perf ordered_events: Untangle from perf_session
[deliverable/linux.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
c85cffa5
JO
15#include <traceevent/event-parse.h>
16
10274989
AV
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
5936678e 24#include "util/evlist.h"
e3f42609 25#include "util/evsel.h"
10274989
AV
26#include <linux/rbtree.h>
27#include "util/symbol.h"
10274989
AV
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
5cbd0805 35#include "util/event.h"
301a0b02 36#include "util/session.h"
10274989 37#include "util/svghelper.h"
45694aa7 38#include "util/tool.h"
f5fc1412 39#include "util/data.h"
84f5d36f 40#include "util/debug.h"
10274989 41
20c457b8
TR
42#define SUPPORT_OLD_POWER_EVENTS 1
43#define PWR_EVENT_EXIT -1
44
5e22f6d2 45struct per_pid;
66cc3ada 46struct power_event;
436b0da0 47struct wake_event;
5e22f6d2 48
985b12e6
ACM
49struct timechart {
50 struct perf_tool tool;
5e22f6d2 51 struct per_pid *all_data;
66cc3ada 52 struct power_event *power_events;
436b0da0 53 struct wake_event *wake_events;
985b12e6
ACM
54 int proc_num;
55 unsigned int numcpus;
56 u64 min_freq, /* Lowest CPU frequency seen */
57 max_freq, /* Highest CPU frequency seen */
58 turbo_frequency,
59 first_time, last_time;
60 bool power_only,
61 tasks_only,
c5079997
SF
62 with_backtrace,
63 topology;
b97b59b9
SF
64 /* IO related settings */
65 u64 io_events;
d243144a
SF
66 bool io_only,
67 skip_eagain;
68 u64 min_time,
69 merge_dist;
985b12e6 70};
10274989 71
10274989 72struct per_pidcomm;
10274989 73struct cpu_sample;
b97b59b9 74struct io_sample;
10274989
AV
75
76/*
77 * Datastructure layout:
78 * We keep an list of "pid"s, matching the kernels notion of a task struct.
79 * Each "pid" entry, has a list of "comm"s.
80 * this is because we want to track different programs different, while
81 * exec will reuse the original pid (by design).
82 * Each comm has a list of samples that will be used to draw
83 * final graph.
84 */
85
86struct per_pid {
87 struct per_pid *next;
88
89 int pid;
90 int ppid;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
b97b59b9 95 u64 total_bytes;
10274989
AV
96 int display;
97
98 struct per_pidcomm *all;
99 struct per_pidcomm *current;
10274989
AV
100};
101
102
103struct per_pidcomm {
104 struct per_pidcomm *next;
105
106 u64 start_time;
107 u64 end_time;
108 u64 total_time;
b97b59b9
SF
109 u64 max_bytes;
110 u64 total_bytes;
10274989
AV
111
112 int Y;
113 int display;
114
115 long state;
116 u64 state_since;
117
118 char *comm;
119
120 struct cpu_sample *samples;
b97b59b9 121 struct io_sample *io_samples;
10274989
AV
122};
123
124struct sample_wrapper {
125 struct sample_wrapper *next;
126
127 u64 timestamp;
128 unsigned char data[0];
129};
130
131#define TYPE_NONE 0
132#define TYPE_RUNNING 1
133#define TYPE_WAITING 2
134#define TYPE_BLOCKED 3
135
136struct cpu_sample {
137 struct cpu_sample *next;
138
139 u64 start_time;
140 u64 end_time;
141 int type;
142 int cpu;
6f8d67fa 143 const char *backtrace;
10274989
AV
144};
145
b97b59b9
SF
146enum {
147 IOTYPE_READ,
148 IOTYPE_WRITE,
149 IOTYPE_SYNC,
150 IOTYPE_TX,
151 IOTYPE_RX,
152 IOTYPE_POLL,
153};
154
155struct io_sample {
156 struct io_sample *next;
157
158 u64 start_time;
159 u64 end_time;
160 u64 bytes;
161 int type;
162 int fd;
163 int err;
164 int merges;
165};
166
10274989
AV
167#define CSTATE 1
168#define PSTATE 2
169
170struct power_event {
171 struct power_event *next;
172 int type;
173 int state;
174 u64 start_time;
175 u64 end_time;
176 int cpu;
177};
178
179struct wake_event {
180 struct wake_event *next;
181 int waker;
182 int wakee;
183 u64 time;
6f8d67fa 184 const char *backtrace;
10274989
AV
185};
186
bbe2987b 187struct process_filter {
5cbd0805
LZ
188 char *name;
189 int pid;
190 struct process_filter *next;
bbe2987b
AV
191};
192
193static struct process_filter *process_filter;
194
195
5e22f6d2 196static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 197{
5e22f6d2 198 struct per_pid *cursor = tchart->all_data;
10274989
AV
199
200 while (cursor) {
201 if (cursor->pid == pid)
202 return cursor;
203 cursor = cursor->next;
204 }
e0dcd6fb 205 cursor = zalloc(sizeof(*cursor));
10274989 206 assert(cursor != NULL);
10274989 207 cursor->pid = pid;
5e22f6d2
ACM
208 cursor->next = tchart->all_data;
209 tchart->all_data = cursor;
10274989
AV
210 return cursor;
211}
212
5e22f6d2 213static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
214{
215 struct per_pid *p;
216 struct per_pidcomm *c;
5e22f6d2 217 p = find_create_pid(tchart, pid);
10274989
AV
218 c = p->all;
219 while (c) {
220 if (c->comm && strcmp(c->comm, comm) == 0) {
221 p->current = c;
222 return;
223 }
224 if (!c->comm) {
225 c->comm = strdup(comm);
226 p->current = c;
227 return;
228 }
229 c = c->next;
230 }
e0dcd6fb 231 c = zalloc(sizeof(*c));
10274989 232 assert(c != NULL);
10274989
AV
233 c->comm = strdup(comm);
234 p->current = c;
235 c->next = p->all;
236 p->all = c;
237}
238
5e22f6d2 239static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
240{
241 struct per_pid *p, *pp;
5e22f6d2
ACM
242 p = find_create_pid(tchart, pid);
243 pp = find_create_pid(tchart, ppid);
10274989
AV
244 p->ppid = ppid;
245 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 246 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
247
248 p->start_time = timestamp;
962e310a 249 if (p->current && !p->current->start_time) {
10274989
AV
250 p->current->start_time = timestamp;
251 p->current->state_since = timestamp;
252 }
253}
254
5e22f6d2 255static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
256{
257 struct per_pid *p;
5e22f6d2 258 p = find_create_pid(tchart, pid);
10274989
AV
259 p->end_time = timestamp;
260 if (p->current)
261 p->current->end_time = timestamp;
262}
263
5e22f6d2
ACM
264static void pid_put_sample(struct timechart *tchart, int pid, int type,
265 unsigned int cpu, u64 start, u64 end,
266 const char *backtrace)
10274989
AV
267{
268 struct per_pid *p;
269 struct per_pidcomm *c;
270 struct cpu_sample *sample;
271
5e22f6d2 272 p = find_create_pid(tchart, pid);
10274989
AV
273 c = p->current;
274 if (!c) {
e0dcd6fb 275 c = zalloc(sizeof(*c));
10274989 276 assert(c != NULL);
10274989
AV
277 p->current = c;
278 c->next = p->all;
279 p->all = c;
280 }
281
e0dcd6fb 282 sample = zalloc(sizeof(*sample));
10274989 283 assert(sample != NULL);
10274989
AV
284 sample->start_time = start;
285 sample->end_time = end;
286 sample->type = type;
287 sample->next = c->samples;
288 sample->cpu = cpu;
6f8d67fa 289 sample->backtrace = backtrace;
10274989
AV
290 c->samples = sample;
291
292 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
293 c->total_time += (end-start);
294 p->total_time += (end-start);
295 }
296
297 if (c->start_time == 0 || c->start_time > start)
298 c->start_time = start;
299 if (p->start_time == 0 || p->start_time > start)
300 p->start_time = start;
