Merge tag 'kvm-arm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-its.c
CommitLineData
59c5ab40
AP
1/*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/cpu.h>
21#include <linux/kvm.h>
22#include <linux/kvm_host.h>
23#include <linux/interrupt.h>
424c3383 24#include <linux/list.h>
1085fdc6 25#include <linux/uaccess.h>
59c5ab40
AP
26
27#include <linux/irqchip/arm-gic-v3.h>
28
29#include <asm/kvm_emulate.h>
30#include <asm/kvm_arm.h>
31#include <asm/kvm_mmu.h>
32
33#include "vgic.h"
34#include "vgic-mmio.h"
35
df9f58fb
AP
36/*
37 * Creates a new (reference to a) struct vgic_irq for a given LPI.
38 * If this LPI is already mapped on another ITS, we increase its refcount
39 * and return a pointer to the existing structure.
40 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41 * This function returns a pointer to the _unlocked_ structure.
42 */
43static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44{
45 struct vgic_dist *dist = &kvm->arch.vgic;
46 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48 /* In this case there is no put, since we keep the reference. */
49 if (irq)
50 return irq;
51
52 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 if (!irq)
54 return NULL;
55
56 INIT_LIST_HEAD(&irq->lpi_list);
57 INIT_LIST_HEAD(&irq->ap_list);
58 spin_lock_init(&irq->irq_lock);
59
60 irq->config = VGIC_CONFIG_EDGE;
61 kref_init(&irq->refcount);
62 irq->intid = intid;
63
64 spin_lock(&dist->lpi_list_lock);
65
66 /*
67 * There could be a race with another vgic_add_lpi(), so we need to
68 * check that we don't add a second list entry with the same LPI.
69 */
70 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 if (oldirq->intid != intid)
72 continue;
73
74 /* Someone was faster with adding this LPI, lets use that. */
75 kfree(irq);
76 irq = oldirq;
77
78 /*
79 * This increases the refcount, the caller is expected to
80 * call vgic_put_irq() on the returned pointer once it's
81 * finished with the IRQ.
82 */
d97594e6 83 vgic_get_irq_kref(irq);
df9f58fb
AP
84
85 goto out_unlock;
86 }
87
88 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 dist->lpi_list_count++;
90
91out_unlock:
92 spin_unlock(&dist->lpi_list_lock);
93
94 return irq;
95}
96
424c3383
AP
97struct its_device {
98 struct list_head dev_list;
99
100 /* the head for the list of ITTEs */
101 struct list_head itt_head;
102 u32 device_id;
103};
104
105#define COLLECTION_NOT_MAPPED ((u32)~0)
106
107struct its_collection {
108 struct list_head coll_list;
109
110 u32 collection_id;
111 u32 target_addr;
112};
113
114#define its_is_collection_mapped(coll) ((coll) && \
115 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117struct its_itte {
118 struct list_head itte_list;
119
3802411d 120 struct vgic_irq *irq;
424c3383
AP
121 struct its_collection *collection;
122 u32 lpi;
123 u32 event_id;
124};
125
df9f58fb
AP
126/*
127 * Find and returns a device in the device table for an ITS.
128 * Must be called with the its_lock mutex held.
129 */
130static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131{
132 struct its_device *device;
133
134 list_for_each_entry(device, &its->device_list, dev_list)
135 if (device_id == device->device_id)
136 return device;
137
138 return NULL;
139}
140
141/*
142 * Find and returns an interrupt translation table entry (ITTE) for a given
143 * Device ID/Event ID pair on an ITS.
144 * Must be called with the its_lock mutex held.
145 */
146static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 u32 event_id)
148{
149 struct its_device *device;
150 struct its_itte *itte;
151
152 device = find_its_device(its, device_id);
153 if (device == NULL)
154 return NULL;
155
156 list_for_each_entry(itte, &device->itt_head, itte_list)
157 if (itte->event_id == event_id)
158 return itte;
159
160 return NULL;
161}
162
163/* To be used as an iterator this macro misses the enclosing parentheses */
164#define for_each_lpi_its(dev, itte, its) \
165 list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
424c3383
AP
168/*
169 * We only implement 48 bits of PA at the moment, although the ITS
170 * supports more. Let's be restrictive here.
171 */
df9f58fb 172#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
424c3383 173#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
33d3bc95 174#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
f9f77af9
AP
175#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
176
177#define GIC_LPI_OFFSET 8192
178
df9f58fb
AP
179/*
180 * Finds and returns a collection in the ITS collection table.
181 * Must be called with the its_lock mutex held.
182 */
183static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184{
185 struct its_collection *collection;
186
187 list_for_each_entry(collection, &its->collection_list, coll_list) {
188 if (coll_id == collection->collection_id)
189 return collection;
190 }
191
192 return NULL;
193}
194
f9f77af9
AP
195#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
196#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
197
198/*
199 * Reads the configuration data for a given LPI from guest memory and
200 * updates the fields in struct vgic_irq.
201 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202 * VCPU. Unconditionally applies if filter_vcpu is NULL.
