Merge tag 'v4.7' into for-linus/pstore
[deliverable/linux.git] / arch / mips / kvm / mips.c
... / ...
CommitLineData
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/kdebug.h>
15#include <linux/module.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/bootmem.h>
19#include <asm/fpu.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/mmu_context.h>
23#include <asm/pgtable.h>
24
25#include <linux/kvm_host.h>
26
27#include "interrupt.h"
28#include "commpage.h"
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#ifndef VECTORSPACING
34#define VECTORSPACING 0x100 /* for EI/VI mode */
35#endif
36
37#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
61 {NULL}
62};
63
64static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
65{
66 int i;
67
68 for_each_possible_cpu(i) {
69 vcpu->arch.guest_kernel_asid[i] = 0;
70 vcpu->arch.guest_user_asid[i] = 0;
71 }
72
73 return 0;
74}
75
76/*
77 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
78 * Config7, so we are "runnable" if interrupts are pending
79 */
80int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81{
82 return !!(vcpu->arch.pending_exceptions);
83}
84
85int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
86{
87 return 1;
88}
89
90int kvm_arch_hardware_enable(void)
91{
92 return 0;
93}
94
95int kvm_arch_hardware_setup(void)
96{
97 return 0;
98}
99
100void kvm_arch_check_processor_compat(void *rtn)
101{
102 *(int *)rtn = 0;
103}
104
105static void kvm_mips_init_tlbs(struct kvm *kvm)
106{
107 unsigned long wired;
108
109 /*
110 * Add a wired entry to the TLB, it is used to map the commpage to
111 * the Guest kernel
112 */
113 wired = read_c0_wired();
114 write_c0_wired(wired + 1);
115 mtc0_tlbw_hazard();
116 kvm->arch.commpage_tlb = wired;
117
118 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
119 kvm->arch.commpage_tlb);
120}
121
122static void kvm_mips_init_vm_percpu(void *arg)
123{
124 struct kvm *kvm = (struct kvm *)arg;
125
126 kvm_mips_init_tlbs(kvm);
127 kvm_mips_callbacks->vm_init(kvm);
128
129}
130
131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132{
133 if (atomic_inc_return(&kvm_mips_instance) == 1) {
134 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135 __func__);
136 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
137 }
138
139 return 0;
140}
141
142void kvm_mips_free_vcpus(struct kvm *kvm)
143{
144 unsigned int i;
145 struct kvm_vcpu *vcpu;
146
147 /* Put the pages we reserved for the guest pmap */
148 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151 }
152 kfree(kvm->arch.guest_pmap);
153
154 kvm_for_each_vcpu(i, vcpu, kvm) {
155 kvm_arch_vcpu_free(vcpu);
156 }
157
158 mutex_lock(&kvm->lock);
159
160 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
161 kvm->vcpus[i] = NULL;
162
163 atomic_set(&kvm->online_vcpus, 0);
164
165 mutex_unlock(&kvm->lock);
166}
167
168static void kvm_mips_uninit_tlbs(void *arg)
169{
170 /* Restore wired count */
171 write_c0_wired(0);
172 mtc0_tlbw_hazard();
173 /* Clear out all the TLBs */
174 kvm_local_flush_tlb_all();
175}
176
177void kvm_arch_destroy_vm(struct kvm *kvm)
178{
179 kvm_mips_free_vcpus(kvm);
180
181 /* If this is the last instance, restore wired count */
182 if (atomic_dec_return(&kvm_mips_instance) == 0) {
183 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184 __func__);
185 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
186 }
187}
188
189long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
190 unsigned long arg)
191{
192 return -ENOIOCTLCMD;
193}
194
195int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
196 unsigned long npages)
197{
198 return 0;
199}
200
201int kvm_arch_prepare_memory_region(struct kvm *kvm,
202 struct kvm_memory_slot *memslot,
203 const struct kvm_userspace_memory_region *mem,
204 enum kvm_mr_change change)
205{
206 return 0;
207}
208
209void kvm_arch_commit_memory_region(struct kvm *kvm,
210 const struct kvm_userspace_memory_region *mem,
211 const struct kvm_memory_slot *old,
212 const struct kvm_memory_slot *new,
213 enum kvm_mr_change change)
214{
215 unsigned long npages = 0;
216 int i;
217
218 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
219 __func__, kvm, mem->slot, mem->guest_phys_addr,
220 mem->memory_size, mem->userspace_addr);
221
222 /* Setup Guest PMAP table */
223 if (!kvm->arch.guest_pmap) {
224 if (mem->slot == 0)
225 npages = mem->memory_size >> PAGE_SHIFT;
226
227 if (npages) {
228 kvm->arch.guest_pmap_npages = npages;
229 kvm->arch.guest_pmap =
230 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231
232 if (!kvm->arch.guest_pmap) {
233 kvm_err("Failed to allocate guest PMAP\n");
234 return;
235 }
236
237 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
238 npages, kvm->arch.guest_pmap);
239
240 /* Now setup the page table */
241 for (i = 0; i < npages; i++)
242 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
243 }
244 }
245}
246
247struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248{
249 int err, size, offset;
250 void *gebase;
251 int i;
252
253 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
254
255 if (!vcpu) {
256 err = -ENOMEM;
257 goto out;
258 }
259
260 err = kvm_vcpu_init(vcpu, kvm, id);
261
262 if (err)
263 goto out_free_cpu;
264
265 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266
267 /*
268 * Allocate space for host mode exception handlers that handle
269 * guest mode exits
270 */
271 if (cpu_has_veic || cpu_has_vint)
272 size = 0x200 + VECTORSPACING * 64;
273 else
274 size = 0x4000;
275
276 /* Save Linux EBASE */
277 vcpu->arch.host_ebase = (void *)read_c0_ebase();
278
