KVM: arm64: vgic-its: Make updates to propbaser/pendbaser atomic
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
CommitLineData
ed9b8cef
AP
1/*
2 * VGICv3 MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/irqchip/arm-gic-v3.h>
15#include <linux/kvm.h>
16#include <linux/kvm_host.h>
17#include <kvm/iodev.h>
18#include <kvm/arm_vgic.h>
19
20#include <asm/kvm_emulate.h>
21
22#include "vgic.h"
23#include "vgic-mmio.h"
24
741972d8 25/* extract @num bytes at @offset bytes offset in data */
424c3383
AP
26unsigned long extract_bytes(unsigned long data, unsigned int offset,
27 unsigned int num)
741972d8
AP
28{
29 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
30}
31
0aa1de57 32/* allows updates of any half of a 64-bit register (or the whole thing) */
424c3383
AP
33u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
34 unsigned long val)
0aa1de57
AP
35{
36 int lower = (offset & 4) * 8;
37 int upper = lower + 8 * len - 1;
38
39 reg &= ~GENMASK_ULL(upper, lower);
40 val &= GENMASK_ULL(len * 8 - 1, 0);
41
42 return reg | ((u64)val << lower);
43}
44
59c5ab40
AP
45bool vgic_has_its(struct kvm *kvm)
46{
47 struct vgic_dist *dist = &kvm->arch.vgic;
48
49 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
50 return false;
51
1085fdc6 52 return dist->has_its;
59c5ab40
AP
53}
54
fd59ed3b
AP
55static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
56 gpa_t addr, unsigned int len)
57{
58 u32 value = 0;
59
60 switch (addr & 0x0c) {
61 case GICD_CTLR:
62 if (vcpu->kvm->arch.vgic.enabled)
63 value |= GICD_CTLR_ENABLE_SS_G1;
64 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
65 break;
66 case GICD_TYPER:
67 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
68 value = (value >> 5) - 1;
0e4e82f1
AP
69 if (vgic_has_its(vcpu->kvm)) {
70 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
71 value |= GICD_TYPER_LPIS;
72 } else {
73 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
74 }
fd59ed3b
AP
75 break;
76 case GICD_IIDR:
77 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
78 break;
79 default:
80 return 0;
81 }
82
83 return value;
84}
85
86static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
87 gpa_t addr, unsigned int len,
88 unsigned long val)
89{
90 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
91 bool was_enabled = dist->enabled;
92
93 switch (addr & 0x0c) {
94 case GICD_CTLR:
95 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
96
97 if (!was_enabled && dist->enabled)
98 vgic_kick_vcpus(vcpu->kvm);
99 break;
100 case GICD_TYPER:
101 case GICD_IIDR:
102 return;
103 }
104}
105
78a714ab
AP
106static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
107 gpa_t addr, unsigned int len)
108{
109 int intid = VGIC_ADDR_TO_INTID(addr, 64);
110 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
5dd4b924 111 unsigned long ret = 0;
78a714ab
AP
112
113 if (!irq)
114 return 0;
115
116 /* The upper word is RAZ for us. */
5dd4b924
AP
117 if (!(addr & 4))
118 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
78a714ab 119
5dd4b924
AP
120 vgic_put_irq(vcpu->kvm, irq);
121 return ret;
78a714ab
AP
122}
123
124static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
125 gpa_t addr, unsigned int len,
126 unsigned long val)
127{
128 int intid = VGIC_ADDR_TO_INTID(addr, 64);
5dd4b924 129 struct vgic_irq *irq;
78a714ab
AP
130
131 /* The upper word is WI for us since we don't implement Aff3. */
132 if (addr & 4)
133 return;
134
5dd4b924
AP
135 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
136
137 if (!irq)
138 return;
139
78a714ab
AP
140 spin_lock(&irq->irq_lock);
141
142 /* We only care about and preserve Aff0, Aff1 and Aff2. */
143 irq->mpidr = val & GENMASK(23, 0);
144 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
145
146 spin_unlock(&irq->irq_lock);
5dd4b924 147 vgic_put_irq(vcpu->kvm, irq);
78a714ab
AP
148}
149
59c5ab40
AP
150static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
151 gpa_t addr, unsigned int len)
152{
153 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
154
155 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
156}
157
158
159static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
160 gpa_t addr, unsigned int len,
161 unsigned long val)
162{
163 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
164 bool was_enabled = vgic_cpu->lpis_enabled;
165
166 if (!vgic_has_its(vcpu->kvm))
167 return;
168
169 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
170
0e4e82f1
AP
171 if (!was_enabled && vgic_cpu->lpis_enabled)
172 vgic_enable_lpis(vcpu);
59c5ab40
AP
173}
174
741972d8
AP
175static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
176 gpa_t addr, unsigned int len)
177{
178 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
179 int target_vcpu_id = vcpu->vcpu_id;
180 u64 value;
181
182 value = (mpidr & GENMASK(23, 0)) << 32;
183 value |= ((target_vcpu_id & 0xffff) << 8);
184 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
185 value |= GICR_TYPER_LAST;
0e4e82f1
AP
186 if (vgic_has_its(vcpu->kvm))
187 value |= GICR_TYPER_PLPIS;