203 */
204static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 struct kvm_vcpu *filter_vcpu)
206{
207 u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 u8 prop;
209 int ret;
210
211 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 &prop, 1);
213
214 if (ret)
215 return ret;
216
217 spin_lock(&irq->irq_lock);
218
219 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 irq->priority = LPI_PROP_PRIORITY(prop);
221 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223 vgic_queue_irq_unlock(kvm, irq);
224 } else {
225 spin_unlock(&irq->irq_lock);
226 }
227
228 return 0;
229}
33d3bc95
AP
230
231/*
232 * Create a snapshot of the current LPI list, so that we can enumerate all
233 * LPIs without holding any lock.
234 * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235 */
236static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237{
238 struct vgic_dist *dist = &kvm->arch.vgic;
239 struct vgic_irq *irq;
240 u32 *intids;
241 int irq_count = dist->lpi_list_count, i = 0;
242
243 /*
244 * We use the current value of the list length, which may change
245 * after the kmalloc. We don't care, because the guest shouldn't
246 * change anything while the command handling is still running,
247 * and in the worst case we would miss a new IRQ, which one wouldn't
248 * expect to be covered by this command anyway.
249 */
250 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 if (!intids)
252 return -ENOMEM;
253
254 spin_lock(&dist->lpi_list_lock);
255 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 /* We don't need to "get" the IRQ, as we hold the list lock. */
257 intids[i] = irq->intid;
258 if (++i == irq_count)
259 break;
260 }
261 spin_unlock(&dist->lpi_list_lock);
262
263 *intid_ptr = intids;
264 return irq_count;
265}
266
df9f58fb
AP
267/*
268 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269 * is targeting) to the VGIC's view, which deals with target VCPUs.
270 * Needs to be called whenever either the collection for a LPIs has
271 * changed or the collection itself got retargeted.
272 */
273static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274{
275 struct kvm_vcpu *vcpu;
276
277 if (!its_is_collection_mapped(itte->collection))
278 return;
279
280 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282 spin_lock(&itte->irq->irq_lock);
283 itte->irq->target_vcpu = vcpu;
284 spin_unlock(&itte->irq->irq_lock);
285}
286
287/*
288 * Updates the target VCPU for every LPI targeting this collection.
289 * Must be called with the its_lock mutex held.
290 */
291static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 struct its_collection *coll)
293{
294 struct its_device *device;
295 struct its_itte *itte;
296
297 for_each_lpi_its(device, itte, its) {
298 if (!itte->collection || coll != itte->collection)
299 continue;
300
301 update_affinity_itte(kvm, itte);
302 }
303}
304
305static u32 max_lpis_propbaser(u64 propbaser)
306{
307 int nr_idbits = (propbaser & 0x1f) + 1;
308
309 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310}
311
33d3bc95
AP
312/*
313 * Scan the whole LPI pending table and sync the pending bit in there
314 * with our own data structures. This relies on the LPI being
315 * mapped before.
316 */
317static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318{
319 gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 struct vgic_irq *irq;
321 int last_byte_offset = -1;
322 int ret = 0;
323 u32 *intids;
324 int nr_irqs, i;
325
326 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327 if (nr_irqs < 0)
328 return nr_irqs;
329
330 for (i = 0; i < nr_irqs; i++) {
331 int byte_offset, bit_nr;
332 u8 pendmask;
333
334 byte_offset = intids[i] / BITS_PER_BYTE;
335 bit_nr = intids[i] % BITS_PER_BYTE;
336
337 /*
338 * For contiguously allocated LPIs chances are we just read
339 * this very same byte in the last iteration. Reuse that.
340 */
341 if (byte_offset != last_byte_offset) {
342 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 &pendmask, 1);
344 if (ret) {
345 kfree(intids);
346 return ret;
347 }
348 last_byte_offset = byte_offset;
349 }
350
351 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 spin_lock(&irq->irq_lock);
353 irq->pending = pendmask & (1U << bit_nr);
354 vgic_queue_irq_unlock(vcpu->kvm, irq);
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 kfree(intids);
359
360 return ret;
361}
424c3383
AP
362
363static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364 struct vgic_its *its,
365 gpa_t addr, unsigned int len)
366{
367 u32 reg = 0;
368
369 mutex_lock(&its->cmd_lock);
370 if (its->creadr == its->cwriter)
371 reg |= GITS_CTLR_QUIESCENT;
372 if (its->enabled)
373 reg |= GITS_CTLR_ENABLE;
374 mutex_unlock(&its->cmd_lock);
375
376 return reg;
377}
378
379static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380 gpa_t addr, unsigned int len,
381 unsigned long val)
382{
383 its->enabled = !!(val & GITS_CTLR_ENABLE);
384}
385
386static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387 struct vgic_its *its,
388 gpa_t addr, unsigned int len)
389{
390 u64 reg = GITS_TYPER_PLPIS;
391
392 /*
393 * We use linear CPU numbers for redistributor addressing,
394 * so GITS_TYPER.PTA is 0.
395 * Also we force all PROPBASER registers to be the same, so
396 * CommonLPIAff is 0 as well.
397 * To avoid memory waste in the guest, we keep the number of IDBits and
398 * DevBits low - as least for the time being.
