virtual: Documentation: simplify and generalize paravirt_ops.txt
[deliverable/linux.git] / tools / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
17cbca2b
RR
37#include <assert.h>
38#include <sched.h>
a586d4f6
RR
39#include <limits.h>
40#include <stddef.h>
a161883a 41#include <signal.h>
8aeb36e8
PS
42#include <pwd.h>
43#include <grp.h>
c565650b 44#include <sys/user.h>
d7fbf6e9 45#include <linux/pci_regs.h>
8aeb36e8 46
927cfb97
RR
47#ifndef VIRTIO_F_ANY_LAYOUT
48#define VIRTIO_F_ANY_LAYOUT 27
49#endif
50
2e04ef76 51/*L:110
9f54288d 52 * We can ignore the 43 include files we need for this program, but I do want
2e04ef76 53 * to draw attention to the use of kernel-style types.
db24e8c2
RR
54 *
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
58 * use %llu in printf for any u64.
59 */
db24e8c2
RR
60typedef unsigned long long u64;
61typedef uint32_t u32;
62typedef uint16_t u16;
63typedef uint8_t u8;
dde79789 64/*:*/
8ca47e00 65
eb39f833 66#define VIRTIO_CONFIG_NO_LEGACY
93153077 67#define VIRTIO_PCI_NO_LEGACY
50516547 68#define VIRTIO_BLK_NO_LEGACY
93153077
RR
69
70/* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
71#include "../../include/uapi/linux/virtio_config.h"
bf6d4034 72#include "../../include/uapi/linux/virtio_net.h"
50516547 73#include "../../include/uapi/linux/virtio_blk.h"
e8330d9b 74#include "../../include/uapi/linux/virtio_console.h"
0d5b5d39 75#include "../../include/uapi/linux/virtio_rng.h"
e6dc0418 76#include <linux/virtio_ring.h>
93153077 77#include "../../include/uapi/linux/virtio_pci.h"
e6dc0418
RR
78#include <asm/bootparam.h>
79#include "../../include/linux/lguest_launcher.h"
80
8ca47e00
RR
81#define BRIDGE_PFX "bridge:"
82#ifndef SIOCBRADDIF
83#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
84#endif
3c6b5bfa
RR
85/* We can have up to 256 pages for devices. */
86#define DEVICE_PAGES 256
0f0c4fab
RR
87/* This will occupy 3 pages: it must be a power of 2. */
88#define VIRTQUEUE_NUM 256
8ca47e00 89
2e04ef76
RR
90/*L:120
91 * verbose is both a global flag and a macro. The C preprocessor allows
92 * this, and although I wouldn't recommend it, it works quite nicely here.
93 */
8ca47e00
RR
94static bool verbose;
95#define verbose(args...) \
96 do { if (verbose) printf(args); } while(0)
dde79789
RR
97/*:*/
98
3c6b5bfa
RR
99/* The pointer to the start of guest memory. */
100static void *guest_base;
101/* The maximum guest physical address allowed, and maximum possible. */
0a6bcc18 102static unsigned long guest_limit, guest_max, guest_mmio;
56739c80
RR
103/* The /dev/lguest file descriptor. */
104static int lguest_fd;
8ca47e00 105
e3283fa0
GOC
106/* a per-cpu variable indicating whose vcpu is currently running */
107static unsigned int __thread cpu_id;
108
6a54f9ab
RR
109/* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
110#define MAX_PCI_DEVICES 32
111
dde79789 112/* This is our list of devices. */
1842f23c 113struct device_list {
17cbca2b
RR
114 /* Counter to assign interrupt numbers. */
115 unsigned int next_irq;
116
117 /* Counter to print out convenient device numbers. */
118 unsigned int device_num;
119
6a54f9ab
RR
120 /* PCI devices. */
121 struct device *pci[MAX_PCI_DEVICES];
8ca47e00
RR
122};
123
17cbca2b
RR
124/* The list of Guest devices, based on command line arguments. */
125static struct device_list devices;
126
93153077
RR
127struct virtio_pci_cfg_cap {
128 struct virtio_pci_cap cap;
129 u32 window; /* Data for BAR access. */
130};
131
132struct virtio_pci_mmio {
133 struct virtio_pci_common_cfg cfg;
134 u16 notify;
135 u8 isr;
136 u8 padding;
137 /* Device-specific configuration follows this. */
138};
139
d7fbf6e9
RR
140/* This is the layout (little-endian) of the PCI config space. */
141struct pci_config {
142 u16 vendor_id, device_id;
143 u16 command, status;
144 u8 revid, prog_if, subclass, class;
145 u8 cacheline_size, lat_timer, header_type, bist;
146 u32 bar[6];
147 u32 cardbus_cis_ptr;
148 u16 subsystem_vendor_id, subsystem_device_id;
149 u32 expansion_rom_addr;
150 u8 capabilities, reserved1[3];
151 u32 reserved2;
152 u8 irq_line, irq_pin, min_grant, max_latency;
93153077
RR
153
154 /* Now, this is the linked capability list. */
155 struct virtio_pci_cap common;
156 struct virtio_pci_notify_cap notify;
157 struct virtio_pci_cap isr;
158 struct virtio_pci_cap device;
93153077 159 struct virtio_pci_cfg_cap cfg_access;
d7fbf6e9
RR
160};
161
dde79789 162/* The device structure describes a single device. */
1842f23c 163struct device {
17cbca2b
RR
164 /* The name of this device, for --verbose. */
165 const char *name;
8ca47e00 166
17cbca2b
RR
167 /* Any queues attached to this device */
168 struct virtqueue *vq;
8ca47e00 169
659a0e66
RR
170 /* Is it operational */
171 bool running;
a007a751 172
d7fbf6e9
RR
173 /* PCI configuration */
174 union {
175 struct pci_config config;
176 u32 config_words[sizeof(struct pci_config) / sizeof(u32)];
177 };
178
93153077
RR
179 /* Features we offer, and those accepted. */
180 u64 features, features_accepted;
181
d7fbf6e9
RR
182 /* Device-specific config hangs off the end of this. */
183 struct virtio_pci_mmio *mmio;
184
6a54f9ab
RR
185 /* PCI MMIO resources (all in BAR0) */
186 size_t mmio_size;
187 u32 mmio_addr;
188
8ca47e00
RR
189 /* Device-specific data. */
190 void *priv;
191};
192
17cbca2b 193/* The virtqueue structure describes a queue attached to a device. */
1842f23c 194struct virtqueue {
17cbca2b
RR
195 struct virtqueue *next;
196
197 /* Which device owns me. */
198 struct device *dev;
199
17cbca2b
RR
200 /* The actual ring of buffers. */
201 struct vring vring;
202
93153077
RR
203 /* The information about this virtqueue (we only use queue_size on) */
204 struct virtio_pci_common_cfg pci_config;
205
17cbca2b
RR
206 /* Last available index we saw. */
207 u16 last_avail_idx;
208
95c517c0
RR
209 /* How many are used since we sent last irq? */
210 unsigned int pending_used;
211
659a0e66
RR
212 /* Eventfd where Guest notifications arrive. */
213 int eventfd;
20887611 214
659a0e66
RR
215 /* Function for the thread which is servicing this virtqueue. */
216 void (*service)(struct virtqueue *vq);
217 pid_t thread;
17cbca2b
RR
218};
219
ec04b13f
BR
220/* Remember the arguments to the program so we can "reboot" */
221static char **main_args;
222
659a0e66
RR
223/* The original tty settings to restore on exit. */
224static struct termios orig_term;
225
2e04ef76
RR
226/*
227 * We have to be careful with barriers: our devices are all run in separate
f7027c63 228 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
229 * in precise order.
230 */
f7027c63 231#define wmb() __asm__ __volatile__("" : : : "memory")
0d69a65e
RR
232#define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
233#define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
17cbca2b 234
b5111790
RR
235/* Wrapper for the last available index. Makes it easier to change. */
236#define lg_last_avail(vq) ((vq)->last_avail_idx)
237
2e04ef76
RR
238/*
239 * The virtio configuration space is defined to be little-endian. x86 is
240 * little-endian too, but it's nice to be explicit so we have these helpers.
241 */
17cbca2b
RR
242#define cpu_to_le16(v16) (v16)
243#define cpu_to_le32(v32) (v32)
244#define cpu_to_le64(v64) (v64)
245#define le16_to_cpu(v16) (v16)
246#define le32_to_cpu(v32) (v32)
a586d4f6 247#define le64_to_cpu(v64) (v64)
17cbca2b 248
28fd6d7f
RR
249/* Is this iovec empty? */
250static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
251{
252 unsigned int i;
253
254 for (i = 0; i < num_iov; i++)
255 if (iov[i].iov_len)
256 return false;
257 return true;
258}
259
260/* Take len bytes from the front of this iovec. */
c0316a94
RR
261static void iov_consume(struct iovec iov[], unsigned num_iov,
262 void *dest, unsigned len)
28fd6d7f
RR
263{
264 unsigned int i;
265
266 for (i = 0; i < num_iov; i++) {
267 unsigned int used;
268
269 used = iov[i].iov_len < len ? iov[i].iov_len : len;
c0316a94
RR
270 if (dest) {
271 memcpy(dest, iov[i].iov_base, used);
272 dest += used;
273 }
28fd6d7f
RR
274 iov[i].iov_base += used;
275 iov[i].iov_len -= used;
276 len -= used;
277 }
c0316a94
RR
278 if (len != 0)
279 errx(1, "iovec too short!");
28fd6d7f
RR
280}
281
2e04ef76
RR
282/*L:100
283 * The Launcher code itself takes us out into userspace, that scary place where
284 * pointers run wild and free! Unfortunately, like most userspace programs,
285 * it's quite boring (which is why everyone likes to hack on the kernel!).
286 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
287 * you through this section. Or, maybe not.
3c6b5bfa
RR
288 *
289 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
290 * memory and stores it in "guest_base". In other words, Guest physical ==
291 * Launcher virtual with an offset.
292 *
293 * This can be tough to get your head around, but usually it just means that we
a33f3224 294 * use these trivial conversion functions when the Guest gives us its
2e04ef76
RR
295 * "physical" addresses:
296 */
3c6b5bfa
RR
297static void *from_guest_phys(unsigned long addr)
298{
299 return guest_base + addr;
300}
301
302static unsigned long to_guest_phys(const void *addr)
303{
304 return (addr - guest_base);
305}
306
dde79789
RR
307/*L:130
308 * Loading the Kernel.
309 *
310 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
311 * error-checking code cluttering the callers:
312 */
8ca47e00
RR
313static int open_or_die(const char *name, int flags)
314{
315 int fd = open(name, flags);
316 if (fd < 0)
317 err(1, "Failed to open %s", name);
318 return fd;
319}
320
3c6b5bfa
RR
321/* map_zeroed_pages() takes a number of pages. */
322static void *map_zeroed_pages(unsigned int num)
8ca47e00 323{
3c6b5bfa
RR
324 int fd = open_or_die("/dev/zero", O_RDONLY);
325 void *addr;
8ca47e00 326
2e04ef76
RR
327 /*
328 * We use a private mapping (ie. if we write to the page, it will be
5230ff0c
PS
329 * copied). We allocate an extra two pages PROT_NONE to act as guard
330 * pages against read/write attempts that exceed allocated space.
2e04ef76 331 */
5230ff0c
PS
332 addr = mmap(NULL, getpagesize() * (num+2),
333 PROT_NONE, MAP_PRIVATE, fd, 0);
334
3c6b5bfa 335 if (addr == MAP_FAILED)
af901ca1 336 err(1, "Mmapping %u pages of /dev/zero", num);
a91d74a3 337
5230ff0c
PS
338 if (mprotect(addr + getpagesize(), getpagesize() * num,
339 PROT_READ|PROT_WRITE) == -1)
340 err(1, "mprotect rw %u pages failed", num);
341
a91d74a3
RR
342 /*
343 * One neat mmap feature is that you can close the fd, and it
344 * stays mapped.
345 */
34bdaab4 346 close(fd);
3c6b5bfa 347
5230ff0c
PS
348 /* Return address after PROT_NONE page */
349 return addr + getpagesize();
3c6b5bfa
RR
350}
351
0a6bcc18
RR
352/* Get some bytes which won't be mapped into the guest. */
353static unsigned long get_mmio_region(size_t size)
354{
355 unsigned long addr = guest_mmio;
356 size_t i;
357
358 if (!size)
359 return addr;
360
361 /* Size has to be a power of 2 (and multiple of 16) */
362 for (i = 1; i < size; i <<= 1);
363
364 guest_mmio += i;
365
366 return addr;
367}
368
2e04ef76
RR
369/*
370 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 371 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
372 * it falls back to reading the memory in.
373 */
6649bb7a
RM
374static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
375{
376 ssize_t r;
377
2e04ef76
RR
378 /*
379 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
380 * The kernel really wants to be writable: it patches its own
381 * instructions.
