| 1 | /* |
| 2 | * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/elf.h> |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/sort.h> |
| 13 | |
| 14 | #include <asm/cache.h> |
| 15 | #include <asm/opcodes.h> |
| 16 | |
| 17 | #define PLT_ENT_STRIDE L1_CACHE_BYTES |
| 18 | #define PLT_ENT_COUNT (PLT_ENT_STRIDE / sizeof(u32)) |
| 19 | #define PLT_ENT_SIZE (sizeof(struct plt_entries) / PLT_ENT_COUNT) |
| 20 | |
| 21 | #ifdef CONFIG_THUMB2_KERNEL |
| 22 | #define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \ |
| 23 | (PLT_ENT_STRIDE - 4)) |
| 24 | #else |
| 25 | #define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \ |
| 26 | (PLT_ENT_STRIDE - 8)) |
| 27 | #endif |
| 28 | |
| 29 | struct plt_entries { |
| 30 | u32 ldr[PLT_ENT_COUNT]; |
| 31 | u32 lit[PLT_ENT_COUNT]; |
| 32 | }; |
| 33 | |
| 34 | u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val) |
| 35 | { |
| 36 | struct plt_entries *plt = (struct plt_entries *)mod->arch.plt->sh_addr; |
| 37 | int idx = 0; |
| 38 | |
| 39 | /* |
| 40 | * Look for an existing entry pointing to 'val'. Given that the |
| 41 | * relocations are sorted, this will be the last entry we allocated. |
| 42 | * (if one exists). |
| 43 | */ |
| 44 | if (mod->arch.plt_count > 0) { |
| 45 | plt += (mod->arch.plt_count - 1) / PLT_ENT_COUNT; |
| 46 | idx = (mod->arch.plt_count - 1) % PLT_ENT_COUNT; |
| 47 | |
| 48 | if (plt->lit[idx] == val) |
| 49 | return (u32)&plt->ldr[idx]; |
| 50 | |
| 51 | idx = (idx + 1) % PLT_ENT_COUNT; |
| 52 | if (!idx) |
| 53 | plt++; |
| 54 | } |
| 55 | |
| 56 | mod->arch.plt_count++; |
| 57 | BUG_ON(mod->arch.plt_count * PLT_ENT_SIZE > mod->arch.plt->sh_size); |
| 58 | |
| 59 | if (!idx) |
| 60 | /* Populate a new set of entries */ |
| 61 | *plt = (struct plt_entries){ |
| 62 | { [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, }, |
| 63 | { val, } |
| 64 | }; |
| 65 | else |
| 66 | plt->lit[idx] = val; |
| 67 | |
| 68 | return (u32)&plt->ldr[idx]; |
| 69 | } |
| 70 | |
| 71 | #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b)) |
| 72 | |
| 73 | static int cmp_rel(const void *a, const void *b) |
| 74 | { |
| 75 | const Elf32_Rel *x = a, *y = b; |
| 76 | int i; |
| 77 | |
| 78 | /* sort by type and symbol index */ |
| 79 | i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info)); |
| 80 | if (i == 0) |
| 81 | i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info)); |
| 82 | return i; |
| 83 | } |
| 84 | |
| 85 | static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel) |
| 86 | { |
| 87 | u32 *tval = (u32 *)(base + rel->r_offset); |
| 88 | |
| 89 | /* |
| 90 | * Do a bitwise compare on the raw addend rather than fully decoding |
| 91 | * the offset and doing an arithmetic comparison. |
| 92 | * Note that a zero-addend jump/call relocation is encoded taking the |
| 93 | * PC bias into account, i.e., -8 for ARM and -4 for Thumb2. |
| 94 | */ |
| 95 | switch (ELF32_R_TYPE(rel->r_info)) { |
| 96 | u16 upper, lower; |
| 97 | |
| 98 | case R_ARM_THM_CALL: |
| 99 | case R_ARM_THM_JUMP24: |
| 100 | upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]); |
| 101 | lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]); |
| 102 | |
| 103 | return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe; |
| 104 | |
| 105 | case R_ARM_CALL: |
| 106 | case R_ARM_PC24: |
| 107 | case R_ARM_JUMP24: |
| 108 | return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe; |
| 109 | } |
| 110 | BUG(); |
| 111 | } |
| 112 | |
| 113 | static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num) |
| 114 | { |
| 115 | const Elf32_Rel *prev; |
| 116 | |
| 117 | /* |
| 118 | * Entries are sorted by type and symbol index. That means that, |
| 119 | * if a duplicate entry exists, it must be in the preceding |
| 120 | * slot. |
| 121 | */ |
| 122 | if (!num) |
| 123 | return false; |
