KVM: arm64: vgic-its: Handle errors from vgic_add_lpi
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-its.c
CommitLineData
59c5ab40
AP
1/*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/cpu.h>
21#include <linux/kvm.h>
22#include <linux/kvm_host.h>
23#include <linux/interrupt.h>
424c3383 24#include <linux/list.h>
1085fdc6 25#include <linux/uaccess.h>
59c5ab40
AP
26
27#include <linux/irqchip/arm-gic-v3.h>
28
29#include <asm/kvm_emulate.h>
30#include <asm/kvm_arm.h>
31#include <asm/kvm_mmu.h>
32
33#include "vgic.h"
34#include "vgic-mmio.h"
35
df9f58fb
AP
36/*
37 * Creates a new (reference to a) struct vgic_irq for a given LPI.
38 * If this LPI is already mapped on another ITS, we increase its refcount
39 * and return a pointer to the existing structure.
40 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41 * This function returns a pointer to the _unlocked_ structure.
42 */
43static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44{
45 struct vgic_dist *dist = &kvm->arch.vgic;
46 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48 /* In this case there is no put, since we keep the reference. */
49 if (irq)
50 return irq;
51
52 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 if (!irq)
99e5e886 54 return ERR_PTR(-ENOMEM);
df9f58fb
AP
55
56 INIT_LIST_HEAD(&irq->lpi_list);
57 INIT_LIST_HEAD(&irq->ap_list);
58 spin_lock_init(&irq->irq_lock);
59
60 irq->config = VGIC_CONFIG_EDGE;
61 kref_init(&irq->refcount);
62 irq->intid = intid;
63
64 spin_lock(&dist->lpi_list_lock);
65
66 /*
67 * There could be a race with another vgic_add_lpi(), so we need to
68 * check that we don't add a second list entry with the same LPI.
69 */
70 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 if (oldirq->intid != intid)
72 continue;
73
74 /* Someone was faster with adding this LPI, lets use that. */
75 kfree(irq);
76 irq = oldirq;
77
78 /*
79 * This increases the refcount, the caller is expected to
80 * call vgic_put_irq() on the returned pointer once it's
81 * finished with the IRQ.
82 */
d97594e6 83 vgic_get_irq_kref(irq);
df9f58fb
AP
84
85 goto out_unlock;
86 }
87
88 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 dist->lpi_list_count++;
90
91out_unlock:
92 spin_unlock(&dist->lpi_list_lock);
93
94 return irq;
95}
96
424c3383
AP
97struct its_device {
98 struct list_head dev_list;
99
100 /* the head for the list of ITTEs */
101 struct list_head itt_head;
102 u32 device_id;
103};
104
105#define COLLECTION_NOT_MAPPED ((u32)~0)
106
107struct its_collection {
108 struct list_head coll_list;
109
110 u32 collection_id;
111 u32 target_addr;
112};
113
114#define its_is_collection_mapped(coll) ((coll) && \
115 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117struct its_itte {
118 struct list_head itte_list;
119
3802411d 120 struct vgic_irq *irq;
424c3383
AP
121 struct its_collection *collection;
122 u32 lpi;
123 u32 event_id;
124};
125
df9f58fb
AP
126/*
127 * Find and returns a device in the device table for an ITS.
128 * Must be called with the its_lock mutex held.
129 */
130static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131{
132 struct its_device *device;
133
134 list_for_each_entry(device, &its->device_list, dev_list)
135 if (device_id == device->device_id)
136 return device;
137
138 return NULL;
139}
140
141/*
142 * Find and returns an interrupt translation table entry (ITTE) for a given
143 * Device ID/Event ID pair on an ITS.
144 * Must be called with the its_lock mutex held.
145 */
146static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 u32 event_id)
148{
149 struct its_device *device;
150 struct its_itte *itte;
151
152 device = find_its_device(its, device_id);
153 if (device == NULL)
154 return NULL;
155
156 list_for_each_entry(itte, &device->itt_head, itte_list)
157 if (itte->event_id == event_id)
158 return itte;
159
160 return NULL;
161}
162
163/* To be used as an iterator this macro misses the enclosing parentheses */
164#define for_each_lpi_its(dev, itte, its) \
165 list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
424c3383
AP
168/*
169 * We only implement 48 bits of PA at the moment, although the ITS
170 * supports more. Let's be restrictive here.
171 */
df9f58fb 172#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
424c3383 173#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
33d3bc95 174#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
f9f77af9
AP
175#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
176
177#define GIC_LPI_OFFSET 8192
178
df9f58fb
AP
179/*
180 * Finds and returns a collection in the ITS collection table.
181 * Must be called with the its_lock mutex held.
182 */
183static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184{
185 struct its_collection *collection;
186
187 list_for_each_entry(collection, &its->collection_list, coll_list) {
188 if (coll_id == collection->collection_id)
189 return collection;
190 }
191
192 return NULL;
193}
194
f9f77af9
AP
195#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
196#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
197
198/*
199 * Reads the configuration data for a given LPI from guest memory and
200 * updates the fields in struct vgic_irq.
201 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202 * VCPU. Unconditionally applies if filter_vcpu is NULL.
203 */
204static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 struct kvm_vcpu *filter_vcpu)
206{
207 u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 u8 prop;
209 int ret;
210
211 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 &prop, 1);
213
214 if (ret)
215 return ret;
216
217 spin_lock(&irq->irq_lock);
218
219 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 irq->priority = LPI_PROP_PRIORITY(prop);
221 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223 vgic_queue_irq_unlock(kvm, irq);
224 } else {
225 spin_unlock(&irq->irq_lock);
226 }
227
228 return 0;
229}
33d3bc95
AP
230
231/*
232 * Create a snapshot of the current LPI list, so that we can enumerate all
233 * LPIs without holding any lock.
