perf tools: Resolve machine earlier and pass it to perf_event_ops
[deliverable/linux.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
e3f42609 22#include "util/evsel.h"
10274989
AV
23#include <linux/rbtree.h>
24#include "util/symbol.h"
10274989
AV
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
5cbd0805 32#include "util/event.h"
301a0b02 33#include "util/session.h"
10274989
AV
34#include "util/svghelper.h"
35
20c457b8
TR
36#define SUPPORT_OLD_POWER_EVENTS 1
37#define PWR_EVENT_EXIT -1
38
39
10274989
AV
40static char const *input_name = "perf.data";
41static char const *output_name = "output.svg";
42
10274989
AV
43static unsigned int numcpus;
44static u64 min_freq; /* Lowest CPU frequency seen */
45static u64 max_freq; /* Highest CPU frequency seen */
46static u64 turbo_frequency;
47
48static u64 first_time, last_time;
49
c0555642 50static bool power_only;
39a90a8e 51
10274989 52
10274989
AV
53struct per_pid;
54struct per_pidcomm;
55
56struct cpu_sample;
57struct power_event;
58struct wake_event;
59
60struct sample_wrapper;
61
62/*
63 * Datastructure layout:
64 * We keep an list of "pid"s, matching the kernels notion of a task struct.
65 * Each "pid" entry, has a list of "comm"s.
66 * this is because we want to track different programs different, while
67 * exec will reuse the original pid (by design).
68 * Each comm has a list of samples that will be used to draw
69 * final graph.
70 */
71
72struct per_pid {
73 struct per_pid *next;
74
75 int pid;
76 int ppid;
77
78 u64 start_time;
79 u64 end_time;
80 u64 total_time;
81 int display;
82
83 struct per_pidcomm *all;
84 struct per_pidcomm *current;
10274989
AV
85};
86
87
88struct per_pidcomm {
89 struct per_pidcomm *next;
90
91 u64 start_time;
92 u64 end_time;
93 u64 total_time;
94
95 int Y;
96 int display;
97
98 long state;
99 u64 state_since;
100
101 char *comm;
102
103 struct cpu_sample *samples;
104};
105
106struct sample_wrapper {
107 struct sample_wrapper *next;
108
109 u64 timestamp;
110 unsigned char data[0];
111};
112
113#define TYPE_NONE 0
114#define TYPE_RUNNING 1
115#define TYPE_WAITING 2
116#define TYPE_BLOCKED 3
117
118struct cpu_sample {
119 struct cpu_sample *next;
120
121 u64 start_time;
122 u64 end_time;
123 int type;
124 int cpu;
125};
126
127static struct per_pid *all_data;
128
129#define CSTATE 1
130#define PSTATE 2
131
132struct power_event {
133 struct power_event *next;
134 int type;
135 int state;
136 u64 start_time;
137 u64 end_time;
138 int cpu;
139};
140
141struct wake_event {
142 struct wake_event *next;
143 int waker;
144 int wakee;
145 u64 time;
146};
147
148static struct power_event *power_events;
149static struct wake_event *wake_events;
150
bbe2987b
AV
151struct process_filter;
152struct process_filter {
5cbd0805
LZ
153 char *name;
154 int pid;
155 struct process_filter *next;
bbe2987b
AV
156};
157
158static struct process_filter *process_filter;
159
160
10274989
AV
161static struct per_pid *find_create_pid(int pid)
162{
163 struct per_pid *cursor = all_data;
164
165 while (cursor) {
166 if (cursor->pid == pid)
167 return cursor;
168 cursor = cursor->next;
169 }
170 cursor = malloc(sizeof(struct per_pid));
171 assert(cursor != NULL);
172 memset(cursor, 0, sizeof(struct per_pid));
173 cursor->pid = pid;
174 cursor->next = all_data;
175 all_data = cursor;
176 return cursor;
177}
178
179static void pid_set_comm(int pid, char *comm)
180{
181 struct per_pid *p;
182 struct per_pidcomm *c;
183 p = find_create_pid(pid);
184 c = p->all;
185 while (c) {
186 if (c->comm && strcmp(c->comm, comm) == 0) {
187 p->current = c;
188 return;
189 }
190 if (!c->comm) {
191 c->comm = strdup(comm);
192 p->current = c;
193 return;
194 }
195 c = c->next;
196 }
197 c = malloc(sizeof(struct per_pidcomm));
198 assert(c != NULL);
199 memset(c, 0, sizeof(struct per_pidcomm));
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
206static void pid_fork(int pid, int ppid, u64 timestamp)
207{
