perf session: Remove superfluous callchain_cursor member
[deliverable/linux.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
10274989
AV
24#include "util/callchain.h"
25#include "util/strlist.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include "util/parse-options.h"
30#include "util/parse-events.h"
5cbd0805 31#include "util/event.h"
301a0b02 32#include "util/session.h"
10274989
AV
33#include "util/svghelper.h"
34
20c457b8
TR
35#define SUPPORT_OLD_POWER_EVENTS 1
36#define PWR_EVENT_EXIT -1
37
38
10274989
AV
39static char const *input_name = "perf.data";
40static char const *output_name = "output.svg";
41
10274989
AV
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
c0555642 49static bool power_only;
39a90a8e 50
10274989 51
10274989
AV
52struct per_pid;
53struct per_pidcomm;
54
55struct cpu_sample;
56struct power_event;
57struct wake_event;
58
59struct sample_wrapper;
60
61/*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71struct per_pid {
72 struct per_pid *next;
73
74 int pid;
75 int ppid;
76
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
81
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
10274989
AV
84};
85
86
87struct per_pidcomm {
88 struct per_pidcomm *next;
89
90 u64 start_time;
91 u64 end_time;
92 u64 total_time;
93
94 int Y;
95 int display;
96
97 long state;
98 u64 state_since;
99
100 char *comm;
101
102 struct cpu_sample *samples;
103};
104
105struct sample_wrapper {
106 struct sample_wrapper *next;
107
108 u64 timestamp;
109 unsigned char data[0];
110};
111
112#define TYPE_NONE 0
113#define TYPE_RUNNING 1
114#define TYPE_WAITING 2
115#define TYPE_BLOCKED 3
116
117struct cpu_sample {
118 struct cpu_sample *next;
119
120 u64 start_time;
121 u64 end_time;
122 int type;
123 int cpu;
124};
125
126static struct per_pid *all_data;
127
128#define CSTATE 1
129#define PSTATE 2
130
131struct power_event {
132 struct power_event *next;
133 int type;
134 int state;
135 u64 start_time;
136 u64 end_time;
137 int cpu;
138};
139
140struct wake_event {
141 struct wake_event *next;
142 int waker;
143 int wakee;
144 u64 time;
145};
146
147static struct power_event *power_events;
148static struct wake_event *wake_events;
149
bbe2987b
AV
150struct process_filter;
151struct process_filter {
5cbd0805
LZ
152 char *name;
153 int pid;
154 struct process_filter *next;
bbe2987b
AV
155};
156
157static struct process_filter *process_filter;
158
159
10274989
AV
160static struct per_pid *find_create_pid(int pid)
161{
162 struct per_pid *cursor = all_data;
163
164 while (cursor) {
165 if (cursor->pid == pid)
166 return cursor;
167 cursor = cursor->next;
168 }
169 cursor = malloc(sizeof(struct per_pid));
170 assert(cursor != NULL);
171 memset(cursor, 0, sizeof(struct per_pid));
172 cursor->pid = pid;
173 cursor->next = all_data;
174 all_data = cursor;
175 return cursor;
176}
177
178static void pid_set_comm(int pid, char *comm)
179{
180 struct per_pid *p;
181 struct per_pidcomm *c;
182 p = find_create_pid(pid);
183 c = p->all;
184 while (c) {
185 if (c->comm && strcmp(c->comm, comm) == 0) {
186 p->current = c;
187 return;
188 }
189 if (!c->comm) {
190 c->comm = strdup(comm);
191 p->current = c;
192 return;
193 }
194 c = c->next;
195 }
196 c = malloc(sizeof(struct per_pidcomm));
197 assert(c != NULL);
198 memset(c, 0, sizeof(struct per_pidcomm));
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
203}
204
205static void pid_fork(int pid, int ppid, u64 timestamp)
206{
207 struct per_pid *p, *pp;
208 p = find_create_pid(pid);
209 pp = find_create_pid(ppid);
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
212 pid_set_comm(pid, pp->current->comm);
213
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
218 }
219}
220
221static void pid_exit(int pid, u64 timestamp)
222{