234 * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235 */
236static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237{
238 struct vgic_dist *dist = &kvm->arch.vgic;
239 struct vgic_irq *irq;
240 u32 *intids;
241 int irq_count = dist->lpi_list_count, i = 0;
242
243 /*
244 * We use the current value of the list length, which may change
245 * after the kmalloc. We don't care, because the guest shouldn't
246 * change anything while the command handling is still running,
247 * and in the worst case we would miss a new IRQ, which one wouldn't
248 * expect to be covered by this command anyway.
249 */
250 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 if (!intids)
252 return -ENOMEM;
253
254 spin_lock(&dist->lpi_list_lock);
255 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 /* We don't need to "get" the IRQ, as we hold the list lock. */
257 intids[i] = irq->intid;
258 if (++i == irq_count)
259 break;
260 }
261 spin_unlock(&dist->lpi_list_lock);
262
263 *intid_ptr = intids;
264 return irq_count;
265}
266
df9f58fb
AP
267/*
268 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269 * is targeting) to the VGIC's view, which deals with target VCPUs.
270 * Needs to be called whenever either the collection for a LPIs has
271 * changed or the collection itself got retargeted.
272 */
273static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274{
275 struct kvm_vcpu *vcpu;
276
277 if (!its_is_collection_mapped(itte->collection))
278 return;
279
280 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282 spin_lock(&itte->irq->irq_lock);
283 itte->irq->target_vcpu = vcpu;
284 spin_unlock(&itte->irq->irq_lock);
285}
286
287/*
288 * Updates the target VCPU for every LPI targeting this collection.
289 * Must be called with the its_lock mutex held.
290 */
291static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 struct its_collection *coll)
293{
294 struct its_device *device;
295 struct its_itte *itte;
296
297 for_each_lpi_its(device, itte, its) {
298 if (!itte->collection || coll != itte->collection)
299 continue;
300
301 update_affinity_itte(kvm, itte);
302 }
303}
304
305static u32 max_lpis_propbaser(u64 propbaser)
306{
307 int nr_idbits = (propbaser & 0x1f) + 1;
308
309 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310}
311
33d3bc95
AP
312/*
313 * Scan the whole LPI pending table and sync the pending bit in there
314 * with our own data structures. This relies on the LPI being
315 * mapped before.
316 */
317static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318{
319 gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 struct vgic_irq *irq;
321 int last_byte_offset = -1;
322 int ret = 0;
323 u32 *intids;
324 int nr_irqs, i;
325
326 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327 if (nr_irqs < 0)
328 return nr_irqs;
329
330 for (i = 0; i < nr_irqs; i++) {
331 int byte_offset, bit_nr;
332 u8 pendmask;
333
334 byte_offset = intids[i] / BITS_PER_BYTE;
335 bit_nr = intids[i] % BITS_PER_BYTE;
336
337 /*
338 * For contiguously allocated LPIs chances are we just read
339 * this very same byte in the last iteration. Reuse that.
340 */
341 if (byte_offset != last_byte_offset) {
342 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 &pendmask, 1);
344 if (ret) {
345 kfree(intids);
346 return ret;
347 }
348 last_byte_offset = byte_offset;
349 }
350
351 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 spin_lock(&irq->irq_lock);
353 irq->pending = pendmask & (1U << bit_nr);
354 vgic_queue_irq_unlock(vcpu->kvm, irq);
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 kfree(intids);
359
360 return ret;
361}
424c3383
AP
362
363static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364 struct vgic_its *its,
365 gpa_t addr, unsigned int len)
366{
367 u32 reg = 0;
368
369 mutex_lock(&its->cmd_lock);
370 if (its->creadr == its->cwriter)
371 reg |= GITS_CTLR_QUIESCENT;
372 if (its->enabled)
373 reg |= GITS_CTLR_ENABLE;
374 mutex_unlock(&its->cmd_lock);
375
376 return reg;
377}
378
379static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380 gpa_t addr, unsigned int len,
381 unsigned long val)
382{
383 its->enabled = !!(val & GITS_CTLR_ENABLE);
384}
385
386static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387 struct vgic_its *its,
388 gpa_t addr, unsigned int len)
389{
390 u64 reg = GITS_TYPER_PLPIS;
391
392 /*
393 * We use linear CPU numbers for redistributor addressing,
394 * so GITS_TYPER.PTA is 0.
395 * Also we force all PROPBASER registers to be the same, so
396 * CommonLPIAff is 0 as well.
397 * To avoid memory waste in the guest, we keep the number of IDBits and
398 * DevBits low - as least for the time being.
399 */
400 reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401 reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403 return extract_bytes(reg, addr & 7, len);
404}
405
406static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407 struct vgic_its *its,
408 gpa_t addr, unsigned int len)
409{
410 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411}
412
413static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414 struct vgic_its *its,
415 gpa_t addr, unsigned int len)
416{
417 switch (addr & 0xffff) {
418 case GITS_PIDR0:
419 return 0x92; /* part number, bits[7:0] */
420 case GITS_PIDR1:
421 return 0xb4; /* part number, bits[11:8] */
422 case GITS_PIDR2:
423 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424 case GITS_PIDR4:
425 return 0x40; /* This is a 64K software visible page */
426 /* The following are the ID registers for (any) GIC. */
427 case GITS_CIDR0:
428 return 0x0d;
429 case GITS_CIDR1:
430 return 0xf0;
431 case GITS_CIDR2:
432 return 0x05;
433 case GITS_CIDR3:
434 return 0xb1;
435 }
436
437 return 0;
438}
439
2891a7df
AP
440/*
441 * Find the target VCPU and the LPI number for a given devid/eventid pair
442 * and make this IRQ pending, possibly injecting it.
