perf timechart: Move wake_events list to 'struct timechart'
[deliverable/linux.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
c85cffa5
JO
15#include <traceevent/event-parse.h>
16
10274989
AV
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
5936678e 24#include "util/evlist.h"
e3f42609 25#include "util/evsel.h"
10274989
AV
26#include <linux/rbtree.h>
27#include "util/symbol.h"
10274989
AV
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
5cbd0805 35#include "util/event.h"
301a0b02 36#include "util/session.h"
10274989 37#include "util/svghelper.h"
45694aa7 38#include "util/tool.h"
f5fc1412 39#include "util/data.h"
10274989 40
20c457b8
TR
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
5e22f6d2 44struct per_pid;
66cc3ada 45struct power_event;
436b0da0 46struct wake_event;
5e22f6d2 47
985b12e6
ACM
48struct timechart {
49 struct perf_tool tool;
5e22f6d2 50 struct per_pid *all_data;
66cc3ada 51 struct power_event *power_events;
436b0da0 52 struct wake_event *wake_events;
985b12e6
ACM
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace;
62};
10274989 63
10274989 64struct per_pidcomm;
10274989 65struct cpu_sample;
10274989
AV
66
67/*
68 * Datastructure layout:
69 * We keep an list of "pid"s, matching the kernels notion of a task struct.
70 * Each "pid" entry, has a list of "comm"s.
71 * this is because we want to track different programs different, while
72 * exec will reuse the original pid (by design).
73 * Each comm has a list of samples that will be used to draw
74 * final graph.
75 */
76
77struct per_pid {
78 struct per_pid *next;
79
80 int pid;
81 int ppid;
82
83 u64 start_time;
84 u64 end_time;
85 u64 total_time;
86 int display;
87
88 struct per_pidcomm *all;
89 struct per_pidcomm *current;
10274989
AV
90};
91
92
93struct per_pidcomm {
94 struct per_pidcomm *next;
95
96 u64 start_time;
97 u64 end_time;
98 u64 total_time;
99
100 int Y;
101 int display;
102
103 long state;
104 u64 state_since;
105
106 char *comm;
107
108 struct cpu_sample *samples;
109};
110
111struct sample_wrapper {
112 struct sample_wrapper *next;
113
114 u64 timestamp;
115 unsigned char data[0];
116};
117
118#define TYPE_NONE 0
119#define TYPE_RUNNING 1
120#define TYPE_WAITING 2
121#define TYPE_BLOCKED 3
122
123struct cpu_sample {
124 struct cpu_sample *next;
125
126 u64 start_time;
127 u64 end_time;
128 int type;
129 int cpu;
6f8d67fa 130 const char *backtrace;
10274989
AV
131};
132
10274989
AV
133#define CSTATE 1
134#define PSTATE 2
135
136struct power_event {
137 struct power_event *next;
138 int type;
139 int state;
140 u64 start_time;
141 u64 end_time;
142 int cpu;
143};
144
145struct wake_event {
146 struct wake_event *next;
147 int waker;
148 int wakee;
149 u64 time;
6f8d67fa 150 const char *backtrace;
10274989
AV
151};
152
bbe2987b 153struct process_filter {
5cbd0805
LZ
154 char *name;
155 int pid;
156 struct process_filter *next;
bbe2987b
AV
157};
158
159static struct process_filter *process_filter;
160
161
5e22f6d2 162static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 163{
5e22f6d2 164 struct per_pid *cursor = tchart->all_data;
10274989
AV
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
e0dcd6fb 171 cursor = zalloc(sizeof(*cursor));
10274989 172 assert(cursor != NULL);
10274989 173 cursor->pid = pid;
5e22f6d2
ACM
174 cursor->next = tchart->all_data;
175 tchart->all_data = cursor;
10274989
AV
176 return cursor;
177}
178
5e22f6d2 179static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
180{
181 struct per_pid *p;
182 struct per_pidcomm *c;
5e22f6d2 183 p = find_create_pid(tchart, pid);
10274989
AV
184 c = p->all;
185 while (c) {
186 if (c->comm && strcmp(c->comm, comm) == 0) {
187 p->current = c;
188 return;
189 }
190 if (!c->comm) {
191 c->comm = strdup(comm);
192 p->current = c;
193 return;
194 }
195 c = c->next;
196 }
e0dcd6fb 197 c = zalloc(sizeof(*c));
10274989 198 assert(c != NULL);
10274989
AV
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
203}
204
5e22f6d2 205static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
206{
207 struct per_pid *p, *pp;
5e22f6d2
ACM
208 p = find_create_pid(tchart, pid);