10274989
AV
301}
302
303#define MAX_CPUS 4096
304
305static u64 cpus_cstate_start_times[MAX_CPUS];
306static int cpus_cstate_state[MAX_CPUS];
307static u64 cpus_pstate_start_times[MAX_CPUS];
308static u64 cpus_pstate_state[MAX_CPUS];
309
5e22f6d2 310static int process_comm_event(struct perf_tool *tool,
d20deb64 311 union perf_event *event,
1d037ca1
IT
312 struct perf_sample *sample __maybe_unused,
313 struct machine *machine __maybe_unused)
10274989 314{
5e22f6d2
ACM
315 struct timechart *tchart = container_of(tool, struct timechart, tool);
316 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
317 return 0;
318}
d8f66248 319
5e22f6d2 320static int process_fork_event(struct perf_tool *tool,
d20deb64 321 union perf_event *event,
1d037ca1
IT
322 struct perf_sample *sample __maybe_unused,
323 struct machine *machine __maybe_unused)
10274989 324{
5e22f6d2
ACM
325 struct timechart *tchart = container_of(tool, struct timechart, tool);
326 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
327 return 0;
328}
329
5e22f6d2 330static int process_exit_event(struct perf_tool *tool,
d20deb64 331 union perf_event *event,
1d037ca1
IT
332 struct perf_sample *sample __maybe_unused,
333 struct machine *machine __maybe_unused)
10274989 334{
5e22f6d2
ACM
335 struct timechart *tchart = container_of(tool, struct timechart, tool);
336 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
337 return 0;
338}
339
20c457b8
TR
340#ifdef SUPPORT_OLD_POWER_EVENTS
341static int use_old_power_events;
20c457b8
TR
342#endif
343
10274989
AV
344static void c_state_start(int cpu, u64 timestamp, int state)
345{
346 cpus_cstate_start_times[cpu] = timestamp;
347 cpus_cstate_state[cpu] = state;
348}
349
66cc3ada 350static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 351{
e0dcd6fb
ACM
352 struct power_event *pwr = zalloc(sizeof(*pwr));
353
10274989
AV
354 if (!pwr)
355 return;
10274989
AV
356
357 pwr->state = cpus_cstate_state[cpu];
358 pwr->start_time = cpus_cstate_start_times[cpu];
359 pwr->end_time = timestamp;
360 pwr->cpu = cpu;
361 pwr->type = CSTATE;
66cc3ada 362 pwr->next = tchart->power_events;
10274989 363
66cc3ada 364 tchart->power_events = pwr;
10274989
AV
365}
366
985b12e6 367static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
368{
369 struct power_event *pwr;
10274989
AV
370
371 if (new_freq > 8000000) /* detect invalid data */
372 return;
373
e0dcd6fb 374 pwr = zalloc(sizeof(*pwr));
10274989
AV
375 if (!pwr)
376 return;
10274989
AV
377
378 pwr->state = cpus_pstate_state[cpu];
379 pwr->start_time = cpus_pstate_start_times[cpu];
380 pwr->end_time = timestamp;
381 pwr->cpu = cpu;
382 pwr->type = PSTATE;
66cc3ada 383 pwr->next = tchart->power_events;
10274989
AV
384
385 if (!pwr->start_time)
985b12e6 386 pwr->start_time = tchart->first_time;
10274989 387
66cc3ada 388 tchart->power_events = pwr;
10274989
AV
389
390 cpus_pstate_state[cpu] = new_freq;
391 cpus_pstate_start_times[cpu] = timestamp;
392
985b12e6
ACM
393 if ((u64)new_freq > tchart->max_freq)
394 tchart->max_freq = new_freq;
10274989 395
985b12e6
ACM
396 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
397 tchart->min_freq = new_freq;
10274989 398
985b12e6
ACM
399 if (new_freq == tchart->max_freq - 1000)
400 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
401}
402
5e22f6d2
ACM
403static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
404 int waker, int wakee, u8 flags, const char *backtrace)
10274989 405{
10274989 406 struct per_pid *p;
e0dcd6fb 407 struct wake_event *we = zalloc(sizeof(*we));
10274989 408
10274989
AV
409 if (!we)
410 return;
411
10274989 412 we->time = timestamp;
3ed0d21e 413 we->waker = waker;
6f8d67fa 414 we->backtrace = backtrace;
10274989 415
3ed0d21e 416 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
417 we->waker = -1;
418
3ed0d21e 419 we->wakee = wakee;
436b0da0
ACM
420 we->next = tchart->wake_events;
421 tchart->wake_events = we;
5e22f6d2 422 p = find_create_pid(tchart, we->wakee);
10274989
AV
423
424 if (p && p->current && p->current->state == TYPE_NONE) {
425 p->current->state_since = timestamp;
426 p->current->state = TYPE_WAITING;
427 }
428 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 429 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 430 p->current->state_since, timestamp, NULL);
10274989
AV
431 p->current->state_since = timestamp;
432 p->current->state = TYPE_WAITING;
433 }
434}
435
5e22f6d2
ACM
436static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
437 int prev_pid, int next_pid, u64 prev_state,
438 const char *backtrace)
10274989
AV
439{
440 struct per_pid *p = NULL, *prev_p;
10274989 441
5e22f6d2 442 prev_p = find_create_pid(tchart, prev_pid);
10274989 443
5e22f6d2 444 p = find_create_pid(tchart, next_pid);
10274989
AV
445
446 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 447 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
448 prev_p->current->state_since, timestamp,
449 backtrace);
10274989
AV
450 if (p && p->current) {
451 if (p->current->state != TYPE_NONE)
5e22f6d2 452 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
453 p->current->state_since, timestamp,
454 backtrace);
10274989 455
33e26a1b
JL
456 p->current->state_since = timestamp;
457 p->current->state = TYPE_RUNNING;
10274989
AV
458 }
459
460 if (prev_p->current) {
461 prev_p->current->state = TYPE_NONE;
462 prev_p->current->state_since = timestamp;
3ed0d21e 463 if (prev_state & 2)
10274989 464 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 465 if (prev_state == 0)
10274989
AV
466 prev_p->current->state = TYPE_WAITING;
467 }
468}
469
6f8d67fa
SF
470static const char *cat_backtrace(union perf_event *event,
471 struct perf_sample *sample,
472 struct machine *machine)
473{
474 struct addr_location al;
475 unsigned int i;
476 char *p = NULL;
477 size_t p_len;
478 u8 cpumode = PERF_RECORD_MISC_USER;
479 struct addr_location tal;
480 struct ip_callchain *chain = sample->callchain;
481 FILE *f = open_memstream(&p, &p_len);
482
483 if (!f) {
484 perror("open_memstream error");
485 return NULL;
486 }
487
488 if (!chain)
489 goto exit;
490
491 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
492 fprintf(stderr, "problem processing %d event, skipping it.\n",
493 event->header.type);
494 goto exit;
495 }
496
497 for (i = 0; i < chain->nr; i++) {
498 u64 ip;
499
500 if (callchain_param.order == ORDER_CALLEE)
501 ip = chain->ips[i];
502 else
503 ip = chain->ips[chain->nr - i - 1];
504
505 if (ip >= PERF_CONTEXT_MAX) {
506 switch (ip) {
507 case PERF_CONTEXT_HV:
508 cpumode = PERF_RECORD_MISC_HYPERVISOR;
509 break;
510 case PERF_CONTEXT_KERNEL:
511 cpumode = PERF_RECORD_MISC_KERNEL;
512 break;
513 case PERF_CONTEXT_USER:
514 cpumode = PERF_RECORD_MISC_USER;
515 break;
516 default:
517 pr_debug("invalid callchain context: "
518 "%"PRId64"\n", (s64) ip);
519
520 /*
521 * It seems the callchain is corrupted.