223 struct per_pid *p;
224 p = find_create_pid(pid);
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
228}
229
230static void
231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232{
233 struct per_pid *p;
234 struct per_pidcomm *c;
235 struct cpu_sample *sample;
236
237 p = find_create_pid(pid);
238 c = p->current;
239 if (!c) {
240 c = malloc(sizeof(struct per_pidcomm));
241 assert(c != NULL);
242 memset(c, 0, sizeof(struct per_pidcomm));
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
248 sample = malloc(sizeof(struct cpu_sample));
249 assert(sample != NULL);
250 memset(sample, 0, sizeof(struct cpu_sample));
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 c->samples = sample;
257
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
261 }
262
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
10274989
AV
267}
268
269#define MAX_CPUS 4096
270
271static u64 cpus_cstate_start_times[MAX_CPUS];
272static int cpus_cstate_state[MAX_CPUS];
273static u64 cpus_pstate_start_times[MAX_CPUS];
274static u64 cpus_pstate_state[MAX_CPUS];
275
8115d60c
ACM
276static int process_comm_event(union perf_event *event,
277 struct perf_sample *sample __used,
640c03ce 278 struct perf_session *session __used)
10274989 279{
8f06d7e6 280 pid_set_comm(event->comm.tid, event->comm.comm);
10274989
AV
281 return 0;
282}
d8f66248 283
8115d60c
ACM
284static int process_fork_event(union perf_event *event,
285 struct perf_sample *sample __used,
640c03ce 286 struct perf_session *session __used)
10274989
AV
287{
288 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289 return 0;
290}
291
8115d60c
ACM
292static int process_exit_event(union perf_event *event,
293 struct perf_sample *sample __used,
640c03ce 294 struct perf_session *session __used)
10274989
AV
295{
296 pid_exit(event->fork.pid, event->fork.time);
297 return 0;
298}
299
300struct trace_entry {
10274989
AV
301 unsigned short type;
302 unsigned char flags;
303 unsigned char preempt_count;
304 int pid;
028c5152 305 int lock_depth;
10274989
AV
306};
307
20c457b8
TR
308#ifdef SUPPORT_OLD_POWER_EVENTS
309static int use_old_power_events;
310struct power_entry_old {
10274989 311 struct trace_entry te;
4c21adf2
TR
312 u64 type;
313 u64 value;
314 u64 cpu_id;
10274989 315};
20c457b8
TR
316#endif
317
318struct power_processor_entry {
319 struct trace_entry te;
320 u32 state;
321 u32 cpu_id;
322};
10274989
AV
323
324#define TASK_COMM_LEN 16
325struct wakeup_entry {
326 struct trace_entry te;
327 char comm[TASK_COMM_LEN];
328 int pid;
329 int prio;
330 int success;
331};
332
333/*
334 * trace_flag_type is an enumeration that holds different
335 * states when a trace occurs. These are:
336 * IRQS_OFF - interrupts were disabled
337 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
338 * NEED_RESCED - reschedule is requested
339 * HARDIRQ - inside an interrupt handler
340 * SOFTIRQ - inside a softirq handler
341 */
342enum trace_flag_type {
343 TRACE_FLAG_IRQS_OFF = 0x01,
344 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
345 TRACE_FLAG_NEED_RESCHED = 0x04,
346 TRACE_FLAG_HARDIRQ = 0x08,
347 TRACE_FLAG_SOFTIRQ = 0x10,
348};
349
350
351
352struct sched_switch {
353 struct trace_entry te;
354 char prev_comm[TASK_COMM_LEN];
355 int prev_pid;
356 int prev_prio;
357 long prev_state; /* Arjan weeps. */
358 char next_comm[TASK_COMM_LEN];
359 int next_pid;
360 int next_prio;
361};
362
363static void c_state_start(int cpu, u64 timestamp, int state)
364{
365 cpus_cstate_start_times[cpu] = timestamp;
366 cpus_cstate_state[cpu] = state;
367}
368
369static void c_state_end(int cpu, u64 timestamp)
370{
371 struct power_event *pwr;
372 pwr = malloc(sizeof(struct power_event));
373 if (!pwr)
374 return;
375 memset(pwr, 0, sizeof(struct power_event));
376
