| 1 | /* BFD back-end for Renesas Super-H COFF binaries. |
| 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 3 | 2003, 2004, 2005, 2007 Free Software Foundation, Inc. |
| 4 | Contributed by Cygnus Support. |
| 5 | Written by Steve Chamberlain, <sac@cygnus.com>. |
| 6 | Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. |
| 7 | |
| 8 | This file is part of BFD, the Binary File Descriptor library. |
| 9 | |
| 10 | This program is free software; you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License as published by |
| 12 | the Free Software Foundation; either version 3 of the License, or |
| 13 | (at your option) any later version. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, |
| 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | GNU General Public License for more details. |
| 19 | |
| 20 | You should have received a copy of the GNU General Public License |
| 21 | along with this program; if not, write to the Free Software |
| 22 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 23 | MA 02110-1301, USA. */ |
| 24 | |
| 25 | #include "sysdep.h" |
| 26 | #include "bfd.h" |
| 27 | #include "libiberty.h" |
| 28 | #include "libbfd.h" |
| 29 | #include "bfdlink.h" |
| 30 | #include "coff/sh.h" |
| 31 | #include "coff/internal.h" |
| 32 | |
| 33 | #ifdef COFF_WITH_PE |
| 34 | #include "coff/pe.h" |
| 35 | |
| 36 | #ifndef COFF_IMAGE_WITH_PE |
| 37 | static bfd_boolean sh_align_load_span |
| 38 | PARAMS ((bfd *, asection *, bfd_byte *, |
| 39 | bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma), |
| 40 | PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *)); |
| 41 | |
| 42 | #define _bfd_sh_align_load_span sh_align_load_span |
| 43 | #endif |
| 44 | #endif |
| 45 | |
| 46 | #include "libcoff.h" |
| 47 | |
| 48 | /* Internal functions. */ |
| 49 | static bfd_reloc_status_type sh_reloc |
| 50 | PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); |
| 51 | static long get_symbol_value PARAMS ((asymbol *)); |
| 52 | static bfd_boolean sh_relax_section |
| 53 | PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *)); |
| 54 | static bfd_boolean sh_relax_delete_bytes |
| 55 | PARAMS ((bfd *, asection *, bfd_vma, int)); |
| 56 | #ifndef COFF_IMAGE_WITH_PE |
| 57 | static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int)); |
| 58 | #endif |
| 59 | static bfd_boolean sh_align_loads |
| 60 | PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *, |
| 61 | bfd_boolean *)); |
| 62 | static bfd_boolean sh_swap_insns |
| 63 | PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma)); |
| 64 | static bfd_boolean sh_relocate_section |
| 65 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
| 66 | struct internal_reloc *, struct internal_syment *, asection **)); |
| 67 | static bfd_byte *sh_coff_get_relocated_section_contents |
| 68 | PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, |
| 69 | bfd_byte *, bfd_boolean, asymbol **)); |
| 70 | static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); |
| 71 | |
| 72 | #ifdef COFF_WITH_PE |
| 73 | /* Can't build import tables with 2**4 alignment. */ |
| 74 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 |
| 75 | #else |
| 76 | /* Default section alignment to 2**4. */ |
| 77 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 |
| 78 | #endif |
| 79 | |
| 80 | #ifdef COFF_IMAGE_WITH_PE |
| 81 | /* Align PE executables. */ |
| 82 | #define COFF_PAGE_SIZE 0x1000 |
| 83 | #endif |
| 84 | |
| 85 | /* Generate long file names. */ |
| 86 | #define COFF_LONG_FILENAMES |