209 pp = find_create_pid(tchart, ppid);
10274989
AV
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 212 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
213
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
218 }
219}
220
5e22f6d2 221static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
222{
223 struct per_pid *p;
5e22f6d2 224 p = find_create_pid(tchart, pid);
10274989
AV
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
228}
229
5e22f6d2
ACM
230static void pid_put_sample(struct timechart *tchart, int pid, int type,
231 unsigned int cpu, u64 start, u64 end,
232 const char *backtrace)
10274989
AV
233{
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 struct cpu_sample *sample;
237
5e22f6d2 238 p = find_create_pid(tchart, pid);
10274989
AV
239 c = p->current;
240 if (!c) {
e0dcd6fb 241 c = zalloc(sizeof(*c));
10274989 242 assert(c != NULL);
10274989
AV
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
e0dcd6fb 248 sample = zalloc(sizeof(*sample));
10274989 249 assert(sample != NULL);
10274989
AV
250 sample->start_time = start;
251 sample->end_time = end;
252 sample->type = type;
253 sample->next = c->samples;
254 sample->cpu = cpu;
6f8d67fa 255 sample->backtrace = backtrace;
10274989
AV
256 c->samples = sample;
257
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
261 }
262
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
10274989
AV
267}
268
269#define MAX_CPUS 4096
270
271static u64 cpus_cstate_start_times[MAX_CPUS];
272static int cpus_cstate_state[MAX_CPUS];
273static u64 cpus_pstate_start_times[MAX_CPUS];
274static u64 cpus_pstate_state[MAX_CPUS];
275
5e22f6d2 276static int process_comm_event(struct perf_tool *tool,
d20deb64 277 union perf_event *event,
1d037ca1
IT
278 struct perf_sample *sample __maybe_unused,
279 struct machine *machine __maybe_unused)
10274989 280{
5e22f6d2
ACM
281 struct timechart *tchart = container_of(tool, struct timechart, tool);
282 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
283 return 0;
284}
d8f66248 285
5e22f6d2 286static int process_fork_event(struct perf_tool *tool,
d20deb64 287 union perf_event *event,
1d037ca1
IT
288 struct perf_sample *sample __maybe_unused,
289 struct machine *machine __maybe_unused)
10274989 290{
5e22f6d2
ACM
291 struct timechart *tchart = container_of(tool, struct timechart, tool);
292 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
293 return 0;
294}
295
5e22f6d2 296static int process_exit_event(struct perf_tool *tool,
d20deb64 297 union perf_event *event,
1d037ca1
IT
298 struct perf_sample *sample __maybe_unused,
299 struct machine *machine __maybe_unused)
10274989 300{
5e22f6d2
ACM
301 struct timechart *tchart = container_of(tool, struct timechart, tool);
302 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
303 return 0;
304}
305
20c457b8
TR
306#ifdef SUPPORT_OLD_POWER_EVENTS
307static int use_old_power_events;
20c457b8
TR
308#endif
309
10274989
AV
310static void c_state_start(int cpu, u64 timestamp, int state)
311{
312 cpus_cstate_start_times[cpu] = timestamp;
313 cpus_cstate_state[cpu] = state;
314}
315
66cc3ada 316static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 317{
e0dcd6fb
ACM
318 struct power_event *pwr = zalloc(sizeof(*pwr));
319
10274989
AV
320 if (!pwr)
321 return;
10274989
AV
322
323 pwr->state = cpus_cstate_state[cpu];
324 pwr->start_time = cpus_cstate_start_times[cpu];
325 pwr->end_time = timestamp;
326 pwr->cpu = cpu;
327 pwr->type = CSTATE;
66cc3ada 328 pwr->next = tchart->power_events;
10274989 329
66cc3ada 330 tchart->power_events = pwr;
10274989
AV
331}
332
985b12e6 333static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
334{
335 struct power_event *pwr;
10274989
AV
336
337 if (new_freq > 8000000) /* detect invalid data */
338 return;
339
e0dcd6fb 340 pwr = zalloc(sizeof(*pwr));
10274989
AV
341 if (!pwr)
342 return;
10274989
AV
343
344 pwr->state = cpus_pstate_state[cpu];
345 pwr->start_time = cpus_pstate_start_times[cpu];
346 pwr->end_time = timestamp;
347 pwr->cpu = cpu;
348 pwr->type = PSTATE;
66cc3ada 349 pwr->next = tchart->power_events;
10274989
AV
350
351 if (!pwr->start_time)