522 * Discard all.
523 */
04662523 524 zfree(&p);
6f8d67fa
SF
525 goto exit;
526 }
527 continue;
528 }
529
b3cef7f6 530 tal.filtered = 0;
bb871a9c 531 thread__find_addr_location(al.thread, cpumode,
6f8d67fa
SF
532 MAP__FUNCTION, ip, &tal);
533
534 if (tal.sym)
535 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
536 tal.sym->name);
537 else
538 fprintf(f, "..... %016" PRIx64 "\n", ip);
539 }
540
541exit:
542 fclose(f);
543
544 return p;
545}
546
985b12e6
ACM
547typedef int (*tracepoint_handler)(struct timechart *tchart,
548 struct perf_evsel *evsel,
6f8d67fa
SF
549 struct perf_sample *sample,
550 const char *backtrace);
10274989 551
985b12e6 552static int process_sample_event(struct perf_tool *tool,
972ec653 553 union perf_event *event,
8d50e5b4 554 struct perf_sample *sample,
e3f42609 555 struct perf_evsel *evsel,
985b12e6 556 struct machine *machine)
10274989 557{
985b12e6
ACM
558 struct timechart *tchart = container_of(tool, struct timechart, tool);
559
e3f42609 560 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
561 if (!tchart->first_time || tchart->first_time > sample->time)
562 tchart->first_time = sample->time;
563 if (tchart->last_time < sample->time)
564 tchart->last_time = sample->time;
10274989 565 }
180f95e2 566
744a9719
ACM
567 if (evsel->handler != NULL) {
568 tracepoint_handler f = evsel->handler;
58b9a18e
SF
569 return f(tchart, evsel, sample,
570 cat_backtrace(event, sample, machine));
5936678e
JO
571 }
572
573 return 0;
574}
575
576static int
985b12e6
ACM
577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
578 struct perf_evsel *evsel,
6f8d67fa
SF
579 struct perf_sample *sample,
580 const char *backtrace __maybe_unused)
5936678e 581{
3ed0d21e
SF
582 u32 state = perf_evsel__intval(evsel, sample, "state");
583 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 584
3ed0d21e 585 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 586 c_state_end(tchart, cpu_id, sample->time);
5936678e 587 else
3ed0d21e 588 c_state_start(cpu_id, sample->time, state);
5936678e
JO
589 return 0;
590}
591
592static int
985b12e6
ACM
593process_sample_cpu_frequency(struct timechart *tchart,
594 struct perf_evsel *evsel,
6f8d67fa
SF
595 struct perf_sample *sample,
596 const char *backtrace __maybe_unused)
5936678e 597{
3ed0d21e
SF
598 u32 state = perf_evsel__intval(evsel, sample, "state");
599 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 600
985b12e6 601 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
602 return 0;
603}
604
605static int
5e22f6d2 606process_sample_sched_wakeup(struct timechart *tchart,
985b12e6 607 struct perf_evsel *evsel,
6f8d67fa
SF
608 struct perf_sample *sample,
609 const char *backtrace)
5936678e 610{
3ed0d21e
SF
611 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
612 int waker = perf_evsel__intval(evsel, sample, "common_pid");
613 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 614
5e22f6d2 615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
616 return 0;
617}
10274989 618
5936678e 619static int
5e22f6d2 620process_sample_sched_switch(struct timechart *tchart,
985b12e6 621 struct perf_evsel *evsel,
6f8d67fa
SF
622 struct perf_sample *sample,
623 const char *backtrace)
5936678e 624{
3ed0d21e
SF
625 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
626 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
627 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 628
5e22f6d2
ACM
629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630 prev_state, backtrace);
5936678e
JO
631 return 0;
632}
20c457b8
TR
633
634#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 635static int
985b12e6
ACM
636process_sample_power_start(struct timechart *tchart __maybe_unused,
637 struct perf_evsel *evsel,
6f8d67fa
SF
638 struct perf_sample *sample,
639 const char *backtrace __maybe_unused)
5936678e 640{
3ed0d21e
SF
641 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
642 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 643
3ed0d21e 644 c_state_start(cpu_id, sample->time, value);
5936678e
JO
645 return 0;
646}
647
648static int
66cc3ada 649process_sample_power_end(struct timechart *tchart,
985b12e6 650 struct perf_evsel *evsel __maybe_unused,
6f8d67fa
SF
651 struct perf_sample *sample,
652 const char *backtrace __maybe_unused)
5936678e 653{
66cc3ada 654 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
655 return 0;
656}
657
658static int
985b12e6
ACM
659process_sample_power_frequency(struct timechart *tchart,
660 struct perf_evsel *evsel,
6f8d67fa
SF
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
5936678e 663{
3ed0d21e
SF
664 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
665 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 666
985b12e6 667 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
668 return 0;
669}
5936678e 670#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
671
672/*
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
675 */
985b12e6 676static void end_sample_processing(struct timechart *tchart)
10274989
AV
677{
678 u64 cpu;
679 struct power_event *pwr;
680
985b12e6 681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
682 /* C state */
683#if 0
684 pwr = zalloc(sizeof(*pwr));
10274989
AV
685 if (!pwr)
686 return;
10274989 687
10274989
AV
688 pwr->state = cpus_cstate_state[cpu];
689 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 690 pwr->end_time = tchart->last_time;
10274989
AV
691 pwr->cpu = cpu;
692 pwr->type = CSTATE;
66cc3ada 693 pwr->next = tchart->power_events;
10274989 694
66cc3ada 695 tchart->power_events = pwr;
10274989
AV
696#endif
697 /* P state */
698
e0dcd6fb 699 pwr = zalloc(sizeof(*pwr));
10274989
AV
700 if (!pwr)
701 return;
10274989
AV
702
703 pwr->state = cpus_pstate_state[cpu];
704 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 705 pwr->end_time = tchart->last_time;
10274989
AV
706 pwr->cpu = cpu;
707 pwr->type = PSTATE;
66cc3ada 708 pwr->next = tchart->power_events;
10274989
AV
709
710 if (!pwr->start_time)
985b12e6 711 pwr->start_time = tchart->first_time;
10274989 712 if (!pwr->state)
985b12e6 713 pwr->state = tchart->min_freq;
66cc3ada 714 tchart->power_events = pwr;
10274989
AV
715 }
716}
717
b97b59b9
SF
718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719 u64 start, int fd)
720{
721 struct per_pid *p = find_create_pid(tchart, pid);
722 struct per_pidcomm *c = p->current;
723 struct io_sample *sample;
724 struct io_sample *prev;
725
726 if (!c) {
727 c = zalloc(sizeof(*c));
728 if (!c)
729 return -ENOMEM;
730 p->current = c;
731 c->next = p->all;
732 p->all = c;
733 }
734
735 prev = c->io_samples;
736
737 if (prev && prev->start_time && !prev->end_time) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
740
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c->io_samples = prev->next;
744 free(prev);
745 return 0;
746 }
747
748 sample = zalloc(sizeof(*sample));
749 if (!sample)
750 return -ENOMEM;
751 sample->start_time = start;
752 sample->type = type;
753 sample->fd = fd;