377 pwr->state = cpus_cstate_state[cpu];
378 pwr->start_time = cpus_cstate_start_times[cpu];
379 pwr->end_time = timestamp;
380 pwr->cpu = cpu;
381 pwr->type = CSTATE;
382 pwr->next = power_events;
383
384 power_events = pwr;
385}
386
387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388{
389 struct power_event *pwr;
390 pwr = malloc(sizeof(struct power_event));
391
392 if (new_freq > 8000000) /* detect invalid data */
393 return;
394
395 if (!pwr)
396 return;
397 memset(pwr, 0, sizeof(struct power_event));
398
399 pwr->state = cpus_pstate_state[cpu];
400 pwr->start_time = cpus_pstate_start_times[cpu];
401 pwr->end_time = timestamp;
402 pwr->cpu = cpu;
403 pwr->type = PSTATE;
404 pwr->next = power_events;
405
406 if (!pwr->start_time)
407 pwr->start_time = first_time;
408
409 power_events = pwr;
410
411 cpus_pstate_state[cpu] = new_freq;
412 cpus_pstate_start_times[cpu] = timestamp;
413
414 if ((u64)new_freq > max_freq)
415 max_freq = new_freq;
416
417 if (new_freq < min_freq || min_freq == 0)
418 min_freq = new_freq;
419
420 if (new_freq == max_freq - 1000)
421 turbo_frequency = max_freq;
422}
423
424static void
425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426{
427 struct wake_event *we;
428 struct per_pid *p;
429 struct wakeup_entry *wake = (void *)te;
430
431 we = malloc(sizeof(struct wake_event));
432 if (!we)
433 return;
434
435 memset(we, 0, sizeof(struct wake_event));
436 we->time = timestamp;
437 we->waker = pid;
438
439 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440 we->waker = -1;
441
442 we->wakee = wake->pid;
443 we->next = wake_events;
444 wake_events = we;
445 p = find_create_pid(we->wakee);
446
447 if (p && p->current && p->current->state == TYPE_NONE) {
448 p->current->state_since = timestamp;
449 p->current->state = TYPE_WAITING;
450 }
451 if (p && p->current && p->current->state == TYPE_BLOCKED) {
452 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456}
457
458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459{
460 struct per_pid *p = NULL, *prev_p;
461 struct sched_switch *sw = (void *)te;
462
463
464 prev_p = find_create_pid(sw->prev_pid);
465
466 p = find_create_pid(sw->next_pid);
467
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470 if (p && p->current) {
471 if (p->current->state != TYPE_NONE)
472 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
33e26a1b
JL
474 p->current->state_since = timestamp;
475 p->current->state = TYPE_RUNNING;
10274989
AV
476 }
477
478 if (prev_p->current) {
479 prev_p->current->state = TYPE_NONE;
480 prev_p->current->state_since = timestamp;
481 if (sw->prev_state & 2)
482 prev_p->current->state = TYPE_BLOCKED;
483 if (sw->prev_state == 0)
484 prev_p->current->state = TYPE_WAITING;
485 }
486}
487
488
8115d60c 489static int process_sample_event(union perf_event *event __used,
8d50e5b4 490 struct perf_sample *sample,
9e69c210 491 struct perf_evsel *evsel __used,
640c03ce 492 struct perf_session *session)
10274989 493{
10274989
AV
494 struct trace_entry *te;
495
c019879b 496 if (session->sample_type & PERF_SAMPLE_TIME) {
640c03ce
ACM
497 if (!first_time || first_time > sample->time)
498 first_time = sample->time;
499 if (last_time < sample->time)
500 last_time = sample->time;
10274989 501 }
180f95e2 502
640c03ce
ACM
503 te = (void *)sample->raw_data;
504 if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
10274989 505 char *event_str;
20c457b8
TR
506#ifdef SUPPORT_OLD_POWER_EVENTS
507 struct power_entry_old *peo;
508 peo = (void *)te;
509#endif
9e69c210
ACM
510 /*
511 * FIXME: use evsel, its already mapped from id to perf_evsel,
512 * remove perf_header__find_event infrastructure bits.
513 * Mapping all these "power:cpu_idle" strings to the tracepoint
514 * ID and then just comparing against evsel->attr.config.