382 *
383 * MAP_PRIVATE means that the page won't be copied until a write is
384 * done to it. This allows us to share untouched memory between
2e04ef76
RR
385 * Guests.
386 */
5230ff0c 387 if (mmap(addr, len, PROT_READ|PROT_WRITE,
6649bb7a
RM
388 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
389 return;
390
391 /* pread does a seek and a read in one shot: saves a few lines. */
392 r = pread(fd, addr, len, offset);
393 if (r != len)
394 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
395}
396
2e04ef76
RR
397/*
398 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
399 * the Guest memory. ELF = Embedded Linking Format, which is the format used
400 * by all modern binaries on Linux including the kernel.
401 *
402 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
403 * address. We use the physical address; the Guest will map itself to the
404 * virtual address.
dde79789 405 *
2e04ef76
RR
406 * We return the starting address.
407 */
47436aa4 408static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 409{
8ca47e00
RR
410 Elf32_Phdr phdr[ehdr->e_phnum];
411 unsigned int i;
8ca47e00 412
2e04ef76
RR
413 /*
414 * Sanity checks on the main ELF header: an x86 executable with a
415 * reasonable number of correctly-sized program headers.
416 */
8ca47e00
RR
417 if (ehdr->e_type != ET_EXEC
418 || ehdr->e_machine != EM_386
419 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
420 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
421 errx(1, "Malformed elf header");
422
2e04ef76
RR
423 /*
424 * An ELF executable contains an ELF header and a number of "program"
dde79789 425 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
426 * load where.
427 */
dde79789
RR
428
429 /* We read in all the program headers at once: */
8ca47e00
RR
430 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
431 err(1, "Seeking to program headers");
432 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
433 err(1, "Reading program headers");
434
2e04ef76
RR
435 /*
436 * Try all the headers: there are usually only three. A read-only one,
437 * a read-write one, and a "note" section which we don't load.
438 */
8ca47e00 439 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 440 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
441 if (phdr[i].p_type != PT_LOAD)
442 continue;
443
444 verbose("Section %i: size %i addr %p\n",
445 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
446
6649bb7a 447 /* We map this section of the file at its physical address. */
3c6b5bfa 448 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 449 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
450 }
451
814a0e5c
RR
452 /* The entry point is given in the ELF header. */
453 return ehdr->e_entry;
8ca47e00
RR
454}
455
2e04ef76
RR
456/*L:150
457 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
458 * to jump into it and it will unpack itself. We used to have to perform some
459 * hairy magic because the unpacking code scared me.
dde79789 460 *
5bbf89fc
RR
461 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
462 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
463 * the funky header so we know where in the file to load, and away we go!
464 */
47436aa4 465static unsigned long load_bzimage(int fd)
8ca47e00 466{
43d33b21 467 struct boot_params boot;
5bbf89fc
RR
468 int r;
469 /* Modern bzImages get loaded at 1M. */
470 void *p = from_guest_phys(0x100000);
471
2e04ef76
RR
472 /*
473 * Go back to the start of the file and read the header. It should be
395cf969 474 * a Linux boot header (see Documentation/x86/boot.txt)
2e04ef76 475 */
5bbf89fc 476 lseek(fd, 0, SEEK_SET);
43d33b21 477 read(fd, &boot, sizeof(boot));
5bbf89fc 478
43d33b21
RR
479 /* Inside the setup_hdr, we expect the magic "HdrS" */
480 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
481 errx(1, "This doesn't look like a bzImage to me");
482
43d33b21
RR
483 /* Skip over the extra sectors of the header. */
484 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
485
486 /* Now read everything into memory. in nice big chunks. */
487 while ((r = read(fd, p, 65536)) > 0)
488 p += r;
489
43d33b21
RR
490 /* Finally, code32_start tells us where to enter the kernel. */
491 return boot.hdr.code32_start;
8ca47e00
RR
492}
493
2e04ef76
RR
494/*L:140
495 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 496 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
497 * work, we can load those, too.
498 */
47436aa4 499static unsigned long load_kernel(int fd)
8ca47e00
RR
500{
501 Elf32_Ehdr hdr;
502
dde79789 503 /* Read in the first few bytes. */
8ca47e00
RR
504 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
505 err(1, "Reading kernel");
506
dde79789 507 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 508 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 509 return map_elf(fd, &hdr);
8ca47e00 510
a6bd8e13 511 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 512 return load_bzimage(fd);
8ca47e00
RR
513}
514
2e04ef76
RR
515/*
516 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
517 * it calls getpagesize() twice: "it's dumb code."
518 *
519 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
520 * necessary. I leave this code as a reaction against that.
521 */
8ca47e00
RR
522static inline unsigned long page_align(unsigned long addr)
523{
dde79789 524 /* Add upwards and truncate downwards. */
8ca47e00
RR
525 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
526}
527
2e04ef76
RR
528/*L:180
529 * An "initial ram disk" is a disk image loaded into memory along with the
530 * kernel which the kernel can use to boot from without needing any drivers.
531 * Most distributions now use this as standard: the initrd contains the code to
532 * load the appropriate driver modules for the current machine.
dde79789
RR
533 *
534 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
535 * kernels. He sent me this (and tells me when I break it).
536 */
8ca47e00
RR
537static unsigned long load_initrd(const char *name, unsigned long mem)
538{
539 int ifd;
540 struct stat st;
541 unsigned long len;
8ca47e00
RR
542
543 ifd = open_or_die(name, O_RDONLY);
dde79789 544 /* fstat() is needed to get the file size. */
8ca47e00
RR
545 if (fstat(ifd, &st) < 0)
546 err(1, "fstat() on initrd '%s'", name);
547
2e04ef76
RR
548 /*
549 * We map the initrd at the top of memory, but mmap wants it to be
550 * page-aligned, so we round the size up for that.
551 */
8ca47e00 552 len = page_align(st.st_size);
3c6b5bfa 553 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
554 /*
555 * Once a file is mapped, you can close the file descriptor. It's a
556 * little odd, but quite useful.
557 */
8ca47e00 558 close(ifd);
6649bb7a 559 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
560
561 /* We return the initrd size. */
8ca47e00
RR
562 return len;
563}
e1e72965 564/*:*/
8ca47e00 565
2e04ef76
RR
566/*
567 * Simple routine to roll all the commandline arguments together with spaces
568 * between them.
569 */
8ca47e00
RR
570static void concat(char *dst, char *args[])
571{
572 unsigned int i, len = 0;
573
574 for (i = 0; args[i]; i++) {
1ef36fa6
PB
575 if (i) {
576 strcat(dst+len, " ");
577 len++;
578 }
8ca47e00 579 strcpy(dst+len, args[i]);
1ef36fa6 580 len += strlen(args[i]);
8ca47e00
RR
581 }
582 /* In case it's empty. */
583 dst[len] = '\0';
584}
585
2e04ef76
RR
586/*L:185
587 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 588 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 589 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
590 * entry point for the Guest.
591 */
56739c80 592static void tell_kernel(unsigned long start)
8ca47e00 593{
511801dc
JS
594 unsigned long args[] = { LHREQ_INITIALIZE,
595 (unsigned long)guest_base,
7313d521 596 guest_limit / getpagesize(), start,
0a6bcc18
RR
597 (guest_mmio+getpagesize()-1) / getpagesize() };
598 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
599 guest_base, guest_base + guest_limit,
600 guest_limit, guest_mmio);
56739c80
RR
601 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
602 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 603 err(1, "Writing to /dev/lguest");
8ca47e00 604}
dde79789 605/*:*/
8ca47e00 606
a91d74a3 607/*L:200
dde79789
RR
608 * Device Handling.
609 *
e1e72965 610 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 611 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 612 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
613 * if something funny is going on:
614 */
8ca47e00
RR
615static void *_check_pointer(unsigned long addr, unsigned int size,
616 unsigned int line)
617{
2e04ef76 618 /*
5230ff0c
PS
619 * Check if the requested address and size exceeds the allocated memory,
620 * or addr + size wraps around.
2e04ef76 621 */
5230ff0c 622 if ((addr + size) > guest_limit || (addr + size) < addr)
17cbca2b 623 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
624 /*
625 * We return a pointer for the caller's convenience, now we know it's
626 * safe to use.
627 */
3c6b5bfa 628 return from_guest_phys(addr);
8ca47e00 629}
dde79789 630/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
631#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
632
2e04ef76
RR
633/*
634 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 635 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
636 * at the end.
637 */
d1f0132e
MM
638static unsigned next_desc(struct vring_desc *desc,
639 unsigned int i, unsigned int max)
17cbca2b
RR
640{
641 unsigned int next;
642
643 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
644 if (!(desc[i].flags & VRING_DESC_F_NEXT))
645 return max;
17cbca2b
RR
646
647 /* Check they're not leading us off end of descriptors. */
d1f0132e 648 next = desc[i].next;
17cbca2b
RR
649 /* Make sure compiler knows to grab that: we don't want it changing! */
650 wmb();
651
d1f0132e 652 if (next >= max)
17cbca2b
RR
653 errx(1, "Desc next is %u", next);
654
655 return next;
656}
657
a91d74a3
RR
658/*
659 * This actually sends the interrupt for this virtqueue, if we've used a
660 * buffer.
661 */
38bc2b8c
RR
662static void trigger_irq(struct virtqueue *vq)
663{
d9028eda 664 unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line };
38bc2b8c 665
95c517c0
RR
666 /* Don't inform them if nothing used. */
667 if (!vq->pending_used)
668 return;
669 vq->pending_used = 0;
670
ca60a42c
RR
671 /* If they don't want an interrupt, don't send one... */
672 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
990c91f0 673 return;
ca60a42c 674 }
38bc2b8c 675
d9028eda
RR
676 /* Set isr to 1 (queue interrupt pending) */
677 vq->dev->mmio->isr = 0x1;
93153077 678
38bc2b8c
RR
679 /* Send the Guest an interrupt tell them we used something up. */
680 if (write(lguest_fd, buf, sizeof(buf)) != 0)
d9028eda 681 err(1, "Triggering irq %i", vq->dev->config.irq_line);
38bc2b8c
RR
682}
683
2e04ef76 684/*
a91d74a3 685 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
686 * it to an iovec for convenient access. Since descriptors consist of some
687 * number of output then some number of input descriptors, it's actually two
688 * iovecs, but we pack them into one and note how many of each there were.
689 *
a91d74a3 690 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 691 */
659a0e66
RR
692static unsigned wait_for_vq_desc(struct virtqueue *vq,
693 struct iovec iov[],
694 unsigned int *out_num, unsigned int *in_num)
17cbca2b 695{
d1f0132e
MM
696 unsigned int i, head, max;
697 struct vring_desc *desc;
659a0e66
RR
698 u16 last_avail = lg_last_avail(vq);
699
a91d74a3 700 /* There's nothing available? */
659a0e66
RR
701 while (last_avail == vq->vring.avail->idx) {
702 u64 event;
703
a91d74a3
RR
704 /*
705 * Since we're about to sleep, now is a good time to tell the
706 * Guest about what we've used up to now.
707 */
38bc2b8c
RR
708 trigger_irq(vq);
709
b60da13f
RR
710 /* OK, now we need to know about added descriptors. */
711 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
712
2e04ef76
RR
713 /*
714 * They could have slipped one in as we were doing that: make
715 * sure it's written, then check again.
716 */
b60da13f
RR
717 mb();
718 if (last_avail != vq->vring.avail->idx) {
719 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
720 break;
721 }
722
659a0e66
RR
723 /* Nothing new? Wait for eventfd to tell us they refilled. */
724 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
725 errx(1, "Event read failed?");
b60da13f
RR
726
727 /* We don't need to be notified again. */
728 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 729 }
17cbca2b
RR
730
731 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 732 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 733 errx(1, "Guest moved used index from %u to %u",
b5111790 734 last_avail, vq->vring.avail->idx);
17cbca2b 735
8fd9a636
RR
736 /*
737 * Make sure we read the descriptor number *after* we read the ring
738 * update; don't let the cpu or compiler change the order.
739 */
740 rmb();
741
2e04ef76
RR
742 /*
743 * Grab the next descriptor number they're advertising, and increment
744 * the index we've seen.
745 */
b5111790
RR
746 head = vq->vring.avail->ring[last_avail % vq->vring.num];
747 lg_last_avail(vq)++;
17cbca2b
RR
748
749 /* If their number is silly, that's a fatal mistake. */
750 if (head >= vq->vring.num)
751 errx(1, "Guest says index %u is available", head);
752
753 /* When we start there are none of either input nor output. */
754 *out_num = *in_num = 0;
755
d1f0132e
MM
756 max = vq->vring.num;
757 desc = vq->vring.desc;
17cbca2b 758 i = head;
d1f0132e 759
8fd9a636
RR
760 /*
761 * We have to read the descriptor after we read the descriptor number,
762 * but there's a data dependency there so the CPU shouldn't reorder
763 * that: no rmb() required.