985b12e6 352 pwr->start_time = tchart->first_time;
10274989 353
66cc3ada 354 tchart->power_events = pwr;
10274989
AV
355
356 cpus_pstate_state[cpu] = new_freq;
357 cpus_pstate_start_times[cpu] = timestamp;
358
985b12e6
ACM
359 if ((u64)new_freq > tchart->max_freq)
360 tchart->max_freq = new_freq;
10274989 361
985b12e6
ACM
362 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
363 tchart->min_freq = new_freq;
10274989 364
985b12e6
ACM
365 if (new_freq == tchart->max_freq - 1000)
366 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
367}
368
5e22f6d2
ACM
369static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
370 int waker, int wakee, u8 flags, const char *backtrace)
10274989 371{
10274989 372 struct per_pid *p;
e0dcd6fb 373 struct wake_event *we = zalloc(sizeof(*we));
10274989 374
10274989
AV
375 if (!we)
376 return;
377
10274989 378 we->time = timestamp;
3ed0d21e 379 we->waker = waker;
6f8d67fa 380 we->backtrace = backtrace;
10274989 381
3ed0d21e 382 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
383 we->waker = -1;
384
3ed0d21e 385 we->wakee = wakee;
436b0da0
ACM
386 we->next = tchart->wake_events;
387 tchart->wake_events = we;
5e22f6d2 388 p = find_create_pid(tchart, we->wakee);
10274989
AV
389
390 if (p && p->current && p->current->state == TYPE_NONE) {
391 p->current->state_since = timestamp;
392 p->current->state = TYPE_WAITING;
393 }
394 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 395 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 396 p->current->state_since, timestamp, NULL);
10274989
AV
397 p->current->state_since = timestamp;
398 p->current->state = TYPE_WAITING;
399 }
400}
401
5e22f6d2
ACM
402static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
403 int prev_pid, int next_pid, u64 prev_state,
404 const char *backtrace)
10274989
AV
405{
406 struct per_pid *p = NULL, *prev_p;
10274989 407
5e22f6d2 408 prev_p = find_create_pid(tchart, prev_pid);
10274989 409
5e22f6d2 410 p = find_create_pid(tchart, next_pid);
10274989
AV
411
412 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 413 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
414 prev_p->current->state_since, timestamp,
415 backtrace);
10274989
AV
416 if (p && p->current) {
417 if (p->current->state != TYPE_NONE)
5e22f6d2 418 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
419 p->current->state_since, timestamp,
420 backtrace);
10274989 421
33e26a1b
JL
422 p->current->state_since = timestamp;
423 p->current->state = TYPE_RUNNING;
10274989
AV
424 }
425
426 if (prev_p->current) {
427 prev_p->current->state = TYPE_NONE;
428 prev_p->current->state_since = timestamp;
3ed0d21e 429 if (prev_state & 2)
10274989 430 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 431 if (prev_state == 0)
10274989
AV
432 prev_p->current->state = TYPE_WAITING;
433 }
434}
435
6f8d67fa
SF
436static const char *cat_backtrace(union perf_event *event,
437 struct perf_sample *sample,
438 struct machine *machine)
439{
440 struct addr_location al;
441 unsigned int i;
442 char *p = NULL;
443 size_t p_len;
444 u8 cpumode = PERF_RECORD_MISC_USER;
445 struct addr_location tal;
446 struct ip_callchain *chain = sample->callchain;
447 FILE *f = open_memstream(&p, &p_len);
448
449 if (!f) {
450 perror("open_memstream error");
451 return NULL;
452 }
453
454 if (!chain)
455 goto exit;
456
457 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
458 fprintf(stderr, "problem processing %d event, skipping it.\n",
459 event->header.type);
460 goto exit;
461 }
462
463 for (i = 0; i < chain->nr; i++) {
464 u64 ip;
465
466 if (callchain_param.order == ORDER_CALLEE)
467 ip = chain->ips[i];
468 else
469 ip = chain->ips[chain->nr - i - 1];
470
471 if (ip >= PERF_CONTEXT_MAX) {
472 switch (ip) {
473 case PERF_CONTEXT_HV:
474 cpumode = PERF_RECORD_MISC_HYPERVISOR;
475 break;
476 case PERF_CONTEXT_KERNEL:
477 cpumode = PERF_RECORD_MISC_KERNEL;
478 break;
479 case PERF_CONTEXT_USER:
480 cpumode = PERF_RECORD_MISC_USER;
481 break;
482 default:
483 pr_debug("invalid callchain context: "
484 "%"PRId64"\n", (s64) ip);
485
486 /*
487 * It seems the callchain is corrupted.
488 * Discard all.