515 *
516 * e.g.:
517 *
518 * if (evsel->attr.config == power_cpu_idle_id)
519 */
10274989
AV
520 event_str = perf_header__find_event(te->type);
521
522 if (!event_str)
523 return 0;
524
54b08f5f
TR
525 if (sample->cpu > numcpus)
526 numcpus = sample->cpu;
527
20c457b8
TR
528 if (strcmp(event_str, "power:cpu_idle") == 0) {
529 struct power_processor_entry *ppe = (void *)te;
530 if (ppe->state == (u32)PWR_EVENT_EXIT)
531 c_state_end(ppe->cpu_id, sample->time);
532 else
533 c_state_start(ppe->cpu_id, sample->time,
534 ppe->state);
535 }
536 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
537 struct power_processor_entry *ppe = (void *)te;
538 p_state_change(ppe->cpu_id, sample->time, ppe->state);
539 }
10274989 540
20c457b8 541 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
640c03ce 542 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
10274989 543
20c457b8 544 else if (strcmp(event_str, "sched:sched_switch") == 0)
640c03ce 545 sched_switch(sample->cpu, sample->time, te);
20c457b8
TR
546
547#ifdef SUPPORT_OLD_POWER_EVENTS
548 if (use_old_power_events) {
549 if (strcmp(event_str, "power:power_start") == 0)
550 c_state_start(peo->cpu_id, sample->time,
551 peo->value);
552
553 else if (strcmp(event_str, "power:power_end") == 0)
554 c_state_end(sample->cpu, sample->time);
555
556 else if (strcmp(event_str,
557 "power:power_frequency") == 0)
558 p_state_change(peo->cpu_id, sample->time,
559 peo->value);
560 }
561#endif
10274989
AV
562 }
563 return 0;
564}
565
566/*
567 * After the last sample we need to wrap up the current C/P state
568 * and close out each CPU for these.
569 */
570static void end_sample_processing(void)
571{
572 u64 cpu;
573 struct power_event *pwr;
574
39a90a8e 575 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
576 pwr = malloc(sizeof(struct power_event));
577 if (!pwr)
578 return;
579 memset(pwr, 0, sizeof(struct power_event));
580
581 /* C state */
582#if 0
583 pwr->state = cpus_cstate_state[cpu];
584 pwr->start_time = cpus_cstate_start_times[cpu];
585 pwr->end_time = last_time;
586 pwr->cpu = cpu;
587 pwr->type = CSTATE;
588 pwr->next = power_events;
589
590 power_events = pwr;
591#endif
592 /* P state */
593
594 pwr = malloc(sizeof(struct power_event));
595 if (!pwr)
596 return;
597 memset(pwr, 0, sizeof(struct power_event));
598
599 pwr->state = cpus_pstate_state[cpu];
600 pwr->start_time = cpus_pstate_start_times[cpu];
601 pwr->end_time = last_time;
602 pwr->cpu = cpu;
603 pwr->type = PSTATE;
604 pwr->next = power_events;
605
606 if (!pwr->start_time)
607 pwr->start_time = first_time;
608 if (!pwr->state)
609 pwr->state = min_freq;
610 power_events = pwr;
611 }
612}
613
10274989
AV
614/*
615 * Sort the pid datastructure
616 */
617static void sort_pids(void)
618{
619 struct per_pid *new_list, *p, *cursor, *prev;
620 /* sort by ppid first, then by pid, lowest to highest */
621
622 new_list = NULL;
623
624 while (all_data) {
625 p = all_data;
626 all_data = p->next;
627 p->next = NULL;
628
629 if (new_list == NULL) {
630 new_list = p;
631 p->next = NULL;
632 continue;
633 }
634 prev = NULL;
635 cursor = new_list;
636 while (cursor) {
637 if (cursor->ppid > p->ppid ||
638 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
639 /* must insert before */
640 if (prev) {
641 p->next = prev->next;
642 prev->next = p;
643 cursor = NULL;
644 continue;
645 } else {
646 p->next = new_list;
647 new_list = p;
648 cursor = NULL;
649 continue;
650 }
651 }
652
653 prev = cursor;
654 cursor = cursor->next;
655 if (!cursor)
656 prev->next = p;
657 }
658 }
659 all_data = new_list;
660}
661
662
663static void draw_c_p_states(void)
664{
