regs[ OP[1] ];
1155 result = op1 << op0;
1156
1157 /* Compute the condition codes. */
1158 z = (result == 0);
1159 s = (result & 0x80000000);
1160 cy = (op1 & (1 << (32 - op0)));
1161
1162 /* Store the result and condition codes. */
1163 State.regs[OP[1]] = result;
1164 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1165 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1166 | (cy ? PSW_CY : 0));
1167 trace_output (OP_IMM_REG);
1168
1169 return 2;
1170}
1171
1172/* shl reg1, reg2 */
1173int
1174OP_C007E0 ()
1175{
1176 unsigned int op0, op1, result, z, s, cy;
1177
1178 trace_input ("shl", OP_REG_REG, 0);
1179 op0 = State.regs[ OP[0] ] & 0x1f;
1180 op1 = State.regs[ OP[1] ];
1181 result = op1 << op0;
1182
1183 /* Compute the condition codes. */
1184 z = (result == 0);
1185 s = (result & 0x80000000);
1186 cy = (op1 & (1 << (32 - op0)));
1187
1188 /* Store the result and condition codes. */
1189 State.regs[OP[1]] = result;
1190 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1191 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1192 | (cy ? PSW_CY : 0));
1193 trace_output (OP_REG_REG);
1194
1195 return 4;
1196}
1197
1198/* shr zero_extend(imm5),reg1 */
1199int
1200OP_280 ()
1201{
1202 unsigned int op0, op1, result, z, s, cy;
1203
1204 trace_input ("shr", OP_IMM_REG, 0);
1205 op0 = OP[0];
1206 op1 = State.regs[ OP[1] ];
1207 result = op1 >> op0;
1208
1209 /* Compute the condition codes. */
1210 z = (result == 0);
1211 s = (result & 0x80000000);
1212 cy = (op1 & (1 << (op0 - 1)));
1213
1214 /* Store the result and condition codes. */
1215 State.regs[OP[1]] = result;
1216 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1217 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1218 | (cy ? PSW_CY : 0));
1219 trace_output (OP_IMM_REG);
1220
1221 return 2;
1222}
1223
1224/* shr reg1, reg2 */
1225int
1226OP_8007E0 ()
1227{
1228 unsigned int op0, op1, result, z, s, cy;
1229
1230 trace_input ("shr", OP_REG_REG, 0);
1231 op0 = State.regs[ OP[0] ] & 0x1f;
1232 op1 = State.regs[ OP[1] ];
1233 result = op1 >> op0;
1234
1235 /* Compute the condition codes. */
1236 z = (result == 0);
1237 s = (result & 0x80000000);
1238 cy = (op1 & (1 << (op0 - 1)));
1239
1240 /* Store the result and condition codes. */
1241 State.regs[OP[1]] = result;
1242 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1243 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1244 | (cy ? PSW_CY : 0));
1245 trace_output (OP_REG_REG);
1246
1247 return 4;
1248}
1249
1250/* or reg, reg */
1251int
1252OP_100 ()
1253{
1254 unsigned int op0, op1, result, z, s;
1255
1256 trace_input ("or", OP_REG_REG, 0);
1257
1258 /* Compute the result. */
1259 op0 = State.regs[ OP[0] ];
1260 op1 = State.regs[ OP[1] ];
1261 result = op0 | op1;
1262
1263 /* Compute the condition codes. */
1264 z = (result == 0);
1265 s = (result & 0x80000000);
1266
1267 /* Store the result and condition codes. */
1268 State.regs[OP[1]] = result;
1269 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1270 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1271 trace_output (OP_REG_REG);
1272
1273 return 2;
1274}
1275
1276/* ori zero_extend(imm16), reg, reg */
1277int
1278OP_680 ()
1279{
1280 unsigned int op0, op1, result, z, s;
1281
1282 trace_input ("ori", OP_UIMM16_REG_REG, 0);
1283 op0 = OP[2];
1284 op1 = State.regs[ OP[0] ];
1285 result = op0 | op1;
1286
1287 /* Compute the condition codes. */
1288 z = (result == 0);
1289 s = (result & 0x80000000);
1290
1291 /* Store the result and condition codes. */
1292 State.regs[OP[1]] = result;
1293 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1294 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1295 trace_output (OP_UIMM16_REG_REG);
1296
1297 return 4;
1298}
1299
1300/* and reg, reg */
1301int
1302OP_140 ()
1303{
1304 unsigned int op0, op1, result, z, s;
1305
1306 trace_input ("and", OP_REG_REG, 0);
1307
1308 /* Compute the result. */
1309 op0 = State.regs[ OP[0] ];
1310 op1 = State.regs[ OP[1] ];
1311 result = op0 & op1;
1312
1313 /* Compute the condition codes. */
1314 z = (result == 0);
1315 s = (result & 0x80000000);
1316
1317 /* Store the result and condition codes. */
1318 State.regs[OP[1]] = result;
1319 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1320 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1321 trace_output (OP_REG_REG);
1322
1323 return 2;
1324}
1325
1326/* andi zero_extend(imm16), reg, reg */
1327int
1328OP_6C0 ()
1329{
1330 unsigned int result, z;
1331
1332 trace_input ("andi", OP_UIMM16_REG_REG, 0);