399 */
400 reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401 reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403 return extract_bytes(reg, addr & 7, len);
404}
405
406static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407 struct vgic_its *its,
408 gpa_t addr, unsigned int len)
409{
410 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411}
412
413static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414 struct vgic_its *its,
415 gpa_t addr, unsigned int len)
416{
417 switch (addr & 0xffff) {
418 case GITS_PIDR0:
419 return 0x92; /* part number, bits[7:0] */
420 case GITS_PIDR1:
421 return 0xb4; /* part number, bits[11:8] */
422 case GITS_PIDR2:
423 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424 case GITS_PIDR4:
425 return 0x40; /* This is a 64K software visible page */
426 /* The following are the ID registers for (any) GIC. */
427 case GITS_CIDR0:
428 return 0x0d;
429 case GITS_CIDR1:
430 return 0xf0;
431 case GITS_CIDR2:
432 return 0x05;
433 case GITS_CIDR3:
434 return 0xb1;
435 }
436
437 return 0;
438}
439
2891a7df
AP
440/*
441 * Find the target VCPU and the LPI number for a given devid/eventid pair
442 * and make this IRQ pending, possibly injecting it.
443 * Must be called with the its_lock mutex held.
444 */
445static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
446 u32 devid, u32 eventid)
447{
448 struct its_itte *itte;
449
450 if (!its->enabled)
451 return;
452
453 itte = find_itte(its, devid, eventid);
454 /* Triggering an unmapped IRQ gets silently dropped. */
455 if (itte && its_is_collection_mapped(itte->collection)) {
456 struct kvm_vcpu *vcpu;
457
458 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
459 if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
460 spin_lock(&itte->irq->irq_lock);
461 itte->irq->pending = true;
462 vgic_queue_irq_unlock(kvm, itte->irq);
463 }
464 }
465}
466
467/*
468 * Queries the KVM IO bus framework to get the ITS pointer from the given
469 * doorbell address.
470 * We then call vgic_its_trigger_msi() with the decoded data.
471 */
472int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473{
474 u64 address;
475 struct kvm_io_device *kvm_io_dev;
476 struct vgic_io_device *iodev;
477
478 if (!vgic_has_its(kvm))
479 return -ENODEV;
480
481 if (!(msi->flags & KVM_MSI_VALID_DEVID))
482 return -EINVAL;
483
484 address = (u64)msi->address_hi << 32 | msi->address_lo;
485
486 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
487 if (!kvm_io_dev)
488 return -ENODEV;
489
490 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
491
492 mutex_lock(&iodev->its->its_lock);
493 vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
494 mutex_unlock(&iodev->its->its_lock);
495
496 return 0;
497}
498
424c3383
AP
499/* Requires the its_lock to be held. */
500static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
501{
502 list_del(&itte->itte_list);
3802411d
AP
503
504 /* This put matches the get in vgic_add_lpi. */
505 vgic_put_irq(kvm, itte->irq);
506
424c3383
AP
507 kfree(itte);
508}
509
df9f58fb
AP
510static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
511{
512 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
513}
514
515#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
516#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
517#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
518#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
519#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
520#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
521#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
522
523/*
524 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
525 * Must be called with the its_lock mutex held.
526 */
527static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
528 u64 *its_cmd)
529{
530 u32 device_id = its_cmd_get_deviceid(its_cmd);
531 u32 event_id = its_cmd_get_id(its_cmd);
532 struct its_itte *itte;
533
534
535 itte = find_itte(its, device_id, event_id);
536 if (itte && itte->collection) {
537 /*
538 * Though the spec talks about removing the pending state, we
539 * don't bother here since we clear the ITTE anyway and the
540 * pending state is a property of the ITTE struct.
541 */
542 its_free_itte(kvm, itte);
543 return 0;
544 }
545
546 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
547}
548
549/*
550 * The MOVI command moves an ITTE to a different collection.
551 * Must be called with the its_lock mutex held.
552 */
553static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
554 u64 *its_cmd)
555{
556 u32 device_id = its_cmd_get_deviceid(its_cmd);
557 u32 event_id = its_cmd_get_id(its_cmd);
558 u32 coll_id = its_cmd_get_collection(its_cmd);
559 struct kvm_vcpu *vcpu;
560 struct its_itte *itte;
561 struct its_collection *collection;
562
563 itte = find_itte(its, device_id, event_id);
564 if (!itte)
565 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
566
567 if (!its_is_collection_mapped(itte->collection))
568 return E_ITS_MOVI_UNMAPPED_COLLECTION;
569
570 collection = find_collection(its, coll_id);
571 if (!its_is_collection_mapped(collection))
572 return E_ITS_MOVI_UNMAPPED_COLLECTION;
573
574 itte->collection = collection;
575 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
576
577 spin_lock(&itte->irq->irq_lock);
578 itte->irq->target_vcpu = vcpu;
579 spin_unlock(&itte->irq->irq_lock);
580
581 return 0;
582}
583
6d03a68f
MZ
584/*
585 * Check whether an ID can be stored into the corresponding guest table.
586 * For a direct table this is pretty easy, but gets a bit nasty for
587 * indirect tables. We check whether the resulting guest physical address
588 * is actually valid (covered by a memslot and guest accessbible).
589 * For this we have to read the respective first level entry.