665 struct power_event *pwr;
666 pwr = power_events;
667
668 /*
669 * two pass drawing so that the P state bars are on top of the C state blocks
670 */
671 while (pwr) {
672 if (pwr->type == CSTATE)
673 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
674 pwr = pwr->next;
675 }
676
677 pwr = power_events;
678 while (pwr) {
679 if (pwr->type == PSTATE) {
680 if (!pwr->state)
681 pwr->state = min_freq;
682 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
683 }
684 pwr = pwr->next;
685 }
686}
687
688static void draw_wakeups(void)
689{
690 struct wake_event *we;
691 struct per_pid *p;
692 struct per_pidcomm *c;
693
694 we = wake_events;
695 while (we) {
696 int from = 0, to = 0;
4f1202c8 697 char *task_from = NULL, *task_to = NULL;
10274989
AV
698
699 /* locate the column of the waker and wakee */
700 p = all_data;
701 while (p) {
702 if (p->pid == we->waker || p->pid == we->wakee) {
703 c = p->all;
704 while (c) {
705 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 706 if (p->pid == we->waker && !from) {
10274989 707 from = c->Y;
3bc2a39c 708 task_from = strdup(c->comm);
4f1202c8 709 }
bbe2987b 710 if (p->pid == we->wakee && !to) {
10274989 711 to = c->Y;
3bc2a39c 712 task_to = strdup(c->comm);
4f1202c8 713 }
10274989
AV
714 }
715 c = c->next;
716 }
3bc2a39c
AV
717 c = p->all;
718 while (c) {
719 if (p->pid == we->waker && !from) {
720 from = c->Y;
721 task_from = strdup(c->comm);
722 }
723 if (p->pid == we->wakee && !to) {
724 to = c->Y;
725 task_to = strdup(c->comm);
726 }
727 c = c->next;
728 }
10274989
AV
729 }
730 p = p->next;
731 }
732
3bc2a39c
AV
733 if (!task_from) {
734 task_from = malloc(40);
735 sprintf(task_from, "[%i]", we->waker);
736 }
737 if (!task_to) {
738 task_to = malloc(40);
739 sprintf(task_to, "[%i]", we->wakee);
740 }
741
10274989
AV
742 if (we->waker == -1)
743 svg_interrupt(we->time, to);
744 else if (from && to && abs(from - to) == 1)
745 svg_wakeline(we->time, from, to);
746 else
4f1202c8 747 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 748 we = we->next;
3bc2a39c
AV
749
750 free(task_from);
751 free(task_to);
10274989
AV
752 }
753}
754
755static void draw_cpu_usage(void)
756{
757 struct per_pid *p;
758 struct per_pidcomm *c;
759 struct cpu_sample *sample;
760 p = all_data;
761 while (p) {
762 c = p->all;
763 while (c) {
764 sample = c->samples;
765 while (sample) {
766 if (sample->type == TYPE_RUNNING)
767 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
768
769 sample = sample->next;
770 }
771 c = c->next;
772 }
773 p = p->next;
774 }
775}
776
777static void draw_process_bars(void)
778{
779 struct per_pid *p;
780 struct per_pidcomm *c;
781 struct cpu_sample *sample;
782 int Y = 0;
783
784 Y = 2 * numcpus + 2;
785
786 p = all_data;
787 while (p) {
788 c = p->all;
789 while (c) {
790 if (!c->display) {
791 c->Y = 0;
792 c = c->next;
793 continue;
794 }
795
a92fe7b3 796 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
797 sample = c->samples;
798 while (sample) {
799 if (sample->type == TYPE_RUNNING)
a92fe7b3 800 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
801 if (sample->type == TYPE_BLOCKED)
802 svg_box(Y, sample->start_time, sample->end_time, "blocked");
803 if (sample->type == TYPE_WAITING)
a92fe7b3 804 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
805 sample = sample->next;
806 }
807
808 if (c->comm) {
809 char comm[256];
810 if (c->total_time > 5000000000) /* 5 seconds */
811 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
812 else
813 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
814
815 svg_text(Y, c->start_time, comm);
816 }
817 c->Y = Y;
818 Y++;
819 c = c->next;