208 struct per_pid *p, *pp;
209 p = find_create_pid(pid);
210 pp = find_create_pid(ppid);
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
213 pid_set_comm(pid, pp->current->comm);
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
222static void pid_exit(int pid, u64 timestamp)
223{
224 struct per_pid *p;
225 p = find_create_pid(pid);
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
231static void
232pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
233{
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 struct cpu_sample *sample;
237
238 p = find_create_pid(pid);
239 c = p->current;
240 if (!c) {
241 c = malloc(sizeof(struct per_pidcomm));
242 assert(c != NULL);
243 memset(c, 0, sizeof(struct per_pidcomm));
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
249 sample = malloc(sizeof(struct cpu_sample));
250 assert(sample != NULL);
251 memset(sample, 0, sizeof(struct cpu_sample));
252 sample->start_time = start;
253 sample->end_time = end;
254 sample->type = type;
255 sample->next = c->samples;
256 sample->cpu = cpu;
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
10274989
AV
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
d20deb64
ACM
277static int process_comm_event(struct perf_event_ops *ops __used,
278 union perf_event *event,
8115d60c 279 struct perf_sample *sample __used,
743eb868 280 struct machine *machine __used)
10274989 281{
8f06d7e6 282 pid_set_comm(event->comm.tid, event->comm.comm);
10274989
AV
283 return 0;
284}
d8f66248 285
d20deb64
ACM
286static int process_fork_event(struct perf_event_ops *ops __used,
287 union perf_event *event,
8115d60c 288 struct perf_sample *sample __used,
743eb868 289 struct machine *machine __used)
10274989
AV
290{
291 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
292 return 0;
293}
294
d20deb64
ACM
295static int process_exit_event(struct perf_event_ops *ops __used,
296 union perf_event *event,
8115d60c 297 struct perf_sample *sample __used,
743eb868 298 struct machine *machine __used)
10274989
AV
299{
300 pid_exit(event->fork.pid, event->fork.time);
301 return 0;
302}
303
304struct trace_entry {
10274989
AV
305 unsigned short type;
306 unsigned char flags;
307 unsigned char preempt_count;
308 int pid;
028c5152 309 int lock_depth;
10274989
AV
310};
311
20c457b8
TR
312#ifdef SUPPORT_OLD_POWER_EVENTS
313static int use_old_power_events;
314struct power_entry_old {
10274989 315 struct trace_entry te;
4c21adf2
TR
316 u64 type;
317 u64 value;
318 u64 cpu_id;
10274989 319};
20c457b8
TR
320#endif
321
322struct power_processor_entry {
323 struct trace_entry te;
324 u32 state;
325 u32 cpu_id;
326};
10274989
AV
327
328#define TASK_COMM_LEN 16
329struct wakeup_entry {
330 struct trace_entry te;
331 char comm[TASK_COMM_LEN];
332 int pid;
333 int prio;
334 int success;
335};
336
337/*
338 * trace_flag_type is an enumeration that holds different
339 * states when a trace occurs. These are:
340 * IRQS_OFF - interrupts were disabled
341 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
342 * NEED_RESCED - reschedule is requested
343 * HARDIRQ - inside an interrupt handler
344 * SOFTIRQ - inside a softirq handler
345 */
346enum trace_flag_type {
347 TRACE_FLAG_IRQS_OFF = 0x01,
348 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
349 TRACE_FLAG_NEED_RESCHED = 0x04,
350 TRACE_FLAG_HARDIRQ = 0x08,
351 TRACE_FLAG_SOFTIRQ = 0x10,
352};
353
354
355
356struct sched_switch {
357 struct trace_entry te;
358 char prev_comm[TASK_COMM_LEN];
359 int prev_pid;
360 int prev_prio;
361 long prev_state; /* Arjan weeps. */
362 char next_comm[TASK_COMM_LEN];
363 int next_pid;
364 int next_prio;
365};
366
367static void c_state_start(int cpu, u64 timestamp, int state)
368{
369 cpus_cstate_start_times[cpu] = timestamp;
370 cpus_cstate_state[cpu] = state;
371}
372
373static void c_state_end(int cpu, u64 timestamp)
374{
375 struct power_event *pwr;
376 pwr = malloc(sizeof(struct power_event));
377 if (!pwr)
378 return;