443 * Must be called with the its_lock mutex held.
fd837b08
AP
444 * Returns 0 on success, a positive error value for any ITS mapping
445 * related errors and negative error values for generic errors.
2891a7df 446 */
fd837b08
AP
447static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
448 u32 devid, u32 eventid)
2891a7df 449{
fd837b08 450 struct kvm_vcpu *vcpu;
2891a7df
AP
451 struct its_itte *itte;
452
453 if (!its->enabled)
fd837b08 454 return -EBUSY;
2891a7df
AP
455
456 itte = find_itte(its, devid, eventid);
fd837b08
AP
457 if (!itte || !its_is_collection_mapped(itte->collection))
458 return E_ITS_INT_UNMAPPED_INTERRUPT;
459
460 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
461 if (!vcpu)
462 return E_ITS_INT_UNMAPPED_INTERRUPT;
463
464 if (!vcpu->arch.vgic_cpu.lpis_enabled)
465 return -EBUSY;
466
467 spin_lock(&itte->irq->irq_lock);
468 itte->irq->pending = true;
469 vgic_queue_irq_unlock(kvm, itte->irq);
470
471 return 0;
2891a7df
AP
472}
473
474/*
475 * Queries the KVM IO bus framework to get the ITS pointer from the given
476 * doorbell address.
477 * We then call vgic_its_trigger_msi() with the decoded data.
fd837b08 478 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
2891a7df
AP
479 */
480int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
481{
482 u64 address;
483 struct kvm_io_device *kvm_io_dev;
484 struct vgic_io_device *iodev;
fd837b08 485 int ret;
2891a7df
AP
486
487 if (!vgic_has_its(kvm))
488 return -ENODEV;
489
490 if (!(msi->flags & KVM_MSI_VALID_DEVID))
491 return -EINVAL;
492
493 address = (u64)msi->address_hi << 32 | msi->address_lo;
494
495 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
496 if (!kvm_io_dev)
497 return -ENODEV;
498
499 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
500
501 mutex_lock(&iodev->its->its_lock);
fd837b08 502 ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
2891a7df
AP
503 mutex_unlock(&iodev->its->its_lock);
504
fd837b08
AP
505 if (ret < 0)
506 return ret;
507
508 /*
509 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
510 * if the guest has blocked the MSI. So we map any LPI mapping
511 * related error to that.
512 */
513 if (ret)
514 return 0;
515 else
516 return 1;
2891a7df
AP
517}
518
424c3383
AP
519/* Requires the its_lock to be held. */
520static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
521{
522 list_del(&itte->itte_list);
3802411d
AP
523
524 /* This put matches the get in vgic_add_lpi. */
99e5e886
CD
525 if (itte->irq)
526 vgic_put_irq(kvm, itte->irq);
3802411d 527
424c3383
AP
528 kfree(itte);
529}
530
df9f58fb
AP
531static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
532{
533 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
534}
535
536#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
537#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
538#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
539#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
540#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
541#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
542#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
543
544/*
545 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
546 * Must be called with the its_lock mutex held.
547 */
548static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
549 u64 *its_cmd)
550{
551 u32 device_id = its_cmd_get_deviceid(its_cmd);
552 u32 event_id = its_cmd_get_id(its_cmd);
553 struct its_itte *itte;
554
555
556 itte = find_itte(its, device_id, event_id);
557 if (itte && itte->collection) {
558 /*
559 * Though the spec talks about removing the pending state, we
560 * don't bother here since we clear the ITTE anyway and the
561 * pending state is a property of the ITTE struct.
562 */
563 its_free_itte(kvm, itte);
564 return 0;
565 }
566
567 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
568}
569
570/*
571 * The MOVI command moves an ITTE to a different collection.
572 * Must be called with the its_lock mutex held.
573 */
574static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
575 u64 *its_cmd)
576{
577 u32 device_id = its_cmd_get_deviceid(its_cmd);
578 u32 event_id = its_cmd_get_id(its_cmd);
579 u32 coll_id = its_cmd_get_collection(its_cmd);
580 struct kvm_vcpu *vcpu;
581 struct its_itte *itte;
582 struct its_collection *collection;
583
584 itte = find_itte(its, device_id, event_id);
585 if (!itte)
586 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
587
588 if (!its_is_collection_mapped(itte->collection))
589 return E_ITS_MOVI_UNMAPPED_COLLECTION;
590
591 collection = find_collection(its, coll_id);
592 if (!its_is_collection_mapped(collection))
593 return E_ITS_MOVI_UNMAPPED_COLLECTION;
594
595 itte->collection = collection;
596 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
597
598 spin_lock(&itte->irq->irq_lock);
599 itte->irq->target_vcpu = vcpu;
600 spin_unlock(&itte->irq->irq_lock);
601
602 return 0;
603}
604
6d03a68f
MZ
605/*
606 * Check whether an ID can be stored into the corresponding guest table.
607 * For a direct table this is pretty easy, but gets a bit nasty for
608 * indirect tables. We check whether the resulting guest physical address
609 * is actually valid (covered by a memslot and guest accessbible).