820 }
821 p = p->next;
822 }
823}
824
bbe2987b
AV
825static void add_process_filter(const char *string)
826{
827 struct process_filter *filt;
828 int pid;
829
830 pid = strtoull(string, NULL, 10);
831 filt = malloc(sizeof(struct process_filter));
832 if (!filt)
833 return;
834
835 filt->name = strdup(string);
836 filt->pid = pid;
837 filt->next = process_filter;
838
839 process_filter = filt;
840}
841
842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
843{
844 struct process_filter *filt;
845 if (!process_filter)
846 return 1;
847
848 filt = process_filter;
849 while (filt) {
850 if (filt->pid && p->pid == filt->pid)
851 return 1;
852 if (strcmp(filt->name, c->comm) == 0)
853 return 1;
854 filt = filt->next;
855 }
856 return 0;
857}
858
859static int determine_display_tasks_filtered(void)
860{
861 struct per_pid *p;
862 struct per_pidcomm *c;
863 int count = 0;
864
865 p = all_data;
866 while (p) {
867 p->display = 0;
868 if (p->start_time == 1)
869 p->start_time = first_time;
870
871 /* no exit marker, task kept running to the end */
872 if (p->end_time == 0)
873 p->end_time = last_time;
874
875 c = p->all;
876
877 while (c) {
878 c->display = 0;
879
880 if (c->start_time == 1)
881 c->start_time = first_time;
882
883 if (passes_filter(p, c)) {
884 c->display = 1;
885 p->display = 1;
886 count++;
887 }
888
889 if (c->end_time == 0)
890 c->end_time = last_time;
891
892 c = c->next;
893 }
894 p = p->next;
895 }
896 return count;
897}
898
10274989
AV
899static int determine_display_tasks(u64 threshold)
900{
901 struct per_pid *p;
902 struct per_pidcomm *c;
903 int count = 0;
904
bbe2987b
AV
905 if (process_filter)
906 return determine_display_tasks_filtered();
907
10274989
AV
908 p = all_data;
909 while (p) {
910 p->display = 0;
911 if (p->start_time == 1)
912 p->start_time = first_time;
913
914 /* no exit marker, task kept running to the end */
915 if (p->end_time == 0)
916 p->end_time = last_time;
39a90a8e 917 if (p->total_time >= threshold && !power_only)
10274989
AV
918 p->display = 1;
919
920 c = p->all;
921
922 while (c) {
923 c->display = 0;
924
925 if (c->start_time == 1)
926 c->start_time = first_time;
927
39a90a8e 928 if (c->total_time >= threshold && !power_only) {
10274989
AV
929 c->display = 1;
930 count++;
931 }
932
933 if (c->end_time == 0)
934 c->end_time = last_time;
935
936 c = c->next;
937 }
938 p = p->next;
939 }
940 return count;
941}
942
943
944
945#define TIME_THRESH 10000000
946
947static void write_svg_file(const char *filename)
948{
949 u64 i;
950 int count;
951
952 numcpus++;
953
954
955 count = determine_display_tasks(TIME_THRESH);
956
957 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
958 if (count < 15)
959 count = determine_display_tasks(TIME_THRESH / 10);
960
5094b655 961 open_svg(filename, numcpus, count, first_time, last_time);
10274989 962
5094b655 963 svg_time_grid();
10274989
AV
964 svg_legenda();
965
966 for (i = 0; i < numcpus; i++)
967 svg_cpu_box(i, max_freq, turbo_frequency);
968
969 draw_cpu_usage();
970 draw_process_bars();
971 draw_c_p_states();
972 draw_wakeups();
973
974 svg_close();
975}
976
301a0b02 977static struct perf_event_ops event_ops = {
9df9bbba
FW
978 .comm = process_comm_event,
979 .fork = process_fork_event,
980 .exit = process_exit_event,
981 .sample = process_sample_event,
982 .ordered_samples = true,
5cbd0805 983};
10274989 984
5cbd0805
LZ
985static int __cmd_timechart(void)
986{
21ef97f0
IM
987 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
988 0, false, &event_ops);
d549c769 989 int ret = -EINVAL;
10274989 990
94c744b6
ACM
991 if (session == NULL)
992 return -ENOMEM;