| 87 | |
| 88 | #ifdef COFF_WITH_PE |
| 89 | static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *)); |
| 90 | /* Return TRUE if this relocation should |
| 91 | appear in the output .reloc section. */ |
| 92 | static bfd_boolean in_reloc_p (abfd, howto) |
| 93 | bfd * abfd ATTRIBUTE_UNUSED; |
| 94 | reloc_howto_type * howto; |
| 95 | { |
| 96 | return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; |
| 97 | } |
| 98 | #endif |
| 99 | |
| 100 | /* The supported relocations. There are a lot of relocations defined |
| 101 | in coff/internal.h which we do not expect to ever see. */ |
| 102 | static reloc_howto_type sh_coff_howtos[] = |
| 103 | { |
| 104 | EMPTY_HOWTO (0), |
| 105 | EMPTY_HOWTO (1), |
| 106 | #ifdef COFF_WITH_PE |
| 107 | /* Windows CE */ |
| 108 | HOWTO (R_SH_IMM32CE, /* type */ |
| 109 | 0, /* rightshift */ |
| 110 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 111 | 32, /* bitsize */ |
| 112 | FALSE, /* pc_relative */ |
| 113 | 0, /* bitpos */ |
| 114 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 115 | sh_reloc, /* special_function */ |
| 116 | "r_imm32ce", /* name */ |
| 117 | TRUE, /* partial_inplace */ |
| 118 | 0xffffffff, /* src_mask */ |
| 119 | 0xffffffff, /* dst_mask */ |
| 120 | FALSE), /* pcrel_offset */ |
| 121 | #else |
| 122 | EMPTY_HOWTO (2), |
| 123 | #endif |
| 124 | EMPTY_HOWTO (3), /* R_SH_PCREL8 */ |
| 125 | EMPTY_HOWTO (4), /* R_SH_PCREL16 */ |
| 126 | EMPTY_HOWTO (5), /* R_SH_HIGH8 */ |
| 127 | EMPTY_HOWTO (6), /* R_SH_IMM24 */ |
| 128 | EMPTY_HOWTO (7), /* R_SH_LOW16 */ |
| 129 | EMPTY_HOWTO (8), |
| 130 | EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ |
| 131 | |
| 132 | HOWTO (R_SH_PCDISP8BY2, /* type */ |
| 133 | 1, /* rightshift */ |
| 134 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 135 | 8, /* bitsize */ |
| 136 | TRUE, /* pc_relative */ |
| 137 | 0, /* bitpos */ |
| 138 | complain_overflow_signed, /* complain_on_overflow */ |
| 139 | sh_reloc, /* special_function */ |
| 140 | "r_pcdisp8by2", /* name */ |
| 141 | TRUE, /* partial_inplace */ |
| 142 | 0xff, /* src_mask */ |
| 143 | 0xff, /* dst_mask */ |
| 144 | TRUE), /* pcrel_offset */ |
| 145 | |
| 146 | EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ |
| 147 | |
| 148 | HOWTO (R_SH_PCDISP, /* type */ |
| 149 | 1, /* rightshift */ |
| 150 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 151 | 12, /* bitsize */ |
| 152 | TRUE, /* pc_relative */ |
| 153 | 0, /* bitpos */ |
| 154 | complain_overflow_signed, /* complain_on_overflow */ |
| 155 | sh_reloc, /* special_function */ |
| 156 | "r_pcdisp12by2", /* name */ |
| 157 | TRUE, /* partial_inplace */ |
| 158 | 0xfff, /* src_mask */ |
| 159 | 0xfff, /* dst_mask */ |
| 160 | TRUE), /* pcrel_offset */ |
| 161 | |
| 162 | EMPTY_HOWTO (13), |
| 163 | |
| 164 | HOWTO (R_SH_IMM32, /* type */ |
| 165 | 0, /* rightshift */ |
| 166 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 167 | 32, /* bitsize */ |
| 168 | FALSE, /* pc_relative */ |
| 169 | 0, /* bitpos */ |
| 170 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 171 | sh_reloc, /* special_function */ |
| 172 | "r_imm32", /* name */ |
| 173 | TRUE, /* partial_inplace */ |
| 174 | 0xffffffff, /* src_mask */ |
| 175 | 0xffffffff, /* dst_mask */ |
| 176 | FALSE), /* pcrel_offset */ |
| 177 | |
| 178 | EMPTY_HOWTO (15), |
| 179 | #ifdef COFF_WITH_PE |
| 180 | HOWTO (R_SH_IMAGEBASE, /* type */ |
| 181 | 0, /* rightshift */ |
| 182 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 183 | 32, /* bitsize */ |