610 * For this we have to read the respective first level entry.
611 */
612static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
613{
614 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
615 int index;
616 u64 indirect_ptr;
617 gfn_t gfn;
618
619 if (!(baser & GITS_BASER_INDIRECT)) {
620 phys_addr_t addr;
621
622 if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
623 return false;
624
625 addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
626 gfn = addr >> PAGE_SHIFT;
627
628 return kvm_is_visible_gfn(its->dev->kvm, gfn);
629 }
630
631 /* calculate and check the index into the 1st level */
632 index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
633 if (index >= (l1_tbl_size / sizeof(u64)))
634 return false;
635
636 /* Each 1st level entry is represented by a 64-bit value. */
637 if (kvm_read_guest(its->dev->kvm,
638 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
639 &indirect_ptr, sizeof(indirect_ptr)))
640 return false;
641
642 indirect_ptr = le64_to_cpu(indirect_ptr);
643
644 /* check the valid bit of the first level entry */
645 if (!(indirect_ptr & BIT_ULL(63)))
646 return false;
647
648 /*
649 * Mask the guest physical address and calculate the frame number.
650 * Any address beyond our supported 48 bits of PA will be caught
651 * by the actual check in the final step.
652 */
653 indirect_ptr &= GENMASK_ULL(51, 16);
654
655 /* Find the address of the actual entry */
656 index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
657 indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
658 gfn = indirect_ptr >> PAGE_SHIFT;
659
660 return kvm_is_visible_gfn(its->dev->kvm, gfn);
661}
662
17a21f58
MZ
663static int vgic_its_alloc_collection(struct vgic_its *its,
664 struct its_collection **colp,
df9f58fb
AP
665 u32 coll_id)
666{
17a21f58
MZ
667 struct its_collection *collection;
668
6d03a68f
MZ
669 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
670 return E_ITS_MAPC_COLLECTION_OOR;
671
17a21f58
MZ
672 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
673
df9f58fb
AP
674 collection->collection_id = coll_id;
675 collection->target_addr = COLLECTION_NOT_MAPPED;
676
677 list_add_tail(&collection->coll_list, &its->collection_list);
17a21f58
MZ
678 *colp = collection;
679
680 return 0;
681}
682
683static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
684{
685 struct its_collection *collection;
686 struct its_device *device;
687 struct its_itte *itte;
688
689 /*
690 * Clearing the mapping for that collection ID removes the
691 * entry from the list. If there wasn't any before, we can
692 * go home early.
693 */
694 collection = find_collection(its, coll_id);
695 if (!collection)
696 return;
697
698 for_each_lpi_its(device, itte, its)
699 if (itte->collection &&
700 itte->collection->collection_id == coll_id)
701 itte->collection = NULL;
702
703 list_del(&collection->coll_list);
704 kfree(collection);
df9f58fb
AP
705}
706
707/*
708 * The MAPTI and MAPI commands map LPIs to ITTEs.
709 * Must be called with its_lock mutex held.
710 */
711static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
a3e7aa27 712 u64 *its_cmd)
df9f58fb
AP
713{
714 u32 device_id = its_cmd_get_deviceid(its_cmd);
715 u32 event_id = its_cmd_get_id(its_cmd);
716 u32 coll_id = its_cmd_get_collection(its_cmd);
99e5e886 717 struct its_itte *itte, *new_itte = NULL;
df9f58fb
AP
718 struct its_device *device;
719 struct its_collection *collection, *new_coll = NULL;
720 int lpi_nr;
99e5e886 721 struct vgic_irq *irq;
df9f58fb
AP
722
723 device = find_its_device(its, device_id);
724 if (!device)
725 return E_ITS_MAPTI_UNMAPPED_DEVICE;
726
a3e7aa27 727 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
df9f58fb
AP
728 lpi_nr = its_cmd_get_physical_id(its_cmd);
729 else
730 lpi_nr = event_id;
731 if (lpi_nr < GIC_LPI_OFFSET ||
3a88bded
MZ
732 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
733 return E_ITS_MAPTI_PHYSICALID_OOR;
734
735 collection = find_collection(its, coll_id);
736 if (!collection) {
737 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
738 if (ret)
739 return ret;
740 new_coll = collection;
df9f58fb
AP
741 }
742
743 itte = find_itte(its, device_id, event_id);
744 if (!itte) {
745 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
746 if (!itte) {
3a88bded
MZ
747 if (new_coll)
748 vgic_its_free_collection(its, coll_id);
749 return -ENOMEM;
df9f58fb
AP
750 }
751
99e5e886 752 new_itte = itte;
df9f58fb
AP
753 itte->event_id = event_id;
754 list_add_tail(&itte->itte_list, &device->itt_head);
755 }
756
df9f58fb
AP
757 itte->collection = collection;
758 itte->lpi = lpi_nr;
99e5e886
CD
759
760 irq = vgic_add_lpi(kvm, lpi_nr);
761 if (IS_ERR(irq)) {
762 if (new_coll)
763 vgic_its_free_collection(its, coll_id);
764 if (new_itte)
765 its_free_itte(kvm, new_itte);
766 return PTR_ERR(irq);
767 }
768 itte->irq = irq;
769
df9f58fb
AP
770 update_affinity_itte(kvm, itte);
771
772 /*
773 * We "cache" the configuration table entries in out struct vgic_irq's.
774 * However we only have those structs for mapped IRQs, so we read in
775 * the respective config data from memory here upon mapping the LPI.