379 memset(pwr, 0, sizeof(struct power_event));
380
381 pwr->state = cpus_cstate_state[cpu];
382 pwr->start_time = cpus_cstate_start_times[cpu];
383 pwr->end_time = timestamp;
384 pwr->cpu = cpu;
385 pwr->type = CSTATE;
386 pwr->next = power_events;
387
388 power_events = pwr;
389}
390
391static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
392{
393 struct power_event *pwr;
394 pwr = malloc(sizeof(struct power_event));
395
396 if (new_freq > 8000000) /* detect invalid data */
397 return;
398
399 if (!pwr)
400 return;
401 memset(pwr, 0, sizeof(struct power_event));
402
403 pwr->state = cpus_pstate_state[cpu];
404 pwr->start_time = cpus_pstate_start_times[cpu];
405 pwr->end_time = timestamp;
406 pwr->cpu = cpu;
407 pwr->type = PSTATE;
408 pwr->next = power_events;
409
410 if (!pwr->start_time)
411 pwr->start_time = first_time;
412
413 power_events = pwr;
414
415 cpus_pstate_state[cpu] = new_freq;
416 cpus_pstate_start_times[cpu] = timestamp;
417
418 if ((u64)new_freq > max_freq)
419 max_freq = new_freq;
420
421 if (new_freq < min_freq || min_freq == 0)
422 min_freq = new_freq;
423
424 if (new_freq == max_freq - 1000)
425 turbo_frequency = max_freq;
426}
427
428static void
429sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
430{
431 struct wake_event *we;
432 struct per_pid *p;
433 struct wakeup_entry *wake = (void *)te;
434
435 we = malloc(sizeof(struct wake_event));
436 if (!we)
437 return;
438
439 memset(we, 0, sizeof(struct wake_event));
440 we->time = timestamp;
441 we->waker = pid;
442
443 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
444 we->waker = -1;
445
446 we->wakee = wake->pid;
447 we->next = wake_events;
448 wake_events = we;
449 p = find_create_pid(we->wakee);
450
451 if (p && p->current && p->current->state == TYPE_NONE) {
452 p->current->state_since = timestamp;
453 p->current->state = TYPE_WAITING;
454 }
455 if (p && p->current && p->current->state == TYPE_BLOCKED) {
456 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
457 p->current->state_since = timestamp;
458 p->current->state = TYPE_WAITING;
459 }
460}
461
462static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
463{
464 struct per_pid *p = NULL, *prev_p;
465 struct sched_switch *sw = (void *)te;
466
467
468 prev_p = find_create_pid(sw->prev_pid);
469
470 p = find_create_pid(sw->next_pid);
471
472 if (prev_p->current && prev_p->current->state != TYPE_NONE)
473 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
474 if (p && p->current) {
475 if (p->current->state != TYPE_NONE)
476 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
477
33e26a1b
JL
478 p->current->state_since = timestamp;
479 p->current->state = TYPE_RUNNING;
10274989
AV
480 }
481
482 if (prev_p->current) {
483 prev_p->current->state = TYPE_NONE;
484 prev_p->current->state_since = timestamp;
485 if (sw->prev_state & 2)
486 prev_p->current->state = TYPE_BLOCKED;
487 if (sw->prev_state == 0)
488 prev_p->current->state = TYPE_WAITING;
489 }
490}
491
492
d20deb64
ACM
493static int process_sample_event(struct perf_event_ops *ops __used,
494 union perf_event *event __used,
8d50e5b4 495 struct perf_sample *sample,
e3f42609 496 struct perf_evsel *evsel,
743eb868 497 struct machine *machine __used)
10274989 498{
10274989
AV
499 struct trace_entry *te;
500
e3f42609 501 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
640c03ce
ACM
502 if (!first_time || first_time > sample->time)
503 first_time = sample->time;
504 if (last_time < sample->time)
505 last_time = sample->time;
10274989 506 }
180f95e2 507
640c03ce 508 te = (void *)sample->raw_data;
e3f42609 509 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
10274989 510 char *event_str;
20c457b8
TR
511#ifdef SUPPORT_OLD_POWER_EVENTS
512 struct power_entry_old *peo;
513 peo = (void *)te;
514#endif
9e69c210
ACM
515 /*
516 * FIXME: use evsel, its already mapped from id to perf_evsel,
517 * remove perf_header__find_event infrastructure bits.