| 184 | FALSE, /* pc_relative */ |
| 185 | 0, /* bitpos */ |
| 186 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 187 | sh_reloc, /* special_function */ |
| 188 | "rva32", /* name */ |
| 189 | TRUE, /* partial_inplace */ |
| 190 | 0xffffffff, /* src_mask */ |
| 191 | 0xffffffff, /* dst_mask */ |
| 192 | FALSE), /* pcrel_offset */ |
| 193 | #else |
| 194 | EMPTY_HOWTO (16), /* R_SH_IMM8 */ |
| 195 | #endif |
| 196 | EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ |
| 197 | EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ |
| 198 | EMPTY_HOWTO (19), /* R_SH_IMM4 */ |
| 199 | EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ |
| 200 | EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ |
| 201 | |
| 202 | HOWTO (R_SH_PCRELIMM8BY2, /* type */ |
| 203 | 1, /* rightshift */ |
| 204 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 205 | 8, /* bitsize */ |
| 206 | TRUE, /* pc_relative */ |
| 207 | 0, /* bitpos */ |
| 208 | complain_overflow_unsigned, /* complain_on_overflow */ |
| 209 | sh_reloc, /* special_function */ |
| 210 | "r_pcrelimm8by2", /* name */ |
| 211 | TRUE, /* partial_inplace */ |
| 212 | 0xff, /* src_mask */ |
| 213 | 0xff, /* dst_mask */ |
| 214 | TRUE), /* pcrel_offset */ |
| 215 | |
| 216 | HOWTO (R_SH_PCRELIMM8BY4, /* type */ |
| 217 | 2, /* rightshift */ |
| 218 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 219 | 8, /* bitsize */ |
| 220 | TRUE, /* pc_relative */ |
| 221 | 0, /* bitpos */ |
| 222 | complain_overflow_unsigned, /* complain_on_overflow */ |
| 223 | sh_reloc, /* special_function */ |
| 224 | "r_pcrelimm8by4", /* name */ |
| 225 | TRUE, /* partial_inplace */ |
| 226 | 0xff, /* src_mask */ |
| 227 | 0xff, /* dst_mask */ |
| 228 | TRUE), /* pcrel_offset */ |
| 229 | |
| 230 | HOWTO (R_SH_IMM16, /* type */ |
| 231 | 0, /* rightshift */ |
| 232 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 233 | 16, /* bitsize */ |
| 234 | FALSE, /* pc_relative */ |
| 235 | 0, /* bitpos */ |
| 236 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 237 | sh_reloc, /* special_function */ |
| 238 | "r_imm16", /* name */ |
| 239 | TRUE, /* partial_inplace */ |
| 240 | 0xffff, /* src_mask */ |
| 241 | 0xffff, /* dst_mask */ |
| 242 | FALSE), /* pcrel_offset */ |
| 243 | |
| 244 | HOWTO (R_SH_SWITCH16, /* type */ |
| 245 | 0, /* rightshift */ |
| 246 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 247 | 16, /* bitsize */ |
| 248 | FALSE, /* pc_relative */ |
| 249 | 0, /* bitpos */ |
| 250 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 251 | sh_reloc, /* special_function */ |
| 252 | "r_switch16", /* name */ |
| 253 | TRUE, /* partial_inplace */ |
| 254 | 0xffff, /* src_mask */ |
| 255 | 0xffff, /* dst_mask */ |
| 256 | FALSE), /* pcrel_offset */ |
| 257 | |
| 258 | HOWTO (R_SH_SWITCH32, /* type */ |
| 259 | 0, /* rightshift */ |
| 260 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 261 | 32, /* bitsize */ |
| 262 | FALSE, /* pc_relative */ |
| 263 | 0, /* bitpos */ |
| 264 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 265 | sh_reloc, /* special_function */ |
| 266 | "r_switch32", /* name */ |
| 267 | TRUE, /* partial_inplace */ |
| 268 | 0xffffffff, /* src_mask */ |
| 269 | 0xffffffff, /* dst_mask */ |
| 270 | FALSE), /* pcrel_offset */ |
| 271 | |
| 272 | HOWTO (R_SH_USES, /* type */ |
| 273 | 0, /* rightshift */ |
| 274 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 275 | 16, /* bitsize */ |
| 276 | FALSE, /* pc_relative */ |
| 277 | 0, /* bitpos */ |