279 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
280
281 if (!gebase) {
282 err = -ENOMEM;
283 goto out_uninit_cpu;
284 }
285 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
286 ALIGN(size, PAGE_SIZE), gebase);
287
288 /* Save new ebase */
289 vcpu->arch.guest_ebase = gebase;
290
291 /* Copy L1 Guest Exception handler to correct offset */
292
293 /* TLB Refill, EXL = 0 */
294 memcpy(gebase, mips32_exception,
295 mips32_exceptionEnd - mips32_exception);
296
297 /* General Exception Entry point */
298 memcpy(gebase + 0x180, mips32_exception,
299 mips32_exceptionEnd - mips32_exception);
300
301 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
302 for (i = 0; i < 8; i++) {
303 kvm_debug("L1 Vectored handler @ %p\n",
304 gebase + 0x200 + (i * VECTORSPACING));
305 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
306 mips32_exceptionEnd - mips32_exception);
307 }
308
309 /* General handler, relocate to unmapped space for sanity's sake */
310 offset = 0x2000;
311 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312 gebase + offset,
313 mips32_GuestExceptionEnd - mips32_GuestException);
314
315 memcpy(gebase + offset, mips32_GuestException,
316 mips32_GuestExceptionEnd - mips32_GuestException);
317
318#ifdef MODULE
319 offset += mips32_GuestExceptionEnd - mips32_GuestException;
320 memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
321 __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
322 vcpu->arch.vcpu_run = gebase + offset;
323#else
324 vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
325#endif
326
327 /* Invalidate the icache for these ranges */
328 local_flush_icache_range((unsigned long)gebase,
329 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
330
331 /*
332 * Allocate comm page for guest kernel, a TLB will be reserved for
333 * mapping GVA @ 0xFFFF8000 to this page
334 */
335 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
336
337 if (!vcpu->arch.kseg0_commpage) {
338 err = -ENOMEM;
339 goto out_free_gebase;
340 }
341
342 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
343 kvm_mips_commpage_init(vcpu);
344
345 /* Init */
346 vcpu->arch.last_sched_cpu = -1;
347
348 /* Start off the timer */
349 kvm_mips_init_count(vcpu);
350
351 return vcpu;
352
353out_free_gebase:
354 kfree(gebase);
355
356out_uninit_cpu:
357 kvm_vcpu_uninit(vcpu);
358
359out_free_cpu:
360 kfree(vcpu);
361
362out:
363 return ERR_PTR(err);
364}
365
366void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
367{
368 hrtimer_cancel(&vcpu->arch.comparecount_timer);
369
370 kvm_vcpu_uninit(vcpu);
371
372 kvm_mips_dump_stats(vcpu);
373
374 kfree(vcpu->arch.guest_ebase);
375 kfree(vcpu->arch.kseg0_commpage);
376 kfree(vcpu);
377}
378
379void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
380{
381 kvm_arch_vcpu_free(vcpu);
382}
383
384int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
385 struct kvm_guest_debug *dbg)
386{
387 return -ENOIOCTLCMD;
388}
389
390int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
391{
392 int r = 0;
393 sigset_t sigsaved;
394
395 if (vcpu->sigset_active)
396 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
397
398 if (vcpu->mmio_needed) {
399 if (!vcpu->mmio_is_write)
400 kvm_mips_complete_mmio_load(vcpu, run);
401 vcpu->mmio_needed = 0;
402 }
403
404 lose_fpu(1);
405
406 local_irq_disable();
407 /* Check if we have any exceptions/interrupts pending */
408 kvm_mips_deliver_interrupts(vcpu,
409 kvm_read_c0_guest_cause(vcpu->arch.cop0));
410
411 __kvm_guest_enter();
412
413 /* Disable hardware page table walking while in guest */
414 htw_stop();
415
416 r = vcpu->arch.vcpu_run(run, vcpu);
417
418 /* Re-enable HTW before enabling interrupts */
419 htw_start();
420
421 __kvm_guest_exit();
422 local_irq_enable();
423
424 if (vcpu->sigset_active)
425 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
426
427 return r;
428}
429
430int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
431 struct kvm_mips_interrupt *irq)
432{
433 int intr = (int)irq->irq;
434 struct kvm_vcpu *dvcpu = NULL;
435
436 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
437 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
438 (int)intr);
439
440 if (irq->cpu == -1)
441 dvcpu = vcpu;
442 else
443 dvcpu = vcpu->kvm->vcpus[irq->cpu];
444
445 if (intr == 2 || intr == 3 || intr == 4) {
446 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
447
448 } else if (intr == -2 || intr == -3 || intr == -4) {
449 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
450 } else {
451 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
452 irq->cpu, irq->irq);
453 return -EINVAL;
454 }
455
456 dvcpu->arch.wait = 0;
457
458 if (swait_active(&dvcpu->wq))
459 swake_up(&dvcpu->wq);
460
461 return 0;
462}
463
464int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
465 struct kvm_mp_state *mp_state)
466{
467 return -ENOIOCTLCMD;
468}
469
470int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
471 struct kvm_mp_state *mp_state)
472{
473 return -ENOIOCTLCMD;
474}
475
476static u64 kvm_mips_get_one_regs[] = {
477 KVM_REG_MIPS_R0,
478 KVM_REG_MIPS_R1,
479 KVM_REG_MIPS_R2,
480 KVM_REG_MIPS_R3,
481 KVM_REG_MIPS_R4,
482 KVM_REG_MIPS_R5,
483 KVM_REG_MIPS_R6,
484 KVM_REG_MIPS_R7,
485 KVM_REG_MIPS_R8,
486 KVM_REG_MIPS_R9,
487 KVM_REG_MIPS_R10,
488 KVM_REG_MIPS_R11,
489 KVM_REG_MIPS_R12,
490 KVM_REG_MIPS_R13,
491 KVM_REG_MIPS_R14,
492 KVM_REG_MIPS_R15,
493 KVM_REG_MIPS_R16,
494 KVM_REG_MIPS_R17,
495 KVM_REG_MIPS_R18,
496 KVM_REG_MIPS_R19,
497 KVM_REG_MIPS_R20,
498 KVM_REG_MIPS_R21,
499 KVM_REG_MIPS_R22,
500 KVM_REG_MIPS_R23,
501 KVM_REG_MIPS_R24,