764 */
765
2e04ef76
RR
766 /*
767 * If this is an indirect entry, then this buffer contains a descriptor
768 * table which we handle as if it's any normal descriptor chain.
769 */
d1f0132e
MM
770 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
771 if (desc[i].len % sizeof(struct vring_desc))
772 errx(1, "Invalid size for indirect buffer table");
773
774 max = desc[i].len / sizeof(struct vring_desc);
775 desc = check_pointer(desc[i].addr, desc[i].len);
776 i = 0;
777 }
778
17cbca2b
RR
779 do {
780 /* Grab the first descriptor, and check it's OK. */
d1f0132e 781 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 782 iov[*out_num + *in_num].iov_base
d1f0132e 783 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 784 /* If this is an input descriptor, increment that count. */
d1f0132e 785 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
786 (*in_num)++;
787 else {
2e04ef76
RR
788 /*
789 * If it's an output descriptor, they're all supposed
790 * to come before any input descriptors.
791 */
17cbca2b
RR
792 if (*in_num)
793 errx(1, "Descriptor has out after in");
794 (*out_num)++;
795 }
796
797 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 798 if (*out_num + *in_num > max)
17cbca2b 799 errx(1, "Looped descriptor");
d1f0132e 800 } while ((i = next_desc(desc, i, max)) != max);
dde79789 801
17cbca2b 802 return head;
8ca47e00
RR
803}
804
2e04ef76 805/*
a91d74a3
RR
806 * After we've used one of their buffers, we tell the Guest about it. Sometime
807 * later we'll want to send them an interrupt using trigger_irq(); note that
808 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 809 */
17cbca2b 810static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 811{
17cbca2b
RR
812 struct vring_used_elem *used;
813
2e04ef76
RR
814 /*
815 * The virtqueue contains a ring of used buffers. Get a pointer to the
816 * next entry in that used ring.
817 */
17cbca2b
RR
818 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
819 used->id = head;
820 used->len = len;
821 /* Make sure buffer is written before we update index. */
822 wmb();
823 vq->vring.used->idx++;
95c517c0 824 vq->pending_used++;
8ca47e00
RR
825}
826
17cbca2b 827/* And here's the combo meal deal. Supersize me! */
56739c80 828static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 829{
17cbca2b 830 add_used(vq, head, len);
56739c80 831 trigger_irq(vq);
8ca47e00
RR
832}
833
e1e72965
RR
834/*
835 * The Console
836 *
2e04ef76
RR
837 * We associate some data with the console for our exit hack.
838 */
1842f23c 839struct console_abort {
dde79789 840 /* How many times have they hit ^C? */
8ca47e00 841 int count;
dde79789 842 /* When did they start? */
8ca47e00
RR
843 struct timeval start;
844};
845
dde79789 846/* This is the routine which handles console input (ie. stdin). */
659a0e66 847static void console_input(struct virtqueue *vq)
8ca47e00 848{
8ca47e00 849 int len;
17cbca2b 850 unsigned int head, in_num, out_num;
659a0e66
RR
851 struct console_abort *abort = vq->dev->priv;
852 struct iovec iov[vq->vring.num];
56ae43df 853
a91d74a3 854 /* Make sure there's a descriptor available. */
659a0e66 855 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 856 if (out_num)
17cbca2b 857 errx(1, "Output buffers in console in queue?");
8ca47e00 858
a91d74a3 859 /* Read into it. This is where we usually wait. */
659a0e66 860 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 861 if (len <= 0) {
659a0e66 862 /* Ran out of input? */
8ca47e00 863 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
864 /*
865 * For simplicity, dying threads kill the whole Launcher. So
866 * just nap here.
867 */
659a0e66
RR
868 for (;;)
869 pause();
8ca47e00
RR
870 }
871
a91d74a3 872 /* Tell the Guest we used a buffer. */
659a0e66 873 add_used_and_trigger(vq, head, len);
8ca47e00 874
2e04ef76
RR
875 /*
876 * Three ^C within one second? Exit.
dde79789 877 *
659a0e66
RR
878 * This is such a hack, but works surprisingly well. Each ^C has to
879 * be in a buffer by itself, so they can't be too fast. But we check
880 * that we get three within about a second, so they can't be too
2e04ef76
RR
881 * slow.
882 */
659a0e66 883 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 884 abort->count = 0;
659a0e66
RR
885 return;
886 }
8ca47e00 887
659a0e66
RR
888 abort->count++;
889 if (abort->count == 1)
890 gettimeofday(&abort->start, NULL);
891 else if (abort->count == 3) {
892 struct timeval now;
893 gettimeofday(&now, NULL);
894 /* Kill all Launcher processes with SIGINT, like normal ^C */
895 if (now.tv_sec <= abort->start.tv_sec+1)
896 kill(0, SIGINT);
897 abort->count = 0;
898 }
8ca47e00
RR
899}
900
659a0e66
RR
901/* This is the routine which handles console output (ie. stdout). */
902static void console_output(struct virtqueue *vq)
8ca47e00 903{
17cbca2b 904 unsigned int head, out, in;
17cbca2b
RR
905 struct iovec iov[vq->vring.num];
906
a91d74a3 907 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
908 head = wait_for_vq_desc(vq, iov, &out, &in);
909 if (in)
910 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
911
912 /* writev can return a partial write, so we loop here. */
659a0e66
RR
913 while (!iov_empty(iov, out)) {
914 int len = writev(STDOUT_FILENO, iov, out);
e0377e25
SA
915 if (len <= 0) {
916 warn("Write to stdout gave %i (%d)", len, errno);
917 break;
918 }
c0316a94 919 iov_consume(iov, out, NULL, len);
17cbca2b 920 }
a91d74a3
RR
921
922 /*
923 * We're finished with that buffer: if we're going to sleep,
924 * wait_for_vq_desc() will prod the Guest with an interrupt.
925 */
38bc2b8c 926 add_used(vq, head, 0);
a161883a
RR
927}
928
e1e72965
RR
929/*
930 * The Network
931 *
932 * Handling output for network is also simple: we get all the output buffers
659a0e66 933 * and write them to /dev/net/tun.
a6bd8e13 934 */
659a0e66
RR
935struct net_info {
936 int tunfd;
937};
938
939static void net_output(struct virtqueue *vq)
8ca47e00 940{
659a0e66
RR
941 struct net_info *net_info = vq->dev->priv;
942 unsigned int head, out, in;
17cbca2b 943 struct iovec iov[vq->vring.num];
a161883a 944
a91d74a3 945 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
946 head = wait_for_vq_desc(vq, iov, &out, &in);
947 if (in)
948 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
949 /*
950 * Send the whole thing through to /dev/net/tun. It expects the exact
951 * same format: what a coincidence!
952 */
659a0e66 953 if (writev(net_info->tunfd, iov, out) < 0)
e0377e25 954 warnx("Write to tun failed (%d)?", errno);
a91d74a3
RR
955
956 /*
957 * Done with that one; wait_for_vq_desc() will send the interrupt if
958 * all packets are processed.
959 */
38bc2b8c 960 add_used(vq, head, 0);
8ca47e00
RR
961}
962
a91d74a3
RR
963/*
964 * Handling network input is a bit trickier, because I've tried to optimize it.
965 *
966 * First we have a helper routine which tells is if from this file descriptor
967 * (ie. the /dev/net/tun device) will block:
968 */
4a8962e2
RR
969static bool will_block(int fd)
970{
971 fd_set fdset;
972 struct timeval zero = { 0, 0 };
973 FD_ZERO(&fdset);
974 FD_SET(fd, &fdset);
975 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
976}
977
a91d74a3
RR
978/*
979 * This handles packets coming in from the tun device to our Guest. Like all
980 * service routines, it gets called again as soon as it returns, so you don't
981 * see a while(1) loop here.
982 */
659a0e66 983static void net_input(struct virtqueue *vq)
8ca47e00 984{
8ca47e00 985 int len;
659a0e66
RR
986 unsigned int head, out, in;
987 struct iovec iov[vq->vring.num];
988 struct net_info *net_info = vq->dev->priv;
989
a91d74a3
RR
990 /*
991 * Get a descriptor to write an incoming packet into. This will also
992 * send an interrupt if they're out of descriptors.
993 */
659a0e66
RR
994 head = wait_for_vq_desc(vq, iov, &out, &in);
995 if (out)
996 errx(1, "Output buffers in net input queue?");
4a8962e2 997
a91d74a3
RR
998 /*
999 * If it looks like we'll block reading from the tun device, send them
1000 * an interrupt.
1001 */
4a8962e2
RR
1002 if (vq->pending_used && will_block(net_info->tunfd))
1003 trigger_irq(vq);
1004
a91d74a3
RR
1005 /*
1006 * Read in the packet. This is where we normally wait (when there's no
1007 * incoming network traffic).
1008 */
659a0e66 1009 len = readv(net_info->tunfd, iov, in);
8ca47e00 1010 if (len <= 0)
e0377e25 1011 warn("Failed to read from tun (%d).", errno);
a91d74a3
RR
1012
1013 /*
1014 * Mark that packet buffer as used, but don't interrupt here. We want
1015 * to wait until we've done as much work as we can.
1016 */
4a8962e2 1017 add_used(vq, head, len);
659a0e66 1018}
a91d74a3 1019/*:*/
dde79789 1020
a91d74a3 1021/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
1022static int do_thread(void *_vq)
1023{
1024 struct virtqueue *vq = _vq;
17cbca2b 1025
659a0e66
RR
1026 for (;;)
1027 vq->service(vq);
1028 return 0;
1029}
17cbca2b 1030
2e04ef76
RR
1031/*
1032 * When a child dies, we kill our entire process group with SIGTERM. This
1033 * also has the side effect that the shell restores the console for us!
1034 */
659a0e66
RR
1035static void kill_launcher(int signal)
1036{
1037 kill(0, SIGTERM);
8ca47e00
RR
1038}
1039
659a0e66 1040static void reset_device(struct device *dev)
56ae43df 1041{
659a0e66
RR
1042 struct virtqueue *vq;
1043
1044 verbose("Resetting device %s\n", dev->name);
1045
1046 /* Clear any features they've acked. */
d9028eda 1047 dev->features_accepted = 0;
659a0e66
RR
1048
1049 /* We're going to be explicitly killing threads, so ignore them. */
1050 signal(SIGCHLD, SIG_IGN);
1051
d9028eda 1052 /* Get rid of the virtqueue threads */
659a0e66
RR
1053 for (vq = dev->vq; vq; vq = vq->next) {
1054 if (vq->thread != (pid_t)-1) {
1055 kill(vq->thread, SIGTERM);
1056 waitpid(vq->thread, NULL, 0);
1057 vq->thread = (pid_t)-1;
1058 }
659a0e66
RR
1059 }
1060 dev->running = false;
1061
1062 /* Now we care if threads die. */
1063 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
1064}
1065
d9028eda 1066static void cleanup_devices(void)
6e5aa7ef 1067{
659a0e66 1068 unsigned int i;
659a0e66 1069
d9028eda
RR
1070 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1071 struct device *d = devices.pci[i];
1072 if (!d)
1073 continue;
1074 reset_device(d);
659a0e66 1075 }
6e5aa7ef 1076
659a0e66
RR
1077 /* If we saved off the original terminal settings, restore them now. */
1078 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1079 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1080}
6e5aa7ef 1081
d7fbf6e9
RR
1082/*L:217
1083 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1084 * code.
1085 */
1086
8e709469
RR
1087/* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1088static struct device pci_host_bridge;
1089
1090static void init_pci_host_bridge(void)
1091{
1092 pci_host_bridge.name = "PCI Host Bridge";
1093 pci_host_bridge.config.class = 0x06; /* bridge */
1094 pci_host_bridge.config.subclass = 0; /* host bridge */
1095 devices.pci[0] = &pci_host_bridge;
1096}
1097
d7fbf6e9
RR
1098/* The IO ports used to read the PCI config space. */
1099#define PCI_CONFIG_ADDR 0xCF8
1100#define PCI_CONFIG_DATA 0xCFC
1101
1102/*
1103 * Not really portable, but does help readability: this is what the Guest
1104 * writes to the PCI_CONFIG_ADDR IO port.
1105 */
1106union pci_config_addr {
1107 struct {
1108 unsigned mbz: 2;
1109 unsigned offset: 6;
1110 unsigned funcnum: 3;
1111 unsigned devnum: 5;
1112 unsigned busnum: 8;
1113 unsigned reserved: 7;
1114 unsigned enabled : 1;
1115 } bits;
1116 u32 val;
1117};
1118
1119/*
1120 * We cache what they wrote to the address port, so we know what they're
1121 * talking about when they access the data port.