741972d8
AP
188
189 return extract_bytes(value, addr & 7, len);
190}
191
192static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
193 gpa_t addr, unsigned int len)
194{
195 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
196}
197
54f59d2b
AP
198static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
199 gpa_t addr, unsigned int len)
200{
201 switch (addr & 0xffff) {
202 case GICD_PIDR2:
203 /* report a GICv3 compliant implementation */
204 return 0x3b;
205 }
206
207 return 0;
208}
209
0aa1de57
AP
210/* We want to avoid outer shareable. */
211u64 vgic_sanitise_shareability(u64 field)
212{
213 switch (field) {
214 case GIC_BASER_OuterShareable:
215 return GIC_BASER_InnerShareable;
216 default:
217 return field;
218 }
219}
220
221/* Avoid any inner non-cacheable mapping. */
222u64 vgic_sanitise_inner_cacheability(u64 field)
223{
224 switch (field) {
225 case GIC_BASER_CACHE_nCnB:
226 case GIC_BASER_CACHE_nC:
227 return GIC_BASER_CACHE_RaWb;
228 default:
229 return field;
230 }
231}
232
233/* Non-cacheable or same-as-inner are OK. */
234u64 vgic_sanitise_outer_cacheability(u64 field)
235{
236 switch (field) {
237 case GIC_BASER_CACHE_SameAsInner:
238 case GIC_BASER_CACHE_nC:
239 return field;
240 default:
241 return GIC_BASER_CACHE_nC;
242 }
243}
244
245u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
246 u64 (*sanitise_fn)(u64))
247{
248 u64 field = (reg & field_mask) >> field_shift;
249
250 field = sanitise_fn(field) << field_shift;
251 return (reg & ~field_mask) | field;
252}
253
254#define PROPBASER_RES0_MASK \
255 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
256#define PENDBASER_RES0_MASK \
257 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
258 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
259
260static u64 vgic_sanitise_pendbaser(u64 reg)
261{
262 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
263 GICR_PENDBASER_SHAREABILITY_SHIFT,
264 vgic_sanitise_shareability);
265 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
266 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
267 vgic_sanitise_inner_cacheability);
268 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
269 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
270 vgic_sanitise_outer_cacheability);
271
272 reg &= ~PENDBASER_RES0_MASK;
273 reg &= ~GENMASK_ULL(51, 48);
274
275 return reg;
276}
277
278static u64 vgic_sanitise_propbaser(u64 reg)
279{
280 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
281 GICR_PROPBASER_SHAREABILITY_SHIFT,
282 vgic_sanitise_shareability);
283 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
284 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
285 vgic_sanitise_inner_cacheability);
286 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
287 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
288 vgic_sanitise_outer_cacheability);
289
290 reg &= ~PROPBASER_RES0_MASK;
291 reg &= ~GENMASK_ULL(51, 48);
292 return reg;
293}
294
295static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
296 gpa_t addr, unsigned int len)
297{
298 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
299
300 return extract_bytes(dist->propbaser, addr & 7, len);
301}
302
303static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
304 gpa_t addr, unsigned int len,
305 unsigned long val)
306{
307 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
308 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 309 u64 old_propbaser, propbaser;
0aa1de57
AP
310
311 /* Storing a value with LPIs already enabled is undefined */
312 if (vgic_cpu->lpis_enabled)
313 return;
314
d9ae449b
CD
315 do {
316 old_propbaser = dist->propbaser;
317 propbaser = old_propbaser;
318 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
319 propbaser = vgic_sanitise_propbaser(propbaser);
320 } while (cmpxchg64(&dist->propbaser, old_propbaser,
321 propbaser) != old_propbaser);
0aa1de57
AP
322}
323
324static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
325 gpa_t addr, unsigned int len)
326{
327 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
328
329 return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
330}
331
332static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
333 gpa_t addr, unsigned int len,
334 unsigned long val)
335{
336 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 337 u64 old_pendbaser, pendbaser;
0aa1de57
AP
338
339 /* Storing a value with LPIs already enabled is undefined */
340 if (vgic_cpu->lpis_enabled)
341 return;
342
d9ae449b
CD
343 do {
344 old_pendbaser = vgic_cpu->pendbaser;
345 pendbaser = old_pendbaser;
346 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
347 pendbaser = vgic_sanitise_pendbaser(pendbaser);
348 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
349 pendbaser) != old_pendbaser);
0aa1de57
AP
350}
351
ed9b8cef
AP
352/*
353 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
354 * redistributors, while SPIs are covered by registers in the distributor
355 * block. Trying to set private IRQs in this block gets ignored.