| 124 | |
| 125 | prev = rel + num - 1; |
| 126 | return cmp_rel(rel + num, prev) == 0 && |
| 127 | is_zero_addend_relocation(base, prev); |
| 128 | } |
| 129 | |
| 130 | /* Count how many PLT entries we may need */ |
| 131 | static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base, |
| 132 | const Elf32_Rel *rel, int num) |
| 133 | { |
| 134 | unsigned int ret = 0; |
| 135 | const Elf32_Sym *s; |
| 136 | int i; |
| 137 | |
| 138 | for (i = 0; i < num; i++) { |
| 139 | switch (ELF32_R_TYPE(rel[i].r_info)) { |
| 140 | case R_ARM_CALL: |
| 141 | case R_ARM_PC24: |
| 142 | case R_ARM_JUMP24: |
| 143 | case R_ARM_THM_CALL: |
| 144 | case R_ARM_THM_JUMP24: |
| 145 | /* |
| 146 | * We only have to consider branch targets that resolve |
| 147 | * to undefined symbols. This is not simply a heuristic, |
| 148 | * it is a fundamental limitation, since the PLT itself |
| 149 | * is part of the module, and needs to be within range |
| 150 | * as well, so modules can never grow beyond that limit. |
| 151 | */ |
| 152 | s = syms + ELF32_R_SYM(rel[i].r_info); |
| 153 | if (s->st_shndx != SHN_UNDEF) |
| 154 | break; |
| 155 | |
| 156 | /* |
| 157 | * Jump relocations with non-zero addends against |
| 158 | * undefined symbols are supported by the ELF spec, but |
| 159 | * do not occur in practice (e.g., 'jump n bytes past |
| 160 | * the entry point of undefined function symbol f'). |
| 161 | * So we need to support them, but there is no need to |
| 162 | * take them into consideration when trying to optimize |
| 163 | * this code. So let's only check for duplicates when |
| 164 | * the addend is zero. |
| 165 | */ |
| 166 | if (!is_zero_addend_relocation(base, rel + i) || |
| 167 | !duplicate_rel(base, rel, i)) |
| 168 | ret++; |
| 169 | } |
| 170 | } |
| 171 | return ret; |
| 172 | } |
| 173 | |
| 174 | int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, |
| 175 | char *secstrings, struct module *mod) |
| 176 | { |
| 177 | unsigned long plts = 0; |
| 178 | Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum; |
| 179 | Elf32_Sym *syms = NULL; |
| 180 | |
| 181 | /* |
| 182 | * To store the PLTs, we expand the .text section for core module code |
| 183 | * and for initialization code. |
| 184 | */ |
| 185 | for (s = sechdrs; s < sechdrs_end; ++s) { |
| 186 | if (strcmp(".plt", secstrings + s->sh_name) == 0) |
| 187 | mod->arch.plt = s; |
| 188 | else if (s->sh_type == SHT_SYMTAB) |
| 189 | syms = (Elf32_Sym *)s->sh_addr; |
| 190 | } |
| 191 | |
| 192 | if (!mod->arch.plt) { |
| 193 | pr_err("%s: module PLT section missing\n", mod->name); |
| 194 | return -ENOEXEC; |
| 195 | } |
| 196 | if (!syms) { |
| 197 | pr_err("%s: module symtab section missing\n", mod->name); |
| 198 | return -ENOEXEC; |
| 199 | } |
| 200 | |
| 201 | for (s = sechdrs + 1; s < sechdrs_end; ++s) { |
| 202 | Elf32_Rel *rels = (void *)ehdr + s->sh_offset; |
| 203 | int numrels = s->sh_size / sizeof(Elf32_Rel); |
| 204 | Elf32_Shdr *dstsec = sechdrs + s->sh_info; |
| 205 | |
| 206 | if (s->sh_type != SHT_REL) |
| 207 | continue; |
| 208 | |
| 209 | /* ignore relocations that operate on non-exec sections */ |
| 210 | if (!(dstsec->sh_flags & SHF_EXECINSTR)) |
| 211 | continue; |
| 212 | |
| 213 | /* sort by type and symbol index */ |
| 214 | sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL); |
| 215 | |
| 216 | plts += count_plts(syms, dstsec->sh_addr, rels, numrels); |
| 217 | } |
| 218 | |
| 219 | mod->arch.plt->sh_type = SHT_NOBITS; |
| 220 | mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| 221 | mod->arch.plt->sh_addralign = L1_CACHE_BYTES; |
| 222 | mod->arch.plt->sh_size = round_up(plts * PLT_ENT_SIZE, |
| 223 | sizeof(struct plt_entries)); |
| 224 | mod->arch.plt_count = 0; |
| 225 | |
| 226 | pr_debug("%s: plt=%x\n", __func__, mod->arch.plt->sh_size); |
| 227 | return 0; |
| 228 | } |