518 * Mapping all these "power:cpu_idle" strings to the tracepoint
519 * ID and then just comparing against evsel->attr.config.
520 *
521 * e.g.:
522 *
523 * if (evsel->attr.config == power_cpu_idle_id)
524 */
10274989
AV
525 event_str = perf_header__find_event(te->type);
526
527 if (!event_str)
528 return 0;
529
54b08f5f
TR
530 if (sample->cpu > numcpus)
531 numcpus = sample->cpu;
532
20c457b8
TR
533 if (strcmp(event_str, "power:cpu_idle") == 0) {
534 struct power_processor_entry *ppe = (void *)te;
535 if (ppe->state == (u32)PWR_EVENT_EXIT)
536 c_state_end(ppe->cpu_id, sample->time);
537 else
538 c_state_start(ppe->cpu_id, sample->time,
539 ppe->state);
540 }
541 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
542 struct power_processor_entry *ppe = (void *)te;
543 p_state_change(ppe->cpu_id, sample->time, ppe->state);
544 }
10274989 545
20c457b8 546 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
640c03ce 547 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
10274989 548
20c457b8 549 else if (strcmp(event_str, "sched:sched_switch") == 0)
640c03ce 550 sched_switch(sample->cpu, sample->time, te);
20c457b8
TR
551
552#ifdef SUPPORT_OLD_POWER_EVENTS
553 if (use_old_power_events) {
554 if (strcmp(event_str, "power:power_start") == 0)
555 c_state_start(peo->cpu_id, sample->time,
556 peo->value);
557
558 else if (strcmp(event_str, "power:power_end") == 0)
559 c_state_end(sample->cpu, sample->time);
560
561 else if (strcmp(event_str,
562 "power:power_frequency") == 0)
563 p_state_change(peo->cpu_id, sample->time,
564 peo->value);
565 }
566#endif
10274989
AV
567 }
568 return 0;
569}
570
571/*
572 * After the last sample we need to wrap up the current C/P state
573 * and close out each CPU for these.
574 */
575static void end_sample_processing(void)
576{
577 u64 cpu;
578 struct power_event *pwr;
579
39a90a8e 580 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
581 pwr = malloc(sizeof(struct power_event));
582 if (!pwr)
583 return;
584 memset(pwr, 0, sizeof(struct power_event));
585
586 /* C state */
587#if 0
588 pwr->state = cpus_cstate_state[cpu];
589 pwr->start_time = cpus_cstate_start_times[cpu];
590 pwr->end_time = last_time;
591 pwr->cpu = cpu;
592 pwr->type = CSTATE;
593 pwr->next = power_events;
594
595 power_events = pwr;
596#endif
597 /* P state */
598
599 pwr = malloc(sizeof(struct power_event));
600 if (!pwr)
601 return;
602 memset(pwr, 0, sizeof(struct power_event));
603
604 pwr->state = cpus_pstate_state[cpu];
605 pwr->start_time = cpus_pstate_start_times[cpu];
606 pwr->end_time = last_time;
607 pwr->cpu = cpu;
608 pwr->type = PSTATE;
609 pwr->next = power_events;
610
611 if (!pwr->start_time)
612 pwr->start_time = first_time;
613 if (!pwr->state)
614 pwr->state = min_freq;
615 power_events = pwr;
616 }
617}
618
10274989
AV
619/*
620 * Sort the pid datastructure
621 */
622static void sort_pids(void)
623{
624 struct per_pid *new_list, *p, *cursor, *prev;
625 /* sort by ppid first, then by pid, lowest to highest */
626
627 new_list = NULL;
628
629 while (all_data) {
630 p = all_data;
631 all_data = p->next;
632 p->next = NULL;
633
634 if (new_list == NULL) {
635 new_list = p;
636 p->next = NULL;
637 continue;
638 }
639 prev = NULL;
640 cursor = new_list;
641 while (cursor) {
642 if (cursor->ppid > p->ppid ||
643 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
644 /* must insert before */
645 if (prev) {
646 p->next = prev->next;
647 prev->next = p;
648 cursor = NULL;
649 continue;
650 } else {
651 p->next = new_list;
652 new_list = p;
653 cursor = NULL;
654 continue;
655 }
656 }
657
658 prev = cursor;
659 cursor = cursor->next;
660 if (!cursor)
661 prev->next = p;
662 }
663 }
664 all_data = new_list;
665}