993
d549c769
ACM
994 if (!perf_session__has_traces(session, "timechart record"))
995 goto out_delete;
996
ec913369 997 ret = perf_session__process_events(session, &event_ops);
5cbd0805 998 if (ret)
94c744b6 999 goto out_delete;
10274989 1000
10274989
AV
1001 end_sample_processing();
1002
1003 sort_pids();
1004
1005 write_svg_file(output_name);
1006
6beba7ad
ACM
1007 pr_info("Written %2.1f seconds of trace to %s.\n",
1008 (last_time - first_time) / 1000000000.0, output_name);
94c744b6
ACM
1009out_delete:
1010 perf_session__delete(session);
1011 return ret;
10274989
AV
1012}
1013
3c09eebd
AV
1014static const char * const timechart_usage[] = {
1015 "perf timechart [<options>] {record}",
10274989
AV
1016 NULL
1017};
1018
20c457b8
TR
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
3c09eebd
AV
1021 "record",
1022 "-a",
1023 "-R",
3c09eebd
AV
1024 "-f",
1025 "-c", "1",
1026 "-e", "power:power_start",
1027 "-e", "power:power_end",
1028 "-e", "power:power_frequency",
1029 "-e", "sched:sched_wakeup",
1030 "-e", "sched:sched_switch",
1031};
20c457b8
TR
1032#endif
1033
1034static const char * const record_new_args[] = {
1035 "record",
1036 "-a",
1037 "-R",
1038 "-f",
1039 "-c", "1",
1040 "-e", "power:cpu_frequency",
1041 "-e", "power:cpu_idle",
1042 "-e", "sched:sched_wakeup",
1043 "-e", "sched:sched_switch",
1044};
3c09eebd
AV
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048 unsigned int rec_argc, i, j;
1049 const char **rec_argv;
20c457b8
TR
1050 const char * const *record_args = record_new_args;
1051 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054 if (!is_valid_tracepoint("power:cpu_idle") &&
1055 is_valid_tracepoint("power:power_start")) {
1056 use_old_power_events = 1;
1057 record_args = record_old_args;
1058 record_elems = ARRAY_SIZE(record_old_args);
1059 }
1060#endif
3c09eebd 1061
20c457b8 1062 rec_argc = record_elems + argc - 1;
3c09eebd
AV
1063 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
ce47dc56
CS
1065 if (rec_argv == NULL)
1066 return -ENOMEM;
1067
20c457b8 1068 for (i = 0; i < record_elems; i++)
3c09eebd
AV
1069 rec_argv[i] = strdup(record_args[i]);
1070
1071 for (j = 1; j < (unsigned int)argc; j++, i++)
1072 rec_argv[i] = argv[j];
1073
1074 return cmd_record(i, rec_argv, NULL);
1075}
1076
bbe2987b
AV
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079{
1080 if (arg)
1081 add_process_filter(arg);
1082 return 0;
1083}
1084
10274989
AV
1085static const struct option options[] = {
1086 OPT_STRING('i', "input", &input_name, "file",
1087 "input file name"),
1088 OPT_STRING('o', "output", &output_name, "file",
1089 "output file name"),
5094b655
AV
1090 OPT_INTEGER('w', "width", &svg_page_width,
1091 "page width"),
bbe2987b 1092 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1093 "output power data only"),
bbe2987b
AV
1094 OPT_CALLBACK('p', "process", NULL, "process",
1095 "process selector. Pass a pid or process name.",
1096 parse_process),
ec5761ea
DA
1097 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098 "Look for files with symbols relative to this directory"),
10274989
AV
1099 OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
3c09eebd
AV
1105 argc = parse_options(argc, argv, options, timechart_usage,
1106 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1107
655000e7
ACM
1108 symbol__init();
1109
3c09eebd
AV
1110 if (argc && !strncmp(argv[0], "rec", 3))
1111 return __cmd_record(argc, argv);
1112 else if (argc)
1113 usage_with_options(timechart_usage, options);
10274989
AV
1114
1115 setup_pager();
1116
1117 return __cmd_timechart();
1118}
This page took 0.165314 seconds and 5 git commands to generate.