1333
1334 result = OP[2] & State.regs[ OP[0] ];
1335
1336 /* Compute the condition codes. */
1337 z = (result == 0);
1338
1339 /* Store the result and condition codes. */
1340 State.regs[ OP[1] ] = result;
1341
1342 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1343 PSW |= (z ? PSW_Z : 0);
1344
1345 trace_output (OP_UIMM16_REG_REG);
1346
1347 return 4;
1348}
1349
1350/* xor reg, reg */
1351int
1352OP_120 ()
1353{
1354 unsigned int op0, op1, result, z, s;
1355
1356 trace_input ("xor", OP_REG_REG, 0);
1357
1358 /* Compute the result. */
1359 op0 = State.regs[ OP[0] ];
1360 op1 = State.regs[ OP[1] ];
1361 result = op0 ^ op1;
1362
1363 /* Compute the condition codes. */
1364 z = (result == 0);
1365 s = (result & 0x80000000);
1366
1367 /* Store the result and condition codes. */
1368 State.regs[OP[1]] = result;
1369 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1370 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1371 trace_output (OP_REG_REG);
1372
1373 return 2;
1374}
1375
1376/* xori zero_extend(imm16), reg, reg */
1377int
1378OP_6A0 ()
1379{
1380 unsigned int op0, op1, result, z, s;
1381
1382 trace_input ("xori", OP_UIMM16_REG_REG, 0);
1383 op0 = OP[2];
1384 op1 = State.regs[ OP[0] ];
1385 result = op0 ^ op1;
1386
1387 /* Compute the condition codes. */
1388 z = (result == 0);
1389 s = (result & 0x80000000);
1390
1391 /* Store the result and condition codes. */
1392 State.regs[OP[1]] = result;
1393 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1394 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1395 trace_output (OP_UIMM16_REG_REG);
1396
1397 return 4;
1398}
1399
1400/* not reg1, reg2 */
1401int
1402OP_20 ()
1403{
1404 unsigned int op0, result, z, s;
1405
1406 trace_input ("not", OP_REG_REG_MOVE, 0);
1407 /* Compute the result. */
1408 op0 = State.regs[ OP[0] ];
1409 result = ~op0;
1410
1411 /* Compute the condition codes. */
1412 z = (result == 0);
1413 s = (result & 0x80000000);
1414
1415 /* Store the result and condition codes. */
1416 State.regs[OP[1]] = result;
1417 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1418 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1419 trace_output (OP_REG_REG_MOVE);
1420
1421 return 2;
1422}
1423
1424/* set1 */
1425int
1426OP_7C0 ()
1427{
1428 unsigned int op0, op1, op2;
1429 int temp;
1430
1431 trace_input ("set1", OP_BIT, 0);
1432 op0 = State.regs[ OP[0] ];
1433 op1 = OP[1] & 0x7;
1434 temp = EXTEND16 (OP[2]);
1435 op2 = temp;
1436 temp = load_mem (op0 + op2, 1);
1437 PSW &= ~PSW_Z;
1438 if ((temp & (1 << op1)) == 0)
1439 PSW |= PSW_Z;
1440 temp |= (1 << op1);
1441 store_mem (op0 + op2, 1, temp);
1442 trace_output (OP_BIT);
1443
1444 return 4;
1445}
1446
1447/* not1 */
1448int
1449OP_47C0 ()
1450{
1451 unsigned int op0, op1, op2;
1452 int temp;
1453
1454 trace_input ("not1", OP_BIT, 0);
1455 op0 = State.regs[ OP[0] ];
1456 op1 = OP[1] & 0x7;
1457 temp = EXTEND16 (OP[2]);
1458 op2 = temp;
1459 temp = load_mem (op0 + op2, 1);
1460 PSW &= ~PSW_Z;
1461 if ((temp & (1 << op1)) == 0)
1462 PSW |= PSW_Z;
1463 temp ^= (1 << op1);
1464 store_mem (op0 + op2, 1, temp);
1465 trace_output (OP_BIT);
1466
1467 return 4;
1468}
1469
1470/* clr1 */
1471int
1472OP_87C0 ()
1473{
1474 unsigned int op0, op1, op2;
1475 int temp;
1476
1477 trace_input ("clr1", OP_BIT, 0);
1478 op0 = State.regs[ OP[0] ];
1479 op1 = OP[1] & 0x7;
1480 temp = EXTEND16 (OP[2]);
1481 op2 = temp;
1482 temp = load_mem (op0 + op2, 1);
1483 PSW &= ~PSW_Z;
1484 if ((temp & (1 << op1)) == 0)
1485 PSW |= PSW_Z;
1486 temp &= ~(1 << op1);
1487 store_mem (op0 + op2, 1, temp);
1488 trace_output (OP_BIT);
1489
1490 return 4;
1491}
1492
1493/* tst1 */
1494int
1495OP_C7C0 ()
1496{
1497 unsigned int op0, op1, op2;
1498 int temp;
1499
1500 trace_input ("tst1", OP_BIT, 0);
1501 op0 = State.regs[ OP[0] ];
1502 op1 = OP[1] & 0x7;
1503 temp = EXTEND16 (OP[2]);
1504 op2 = temp;
1505 temp = load_mem (op0 + op2, 1);
1506 PSW &= ~PSW_Z;
1507 if ((temp & (1 << op1)) == 0)
1508 PSW |= PSW_Z;
1509 trace_output (OP_BIT);
1510
1511 return 4;
1512}
1513
1514/* di */
1515int
1516OP_16007E0 ()
1517{
1518 trace_input ("di", OP_NONE, 0);
1519 PSW |= PSW_ID;
1520 trace_output (OP_NONE);
1521
1522 return 4;
1523}
1524
1525/* ei */
1526int
1527OP_16087E0 ()
1528{
1529 trace_input ("ei", OP_NONE, 0);
1530 PSW &= ~PSW_ID;
1531 trace_output (OP_NONE);
1532
1533 return 4;
1534}
1535
1536/* halt */
1537int
1538OP_12007E0 ()
1539{
1540 trace_input ("halt", OP_NONE, 0);