776 */
777 update_lpi_config(kvm, itte->irq, NULL);
778
779 return 0;
780}
781
782/* Requires the its_lock to be held. */
783static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
784{
785 struct its_itte *itte, *temp;
786
787 /*
788 * The spec says that unmapping a device with still valid
789 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
790 * since we cannot leave the memory unreferenced.
791 */
792 list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
793 its_free_itte(kvm, itte);
794
795 list_del(&device->dev_list);
796 kfree(device);
797}
798
df9f58fb
AP
799/*
800 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
801 * Must be called with the its_lock mutex held.
802 */
803static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
804 u64 *its_cmd)
805{
806 u32 device_id = its_cmd_get_deviceid(its_cmd);
807 bool valid = its_cmd_get_validbit(its_cmd);
808 struct its_device *device;
809
6d03a68f 810 if (!vgic_its_check_id(its, its->baser_device_table, device_id))
df9f58fb
AP
811 return E_ITS_MAPD_DEVICE_OOR;
812
813 device = find_its_device(its, device_id);
814
815 /*
816 * The spec says that calling MAPD on an already mapped device
817 * invalidates all cached data for this device. We implement this
818 * by removing the mapping and re-establishing it.
819 */
820 if (device)
821 vgic_its_unmap_device(kvm, device);
822
823 /*
824 * The spec does not say whether unmapping a not-mapped device
825 * is an error, so we are done in any case.
826 */
827 if (!valid)
828 return 0;
829
830 device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
831 if (!device)
832 return -ENOMEM;
833
834 device->device_id = device_id;
835 INIT_LIST_HEAD(&device->itt_head);
836
837 list_add_tail(&device->dev_list, &its->device_list);
838
839 return 0;
840}
841
df9f58fb
AP
842/*
843 * The MAPC command maps collection IDs to redistributors.
844 * Must be called with the its_lock mutex held.
845 */
846static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
847 u64 *its_cmd)
848{
849 u16 coll_id;
850 u32 target_addr;
851 struct its_collection *collection;
852 bool valid;
853
854 valid = its_cmd_get_validbit(its_cmd);
855 coll_id = its_cmd_get_collection(its_cmd);
856 target_addr = its_cmd_get_target_addr(its_cmd);
857
858 if (target_addr >= atomic_read(&kvm->online_vcpus))
859 return E_ITS_MAPC_PROCNUM_OOR;
860
df9f58fb 861 if (!valid) {
17a21f58 862 vgic_its_free_collection(its, coll_id);
df9f58fb 863 } else {
17a21f58
MZ
864 collection = find_collection(its, coll_id);
865
df9f58fb 866 if (!collection) {
17a21f58 867 int ret;
df9f58fb 868
17a21f58
MZ
869 ret = vgic_its_alloc_collection(its, &collection,
870 coll_id);
871 if (ret)
872 return ret;
df9f58fb
AP
873 collection->target_addr = target_addr;
874 } else {
875 collection->target_addr = target_addr;
876 update_affinity_collection(kvm, its, collection);
877 }
878 }
879
880 return 0;
881}
882
883/*
884 * The CLEAR command removes the pending state for a particular LPI.
885 * Must be called with the its_lock mutex held.
886 */
887static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
888 u64 *its_cmd)
889{
890 u32 device_id = its_cmd_get_deviceid(its_cmd);
891 u32 event_id = its_cmd_get_id(its_cmd);
892 struct its_itte *itte;
893
894
895 itte = find_itte(its, device_id, event_id);
896 if (!itte)
897 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
898
899 itte->irq->pending = false;
900
901 return 0;
902}
903
904/*
905 * The INV command syncs the configuration bits from the memory table.
906 * Must be called with the its_lock mutex held.
907 */
908static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
909 u64 *its_cmd)
910{
911 u32 device_id = its_cmd_get_deviceid(its_cmd);
912 u32 event_id = its_cmd_get_id(its_cmd);
913 struct its_itte *itte;
914
915
916 itte = find_itte(its, device_id, event_id);
917 if (!itte)
918 return E_ITS_INV_UNMAPPED_INTERRUPT;
919
920 return update_lpi_config(kvm, itte->irq, NULL);
921}
922
923/*
924 * The INVALL command requests flushing of all IRQ data in this collection.
925 * Find the VCPU mapped to that collection, then iterate over the VM's list
926 * of mapped LPIs and update the configuration for each IRQ which targets
927 * the specified vcpu. The configuration will be read from the in-memory
928 * configuration table.
929 * Must be called with the its_lock mutex held.
930 */
931static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
932 u64 *its_cmd)
933{
934 u32 coll_id = its_cmd_get_collection(its_cmd);
935 struct its_collection *collection;
936 struct kvm_vcpu *vcpu;
937 struct vgic_irq *irq;
938 u32 *intids;
939 int irq_count, i;
940
941 collection = find_collection(its, coll_id);
942 if (!its_is_collection_mapped(collection))
943 return E_ITS_INVALL_UNMAPPED_COLLECTION;
944
945 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
946
947 irq_count = vgic_copy_lpi_list(kvm, &intids);
948 if (irq_count < 0)
949 return irq_count;
950
951 for (i = 0; i < irq_count; i++) {
952 irq = vgic_get_irq(kvm, NULL, intids[i]);
953 if (!irq)
954 continue;
955 update_lpi_config(kvm, irq, vcpu);
956 vgic_put_irq(kvm, irq);
957 }
958
959 kfree(intids);
960
961 return 0;
962}
963
964/*
965 * The MOVALL command moves the pending state of all IRQs targeting one
966 * redistributor to another. We don't hold the pending state in the VCPUs,
967 * but in the IRQs instead, so there is really not much to do for us here.