489 */
490 free(p);
491 p = NULL;
492 goto exit;
493 }
494 continue;
495 }
496
497 tal.filtered = false;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
500
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
506 }
507
508exit:
509 fclose(f);
510
511 return p;
512}
513
985b12e6
ACM
514typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
6f8d67fa
SF
516 struct perf_sample *sample,
517 const char *backtrace);
10274989 518
985b12e6 519static int process_sample_event(struct perf_tool *tool,
972ec653 520 union perf_event *event,
8d50e5b4 521 struct perf_sample *sample,
e3f42609 522 struct perf_evsel *evsel,
985b12e6 523 struct machine *machine)
10274989 524{
985b12e6
ACM
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
526
e3f42609 527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
10274989 532 }
180f95e2 533
985b12e6
ACM
534 if (sample->cpu > tchart->numcpus)
535 tchart->numcpus = sample->cpu;
5936678e 536
744a9719
ACM
537 if (evsel->handler != NULL) {
538 tracepoint_handler f = evsel->handler;
985b12e6 539 return f(tchart, evsel, sample, cat_backtrace(event, sample, machine));
5936678e
JO
540 }
541
542 return 0;
543}
544
545static int
985b12e6
ACM
546process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
547 struct perf_evsel *evsel,
6f8d67fa
SF
548 struct perf_sample *sample,
549 const char *backtrace __maybe_unused)
5936678e 550{
3ed0d21e
SF
551 u32 state = perf_evsel__intval(evsel, sample, "state");
552 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 553
3ed0d21e 554 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 555 c_state_end(tchart, cpu_id, sample->time);
5936678e 556 else
3ed0d21e 557 c_state_start(cpu_id, sample->time, state);
5936678e
JO
558 return 0;
559}
560
561static int
985b12e6
ACM
562process_sample_cpu_frequency(struct timechart *tchart,
563 struct perf_evsel *evsel,
6f8d67fa
SF
564 struct perf_sample *sample,
565 const char *backtrace __maybe_unused)
5936678e 566{
3ed0d21e
SF
567 u32 state = perf_evsel__intval(evsel, sample, "state");
568 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 569
985b12e6 570 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
571 return 0;
572}
573
574static int
5e22f6d2 575process_sample_sched_wakeup(struct timechart *tchart,
985b12e6 576 struct perf_evsel *evsel,
6f8d67fa
SF
577 struct perf_sample *sample,
578 const char *backtrace)
5936678e 579{
3ed0d21e
SF
580 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
581 int waker = perf_evsel__intval(evsel, sample, "common_pid");
582 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 583
5e22f6d2 584 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
585 return 0;
586}
10274989 587
5936678e 588static int
5e22f6d2 589process_sample_sched_switch(struct timechart *tchart,
985b12e6 590 struct perf_evsel *evsel,
6f8d67fa
SF
591 struct perf_sample *sample,
592 const char *backtrace)
5936678e 593{
3ed0d21e
SF
594 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
595 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
596 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 597
5e22f6d2
ACM
598 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
599 prev_state, backtrace);
5936678e
JO
600 return 0;
601}
20c457b8
TR
602
603#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 604static int
985b12e6
ACM
605process_sample_power_start(struct timechart *tchart __maybe_unused,
606 struct perf_evsel *evsel,
6f8d67fa
SF
607 struct perf_sample *sample,
608 const char *backtrace __maybe_unused)
5936678e 609{
3ed0d21e
SF
610 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
611 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 612
3ed0d21e 613 c_state_start(cpu_id, sample->time, value);
5936678e
JO
614 return 0;
615}
616
617static int
66cc3ada 618process_sample_power_end(struct timechart *tchart,
985b12e6 619 struct perf_evsel *evsel __maybe_unused,
6f8d67fa
SF
620 struct perf_sample *sample,
621 const char *backtrace __maybe_unused)
5936678e 622{
66cc3ada 623 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
624 return 0;
625}
626
627static int
985b12e6
ACM
628process_sample_power_frequency(struct timechart *tchart,
629 struct perf_evsel *evsel,
6f8d67fa
SF
630 struct perf_sample *sample,
631 const char *backtrace __maybe_unused)
5936678e 632{
3ed0d21e
SF
633 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
634 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 635
985b12e6 636 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
637 return 0;
638}
5936678e 639#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
640
641/*
642 * After the last sample we need to wrap up the current C/P state
643 * and close out each CPU for these.