590 */
591static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
592{
593 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
594 int index;
595 u64 indirect_ptr;
596 gfn_t gfn;
597
598 if (!(baser & GITS_BASER_INDIRECT)) {
599 phys_addr_t addr;
600
601 if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
602 return false;
603
604 addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
605 gfn = addr >> PAGE_SHIFT;
606
607 return kvm_is_visible_gfn(its->dev->kvm, gfn);
608 }
609
610 /* calculate and check the index into the 1st level */
611 index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
612 if (index >= (l1_tbl_size / sizeof(u64)))
613 return false;
614
615 /* Each 1st level entry is represented by a 64-bit value. */
616 if (kvm_read_guest(its->dev->kvm,
617 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
618 &indirect_ptr, sizeof(indirect_ptr)))
619 return false;
620
621 indirect_ptr = le64_to_cpu(indirect_ptr);
622
623 /* check the valid bit of the first level entry */
624 if (!(indirect_ptr & BIT_ULL(63)))
625 return false;
626
627 /*
628 * Mask the guest physical address and calculate the frame number.
629 * Any address beyond our supported 48 bits of PA will be caught
630 * by the actual check in the final step.
631 */
632 indirect_ptr &= GENMASK_ULL(51, 16);
633
634 /* Find the address of the actual entry */
635 index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
636 indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
637 gfn = indirect_ptr >> PAGE_SHIFT;
638
639 return kvm_is_visible_gfn(its->dev->kvm, gfn);
640}
641
17a21f58
MZ
642static int vgic_its_alloc_collection(struct vgic_its *its,
643 struct its_collection **colp,
df9f58fb
AP
644 u32 coll_id)
645{
17a21f58
MZ
646 struct its_collection *collection;
647
6d03a68f
MZ
648 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
649 return E_ITS_MAPC_COLLECTION_OOR;
650
17a21f58
MZ
651 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
652
df9f58fb
AP
653 collection->collection_id = coll_id;
654 collection->target_addr = COLLECTION_NOT_MAPPED;
655
656 list_add_tail(&collection->coll_list, &its->collection_list);
17a21f58
MZ
657 *colp = collection;
658
659 return 0;
660}
661
662static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
663{
664 struct its_collection *collection;
665 struct its_device *device;
666 struct its_itte *itte;
667
668 /*
669 * Clearing the mapping for that collection ID removes the
670 * entry from the list. If there wasn't any before, we can
671 * go home early.
672 */
673 collection = find_collection(its, coll_id);
674 if (!collection)
675 return;
676
677 for_each_lpi_its(device, itte, its)
678 if (itte->collection &&
679 itte->collection->collection_id == coll_id)
680 itte->collection = NULL;
681
682 list_del(&collection->coll_list);
683 kfree(collection);
df9f58fb
AP
684}
685
686/*
687 * The MAPTI and MAPI commands map LPIs to ITTEs.
688 * Must be called with its_lock mutex held.
689 */
690static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
a3e7aa27 691 u64 *its_cmd)
df9f58fb
AP
692{
693 u32 device_id = its_cmd_get_deviceid(its_cmd);
694 u32 event_id = its_cmd_get_id(its_cmd);
695 u32 coll_id = its_cmd_get_collection(its_cmd);
696 struct its_itte *itte;
697 struct its_device *device;
698 struct its_collection *collection, *new_coll = NULL;
699 int lpi_nr;
700
701 device = find_its_device(its, device_id);
702 if (!device)
703 return E_ITS_MAPTI_UNMAPPED_DEVICE;
704
a3e7aa27 705 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
df9f58fb
AP
706 lpi_nr = its_cmd_get_physical_id(its_cmd);
707 else
708 lpi_nr = event_id;
709 if (lpi_nr < GIC_LPI_OFFSET ||
3a88bded
MZ
710 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
711 return E_ITS_MAPTI_PHYSICALID_OOR;
712
713 collection = find_collection(its, coll_id);
714 if (!collection) {
715 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
716 if (ret)
717 return ret;
718 new_coll = collection;
df9f58fb
AP
719 }
720
721 itte = find_itte(its, device_id, event_id);
722 if (!itte) {
723 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
724 if (!itte) {
3a88bded
MZ
725 if (new_coll)
726 vgic_its_free_collection(its, coll_id);
727 return -ENOMEM;
df9f58fb
AP
728 }
729
730 itte->event_id = event_id;
731 list_add_tail(&itte->itte_list, &device->itt_head);
732 }
733
df9f58fb
AP
734 itte->collection = collection;
735 itte->lpi = lpi_nr;
736 itte->irq = vgic_add_lpi(kvm, lpi_nr);
737 update_affinity_itte(kvm, itte);
738
739 /*
740 * We "cache" the configuration table entries in out struct vgic_irq's.
741 * However we only have those structs for mapped IRQs, so we read in
742 * the respective config data from memory here upon mapping the LPI.
743 */
744 update_lpi_config(kvm, itte->irq, NULL);
745
746 return 0;
747}
748
749/* Requires the its_lock to be held. */
750static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
751{
752 struct its_itte *itte, *temp;
753
754 /*
755 * The spec says that unmapping a device with still valid
756 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
757 * since we cannot leave the memory unreferenced.
758 */
759 list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
760 its_free_itte(kvm, itte);
761
762 list_del(&device->dev_list);
763 kfree(device);
764}
765
df9f58fb
AP
766/*
767 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
768 * Must be called with the its_lock mutex held.