| 278 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 279 | sh_reloc, /* special_function */ |
| 280 | "r_uses", /* name */ |
| 281 | TRUE, /* partial_inplace */ |
| 282 | 0xffff, /* src_mask */ |
| 283 | 0xffff, /* dst_mask */ |
| 284 | FALSE), /* pcrel_offset */ |
| 285 | |
| 286 | HOWTO (R_SH_COUNT, /* type */ |
| 287 | 0, /* rightshift */ |
| 288 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 289 | 32, /* bitsize */ |
| 290 | FALSE, /* pc_relative */ |
| 291 | 0, /* bitpos */ |
| 292 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 293 | sh_reloc, /* special_function */ |
| 294 | "r_count", /* name */ |
| 295 | TRUE, /* partial_inplace */ |
| 296 | 0xffffffff, /* src_mask */ |
| 297 | 0xffffffff, /* dst_mask */ |
| 298 | FALSE), /* pcrel_offset */ |
| 299 | |
| 300 | HOWTO (R_SH_ALIGN, /* type */ |
| 301 | 0, /* rightshift */ |
| 302 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 303 | 32, /* bitsize */ |
| 304 | FALSE, /* pc_relative */ |
| 305 | 0, /* bitpos */ |
| 306 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 307 | sh_reloc, /* special_function */ |
| 308 | "r_align", /* name */ |
| 309 | TRUE, /* partial_inplace */ |
| 310 | 0xffffffff, /* src_mask */ |
| 311 | 0xffffffff, /* dst_mask */ |
| 312 | FALSE), /* pcrel_offset */ |
| 313 | |
| 314 | HOWTO (R_SH_CODE, /* type */ |
| 315 | 0, /* rightshift */ |
| 316 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 317 | 32, /* bitsize */ |
| 318 | FALSE, /* pc_relative */ |
| 319 | 0, /* bitpos */ |
| 320 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 321 | sh_reloc, /* special_function */ |
| 322 | "r_code", /* name */ |
| 323 | TRUE, /* partial_inplace */ |
| 324 | 0xffffffff, /* src_mask */ |
| 325 | 0xffffffff, /* dst_mask */ |
| 326 | FALSE), /* pcrel_offset */ |
| 327 | |
| 328 | HOWTO (R_SH_DATA, /* type */ |
| 329 | 0, /* rightshift */ |
| 330 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 331 | 32, /* bitsize */ |
| 332 | FALSE, /* pc_relative */ |
| 333 | 0, /* bitpos */ |
| 334 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 335 | sh_reloc, /* special_function */ |
| 336 | "r_data", /* name */ |
| 337 | TRUE, /* partial_inplace */ |
| 338 | 0xffffffff, /* src_mask */ |
| 339 | 0xffffffff, /* dst_mask */ |
| 340 | FALSE), /* pcrel_offset */ |
| 341 | |
| 342 | HOWTO (R_SH_LABEL, /* type */ |
| 343 | 0, /* rightshift */ |
| 344 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 345 | 32, /* bitsize */ |
| 346 | FALSE, /* pc_relative */ |
| 347 | 0, /* bitpos */ |
| 348 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 349 | sh_reloc, /* special_function */ |
| 350 | "r_label", /* name */ |
| 351 | TRUE, /* partial_inplace */ |
| 352 | 0xffffffff, /* src_mask */ |
| 353 | 0xffffffff, /* dst_mask */ |
| 354 | FALSE), /* pcrel_offset */ |
| 355 | |
| 356 | HOWTO (R_SH_SWITCH8, /* type */ |
| 357 | 0, /* rightshift */ |
| 358 | 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 359 | 8, /* bitsize */ |
| 360 | FALSE, /* pc_relative */ |
| 361 | 0, /* bitpos */ |
| 362 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 363 | sh_reloc, /* special_function */ |
| 364 | "r_switch8", /* name */ |
| 365 | TRUE, /* partial_inplace */ |
| 366 | 0xff, /* src_mask */ |
| 367 | 0xff, /* dst_mask */ |
| 368 | FALSE) /* pcrel_offset */ |
| 369 | }; |
| 370 | |
| 371 | #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) |
| 372 | |
| 373 | /* Check for a bad magic number. */ |
| 374 | #define BADMAG(x) SHBADMAG(x) |
| 375 | |
| 376 | /* Customize coffcode.h (this is not currently used). */ |