644 */
985b12e6 645static void end_sample_processing(struct timechart *tchart)
10274989
AV
646{
647 u64 cpu;
648 struct power_event *pwr;
649
985b12e6 650 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
651 /* C state */
652#if 0
653 pwr = zalloc(sizeof(*pwr));
10274989
AV
654 if (!pwr)
655 return;
10274989 656
10274989
AV
657 pwr->state = cpus_cstate_state[cpu];
658 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 659 pwr->end_time = tchart->last_time;
10274989
AV
660 pwr->cpu = cpu;
661 pwr->type = CSTATE;
66cc3ada 662 pwr->next = tchart->power_events;
10274989 663
66cc3ada 664 tchart->power_events = pwr;
10274989
AV
665#endif
666 /* P state */
667
e0dcd6fb 668 pwr = zalloc(sizeof(*pwr));
10274989
AV
669 if (!pwr)
670 return;
10274989
AV
671
672 pwr->state = cpus_pstate_state[cpu];
673 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 674 pwr->end_time = tchart->last_time;
10274989
AV
675 pwr->cpu = cpu;
676 pwr->type = PSTATE;
66cc3ada 677 pwr->next = tchart->power_events;
10274989
AV
678
679 if (!pwr->start_time)
985b12e6 680 pwr->start_time = tchart->first_time;
10274989 681 if (!pwr->state)
985b12e6 682 pwr->state = tchart->min_freq;
66cc3ada 683 tchart->power_events = pwr;
10274989
AV
684 }
685}
686
10274989
AV
687/*
688 * Sort the pid datastructure
689 */
5e22f6d2 690static void sort_pids(struct timechart *tchart)
10274989
AV
691{
692 struct per_pid *new_list, *p, *cursor, *prev;
693 /* sort by ppid first, then by pid, lowest to highest */
694
695 new_list = NULL;
696
5e22f6d2
ACM
697 while (tchart->all_data) {
698 p = tchart->all_data;
699 tchart->all_data = p->next;
10274989
AV
700 p->next = NULL;
701
702 if (new_list == NULL) {
703 new_list = p;
704 p->next = NULL;
705 continue;
706 }
707 prev = NULL;
708 cursor = new_list;
709 while (cursor) {
710 if (cursor->ppid > p->ppid ||
711 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
712 /* must insert before */
713 if (prev) {
714 p->next = prev->next;
715 prev->next = p;
716 cursor = NULL;
717 continue;
718 } else {
719 p->next = new_list;
720 new_list = p;
721 cursor = NULL;
722 continue;
723 }
724 }
725
726 prev = cursor;
727 cursor = cursor->next;
728 if (!cursor)
729 prev->next = p;
730 }
731 }
5e22f6d2 732 tchart->all_data = new_list;
10274989
AV
733}
734
735
985b12e6 736static void draw_c_p_states(struct timechart *tchart)
10274989
AV
737{
738 struct power_event *pwr;
66cc3ada 739 pwr = tchart->power_events;
10274989
AV
740
741 /*
742 * two pass drawing so that the P state bars are on top of the C state blocks
743 */
744 while (pwr) {
745 if (pwr->type == CSTATE)
746 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
747 pwr = pwr->next;
748 }
749
66cc3ada 750 pwr = tchart->power_events;
10274989
AV
751 while (pwr) {
752 if (pwr->type == PSTATE) {
753 if (!pwr->state)
985b12e6 754 pwr->state = tchart->min_freq;
10274989
AV
755 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
756 }
757 pwr = pwr->next;
758 }
759}
760
5e22f6d2 761static void draw_wakeups(struct timechart *tchart)
10274989
AV
762{
763 struct wake_event *we;
764 struct per_pid *p;
765 struct per_pidcomm *c;
766
436b0da0 767 we = tchart->wake_events;
10274989
AV
768 while (we) {
769 int from = 0, to = 0;
4f1202c8 770 char *task_from = NULL, *task_to = NULL;
10274989
AV
771
772 /* locate the column of the waker and wakee */
5e22f6d2 773 p = tchart->all_data;
10274989
AV
774 while (p) {
775 if (p->pid == we->waker || p->pid == we->wakee) {
776 c = p->all;
777 while (c) {
778 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 779 if (p->pid == we->waker && !from) {
10274989 780 from = c->Y;
3bc2a39c 781 task_from = strdup(c->comm);
4f1202c8 782 }
bbe2987b 783 if (p->pid == we->wakee && !to) {
10274989 784 to = c->Y;
3bc2a39c 785 task_to = strdup(c->comm);
4f1202c8 786 }
10274989
AV
787 }
788 c = c->next;
789 }
3bc2a39c
AV
790 c = p->all;
791 while (c) {
792 if (p->pid == we->waker && !from) {
793 from = c->Y;
794 task_from = strdup(c->comm);
795 }
796 if (p->pid == we->wakee && !to) {
797 to = c->Y;
798 task_to = strdup(c->comm);
799 }
800 c = c->next;
801 }
10274989
AV
802 }
803 p = p->next;
804 }
805
3bc2a39c
AV
806 if (!task_from) {
807 task_from = malloc(40);
808 sprintf(task_from, "[%i]", we->waker);
809 }
810 if (!task_to) {
811 task_to = malloc(40);
812 sprintf(task_to, "[%i]", we->wakee);
813 }
814
10274989 815 if (we->waker == -1)
6f8d67fa 816 svg_interrupt(we->time, to, we->backtrace);
10274989 817 else if (from && to && abs(from - to) == 1)
6f8d67fa 818 svg_wakeline(we->time, from, to, we->backtrace);