754 sample->next = c->io_samples;
755 c->io_samples = sample;
756
757 if (c->start_time == 0 || c->start_time > start)
758 c->start_time = start;
759
760 return 0;
761}
762
763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764 u64 end, long ret)
765{
766 struct per_pid *p = find_create_pid(tchart, pid);
767 struct per_pidcomm *c = p->current;
d243144a 768 struct io_sample *sample, *prev;
b97b59b9
SF
769
770 if (!c) {
771 pr_warning("Invalid pidcomm!\n");
772 return -1;
773 }
774
775 sample = c->io_samples;
776
777 if (!sample) /* skip partially captured events */
778 return 0;
779
780 if (sample->end_time) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
783 return 0;
784 }
785
786 if (sample->type != type) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
788 return 0;
789 }
790
791 sample->end_time = end;
d243144a
SF
792 prev = sample->next;
793
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample->end_time - sample->start_time < tchart->min_time)
797 sample->end_time = sample->start_time + tchart->min_time;
798 if (prev && sample->start_time < prev->end_time) {
799 if (prev->err) /* try to make errors more visible */
800 sample->start_time = prev->end_time;
801 else
802 prev->end_time = sample->start_time;
803 }
b97b59b9
SF
804
805 if (ret < 0) {
806 sample->err = ret;
807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808 type == IOTYPE_TX || type == IOTYPE_RX) {
809
810 if ((u64)ret > c->max_bytes)
811 c->max_bytes = ret;
812
813 c->total_bytes += ret;
814 p->total_bytes += ret;
815 sample->bytes = ret;
816 }
817
d243144a
SF
818 /* merge two requests to make svg smaller and render-friendly */
819 if (prev &&
820 prev->type == sample->type &&
821 prev->err == sample->err &&
822 prev->fd == sample->fd &&
823 prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825 sample->bytes += prev->bytes;
826 sample->merges += prev->merges + 1;
827
828 sample->start_time = prev->start_time;
829 sample->next = prev->next;
830 free(prev);
831
832 if (!sample->err && sample->bytes > c->max_bytes)
833 c->max_bytes = sample->bytes;
834 }
835
b97b59b9
SF
836 tchart->io_events++;
837
838 return 0;
839}
840
841static int
842process_enter_read(struct timechart *tchart,
843 struct perf_evsel *evsel,
844 struct perf_sample *sample)
845{
846 long fd = perf_evsel__intval(evsel, sample, "fd");
847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848 sample->time, fd);
849}
850
851static int
852process_exit_read(struct timechart *tchart,
853 struct perf_evsel *evsel,
854 struct perf_sample *sample)
855{
856 long ret = perf_evsel__intval(evsel, sample, "ret");
857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858 sample->time, ret);
859}
860
861static int
862process_enter_write(struct timechart *tchart,
863 struct perf_evsel *evsel,
864 struct perf_sample *sample)
865{
866 long fd = perf_evsel__intval(evsel, sample, "fd");
867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868 sample->time, fd);
869}
870
871static int
872process_exit_write(struct timechart *tchart,
873 struct perf_evsel *evsel,
874 struct perf_sample *sample)
875{
876 long ret = perf_evsel__intval(evsel, sample, "ret");
877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 sample->time, ret);
879}
880
881static int
882process_enter_sync(struct timechart *tchart,
883 struct perf_evsel *evsel,
884 struct perf_sample *sample)
885{
886 long fd = perf_evsel__intval(evsel, sample, "fd");
887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888 sample->time, fd);
889}
890
891static int
892process_exit_sync(struct timechart *tchart,
893 struct perf_evsel *evsel,
894 struct perf_sample *sample)
895{
896 long ret = perf_evsel__intval(evsel, sample, "ret");
897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 sample->time, ret);
899}
900
901static int
902process_enter_tx(struct timechart *tchart,
903 struct perf_evsel *evsel,
904 struct perf_sample *sample)
905{
906 long fd = perf_evsel__intval(evsel, sample, "fd");
907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908 sample->time, fd);
909}
910
911static int
912process_exit_tx(struct timechart *tchart,
913 struct perf_evsel *evsel,
914 struct perf_sample *sample)
915{
916 long ret = perf_evsel__intval(evsel, sample, "ret");
917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918 sample->time, ret);
919}
920
921static int
922process_enter_rx(struct timechart *tchart,
923 struct perf_evsel *evsel,
924 struct perf_sample *sample)
925{
926 long fd = perf_evsel__intval(evsel, sample, "fd");
927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928 sample->time, fd);
929}
930
931static int
932process_exit_rx(struct timechart *tchart,
933 struct perf_evsel *evsel,
934 struct perf_sample *sample)
935{
936 long ret = perf_evsel__intval(evsel, sample, "ret");
937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938 sample->time, ret);
939}
940
941static int
942process_enter_poll(struct timechart *tchart,
943 struct perf_evsel *evsel,
944 struct perf_sample *sample)
945{
946 long fd = perf_evsel__intval(evsel, sample, "fd");
947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948 sample->time, fd);
949}
950
951static int
952process_exit_poll(struct timechart *tchart,
953 struct perf_evsel *evsel,
954 struct perf_sample *sample)
955{
956 long ret = perf_evsel__intval(evsel, sample, "ret");
957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 sample->time, ret);
959}
960
10274989
AV
961/*
962 * Sort the pid datastructure
963 */
5e22f6d2 964static void sort_pids(struct timechart *tchart)
10274989
AV
965{
966 struct per_pid *new_list, *p, *cursor, *prev;
967 /* sort by ppid first, then by pid, lowest to highest */
968
969 new_list = NULL;
970
5e22f6d2
ACM
971 while (tchart->all_data) {
972 p = tchart->all_data;
973 tchart->all_data = p->next;
10274989
AV
974 p->next = NULL;
975
976 if (new_list == NULL) {
977 new_list = p;
978 p->next = NULL;
979 continue;
980 }
981 prev = NULL;
982 cursor = new_list;
983 while (cursor) {
984 if (cursor->ppid > p->ppid ||
985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986 /* must insert before */
987 if (prev) {
988 p->next = prev->next;
989 prev->next = p;
990 cursor = NULL;
991 continue;
992 } else {
993 p->next = new_list;
994 new_list = p;
995 cursor = NULL;
996 continue;
997 }
998 }
999
1000 prev = cursor;
1001 cursor = cursor->next;
1002 if (!cursor)
1003 prev->next = p;
1004 }
1005 }
5e22f6d2 1006 tchart->all_data = new_list;
10274989
AV
1007}
1008
1009
985b12e6 1010static void draw_c_p_states(struct timechart *tchart)
10274989
AV
1011{
1012 struct power_event *pwr;
66cc3ada 1013 pwr = tchart->power_events;
10274989
AV
1014
1015 /*
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1017 */
1018 while (pwr) {
1019 if (pwr->type == CSTATE)
1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021 pwr = pwr->next;
1022 }
1023
66cc3ada 1024 pwr = tchart->power_events;
10274989
AV
1025 while (pwr) {
1026 if (pwr->type == PSTATE) {
1027 if (!pwr->state)