| 377 | #define SH 1 |
| 378 | |
| 379 | /* FIXME: This should not be set here. */ |
| 380 | #define __A_MAGIC_SET__ |
| 381 | |
| 382 | #ifndef COFF_WITH_PE |
| 383 | /* Swap the r_offset field in and out. */ |
| 384 | #define SWAP_IN_RELOC_OFFSET H_GET_32 |
| 385 | #define SWAP_OUT_RELOC_OFFSET H_PUT_32 |
| 386 | |
| 387 | /* Swap out extra information in the reloc structure. */ |
| 388 | #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ |
| 389 | do \ |
| 390 | { \ |
| 391 | dst->r_stuff[0] = 'S'; \ |
| 392 | dst->r_stuff[1] = 'C'; \ |
| 393 | } \ |
| 394 | while (0) |
| 395 | #endif |
| 396 | |
| 397 | /* Get the value of a symbol, when performing a relocation. */ |
| 398 | |
| 399 | static long |
| 400 | get_symbol_value (symbol) |
| 401 | asymbol *symbol; |
| 402 | { |
| 403 | bfd_vma relocation; |
| 404 | |
| 405 | if (bfd_is_com_section (symbol->section)) |
| 406 | relocation = 0; |
| 407 | else |
| 408 | relocation = (symbol->value + |
| 409 | symbol->section->output_section->vma + |
| 410 | symbol->section->output_offset); |
| 411 | |
| 412 | return relocation; |
| 413 | } |
| 414 | |
| 415 | #ifdef COFF_WITH_PE |
| 416 | /* Convert an rtype to howto for the COFF backend linker. |
| 417 | Copied from coff-i386. */ |
| 418 | #define coff_rtype_to_howto coff_sh_rtype_to_howto |
| 419 | static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *)); |
| 420 | |
| 421 | static reloc_howto_type * |
| 422 | coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp) |
| 423 | bfd * abfd ATTRIBUTE_UNUSED; |
| 424 | asection * sec; |
| 425 | struct internal_reloc * rel; |
| 426 | struct coff_link_hash_entry * h; |
| 427 | struct internal_syment * sym; |
| 428 | bfd_vma * addendp; |
| 429 | { |
| 430 | reloc_howto_type * howto; |
| 431 | |
| 432 | howto = sh_coff_howtos + rel->r_type; |
| 433 | |
| 434 | *addendp = 0; |
| 435 | |
| 436 | if (howto->pc_relative) |
| 437 | *addendp += sec->vma; |
| 438 | |
| 439 | if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) |
| 440 | { |
| 441 | /* This is a common symbol. The section contents include the |
| 442 | size (sym->n_value) as an addend. The relocate_section |
| 443 | function will be adding in the final value of the symbol. We |
| 444 | need to subtract out the current size in order to get the |
| 445 | correct result. */ |
| 446 | BFD_ASSERT (h != NULL); |
| 447 | } |
| 448 | |
| 449 | if (howto->pc_relative) |
| 450 | { |
| 451 | *addendp -= 4; |
| 452 | |
| 453 | /* If the symbol is defined, then the generic code is going to |
| 454 | add back the symbol value in order to cancel out an |
| 455 | adjustment it made to the addend. However, we set the addend |
| 456 | to 0 at the start of this function. We need to adjust here, |
| 457 | to avoid the adjustment the generic code will make. FIXME: |
| 458 | This is getting a bit hackish. */ |
| 459 | if (sym != NULL && sym->n_scnum != 0) |
| 460 | *addendp -= sym->n_value; |
| 461 | } |
| 462 | |
| 463 | if (rel->r_type == R_SH_IMAGEBASE) |
| 464 | *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; |
| 465 | |
| 466 | return howto; |
| 467 | } |
| 468 | |
| 469 | #endif /* COFF_WITH_PE */ |
| 470 | |
| 471 | /* This structure is used to map BFD reloc codes to SH PE relocs. */ |
| 472 | struct shcoff_reloc_map |
| 473 | { |
| 474 | bfd_reloc_code_real_type bfd_reloc_val; |
| 475 | unsigned char shcoff_reloc_val; |
| 476 | }; |
| 477 | |
| 478 | #ifdef COFF_WITH_PE |
| 479 | /* An array mapping BFD reloc codes to SH PE relocs. */ |