1541 /* FIXME this should put processor into a mode where NMI still handled */
1542 trace_output (OP_NONE);
1543 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1544 sim_stopped, SIM_SIGTRAP);
1545 return 0;
1546}
1547
1548/* trap */
1549int
1550OP_10007E0 ()
1551{
1552 trace_input ("trap", OP_TRAP, 0);
1553 trace_output (OP_TRAP);
1554
1555 /* Trap 31 is used for simulating OS I/O functions */
1556
1557 if (OP[0] == 31)
1558 {
1559 int save_errno = errno;
1560 errno = 0;
1561
1562/* Registers passed to trap 0 */
1563
1564#define FUNC State.regs[6] /* function number, return value */
1565#define PARM1 State.regs[7] /* optional parm 1 */
1566#define PARM2 State.regs[8] /* optional parm 2 */
1567#define PARM3 State.regs[9] /* optional parm 3 */
1568
1569/* Registers set by trap 0 */
1570
1571#define RETVAL State.regs[10] /* return value */
1572#define RETERR State.regs[11] /* return error code */
1573
1574/* Turn a pointer in a register into a pointer into real memory. */
1575
1576#define MEMPTR(x) (map (x))
1577
1578 switch (FUNC)
1579 {
1580
1581#ifdef HAVE_FORK
1582#ifdef TARGET_SYS_fork
1583 case TARGET_SYS_fork:
1584 RETVAL = fork ();
1585 break;
1586#endif
1587#endif
1588
1589#ifdef HAVE_EXECVE
1590#ifdef TARGET_SYS_execv
1591 case TARGET_SYS_execve:
1592 {
1593 char *path = fetch_str (simulator, PARM1);
1594 char **argv = fetch_argv (simulator, PARM2);
1595 char **envp = fetch_argv (simulator, PARM3);
1596 RETVAL = execve (path, argv, envp);
1597 zfree (path);
1598 freeargv (argv);
1599 freeargv (envp);
1600 break;
1601 }
1602#endif
1603#endif
1604
1605#if HAVE_EXECV
1606#ifdef TARGET_SYS_execv
1607 case TARGET_SYS_execv:
1608 {
1609 char *path = fetch_str (simulator, PARM1);
1610 char **argv = fetch_argv (simulator, PARM2);
1611 RETVAL = execv (path, argv);
1612 zfree (path);
1613 freeargv (argv);
1614 break;
1615 }
1616#endif
1617#endif
1618
1619#if 0
1620#ifdef TARGET_SYS_pipe
1621 case TARGET_SYS_pipe:
1622 {
1623 reg_t buf;
1624 int host_fd[2];
1625
1626 buf = PARM1;
1627 RETVAL = pipe (host_fd);
1628 SW (buf, host_fd[0]);
1629 buf += sizeof(uint16);
1630 SW (buf, host_fd[1]);
1631 }
1632 break;
1633#endif
1634#endif
1635
1636#if 0
1637#ifdef TARGET_SYS_wait
1638 case TARGET_SYS_wait:
1639 {
1640 int status;
1641
1642 RETVAL = wait (&status);
1643 SW (PARM1, status);
1644 }
1645 break;
1646#endif
1647#endif
1648
1649#ifdef TARGET_SYS_read
1650 case TARGET_SYS_read:
1651 {
1652 char *buf = zalloc (PARM3);
1653 RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
1654 sim_write (simulator, PARM2, buf, PARM3);
1655 zfree (buf);
1656 break;
1657 }
1658#endif
1659
1660#ifdef TARGET_SYS_write
1661 case TARGET_SYS_write:
1662 {
1663 char *buf = zalloc (PARM3);
1664 sim_read (simulator, PARM2, buf, PARM3);
1665 if (PARM1 == 1)
1666 RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
1667 else
1668 RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
1669 zfree (buf);
1670 break;
1671 }
1672#endif
1673
1674#ifdef TARGET_SYS_lseek
1675 case TARGET_SYS_lseek:
1676 RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
1677 break;
1678#endif
1679
1680#ifdef TARGET_SYS_close
1681 case TARGET_SYS_close:
1682 RETVAL = sim_io_close (simulator, PARM1);
1683 break;
1684#endif
1685
1686#ifdef TARGET_SYS_open
1687 case TARGET_SYS_open:
1688 {
1689 char *buf = fetch_str (simulator, PARM1);
1690 RETVAL = sim_io_open (simulator, buf, PARM2);
1691 zfree (buf);
1692 break;
1693 }
1694#endif
1695
1696#ifdef TARGET_SYS_exit
1697 case TARGET_SYS_exit:
1698 if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
1699 /* get signal encoded by kill */
1700 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1701 sim_signalled, PARM1 & 0xffff);
1702 else if (PARM1 == 0xdead)
1703 /* old libraries */
1704 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1705 sim_stopped, SIM_SIGABRT);
1706 else
1707 /* PARM1 has exit status */
1708 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1709 sim_exited, PARM1);
1710 break;
1711#endif
1712
1713#if !defined(__GO32__) && !defined(_WIN32)
1714#ifdef TARGET_SYS_stat
1715 case TARGET_SYS_stat: /* added at hmsi */
1716 /* stat system call */
1717 {
1718 struct stat host_stat;
1719 reg_t buf;
1720 char *path = fetch_str (simulator, PARM1);
1721
1722 RETVAL = stat (path, &host_stat);
1723
1724 zfree (path);
1725 buf = PARM2;
1726
1727 /* Just wild-assed guesses. */
1728 store_mem (buf, 2, host_stat.st_dev);
1729 store_mem (buf + 2, 2, host_stat.st_ino);
1730 store_mem (buf + 4, 4, host_stat.st_mode);