1122 */
1123static union pci_config_addr pci_config_addr;
1124
1125static struct device *find_pci_device(unsigned int index)
1126{
1127 return devices.pci[index];
1128}
1129
1130/* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1131static void ioread(u16 off, u32 v, u32 mask, u32 *val)
1132{
1133 assert(off < 4);
1134 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1135 *val = (v >> (off * 8)) & mask;
1136}
1137
1138/* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1139static void iowrite(u16 off, u32 v, u32 mask, u32 *dst)
1140{
1141 assert(off < 4);
1142 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1143 *dst &= ~(mask << (off * 8));
1144 *dst |= (v & mask) << (off * 8);
1145}
1146
1147/*
1148 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1149 * PCI_CONFIG_ADDR.
1150 */
1151static struct device *dev_and_reg(u32 *reg)
1152{
1153 if (!pci_config_addr.bits.enabled)
1154 return NULL;
1155
1156 if (pci_config_addr.bits.funcnum != 0)
1157 return NULL;
1158
1159 if (pci_config_addr.bits.busnum != 0)
1160 return NULL;
1161
1162 if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config))
1163 return NULL;
1164
1165 *reg = pci_config_addr.bits.offset;
1166 return find_pci_device(pci_config_addr.bits.devnum);
1167}
1168
59eba788
RR
1169/*
1170 * We can get invalid combinations of values while they're writing, so we
1171 * only fault if they try to write with some invalid bar/offset/length.
1172 */
1173static bool valid_bar_access(struct device *d,
1174 struct virtio_pci_cfg_cap *cfg_access)
1175{
1176 /* We only have 1 bar (BAR0) */
1177 if (cfg_access->cap.bar != 0)
1178 return false;
1179
1180 /* Check it's within BAR0. */
1181 if (cfg_access->cap.offset >= d->mmio_size
1182 || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size)
1183 return false;
1184
1185 /* Check length is 1, 2 or 4. */
1186 if (cfg_access->cap.length != 1
1187 && cfg_access->cap.length != 2
1188 && cfg_access->cap.length != 4)
1189 return false;
1190
1191 /* Offset must be multiple of length */
1192 if (cfg_access->cap.offset % cfg_access->cap.length != 0)
1193 return false;
1194
1195 /* Return pointer into word in BAR0. */
1196 return true;
1197}
1198
d7fbf6e9
RR
1199/* Is this accessing the PCI config address port?. */
1200static bool is_pci_addr_port(u16 port)
1201{
1202 return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4;
1203}
1204
1205static bool pci_addr_iowrite(u16 port, u32 mask, u32 val)
1206{
1207 iowrite(port - PCI_CONFIG_ADDR, val, mask,
1208 &pci_config_addr.val);
1209 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1210 pci_config_addr.bits.enabled ? "" : " DISABLED",
1211 val, mask,
1212 pci_config_addr.bits.busnum,
1213 pci_config_addr.bits.devnum,
1214 pci_config_addr.bits.funcnum,
1215 pci_config_addr.bits.offset);
1216 return true;
1217}
1218
1219static void pci_addr_ioread(u16 port, u32 mask, u32 *val)
1220{
1221 ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val);
1222}
1223
1224/* Is this accessing the PCI config data port?. */
1225static bool is_pci_data_port(u16 port)
1226{
1227 return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4;
1228}
1229
59eba788
RR
1230static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask);
1231
d7fbf6e9
RR
1232static bool pci_data_iowrite(u16 port, u32 mask, u32 val)
1233{
1234 u32 reg, portoff;
1235 struct device *d = dev_and_reg(&reg);
1236
1237 /* Complain if they don't belong to a device. */
1238 if (!d)
1239 return false;
1240
1241 /* They can do 1 byte writes, etc. */
1242 portoff = port - PCI_CONFIG_DATA;
1243
1244 /*
1245 * PCI uses a weird way to determine the BAR size: the OS
1246 * writes all 1's, and sees which ones stick.
1247 */
1248 if (&d->config_words[reg] == &d->config.bar[0]) {
1249 int i;
1250
1251 iowrite(portoff, val, mask, &d->config.bar[0]);
1252 for (i = 0; (1 << i) < d->mmio_size; i++)
1253 d->config.bar[0] &= ~(1 << i);
1254 return true;
1255 } else if ((&d->config_words[reg] > &d->config.bar[0]
1256 && &d->config_words[reg] <= &d->config.bar[6])
1257 || &d->config_words[reg] == &d->config.expansion_rom_addr) {
1258 /* Allow writing to any other BAR, or expansion ROM */
1259 iowrite(portoff, val, mask, &d->config_words[reg]);
1260 return true;
1261 /* We let them overide latency timer and cacheline size */
1262 } else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) {
1263 /* Only let them change the first two fields. */
1264 if (mask == 0xFFFFFFFF)
1265 mask = 0xFFFF;
1266 iowrite(portoff, val, mask, &d->config_words[reg]);
1267 return true;
1268 } else if (&d->config_words[reg] == (void *)&d->config.command
1269 && mask == 0xFFFF) {
1270 /* Ignore command writes. */
1271 return true;
59eba788
RR
1272 } else if (&d->config_words[reg]
1273 == (void *)&d->config.cfg_access.cap.bar
1274 || &d->config_words[reg]
1275 == &d->config.cfg_access.cap.length
1276 || &d->config_words[reg]
1277 == &d->config.cfg_access.cap.offset) {
1278
1279 /*
1280 * The VIRTIO_PCI_CAP_PCI_CFG capability
1281 * provides a backdoor to access the MMIO
1282 * regions without mapping them. Weird, but
1283 * useful.
1284 */
1285 iowrite(portoff, val, mask, &d->config_words[reg]);
1286 return true;
1287 } else if (&d->config_words[reg] == &d->config.cfg_access.window) {
1288 u32 write_mask;
1289
1290 /* Must be bar 0 */
1291 if (!valid_bar_access(d, &d->config.cfg_access))
1292 return false;
1293
1294 /* First copy what they wrote into the window */
1295 iowrite(portoff, val, mask, &d->config.cfg_access.window);
1296
1297 /*
1298 * Now emulate a write. The mask we use is set by
1299 * len, *not* this write!
1300 */
1301 write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1;
1302 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1303 d->config.cfg_access.window, write_mask,
1304 d->config.cfg_access.cap.bar,
1305 d->config.cfg_access.cap.offset,
1306 d->config.cfg_access.cap.length);
1307
1308 emulate_mmio_write(d, d->config.cfg_access.cap.offset,
1309 d->config.cfg_access.window, write_mask);
1310 return true;
d7fbf6e9
RR
1311 }
1312
1313 /* Complain about other writes. */
1314 return false;
1315}
1316
59eba788
RR
1317static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask);
1318
d7fbf6e9
RR
1319static void pci_data_ioread(u16 port, u32 mask, u32 *val)
1320{
1321 u32 reg;
1322 struct device *d = dev_and_reg(&reg);
1323
1324 if (!d)
1325 return;
59eba788
RR
1326
1327 /* Read through the PCI MMIO access window is special */
1328 if (&d->config_words[reg] == &d->config.cfg_access.window) {
1329 u32 read_mask;
1330
1331 /* Must be bar 0 */
1332 if (!valid_bar_access(d, &d->config.cfg_access))
1333 errx(1, "Invalid cfg_access to bar%u, offset %u len %u",
1334 d->config.cfg_access.cap.bar,
1335 d->config.cfg_access.cap.offset,
1336 d->config.cfg_access.cap.length);
1337
1338 /*
1339 * Read into the window. The mask we use is set by
1340 * len, *not* this read!
1341 */
1342 read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1;
1343 d->config.cfg_access.window
1344 = emulate_mmio_read(d,
1345 d->config.cfg_access.cap.offset,
1346 read_mask);
1347 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1348 d->config.cfg_access.window, read_mask,
1349 d->config.cfg_access.cap.bar,
1350 d->config.cfg_access.cap.offset,
1351 d->config.cfg_access.cap.length);
1352 }
d7fbf6e9
RR
1353 ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val);
1354}
1355
c565650b
RR
1356/*L:216
1357 * This is where we emulate a handful of Guest instructions. It's ugly
1358 * and we used to do it in the kernel but it grew over time.
1359 */
1360
1361/*
1362 * We use the ptrace syscall's pt_regs struct to talk about registers
1363 * to lguest: these macros convert the names to the offsets.
1364 */
1365#define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1366#define setreg(name, val) \
1367 setreg_off(offsetof(struct user_regs_struct, name), (val))
1368
1369static u32 getreg_off(size_t offset)
1370{
1371 u32 r;
1372 unsigned long args[] = { LHREQ_GETREG, offset };
1373
1374 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1375 err(1, "Getting register %u", offset);
1376 if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r))
1377 err(1, "Reading register %u", offset);
1378
1379 return r;
1380}
1381
1382static void setreg_off(size_t offset, u32 val)
1383{
1384 unsigned long args[] = { LHREQ_SETREG, offset, val };
1385
1386 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1387 err(1, "Setting register %u", offset);
1388}
1389
6a54f9ab
RR
1390/* Get register by instruction encoding */
1391static u32 getreg_num(unsigned regnum, u32 mask)
1392{
1393 /* 8 bit ops use regnums 4-7 for high parts of word */
1394 if (mask == 0xFF && (regnum & 0x4))
1395 return getreg_num(regnum & 0x3, 0xFFFF) >> 8;
1396
1397 switch (regnum) {
1398 case 0: return getreg(eax) & mask;
1399 case 1: return getreg(ecx) & mask;
1400 case 2: return getreg(edx) & mask;
1401 case 3: return getreg(ebx) & mask;
1402 case 4: return getreg(esp) & mask;
1403 case 5: return getreg(ebp) & mask;
1404 case 6: return getreg(esi) & mask;
1405 case 7: return getreg(edi) & mask;
1406 }
1407 abort();
1408}
1409
1410/* Set register by instruction encoding */
1411static void setreg_num(unsigned regnum, u32 val, u32 mask)
1412{
1413 /* Don't try to set bits out of range */
1414 assert(~(val & ~mask));
1415
1416 /* 8 bit ops use regnums 4-7 for high parts of word */
1417 if (mask == 0xFF && (regnum & 0x4)) {
1418 /* Construct the 16 bits we want. */
1419 val = (val << 8) | getreg_num(regnum & 0x3, 0xFF);
1420 setreg_num(regnum & 0x3, val, 0xFFFF);
1421 return;
1422 }
1423
1424 switch (regnum) {
1425 case 0: setreg(eax, val | (getreg(eax) & ~mask)); return;
1426 case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return;
1427 case 2: setreg(edx, val | (getreg(edx) & ~mask)); return;
1428 case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return;
1429 case 4: setreg(esp, val | (getreg(esp) & ~mask)); return;
1430 case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return;
1431 case 6: setreg(esi, val | (getreg(esi) & ~mask)); return;
1432 case 7: setreg(edi, val | (getreg(edi) & ~mask)); return;
1433 }
1434 abort();
1435}
1436
1437/* Get bytes of displacement appended to instruction, from r/m encoding */
1438static u32 insn_displacement_len(u8 mod_reg_rm)
1439{
1440 /* Switch on the mod bits */
1441 switch (mod_reg_rm >> 6) {
1442 case 0:
1443 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1444 if ((mod_reg_rm & 0x7) == 0x5)
1445 return 2;
1446 /* Normally, mod == 0 means no literal displacement */
1447 return 0;
1448 case 1:
1449 /* One byte displacement */
1450 return 1;
1451 case 2:
1452 /* Four byte displacement */
1453 return 4;
1454 case 3:
1455 /* Register mode */
1456 return 0;
1457 }
1458 abort();
1459}
1460
c565650b
RR
1461static void emulate_insn(const u8 insn[])
1462{
1463 unsigned long args[] = { LHREQ_TRAP, 13 };
1464 unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access;
1465 unsigned int eax, port, mask;
1466 /*
d7fbf6e9 1467 * Default is to return all-ones on IO port reads, which traditionally
c565650b
RR
1468 * means "there's nothing there".
1469 */
1470 u32 val = 0xFFFFFFFF;
1471
1472 /*
1473 * This must be the Guest kernel trying to do something, not userspace!
1474 * The bottom two bits of the CS segment register are the privilege
1475 * level.
1476 */
1477 if ((getreg(xcs) & 3) != 0x1)
1478 goto no_emulate;
1479
1480 /* Decoding x86 instructions is icky. */
1481
1482 /*
1483 * Around 2.6.33, the kernel started using an emulation for the
1484 * cmpxchg8b instruction in early boot on many configurations. This
1485 * code isn't paravirtualized, and it tries to disable interrupts.
1486 * Ignore it, which will Mostly Work.
1487 */
1488 if (insn[insnlen] == 0xfa) {
1489 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1490 insnlen = 1;
1491 goto skip_insn;
1492 }
1493
1494 /*
1495 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1496 */
1497 if (insn[insnlen] == 0x66) {
1498 small_operand = 1;
1499 /* The instruction is 1 byte so far, read the next byte. */
1500 insnlen = 1;
1501 }
1502
1503 /* If the lower bit isn't set, it's a single byte access */
1504 byte_access = !(insn[insnlen] & 1);
1505
1506 /*
1507 * Now we can ignore the lower bit and decode the 4 opcodes
1508 * we need to emulate.