985b12e6 1028 pwr->state = tchart->min_freq;
10274989
AV
1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 }
1031 pwr = pwr->next;
1032 }
1033}
1034
5e22f6d2 1035static void draw_wakeups(struct timechart *tchart)
10274989
AV
1036{
1037 struct wake_event *we;
1038 struct per_pid *p;
1039 struct per_pidcomm *c;
1040
436b0da0 1041 we = tchart->wake_events;
10274989
AV
1042 while (we) {
1043 int from = 0, to = 0;
4f1202c8 1044 char *task_from = NULL, *task_to = NULL;
10274989
AV
1045
1046 /* locate the column of the waker and wakee */
5e22f6d2 1047 p = tchart->all_data;
10274989
AV
1048 while (p) {
1049 if (p->pid == we->waker || p->pid == we->wakee) {
1050 c = p->all;
1051 while (c) {
1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 1053 if (p->pid == we->waker && !from) {
10274989 1054 from = c->Y;
3bc2a39c 1055 task_from = strdup(c->comm);
4f1202c8 1056 }
bbe2987b 1057 if (p->pid == we->wakee && !to) {
10274989 1058 to = c->Y;
3bc2a39c 1059 task_to = strdup(c->comm);
4f1202c8 1060 }
10274989
AV
1061 }
1062 c = c->next;
1063 }
3bc2a39c
AV
1064 c = p->all;
1065 while (c) {
1066 if (p->pid == we->waker && !from) {
1067 from = c->Y;
1068 task_from = strdup(c->comm);
1069 }
1070 if (p->pid == we->wakee && !to) {
1071 to = c->Y;
1072 task_to = strdup(c->comm);
1073 }
1074 c = c->next;
1075 }
10274989
AV
1076 }
1077 p = p->next;
1078 }
1079
3bc2a39c
AV
1080 if (!task_from) {
1081 task_from = malloc(40);
1082 sprintf(task_from, "[%i]", we->waker);
1083 }
1084 if (!task_to) {
1085 task_to = malloc(40);
1086 sprintf(task_to, "[%i]", we->wakee);
1087 }
1088
10274989 1089 if (we->waker == -1)
6f8d67fa 1090 svg_interrupt(we->time, to, we->backtrace);
10274989 1091 else if (from && to && abs(from - to) == 1)
6f8d67fa 1092 svg_wakeline(we->time, from, to, we->backtrace);
10274989 1093 else
6f8d67fa
SF
1094 svg_partial_wakeline(we->time, from, task_from, to,
1095 task_to, we->backtrace);
10274989 1096 we = we->next;
3bc2a39c
AV
1097
1098 free(task_from);
1099 free(task_to);
10274989
AV
1100 }
1101}
1102
5e22f6d2 1103static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
1104{
1105 struct per_pid *p;
1106 struct per_pidcomm *c;
1107 struct cpu_sample *sample;
5e22f6d2 1108 p = tchart->all_data;
10274989
AV
1109 while (p) {
1110 c = p->all;
1111 while (c) {
1112 sample = c->samples;
1113 while (sample) {
8b6dcca0
SF
1114 if (sample->type == TYPE_RUNNING) {
1115 svg_process(sample->cpu,
1116 sample->start_time,
1117 sample->end_time,
de996228 1118 p->pid,
8b6dcca0
SF
1119 c->comm,
1120 sample->backtrace);
1121 }
10274989
AV
1122
1123 sample = sample->next;
1124 }
1125 c = c->next;
1126 }
1127 p = p->next;
1128 }
1129}
1130
b97b59b9
SF
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133 const char *suf;
1134 double bytes;
1135 char comm[256];
1136 struct per_pid *p;
1137 struct per_pidcomm *c;
1138 struct io_sample *sample;
1139 int Y = 1;
1140
1141 p = tchart->all_data;
1142 while (p) {
1143 c = p->all;
1144 while (c) {
1145 if (!c->display) {
1146 c->Y = 0;
1147 c = c->next;
1148 continue;
1149 }
1150
1151 svg_box(Y, c->start_time, c->end_time, "process3");
1152 sample = c->io_samples;
1153 for (sample = c->io_samples; sample; sample = sample->next) {
1154 double h = (double)sample->bytes / c->max_bytes;
1155
d243144a
SF
1156 if (tchart->skip_eagain &&
1157 sample->err == -EAGAIN)
1158 continue;
1159
b97b59b9
SF
1160 if (sample->err)
1161 h = 1;
1162
1163 if (sample->type == IOTYPE_SYNC)
1164 svg_fbox(Y,
1165 sample->start_time,
1166 sample->end_time,
1167 1,
1168 sample->err ? "error" : "sync",
1169 sample->fd,
1170 sample->err,
1171 sample->merges);
1172 else if (sample->type == IOTYPE_POLL)
1173 svg_fbox(Y,
1174 sample->start_time,
1175 sample->end_time,
1176 1,
1177 sample->err ? "error" : "poll",
1178 sample->fd,
1179 sample->err,
1180 sample->merges);
1181 else if (sample->type == IOTYPE_READ)
1182 svg_ubox(Y,
1183 sample->start_time,
1184 sample->end_time,
1185 h,
1186 sample->err ? "error" : "disk",
1187 sample->fd,
1188 sample->err,
1189 sample->merges);
1190 else if (sample->type == IOTYPE_WRITE)
1191 svg_lbox(Y,
1192 sample->start_time,
1193 sample->end_time,
1194 h,
1195 sample->err ? "error" : "disk",
1196 sample->fd,
1197 sample->err,
1198 sample->merges);
1199 else if (sample->type == IOTYPE_RX)
1200 svg_ubox(Y,
1201 sample->start_time,
1202 sample->end_time,
1203 h,
1204 sample->err ? "error" : "net",
1205 sample->fd,
1206 sample->err,
1207 sample->merges);
1208 else if (sample->type == IOTYPE_TX)
1209 svg_lbox(Y,
1210 sample->start_time,
1211 sample->end_time,
1212 h,
1213 sample->err ? "error" : "net",
1214 sample->fd,
1215 sample->err,
1216 sample->merges);
1217 }
1218
1219 suf = "";
1220 bytes = c->total_bytes;
1221 if (bytes > 1024) {
1222 bytes = bytes / 1024;
1223 suf = "K";
1224 }
1225 if (bytes > 1024) {
1226 bytes = bytes / 1024;
1227 suf = "M";
1228 }
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "G";
1232 }
1233
1234
1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236 svg_text(Y, c->start_time, comm);
1237
1238 c->Y = Y;
1239 Y++;
1240 c = c->next;
1241 }
1242 p = p->next;
1243 }
1244}
1245
985b12e6 1246static void draw_process_bars(struct timechart *tchart)
10274989
AV
1247{
1248 struct per_pid *p;
1249 struct per_pidcomm *c;
1250 struct cpu_sample *sample;
1251 int Y = 0;
1252
985b12e6 1253 Y = 2 * tchart->numcpus + 2;
10274989 1254
5e22f6d2 1255 p = tchart->all_data;
10274989
AV
1256 while (p) {
1257 c = p->all;
1258 while (c) {
1259 if (!c->display) {
1260 c->Y = 0;
1261 c = c->next;
1262 continue;
1263 }
1264
a92fe7b3 1265 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
1266 sample = c->samples;
1267 while (sample) {
1268 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
1269 svg_running(Y, sample->cpu,
1270 sample->start_time,
1271 sample->end_time,
1272 sample->backtrace);
10274989 1273 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
1274 svg_blocked(Y, sample->cpu,
1275 sample->start_time,
1276 sample->end_time,
1277 sample->backtrace);
10274989 1278 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
1279 svg_waiting(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
10274989
AV
1283 sample = sample->next;
1284 }
1285
1286 if (c->comm) {
1287 char comm[256];
1288 if (c->total_time > 5000000000) /* 5 seconds */
1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1290 else
1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1292
1293 svg_text(Y, c->start_time, comm);
1294 }
1295 c->Y = Y;
1296 Y++;
1297 c = c->next;
1298 }
1299 p = p->next;
1300 }
1301}
1302
bbe2987b
AV
1303static void add_process_filter(const char *string)
1304{
e0dcd6fb
ACM
1305 int pid = strtoull(string, NULL, 10);
1306 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 1307
bbe2987b
AV
1308 if (!filt)
1309 return;
1310
1311 filt->name = strdup(string);
1312 filt->pid = pid;
1313 filt->next = process_filter;
1314
1315 process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320 struct process_filter *filt;