769 */
770static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
771 u64 *its_cmd)
772{
773 u32 device_id = its_cmd_get_deviceid(its_cmd);
774 bool valid = its_cmd_get_validbit(its_cmd);
775 struct its_device *device;
776
6d03a68f 777 if (!vgic_its_check_id(its, its->baser_device_table, device_id))
df9f58fb
AP
778 return E_ITS_MAPD_DEVICE_OOR;
779
780 device = find_its_device(its, device_id);
781
782 /*
783 * The spec says that calling MAPD on an already mapped device
784 * invalidates all cached data for this device. We implement this
785 * by removing the mapping and re-establishing it.
786 */
787 if (device)
788 vgic_its_unmap_device(kvm, device);
789
790 /*
791 * The spec does not say whether unmapping a not-mapped device
792 * is an error, so we are done in any case.
793 */
794 if (!valid)
795 return 0;
796
797 device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
798 if (!device)
799 return -ENOMEM;
800
801 device->device_id = device_id;
802 INIT_LIST_HEAD(&device->itt_head);
803
804 list_add_tail(&device->dev_list, &its->device_list);
805
806 return 0;
807}
808
df9f58fb
AP
809/*
810 * The MAPC command maps collection IDs to redistributors.
811 * Must be called with the its_lock mutex held.
812 */
813static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
814 u64 *its_cmd)
815{
816 u16 coll_id;
817 u32 target_addr;
818 struct its_collection *collection;
819 bool valid;
820
821 valid = its_cmd_get_validbit(its_cmd);
822 coll_id = its_cmd_get_collection(its_cmd);
823 target_addr = its_cmd_get_target_addr(its_cmd);
824
825 if (target_addr >= atomic_read(&kvm->online_vcpus))
826 return E_ITS_MAPC_PROCNUM_OOR;
827
df9f58fb 828 if (!valid) {
17a21f58 829 vgic_its_free_collection(its, coll_id);
df9f58fb 830 } else {
17a21f58
MZ
831 collection = find_collection(its, coll_id);
832
df9f58fb 833 if (!collection) {
17a21f58 834 int ret;
df9f58fb 835
17a21f58
MZ
836 ret = vgic_its_alloc_collection(its, &collection,
837 coll_id);
838 if (ret)
839 return ret;
df9f58fb
AP
840 collection->target_addr = target_addr;
841 } else {
842 collection->target_addr = target_addr;
843 update_affinity_collection(kvm, its, collection);
844 }
845 }
846
847 return 0;
848}
849
850/*
851 * The CLEAR command removes the pending state for a particular LPI.
852 * Must be called with the its_lock mutex held.
853 */
854static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
855 u64 *its_cmd)
856{
857 u32 device_id = its_cmd_get_deviceid(its_cmd);
858 u32 event_id = its_cmd_get_id(its_cmd);
859 struct its_itte *itte;
860
861
862 itte = find_itte(its, device_id, event_id);
863 if (!itte)
864 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
865
866 itte->irq->pending = false;
867
868 return 0;
869}
870
871/*
872 * The INV command syncs the configuration bits from the memory table.
873 * Must be called with the its_lock mutex held.
874 */
875static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
876 u64 *its_cmd)
877{
878 u32 device_id = its_cmd_get_deviceid(its_cmd);
879 u32 event_id = its_cmd_get_id(its_cmd);
880 struct its_itte *itte;
881
882
883 itte = find_itte(its, device_id, event_id);
884 if (!itte)
885 return E_ITS_INV_UNMAPPED_INTERRUPT;
886
887 return update_lpi_config(kvm, itte->irq, NULL);
888}
889
890/*
891 * The INVALL command requests flushing of all IRQ data in this collection.
892 * Find the VCPU mapped to that collection, then iterate over the VM's list
893 * of mapped LPIs and update the configuration for each IRQ which targets
894 * the specified vcpu. The configuration will be read from the in-memory
895 * configuration table.
896 * Must be called with the its_lock mutex held.
897 */
898static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
899 u64 *its_cmd)
900{
901 u32 coll_id = its_cmd_get_collection(its_cmd);
902 struct its_collection *collection;
903 struct kvm_vcpu *vcpu;
904 struct vgic_irq *irq;
905 u32 *intids;
906 int irq_count, i;
907
908 collection = find_collection(its, coll_id);
909 if (!its_is_collection_mapped(collection))
910 return E_ITS_INVALL_UNMAPPED_COLLECTION;
911
912 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
913
914 irq_count = vgic_copy_lpi_list(kvm, &intids);
915 if (irq_count < 0)
916 return irq_count;
917
918 for (i = 0; i < irq_count; i++) {
919 irq = vgic_get_irq(kvm, NULL, intids[i]);
920 if (!irq)
921 continue;
922 update_lpi_config(kvm, irq, vcpu);
923 vgic_put_irq(kvm, irq);
924 }
925
926 kfree(intids);
927
928 return 0;
929}
930
931/*
932 * The MOVALL command moves the pending state of all IRQs targeting one
933 * redistributor to another. We don't hold the pending state in the VCPUs,
934 * but in the IRQs instead, so there is really not much to do for us here.
935 * However the spec says that no IRQ must target the old redistributor
936 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
937 * This command affects all LPIs in the system that target that redistributor.