968 * However the spec says that no IRQ must target the old redistributor
969 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
970 * This command affects all LPIs in the system that target that redistributor.
971 */
972static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
973 u64 *its_cmd)
974{
975 struct vgic_dist *dist = &kvm->arch.vgic;
976 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
977 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
978 struct kvm_vcpu *vcpu1, *vcpu2;
979 struct vgic_irq *irq;
980
981 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
982 target2_addr >= atomic_read(&kvm->online_vcpus))
983 return E_ITS_MOVALL_PROCNUM_OOR;
984
985 if (target1_addr == target2_addr)
986 return 0;
987
988 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
989 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
990
991 spin_lock(&dist->lpi_list_lock);
992
993 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
994 spin_lock(&irq->irq_lock);
995
996 if (irq->target_vcpu == vcpu1)
997 irq->target_vcpu = vcpu2;
998
999 spin_unlock(&irq->irq_lock);
1000 }
1001
1002 spin_unlock(&dist->lpi_list_lock);
1003
1004 return 0;
1005}
1006
2891a7df
AP
1007/*
1008 * The INT command injects the LPI associated with that DevID/EvID pair.
1009 * Must be called with the its_lock mutex held.
1010 */
1011static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1012 u64 *its_cmd)
1013{
1014 u32 msi_data = its_cmd_get_id(its_cmd);
1015 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1016
fd837b08 1017 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
2891a7df
AP
1018}
1019
df9f58fb
AP
1020/*
1021 * This function is called with the its_cmd lock held, but the ITS data
1022 * structure lock dropped.
1023 */
424c3383
AP
1024static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1025 u64 *its_cmd)
1026{
df9f58fb
AP
1027 int ret = -ENODEV;
1028
1029 mutex_lock(&its->its_lock);
a3e7aa27 1030 switch (its_cmd_get_command(its_cmd)) {
df9f58fb
AP
1031 case GITS_CMD_MAPD:
1032 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1033 break;
1034 case GITS_CMD_MAPC:
1035 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1036 break;
1037 case GITS_CMD_MAPI:
a3e7aa27 1038 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1039 break;
1040 case GITS_CMD_MAPTI:
a3e7aa27 1041 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
df9f58fb
AP
1042 break;
1043 case GITS_CMD_MOVI:
1044 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1045 break;
1046 case GITS_CMD_DISCARD:
1047 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1048 break;
1049 case GITS_CMD_CLEAR:
1050 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1051 break;
1052 case GITS_CMD_MOVALL:
1053 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1054 break;
2891a7df
AP
1055 case GITS_CMD_INT:
1056 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1057 break;
df9f58fb
AP
1058 case GITS_CMD_INV:
1059 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1060 break;
1061 case GITS_CMD_INVALL:
1062 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1063 break;
1064 case GITS_CMD_SYNC:
1065 /* we ignore this command: we are in sync all of the time */
1066 ret = 0;
1067 break;
1068 }
1069 mutex_unlock(&its->its_lock);
1070
1071 return ret;
424c3383
AP
1072}
1073
1074static u64 vgic_sanitise_its_baser(u64 reg)
1075{
1076 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1077 GITS_BASER_SHAREABILITY_SHIFT,
1078 vgic_sanitise_shareability);
1079 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1080 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1081 vgic_sanitise_inner_cacheability);
1082 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1083 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1084 vgic_sanitise_outer_cacheability);
1085
1086 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1087 reg &= ~GENMASK_ULL(15, 12);
1088
1089 /* We support only one (ITS) page size: 64K */
1090 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1091
1092 return reg;
1093}
1094
1095static u64 vgic_sanitise_its_cbaser(u64 reg)
1096{
1097 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1098 GITS_CBASER_SHAREABILITY_SHIFT,
1099 vgic_sanitise_shareability);
1100 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1101 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1102 vgic_sanitise_inner_cacheability);
1103 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1104 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1105 vgic_sanitise_outer_cacheability);
1106
1107 /*
1108 * Sanitise the physical address to be 64k aligned.
1109 * Also limit the physical addresses to 48 bits.
1110 */
1111 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1112
1113 return reg;
1114}
1115
1116static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1117 struct vgic_its *its,
1118 gpa_t addr, unsigned int len)
1119{
1120 return extract_bytes(its->cbaser, addr & 7, len);
1121}
1122
1123static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1124 gpa_t addr, unsigned int len,
1125 unsigned long val)
1126{
1127 /* When GITS_CTLR.Enable is 1, this register is RO. */
1128 if (its->enabled)
1129 return;
1130
1131 mutex_lock(&its->cmd_lock);
1132 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1133 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1134 its->creadr = 0;
1135 /*
1136 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1137 * it to CREADR to make sure we start with an empty command buffer.
1138 */
1139 its->cwriter = its->creadr;
1140 mutex_unlock(&its->cmd_lock);
1141}
1142
1143#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1144#define ITS_CMD_SIZE 32
1145#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1146
1147/*
1148 * By writing to CWRITER the guest announces new commands to be processed.
1149 * To avoid any races in the first place, we take the its_cmd lock, which
1150 * protects our ring buffer variables, so that there is only one user
1151 * per ITS handling commands at a given time.