356 * We take some special care here to fix the calculation of the register
357 * offset.
358 */
359#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc) \
360 { \
361 .reg_offset = off, \
362 .bits_per_irq = bpi, \
363 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
364 .access_flags = acc, \
365 .read = vgic_mmio_read_raz, \
366 .write = vgic_mmio_write_wi, \
367 }, { \
368 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
369 .bits_per_irq = bpi, \
370 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
371 .access_flags = acc, \
372 .read = rd, \
373 .write = wr, \
374 }
375
376static const struct vgic_register_region vgic_v3_dist_registers[] = {
377 REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
fd59ed3b 378 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
ed9b8cef
AP
379 VGIC_ACCESS_32bit),
380 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
381 vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
382 VGIC_ACCESS_32bit),
383 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
384 vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
385 VGIC_ACCESS_32bit),
386 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
387 vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
388 VGIC_ACCESS_32bit),
389 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
390 vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
391 VGIC_ACCESS_32bit),
392 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
393 vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
394 VGIC_ACCESS_32bit),
395 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
396 vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
397 VGIC_ACCESS_32bit),
398 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
399 vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
400 VGIC_ACCESS_32bit),
401 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
402 vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
403 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
404 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
405 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
406 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
407 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
408 vgic_mmio_read_config, vgic_mmio_write_config, 2,
409 VGIC_ACCESS_32bit),
410 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
411 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
412 VGIC_ACCESS_32bit),
413 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
78a714ab 414 vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
ed9b8cef
AP
415 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
416 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
54f59d2b 417 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
418 VGIC_ACCESS_32bit),
419};
420
421static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
422 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
59c5ab40 423 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
ed9b8cef
AP
424 VGIC_ACCESS_32bit),
425 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
741972d8 426 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
ed9b8cef
AP
427 VGIC_ACCESS_32bit),
428 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
741972d8 429 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
ed9b8cef
AP
430 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
431 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
0aa1de57 432 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
ed9b8cef
AP
433 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
434 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
0aa1de57 435 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
ed9b8cef
AP
436 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
437 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
54f59d2b 438 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
439 VGIC_ACCESS_32bit),
440};
441
442static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
443 REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
444 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
445 VGIC_ACCESS_32bit),
446 REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
447 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
448 VGIC_ACCESS_32bit),
449 REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
450 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
451 VGIC_ACCESS_32bit),
452 REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
453 vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
454 VGIC_ACCESS_32bit),
455 REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
456 vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
457 VGIC_ACCESS_32bit),
458 REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
459 vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
460 VGIC_ACCESS_32bit),
461 REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
462 vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
463 VGIC_ACCESS_32bit),
464 REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
465 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
466 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
467 REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
468 vgic_mmio_read_config, vgic_mmio_write_config, 8,
469 VGIC_ACCESS_32bit),
470 REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
471 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
472 VGIC_ACCESS_32bit),
473 REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
474 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
475 VGIC_ACCESS_32bit),
476};
477
478unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