502 KVM_REG_MIPS_R25,
503 KVM_REG_MIPS_R26,
504 KVM_REG_MIPS_R27,
505 KVM_REG_MIPS_R28,
506 KVM_REG_MIPS_R29,
507 KVM_REG_MIPS_R30,
508 KVM_REG_MIPS_R31,
509
510 KVM_REG_MIPS_HI,
511 KVM_REG_MIPS_LO,
512 KVM_REG_MIPS_PC,
513
514 KVM_REG_MIPS_CP0_INDEX,
515 KVM_REG_MIPS_CP0_CONTEXT,
516 KVM_REG_MIPS_CP0_USERLOCAL,
517 KVM_REG_MIPS_CP0_PAGEMASK,
518 KVM_REG_MIPS_CP0_WIRED,
519 KVM_REG_MIPS_CP0_HWRENA,
520 KVM_REG_MIPS_CP0_BADVADDR,
521 KVM_REG_MIPS_CP0_COUNT,
522 KVM_REG_MIPS_CP0_ENTRYHI,
523 KVM_REG_MIPS_CP0_COMPARE,
524 KVM_REG_MIPS_CP0_STATUS,
525 KVM_REG_MIPS_CP0_CAUSE,
526 KVM_REG_MIPS_CP0_EPC,
527 KVM_REG_MIPS_CP0_PRID,
528 KVM_REG_MIPS_CP0_CONFIG,
529 KVM_REG_MIPS_CP0_CONFIG1,
530 KVM_REG_MIPS_CP0_CONFIG2,
531 KVM_REG_MIPS_CP0_CONFIG3,
532 KVM_REG_MIPS_CP0_CONFIG4,
533 KVM_REG_MIPS_CP0_CONFIG5,
534 KVM_REG_MIPS_CP0_CONFIG7,
535 KVM_REG_MIPS_CP0_ERROREPC,
536
537 KVM_REG_MIPS_COUNT_CTL,
538 KVM_REG_MIPS_COUNT_RESUME,
539 KVM_REG_MIPS_COUNT_HZ,
540};
541
542static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
543 const struct kvm_one_reg *reg)
544{
545 struct mips_coproc *cop0 = vcpu->arch.cop0;
546 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
547 int ret;
548 s64 v;
549 s64 vs[2];
550 unsigned int idx;
551
552 switch (reg->id) {
553 /* General purpose registers */
554 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
555 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
556 break;
557 case KVM_REG_MIPS_HI:
558 v = (long)vcpu->arch.hi;
559 break;
560 case KVM_REG_MIPS_LO:
561 v = (long)vcpu->arch.lo;
562 break;
563 case KVM_REG_MIPS_PC:
564 v = (long)vcpu->arch.pc;
565 break;
566
567 /* Floating point registers */
568 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
569 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
570 return -EINVAL;
571 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
572 /* Odd singles in top of even double when FR=0 */
573 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
574 v = get_fpr32(&fpu->fpr[idx], 0);
575 else
576 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
577 break;
578 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
579 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580 return -EINVAL;
581 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
582 /* Can't access odd doubles in FR=0 mode */
583 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
584 return -EINVAL;
585 v = get_fpr64(&fpu->fpr[idx], 0);
586 break;
587 case KVM_REG_MIPS_FCR_IR:
588 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
589 return -EINVAL;
590 v = boot_cpu_data.fpu_id;
591 break;
592 case KVM_REG_MIPS_FCR_CSR:
593 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
594 return -EINVAL;
595 v = fpu->fcr31;
596 break;
597
598 /* MIPS SIMD Architecture (MSA) registers */
599 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
600 if (!kvm_mips_guest_has_msa(&vcpu->arch))
601 return -EINVAL;
602 /* Can't access MSA registers in FR=0 mode */
603 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
604 return -EINVAL;
605 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
606#ifdef CONFIG_CPU_LITTLE_ENDIAN
607 /* least significant byte first */
608 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
609 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
610#else
611 /* most significant byte first */
612 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
613 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
614#endif
615 break;
616 case KVM_REG_MIPS_MSA_IR:
617 if (!kvm_mips_guest_has_msa(&vcpu->arch))
618 return -EINVAL;
619 v = boot_cpu_data.msa_id;
620 break;
621 case KVM_REG_MIPS_MSA_CSR:
622 if (!kvm_mips_guest_has_msa(&vcpu->arch))
623 return -EINVAL;
624 v = fpu->msacsr;
625 break;
626
627 /* Co-processor 0 registers */
628 case KVM_REG_MIPS_CP0_INDEX:
629 v = (long)kvm_read_c0_guest_index(cop0);
630 break;
631 case KVM_REG_MIPS_CP0_CONTEXT:
632 v = (long)kvm_read_c0_guest_context(cop0);
633 break;
634 case KVM_REG_MIPS_CP0_USERLOCAL:
635 v = (long)kvm_read_c0_guest_userlocal(cop0);
636 break;
637 case KVM_REG_MIPS_CP0_PAGEMASK:
638 v = (long)kvm_read_c0_guest_pagemask(cop0);
639 break;
640 case KVM_REG_MIPS_CP0_WIRED:
641 v = (long)kvm_read_c0_guest_wired(cop0);
642 break;
643 case KVM_REG_MIPS_CP0_HWRENA:
644 v = (long)kvm_read_c0_guest_hwrena(cop0);
645 break;
646 case KVM_REG_MIPS_CP0_BADVADDR:
647 v = (long)kvm_read_c0_guest_badvaddr(cop0);
648 break;
649 case KVM_REG_MIPS_CP0_ENTRYHI:
650 v = (long)kvm_read_c0_guest_entryhi(cop0);
651 break;
652 case KVM_REG_MIPS_CP0_COMPARE:
653 v = (long)kvm_read_c0_guest_compare(cop0);
654 break;
655 case KVM_REG_MIPS_CP0_STATUS:
656 v = (long)kvm_read_c0_guest_status(cop0);
657 break;
658 case KVM_REG_MIPS_CP0_CAUSE:
659 v = (long)kvm_read_c0_guest_cause(cop0);
660 break;
661 case KVM_REG_MIPS_CP0_EPC:
662 v = (long)kvm_read_c0_guest_epc(cop0);
663 break;
664 case KVM_REG_MIPS_CP0_PRID:
665 v = (long)kvm_read_c0_guest_prid(cop0);
666 break;
667 case KVM_REG_MIPS_CP0_CONFIG:
668 v = (long)kvm_read_c0_guest_config(cop0);
669 break;
670 case KVM_REG_MIPS_CP0_CONFIG1:
671 v = (long)kvm_read_c0_guest_config1(cop0);
672 break;
673 case KVM_REG_MIPS_CP0_CONFIG2:
674 v = (long)kvm_read_c0_guest_config2(cop0);
675 break;
676 case KVM_REG_MIPS_CP0_CONFIG3:
677 v = (long)kvm_read_c0_guest_config3(cop0);
678 break;
679 case KVM_REG_MIPS_CP0_CONFIG4:
680 v = (long)kvm_read_c0_guest_config4(cop0);
681 break;
682 case KVM_REG_MIPS_CP0_CONFIG5:
683 v = (long)kvm_read_c0_guest_config5(cop0);
684 break;
685 case KVM_REG_MIPS_CP0_CONFIG7:
686 v = (long)kvm_read_c0_guest_config7(cop0);