938 */
939static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
940 u64 *its_cmd)
941{
942 struct vgic_dist *dist = &kvm->arch.vgic;
943 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
944 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
945 struct kvm_vcpu *vcpu1, *vcpu2;
946 struct vgic_irq *irq;
947
948 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
949 target2_addr >= atomic_read(&kvm->online_vcpus))
950 return E_ITS_MOVALL_PROCNUM_OOR;
951
952 if (target1_addr == target2_addr)
953 return 0;
954
955 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
956 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
957
958 spin_lock(&dist->lpi_list_lock);
959
960 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
961 spin_lock(&irq->irq_lock);
962
963 if (irq->target_vcpu == vcpu1)
964 irq->target_vcpu = vcpu2;
965
966 spin_unlock(&irq->irq_lock);
967 }
968
969 spin_unlock(&dist->lpi_list_lock);
970
971 return 0;
972}
973
2891a7df
AP
974/*
975 * The INT command injects the LPI associated with that DevID/EvID pair.
976 * Must be called with the its_lock mutex held.
977 */
978static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
979 u64 *its_cmd)
980{
981 u32 msi_data = its_cmd_get_id(its_cmd);
982 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
983
984 vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
985
986 return 0;
987}
988
df9f58fb
AP
989/*
990 * This function is called with the its_cmd lock held, but the ITS data
991 * structure lock dropped.
992 */
424c3383
AP
993static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
994 u64 *its_cmd)
995{
df9f58fb
AP
996 int ret = -ENODEV;
997
998 mutex_lock(&its->its_lock);
a3e7aa27 999 switch (its_cmd_get_command(its_cmd)) {
df9f58fb
AP
1000 case GITS_CMD_MAPD:
1001 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1002 break;
1003 case GITS_CMD_MAPC:
1004 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1005 break;
1006 case GITS_CMD_MAPI:
a3e7aa27 1007 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1008 break;
1009 case GITS_CMD_MAPTI:
a3e7aa27 1010 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1011 break;
1012 case GITS_CMD_MOVI:
1013 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1014 break;
1015 case GITS_CMD_DISCARD:
1016 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1017 break;
1018 case GITS_CMD_CLEAR:
1019 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1020 break;
1021 case GITS_CMD_MOVALL:
1022 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1023 break;
2891a7df
AP
1024 case GITS_CMD_INT:
1025 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1026 break;
df9f58fb
AP
1027 case GITS_CMD_INV:
1028 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1029 break;
1030 case GITS_CMD_INVALL:
1031 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1032 break;
1033 case GITS_CMD_SYNC:
1034 /* we ignore this command: we are in sync all of the time */
1035 ret = 0;
1036 break;
1037 }
1038 mutex_unlock(&its->its_lock);
1039
1040 return ret;
424c3383
AP
1041}
1042
1043static u64 vgic_sanitise_its_baser(u64 reg)
1044{
1045 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1046 GITS_BASER_SHAREABILITY_SHIFT,
1047 vgic_sanitise_shareability);
1048 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1049 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1050 vgic_sanitise_inner_cacheability);
1051 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1052 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1053 vgic_sanitise_outer_cacheability);
1054
1055 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1056 reg &= ~GENMASK_ULL(15, 12);
1057
1058 /* We support only one (ITS) page size: 64K */
1059 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1060
1061 return reg;
1062}
1063
1064static u64 vgic_sanitise_its_cbaser(u64 reg)
1065{
1066 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1067 GITS_CBASER_SHAREABILITY_SHIFT,
1068 vgic_sanitise_shareability);
1069 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1070 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1071 vgic_sanitise_inner_cacheability);
1072 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1073 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1074 vgic_sanitise_outer_cacheability);
1075
1076 /*
1077 * Sanitise the physical address to be 64k aligned.
1078 * Also limit the physical addresses to 48 bits.
1079 */
1080 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1081
1082 return reg;
1083}
1084
1085static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1086 struct vgic_its *its,
1087 gpa_t addr, unsigned int len)
1088{
1089 return extract_bytes(its->cbaser, addr & 7, len);
1090}
1091
1092static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1093 gpa_t addr, unsigned int len,
1094 unsigned long val)
1095{
1096 /* When GITS_CTLR.Enable is 1, this register is RO. */
1097 if (its->enabled)
1098 return;
1099
1100 mutex_lock(&its->cmd_lock);
1101 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1102 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1103 its->creadr = 0;
1104 /*
1105 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1106 * it to CREADR to make sure we start with an empty command buffer.
1107 */
1108 its->cwriter = its->creadr;
1109 mutex_unlock(&its->cmd_lock);
1110}
1111
1112#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1113#define ITS_CMD_SIZE 32
1114#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1115
1116/*
1117 * By writing to CWRITER the guest announces new commands to be processed.
1118 * To avoid any races in the first place, we take the its_cmd lock, which
1119 * protects our ring buffer variables, so that there is only one user
1120 * per ITS handling commands at a given time.
1121 */
1122static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1123 gpa_t addr, unsigned int len,
1124 unsigned long val)
1125{
1126 gpa_t cbaser;
1127 u64 cmd_buf[4];
1128 u32 reg;
1129
1130 if (!its)
1131 return;
1132
1133 mutex_lock(&its->cmd_lock);
1134
1135 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1136 reg = ITS_CMD_OFFSET(reg);
1137 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1138 mutex_unlock(&its->cmd_lock);
1139 return;
1140 }
1141
1142 its->cwriter = reg;
1143 cbaser = CBASER_ADDRESS(its->cbaser);
1144
1145 while (its->cwriter != its->creadr) {
1146 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1147 cmd_buf, ITS_CMD_SIZE);
1148 /*
1149 * If kvm_read_guest() fails, this could be due to the guest
1150 * programming a bogus value in CBASER or something else going
1151 * wrong from which we cannot easily recover.