666
667
668static void draw_c_p_states(void)
669{
670 struct power_event *pwr;
671 pwr = power_events;
672
673 /*
674 * two pass drawing so that the P state bars are on top of the C state blocks
675 */
676 while (pwr) {
677 if (pwr->type == CSTATE)
678 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
679 pwr = pwr->next;
680 }
681
682 pwr = power_events;
683 while (pwr) {
684 if (pwr->type == PSTATE) {
685 if (!pwr->state)
686 pwr->state = min_freq;
687 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
688 }
689 pwr = pwr->next;
690 }
691}
692
693static void draw_wakeups(void)
694{
695 struct wake_event *we;
696 struct per_pid *p;
697 struct per_pidcomm *c;
698
699 we = wake_events;
700 while (we) {
701 int from = 0, to = 0;
4f1202c8 702 char *task_from = NULL, *task_to = NULL;
10274989
AV
703
704 /* locate the column of the waker and wakee */
705 p = all_data;
706 while (p) {
707 if (p->pid == we->waker || p->pid == we->wakee) {
708 c = p->all;
709 while (c) {
710 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 711 if (p->pid == we->waker && !from) {
10274989 712 from = c->Y;
3bc2a39c 713 task_from = strdup(c->comm);
4f1202c8 714 }
bbe2987b 715 if (p->pid == we->wakee && !to) {
10274989 716 to = c->Y;
3bc2a39c 717 task_to = strdup(c->comm);
4f1202c8 718 }
10274989
AV
719 }
720 c = c->next;
721 }
3bc2a39c
AV
722 c = p->all;
723 while (c) {
724 if (p->pid == we->waker && !from) {
725 from = c->Y;
726 task_from = strdup(c->comm);
727 }
728 if (p->pid == we->wakee && !to) {
729 to = c->Y;
730 task_to = strdup(c->comm);
731 }
732 c = c->next;
733 }
10274989
AV
734 }
735 p = p->next;
736 }
737
3bc2a39c
AV
738 if (!task_from) {
739 task_from = malloc(40);
740 sprintf(task_from, "[%i]", we->waker);
741 }
742 if (!task_to) {
743 task_to = malloc(40);
744 sprintf(task_to, "[%i]", we->wakee);
745 }
746
10274989
AV
747 if (we->waker == -1)
748 svg_interrupt(we->time, to);
749 else if (from && to && abs(from - to) == 1)
750 svg_wakeline(we->time, from, to);
751 else
4f1202c8 752 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 753 we = we->next;
3bc2a39c
AV
754
755 free(task_from);
756 free(task_to);
10274989
AV
757 }
758}
759
760static void draw_cpu_usage(void)
761{
762 struct per_pid *p;
763 struct per_pidcomm *c;
764 struct cpu_sample *sample;
765 p = all_data;
766 while (p) {
767 c = p->all;
768 while (c) {
769 sample = c->samples;
770 while (sample) {
771 if (sample->type == TYPE_RUNNING)
772 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
773
774 sample = sample->next;
775 }
776 c = c->next;
777 }
778 p = p->next;
779 }
780}
781
782static void draw_process_bars(void)
783{
784 struct per_pid *p;
785 struct per_pidcomm *c;
786 struct cpu_sample *sample;
787 int Y = 0;
788
789 Y = 2 * numcpus + 2;
790
791 p = all_data;
792 while (p) {
793 c = p->all;
794 while (c) {
795 if (!c->display) {
796 c->Y = 0;
797 c = c->next;
798 continue;
799 }
800
a92fe7b3 801 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
802 sample = c->samples;
803 while (sample) {
804 if (sample->type == TYPE_RUNNING)
a92fe7b3 805 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
806 if (sample->type == TYPE_BLOCKED)
807 svg_box(Y, sample->start_time, sample->end_time, "blocked");
808 if (sample->type == TYPE_WAITING)
a92fe7b3 809 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
810 sample = sample->next;
811 }
812
813 if (c->comm) {
814 char comm[256];
815 if (c->total_time > 5000000000) /* 5 seconds */
816 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
817 else
818 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
819
820 svg_text(Y, c->start_time, comm);
821 }
822 c->Y = Y;
823 Y++;
824 c = c->next;
825 }
826 p = p->next;
827 }