1731 store_mem (buf + 8, 2, host_stat.st_nlink);
1732 store_mem (buf + 10, 2, host_stat.st_uid);
1733 store_mem (buf + 12, 2, host_stat.st_gid);
1734 store_mem (buf + 14, 2, host_stat.st_rdev);
1735 store_mem (buf + 16, 4, host_stat.st_size);
1736 store_mem (buf + 20, 4, host_stat.st_atime);
1737 store_mem (buf + 28, 4, host_stat.st_mtime);
1738 store_mem (buf + 36, 4, host_stat.st_ctime);
1739 }
1740 break;
1741#endif
1742#endif
1743
1744#ifdef HAVE_CHOWN
1745#ifdef TARGET_SYS_chown
1746 case TARGET_SYS_chown:
1747 {
1748 char *path = fetch_str (simulator, PARM1);
1749 RETVAL = chown (path, PARM2, PARM3);
1750 zfree (path);
1751 }
1752 break;
1753#endif
1754#endif
1755
1756#if HAVE_CHMOD
1757#ifdef TARGET_SYS_chmod
1758 case TARGET_SYS_chmod:
1759 {
1760 char *path = fetch_str (simulator, PARM1);
1761 RETVAL = chmod (path, PARM2);
1762 zfree (path);
1763 }
1764 break;
1765#endif
1766#endif
1767
1768#ifdef TARGET_SYS_time
1769#if HAVE_TIME
1770 case TARGET_SYS_time:
1771 {
1772 time_t now;
1773 RETVAL = time (&now);
1774 store_mem (PARM1, 4, now);
1775 }
1776 break;
1777#endif
1778#endif
1779
1780#if !defined(__GO32__) && !defined(_WIN32)
1781#ifdef TARGET_SYS_times
1782 case TARGET_SYS_times:
1783 {
1784 struct tms tms;
1785 RETVAL = times (&tms);
1786 store_mem (PARM1, 4, tms.tms_utime);
1787 store_mem (PARM1 + 4, 4, tms.tms_stime);
1788 store_mem (PARM1 + 8, 4, tms.tms_cutime);
1789 store_mem (PARM1 + 12, 4, tms.tms_cstime);
1790 break;
1791 }
1792#endif
1793#endif
1794
1795#ifdef TARGET_SYS_gettimeofday
1796#if !defined(__GO32__) && !defined(_WIN32)
1797 case TARGET_SYS_gettimeofday:
1798 {
1799 struct timeval t;
1800 struct timezone tz;
1801 RETVAL = gettimeofday (&t, &tz);
1802 store_mem (PARM1, 4, t.tv_sec);
1803 store_mem (PARM1 + 4, 4, t.tv_usec);
1804 store_mem (PARM2, 4, tz.tz_minuteswest);
1805 store_mem (PARM2 + 4, 4, tz.tz_dsttime);
1806 break;
1807 }
1808#endif
1809#endif
1810
1811#ifdef TARGET_SYS_utime
1812#if HAVE_UTIME
1813 case TARGET_SYS_utime:
1814 {
1815 /* Cast the second argument to void *, to avoid type mismatch
1816 if a prototype is present. */
1817 sim_io_error (simulator, "Utime not supported");
1818 /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
1819 }
1820 break;
1821#endif
1822#endif
1823
1824 default:
1825 abort ();
1826 }
1827 RETERR = errno;
1828 errno = save_errno;
1829
1830 return 4;
1831 }
1832 else
1833 { /* Trap 0 -> 30 */
1834 EIPC = PC + 4;
1835 EIPSW = PSW;
1836 /* Mask out EICC */
1837 ECR &= 0xffff0000;
1838 ECR |= 0x40 + OP[0];
1839 /* Flag that we are now doing exception processing. */
1840 PSW |= PSW_EP | PSW_ID;
2e8162ce 1841 PC = (OP[0] < 0x10) ? 0x40 : 0x50;
c906108c
SS
1842
1843 return 0;
1844 }
1845}
1846
1847/* tst1 reg2, [reg1] */
1848int
1849OP_E607E0 (void)
1850{
1851 int temp;
1852
1853 trace_input ("tst1", OP_BIT, 1);
1854
1855 temp = load_mem (State.regs[ OP[0] ], 1);
1856
1857 PSW &= ~PSW_Z;
30458d39 1858 if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0)
c906108c
SS
1859 PSW |= PSW_Z;
1860
1861 trace_output (OP_BIT);
1862
1863 return 4;
1864}
1865
1866/* mulu reg1, reg2, reg3 */
1867int
1868OP_22207E0 (void)
1869{
1870 trace_input ("mulu", OP_REG_REG_REG, 0);
1871
0da2b665 1872 Multiply64 (0, State.regs[ OP[0] ]);
c906108c
SS
1873
1874 trace_output (OP_REG_REG_REG);
1875
1876 return 4;
1877}
1878
1879#define BIT_CHANGE_OP( name, binop ) \
1880 unsigned int bit; \
1881 unsigned int temp; \
1882 \
1883 trace_input (name, OP_BIT_CHANGE, 0); \
1884 \
30458d39 1885 bit = 1 << (State.regs[ OP[1] ] & 0x7); \
c906108c
SS
1886 temp = load_mem (State.regs[ OP[0] ], 1); \
1887 \
1888 PSW &= ~PSW_Z; \
1889 if ((temp & bit) == 0) \
1890 PSW |= PSW_Z; \
1891 temp binop bit; \
1892 \
1893 store_mem (State.regs[ OP[0] ], 1, temp); \
1894 \
1895 trace_output (OP_BIT_CHANGE); \
1896 \
1897 return 4;
1898
1899/* clr1 reg2, [reg1] */
1900int
1901OP_E407E0 (void)
1902{
1903 BIT_CHANGE_OP ("clr1", &= ~ );
1904}
1905
1906/* not1 reg2, [reg1] */
1907int
1908OP_E207E0 (void)
1909{
1910 BIT_CHANGE_OP ("not1", ^= );
1911}
1912
1913/* set1 */
1914int
1915OP_E007E0 (void)
1916{
1917 BIT_CHANGE_OP ("set1", |= );
1918}
1919
1920/* sasf */
1921int
1922OP_20007E0 (void)
1923{
1924 trace_input ("sasf", OP_EX1, 0);
1925
1926 State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
1927
1928 trace_output (OP_EX1);
1929
1930 return 4;
1931}
1932
1933/* This function is courtesy of Sugimoto at NEC, via Seow Tan
1934 (Soew_Tan@el.nec.com) */
1935void
1936divun
1937(