| 480 | static const struct shcoff_reloc_map sh_reloc_map[] = |
| 481 | { |
| 482 | { BFD_RELOC_32, R_SH_IMM32CE }, |
| 483 | { BFD_RELOC_RVA, R_SH_IMAGEBASE }, |
| 484 | { BFD_RELOC_CTOR, R_SH_IMM32CE }, |
| 485 | }; |
| 486 | #else |
| 487 | /* An array mapping BFD reloc codes to SH PE relocs. */ |
| 488 | static const struct shcoff_reloc_map sh_reloc_map[] = |
| 489 | { |
| 490 | { BFD_RELOC_32, R_SH_IMM32 }, |
| 491 | { BFD_RELOC_CTOR, R_SH_IMM32 }, |
| 492 | }; |
| 493 | #endif |
| 494 | |
| 495 | /* Given a BFD reloc code, return the howto structure for the |
| 496 | corresponding SH PE reloc. */ |
| 497 | #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup |
| 498 | #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup |
| 499 | |
| 500 | static reloc_howto_type * |
| 501 | sh_coff_reloc_type_lookup (abfd, code) |
| 502 | bfd * abfd ATTRIBUTE_UNUSED; |
| 503 | bfd_reloc_code_real_type code; |
| 504 | { |
| 505 | unsigned int i; |
| 506 | |
| 507 | for (i = ARRAY_SIZE (sh_reloc_map); i--;) |
| 508 | if (sh_reloc_map[i].bfd_reloc_val == code) |
| 509 | return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; |
| 510 | |
| 511 | fprintf (stderr, "SH Error: unknown reloc type %d\n", code); |
| 512 | return NULL; |
| 513 | } |
| 514 | |
| 515 | static reloc_howto_type * |
| 516 | sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| 517 | const char *r_name) |
| 518 | { |
| 519 | unsigned int i; |
| 520 | |
| 521 | for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) |
| 522 | if (sh_coff_howtos[i].name != NULL |
| 523 | && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) |
| 524 | return &sh_coff_howtos[i]; |
| 525 | |
| 526 | return NULL; |
| 527 | } |
| 528 | |
| 529 | /* This macro is used in coffcode.h to get the howto corresponding to |
| 530 | an internal reloc. */ |
| 531 | |
| 532 | #define RTYPE2HOWTO(relent, internal) \ |
| 533 | ((relent)->howto = \ |
| 534 | ((internal)->r_type < SH_COFF_HOWTO_COUNT \ |
| 535 | ? &sh_coff_howtos[(internal)->r_type] \ |
| 536 | : (reloc_howto_type *) NULL)) |
| 537 | |
| 538 | /* This is the same as the macro in coffcode.h, except that it copies |
| 539 | r_offset into reloc_entry->addend for some relocs. */ |
| 540 | #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ |
| 541 | { \ |
| 542 | coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ |
| 543 | if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ |
| 544 | coffsym = (obj_symbols (abfd) \ |
| 545 | + (cache_ptr->sym_ptr_ptr - symbols)); \ |
| 546 | else if (ptr) \ |
| 547 | coffsym = coff_symbol_from (abfd, ptr); \ |
| 548 | if (coffsym != (coff_symbol_type *) NULL \ |
| 549 | && coffsym->native->u.syment.n_scnum == 0) \ |
| 550 | cache_ptr->addend = 0; \ |
| 551 | else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ |
| 552 | && ptr->section != (asection *) NULL) \ |
| 553 | cache_ptr->addend = - (ptr->section->vma + ptr->value); \ |
| 554 | else \ |
| 555 | cache_ptr->addend = 0; \ |
| 556 | if ((reloc).r_type == R_SH_SWITCH8 \ |
| 557 | || (reloc).r_type == R_SH_SWITCH16 \ |
| 558 | || (reloc).r_type == R_SH_SWITCH32 \ |
| 559 | || (reloc).r_type == R_SH_USES \ |
| 560 | || (reloc).r_type == R_SH_COUNT \ |
| 561 | || (reloc).r_type == R_SH_ALIGN) \ |
| 562 | cache_ptr->addend = (reloc).r_offset; \ |
| 563 | } |
| 564 | |
| 565 | /* This is the howto function for the SH relocations. */ |
| 566 | |
| 567 | static bfd_reloc_status_type |
| 568 | sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd, |
| 569 | error_message) |