10274989 819 else
6f8d67fa
SF
820 svg_partial_wakeline(we->time, from, task_from, to,
821 task_to, we->backtrace);
10274989 822 we = we->next;
3bc2a39c
AV
823
824 free(task_from);
825 free(task_to);
10274989
AV
826 }
827}
828
5e22f6d2 829static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
830{
831 struct per_pid *p;
832 struct per_pidcomm *c;
833 struct cpu_sample *sample;
5e22f6d2 834 p = tchart->all_data;
10274989
AV
835 while (p) {
836 c = p->all;
837 while (c) {
838 sample = c->samples;
839 while (sample) {
840 if (sample->type == TYPE_RUNNING)
841 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
842
843 sample = sample->next;
844 }
845 c = c->next;
846 }
847 p = p->next;
848 }
849}
850
985b12e6 851static void draw_process_bars(struct timechart *tchart)
10274989
AV
852{
853 struct per_pid *p;
854 struct per_pidcomm *c;
855 struct cpu_sample *sample;
856 int Y = 0;
857
985b12e6 858 Y = 2 * tchart->numcpus + 2;
10274989 859
5e22f6d2 860 p = tchart->all_data;
10274989
AV
861 while (p) {
862 c = p->all;
863 while (c) {
864 if (!c->display) {
865 c->Y = 0;
866 c = c->next;
867 continue;
868 }
869
a92fe7b3 870 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
871 sample = c->samples;
872 while (sample) {
873 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
874 svg_running(Y, sample->cpu,
875 sample->start_time,
876 sample->end_time,
877 sample->backtrace);
10274989 878 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
879 svg_blocked(Y, sample->cpu,
880 sample->start_time,
881 sample->end_time,
882 sample->backtrace);
10274989 883 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
884 svg_waiting(Y, sample->cpu,
885 sample->start_time,
886 sample->end_time,
887 sample->backtrace);
10274989
AV
888 sample = sample->next;
889 }
890
891 if (c->comm) {
892 char comm[256];
893 if (c->total_time > 5000000000) /* 5 seconds */
894 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
895 else
896 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
897
898 svg_text(Y, c->start_time, comm);
899 }
900 c->Y = Y;
901 Y++;
902 c = c->next;
903 }
904 p = p->next;
905 }
906}
907
bbe2987b
AV
908static void add_process_filter(const char *string)
909{
e0dcd6fb
ACM
910 int pid = strtoull(string, NULL, 10);
911 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 912
bbe2987b
AV
913 if (!filt)
914 return;
915
916 filt->name = strdup(string);
917 filt->pid = pid;
918 filt->next = process_filter;
919
920 process_filter = filt;
921}
922
923static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
924{
925 struct process_filter *filt;
926 if (!process_filter)
927 return 1;
928
929 filt = process_filter;
930 while (filt) {
931 if (filt->pid && p->pid == filt->pid)
932 return 1;
933 if (strcmp(filt->name, c->comm) == 0)
934 return 1;
935 filt = filt->next;
936 }
937 return 0;
938}
939
985b12e6 940static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
941{
942 struct per_pid *p;
943 struct per_pidcomm *c;
944 int count = 0;
945
5e22f6d2 946 p = tchart->all_data;
bbe2987b
AV
947 while (p) {
948 p->display = 0;
949 if (p->start_time == 1)
985b12e6 950 p->start_time = tchart->first_time;
bbe2987b
AV
951
952 /* no exit marker, task kept running to the end */
953 if (p->end_time == 0)
985b12e6 954 p->end_time = tchart->last_time;
bbe2987b
AV
955
956 c = p->all;
957
958 while (c) {
959 c->display = 0;
960
961 if (c->start_time == 1)
985b12e6 962 c->start_time = tchart->first_time;
bbe2987b
AV
963
964 if (passes_filter(p, c)) {
965 c->display = 1;
966 p->display = 1;
967 count++;
968 }
969
970 if (c->end_time == 0)
985b12e6 971 c->end_time = tchart->last_time;
bbe2987b
AV
972
973 c = c->next;
974 }
975 p = p->next;
976 }
977 return count;
978}
979
985b12e6 980static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
981{
982 struct per_pid *p;
983 struct per_pidcomm *c;
984 int count = 0;
985
bbe2987b 986 if (process_filter)
985b12e6 987 return determine_display_tasks_filtered(tchart);
bbe2987b 988
5e22f6d2 989 p = tchart->all_data;
10274989
AV
990 while (p) {
991 p->display = 0;
992 if (p->start_time == 1)
985b12e6 993 p->start_time = tchart->first_time;
10274989
AV
994
995 /* no exit marker, task kept running to the end */
996 if (p->end_time == 0)
985b12e6 997 p->end_time = tchart->last_time;
753c505d 998 if (p->total_time >= threshold)
10274989
AV
999 p->display = 1;
1000
1001 c = p->all;
1002
1003 while (c) {
1004 c->display = 0;
1005
1006 if (c->start_time == 1)
985b12e6 1007 c->start_time = tchart->first_time;
10274989 1008