1152 */
1153static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1154 gpa_t addr, unsigned int len,
1155 unsigned long val)
1156{
1157 gpa_t cbaser;
1158 u64 cmd_buf[4];
1159 u32 reg;
1160
1161 if (!its)
1162 return;
1163
1164 mutex_lock(&its->cmd_lock);
1165
1166 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1167 reg = ITS_CMD_OFFSET(reg);
1168 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1169 mutex_unlock(&its->cmd_lock);
1170 return;
1171 }
1172
1173 its->cwriter = reg;
1174 cbaser = CBASER_ADDRESS(its->cbaser);
1175
1176 while (its->cwriter != its->creadr) {
1177 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1178 cmd_buf, ITS_CMD_SIZE);
1179 /*
1180 * If kvm_read_guest() fails, this could be due to the guest
1181 * programming a bogus value in CBASER or something else going
1182 * wrong from which we cannot easily recover.
1183 * According to section 6.3.2 in the GICv3 spec we can just
1184 * ignore that command then.
1185 */
1186 if (!ret)
1187 vgic_its_handle_command(kvm, its, cmd_buf);
1188
1189 its->creadr += ITS_CMD_SIZE;
1190 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1191 its->creadr = 0;
1192 }
1193
1194 mutex_unlock(&its->cmd_lock);
1195}
1196
1197static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1198 struct vgic_its *its,
1199 gpa_t addr, unsigned int len)
1200{
1201 return extract_bytes(its->cwriter, addr & 0x7, len);
1202}
1203
1204static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1205 struct vgic_its *its,
1206 gpa_t addr, unsigned int len)
1207{
1208 return extract_bytes(its->creadr, addr & 0x7, len);
1209}
1210
1211#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1212static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1213 struct vgic_its *its,
1214 gpa_t addr, unsigned int len)
1215{
1216 u64 reg;
1217
1218 switch (BASER_INDEX(addr)) {
1219 case 0:
1220 reg = its->baser_device_table;
1221 break;
1222 case 1:
1223 reg = its->baser_coll_table;
1224 break;
1225 default:
1226 reg = 0;
1227 break;
1228 }
1229
1230 return extract_bytes(reg, addr & 7, len);
1231}
1232
1233#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1234static void vgic_mmio_write_its_baser(struct kvm *kvm,
1235 struct vgic_its *its,
1236 gpa_t addr, unsigned int len,
1237 unsigned long val)
1238{
1239 u64 entry_size, device_type;
1240 u64 reg, *regptr, clearbits = 0;
1241
1242 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1243 if (its->enabled)
1244 return;
1245
1246 switch (BASER_INDEX(addr)) {
1247 case 0:
1248 regptr = &its->baser_device_table;
1249 entry_size = 8;
1250 device_type = GITS_BASER_TYPE_DEVICE;
1251 break;
1252 case 1:
1253 regptr = &its->baser_coll_table;
1254 entry_size = 8;
1255 device_type = GITS_BASER_TYPE_COLLECTION;
1256 clearbits = GITS_BASER_INDIRECT;
1257 break;
1258 default:
1259 return;
1260 }
1261
1262 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1263 reg &= ~GITS_BASER_RO_MASK;
1264 reg &= ~clearbits;
1265
1266 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1267 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1268 reg = vgic_sanitise_its_baser(reg);
1269
1270 *regptr = reg;
1271}
1272
59c5ab40
AP
1273#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1274{ \
1275 .reg_offset = off, \
1276 .len = length, \
1277 .access_flags = acc, \
1278 .its_read = rd, \
1279 .its_write = wr, \
1280}
1281
59c5ab40
AP
1282static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1283 gpa_t addr, unsigned int len, unsigned long val)
1284{
1285 /* Ignore */
1286}
1287
1288static struct vgic_register_region its_registers[] = {
1289 REGISTER_ITS_DESC(GITS_CTLR,
424c3383 1290 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
59c5ab40
AP
1291 VGIC_ACCESS_32bit),
1292 REGISTER_ITS_DESC(GITS_IIDR,
424c3383 1293 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
59c5ab40
AP
1294 VGIC_ACCESS_32bit),
1295 REGISTER_ITS_DESC(GITS_TYPER,
424c3383 1296 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
59c5ab40
AP
1297 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1298 REGISTER_ITS_DESC(GITS_CBASER,
424c3383 1299 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
59c5ab40
AP
1300 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1301 REGISTER_ITS_DESC(GITS_CWRITER,
424c3383 1302 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
59c5ab40
AP
1303 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1304 REGISTER_ITS_DESC(GITS_CREADR,
424c3383 1305 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
59c5ab40
AP
1306 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1307 REGISTER_ITS_DESC(GITS_BASER,
424c3383 1308 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
59c5ab40
AP
1309 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1310 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
424c3383 1311 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
59c5ab40
AP
1312 VGIC_ACCESS_32bit),
1313};
1314
33d3bc95
AP
1315/* This is called on setting the LPI enable bit in the redistributor. */
1316void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1317{
1318 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1319 its_sync_lpi_pending_table(vcpu);
1320}
1321
59c5ab40
AP
1322static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1323{
1324 struct vgic_io_device *iodev = &its->iodev;
1325 int ret;
1326
1085fdc6
AP
1327 if (its->initialized)
1328 return 0;
1329
59c5ab40
AP
1330 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1331 return -ENXIO;
1332
1333 iodev->regions = its_registers;
1334 iodev->nr_regions = ARRAY_SIZE(its_registers);
1335 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1336
1337 iodev->base_addr = its->vgic_its_base;
1338 iodev->iodev_type = IODEV_ITS;