1321 if (!process_filter)
1322 return 1;
1323
1324 filt = process_filter;
1325 while (filt) {
1326 if (filt->pid && p->pid == filt->pid)
1327 return 1;
1328 if (strcmp(filt->name, c->comm) == 0)
1329 return 1;
1330 filt = filt->next;
1331 }
1332 return 0;
1333}
1334
985b12e6 1335static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
1336{
1337 struct per_pid *p;
1338 struct per_pidcomm *c;
1339 int count = 0;
1340
5e22f6d2 1341 p = tchart->all_data;
bbe2987b
AV
1342 while (p) {
1343 p->display = 0;
1344 if (p->start_time == 1)
985b12e6 1345 p->start_time = tchart->first_time;
bbe2987b
AV
1346
1347 /* no exit marker, task kept running to the end */
1348 if (p->end_time == 0)
985b12e6 1349 p->end_time = tchart->last_time;
bbe2987b
AV
1350
1351 c = p->all;
1352
1353 while (c) {
1354 c->display = 0;
1355
1356 if (c->start_time == 1)
985b12e6 1357 c->start_time = tchart->first_time;
bbe2987b
AV
1358
1359 if (passes_filter(p, c)) {
1360 c->display = 1;
1361 p->display = 1;
1362 count++;
1363 }
1364
1365 if (c->end_time == 0)
985b12e6 1366 c->end_time = tchart->last_time;
bbe2987b
AV
1367
1368 c = c->next;
1369 }
1370 p = p->next;
1371 }
1372 return count;
1373}
1374
985b12e6 1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
1376{
1377 struct per_pid *p;
1378 struct per_pidcomm *c;
1379 int count = 0;
1380
5e22f6d2 1381 p = tchart->all_data;
10274989
AV
1382 while (p) {
1383 p->display = 0;
1384 if (p->start_time == 1)
985b12e6 1385 p->start_time = tchart->first_time;
10274989
AV
1386
1387 /* no exit marker, task kept running to the end */
1388 if (p->end_time == 0)
985b12e6 1389 p->end_time = tchart->last_time;
753c505d 1390 if (p->total_time >= threshold)
10274989
AV
1391 p->display = 1;
1392
1393 c = p->all;
1394
1395 while (c) {
1396 c->display = 0;
1397
1398 if (c->start_time == 1)
985b12e6 1399 c->start_time = tchart->first_time;
10274989 1400
753c505d 1401 if (c->total_time >= threshold) {
10274989
AV
1402 c->display = 1;
1403 count++;
1404 }
1405
1406 if (c->end_time == 0)
985b12e6 1407 c->end_time = tchart->last_time;
10274989
AV
1408
1409 c = c->next;
1410 }
1411 p = p->next;
1412 }
1413 return count;
1414}
1415
b97b59b9
SF
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418 struct per_pid *p;
1419 struct per_pidcomm *c;
1420 int count = 0;
1421
1422 p = timechart->all_data;
1423 while (p) {
1424 /* no exit marker, task kept running to the end */
1425 if (p->end_time == 0)
1426 p->end_time = timechart->last_time;
1427
1428 c = p->all;
1429
1430 while (c) {
1431 c->display = 0;
1432
1433 if (c->total_bytes >= threshold) {
1434 c->display = 1;
1435 count++;
1436 }
10274989 1437
b97b59b9
SF
1438 if (c->end_time == 0)
1439 c->end_time = timechart->last_time;
1440
1441 c = c->next;
1442 }
1443 p = p->next;
1444 }
1445 return count;
1446}
10274989 1447
b97b59b9 1448#define BYTES_THRESH (1 * 1024 * 1024)
10274989
AV
1449#define TIME_THRESH 10000000
1450
985b12e6 1451static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1452{
1453 u64 i;
1454 int count;
b97b59b9 1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
10274989 1456
985b12e6
ACM
1457 if (tchart->power_only)
1458 tchart->proc_num = 0;
10274989 1459
0a8eb275
SF
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1462 do {
b97b59b9
SF
1463 if (process_filter)
1464 count = determine_display_tasks_filtered(tchart);
1465 else if (tchart->io_events)
1466 count = determine_display_io_tasks(tchart, thresh);
1467 else
1468 count = determine_display_tasks(tchart, thresh);
0a8eb275 1469 thresh /= 10;
985b12e6 1470 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1471
3415d8b8
SF
1472 if (!tchart->proc_num)
1473 count = 0;
1474
b97b59b9
SF
1475 if (tchart->io_events) {
1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
10274989 1477
b97b59b9
SF
1478 svg_time_grid(0.5);
1479 svg_io_legenda();
10274989 1480
b97b59b9
SF
1481 draw_io_bars(tchart);
1482 } else {
1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1484
b97b59b9
SF
1485 svg_time_grid(0);
1486
1487 svg_legenda();
1488
1489 for (i = 0; i < tchart->numcpus; i++)
1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492 draw_cpu_usage(tchart);
1493 if (tchart->proc_num)
1494 draw_process_bars(tchart);
1495 if (!tchart->tasks_only)
1496 draw_c_p_states(tchart);
1497 if (tchart->proc_num)
1498 draw_wakeups(tchart);
1499 }
10274989
AV
1500
1501 svg_close();
1502}
1503
58b9a18e
SF
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505 struct perf_header *ph,
1506 int feat,
1507 int fd __maybe_unused,
1508 void *data)
1509{
1510 struct timechart *tchart = data;
1511
1512 switch (feat) {
1513 case HEADER_NRCPUS:
1514 tchart->numcpus = ph->env.nr_cpus_avail;
1515 break;
c5079997
SF
1516
1517 case HEADER_CPU_TOPOLOGY:
1518 if (!tchart->topology)
1519 break;
1520
1521 if (svg_build_topology_map(ph->env.sibling_cores,
1522 ph->env.nr_sibling_cores,
1523 ph->env.sibling_threads,
1524 ph->env.nr_sibling_threads))
1525 fprintf(stderr, "problem building topology\n");
1526 break;
1527
58b9a18e
SF
1528 default:
1529 break;
1530 }
1531
1532 return 0;
1533}
1534
985b12e6 1535static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1536{
5936678e
JO
1537 const struct perf_evsel_str_handler power_tracepoints[] = {
1538 { "power:cpu_idle", process_sample_cpu_idle },
1539 { "power:cpu_frequency", process_sample_cpu_frequency },
1540 { "sched:sched_wakeup", process_sample_sched_wakeup },
1541 { "sched:sched_switch", process_sample_sched_switch },
1542#ifdef SUPPORT_OLD_POWER_EVENTS
1543 { "power:power_start", process_sample_power_start },
1544 { "power:power_end", process_sample_power_end },
1545 { "power:power_frequency", process_sample_power_frequency },
1546#endif
b97b59b9
SF
1547
1548 { "syscalls:sys_enter_read", process_enter_read },
1549 { "syscalls:sys_enter_pread64", process_enter_read },
1550 { "syscalls:sys_enter_readv", process_enter_read },
1551 { "syscalls:sys_enter_preadv", process_enter_read },
1552 { "syscalls:sys_enter_write", process_enter_write },
1553 { "syscalls:sys_enter_pwrite64", process_enter_write },
1554 { "syscalls:sys_enter_writev", process_enter_write },
1555 { "syscalls:sys_enter_pwritev", process_enter_write },
1556 { "syscalls:sys_enter_sync", process_enter_sync },
1557 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1558 { "syscalls:sys_enter_fsync", process_enter_sync },
1559 { "syscalls:sys_enter_msync", process_enter_sync },
1560 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1561 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1562 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1563 { "syscalls:sys_enter_sendto", process_enter_tx },
1564 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1565 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1566 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1567 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1568 { "syscalls:sys_enter_poll", process_enter_poll },
1569 { "syscalls:sys_enter_ppoll", process_enter_poll },