1938 unsigned int N,
1939 unsigned long int als,
1940 unsigned long int sfi,
1941 unsigned32 /*unsigned long int*/ * quotient_ptr,
1942 unsigned32 /*unsigned long int*/ * remainder_ptr,
0da2b665 1943 int * overflow_ptr
c906108c
SS
1944)
1945{
1946 unsigned long ald = sfi >> (N - 1);
1947 unsigned long alo = als;
1948 unsigned int Q = 1;
1949 unsigned int C;
1950 unsigned int S = 0;
1951 unsigned int i;
1952 unsigned int R1 = 1;
1953 unsigned int DBZ = (als == 0) ? 1 : 0;
1954 unsigned long alt = Q ? ~als : als;
1955
1956 /* 1st Loop */
1957 alo = ald + alt + Q;
1958 C = (((alt >> 31) & (ald >> 31))
1959 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1960 C = C ^ Q;
1961 Q = ~(C ^ S) & 1;
1962 R1 = (alo == 0) ? 0 : (R1 & Q);
1963 if ((S ^ (alo>>31)) && !C)
1964 {
1965 DBZ = 1;
1966 }
1967 S = alo >> 31;
1968 sfi = (sfi << (32-N+1)) | Q;
1969 ald = (alo << 1) | (sfi >> 31);
1970
1971 /* 2nd - N-1th Loop */
1972 for (i = 2; i < N; i++)
1973 {
1974 alt = Q ? ~als : als;
1975 alo = ald + alt + Q;
1976 C = (((alt >> 31) & (ald >> 31))
1977 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1978 C = C ^ Q;
1979 Q = ~(C ^ S) & 1;
1980 R1 = (alo == 0) ? 0 : (R1 & Q);
1981 if ((S ^ (alo>>31)) && !C && !DBZ)
1982 {
1983 DBZ = 1;
1984 }
1985 S = alo >> 31;
1986 sfi = (sfi << 1) | Q;
1987 ald = (alo << 1) | (sfi >> 31);
1988 }
1989
1990 /* Nth Loop */
1991 alt = Q ? ~als : als;
1992 alo = ald + alt + Q;
1993 C = (((alt >> 31) & (ald >> 31))
1994 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1995 C = C ^ Q;
1996 Q = ~(C ^ S) & 1;
1997 R1 = (alo == 0) ? 0 : (R1 & Q);
1998 if ((S ^ (alo>>31)) && !C)
1999 {
2000 DBZ = 1;
2001 }
2002
2003 * quotient_ptr = (sfi << 1) | Q;
2004 * remainder_ptr = Q ? alo : (alo + als);
2005 * overflow_ptr = DBZ | R1;
2006}
2007
2008/* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
2009void
2010divn
2011(
2012 unsigned int N,
2013 unsigned long int als,
2014 unsigned long int sfi,
2015 signed32 /*signed long int*/ * quotient_ptr,
2016 signed32 /*signed long int*/ * remainder_ptr,
0da2b665 2017 int * overflow_ptr
c906108c
SS
2018)
2019{
2020 unsigned long ald = (signed long) sfi >> (N - 1);
2021 unsigned long alo = als;
2022 unsigned int SS = als >> 31;
2023 unsigned int SD = sfi >> 31;
2024 unsigned int R1 = 1;
2025 unsigned int OV;
2026 unsigned int DBZ = als == 0 ? 1 : 0;
2027 unsigned int Q = ~(SS ^ SD) & 1;
2028 unsigned int C;
2029 unsigned int S;
2030 unsigned int i;
2031 unsigned long alt = Q ? ~als : als;
2032
2033
2034 /* 1st Loop */
2035
2036 alo = ald + alt + Q;
2037 C = (((alt >> 31) & (ald >> 31))
2038 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2039 Q = C ^ SS;
2040 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2041 S = alo >> 31;
2042 sfi = (sfi << (32-N+1)) | Q;
2043 ald = (alo << 1) | (sfi >> 31);
2044 if ((alo >> 31) ^ (ald >> 31))
2045 {
2046 DBZ = 1;
2047 }
2048
2049 /* 2nd - N-1th Loop */
2050
2051 for (i = 2; i < N; i++)
2052 {
2053 alt = Q ? ~als : als;
2054 alo = ald + alt + Q;
2055 C = (((alt >> 31) & (ald >> 31))
2056 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2057 Q = C ^ SS;
2058 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2059 S = alo >> 31;
2060 sfi = (sfi << 1) | Q;
2061 ald = (alo << 1) | (sfi >> 31);
2062 if ((alo >> 31) ^ (ald >> 31))
2063 {
2064 DBZ = 1;
2065 }
2066 }
2067
2068 /* Nth Loop */
2069 alt = Q ? ~als : als;
2070 alo = ald + alt + Q;
2071 C = (((alt >> 31) & (ald >> 31))
2072 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2073 Q = C ^ SS;
2074 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2075 sfi = (sfi << (32-N+1));
2076 ald = alo;
2077
2078 /* End */
2079 if (alo != 0)
2080 {
2081 alt = Q ? ~als : als;
2082 alo = ald + alt + Q;
2083 }
2084 R1 = R1 & ((~alo >> 31) ^ SD);
2085 if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
2086 if (N != 32)
2087 ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
2088 else
2089 ald = sfi = sfi | Q;
2090
2091 OV = DBZ | ((alo == 0) ? 0 : R1);
2092
2093 * remainder_ptr = alo;
2094
2095 /* Adj */
2096 if (((alo != 0) && ((SS ^ SD) ^ R1))
2097 || ((alo == 0) && (SS ^ R1)))
2098 alo = ald + 1;
2099 else
2100 alo = ald;
2101
2102 OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
2103
2104 * quotient_ptr = alo;
2105 * overflow_ptr = OV;
2106}
2107
2108/* sdivun imm5, reg1, reg2, reg3 */
2109int
2110OP_1C207E0 (void)
2111{
2112 unsigned32 /*unsigned long int*/ quotient;
2113 unsigned32 /*unsigned long int*/ remainder;
2114 unsigned long int divide_by;