753c505d 1009 if (c->total_time >= threshold) {
10274989
AV
1010 c->display = 1;
1011 count++;
1012 }
1013
1014 if (c->end_time == 0)
985b12e6 1015 c->end_time = tchart->last_time;
10274989
AV
1016
1017 c = c->next;
1018 }
1019 p = p->next;
1020 }
1021 return count;
1022}
1023
1024
1025
1026#define TIME_THRESH 10000000
1027
985b12e6 1028static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1029{
1030 u64 i;
1031 int count;
0a8eb275 1032 int thresh = TIME_THRESH;
10274989 1033
985b12e6 1034 tchart->numcpus++;
10274989 1035
985b12e6
ACM
1036 if (tchart->power_only)
1037 tchart->proc_num = 0;
10274989 1038
0a8eb275
SF
1039 /* We'd like to show at least proc_num tasks;
1040 * be less picky if we have fewer */
1041 do {
985b12e6 1042 count = determine_display_tasks(tchart, thresh);
0a8eb275 1043 thresh /= 10;
985b12e6 1044 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1045
985b12e6 1046 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1047
5094b655 1048 svg_time_grid();
10274989
AV
1049 svg_legenda();
1050
985b12e6
ACM
1051 for (i = 0; i < tchart->numcpus; i++)
1052 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
10274989 1053
5e22f6d2 1054 draw_cpu_usage(tchart);
985b12e6
ACM
1055 if (tchart->proc_num)
1056 draw_process_bars(tchart);
1057 if (!tchart->tasks_only)
1058 draw_c_p_states(tchart);
1059 if (tchart->proc_num)
5e22f6d2 1060 draw_wakeups(tchart);
10274989
AV
1061
1062 svg_close();
1063}
1064
985b12e6 1065static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1066{
5936678e
JO
1067 const struct perf_evsel_str_handler power_tracepoints[] = {
1068 { "power:cpu_idle", process_sample_cpu_idle },
1069 { "power:cpu_frequency", process_sample_cpu_frequency },
1070 { "sched:sched_wakeup", process_sample_sched_wakeup },
1071 { "sched:sched_switch", process_sample_sched_switch },
1072#ifdef SUPPORT_OLD_POWER_EVENTS
1073 { "power:power_start", process_sample_power_start },
1074 { "power:power_end", process_sample_power_end },
1075 { "power:power_frequency", process_sample_power_frequency },
1076#endif
1077 };
f5fc1412
JO
1078 struct perf_data_file file = {
1079 .path = input_name,
1080 .mode = PERF_DATA_MODE_READ,
1081 };
1082
1083 struct perf_session *session = perf_session__new(&file, false,
985b12e6 1084 &tchart->tool);
d549c769 1085 int ret = -EINVAL;
10274989 1086
94c744b6
ACM
1087 if (session == NULL)
1088 return -ENOMEM;
1089
d549c769
ACM
1090 if (!perf_session__has_traces(session, "timechart record"))
1091 goto out_delete;
1092
5936678e
JO
1093 if (perf_session__set_tracepoints_handlers(session,
1094 power_tracepoints)) {
1095 pr_err("Initializing session tracepoint handlers failed\n");
1096 goto out_delete;
1097 }
1098
985b12e6 1099 ret = perf_session__process_events(session, &tchart->tool);
5cbd0805 1100 if (ret)
94c744b6 1101 goto out_delete;
10274989 1102
985b12e6 1103 end_sample_processing(tchart);
10274989 1104
5e22f6d2 1105 sort_pids(tchart);
10274989 1106
985b12e6 1107 write_svg_file(tchart, output_name);
10274989 1108
6beba7ad 1109 pr_info("Written %2.1f seconds of trace to %s.\n",
985b12e6 1110 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
94c744b6
ACM
1111out_delete:
1112 perf_session__delete(session);
1113 return ret;
10274989
AV
1114}
1115
985b12e6 1116static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1117{
367b3152
SF
1118 unsigned int rec_argc, i, j;
1119 const char **rec_argv;
1120 const char **p;
1121 unsigned int record_elems;
1122
1123 const char * const common_args[] = {
4a4d371a 1124 "record", "-a", "-R", "-c", "1",
367b3152
SF
1125 };
1126 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1127
6f8d67fa
SF
1128 const char * const backtrace_args[] = {
1129 "-g",
1130 };
1131 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1132
367b3152
SF
1133 const char * const power_args[] = {
1134 "-e", "power:cpu_frequency",
1135 "-e", "power:cpu_idle",
1136 };
1137 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1138
1139 const char * const old_power_args[] = {
1140#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1141 "-e", "power:power_start",
1142 "-e", "power:power_end",
1143 "-e", "power:power_frequency",
73bdc715 1144#endif
367b3152
SF
1145 };
1146 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1147
1148 const char * const tasks_args[] = {
73bdc715
ACM
1149 "-e", "sched:sched_wakeup",
1150 "-e", "sched:sched_switch",
1151 };
367b3152 1152 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1153
1154#ifdef SUPPORT_OLD_POWER_EVENTS
1155 if (!is_valid_tracepoint("power:cpu_idle") &&