1509 */
1510 switch (insn[insnlen] & 0xFE) {
1511 case 0xE4: /* in <next byte>,%al */
1512 port = insn[insnlen+1];
1513 insnlen += 2;
1514 in = 1;
1515 break;
1516 case 0xEC: /* in (%dx),%al */
1517 port = getreg(edx) & 0xFFFF;
1518 insnlen += 1;
1519 in = 1;
1520 break;
1521 case 0xE6: /* out %al,<next byte> */
1522 port = insn[insnlen+1];
1523 insnlen += 2;
1524 break;
1525 case 0xEE: /* out %al,(%dx) */
1526 port = getreg(edx) & 0xFFFF;
1527 insnlen += 1;
1528 break;
1529 default:
1530 /* OK, we don't know what this is, can't emulate. */
1531 goto no_emulate;
1532 }
1533
1534 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1535 if (byte_access)
1536 mask = 0xFF;
1537 else if (small_operand)
1538 mask = 0xFFFF;
1539 else
1540 mask = 0xFFFFFFFF;
1541
1542 /*
1543 * If it was an "IN" instruction, they expect the result to be read
1544 * into %eax, so we change %eax.
1545 */
1546 eax = getreg(eax);
1547
1548 if (in) {
d7fbf6e9
RR
1549 /* This is the PS/2 keyboard status; 1 means ready for output */
1550 if (port == 0x64)
1551 val = 1;
1552 else if (is_pci_addr_port(port))
1553 pci_addr_ioread(port, mask, &val);
1554 else if (is_pci_data_port(port))
1555 pci_data_ioread(port, mask, &val);
1556
c565650b
RR
1557 /* Clear the bits we're about to read */
1558 eax &= ~mask;
1559 /* Copy bits in from val. */
1560 eax |= val & mask;
1561 /* Now update the register. */
1562 setreg(eax, eax);
d7fbf6e9
RR
1563 } else {
1564 if (is_pci_addr_port(port)) {
1565 if (!pci_addr_iowrite(port, mask, eax))
1566 goto bad_io;
1567 } else if (is_pci_data_port(port)) {
1568 if (!pci_data_iowrite(port, mask, eax))
1569 goto bad_io;
1570 }
1571 /* There are many other ports, eg. CMOS clock, serial
1572 * and parallel ports, so we ignore them all. */
c565650b
RR
1573 }
1574
1575 verbose("IO %s of %x to %u: %#08x\n",
1576 in ? "IN" : "OUT", mask, port, eax);
1577skip_insn:
1578 /* Finally, we've "done" the instruction, so move past it. */
1579 setreg(eip, getreg(eip) + insnlen);
1580 return;
1581
d7fbf6e9
RR
1582bad_io:
1583 warnx("Attempt to %s port %u (%#x mask)",
1584 in ? "read from" : "write to", port, mask);
1585
c565650b
RR
1586no_emulate:
1587 /* Inject trap into Guest. */
1588 if (write(lguest_fd, args, sizeof(args)) < 0)
1589 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip));
1590}
1591
6a54f9ab
RR
1592static struct device *find_mmio_region(unsigned long paddr, u32 *off)
1593{
1594 unsigned int i;
1595
1596 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1597 struct device *d = devices.pci[i];
1598
1599 if (!d)
1600 continue;
1601 if (paddr < d->mmio_addr)
1602 continue;
1603 if (paddr >= d->mmio_addr + d->mmio_size)
1604 continue;
1605 *off = paddr - d->mmio_addr;
1606 return d;
1607 }
1608 return NULL;
1609}
1610
93153077
RR
1611/* FIXME: Use vq array. */
1612static struct virtqueue *vq_by_num(struct device *d, u32 num)
1613{
1614 struct virtqueue *vq = d->vq;
1615
1616 while (num-- && vq)
1617 vq = vq->next;
1618
1619 return vq;
1620}
1621
1622static void save_vq_config(const struct virtio_pci_common_cfg *cfg,
1623 struct virtqueue *vq)
1624{
1625 vq->pci_config = *cfg;
1626}
1627
1628static void restore_vq_config(struct virtio_pci_common_cfg *cfg,
1629 struct virtqueue *vq)
1630{
1631 /* Only restore the per-vq part */
1632 size_t off = offsetof(struct virtio_pci_common_cfg, queue_size);
1633
1634 memcpy((void *)cfg + off, (void *)&vq->pci_config + off,
1635 sizeof(*cfg) - off);
1636}
1637
1638/*
1639 * When they enable the virtqueue, we check that their setup is valid.
1640 */
1641static void enable_virtqueue(struct device *d, struct virtqueue *vq)
1642{
1643 /*
1644 * Create stack for thread. Since the stack grows upwards, we point
1645 * the stack pointer to the end of this region.
1646 */
1647 char *stack = malloc(32768);
1648
1649 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1650 if (vq->pci_config.queue_desc_hi
1651 || vq->pci_config.queue_avail_hi
1652 || vq->pci_config.queue_used_hi)
1653 errx(1, "%s: invalid 64-bit queue address", d->name);
1654
1655 /* Initialize the virtqueue and check they're all in range. */
1656 vq->vring.num = vq->pci_config.queue_size;
1657 vq->vring.desc = check_pointer(vq->pci_config.queue_desc_lo,
1658 sizeof(*vq->vring.desc) * vq->vring.num);
1659 vq->vring.avail = check_pointer(vq->pci_config.queue_avail_lo,
1660 sizeof(*vq->vring.avail)
1661 + (sizeof(vq->vring.avail->ring[0])
1662 * vq->vring.num));
1663 vq->vring.used = check_pointer(vq->pci_config.queue_used_lo,
1664 sizeof(*vq->vring.used)
1665 + (sizeof(vq->vring.used->ring[0])
1666 * vq->vring.num));
1667
1668
1669 /* Create a zero-initialized eventfd. */
1670 vq->eventfd = eventfd(0, 0);
1671 if (vq->eventfd < 0)
1672 err(1, "Creating eventfd");
1673
1674 /*
1675 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1676 * we get a signal if it dies.
1677 */
1678 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1679 if (vq->thread == (pid_t)-1)
1680 err(1, "Creating clone");
1681}
1682
6a54f9ab
RR
1683static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask)
1684{
93153077
RR
1685 struct virtqueue *vq;
1686
1687 switch (off) {
1688 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1689 if (val == 0)
1690 d->mmio->cfg.device_feature = d->features;
1691 else if (val == 1)
1692 d->mmio->cfg.device_feature = (d->features >> 32);
1693 else
1694 d->mmio->cfg.device_feature = 0;
1695 goto write_through32;
1696 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1697 if (val > 1)
1698 errx(1, "%s: Unexpected driver select %u",
1699 d->name, val);
1700 goto write_through32;
1701 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1702 if (d->mmio->cfg.guest_feature_select == 0) {
1703 d->features_accepted &= ~((u64)0xFFFFFFFF);
1704 d->features_accepted |= val;
1705 } else {
1706 assert(d->mmio->cfg.guest_feature_select == 1);
1707 d->features_accepted &= ((u64)0xFFFFFFFF << 32);
1708 d->features_accepted |= ((u64)val) << 32;
1709 }
1710 if (d->features_accepted & ~d->features)
1711 errx(1, "%s: over-accepted features %#llx of %#llx",
1712 d->name, d->features_accepted, d->features);
1713 goto write_through32;
1714 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1715 verbose("%s: device status -> %#x\n", d->name, val);
1716 if (val == 0)
d9028eda 1717 reset_device(d);
93153077
RR
1718 goto write_through8;
1719 case offsetof(struct virtio_pci_mmio, cfg.queue_select):
1720 vq = vq_by_num(d, val);
1721 /* Out of range? Return size 0 */
1722 if (!vq) {
1723 d->mmio->cfg.queue_size = 0;
1724 goto write_through16;
1725 }
1726 /* Save registers for old vq, if it was a valid vq */
1727 if (d->mmio->cfg.queue_size)
1728 save_vq_config(&d->mmio->cfg,
1729 vq_by_num(d, d->mmio->cfg.queue_select));
1730 /* Restore the registers for the queue they asked for */
1731 restore_vq_config(&d->mmio->cfg, vq);
1732 goto write_through16;
1733 case offsetof(struct virtio_pci_mmio, cfg.queue_size):
1734 if (val & (val-1))
1735 errx(1, "%s: invalid queue size %u\n", d->name, val);
1736 if (d->mmio->cfg.queue_enable)
1737 errx(1, "%s: changing queue size on live device",
1738 d->name);
1739 goto write_through16;
1740 case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector):
1741 errx(1, "%s: attempt to set MSIX vector to %u",
1742 d->name, val);
1743 case offsetof(struct virtio_pci_mmio, cfg.queue_enable):
1744 if (val != 1)
1745 errx(1, "%s: setting queue_enable to %u", d->name, val);
1746 d->mmio->cfg.queue_enable = val;
1747 save_vq_config(&d->mmio->cfg,
1748 vq_by_num(d, d->mmio->cfg.queue_select));
1749 enable_virtqueue(d, vq_by_num(d, d->mmio->cfg.queue_select));
1750 goto write_through16;
1751 case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off):
1752 errx(1, "%s: attempt to write to queue_notify_off", d->name);
1753 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo):
1754 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi):
1755 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo):
1756 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi):
1757 case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo):
1758 case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi):
1759 if (d->mmio->cfg.queue_enable)
1760 errx(1, "%s: changing queue on live device",
1761 d->name);
1762 goto write_through32;
1763 case offsetof(struct virtio_pci_mmio, notify):
1764 vq = vq_by_num(d, val);
1765 if (!vq)
1766 errx(1, "Invalid vq notification on %u", val);
1767 /* Notify the process handling this vq by adding 1 to eventfd */
1768 write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8);
1769 goto write_through16;
1770 case offsetof(struct virtio_pci_mmio, isr):
1771 errx(1, "%s: Unexpected write to isr", d->name);
e8330d9b
RR
1772 /* Weird corner case: write to emerg_wr of console */
1773 case sizeof(struct virtio_pci_mmio)
1774 + offsetof(struct virtio_console_config, emerg_wr):
1775 if (strcmp(d->name, "console") == 0) {
1776 char c = val;
1777 write(STDOUT_FILENO, &c, 1);
1778 goto write_through32;
1779 }
1780 /* Fall through... */
93153077
RR
1781 default:
1782 errx(1, "%s: Unexpected write to offset %u", d->name, off);
1783 }
1784
1785write_through32:
1786 if (mask != 0xFFFFFFFF) {
1787 errx(1, "%s: non-32-bit write to offset %u (%#x)",
1788 d->name, off, getreg(eip));
1789 return;
1790 }
1791 memcpy((char *)d->mmio + off, &val, 4);
1792 return;
1793
1794write_through16:
1795 if (mask != 0xFFFF)
1796 errx(1, "%s: non-16-bit (%#x) write to offset %u (%#x)",
1797 d->name, mask, off, getreg(eip));
1798 memcpy((char *)d->mmio + off, &val, 2);
1799 return;
1800
1801write_through8:
1802 if (mask != 0xFF)
1803 errx(1, "%s: non-8-bit write to offset %u (%#x)",
1804 d->name, off, getreg(eip));
1805 memcpy((char *)d->mmio + off, &val, 1);
1806 return;
6a54f9ab
RR
1807}
1808
1809static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask)
1810{
93153077
RR
1811 u8 isr;
1812 u32 val = 0;
1813
1814 switch (off) {
1815 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1816 case offsetof(struct virtio_pci_mmio, cfg.device_feature):
1817 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1818 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1819 goto read_through32;
1820 case offsetof(struct virtio_pci_mmio, cfg.msix_config):
1821 errx(1, "%s: read of msix_config", d->name);
1822 case offsetof(struct virtio_pci_mmio, cfg.num_queues):
1823 goto read_through16;
1824 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1825 case offsetof(struct virtio_pci_mmio, cfg.config_generation):
1826 goto read_through8;
1827 case offsetof(struct virtio_pci_mmio, notify):
1828 goto read_through16;
1829 case offsetof(struct virtio_pci_mmio, isr):
1830 if (mask != 0xFF)
1831 errx(1, "%s: non-8-bit read from offset %u (%#x)",
1832 d->name, off, getreg(eip));
1833 /* Read resets the isr */
1834 isr = d->mmio->isr;
1835 d->mmio->isr = 0;
1836 return isr;
1837 case offsetof(struct virtio_pci_mmio, padding):
1838 errx(1, "%s: read from padding (%#x)",
1839 d->name, getreg(eip));
1840 default:
1841 /* Read from device config space, beware unaligned overflow */
1842 if (off > d->mmio_size - 4)
1843 errx(1, "%s: read past end (%#x)",
1844 d->name, getreg(eip));
1845 if (mask == 0xFFFFFFFF)
1846 goto read_through32;
1847 else if (mask == 0xFFFF)
1848 goto read_through16;
1849 else
1850 goto read_through8;
1851 }
1852
1853read_through32:
1854 if (mask != 0xFFFFFFFF)
1855 errx(1, "%s: non-32-bit read to offset %u (%#x)",
1856 d->name, off, getreg(eip));
1857 memcpy(&val, (char *)d->mmio + off, 4);
1858 return val;
1859
1860read_through16:
1861 if (mask != 0xFFFF)
1862 errx(1, "%s: non-16-bit read to offset %u (%#x)",
1863 d->name, off, getreg(eip));
1864 memcpy(&val, (char *)d->mmio + off, 2);
1865 return val;
1866
1867read_through8:
1868 if (mask != 0xFF)
1869 errx(1, "%s: non-8-bit read to offset %u (%#x)",
1870 d->name, off, getreg(eip));
1871 memcpy(&val, (char *)d->mmio + off, 1);
1872 return val;
6a54f9ab
RR
1873}
1874
1875static void emulate_mmio(unsigned long paddr, const u8 *insn)
1876{
1877 u32 val, off, mask = 0xFFFFFFFF, insnlen = 0;
1878 struct device *d = find_mmio_region(paddr, &off);
1879 unsigned long args[] = { LHREQ_TRAP, 14 };
1880
1881 if (!d) {
1882 warnx("MMIO touching %#08lx (not a device)", paddr);
1883 goto reinject;
1884 }
1885
1886 /* Prefix makes it a 16 bit op */
1887 if (insn[0] == 0x66) {
1888 mask = 0xFFFF;
1889 insnlen++;
1890 }
1891
1892 /* iowrite */
1893 if (insn[insnlen] == 0x89) {
1894 /* Next byte is r/m byte: bits 3-5 are register. */
1895 val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask);
1896 emulate_mmio_write(d, off, val, mask);
1897 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1898 } else if (insn[insnlen] == 0x8b) { /* ioread */
1899 /* Next byte is r/m byte: bits 3-5 are register. */
1900 val = emulate_mmio_read(d, off, mask);
1901 setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask);
1902 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1903 } else if (insn[0] == 0x88) { /* 8-bit iowrite */
1904 mask = 0xff;
1905 /* Next byte is r/m byte: bits 3-5 are register. */
1906 val = getreg_num((insn[1] >> 3) & 0x7, mask);
1907 emulate_mmio_write(d, off, val, mask);
1908 insnlen = 2 + insn_displacement_len(insn[1]);
1909 } else if (insn[0] == 0x8a) { /* 8-bit ioread */
1910 mask = 0xff;
1911 val = emulate_mmio_read(d, off, mask);
1912 setreg_num((insn[1] >> 3) & 0x7, val, mask);
1913 insnlen = 2 + insn_displacement_len(insn[1]);
1914 } else {
1915 warnx("Unknown MMIO instruction touching %#08lx:"
1916 " %02x %02x %02x %02x at %u",
1917 paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip));
1918 reinject:
1919 /* Inject trap into Guest. */
1920 if (write(lguest_fd, args, sizeof(args)) < 0)
1921 err(1, "Reinjecting trap 14 for fault at %#x",
1922 getreg(eip));
1923 return;
1924 }
1925
1926 /* Finally, we've "done" the instruction, so move past it. */
1927 setreg(eip, getreg(eip) + insnlen);
1928}
c565650b 1929
dde79789
RR
1930/*L:190
1931 * Device Setup
1932 *
1933 * All devices need a descriptor so the Guest knows it exists, and a "struct
1934 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1935 * routines to allocate and manage them.