2115 unsigned long int divide_this;
0da2b665 2116 int overflow = 0;
c906108c
SS
2117 unsigned int imm5;
2118
2119 trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
2120
2121 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2122
2123 divide_by = State.regs[ OP[0] ];
2124 divide_this = State.regs[ OP[1] ] << imm5;
2125
2126 divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2127
2128 State.regs[ OP[1] ] = quotient;
2129 State.regs[ OP[2] >> 11 ] = remainder;
2130
2131 /* Set condition codes. */
2132 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2133
2134 if (overflow) PSW |= PSW_OV;
2135 if (quotient == 0) PSW |= PSW_Z;
2136 if (quotient & 0x80000000) PSW |= PSW_S;
2137
2138 trace_output (OP_IMM_REG_REG_REG);
2139
2140 return 4;
2141}
2142
2143/* sdivn imm5, reg1, reg2, reg3 */
2144int
2145OP_1C007E0 (void)
2146{
2147 signed32 /*signed long int*/ quotient;
2148 signed32 /*signed long int*/ remainder;
2149 signed long int divide_by;
2150 signed long int divide_this;
0da2b665 2151 int overflow = 0;
c906108c
SS
2152 unsigned int imm5;
2153
2154 trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
2155
2156 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2157
2158 divide_by = State.regs[ OP[0] ];
2159 divide_this = State.regs[ OP[1] ] << imm5;
2160
2161 divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2162
2163 State.regs[ OP[1] ] = quotient;
2164 State.regs[ OP[2] >> 11 ] = remainder;
2165
2166 /* Set condition codes. */
2167 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2168
2169 if (overflow) PSW |= PSW_OV;
2170 if (quotient == 0) PSW |= PSW_Z;
2171 if (quotient < 0) PSW |= PSW_S;
2172
2173 trace_output (OP_IMM_REG_REG_REG);
2174
2175 return 4;
2176}
2177
2178/* sdivhun imm5, reg1, reg2, reg3 */
2179int
2180OP_18207E0 (void)
2181{
2182 unsigned32 /*unsigned long int*/ quotient;
2183 unsigned32 /*unsigned long int*/ remainder;
2184 unsigned long int divide_by;
2185 unsigned long int divide_this;
0da2b665 2186 int overflow = 0;
c906108c
SS
2187 unsigned int imm5;
2188
2189 trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
2190
2191 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2192
2193 divide_by = State.regs[ OP[0] ] & 0xffff;
2194 divide_this = State.regs[ OP[1] ] << imm5;
2195
2196 divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2197
2198 State.regs[ OP[1] ] = quotient;
2199 State.regs[ OP[2] >> 11 ] = remainder;
2200
2201 /* Set condition codes. */
2202 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2203
2204 if (overflow) PSW |= PSW_OV;
2205 if (quotient == 0) PSW |= PSW_Z;
2206 if (quotient & 0x80000000) PSW |= PSW_S;
2207
2208 trace_output (OP_IMM_REG_REG_REG);
2209
2210 return 4;
2211}
2212
2213/* sdivhn imm5, reg1, reg2, reg3 */
2214int
2215OP_18007E0 (void)
2216{
2217 signed32 /*signed long int*/ quotient;
2218 signed32 /*signed long int*/ remainder;
2219 signed long int divide_by;
2220 signed long int divide_this;
0da2b665 2221 int overflow = 0;
c906108c
SS
2222 unsigned int imm5;
2223
2224 trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
2225
2226 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2227
2228 divide_by = EXTEND16 (State.regs[ OP[0] ]);
2229 divide_this = State.regs[ OP[1] ] << imm5;
2230
2231 divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2232
2233 State.regs[ OP[1] ] = quotient;
2234 State.regs[ OP[2] >> 11 ] = remainder;
2235
2236 /* Set condition codes. */
2237 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2238
2239 if (overflow) PSW |= PSW_OV;
2240 if (quotient == 0) PSW |= PSW_Z;
2241 if (quotient < 0) PSW |= PSW_S;
2242
2243 trace_output (OP_IMM_REG_REG_REG);
2244
2245 return 4;
2246}
2247
2248/* divu reg1, reg2, reg3 */
2249int
2250OP_2C207E0 (void)
2251{
2252 unsigned long int quotient;
2253 unsigned long int remainder;
2254 unsigned long int divide_by;
2255 unsigned long int divide_this;
0da2b665 2256 int overflow = 0;
c906108c
SS
2257
2258 trace_input ("divu", OP_REG_REG_REG, 0);
2259
2260 /* Compute the result. */
2261
2262 divide_by = State.regs[ OP[0] ];
2263 divide_this = State.regs[ OP[1] ];
2264
2265 if (divide_by == 0)
2266 {
0da2b665 2267 overflow = 1;
c906108c
SS
2268 divide_by = 1;
2269 }
2270
2271 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2272 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2273
2274 /* Set condition codes. */
2275 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2276
2277 if (overflow) PSW |= PSW_OV;
2278 if (quotient == 0) PSW |= PSW_Z;