1156 is_valid_tracepoint("power:power_start")) {
1157 use_old_power_events = 1;
367b3152
SF
1158 power_args_nr = 0;
1159 } else {
1160 old_power_args_nr = 0;
20c457b8
TR
1161 }
1162#endif
3c09eebd 1163
985b12e6 1164 if (tchart->power_only)
367b3152
SF
1165 tasks_args_nr = 0;
1166
985b12e6 1167 if (tchart->tasks_only) {
367b3152
SF
1168 power_args_nr = 0;
1169 old_power_args_nr = 0;
1170 }
1171
985b12e6 1172 if (!tchart->with_backtrace)
6f8d67fa
SF
1173 backtrace_args_no = 0;
1174
367b3152 1175 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1176 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1177
1178 rec_argc = record_elems + argc;
3c09eebd
AV
1179 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1180
ce47dc56
CS
1181 if (rec_argv == NULL)
1182 return -ENOMEM;
1183
367b3152
SF
1184 p = rec_argv;
1185 for (i = 0; i < common_args_nr; i++)
1186 *p++ = strdup(common_args[i]);
1187
6f8d67fa
SF
1188 for (i = 0; i < backtrace_args_no; i++)
1189 *p++ = strdup(backtrace_args[i]);
1190
367b3152
SF
1191 for (i = 0; i < tasks_args_nr; i++)
1192 *p++ = strdup(tasks_args[i]);
1193
1194 for (i = 0; i < power_args_nr; i++)
1195 *p++ = strdup(power_args[i]);
3c09eebd 1196
367b3152
SF
1197 for (i = 0; i < old_power_args_nr; i++)
1198 *p++ = strdup(old_power_args[i]);
3c09eebd 1199
367b3152
SF
1200 for (j = 1; j < (unsigned int)argc; j++)
1201 *p++ = argv[j];
1202
1203 return cmd_record(rec_argc, rec_argv, NULL);
3c09eebd
AV
1204}
1205
bbe2987b 1206static int
1d037ca1
IT
1207parse_process(const struct option *opt __maybe_unused, const char *arg,
1208 int __maybe_unused unset)
bbe2987b
AV
1209{
1210 if (arg)
1211 add_process_filter(arg);
1212 return 0;
1213}
1214
73bdc715
ACM
1215int cmd_timechart(int argc, const char **argv,
1216 const char *prefix __maybe_unused)
1217{
985b12e6
ACM
1218 struct timechart tchart = {
1219 .tool = {
1220 .comm = process_comm_event,
1221 .fork = process_fork_event,
1222 .exit = process_exit_event,
1223 .sample = process_sample_event,
1224 .ordered_samples = true,
1225 },
1226 .proc_num = 15,
1227 };
73bdc715 1228 const char *output_name = "output.svg";
367b3152 1229 const struct option timechart_options[] = {
73bdc715
ACM
1230 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1231 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1232 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
985b12e6
ACM
1233 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1234 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
c87097d3 1235 "output processes data only"),
bbe2987b
AV
1236 OPT_CALLBACK('p', "process", NULL, "process",
1237 "process selector. Pass a pid or process name.",
1238 parse_process),
ec5761ea
DA
1239 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1240 "Look for files with symbols relative to this directory"),
985b12e6 1241 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1242 "min. number of tasks to print"),
10274989 1243 OPT_END()
73bdc715
ACM
1244 };
1245 const char * const timechart_usage[] = {
1246 "perf timechart [<options>] {record}",
1247 NULL
1248 };
10274989 1249
367b3152 1250 const struct option record_options[] = {
985b12e6
ACM
1251 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1252 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
367b3152 1253 "output processes data only"),
985b12e6 1254 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
367b3152
SF
1255 OPT_END()
1256 };
1257 const char * const record_usage[] = {
1258 "perf timechart record [<options>]",
1259 NULL
1260 };
1261 argc = parse_options(argc, argv, timechart_options, timechart_usage,
3c09eebd 1262 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1263
985b12e6 1264 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1265 pr_err("-P and -T options cannot be used at the same time.\n");
1266 return -1;
1267 }
1268
655000e7
ACM
1269 symbol__init();
1270
367b3152
SF
1271 if (argc && !strncmp(argv[0], "rec", 3)) {
1272 argc = parse_options(argc, argv, record_options, record_usage,
1273 PARSE_OPT_STOP_AT_NON_OPTION);
1274
985b12e6 1275 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1276 pr_err("-P and -T options cannot be used at the same time.\n");
1277 return -1;
1278 }
1279
985b12e6 1280 return timechart__record(&tchart, argc, argv);
367b3152
SF
1281 } else if (argc)
1282 usage_with_options(timechart_usage, timechart_options);
10274989
AV
1283
1284 setup_pager();
1285
985b12e6 1286 return __cmd_timechart(&tchart, output_name);
10274989 1287}
This page took 0.627376 seconds and 5 git commands to generate.