828}
829
bbe2987b
AV
830static void add_process_filter(const char *string)
831{
832 struct process_filter *filt;
833 int pid;
834
835 pid = strtoull(string, NULL, 10);
836 filt = malloc(sizeof(struct process_filter));
837 if (!filt)
838 return;
839
840 filt->name = strdup(string);
841 filt->pid = pid;
842 filt->next = process_filter;
843
844 process_filter = filt;
845}
846
847static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
848{
849 struct process_filter *filt;
850 if (!process_filter)
851 return 1;
852
853 filt = process_filter;
854 while (filt) {
855 if (filt->pid && p->pid == filt->pid)
856 return 1;
857 if (strcmp(filt->name, c->comm) == 0)
858 return 1;
859 filt = filt->next;
860 }
861 return 0;
862}
863
864static int determine_display_tasks_filtered(void)
865{
866 struct per_pid *p;
867 struct per_pidcomm *c;
868 int count = 0;
869
870 p = all_data;
871 while (p) {
872 p->display = 0;
873 if (p->start_time == 1)
874 p->start_time = first_time;
875
876 /* no exit marker, task kept running to the end */
877 if (p->end_time == 0)
878 p->end_time = last_time;
879
880 c = p->all;
881
882 while (c) {
883 c->display = 0;
884
885 if (c->start_time == 1)
886 c->start_time = first_time;
887
888 if (passes_filter(p, c)) {
889 c->display = 1;
890 p->display = 1;
891 count++;
892 }
893
894 if (c->end_time == 0)
895 c->end_time = last_time;
896
897 c = c->next;
898 }
899 p = p->next;
900 }
901 return count;
902}
903
10274989
AV
904static int determine_display_tasks(u64 threshold)
905{
906 struct per_pid *p;
907 struct per_pidcomm *c;
908 int count = 0;
909
bbe2987b
AV
910 if (process_filter)
911 return determine_display_tasks_filtered();
912
10274989
AV
913 p = all_data;
914 while (p) {
915 p->display = 0;
916 if (p->start_time == 1)
917 p->start_time = first_time;
918
919 /* no exit marker, task kept running to the end */
920 if (p->end_time == 0)
921 p->end_time = last_time;
39a90a8e 922 if (p->total_time >= threshold && !power_only)
10274989
AV
923 p->display = 1;
924
925 c = p->all;
926
927 while (c) {
928 c->display = 0;
929
930 if (c->start_time == 1)
931 c->start_time = first_time;
932
39a90a8e 933 if (c->total_time >= threshold && !power_only) {
10274989
AV
934 c->display = 1;
935 count++;
936 }
937
938 if (c->end_time == 0)
939 c->end_time = last_time;
940
941 c = c->next;
942 }
943 p = p->next;
944 }
945 return count;
946}
947
948
949
950#define TIME_THRESH 10000000
951
952static void write_svg_file(const char *filename)
953{
954 u64 i;
955 int count;
956
957 numcpus++;
958
959
960 count = determine_display_tasks(TIME_THRESH);
961
962 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
963 if (count < 15)
964 count = determine_display_tasks(TIME_THRESH / 10);
965
5094b655 966 open_svg(filename, numcpus, count, first_time, last_time);
10274989 967
5094b655 968 svg_time_grid();
10274989
AV
969 svg_legenda();
970
971 for (i = 0; i < numcpus; i++)
972 svg_cpu_box(i, max_freq, turbo_frequency);
973
974 draw_cpu_usage();
975 draw_process_bars();
976 draw_c_p_states();
977 draw_wakeups();
978
979 svg_close();
980}
981
301a0b02 982static struct perf_event_ops event_ops = {
9df9bbba
FW
983 .comm = process_comm_event,
984 .fork = process_fork_event,
985 .exit = process_exit_event,
986 .sample = process_sample_event,
987 .ordered_samples = true,
5cbd0805 988};
10274989 989
5cbd0805
LZ
990static int __cmd_timechart(void)
991{
21ef97f0
IM
992 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
993 0, false, &event_ops);
d549c769 994 int ret = -EINVAL;
10274989 995
94c744b6
ACM
996 if (session == NULL)
997 return -ENOMEM;
998
d549c769
ACM
999 if (!perf_session__has_traces(session, "timechart record"))
1000 goto out_delete;
1001