1936 */
93153077
RR
1937static void add_pci_virtqueue(struct device *dev,
1938 void (*service)(struct virtqueue *))
1939{
1940 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1941
1942 /* Initialize the virtqueue */
1943 vq->next = NULL;
1944 vq->last_avail_idx = 0;
1945 vq->dev = dev;
1946
1947 /*
1948 * This is the routine the service thread will run, and its Process ID
1949 * once it's running.
1950 */
1951 vq->service = service;
1952 vq->thread = (pid_t)-1;
1953
1954 /* Initialize the configuration. */
1955 vq->pci_config.queue_size = VIRTQUEUE_NUM;
1956 vq->pci_config.queue_enable = 0;
1957 vq->pci_config.queue_notify_off = 0;
1958
1959 /* Add one to the number of queues */
1960 vq->dev->mmio->cfg.num_queues++;
1961
93153077
RR
1962 /*
1963 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1964 * second.
1965 */
1966 for (i = &dev->vq; *i; i = &(*i)->next);
1967 *i = vq;
1968}
1969
d9028eda 1970/* The Guest accesses the feature bits via the PCI common config MMIO region */
93153077
RR
1971static void add_pci_feature(struct device *dev, unsigned bit)
1972{
1973 dev->features |= (1ULL << bit);
1974}
1975
93153077
RR
1976/* For devices with no config. */
1977static void no_device_config(struct device *dev)
1978{
1979 dev->mmio_addr = get_mmio_region(dev->mmio_size);
1980
1981 dev->config.bar[0] = dev->mmio_addr;
1982 /* Bottom 4 bits must be zero */
1983 assert(~(dev->config.bar[0] & 0xF));
1984}
1985
1986/* This puts the device config into BAR0 */
1987static void set_device_config(struct device *dev, const void *conf, size_t len)
1988{
1989 /* Set up BAR 0 */
1990 dev->mmio_size += len;
1991 dev->mmio = realloc(dev->mmio, dev->mmio_size);
1992 memcpy(dev->mmio + 1, conf, len);
1993
1994 /* Hook up device cfg */
1995 dev->config.cfg_access.cap.cap_next
1996 = offsetof(struct pci_config, device);
1997
1998 /* Fix up device cfg field length. */
1999 dev->config.device.length = len;
2000
2001 /* The rest is the same as the no-config case */
2002 no_device_config(dev);
2003}
2004
2005static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type,
2006 size_t bar_offset, size_t bar_bytes, u8 next)
2007{
2008 cap->cap_vndr = PCI_CAP_ID_VNDR;
2009 cap->cap_next = next;
2010 cap->cap_len = caplen;
2011 cap->cfg_type = type;
2012 cap->bar = 0;
2013 memset(cap->padding, 0, sizeof(cap->padding));
2014 cap->offset = bar_offset;
2015 cap->length = bar_bytes;
2016}
2017
2018/*
2019 * This sets up the pci_config structure, as defined in the virtio 1.0
2020 * standard (and PCI standard).
2021 */
2022static void init_pci_config(struct pci_config *pci, u16 type,
2023 u8 class, u8 subclass)
2024{
2025 size_t bar_offset, bar_len;
2026
2027 /* Save typing: most thing are happy being zero. */
2028 memset(pci, 0, sizeof(*pci));
2029
2030 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2031 pci->vendor_id = 0x1AF4;
2032 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2033 pci->device_id = 0x1040 + type;
2034
2035 /*
2036 * PCI have specific codes for different types of devices.
2037 * Linux doesn't care, but it's a good clue for people looking
2038 * at the device.
93153077
RR
2039 */
2040 pci->class = class;
2041 pci->subclass = subclass;
2042
2043 /*
2044 * 4.1.2.1 Non-transitional devices SHOULD have a PCI Revision
2045 * ID of 1 or higher
2046 */
2047 pci->revid = 1;
2048
2049 /*
2050 * 4.1.2.1 Non-transitional devices SHOULD have a PCI
2051 * Subsystem Device ID of 0x40 or higher.
2052 */
2053 pci->subsystem_device_id = 0x40;
2054
2055 /* We use our dummy interrupt controller, and irq_line is the irq */
2056 pci->irq_line = devices.next_irq++;
2057 pci->irq_pin = 0;
2058
2059 /* Support for extended capabilities. */
2060 pci->status = (1 << 4);
2061
2062 /* Link them in. */
2063 pci->capabilities = offsetof(struct pci_config, common);
2064
2065 bar_offset = offsetof(struct virtio_pci_mmio, cfg);
2066 bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg);
2067 init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG,
2068 bar_offset, bar_len,
2069 offsetof(struct pci_config, notify));
2070
2071 bar_offset += bar_len;
2072 bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify);
2073 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2074 init_cap(&pci->notify.cap, sizeof(pci->notify),
2075 VIRTIO_PCI_CAP_NOTIFY_CFG,
2076 bar_offset, bar_len,
2077 offsetof(struct pci_config, isr));
2078
2079 bar_offset += bar_len;
2080 bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr);
2081 init_cap(&pci->isr, sizeof(pci->isr),
2082 VIRTIO_PCI_CAP_ISR_CFG,
2083 bar_offset, bar_len,
2084 offsetof(struct pci_config, cfg_access));
2085
2086 /* This doesn't have any presence in the BAR */
2087 init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access),
2088 VIRTIO_PCI_CAP_PCI_CFG,
2089 0, 0, 0);
2090
2091 bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding);
2092 assert(bar_offset == sizeof(struct virtio_pci_mmio));
2093
2094 /*
2095 * This gets sewn in and length set in set_device_config().
2096 * Some devices don't have a device configuration interface, so
2097 * we never expose this if we don't call set_device_config().
2098 */
2099 init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG,
2100 bar_offset, 0, 0);
2101}
2102
2e04ef76 2103/*
d9028eda
RR
2104 * This routine does all the creation and setup of a new device, but we don't
2105 * actually place the MMIO region until we know the size (if any) of the
2106 * device-specific config. And we don't actually start the service threads
2107 * until later.
a6bd8e13 2108 *
2e04ef76
RR
2109 * See what I mean about userspace being boring?
2110 */
93153077
RR
2111static struct device *new_pci_device(const char *name, u16 type,
2112 u8 class, u8 subclass)
2113{
2114 struct device *dev = malloc(sizeof(*dev));
2115
2116 /* Now we populate the fields one at a time. */
93153077
RR
2117 dev->name = name;
2118 dev->vq = NULL;
93153077 2119 dev->running = false;
93153077
RR
2120 dev->mmio_size = sizeof(struct virtio_pci_mmio);
2121 dev->mmio = calloc(1, dev->mmio_size);
2122 dev->features = (u64)1 << VIRTIO_F_VERSION_1;
2123 dev->features_accepted = 0;
2124
d9028eda 2125 if (devices.device_num + 1 >= MAX_PCI_DEVICES)
93153077
RR
2126 errx(1, "Can only handle 31 PCI devices");
2127
2128 init_pci_config(&dev->config, type, class, subclass);
2129 assert(!devices.pci[devices.device_num+1]);
2130 devices.pci[++devices.device_num] = dev;
2131
2132 return dev;
2133}
2134
2e04ef76
RR
2135/*
2136 * Our first setup routine is the console. It's a fairly simple device, but
2137 * UNIX tty handling makes it uglier than it could be.
2138 */
17cbca2b 2139static void setup_console(void)
8ca47e00
RR
2140{
2141 struct device *dev;
e8330d9b 2142 struct virtio_console_config conf;
8ca47e00 2143
dde79789 2144 /* If we can save the initial standard input settings... */
8ca47e00
RR
2145 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
2146 struct termios term = orig_term;
2e04ef76
RR
2147 /*
2148 * Then we turn off echo, line buffering and ^C etc: We want a
2149 * raw input stream to the Guest.
2150 */
8ca47e00
RR
2151 term.c_lflag &= ~(ISIG|ICANON|ECHO);
2152 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
2153 }
2154
ebff0113 2155 dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00);
659a0e66 2156
dde79789 2157 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
2158 dev->priv = malloc(sizeof(struct console_abort));
2159 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 2160
2e04ef76
RR
2161 /*
2162 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
2163 * they put something the input queue, we make sure we're listening to
2164 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
2165 * stdout.
2166 */
ebff0113
RR
2167 add_pci_virtqueue(dev, console_input);
2168 add_pci_virtqueue(dev, console_output);
2169
e8330d9b
RR
2170 /* We need a configuration area for the emerg_wr early writes. */
2171 add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE);
2172 set_device_config(dev, &conf, sizeof(conf));
17cbca2b 2173
ebff0113 2174 verbose("device %u: console\n", devices.device_num);
8ca47e00 2175}
17cbca2b 2176/*:*/
8ca47e00 2177
2e04ef76
RR
2178/*M:010
2179 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
2180 * --sharenet=<name> option which opens or creates a named pipe. This can be
2181 * used to send packets to another guest in a 1:1 manner.
dde79789 2182 *
9f54288d 2183 * More sophisticated is to use one of the tools developed for project like UML
17cbca2b 2184 * to do networking.
dde79789 2185 *
17cbca2b
RR
2186 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2187 * completely generic ("here's my vring, attach to your vring") and would work
2188 * for any traffic. Of course, namespace and permissions issues need to be
2189 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2190 * multiple inter-guest channels behind one interface, although it would
2191 * require some manner of hotplugging new virtio channels.