687 break;
688 case KVM_REG_MIPS_CP0_ERROREPC:
689 v = (long)kvm_read_c0_guest_errorepc(cop0);
690 break;
691 /* registers to be handled specially */
692 case KVM_REG_MIPS_CP0_COUNT:
693 case KVM_REG_MIPS_COUNT_CTL:
694 case KVM_REG_MIPS_COUNT_RESUME:
695 case KVM_REG_MIPS_COUNT_HZ:
696 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
697 if (ret)
698 return ret;
699 break;
700 default:
701 return -EINVAL;
702 }
703 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
704 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
705
706 return put_user(v, uaddr64);
707 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
708 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
709 u32 v32 = (u32)v;
710
711 return put_user(v32, uaddr32);
712 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
713 void __user *uaddr = (void __user *)(long)reg->addr;
714
715 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
716 } else {
717 return -EINVAL;
718 }
719}
720
721static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
722 const struct kvm_one_reg *reg)
723{
724 struct mips_coproc *cop0 = vcpu->arch.cop0;
725 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
726 s64 v;
727 s64 vs[2];
728 unsigned int idx;
729
730 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
731 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
732
733 if (get_user(v, uaddr64) != 0)
734 return -EFAULT;
735 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
736 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
737 s32 v32;
738
739 if (get_user(v32, uaddr32) != 0)
740 return -EFAULT;
741 v = (s64)v32;
742 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
743 void __user *uaddr = (void __user *)(long)reg->addr;
744
745 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
746 } else {
747 return -EINVAL;
748 }
749
750 switch (reg->id) {
751 /* General purpose registers */
752 case KVM_REG_MIPS_R0:
753 /* Silently ignore requests to set $0 */
754 break;
755 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
756 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
757 break;
758 case KVM_REG_MIPS_HI:
759 vcpu->arch.hi = v;
760 break;
761 case KVM_REG_MIPS_LO:
762 vcpu->arch.lo = v;
763 break;
764 case KVM_REG_MIPS_PC:
765 vcpu->arch.pc = v;
766 break;
767
768 /* Floating point registers */
769 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
770 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
771 return -EINVAL;
772 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
773 /* Odd singles in top of even double when FR=0 */
774 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
775 set_fpr32(&fpu->fpr[idx], 0, v);
776 else
777 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
778 break;
779 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
780 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781 return -EINVAL;
782 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
783 /* Can't access odd doubles in FR=0 mode */
784 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
785 return -EINVAL;
786 set_fpr64(&fpu->fpr[idx], 0, v);
787 break;
788 case KVM_REG_MIPS_FCR_IR:
789 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
790 return -EINVAL;
791 /* Read-only */
792 break;
793 case KVM_REG_MIPS_FCR_CSR:
794 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
795 return -EINVAL;
796 fpu->fcr31 = v;
797 break;
798
799 /* MIPS SIMD Architecture (MSA) registers */
800 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
801 if (!kvm_mips_guest_has_msa(&vcpu->arch))
802 return -EINVAL;
803 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
804#ifdef CONFIG_CPU_LITTLE_ENDIAN
805 /* least significant byte first */
806 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
807 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
808#else
809 /* most significant byte first */
810 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
811 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
812#endif
813 break;
814 case KVM_REG_MIPS_MSA_IR:
815 if (!kvm_mips_guest_has_msa(&vcpu->arch))
816 return -EINVAL;
817 /* Read-only */
818 break;
819 case KVM_REG_MIPS_MSA_CSR:
820 if (!kvm_mips_guest_has_msa(&vcpu->arch))
821 return -EINVAL;
822 fpu->msacsr = v;
823 break;
824
825 /* Co-processor 0 registers */
826 case KVM_REG_MIPS_CP0_INDEX:
827 kvm_write_c0_guest_index(cop0, v);
828 break;
829 case KVM_REG_MIPS_CP0_CONTEXT:
830 kvm_write_c0_guest_context(cop0, v);
831 break;
832 case KVM_REG_MIPS_CP0_USERLOCAL:
833 kvm_write_c0_guest_userlocal(cop0, v);
834 break;
835 case KVM_REG_MIPS_CP0_PAGEMASK:
836 kvm_write_c0_guest_pagemask(cop0, v);
837 break;
838 case KVM_REG_MIPS_CP0_WIRED:
839 kvm_write_c0_guest_wired(cop0, v);
840 break;
841 case KVM_REG_MIPS_CP0_HWRENA:
842 kvm_write_c0_guest_hwrena(cop0, v);
843 break;
844 case KVM_REG_MIPS_CP0_BADVADDR:
845 kvm_write_c0_guest_badvaddr(cop0, v);
846 break;
847 case KVM_REG_MIPS_CP0_ENTRYHI:
848 kvm_write_c0_guest_entryhi(cop0, v);
849 break;
850 case KVM_REG_MIPS_CP0_STATUS:
851 kvm_write_c0_guest_status(cop0, v);
852 break;
853 case KVM_REG_MIPS_CP0_EPC:
854 kvm_write_c0_guest_epc(cop0, v);
855 break;
856 case KVM_REG_MIPS_CP0_PRID:
857 kvm_write_c0_guest_prid(cop0, v);
858 break;
859 case KVM_REG_MIPS_CP0_ERROREPC:
860 kvm_write_c0_guest_errorepc(cop0, v);
861 break;
862 /* registers to be handled specially */
863 case KVM_REG_MIPS_CP0_COUNT:
864 case KVM_REG_MIPS_CP0_COMPARE:
865 case KVM_REG_MIPS_CP0_CAUSE:
866 case KVM_REG_MIPS_CP0_CONFIG:
867 case KVM_REG_MIPS_CP0_CONFIG1:
868 case KVM_REG_MIPS_CP0_CONFIG2:
869 case KVM_REG_MIPS_CP0_CONFIG3:
870 case KVM_REG_MIPS_CP0_CONFIG4:
871 case KVM_REG_MIPS_CP0_CONFIG5:
872 case KVM_REG_MIPS_COUNT_CTL:
873 case KVM_REG_MIPS_COUNT_RESUME:
874 case KVM_REG_MIPS_COUNT_HZ:
875 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
876 default:
877 return -EINVAL;
878 }
879 return 0;
880}
881
882static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
883 struct kvm_enable_cap *cap)
884{
885 int r = 0;
886
887 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
888 return -EINVAL;
889 if (cap->flags)
890 return -EINVAL;
891 if (cap->args[0])
892 return -EINVAL;
893
894 switch (cap->cap) {
895 case KVM_CAP_MIPS_FPU:
896 vcpu->arch.fpu_enabled = true;
897 break;
898 case KVM_CAP_MIPS_MSA:
899 vcpu->arch.msa_enabled = true;
900 break;
901 default:
902 r = -EINVAL;
903 break;
904 }
905
906 return r;
907}
908
909long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
910 unsigned long arg)
911{
912 struct kvm_vcpu *vcpu = filp->private_data;
913 void __user *argp = (void __user *)arg;
914 long r;
915
916 switch (ioctl) {
917 case KVM_SET_ONE_REG:
918 case KVM_GET_ONE_REG: {
919 struct kvm_one_reg reg;
920
921 if (copy_from_user(&reg, argp, sizeof(reg)))
922 return -EFAULT;
923 if (ioctl == KVM_SET_ONE_REG)
924 return kvm_mips_set_reg(vcpu, &reg);
925 else
926 return kvm_mips_get_reg(vcpu, &reg);
927 }
928 case KVM_GET_REG_LIST: {
929 struct kvm_reg_list __user *user_list = argp;
930 u64 __user *reg_dest;
931 struct kvm_reg_list reg_list;
932 unsigned n;
933
934 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
935 return -EFAULT;
936 n = reg_list.n;
937 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
938 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
939 return -EFAULT;
940 if (n < reg_list.n)
941 return -E2BIG;
942 reg_dest = user_list->reg;
943 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
944 sizeof(kvm_mips_get_one_regs)))
945 return -EFAULT;
946 return 0;
947 }
948 case KVM_NMI:
949 /* Treat the NMI as a CPU reset */
950 r = kvm_mips_reset_vcpu(vcpu);
951 break;
952 case KVM_INTERRUPT:
953 {
954 struct kvm_mips_interrupt irq;
955
956 r = -EFAULT;
957 if (copy_from_user(&irq, argp, sizeof(irq)))
958 goto out;
959
960 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
961 irq.irq);
962
963 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
964 break;
965 }
966 case KVM_ENABLE_CAP: {
967 struct kvm_enable_cap cap;
968
969 r = -EFAULT;
970 if (copy_from_user(&cap, argp, sizeof(cap)))
971 goto out;
972 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
973 break;
974 }
975 default:
976 r = -ENOIOCTLCMD;
977 }
978
979out:
980 return r;
981}
982
983/* Get (and clear) the dirty memory log for a memory slot. */
984int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
985{
986 struct kvm_memslots *slots;
987 struct kvm_memory_slot *memslot;
988 unsigned long ga, ga_end;
989 int is_dirty = 0;
990 int r;
991 unsigned long n;
992
993 mutex_lock(&kvm->slots_lock);
994
995 r = kvm_get_dirty_log(kvm, log, &is_dirty);
996 if (r)
997 goto out;
998
999 /* If nothing is dirty, don't bother messing with page tables. */
1000 if (is_dirty) {
1001 slots = kvm_memslots(kvm);
1002 memslot = id_to_memslot(slots, log->slot);
1003
1004 ga = memslot->base_gfn << PAGE_SHIFT;
1005 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1006
1007 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1008 ga_end);
1009
1010 n = kvm_dirty_bitmap_bytes(memslot);
1011 memset(memslot->dirty_bitmap, 0, n);
1012 }
1013
1014 r = 0;
1015out:
1016 mutex_unlock(&kvm->slots_lock);
1017 return r;
1018
1019}
1020
1021long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1022{
1023 long r;
1024
1025 switch (ioctl) {
1026 default:
1027 r = -ENOIOCTLCMD;
1028 }
1029
1030 return r;
1031}
1032
1033int kvm_arch_init(void *opaque)
1034{
1035 if (kvm_mips_callbacks) {
1036 kvm_err("kvm: module already exists\n");
1037 return -EEXIST;
1038 }
1039
1040 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1041}
1042
1043void kvm_arch_exit(void)
1044{
1045 kvm_mips_callbacks = NULL;
1046}
1047
1048int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1049 struct kvm_sregs *sregs)
1050{
1051 return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1055 struct kvm_sregs *sregs)
1056{
1057 return -ENOIOCTLCMD;
1058}
1059
1060void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1061{
1062}
1063
1064int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1065{
1066 return -ENOIOCTLCMD;
1067}
1068
1069int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070{
1071 return -ENOIOCTLCMD;
1072}
1073
1074int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1075{
1076 return VM_FAULT_SIGBUS;
1077}
1078
1079int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1080{
1081 int r;
1082
1083 switch (ext) {
1084 case KVM_CAP_ONE_REG:
1085 case KVM_CAP_ENABLE_CAP:
1086 r = 1;
1087 break;
1088 case KVM_CAP_COALESCED_MMIO:
1089 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1090 break;
1091 case KVM_CAP_MIPS_FPU:
1092 /* We don't handle systems with inconsistent cpu_has_fpu */
1093 r = !!raw_cpu_has_fpu;
1094 break;
1095 case KVM_CAP_MIPS_MSA:
1096 /*
1097 * We don't support MSA vector partitioning yet:
1098 * 1) It would require explicit support which can't be tested
1099 * yet due to lack of support in current hardware.
1100 * 2) It extends the state that would need to be saved/restored
1101 * by e.g. QEMU for migration.
1102 *
1103 * When vector partitioning hardware becomes available, support
1104 * could be added by requiring a flag when enabling