1152 * According to section 6.3.2 in the GICv3 spec we can just
1153 * ignore that command then.
1154 */
1155 if (!ret)
1156 vgic_its_handle_command(kvm, its, cmd_buf);
1157
1158 its->creadr += ITS_CMD_SIZE;
1159 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1160 its->creadr = 0;
1161 }
1162
1163 mutex_unlock(&its->cmd_lock);
1164}
1165
1166static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1167 struct vgic_its *its,
1168 gpa_t addr, unsigned int len)
1169{
1170 return extract_bytes(its->cwriter, addr & 0x7, len);
1171}
1172
1173static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1174 struct vgic_its *its,
1175 gpa_t addr, unsigned int len)
1176{
1177 return extract_bytes(its->creadr, addr & 0x7, len);
1178}
1179
1180#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1181static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1182 struct vgic_its *its,
1183 gpa_t addr, unsigned int len)
1184{
1185 u64 reg;
1186
1187 switch (BASER_INDEX(addr)) {
1188 case 0:
1189 reg = its->baser_device_table;
1190 break;
1191 case 1:
1192 reg = its->baser_coll_table;
1193 break;
1194 default:
1195 reg = 0;
1196 break;
1197 }
1198
1199 return extract_bytes(reg, addr & 7, len);
1200}
1201
1202#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1203static void vgic_mmio_write_its_baser(struct kvm *kvm,
1204 struct vgic_its *its,
1205 gpa_t addr, unsigned int len,
1206 unsigned long val)
1207{
1208 u64 entry_size, device_type;
1209 u64 reg, *regptr, clearbits = 0;
1210
1211 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1212 if (its->enabled)
1213 return;
1214
1215 switch (BASER_INDEX(addr)) {
1216 case 0:
1217 regptr = &its->baser_device_table;
1218 entry_size = 8;
1219 device_type = GITS_BASER_TYPE_DEVICE;
1220 break;
1221 case 1:
1222 regptr = &its->baser_coll_table;
1223 entry_size = 8;
1224 device_type = GITS_BASER_TYPE_COLLECTION;
1225 clearbits = GITS_BASER_INDIRECT;
1226 break;
1227 default:
1228 return;
1229 }
1230
1231 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1232 reg &= ~GITS_BASER_RO_MASK;
1233 reg &= ~clearbits;
1234
1235 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1236 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1237 reg = vgic_sanitise_its_baser(reg);
1238
1239 *regptr = reg;
1240}
1241
59c5ab40
AP
1242#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1243{ \
1244 .reg_offset = off, \
1245 .len = length, \
1246 .access_flags = acc, \
1247 .its_read = rd, \
1248 .its_write = wr, \
1249}
1250
59c5ab40
AP
1251static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1252 gpa_t addr, unsigned int len, unsigned long val)
1253{
1254 /* Ignore */
1255}
1256
1257static struct vgic_register_region its_registers[] = {
1258 REGISTER_ITS_DESC(GITS_CTLR,
424c3383 1259 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
59c5ab40
AP
1260 VGIC_ACCESS_32bit),
1261 REGISTER_ITS_DESC(GITS_IIDR,
424c3383 1262 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
59c5ab40
AP
1263 VGIC_ACCESS_32bit),
1264 REGISTER_ITS_DESC(GITS_TYPER,
424c3383 1265 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
59c5ab40
AP
1266 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1267 REGISTER_ITS_DESC(GITS_CBASER,
424c3383 1268 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
59c5ab40
AP
1269 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1270 REGISTER_ITS_DESC(GITS_CWRITER,
424c3383 1271 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
59c5ab40
AP
1272 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1273 REGISTER_ITS_DESC(GITS_CREADR,
424c3383 1274 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
59c5ab40
AP
1275 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1276 REGISTER_ITS_DESC(GITS_BASER,
424c3383 1277 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
59c5ab40
AP
1278 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1279 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
424c3383 1280 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
59c5ab40
AP
1281 VGIC_ACCESS_32bit),
1282};
1283
33d3bc95
AP
1284/* This is called on setting the LPI enable bit in the redistributor. */
1285void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1286{
1287 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1288 its_sync_lpi_pending_table(vcpu);
1289}
1290
59c5ab40
AP
1291static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1292{
1293 struct vgic_io_device *iodev = &its->iodev;
1294 int ret;
1295
1085fdc6
AP
1296 if (its->initialized)
1297 return 0;
1298
59c5ab40
AP
1299 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1300 return -ENXIO;
1301
1302 iodev->regions = its_registers;
1303 iodev->nr_regions = ARRAY_SIZE(its_registers);
1304 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1305
1306 iodev->base_addr = its->vgic_its_base;
1307 iodev->iodev_type = IODEV_ITS;
1308 iodev->its = its;
1309 mutex_lock(&kvm->slots_lock);
1310 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1311 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1312 mutex_unlock(&kvm->slots_lock);
1313
1085fdc6
AP
1314 if (!ret)
1315 its->initialized = true;
1316
59c5ab40
AP
1317 return ret;
1318}
1085fdc6 1319
424c3383
AP
1320#define INITIAL_BASER_VALUE \