2192 *
9f54288d 2193 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2e04ef76 2194:*/
8ca47e00
RR
2195
2196static u32 str2ip(const char *ipaddr)
2197{
dec6a2be 2198 unsigned int b[4];
8ca47e00 2199
dec6a2be
MM
2200 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
2201 errx(1, "Failed to parse IP address '%s'", ipaddr);
2202 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
2203}
2204
2205static void str2mac(const char *macaddr, unsigned char mac[6])
2206{
2207 unsigned int m[6];
2208 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
2209 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
2210 errx(1, "Failed to parse mac address '%s'", macaddr);
2211 mac[0] = m[0];
2212 mac[1] = m[1];
2213 mac[2] = m[2];
2214 mac[3] = m[3];
2215 mac[4] = m[4];
2216 mac[5] = m[5];
8ca47e00
RR
2217}
2218
2e04ef76
RR
2219/*
2220 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
2221 * network device to the bridge device specified by the command line.
2222 *
2223 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
2224 * dislike bridging), and I just try not to break it.
2225 */
8ca47e00
RR
2226static void add_to_bridge(int fd, const char *if_name, const char *br_name)
2227{
2228 int ifidx;
2229 struct ifreq ifr;
2230
2231 if (!*br_name)
2232 errx(1, "must specify bridge name");
2233
2234 ifidx = if_nametoindex(if_name);
2235 if (!ifidx)
2236 errx(1, "interface %s does not exist!", if_name);
2237
2238 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 2239 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
2240 ifr.ifr_ifindex = ifidx;
2241 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
2242 err(1, "can't add %s to bridge %s", if_name, br_name);
2243}
2244
2e04ef76
RR
2245/*
2246 * This sets up the Host end of the network device with an IP address, brings
dde79789 2247 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
2248 * pointer.
2249 */
dec6a2be 2250static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
2251{
2252 struct ifreq ifr;
f846619e 2253 struct sockaddr_in sin;
8ca47e00
RR
2254
2255 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
2256 strcpy(ifr.ifr_name, tapif);
2257
2258 /* Don't read these incantations. Just cut & paste them like I did! */
f846619e
RR
2259 sin.sin_family = AF_INET;
2260 sin.sin_addr.s_addr = htonl(ipaddr);
2261 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
8ca47e00 2262 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 2263 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
2264 ifr.ifr_flags = IFF_UP;
2265 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
2266 err(1, "Bringing interface %s up", tapif);
2267}
2268
dec6a2be 2269static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 2270{
8ca47e00 2271 struct ifreq ifr;
bf6d4034 2272 int vnet_hdr_sz;
dec6a2be
MM
2273 int netfd;
2274
2275 /* Start with this zeroed. Messy but sure. */
2276 memset(&ifr, 0, sizeof(ifr));
8ca47e00 2277
2e04ef76
RR
2278 /*
2279 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
2280 * tap device is like a tun device, only somehow different. To tell
2281 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
2282 * works now!
2283 */
8ca47e00 2284 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 2285 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
2286 strcpy(ifr.ifr_name, "tap%d");
2287 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
2288 err(1, "configuring /dev/net/tun");
dec6a2be 2289
398f187d
RR
2290 if (ioctl(netfd, TUNSETOFFLOAD,
2291 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
2292 err(1, "Could not set features for tun device");
2293
2e04ef76
RR
2294 /*
2295 * We don't need checksums calculated for packets coming in this
2296 * device: trust us!
2297 */
8ca47e00
RR
2298 ioctl(netfd, TUNSETNOCSUM, 1);
2299
bf6d4034
RR
2300 /*
2301 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2302 * field at the end of the network header iff
2303 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2304 * that became the norm, but we need to tell the tun device
2305 * about our expanded header (which is called
2306 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2307 */
2308 vnet_hdr_sz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
2309 if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0)
2310 err(1, "Setting tun header size to %u", vnet_hdr_sz);
2311
dec6a2be
MM
2312 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
2313 return netfd;
2314}
2315
2e04ef76
RR
2316/*L:195
2317 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
2318 * routing, but the principle is the same: it uses the "tun" device to inject
2319 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
2320 * just shunt packets between the Guest and the tun device.
2321 */
dec6a2be
MM
2322static void setup_tun_net(char *arg)
2323{
2324 struct device *dev;
659a0e66
RR
2325 struct net_info *net_info = malloc(sizeof(*net_info));
2326 int ipfd;
dec6a2be
MM
2327 u32 ip = INADDR_ANY;
2328 bool bridging = false;
2329 char tapif[IFNAMSIZ], *p;
2330 struct virtio_net_config conf;
2331
659a0e66 2332 net_info->tunfd = get_tun_device(tapif);
dec6a2be 2333
17cbca2b 2334 /* First we create a new network device. */
bf6d4034 2335 dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00);
659a0e66 2336 dev->priv = net_info;
dde79789 2337
2e04ef76 2338 /* Network devices need a recv and a send queue, just like console. */
bf6d4034
RR
2339 add_pci_virtqueue(dev, net_input);
2340 add_pci_virtqueue(dev, net_output);
8ca47e00 2341
2e04ef76
RR
2342 /*
2343 * We need a socket to perform the magic network ioctls to bring up the
2344 * tap interface, connect to the bridge etc. Any socket will do!
2345 */
8ca47e00
RR
2346 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
2347 if (ipfd < 0)
2348 err(1, "opening IP socket");
2349
dde79789 2350 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 2351 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
2352 arg += strlen(BRIDGE_PFX);
2353 bridging = true;
2354 }
2355
2356 /* A mac address may follow the bridge name or IP address */
2357 p = strchr(arg, ':');
2358 if (p) {
2359 str2mac(p+1, conf.mac);
bf6d4034 2360 add_pci_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 2361 *p = '\0';
dec6a2be
MM
2362 }
2363
2364 /* arg is now either an IP address or a bridge name */
2365 if (bridging)
2366 add_to_bridge(ipfd, tapif, arg);
2367 else
8ca47e00
RR
2368 ip = str2ip(arg);
2369
dec6a2be
MM
2370 /* Set up the tun device. */
2371 configure_device(ipfd, tapif, ip);
8ca47e00 2372
398f187d 2373 /* Expect Guest to handle everything except UFO */
bf6d4034
RR
2374 add_pci_feature(dev, VIRTIO_NET_F_CSUM);
2375 add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
2376 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
2377 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
2378 add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN);
2379 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4);
2380 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6);
2381 add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e 2382 /* We handle indirect ring entries */
bf6d4034
RR
2383 add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
2384 set_device_config(dev, &conf, sizeof(conf));
8ca47e00 2385
a586d4f6 2386 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
2387 close(ipfd);
2388
dec6a2be
MM
2389 if (bridging)
2390 verbose("device %u: tun %s attached to bridge: %s\n",
2391 devices.device_num, tapif, arg);
2392 else
2393 verbose("device %u: tun %s: %s\n",
2394 devices.device_num, tapif, arg);
8ca47e00 2395}
a91d74a3 2396/*:*/
17cbca2b 2397
e1e72965 2398/* This hangs off device->priv. */
1842f23c 2399struct vblk_info {
17cbca2b
RR
2400 /* The size of the file. */
2401 off64_t len;
2402
2403 /* The file descriptor for the file. */
2404 int fd;
2405
17cbca2b
RR
2406};
2407
e1e72965
RR
2408/*L:210
2409 * The Disk
2410 *
a91d74a3
RR
2411 * The disk only has one virtqueue, so it only has one thread. It is really
2412 * simple: the Guest asks for a block number and we read or write that position
2413 * in the file.
2414 *
2415 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2416 * slow: the Guest waits until the read is finished before running anything
2417 * else, even if it could have been doing useful work.
2418 *
2419 * We could have used async I/O, except it's reputed to suck so hard that
2420 * characters actually go missing from your code when you try to use it.
e1e72965 2421 */
659a0e66 2422static void blk_request(struct virtqueue *vq)
17cbca2b 2423{
659a0e66 2424 struct vblk_info *vblk = vq->dev->priv;
17cbca2b 2425 unsigned int head, out_num, in_num, wlen;
c0316a94 2426 int ret, i;
cb38fa23 2427 u8 *in;
c0316a94 2428 struct virtio_blk_outhdr out;
659a0e66 2429 struct iovec iov[vq->vring.num];
17cbca2b
RR
2430 off64_t off;
2431
a91d74a3
RR
2432 /*
2433 * Get the next request, where we normally wait. It triggers the
2434 * interrupt to acknowledge previously serviced requests (if any).
2435 */
659a0e66 2436 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 2437
c0316a94
RR
2438 /* Copy the output header from the front of the iov (adjusts iov) */
2439 iov_consume(iov, out_num, &out, sizeof(out));
2440
2441 /* Find and trim end of iov input array, for our status byte. */
2442 in = NULL;
2443 for (i = out_num + in_num - 1; i >= out_num; i--) {
2444 if (iov[i].iov_len > 0) {
2445 in = iov[i].iov_base + iov[i].iov_len - 1;
2446 iov[i].iov_len--;
2447 break;
2448 }
2449 }
2450 if (!in)
2451 errx(1, "Bad virtblk cmd with no room for status");
17cbca2b 2452
a91d74a3
RR
2453 /*
2454 * For historical reasons, block operations are expressed in 512 byte
2455 * "sectors".
2456 */
c0316a94 2457 off = out.sector * 512;
17cbca2b 2458
50516547 2459 if (out.type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
2460 /*
2461 * Write
2462 *
2463 * Move to the right location in the block file. This can fail
2464 * if they try to write past end.
2465 */
17cbca2b 2466 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 2467 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 2468
c0316a94
RR
2469 ret = writev(vblk->fd, iov, out_num);
2470 verbose("WRITE to sector %llu: %i\n", out.sector, ret);
17cbca2b 2471
2e04ef76
RR
2472 /*
2473 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 2474 * make sure they didn't try to write over the end of the block
2e04ef76
RR
2475 * file (possibly extending it).
2476 */
17cbca2b
RR
2477 if (ret > 0 && off + ret > vblk->len) {
2478 /* Trim it back to the correct length */
2479 ftruncate64(vblk->fd, vblk->len);
2480 /* Die, bad Guest, die. */
2481 errx(1, "Write past end %llu+%u", off, ret);
2482 }
7bc9fdda
TH
2483
2484 wlen = sizeof(*in);
2485 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
c0316a94 2486 } else if (out.type & VIRTIO_BLK_T_FLUSH) {
7bc9fdda
TH
2487 /* Flush */
2488 ret = fdatasync(vblk->fd);
2489 verbose("FLUSH fdatasync: %i\n", ret);
1200e646 2490 wlen = sizeof(*in);
cb38fa23 2491 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 2492 } else {
2e04ef76
RR
2493 /*
2494 * Read
2495 *
2496 * Move to the right location in the block file. This can fail
2497 * if they try to read past end.
2498 */
17cbca2b 2499 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 2500 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 2501
c0316a94 2502 ret = readv(vblk->fd, iov + out_num, in_num);
17cbca2b 2503 if (ret >= 0) {
1200e646 2504 wlen = sizeof(*in) + ret;
cb38fa23 2505 *in = VIRTIO_BLK_S_OK;
17cbca2b 2506 } else {
1200e646 2507 wlen = sizeof(*in);
cb38fa23 2508 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
2509 }
2510 }
2511
a91d74a3 2512 /* Finished that request. */
38bc2b8c 2513 add_used(vq, head, wlen);
17cbca2b
RR
2514}
2515
e1e72965 2516/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
2517static void setup_block_file(const char *filename)
2518{
17cbca2b
RR
2519 struct device *dev;
2520 struct vblk_info *vblk;
a586d4f6 2521 struct virtio_blk_config conf;
17cbca2b 2522
50516547
RR
2523 /* Create the device. */
2524 dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80);
17cbca2b 2525
e1e72965 2526 /* The device has one virtqueue, where the Guest places requests. */
50516547 2527 add_pci_virtqueue(dev, blk_request);
17cbca2b
RR
2528
2529 /* Allocate the room for our own bookkeeping */
2530 vblk = dev->priv = malloc(sizeof(*vblk));
2531
2532 /* First we open the file and store the length. */
2533 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
2534 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
2535
2536 /* Tell Guest how many sectors this device has. */
a586d4f6 2537 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 2538
2e04ef76
RR
2539 /*
2540 * Tell Guest not to put in too many descriptors at once: two are used
2541 * for the in and out elements.
2542 */
50516547 2543 add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX);
a586d4f6
RR
2544 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
2545
50516547 2546 set_device_config(dev, &conf, sizeof(struct virtio_blk_config));
17cbca2b 2547
17cbca2b 2548 verbose("device %u: virtblock %llu sectors\n",
50516547 2549 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 2550}
28fd6d7f 2551
2e04ef76 2552/*L:211
a454bb36 2553 * Our random number generator device reads from /dev/urandom into the Guest's
28fd6d7f 2554 * input buffers. The usual case is that the Guest doesn't want random numbers
a454bb36 2555 * and so has no buffers although /dev/urandom is still readable, whereas
28fd6d7f
RR
2556 * console is the reverse.