1105 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1106 * to save/restore the appropriate extra state.
1107 */
1108 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1109 break;
1110 default:
1111 r = 0;
1112 break;
1113 }
1114 return r;
1115}
1116
1117int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1118{
1119 return kvm_mips_pending_timer(vcpu);
1120}
1121
1122int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1123{
1124 int i;
1125 struct mips_coproc *cop0;
1126
1127 if (!vcpu)
1128 return -1;
1129
1130 kvm_debug("VCPU Register Dump:\n");
1131 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1132 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1133
1134 for (i = 0; i < 32; i += 4) {
1135 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1136 vcpu->arch.gprs[i],
1137 vcpu->arch.gprs[i + 1],
1138 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1139 }
1140 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1141 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1142
1143 cop0 = vcpu->arch.cop0;
1144 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1145 kvm_read_c0_guest_status(cop0),
1146 kvm_read_c0_guest_cause(cop0));
1147
1148 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1149
1150 return 0;
1151}
1152
1153int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1154{
1155 int i;
1156
1157 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158 vcpu->arch.gprs[i] = regs->gpr[i];
1159 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1160 vcpu->arch.hi = regs->hi;
1161 vcpu->arch.lo = regs->lo;
1162 vcpu->arch.pc = regs->pc;
1163
1164 return 0;
1165}
1166
1167int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1168{
1169 int i;
1170
1171 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174 regs->hi = vcpu->arch.hi;
1175 regs->lo = vcpu->arch.lo;
1176 regs->pc = vcpu->arch.pc;
1177
1178 return 0;
1179}
1180
1181static void kvm_mips_comparecount_func(unsigned long data)
1182{
1183 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1184
1185 kvm_mips_callbacks->queue_timer_int(vcpu);
1186
1187 vcpu->arch.wait = 0;
1188 if (swait_active(&vcpu->wq))
1189 swake_up(&vcpu->wq);
1190}
1191
1192/* low level hrtimer wake routine */
1193static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1194{
1195 struct kvm_vcpu *vcpu;
1196
1197 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1198 kvm_mips_comparecount_func((unsigned long) vcpu);
1199 return kvm_mips_count_timeout(vcpu);
1200}
1201
1202int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1203{
1204 kvm_mips_callbacks->vcpu_init(vcpu);
1205 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1206 HRTIMER_MODE_REL);
1207 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1208 return 0;
1209}
1210
1211int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1212 struct kvm_translation *tr)
1213{
1214 return 0;
1215}
1216
1217/* Initial guest state */
1218int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1219{
1220 return kvm_mips_callbacks->vcpu_setup(vcpu);
1221}
1222
1223static void kvm_mips_set_c0_status(void)
1224{
1225 uint32_t status = read_c0_status();
1226
1227 if (cpu_has_dsp)
1228 status |= (ST0_MX);
1229
1230 write_c0_status(status);
1231 ehb();
1232}
1233
1234/*
1235 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1236 */
1237int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1238{
1239 uint32_t cause = vcpu->arch.host_cp0_cause;
1240 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1241 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1242 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1243 enum emulation_result er = EMULATE_DONE;
1244 int ret = RESUME_GUEST;
1245
1246 /* re-enable HTW before enabling interrupts */
1247 htw_start();
1248
1249 /* Set a default exit reason */
1250 run->exit_reason = KVM_EXIT_UNKNOWN;
1251 run->ready_for_interrupt_injection = 1;
1252
1253 /*
1254 * Set the appropriate status bits based on host CPU features,
1255 * before we hit the scheduler
1256 */
1257 kvm_mips_set_c0_status();
1258
1259 local_irq_enable();
1260
1261 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1262 cause, opc, run, vcpu);
1263
1264 /*
1265 * Do a privilege check, if in UM most of these exit conditions end up
1266 * causing an exception to be delivered to the Guest Kernel
1267 */
1268 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1269 if (er == EMULATE_PRIV_FAIL) {
1270 goto skip_emul;
1271 } else if (er == EMULATE_FAIL) {
1272 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1273 ret = RESUME_HOST;
1274 goto skip_emul;
1275 }
1276
1277 switch (exccode) {
1278 case EXCCODE_INT:
1279 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1280
1281 ++vcpu->stat.int_exits;
1282 trace_kvm_exit(vcpu, INT_EXITS);
1283
1284 if (need_resched())
1285 cond_resched();
1286
1287 ret = RESUME_GUEST;
1288 break;
1289
1290 case EXCCODE_CPU:
1291 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1292
1293 ++vcpu->stat.cop_unusable_exits;
1294 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1295 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1296 /* XXXKYMA: Might need to return to user space */
1297 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1298 ret = RESUME_HOST;
1299 break;
1300
1301 case EXCCODE_MOD:
1302 ++vcpu->stat.tlbmod_exits;
1303 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1304 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1305 break;
1306
1307 case EXCCODE_TLBS:
1308 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1309 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1310 badvaddr);