| 570 | bfd *abfd; |
| 571 | arelent *reloc_entry; |
| 572 | asymbol *symbol_in; |
| 573 | PTR data; |
| 574 | asection *input_section; |
| 575 | bfd *output_bfd; |
| 576 | char **error_message ATTRIBUTE_UNUSED; |
| 577 | { |
| 578 | unsigned long insn; |
| 579 | bfd_vma sym_value; |
| 580 | unsigned short r_type; |
| 581 | bfd_vma addr = reloc_entry->address; |
| 582 | bfd_byte *hit_data = addr + (bfd_byte *) data; |
| 583 | |
| 584 | r_type = reloc_entry->howto->type; |
| 585 | |
| 586 | if (output_bfd != NULL) |
| 587 | { |
| 588 | /* Partial linking--do nothing. */ |
| 589 | reloc_entry->address += input_section->output_offset; |
| 590 | return bfd_reloc_ok; |
| 591 | } |
| 592 | |
| 593 | /* Almost all relocs have to do with relaxing. If any work must be |
| 594 | done for them, it has been done in sh_relax_section. */ |
| 595 | if (r_type != R_SH_IMM32 |
| 596 | #ifdef COFF_WITH_PE |
| 597 | && r_type != R_SH_IMM32CE |
| 598 | && r_type != R_SH_IMAGEBASE |
| 599 | #endif |
| 600 | && (r_type != R_SH_PCDISP |
| 601 | || (symbol_in->flags & BSF_LOCAL) != 0)) |
| 602 | return bfd_reloc_ok; |
| 603 | |
| 604 | if (symbol_in != NULL |
| 605 | && bfd_is_und_section (symbol_in->section)) |
| 606 | return bfd_reloc_undefined; |
| 607 | |
| 608 | sym_value = get_symbol_value (symbol_in); |
| 609 | |
| 610 | switch (r_type) |
| 611 | { |
| 612 | case R_SH_IMM32: |
| 613 | #ifdef COFF_WITH_PE |
| 614 | case R_SH_IMM32CE: |
| 615 | #endif |
| 616 | insn = bfd_get_32 (abfd, hit_data); |
| 617 | insn += sym_value + reloc_entry->addend; |
| 618 | bfd_put_32 (abfd, (bfd_vma) insn, hit_data); |
| 619 | break; |
| 620 | #ifdef COFF_WITH_PE |
| 621 | case R_SH_IMAGEBASE: |
| 622 | insn = bfd_get_32 (abfd, hit_data); |
| 623 | insn += sym_value + reloc_entry->addend; |
| 624 | insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; |
| 625 | bfd_put_32 (abfd, (bfd_vma) insn, hit_data); |
| 626 | break; |
| 627 | #endif |
| 628 | case R_SH_PCDISP: |
| 629 | insn = bfd_get_16 (abfd, hit_data); |
| 630 | sym_value += reloc_entry->addend; |
| 631 | sym_value -= (input_section->output_section->vma |
| 632 | + input_section->output_offset |
| 633 | + addr |
| 634 | + 4); |
| 635 | sym_value += (insn & 0xfff) << 1; |
| 636 | if (insn & 0x800) |
| 637 | sym_value -= 0x1000; |
| 638 | insn = (insn & 0xf000) | (sym_value & 0xfff); |
| 639 | bfd_put_16 (abfd, (bfd_vma) insn, hit_data); |
| 640 | if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) |
| 641 | return bfd_reloc_overflow; |
| 642 | break; |
| 643 | default: |
| 644 | abort (); |
| 645 | break; |
| 646 | } |
| 647 | |
| 648 | return bfd_reloc_ok; |
| 649 | } |
| 650 | |
| 651 | #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match |
| 652 | |
| 653 | /* We can do relaxing. */ |
| 654 | #define coff_bfd_relax_section sh_relax_section |
| 655 | |
| 656 | /* We use the special COFF backend linker. */ |
| 657 | #define coff_relocate_section sh_relocate_section |
| 658 | |
| 659 | /* When relaxing, we need to use special code to get the relocated |
| 660 | section contents. */ |
| 661 | #define coff_bfd_get_relocated_section_contents \ |
| 662 | sh_coff_get_relocated_section_contents |
| 663 | |
| 664 | #include "coffcode.h" |
| 665 | \f |
| 666 | /* This function handles relaxing on the SH. |
| 667 | |
| 668 | Function calls on the SH look like this: |
| 669 | |
| 670 | movl L1,r0 |
| 671 | ... |
| 672 | jsr @r0 |
| 673 | ... |
| 674 | L1: |
| 675 | .long function |
| 676 | |