1321 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1322 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1323 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1324 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
1325 GITS_BASER_PAGE_SIZE_64K)
1326
1327#define INITIAL_PROPBASER_VALUE \
1328 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1329 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1330 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1331
1085fdc6
AP
1332static int vgic_its_create(struct kvm_device *dev, u32 type)
1333{
1334 struct vgic_its *its;
1335
1336 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1337 return -ENODEV;
1338
1339 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1340 if (!its)
1341 return -ENOMEM;
1342
424c3383
AP
1343 mutex_init(&its->its_lock);
1344 mutex_init(&its->cmd_lock);
1345
1085fdc6
AP
1346 its->vgic_its_base = VGIC_ADDR_UNDEF;
1347
424c3383
AP
1348 INIT_LIST_HEAD(&its->device_list);
1349 INIT_LIST_HEAD(&its->collection_list);
1350
1085fdc6
AP
1351 dev->kvm->arch.vgic.has_its = true;
1352 its->initialized = false;
1353 its->enabled = false;
bb717644 1354 its->dev = dev;
1085fdc6 1355
424c3383
AP
1356 its->baser_device_table = INITIAL_BASER_VALUE |
1357 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1358 its->baser_coll_table = INITIAL_BASER_VALUE |
1359 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1360 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1361
1085fdc6
AP
1362 dev->private = its;
1363
1364 return 0;
1365}
1366
1367static void vgic_its_destroy(struct kvm_device *kvm_dev)
1368{
424c3383 1369 struct kvm *kvm = kvm_dev->kvm;
1085fdc6 1370 struct vgic_its *its = kvm_dev->private;
424c3383
AP
1371 struct its_device *dev;
1372 struct its_itte *itte;
1373 struct list_head *dev_cur, *dev_temp;
1374 struct list_head *cur, *temp;
1375
1376 /*
1377 * We may end up here without the lists ever having been initialized.
1378 * Check this and bail out early to avoid dereferencing a NULL pointer.
1379 */
1380 if (!its->device_list.next)
1381 return;
1382
1383 mutex_lock(&its->its_lock);
1384 list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1385 dev = container_of(dev_cur, struct its_device, dev_list);
1386 list_for_each_safe(cur, temp, &dev->itt_head) {
1387 itte = (container_of(cur, struct its_itte, itte_list));
1388 its_free_itte(kvm, itte);
1389 }
1390 list_del(dev_cur);
1391 kfree(dev);
1392 }
1393
1394 list_for_each_safe(cur, temp, &its->collection_list) {
1395 list_del(cur);
1396 kfree(container_of(cur, struct its_collection, coll_list));
1397 }
1398 mutex_unlock(&its->its_lock);
1085fdc6
AP
1399
1400 kfree(its);
1401}
1402
1403static int vgic_its_has_attr(struct kvm_device *dev,
1404 struct kvm_device_attr *attr)
1405{
1406 switch (attr->group) {
1407 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1408 switch (attr->attr) {
1409 case KVM_VGIC_ITS_ADDR_TYPE:
1410 return 0;
1411 }
1412 break;
1413 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1414 switch (attr->attr) {
1415 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1416 return 0;
1417 }
1418 break;
1419 }
1420 return -ENXIO;
1421}
1422
1423static int vgic_its_set_attr(struct kvm_device *dev,
1424 struct kvm_device_attr *attr)
1425{
1426 struct vgic_its *its = dev->private;
1427 int ret;
1428
1429 switch (attr->group) {
1430 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1431 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1432 unsigned long type = (unsigned long)attr->attr;
1433 u64 addr;
1434
1435 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1436 return -ENODEV;
1437
1438 if (its->initialized)
1439 return -EBUSY;
1440
1441 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1442 return -EFAULT;
1443
1444 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1445 addr, SZ_64K);
1446 if (ret)
1447 return ret;
1448
1449 its->vgic_its_base = addr;
1450
1451 return 0;
1452 }
1453 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1454 switch (attr->attr) {
1455 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1456 return vgic_its_init_its(dev->kvm, its);
1457 }
1458 break;
1459 }
1460 return -ENXIO;
1461}
1462
1463static int vgic_its_get_attr(struct kvm_device *dev,
1464 struct kvm_device_attr *attr)
1465{
1466 switch (attr->group) {
1467 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1468 struct vgic_its *its = dev->private;
1469 u64 addr = its->vgic_its_base;
1470 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1471 unsigned long type = (unsigned long)attr->attr;
1472
1473 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1474 return -ENODEV;
1475
1476 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1477 return -EFAULT;
1478 break;
1479 default:
1480 return -ENXIO;
1481 }
1482 }
1483
1484 return 0;
1485}
1486
1487static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1488 .name = "kvm-arm-vgic-its",
1489 .create = vgic_its_create,
1490 .destroy = vgic_its_destroy,
1491 .set_attr = vgic_its_set_attr,
1492 .get_attr = vgic_its_get_attr,
1493 .has_attr = vgic_its_has_attr,
1494};
1495
1496int kvm_vgic_register_its_device(void)
1497{
1498 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1499 KVM_DEV_TYPE_ARM_VGIC_ITS);
1500}
This page took 0.0941 seconds and 5 git commands to generate.