1311
1312 ++vcpu->stat.tlbmiss_st_exits;
1313 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1314 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1315 break;
1316
1317 case EXCCODE_TLBL:
1318 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1319 cause, opc, badvaddr);
1320
1321 ++vcpu->stat.tlbmiss_ld_exits;
1322 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1323 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1324 break;
1325
1326 case EXCCODE_ADES:
1327 ++vcpu->stat.addrerr_st_exits;
1328 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1329 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1330 break;
1331
1332 case EXCCODE_ADEL:
1333 ++vcpu->stat.addrerr_ld_exits;
1334 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1335 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1336 break;
1337
1338 case EXCCODE_SYS:
1339 ++vcpu->stat.syscall_exits;
1340 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1341 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1342 break;
1343
1344 case EXCCODE_RI:
1345 ++vcpu->stat.resvd_inst_exits;
1346 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1347 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1348 break;
1349
1350 case EXCCODE_BP:
1351 ++vcpu->stat.break_inst_exits;
1352 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1353 ret = kvm_mips_callbacks->handle_break(vcpu);
1354 break;
1355
1356 case EXCCODE_TR:
1357 ++vcpu->stat.trap_inst_exits;
1358 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1359 ret = kvm_mips_callbacks->handle_trap(vcpu);
1360 break;
1361
1362 case EXCCODE_MSAFPE:
1363 ++vcpu->stat.msa_fpe_exits;
1364 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1365 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1366 break;
1367
1368 case EXCCODE_FPE:
1369 ++vcpu->stat.fpe_exits;
1370 trace_kvm_exit(vcpu, FPE_EXITS);
1371 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1372 break;
1373
1374 case EXCCODE_MSADIS:
1375 ++vcpu->stat.msa_disabled_exits;
1376 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1377 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1378 break;
1379
1380 default:
1381 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1382 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1383 kvm_read_c0_guest_status(vcpu->arch.cop0));
1384 kvm_arch_vcpu_dump_regs(vcpu);
1385 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1386 ret = RESUME_HOST;
1387 break;
1388
1389 }
1390
1391skip_emul:
1392 local_irq_disable();
1393
1394 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1395 kvm_mips_deliver_interrupts(vcpu, cause);
1396
1397 if (!(ret & RESUME_HOST)) {
1398 /* Only check for signals if not already exiting to userspace */
1399 if (signal_pending(current)) {
1400 run->exit_reason = KVM_EXIT_INTR;
1401 ret = (-EINTR << 2) | RESUME_HOST;
1402 ++vcpu->stat.signal_exits;
1403 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1404 }
1405 }
1406
1407 if (ret == RESUME_GUEST) {
1408 /*
1409 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1410 * is live), restore FCR31 / MSACSR.
1411 *
1412 * This should be before returning to the guest exception
1413 * vector, as it may well cause an [MSA] FP exception if there
1414 * are pending exception bits unmasked. (see
1415 * kvm_mips_csr_die_notifier() for how that is handled).
1416 */
1417 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1418 read_c0_status() & ST0_CU1)
1419 __kvm_restore_fcsr(&vcpu->arch);
1420
1421 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1422 read_c0_config5() & MIPS_CONF5_MSAEN)
1423 __kvm_restore_msacsr(&vcpu->arch);
1424 }
1425
1426 /* Disable HTW before returning to guest or host */
1427 htw_stop();
1428
1429 return ret;
1430}
1431
1432/* Enable FPU for guest and restore context */
1433void kvm_own_fpu(struct kvm_vcpu *vcpu)
1434{
1435 struct mips_coproc *cop0 = vcpu->arch.cop0;
1436 unsigned int sr, cfg5;
1437
1438 preempt_disable();
1439
1440 sr = kvm_read_c0_guest_status(cop0);
1441
1442 /*
1443 * If MSA state is already live, it is undefined how it interacts with
1444 * FR=0 FPU state, and we don't want to hit reserved instruction
1445 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1446 * play it safe and save it first.
1447 *
1448 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1449 * get called when guest CU1 is set, however we can't trust the guest
1450 * not to clobber the status register directly via the commpage.
1451 */
1452 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1453 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1454 kvm_lose_fpu(vcpu);
1455
1456 /*
1457 * Enable FPU for guest
1458 * We set FR and FRE according to guest context
1459 */
1460 change_c0_status(ST0_CU1 | ST0_FR, sr);
1461 if (cpu_has_fre) {
1462 cfg5 = kvm_read_c0_guest_config5(cop0);
1463 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1464 }
1465 enable_fpu_hazard();
1466
1467 /* If guest FPU state not active, restore it now */
1468 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1469 __kvm_restore_fpu(&vcpu->arch);
1470 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1471 }
1472
1473 preempt_enable();
1474}
1475
1476#ifdef CONFIG_CPU_HAS_MSA
1477/* Enable MSA for guest and restore context */
1478void kvm_own_msa(struct kvm_vcpu *vcpu)
1479{
1480 struct mips_coproc *cop0 = vcpu->arch.cop0;
1481 unsigned int sr, cfg5;
1482
1483 preempt_disable();
1484
1485 /*
1486 * Enable FPU if enabled in guest, since we're restoring FPU context
1487 * anyway. We set FR and FRE according to guest context.