2557 *
2e04ef76
RR
2558 * The same logic applies, however.
2559 */
2560struct rng_info {
2561 int rfd;
2562};
2563
659a0e66 2564static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
2565{
2566 int len;
2567 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
2568 struct rng_info *rng_info = vq->dev->priv;
2569 struct iovec iov[vq->vring.num];
28fd6d7f
RR
2570
2571 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 2572 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
2573 if (out_num)
2574 errx(1, "Output buffers in rng?");
2575
2e04ef76 2576 /*
a91d74a3
RR
2577 * Just like the console write, we loop to cover the whole iovec.
2578 * In this case, short reads actually happen quite a bit.
2e04ef76 2579 */
28fd6d7f 2580 while (!iov_empty(iov, in_num)) {
659a0e66 2581 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f 2582 if (len <= 0)
a454bb36 2583 err(1, "Read from /dev/urandom gave %i", len);
c0316a94 2584 iov_consume(iov, in_num, NULL, len);
28fd6d7f
RR
2585 totlen += len;
2586 }
2587
2588 /* Tell the Guest about the new input. */
38bc2b8c 2589 add_used(vq, head, totlen);
28fd6d7f
RR
2590}
2591
2e04ef76
RR
2592/*L:199
2593 * This creates a "hardware" random number device for the Guest.
2594 */
28fd6d7f
RR
2595static void setup_rng(void)
2596{
2597 struct device *dev;
659a0e66 2598 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 2599
a454bb36
RR
2600 /* Our device's private info simply contains the /dev/urandom fd. */
2601 rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY);
28fd6d7f 2602
2e04ef76 2603 /* Create the new device. */
0d5b5d39 2604 dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0);
659a0e66 2605 dev->priv = rng_info;
28fd6d7f
RR
2606
2607 /* The device has one virtqueue, where the Guest places inbufs. */
0d5b5d39 2608 add_pci_virtqueue(dev, rng_input);
28fd6d7f 2609
0d5b5d39
RR
2610 /* We don't have any configuration space */
2611 no_device_config(dev);
2612
2613 verbose("device %u: rng\n", devices.device_num);
28fd6d7f 2614}
a6bd8e13 2615/* That's the end of device setup. */
ec04b13f 2616
a6bd8e13 2617/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
2618static void __attribute__((noreturn)) restart_guest(void)
2619{
2620 unsigned int i;
2621
2e04ef76
RR
2622 /*
2623 * Since we don't track all open fds, we simply close everything beyond
2624 * stderr.
2625 */
ec04b13f
BR
2626 for (i = 3; i < FD_SETSIZE; i++)
2627 close(i);
8c79873d 2628
659a0e66
RR
2629 /* Reset all the devices (kills all threads). */
2630 cleanup_devices();
2631
ec04b13f
BR
2632 execv(main_args[0], main_args);
2633 err(1, "Could not exec %s", main_args[0]);
2634}
8ca47e00 2635
2e04ef76
RR
2636/*L:220
2637 * Finally we reach the core of the Launcher which runs the Guest, serves
2638 * its input and output, and finally, lays it to rest.
2639 */
56739c80 2640static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
2641{
2642 for (;;) {
69a09dc1 2643 struct lguest_pending notify;
8ca47e00
RR
2644 int readval;
2645
2646 /* We read from the /dev/lguest device to run the Guest. */
69a09dc1 2647 readval = pread(lguest_fd, &notify, sizeof(notify), cpu_id);
69a09dc1 2648 if (readval == sizeof(notify)) {
00f8d546 2649 if (notify.trap == 13) {
c565650b
RR
2650 verbose("Emulating instruction at %#x\n",
2651 getreg(eip));
2652 emulate_insn(notify.insn);
6a54f9ab
RR
2653 } else if (notify.trap == 14) {
2654 verbose("Emulating MMIO at %#x\n",
2655 getreg(eip));
2656 emulate_mmio(notify.addr, notify.insn);
69a09dc1
RR
2657 } else
2658 errx(1, "Unknown trap %i addr %#08x\n",
2659 notify.trap, notify.addr);
dde79789 2660 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
2661 } else if (errno == ENOENT) {
2662 char reason[1024] = { 0 };
e3283fa0 2663 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 2664 errx(1, "%s", reason);
ec04b13f
BR
2665 /* ERESTART means that we need to reboot the guest */
2666 } else if (errno == ERESTART) {
2667 restart_guest();
659a0e66
RR
2668 /* Anything else means a bug or incompatible change. */
2669 } else
8ca47e00 2670 err(1, "Running guest failed");
8ca47e00
RR
2671 }
2672}
a6bd8e13 2673/*L:240
e1e72965
RR
2674 * This is the end of the Launcher. The good news: we are over halfway
2675 * through! The bad news: the most fiendish part of the code still lies ahead
2676 * of us.
dde79789 2677 *
e1e72965
RR
2678 * Are you ready? Take a deep breath and join me in the core of the Host, in
2679 * "make Host".
2e04ef76 2680:*/
8ca47e00
RR
2681
2682static struct option opts[] = {
2683 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
2684 { "tunnet", 1, NULL, 't' },
2685 { "block", 1, NULL, 'b' },
28fd6d7f 2686 { "rng", 0, NULL, 'r' },
8ca47e00 2687 { "initrd", 1, NULL, 'i' },
8aeb36e8
PS
2688 { "username", 1, NULL, 'u' },
2689 { "chroot", 1, NULL, 'c' },
8ca47e00
RR
2690 { NULL },
2691};
2692static void usage(void)
2693{
2694 errx(1, "Usage: lguest [--verbose] "
dec6a2be 2695 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
2696 "|--block=<filename>|--initrd=<filename>]...\n"
2697 "<mem-in-mb> vmlinux [args...]");
2698}
2699
3c6b5bfa 2700/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
2701int main(int argc, char *argv[])
2702{
2e04ef76 2703 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 2704 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
2705 /* Two temporaries. */
2706 int i, c;
3c6b5bfa 2707 /* The boot information for the Guest. */
43d33b21 2708 struct boot_params *boot;
dde79789 2709 /* If they specify an initrd file to load. */
8ca47e00
RR
2710 const char *initrd_name = NULL;
2711
8aeb36e8
PS
2712 /* Password structure for initgroups/setres[gu]id */
2713 struct passwd *user_details = NULL;
2714
2715 /* Directory to chroot to */
2716 char *chroot_path = NULL;
2717
ec04b13f
BR
2718 /* Save the args: we "reboot" by execing ourselves again. */
2719 main_args = argv;
ec04b13f 2720
2e04ef76 2721 /*
d9028eda
RR
2722 * First we initialize the device list. We remember next interrupt
2723 * number to use for devices (1: remember that 0 is used by the timer).
2e04ef76 2724 */
17cbca2b 2725 devices.next_irq = 1;
8ca47e00 2726
a91d74a3 2727 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 2728 cpu_id = 0;
a91d74a3 2729
2e04ef76
RR
2730 /*
2731 * We need to know how much memory so we can set up the device
dde79789
RR
2732 * descriptor and memory pages for the devices as we parse the command
2733 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
2734 * of memory now.
2735 */
6570c459
RR
2736 for (i = 1; i < argc; i++) {
2737 if (argv[i][0] != '-') {
3c6b5bfa 2738 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
2739 /*
2740 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
2741 * guest-physical memory range. This fills it with 0,
2742 * and ensures that the Guest won't be killed when it
2e04ef76
RR
2743 * tries to access it.
2744 */
3c6b5bfa
RR
2745 guest_base = map_zeroed_pages(mem / getpagesize()
2746 + DEVICE_PAGES);
2747 guest_limit = mem;
0a6bcc18 2748 guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize();
6570c459
RR
2749 break;
2750 }
2751 }
dde79789 2752
713e3f72
RR
2753 /* We always have a console device, and it's always device 1. */
2754 setup_console();
2755
dde79789 2756 /* The options are fairly straight-forward */
8ca47e00
RR
2757 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
2758 switch (c) {
2759 case 'v':
2760 verbose = true;
2761 break;
8ca47e00 2762 case 't':
17cbca2b 2763 setup_tun_net(optarg);
8ca47e00
RR
2764 break;
2765 case 'b':
17cbca2b 2766 setup_block_file(optarg);
8ca47e00 2767 break;
28fd6d7f
RR
2768 case 'r':
2769 setup_rng();
2770 break;
8ca47e00
RR
2771 case 'i':
2772 initrd_name = optarg;
2773 break;
8aeb36e8
PS
2774 case 'u':
2775 user_details = getpwnam(optarg);
2776 if (!user_details)
2777 err(1, "getpwnam failed, incorrect username?");
2778 break;
2779 case 'c':
2780 chroot_path = optarg;
2781 break;
8ca47e00
RR
2782 default:
2783 warnx("Unknown argument %s", argv[optind]);
2784 usage();
2785 }
2786 }
2e04ef76
RR
2787 /*
2788 * After the other arguments we expect memory and kernel image name,
2789 * followed by command line arguments for the kernel.
2790 */
8ca47e00
RR
2791 if (optind + 2 > argc)
2792 usage();
2793
3c6b5bfa
RR
2794 verbose("Guest base is at %p\n", guest_base);
2795
8e709469
RR
2796 /* Initialize the (fake) PCI host bridge device. */
2797 init_pci_host_bridge();
2798
8ca47e00 2799 /* Now we load the kernel */
47436aa4 2800 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 2801
3c6b5bfa
RR
2802 /* Boot information is stashed at physical address 0 */
2803 boot = from_guest_phys(0);
2804
dde79789 2805 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
2806 if (initrd_name) {
2807 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
2808 /*
2809 * These are the location in the Linux boot header where the
2810 * start and size of the initrd are expected to be found.
2811 */
43d33b21
RR
2812 boot->hdr.ramdisk_image = mem - initrd_size;
2813 boot->hdr.ramdisk_size = initrd_size;
dde79789 2814 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 2815 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
2816 }
2817
2e04ef76
RR
2818 /*
2819 * The Linux boot header contains an "E820" memory map: ours is a
2820 * simple, single region.
2821 */
43d33b21
RR
2822 boot->e820_entries = 1;
2823 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
2824 /*
2825 * The boot header contains a command line pointer: we put the command
2826 * line after the boot header.
2827 */
43d33b21 2828 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 2829 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 2830 concat((char *)(boot + 1), argv+optind+2);
dde79789 2831
e22a5398
RR
2832 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2833 boot->hdr.kernel_alignment = 0x1000000;
2834
814a0e5c 2835 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2836 boot->hdr.version = 0x207;
814a0e5c
RR
2837
2838 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2839 boot->hdr.hardware_subarch = 1;
814a0e5c 2840
43d33b21
RR
2841 /* Tell the entry path not to try to reload segment registers. */
2842 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2843
9f54288d 2844 /* We tell the kernel to initialize the Guest. */
56739c80 2845 tell_kernel(start);
dde79789 2846
a91d74a3 2847 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2848 signal(SIGCHLD, kill_launcher);
2849
2850 /* If we exit via err(), this kills all the threads, restores tty. */
2851 atexit(cleanup_devices);
8ca47e00 2852
8aeb36e8
PS
2853 /* If requested, chroot to a directory */
2854 if (chroot_path) {
2855 if (chroot(chroot_path) != 0)
2856 err(1, "chroot(\"%s\") failed", chroot_path);
2857
2858 if (chdir("/") != 0)
2859 err(1, "chdir(\"/\") failed");
2860
2861 verbose("chroot done\n");
2862 }
2863
2864 /* If requested, drop privileges */
2865 if (user_details) {
2866 uid_t u;
2867 gid_t g;
2868
2869 u = user_details->pw_uid;
2870 g = user_details->pw_gid;
2871
2872 if (initgroups(user_details->pw_name, g) != 0)
2873 err(1, "initgroups failed");
2874
2875 if (setresgid(g, g, g) != 0)
2876 err(1, "setresgid failed");
2877
2878 if (setresuid(u, u, u) != 0)
2879 err(1, "setresuid failed");
2880
2881 verbose("Dropping privileges completed\n");
2882 }
2883
dde79789 2884 /* Finally, run the Guest. This doesn't return. */
56739c80 2885 run_guest();
8ca47e00 2886}
f56a384e
RR
2887/*:*/
2888
2889/*M:999
2890 * Mastery is done: you now know everything I do.
2891 *
2892 * But surely you have seen code, features and bugs in your wanderings which
2893 * you now yearn to attack? That is the real game, and I look forward to you
2894 * patching and forking lguest into the Your-Name-Here-visor.
2895 *
2896 * Farewell, and good coding!
2897 * Rusty Russell.
2898 */
This page took 0.908266 seconds and 5 git commands to generate.