479{
480 dev->regions = vgic_v3_dist_registers;
481 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
482
483 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
484
485 return SZ_64K;
486}
487
488int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
489{
ed9b8cef 490 struct kvm_vcpu *vcpu;
ed9b8cef
AP
491 int c, ret = 0;
492
ed9b8cef
AP
493 kvm_for_each_vcpu(c, vcpu, kvm) {
494 gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
495 gpa_t sgi_base = rd_base + SZ_64K;
8f6cdc1c
AP
496 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
497 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
ed9b8cef
AP
498
499 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
500 rd_dev->base_addr = rd_base;
59c5ab40 501 rd_dev->iodev_type = IODEV_REDIST;
ed9b8cef
AP
502 rd_dev->regions = vgic_v3_rdbase_registers;
503 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
504 rd_dev->redist_vcpu = vcpu;
505
506 mutex_lock(&kvm->slots_lock);
507 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
508 SZ_64K, &rd_dev->dev);
509 mutex_unlock(&kvm->slots_lock);
510
511 if (ret)
512 break;
513
514 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
515 sgi_dev->base_addr = sgi_base;
59c5ab40 516 sgi_dev->iodev_type = IODEV_REDIST;
ed9b8cef
AP
517 sgi_dev->regions = vgic_v3_sgibase_registers;
518 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
519 sgi_dev->redist_vcpu = vcpu;
520
521 mutex_lock(&kvm->slots_lock);
522 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
523 SZ_64K, &sgi_dev->dev);
524 mutex_unlock(&kvm->slots_lock);
525 if (ret) {
526 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
527 &rd_dev->dev);
528 break;
529 }
530 }
531
532 if (ret) {
533 /* The current c failed, so we start with the previous one. */
534 for (c--; c >= 0; c--) {
8f6cdc1c
AP
535 struct vgic_cpu *vgic_cpu;
536
537 vcpu = kvm_get_vcpu(kvm, c);
538 vgic_cpu = &vcpu->arch.vgic_cpu;
ed9b8cef 539 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
8f6cdc1c 540 &vgic_cpu->rd_iodev.dev);
ed9b8cef 541 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
8f6cdc1c 542 &vgic_cpu->sgi_iodev.dev);
ed9b8cef 543 }
ed9b8cef
AP
544 }
545
546 return ret;
547}
621ecd8d
AP
548
549/*
550 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
551 * generation register ICC_SGI1R_EL1) with a given VCPU.
552 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
553 * return -1.
554 */
555static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
556{
557 unsigned long affinity;
558 int level0;
559
560 /*
561 * Split the current VCPU's MPIDR into affinity level 0 and the
562 * rest as this is what we have to compare against.
563 */
564 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
565 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
566 affinity &= ~MPIDR_LEVEL_MASK;
567
568 /* bail out if the upper three levels don't match */
569 if (sgi_aff != affinity)
570 return -1;
571
572 /* Is this VCPU's bit set in the mask ? */
573 if (!(sgi_cpu_mask & BIT(level0)))
574 return -1;
575
576 return level0;
577}
578
579/*
580 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
581 * so provide a wrapper to use the existing defines to isolate a certain
582 * affinity level.
583 */
584#define SGI_AFFINITY_LEVEL(reg, level) \
585 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
586 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
587
588/**
589 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
590 * @vcpu: The VCPU requesting a SGI
591 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
592 *
593 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
594 * This will trap in sys_regs.c and call this function.
595 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
596 * target processors as well as a bitmask of 16 Aff0 CPUs.
597 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
598 * check for matching ones. If this bit is set, we signal all, but not the
599 * calling VCPU.
600 */
601void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
602{
603 struct kvm *kvm = vcpu->kvm;
604 struct kvm_vcpu *c_vcpu;
605 u16 target_cpus;
606 u64 mpidr;
607 int sgi, c;
608 int vcpu_id = vcpu->vcpu_id;
609 bool broadcast;
610
611 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
612 broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
613 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
614 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
615 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
616 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
617
618 /*
619 * We iterate over all VCPUs to find the MPIDRs matching the request.
620 * If we have handled one CPU, we clear its bit to detect early
621 * if we are already finished. This avoids iterating through all
622 * VCPUs when most of the times we just signal a single VCPU.
623 */
624 kvm_for_each_vcpu(c, c_vcpu, kvm) {
625 struct vgic_irq *irq;
626
627 /* Exit early if we have dealt with all requested CPUs */
628 if (!broadcast && target_cpus == 0)
629 break;
630
631 /* Don't signal the calling VCPU */
632 if (broadcast && c == vcpu_id)
633 continue;
634
635 if (!broadcast) {
636 int level0;
637
638 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
639 if (level0 == -1)
640 continue;
641
642 /* remove this matching VCPU from the mask */
643 target_cpus &= ~BIT(level0);
644 }
645
646 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
647
648 spin_lock(&irq->irq_lock);
649 irq->pending = true;
650
651 vgic_queue_irq_unlock(vcpu->kvm, irq);
5dd4b924 652 vgic_put_irq(vcpu->kvm, irq);
621ecd8d
AP
653 }
654}
This page took 0.085736 seconds and 5 git commands to generate.