1488 */
1489 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1490 sr = kvm_read_c0_guest_status(cop0);
1491
1492 /*
1493 * If FR=0 FPU state is already live, it is undefined how it
1494 * interacts with MSA state, so play it safe and save it first.
1495 */
1496 if (!(sr & ST0_FR) &&
1497 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1498 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1499 kvm_lose_fpu(vcpu);
1500
1501 change_c0_status(ST0_CU1 | ST0_FR, sr);
1502 if (sr & ST0_CU1 && cpu_has_fre) {
1503 cfg5 = kvm_read_c0_guest_config5(cop0);
1504 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1505 }
1506 }
1507
1508 /* Enable MSA for guest */
1509 set_c0_config5(MIPS_CONF5_MSAEN);
1510 enable_fpu_hazard();
1511
1512 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1513 case KVM_MIPS_FPU_FPU:
1514 /*
1515 * Guest FPU state already loaded, only restore upper MSA state
1516 */
1517 __kvm_restore_msa_upper(&vcpu->arch);
1518 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1519 break;
1520 case 0:
1521 /* Neither FPU or MSA already active, restore full MSA state */
1522 __kvm_restore_msa(&vcpu->arch);
1523 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1524 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1525 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1526 break;
1527 default:
1528 break;
1529 }
1530
1531 preempt_enable();
1532}
1533#endif
1534
1535/* Drop FPU & MSA without saving it */
1536void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1537{
1538 preempt_disable();
1539 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1540 disable_msa();
1541 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1542 }
1543 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1544 clear_c0_status(ST0_CU1 | ST0_FR);
1545 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1546 }
1547 preempt_enable();
1548}
1549
1550/* Save and disable FPU & MSA */
1551void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1552{
1553 /*
1554 * FPU & MSA get disabled in root context (hardware) when it is disabled
1555 * in guest context (software), but the register state in the hardware
1556 * may still be in use. This is why we explicitly re-enable the hardware
1557 * before saving.
1558 */
1559
1560 preempt_disable();
1561 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1562 set_c0_config5(MIPS_CONF5_MSAEN);
1563 enable_fpu_hazard();
1564
1565 __kvm_save_msa(&vcpu->arch);
1566
1567 /* Disable MSA & FPU */
1568 disable_msa();
1569 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1570 clear_c0_status(ST0_CU1 | ST0_FR);
1571 disable_fpu_hazard();
1572 }
1573 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1574 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1575 set_c0_status(ST0_CU1);
1576 enable_fpu_hazard();
1577
1578 __kvm_save_fpu(&vcpu->arch);
1579 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1580
1581 /* Disable FPU */
1582 clear_c0_status(ST0_CU1 | ST0_FR);
1583 disable_fpu_hazard();
1584 }
1585 preempt_enable();
1586}
1587
1588/*
1589 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1590 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1591 * exception if cause bits are set in the value being written.
1592 */
1593static int kvm_mips_csr_die_notify(struct notifier_block *self,
1594 unsigned long cmd, void *ptr)
1595{
1596 struct die_args *args = (struct die_args *)ptr;
1597 struct pt_regs *regs = args->regs;
1598 unsigned long pc;
1599
1600 /* Only interested in FPE and MSAFPE */
1601 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1602 return NOTIFY_DONE;
1603
1604 /* Return immediately if guest context isn't active */
1605 if (!(current->flags & PF_VCPU))
1606 return NOTIFY_DONE;
1607
1608 /* Should never get here from user mode */
1609 BUG_ON(user_mode(regs));
1610
1611 pc = instruction_pointer(regs);
1612 switch (cmd) {
1613 case DIE_FP:
1614 /* match 2nd instruction in __kvm_restore_fcsr */
1615 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1616 return NOTIFY_DONE;
1617 break;
1618 case DIE_MSAFP:
1619 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1620 if (!cpu_has_msa ||
1621 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1622 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1623 return NOTIFY_DONE;
1624 break;
1625 }
1626
1627 /* Move PC forward a little and continue executing */
1628 instruction_pointer(regs) += 4;
1629
1630 return NOTIFY_STOP;
1631}
1632
1633static struct notifier_block kvm_mips_csr_die_notifier = {
1634 .notifier_call = kvm_mips_csr_die_notify,
1635};
1636
1637static int __init kvm_mips_init(void)
1638{
1639 int ret;
1640
1641 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1642
1643 if (ret)
1644 return ret;
1645
1646 register_die_notifier(&kvm_mips_csr_die_notifier);
1647
1648 /*
1649 * On MIPS, kernel modules are executed from "mapped space", which
1650 * requires TLBs. The TLB handling code is statically linked with
1651 * the rest of the kernel (tlb.c) to avoid the possibility of
1652 * double faulting. The issue is that the TLB code references
1653 * routines that are part of the the KVM module, which are only
1654 * available once the module is loaded.
1655 */
1656 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1657 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1658 kvm_mips_is_error_pfn = is_error_pfn;
1659
1660 return 0;
1661}
1662
1663static void __exit kvm_mips_exit(void)
1664{
1665 kvm_exit();
1666
1667 kvm_mips_gfn_to_pfn = NULL;
1668 kvm_mips_release_pfn_clean = NULL;
1669 kvm_mips_is_error_pfn = NULL;
1670
1671 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1672}
1673
1674module_init(kvm_mips_init);
1675module_exit(kvm_mips_exit);
1676
1677EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
This page took 0.045182 seconds and 5 git commands to generate.