2279 if (quotient & 0x80000000) PSW |= PSW_S;
2280
2281 trace_output (OP_REG_REG_REG);
2282
2283 return 4;
2284}
2285
2286/* div reg1, reg2, reg3 */
2287int
2288OP_2C007E0 (void)
2289{
2290 signed long int quotient;
2291 signed long int remainder;
2292 signed long int divide_by;
2293 signed long int divide_this;
0da2b665 2294 int overflow = 0;
c906108c
SS
2295
2296 trace_input ("div", OP_REG_REG_REG, 0);
2297
2298 /* Compute the result. */
2299
2300 divide_by = State.regs[ OP[0] ];
2301 divide_this = State.regs[ OP[1] ];
2302
2303 if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
2304 {
0da2b665 2305 overflow = 1;
c906108c
SS
2306 divide_by = 1;
2307 }
2308
2309 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2310 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2311
2312 /* Set condition codes. */
2313 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2314
2315 if (overflow) PSW |= PSW_OV;
2316 if (quotient == 0) PSW |= PSW_Z;
2317 if (quotient < 0) PSW |= PSW_S;
2318
2319 trace_output (OP_REG_REG_REG);
2320
2321 return 4;
2322}
2323
2324/* divhu reg1, reg2, reg3 */
2325int
2326OP_28207E0 (void)
2327{
2328 unsigned long int quotient;
2329 unsigned long int remainder;
2330 unsigned long int divide_by;
2331 unsigned long int divide_this;
0da2b665 2332 int overflow = 0;
c906108c
SS
2333
2334 trace_input ("divhu", OP_REG_REG_REG, 0);
2335
2336 /* Compute the result. */
2337
2338 divide_by = State.regs[ OP[0] ] & 0xffff;
2339 divide_this = State.regs[ OP[1] ];
2340
2341 if (divide_by == 0)
2342 {
0da2b665 2343 overflow = 1;
c906108c
SS
2344 divide_by = 1;
2345 }
2346
2347 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2348 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2349
2350 /* Set condition codes. */
2351 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2352
2353 if (overflow) PSW |= PSW_OV;
2354 if (quotient == 0) PSW |= PSW_Z;
2355 if (quotient & 0x80000000) PSW |= PSW_S;
2356
2357 trace_output (OP_REG_REG_REG);
2358
2359 return 4;
2360}
2361
2362/* divh reg1, reg2, reg3 */
2363int
2364OP_28007E0 (void)
2365{
2366 signed long int quotient;
2367 signed long int remainder;
2368 signed long int divide_by;
2369 signed long int divide_this;
0da2b665 2370 int overflow = 0;
c906108c
SS
2371
2372 trace_input ("divh", OP_REG_REG_REG, 0);
2373
2374 /* Compute the result. */
2375
2376 divide_by = State.regs[ OP[0] ];
2377 divide_this = EXTEND16 (State.regs[ OP[1] ]);
2378
2379 if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
2380 {
0da2b665 2381 overflow = 1;
c906108c
SS
2382 divide_by = 1;
2383 }
2384
2385 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2386 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2387
2388 /* Set condition codes. */
2389 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2390
2391 if (overflow) PSW |= PSW_OV;
2392 if (quotient == 0) PSW |= PSW_Z;
2393 if (quotient < 0) PSW |= PSW_S;
2394
2395 trace_output (OP_REG_REG_REG);
2396
2397 return 4;
2398}
2399
2400/* mulu imm9, reg2, reg3 */
2401int
2402OP_24207E0 (void)
2403{
2404 trace_input ("mulu", OP_IMM_REG_REG, 0);
2405
0da2b665 2406 Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
c906108c
SS
2407
2408 trace_output (OP_IMM_REG_REG);
2409
2410 return 4;
2411}
2412
2413/* mul imm9, reg2, reg3 */
2414int
2415OP_24007E0 (void)
2416{
2417 trace_input ("mul", OP_IMM_REG_REG, 0);
2418
0da2b665 2419 Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)));
c906108c
SS
2420
2421 trace_output (OP_IMM_REG_REG);
2422
2423 return 4;
2424}
2425
2426/* ld.hu */
2427int
2428OP_107E0 (void)
2429{
2430 int adr;
2431
2432 trace_input ("ld.hu", OP_LOAD32, 2);
2433
2434 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
2435 adr &= ~0x1;
2436
2437 State.regs[ OP[1] ] = load_mem (adr, 2);
2438
2439 trace_output (OP_LOAD32);
2440
2441 return 4;
2442}
2443
2444
2445/* ld.bu */
2446int
2447OP_10780 (void)
2448{
2449 int adr;
2450
2451 trace_input ("ld.bu", OP_LOAD32, 1);
2452
2453 adr = (State.regs[ OP[0] ]
2454 + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
2455
2456 State.regs[ OP[1] ] = load_mem (adr, 1);
2457
2458 trace_output (OP_LOAD32);
2459
2460 return 4;
2461}
2462
2463/* prepare list12, imm5, imm32 */
2464int
2465OP_1B0780 (void)
2466{
2467 int i;
2468
2469 trace_input ("prepare", OP_PUSHPOP1, 0);
2470
2471 /* Store the registers with lower number registers being placed at higher addresses. */
2472 for (i = 0; i < 12; i++)
2473 if ((OP[3] & (1 << type1_regs[ i ])))
2474 {
2475 SP -= 4;