1570 { "syscalls:sys_enter_pselect6", process_enter_poll },
1571 { "syscalls:sys_enter_select", process_enter_poll },
1572
1573 { "syscalls:sys_exit_read", process_exit_read },
1574 { "syscalls:sys_exit_pread64", process_exit_read },
1575 { "syscalls:sys_exit_readv", process_exit_read },
1576 { "syscalls:sys_exit_preadv", process_exit_read },
1577 { "syscalls:sys_exit_write", process_exit_write },
1578 { "syscalls:sys_exit_pwrite64", process_exit_write },
1579 { "syscalls:sys_exit_writev", process_exit_write },
1580 { "syscalls:sys_exit_pwritev", process_exit_write },
1581 { "syscalls:sys_exit_sync", process_exit_sync },
1582 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1583 { "syscalls:sys_exit_fsync", process_exit_sync },
1584 { "syscalls:sys_exit_msync", process_exit_sync },
1585 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1586 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1587 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1588 { "syscalls:sys_exit_sendto", process_exit_tx },
1589 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1590 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1591 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1592 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1593 { "syscalls:sys_exit_poll", process_exit_poll },
1594 { "syscalls:sys_exit_ppoll", process_exit_poll },
1595 { "syscalls:sys_exit_pselect6", process_exit_poll },
1596 { "syscalls:sys_exit_select", process_exit_poll },
5936678e 1597 };
f5fc1412
JO
1598 struct perf_data_file file = {
1599 .path = input_name,
1600 .mode = PERF_DATA_MODE_READ,
1601 };
1602
1603 struct perf_session *session = perf_session__new(&file, false,
985b12e6 1604 &tchart->tool);
d549c769 1605 int ret = -EINVAL;
10274989 1606
94c744b6 1607 if (session == NULL)
52e02834 1608 return -1;
94c744b6 1609
0a7e6d1b 1610 symbol__init(&session->header.env);
dc5c8190 1611
58b9a18e
SF
1612 (void)perf_header__process_sections(&session->header,
1613 perf_data_file__fd(session->file),
1614 tchart,
1615 process_header);
1616
d549c769
ACM
1617 if (!perf_session__has_traces(session, "timechart record"))
1618 goto out_delete;
1619
5936678e
JO
1620 if (perf_session__set_tracepoints_handlers(session,
1621 power_tracepoints)) {
1622 pr_err("Initializing session tracepoint handlers failed\n");
1623 goto out_delete;
1624 }
1625
985b12e6 1626 ret = perf_session__process_events(session, &tchart->tool);
5cbd0805 1627 if (ret)
94c744b6 1628 goto out_delete;
10274989 1629
985b12e6 1630 end_sample_processing(tchart);
10274989 1631
5e22f6d2 1632 sort_pids(tchart);
10274989 1633
985b12e6 1634 write_svg_file(tchart, output_name);
10274989 1635
6beba7ad 1636 pr_info("Written %2.1f seconds of trace to %s.\n",
985b12e6 1637 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
94c744b6
ACM
1638out_delete:
1639 perf_session__delete(session);
1640 return ret;
10274989
AV
1641}
1642
b97b59b9
SF
1643static int timechart__io_record(int argc, const char **argv)
1644{
1645 unsigned int rec_argc, i;
1646 const char **rec_argv;
1647 const char **p;
1648 char *filter = NULL;
1649
1650 const char * const common_args[] = {
1651 "record", "-a", "-R", "-c", "1",
1652 };
1653 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1654
1655 const char * const disk_events[] = {
1656 "syscalls:sys_enter_read",
1657 "syscalls:sys_enter_pread64",
1658 "syscalls:sys_enter_readv",
1659 "syscalls:sys_enter_preadv",
1660 "syscalls:sys_enter_write",
1661 "syscalls:sys_enter_pwrite64",
1662 "syscalls:sys_enter_writev",
1663 "syscalls:sys_enter_pwritev",
1664 "syscalls:sys_enter_sync",
1665 "syscalls:sys_enter_sync_file_range",
1666 "syscalls:sys_enter_fsync",
1667 "syscalls:sys_enter_msync",
1668
1669 "syscalls:sys_exit_read",
1670 "syscalls:sys_exit_pread64",
1671 "syscalls:sys_exit_readv",
1672 "syscalls:sys_exit_preadv",
1673 "syscalls:sys_exit_write",
1674 "syscalls:sys_exit_pwrite64",
1675 "syscalls:sys_exit_writev",
1676 "syscalls:sys_exit_pwritev",
1677 "syscalls:sys_exit_sync",
1678 "syscalls:sys_exit_sync_file_range",
1679 "syscalls:sys_exit_fsync",
1680 "syscalls:sys_exit_msync",
1681 };
1682 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1683
1684 const char * const net_events[] = {
1685 "syscalls:sys_enter_recvfrom",
1686 "syscalls:sys_enter_recvmmsg",
1687 "syscalls:sys_enter_recvmsg",
1688 "syscalls:sys_enter_sendto",
1689 "syscalls:sys_enter_sendmsg",
1690 "syscalls:sys_enter_sendmmsg",
1691
1692 "syscalls:sys_exit_recvfrom",
1693 "syscalls:sys_exit_recvmmsg",
1694 "syscalls:sys_exit_recvmsg",
1695 "syscalls:sys_exit_sendto",
1696 "syscalls:sys_exit_sendmsg",
1697 "syscalls:sys_exit_sendmmsg",
1698 };
1699 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1700
1701 const char * const poll_events[] = {
1702 "syscalls:sys_enter_epoll_pwait",
1703 "syscalls:sys_enter_epoll_wait",
1704 "syscalls:sys_enter_poll",
1705 "syscalls:sys_enter_ppoll",
1706 "syscalls:sys_enter_pselect6",
1707 "syscalls:sys_enter_select",
1708
1709 "syscalls:sys_exit_epoll_pwait",
1710 "syscalls:sys_exit_epoll_wait",
1711 "syscalls:sys_exit_poll",
1712 "syscalls:sys_exit_ppoll",
1713 "syscalls:sys_exit_pselect6",
1714 "syscalls:sys_exit_select",
1715 };
1716 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1717
1718 rec_argc = common_args_nr +
1719 disk_events_nr * 4 +
1720 net_events_nr * 4 +
1721 poll_events_nr * 4 +
1722 argc;
1723 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1724
1725 if (rec_argv == NULL)
1726 return -ENOMEM;
1727
1728 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1729 return -ENOMEM;
1730
1731 p = rec_argv;
1732 for (i = 0; i < common_args_nr; i++)
1733 *p++ = strdup(common_args[i]);
1734
1735 for (i = 0; i < disk_events_nr; i++) {
1736 if (!is_valid_tracepoint(disk_events[i])) {
1737 rec_argc -= 4;
1738 continue;
1739 }
1740
1741 *p++ = "-e";
1742 *p++ = strdup(disk_events[i]);
1743 *p++ = "--filter";
1744 *p++ = filter;
1745 }
1746 for (i = 0; i < net_events_nr; i++) {
1747 if (!is_valid_tracepoint(net_events[i])) {
1748 rec_argc -= 4;
1749 continue;
1750 }
1751
1752 *p++ = "-e";
1753 *p++ = strdup(net_events[i]);
1754 *p++ = "--filter";
1755 *p++ = filter;
1756 }
1757 for (i = 0; i < poll_events_nr; i++) {
1758 if (!is_valid_tracepoint(poll_events[i])) {
1759 rec_argc -= 4;
1760 continue;
1761 }
1762
1763 *p++ = "-e";
1764 *p++ = strdup(poll_events[i]);
1765 *p++ = "--filter";
1766 *p++ = filter;
1767 }
1768
1769 for (i = 0; i < (unsigned int)argc; i++)
1770 *p++ = argv[i];
1771
1772 return cmd_record(rec_argc, rec_argv, NULL);
1773}
1774
1775
985b12e6 1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1777{
367b3152
SF
1778 unsigned int rec_argc, i, j;
1779 const char **rec_argv;
1780 const char **p;
1781 unsigned int record_elems;
1782
1783 const char * const common_args[] = {
4a4d371a 1784 "record", "-a", "-R", "-c", "1",
367b3152
SF
1785 };
1786 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
6f8d67fa
SF
1788 const char * const backtrace_args[] = {
1789 "-g",