ec913369 1002 ret = perf_session__process_events(session, &event_ops);
5cbd0805 1003 if (ret)
94c744b6 1004 goto out_delete;
10274989 1005
10274989
AV
1006 end_sample_processing();
1007
1008 sort_pids();
1009
1010 write_svg_file(output_name);
1011
6beba7ad
ACM
1012 pr_info("Written %2.1f seconds of trace to %s.\n",
1013 (last_time - first_time) / 1000000000.0, output_name);
94c744b6
ACM
1014out_delete:
1015 perf_session__delete(session);
1016 return ret;
10274989
AV
1017}
1018
3c09eebd
AV
1019static const char * const timechart_usage[] = {
1020 "perf timechart [<options>] {record}",
10274989
AV
1021 NULL
1022};
1023
20c457b8
TR
1024#ifdef SUPPORT_OLD_POWER_EVENTS
1025static const char * const record_old_args[] = {
3c09eebd
AV
1026 "record",
1027 "-a",
1028 "-R",
3c09eebd
AV
1029 "-f",
1030 "-c", "1",
1031 "-e", "power:power_start",
1032 "-e", "power:power_end",
1033 "-e", "power:power_frequency",
1034 "-e", "sched:sched_wakeup",
1035 "-e", "sched:sched_switch",
1036};
20c457b8
TR
1037#endif
1038
1039static const char * const record_new_args[] = {
1040 "record",
1041 "-a",
1042 "-R",
1043 "-f",
1044 "-c", "1",
1045 "-e", "power:cpu_frequency",
1046 "-e", "power:cpu_idle",
1047 "-e", "sched:sched_wakeup",
1048 "-e", "sched:sched_switch",
1049};
3c09eebd
AV
1050
1051static int __cmd_record(int argc, const char **argv)
1052{
1053 unsigned int rec_argc, i, j;
1054 const char **rec_argv;
20c457b8
TR
1055 const char * const *record_args = record_new_args;
1056 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1057
1058#ifdef SUPPORT_OLD_POWER_EVENTS
1059 if (!is_valid_tracepoint("power:cpu_idle") &&
1060 is_valid_tracepoint("power:power_start")) {
1061 use_old_power_events = 1;
1062 record_args = record_old_args;
1063 record_elems = ARRAY_SIZE(record_old_args);
1064 }
1065#endif
3c09eebd 1066
20c457b8 1067 rec_argc = record_elems + argc - 1;
3c09eebd
AV
1068 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1069
ce47dc56
CS
1070 if (rec_argv == NULL)
1071 return -ENOMEM;
1072
20c457b8 1073 for (i = 0; i < record_elems; i++)
3c09eebd
AV
1074 rec_argv[i] = strdup(record_args[i]);
1075
1076 for (j = 1; j < (unsigned int)argc; j++, i++)
1077 rec_argv[i] = argv[j];
1078
1079 return cmd_record(i, rec_argv, NULL);
1080}
1081
bbe2987b
AV
1082static int
1083parse_process(const struct option *opt __used, const char *arg, int __used unset)
1084{
1085 if (arg)
1086 add_process_filter(arg);
1087 return 0;
1088}
1089
10274989
AV
1090static const struct option options[] = {
1091 OPT_STRING('i', "input", &input_name, "file",
1092 "input file name"),
1093 OPT_STRING('o', "output", &output_name, "file",
1094 "output file name"),
5094b655
AV
1095 OPT_INTEGER('w', "width", &svg_page_width,
1096 "page width"),
bbe2987b 1097 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1098 "output power data only"),
bbe2987b
AV
1099 OPT_CALLBACK('p', "process", NULL, "process",
1100 "process selector. Pass a pid or process name.",
1101 parse_process),
ec5761ea
DA
1102 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1103 "Look for files with symbols relative to this directory"),
10274989
AV
1104 OPT_END()
1105};
1106
1107
1108int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1109{
3c09eebd
AV
1110 argc = parse_options(argc, argv, options, timechart_usage,
1111 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1112
655000e7
ACM
1113 symbol__init();
1114
3c09eebd
AV
1115 if (argc && !strncmp(argv[0], "rec", 3))
1116 return __cmd_record(argc, argv);
1117 else if (argc)
1118 usage_with_options(timechart_usage, options);
10274989
AV
1119
1120 setup_pager();
1121
1122 return __cmd_timechart();
1123}
This page took 0.160755 seconds and 5 git commands to generate.