1339 iodev->its = its;
1340 mutex_lock(&kvm->slots_lock);
1341 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1342 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1343 mutex_unlock(&kvm->slots_lock);
1344
1085fdc6
AP
1345 if (!ret)
1346 its->initialized = true;
1347
59c5ab40
AP
1348 return ret;
1349}
1085fdc6 1350
424c3383
AP
1351#define INITIAL_BASER_VALUE \
1352 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1353 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1354 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1355 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
1356 GITS_BASER_PAGE_SIZE_64K)
1357
1358#define INITIAL_PROPBASER_VALUE \
1359 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1360 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1361 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1362
1085fdc6
AP
1363static int vgic_its_create(struct kvm_device *dev, u32 type)
1364{
1365 struct vgic_its *its;
1366
1367 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1368 return -ENODEV;
1369
1370 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1371 if (!its)
1372 return -ENOMEM;
1373
424c3383
AP
1374 mutex_init(&its->its_lock);
1375 mutex_init(&its->cmd_lock);
1376
1085fdc6
AP
1377 its->vgic_its_base = VGIC_ADDR_UNDEF;
1378
424c3383
AP
1379 INIT_LIST_HEAD(&its->device_list);
1380 INIT_LIST_HEAD(&its->collection_list);
1381
1085fdc6
AP
1382 dev->kvm->arch.vgic.has_its = true;
1383 its->initialized = false;
1384 its->enabled = false;
bb717644 1385 its->dev = dev;
1085fdc6 1386
424c3383
AP
1387 its->baser_device_table = INITIAL_BASER_VALUE |
1388 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1389 its->baser_coll_table = INITIAL_BASER_VALUE |
1390 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1391 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1392
1085fdc6
AP
1393 dev->private = its;
1394
1395 return 0;
1396}
1397
1398static void vgic_its_destroy(struct kvm_device *kvm_dev)
1399{
424c3383 1400 struct kvm *kvm = kvm_dev->kvm;
1085fdc6 1401 struct vgic_its *its = kvm_dev->private;
424c3383
AP
1402 struct its_device *dev;
1403 struct its_itte *itte;
1404 struct list_head *dev_cur, *dev_temp;
1405 struct list_head *cur, *temp;
1406
1407 /*
1408 * We may end up here without the lists ever having been initialized.
1409 * Check this and bail out early to avoid dereferencing a NULL pointer.
1410 */
1411 if (!its->device_list.next)
1412 return;
1413
1414 mutex_lock(&its->its_lock);
1415 list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1416 dev = container_of(dev_cur, struct its_device, dev_list);
1417 list_for_each_safe(cur, temp, &dev->itt_head) {
1418 itte = (container_of(cur, struct its_itte, itte_list));
1419 its_free_itte(kvm, itte);
1420 }
1421 list_del(dev_cur);
1422 kfree(dev);
1423 }
1424
1425 list_for_each_safe(cur, temp, &its->collection_list) {
1426 list_del(cur);
1427 kfree(container_of(cur, struct its_collection, coll_list));
1428 }
1429 mutex_unlock(&its->its_lock);
1085fdc6
AP
1430
1431 kfree(its);
1432}
1433
1434static int vgic_its_has_attr(struct kvm_device *dev,
1435 struct kvm_device_attr *attr)
1436{
1437 switch (attr->group) {
1438 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1439 switch (attr->attr) {
1440 case KVM_VGIC_ITS_ADDR_TYPE:
1441 return 0;
1442 }
1443 break;
1444 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1445 switch (attr->attr) {
1446 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1447 return 0;
1448 }
1449 break;
1450 }
1451 return -ENXIO;
1452}
1453
1454static int vgic_its_set_attr(struct kvm_device *dev,
1455 struct kvm_device_attr *attr)
1456{
1457 struct vgic_its *its = dev->private;
1458 int ret;
1459
1460 switch (attr->group) {
1461 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1462 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1463 unsigned long type = (unsigned long)attr->attr;
1464 u64 addr;
1465
1466 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1467 return -ENODEV;
1468
1469 if (its->initialized)
1470 return -EBUSY;
1471
1472 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1473 return -EFAULT;
1474
1475 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1476 addr, SZ_64K);
1477 if (ret)
1478 return ret;
1479
1480 its->vgic_its_base = addr;
1481
1482 return 0;
1483 }
1484 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1485 switch (attr->attr) {
1486 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1487 return vgic_its_init_its(dev->kvm, its);
1488 }
1489 break;
1490 }
1491 return -ENXIO;
1492}
1493
1494static int vgic_its_get_attr(struct kvm_device *dev,
1495 struct kvm_device_attr *attr)
1496{
1497 switch (attr->group) {
1498 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1499 struct vgic_its *its = dev->private;
1500 u64 addr = its->vgic_its_base;
1501 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1502 unsigned long type = (unsigned long)attr->attr;
1503
1504 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1505 return -ENODEV;
1506
1507 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1508 return -EFAULT;
1509 break;
1510 default:
1511 return -ENXIO;
1512 }
1513 }
1514
1515 return 0;
1516}
1517
1518static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1519 .name = "kvm-arm-vgic-its",
1520 .create = vgic_its_create,
1521 .destroy = vgic_its_destroy,
1522 .set_attr = vgic_its_set_attr,
1523 .get_attr = vgic_its_get_attr,
1524 .has_attr = vgic_its_has_attr,
1525};
1526
1527int kvm_vgic_register_its_device(void)
1528{
1529 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1530 KVM_DEV_TYPE_ARM_VGIC_ITS);
1531}
This page took 0.09021 seconds and 5 git commands to generate.