2476 store_mem (SP, 4, State.regs[ 20 + i ]);
2477 }
2478
2479 SP -= (OP[3] & 0x3e) << 1;
2480
2481 EP = load_mem (PC + 4, 4);
2482
2483 trace_output (OP_PUSHPOP1);
2484
2485 return 8;
2486}
2487
2488/* prepare list12, imm5, imm16-32 */
2489int
2490OP_130780 (void)
2491{
2492 int i;
2493
2494 trace_input ("prepare", OP_PUSHPOP1, 0);
2495
2496 /* Store the registers with lower number registers being placed at higher addresses. */
2497 for (i = 0; i < 12; i++)
2498 if ((OP[3] & (1 << type1_regs[ i ])))
2499 {
2500 SP -= 4;
2501 store_mem (SP, 4, State.regs[ 20 + i ]);
2502 }
2503
2504 SP -= (OP[3] & 0x3e) << 1;
2505
2506 EP = load_mem (PC + 4, 2) << 16;
2507
2508 trace_output (OP_PUSHPOP1);
2509
2510 return 6;
2511}
2512
2513/* prepare list12, imm5, imm16 */
2514int
2515OP_B0780 (void)
2516{
2517 int i;
2518
2519 trace_input ("prepare", OP_PUSHPOP1, 0);
2520
2521 /* Store the registers with lower number registers being placed at higher addresses. */
2522 for (i = 0; i < 12; i++)
2523 if ((OP[3] & (1 << type1_regs[ i ])))
2524 {
2525 SP -= 4;
2526 store_mem (SP, 4, State.regs[ 20 + i ]);
2527 }
2528
2529 SP -= (OP[3] & 0x3e) << 1;
2530
2531 EP = EXTEND16 (load_mem (PC + 4, 2));
2532
2533 trace_output (OP_PUSHPOP1);
2534
2535 return 6;
2536}
2537
2538/* prepare list12, imm5, sp */
2539int
2540OP_30780 (void)
2541{
2542 int i;
2543
2544 trace_input ("prepare", OP_PUSHPOP1, 0);
2545
2546 /* Store the registers with lower number registers being placed at higher addresses. */
2547 for (i = 0; i < 12; i++)
2548 if ((OP[3] & (1 << type1_regs[ i ])))
2549 {
2550 SP -= 4;
2551 store_mem (SP, 4, State.regs[ 20 + i ]);
2552 }
2553
2554 SP -= (OP[3] & 0x3e) << 1;
2555
2556 EP = SP;
2557
2558 trace_output (OP_PUSHPOP1);
2559
2560 return 4;
2561}
2562
2563/* mul reg1, reg2, reg3 */
2564int
2565OP_22007E0 (void)
2566{
2567 trace_input ("mul", OP_REG_REG_REG, 0);
2568
0da2b665 2569 Multiply64 (1, State.regs[ OP[0] ]);
c906108c
SS
2570
2571 trace_output (OP_REG_REG_REG);
2572
2573 return 4;
2574}
2575
2576/* popmh list18 */
2577int
2578OP_307F0 (void)
2579{
2580 int i;
2581
2582 trace_input ("popmh", OP_PUSHPOP2, 0);
2583
2584 if (OP[3] & (1 << 19))
2585 {
2586 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2587 {
2588 FEPSW = load_mem ( SP & ~ 3, 4);
2589 FEPC = load_mem ((SP + 4) & ~ 3, 4);
2590 }
2591 else
2592 {
2593 EIPSW = load_mem ( SP & ~ 3, 4);
2594 EIPC = load_mem ((SP + 4) & ~ 3, 4);
2595 }
2596
2597 SP += 8;
2598 }
2599
2600 /* Load the registers with lower number registers being retrieved from higher addresses. */
2601 for (i = 16; i--;)
2602 if ((OP[3] & (1 << type2_regs[ i ])))
2603 {
2604 State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
2605 SP += 4;
2606 }
2607
2608 trace_output (OP_PUSHPOP2);
2609
2610 return 4;
2611}
2612
2613/* popml lsit18 */
2614int
2615OP_107F0 (void)
2616{
2617 int i;
2618
2619 trace_input ("popml", OP_PUSHPOP3, 0);
2620
2621 if (OP[3] & (1 << 19))
2622 {
2623 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2624 {
2625 FEPSW = load_mem ( SP & ~ 3, 4);
2626 FEPC = load_mem ((SP + 4) & ~ 3, 4);
2627 }
2628 else
2629 {
2630 EIPSW = load_mem ( SP & ~ 3, 4);
2631 EIPC = load_mem ((SP + 4) & ~ 3, 4);
2632 }
2633
2634 SP += 8;
2635 }
2636
2637 if (OP[3] & (1 << 3))
2638 {
2639 PSW = load_mem (SP & ~ 3, 4);
2640 SP += 4;
2641 }
2642
2643 /* Load the registers with lower number registers being retrieved from higher addresses. */
2644 for (i = 15; i--;)
2645 if ((OP[3] & (1 << type3_regs[ i ])))
2646 {
2647 State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
2648 SP += 4;
2649 }
2650
2651 trace_output (OP_PUSHPOP2);
2652
2653 return 4;
2654}
2655
2656/* pushmh list18 */
2657int
2658OP_307E0 (void)
2659{
2660 int i;
2661
2662 trace_input ("pushmh", OP_PUSHPOP2, 0);
2663
2664 /* Store the registers with lower number registers being placed at higher addresses. */
2665 for (i = 0; i < 16; i++)
2666 if ((OP[3] & (1 << type2_regs[ i ])))
2667 {
2668 SP -= 4;
2669 store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
2670 }
2671
2672 if (OP[3] & (1 << 19))
2673 {
2674 SP -= 8;
2675
2676 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2677 {
2678 store_mem ((SP + 4) & ~ 3, 4, FEPC);
2679 store_mem ( SP & ~ 3, 4, FEPSW);
2680 }
2681 else
2682 {
2683 store_mem ((SP + 4) & ~ 3, 4, EIPC);
2684 store_mem ( SP & ~ 3, 4, EIPSW);
2685 }
2686 }
2687
2688 trace_output (OP_PUSHPOP2);
2689
2690 return 4;
2691}
2692
This page took 0.758103 seconds and 4 git commands to generate.