1790 };
1791 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
367b3152
SF
1793 const char * const power_args[] = {
1794 "-e", "power:cpu_frequency",
1795 "-e", "power:cpu_idle",
1796 };
1797 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799 const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1801 "-e", "power:power_start",
1802 "-e", "power:power_end",
1803 "-e", "power:power_frequency",
73bdc715 1804#endif
367b3152
SF
1805 };
1806 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808 const char * const tasks_args[] = {
73bdc715
ACM
1809 "-e", "sched:sched_wakeup",
1810 "-e", "sched:sched_switch",
1811 };
367b3152 1812 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815 if (!is_valid_tracepoint("power:cpu_idle") &&
1816 is_valid_tracepoint("power:power_start")) {
1817 use_old_power_events = 1;
367b3152
SF
1818 power_args_nr = 0;
1819 } else {
1820 old_power_args_nr = 0;
20c457b8
TR
1821 }
1822#endif
3c09eebd 1823
985b12e6 1824 if (tchart->power_only)
367b3152
SF
1825 tasks_args_nr = 0;
1826
985b12e6 1827 if (tchart->tasks_only) {
367b3152
SF
1828 power_args_nr = 0;
1829 old_power_args_nr = 0;
1830 }
1831
985b12e6 1832 if (!tchart->with_backtrace)
6f8d67fa
SF
1833 backtrace_args_no = 0;
1834
367b3152 1835 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1836 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1837
1838 rec_argc = record_elems + argc;
3c09eebd
AV
1839 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
ce47dc56
CS
1841 if (rec_argv == NULL)
1842 return -ENOMEM;
1843
367b3152
SF
1844 p = rec_argv;
1845 for (i = 0; i < common_args_nr; i++)
1846 *p++ = strdup(common_args[i]);
1847
6f8d67fa
SF
1848 for (i = 0; i < backtrace_args_no; i++)
1849 *p++ = strdup(backtrace_args[i]);
1850
367b3152
SF
1851 for (i = 0; i < tasks_args_nr; i++)
1852 *p++ = strdup(tasks_args[i]);
1853
1854 for (i = 0; i < power_args_nr; i++)
1855 *p++ = strdup(power_args[i]);
3c09eebd 1856
367b3152
SF
1857 for (i = 0; i < old_power_args_nr; i++)
1858 *p++ = strdup(old_power_args[i]);
3c09eebd 1859
263f89bf 1860 for (j = 0; j < (unsigned int)argc; j++)
367b3152
SF
1861 *p++ = argv[j];
1862
1863 return cmd_record(rec_argc, rec_argv, NULL);
3c09eebd
AV
1864}
1865
bbe2987b 1866static int
1d037ca1
IT
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868 int __maybe_unused unset)
bbe2987b
AV
1869{
1870 if (arg)
1871 add_process_filter(arg);
1872 return 0;
1873}
1874
e57a2dff
SF
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877 int __maybe_unused unset)
1878{
1879 unsigned long duration = strtoul(arg, NULL, 0);
1880
1881 if (svg_highlight || svg_highlight_name)
1882 return -1;
1883
1884 if (duration)
1885 svg_highlight = duration;
1886 else
1887 svg_highlight_name = strdup(arg);
1888
1889 return 0;
1890}
1891
d243144a
SF
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895 char unit = 'n';
1896 u64 *value = opt->value;
1897
1898 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899 switch (unit) {
1900 case 'm':
1901 *value *= 1000000;
1902 break;
1903 case 'u':
1904 *value *= 1000;
1905 break;
1906 case 'n':
1907 break;
1908 default:
1909 return -1;
1910 }
1911 }
1912
1913 return 0;
1914}
1915
73bdc715
ACM
1916int cmd_timechart(int argc, const char **argv,
1917 const char *prefix __maybe_unused)
1918{
985b12e6
ACM
1919 struct timechart tchart = {
1920 .tool = {
1921 .comm = process_comm_event,
1922 .fork = process_fork_event,
1923 .exit = process_exit_event,
1924 .sample = process_sample_event,
0a8cb85c 1925 .ordered_events = true,
985b12e6
ACM
1926 },
1927 .proc_num = 15,
d243144a
SF
1928 .min_time = 1000000,
1929 .merge_dist = 1000,
985b12e6 1930 };
73bdc715 1931 const char *output_name = "output.svg";
367b3152 1932 const struct option timechart_options[] = {
73bdc715
ACM
1933 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1934 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1935 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
e57a2dff
SF
1936 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1937 "highlight tasks. Pass duration in ns or process name.",
1938 parse_highlight),
985b12e6
ACM
1939 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1940 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
c87097d3 1941 "output processes data only"),
bbe2987b
AV
1942 OPT_CALLBACK('p', "process", NULL, "process",
1943 "process selector. Pass a pid or process name.",
1944 parse_process),
ec5761ea
DA
1945 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1946 "Look for files with symbols relative to this directory"),
985b12e6 1947 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1948 "min. number of tasks to print"),
c5079997
SF
1949 OPT_BOOLEAN('t', "topology", &tchart.topology,
1950 "sort CPUs according to topology"),
d243144a
SF
1951 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1952 "skip EAGAIN errors"),
1953 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1954 "all IO faster than min-time will visually appear longer",
1955 parse_time),
1956 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1957 "merge events that are merge-dist us apart",
1958 parse_time),
10274989 1959 OPT_END()
73bdc715
ACM
1960 };
1961 const char * const timechart_usage[] = {
1962 "perf timechart [<options>] {record}",
1963 NULL
1964 };
10274989 1965
e5b2c207 1966 const struct option timechart_record_options[] = {
985b12e6
ACM
1967 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1968 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
367b3152 1969 "output processes data only"),
b97b59b9
SF
1970 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971 "record only IO data"),
985b12e6 1972 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
367b3152
SF
1973 OPT_END()
1974 };
e5b2c207 1975 const char * const timechart_record_usage[] = {
367b3152
SF
1976 "perf timechart record [<options>]",
1977 NULL
1978 };
1979 argc = parse_options(argc, argv, timechart_options, timechart_usage,
3c09eebd 1980 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1981
985b12e6 1982 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1983 pr_err("-P and -T options cannot be used at the same time.\n");
1984 return -1;
1985 }
1986
367b3152 1987 if (argc && !strncmp(argv[0], "rec", 3)) {
e5b2c207
NK
1988 argc = parse_options(argc, argv, timechart_record_options,
1989 timechart_record_usage,
367b3152
SF
1990 PARSE_OPT_STOP_AT_NON_OPTION);
1991
985b12e6 1992 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1993 pr_err("-P and -T options cannot be used at the same time.\n");
1994 return -1;
1995 }
1996
b97b59b9
SF
1997 if (tchart.io_only)
1998 return timechart__io_record(argc, argv);
1999 else
2000 return timechart__record(&tchart, argc, argv);
367b3152
SF
2001 } else if (argc)
2002 usage_with_options(timechart_usage, timechart_options);
10274989
AV
2003
2004 setup_pager();
2005
985b12e6 2006 return __cmd_timechart(&tchart, output_name);
10274989 2007}
This page took 0.346764 seconds and 5 git commands to generate.