| 677 | The compiler and assembler will cooperate to create R_SH_USES |
| 678 | relocs on the jsr instructions. The r_offset field of the |
| 679 | R_SH_USES reloc is the PC relative offset to the instruction which |
| 680 | loads the register (the r_offset field is computed as though it |
| 681 | were a jump instruction, so the offset value is actually from four |
| 682 | bytes past the instruction). The linker can use this reloc to |
| 683 | determine just which function is being called, and thus decide |
| 684 | whether it is possible to replace the jsr with a bsr. |
| 685 | |
| 686 | If multiple function calls are all based on a single register load |
| 687 | (i.e., the same function is called multiple times), the compiler |
| 688 | guarantees that each function call will have an R_SH_USES reloc. |
| 689 | Therefore, if the linker is able to convert each R_SH_USES reloc |
| 690 | which refers to that address, it can safely eliminate the register |
| 691 | load. |
| 692 | |
| 693 | When the assembler creates an R_SH_USES reloc, it examines it to |
| 694 | determine which address is being loaded (L1 in the above example). |
| 695 | It then counts the number of references to that address, and |
| 696 | creates an R_SH_COUNT reloc at that address. The r_offset field of |
| 697 | the R_SH_COUNT reloc will be the number of references. If the |
| 698 | linker is able to eliminate a register load, it can use the |
| 699 | R_SH_COUNT reloc to see whether it can also eliminate the function |
| 700 | address. |
| 701 | |
| 702 | SH relaxing also handles another, unrelated, matter. On the SH, if |
| 703 | a load or store instruction is not aligned on a four byte boundary, |
| 704 | the memory cycle interferes with the 32 bit instruction fetch, |
| 705 | causing a one cycle bubble in the pipeline. Therefore, we try to |
| 706 | align load and store instructions on four byte boundaries if we |
| 707 | can, by swapping them with one of the adjacent instructions. */ |
| 708 | |
| 709 | static bfd_boolean |
| 710 | sh_relax_section (abfd, sec, link_info, again) |
| 711 | bfd *abfd; |
| 712 | asection *sec; |
| 713 | struct bfd_link_info *link_info; |
| 714 | bfd_boolean *again; |
| 715 | { |
| 716 | struct internal_reloc *internal_relocs; |
| 717 | bfd_boolean have_code; |
| 718 | struct internal_reloc *irel, *irelend; |
| 719 | bfd_byte *contents = NULL; |
| 720 | |
| 721 | *again = FALSE; |
| 722 | |
| 723 | if (link_info->relocatable |
| 724 | || (sec->flags & SEC_RELOC) == 0 |
| 725 | || sec->reloc_count == 0) |
| 726 | return TRUE; |
| 727 | |
| 728 | if (coff_section_data (abfd, sec) == NULL) |
| 729 | { |
| 730 | bfd_size_type amt = sizeof (struct coff_section_tdata); |
| 731 | sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); |
| 732 | if (sec->used_by_bfd == NULL) |
| 733 | return FALSE; |
| 734 | } |
| 735 | |
| 736 | internal_relocs = (_bfd_coff_read_internal_relocs |
| 737 | (abfd, sec, link_info->keep_memory, |
| 738 | (bfd_byte *) NULL, FALSE, |
| 739 | (struct internal_reloc *) NULL)); |
| 740 | if (internal_relocs == NULL) |
| 741 | goto error_return; |
| 742 | |
| 743 | have_code = FALSE; |
| 744 | |
| 745 | irelend = internal_relocs + sec->reloc_count; |
| 746 | for (irel = internal_relocs; irel < irelend; irel++) |
| 747 | { |
| 748 | bfd_vma laddr, paddr, symval; |
| 749 | unsigned short insn; |
| 750 | struct internal_reloc *irelfn, *irelscan, *irelcount; |
| 751 | struct internal_syment sym; |
| 752 | bfd_signed_vma foff; |
| 753 | |
| 754 | if (irel->r_type == R_SH_CODE) |
| 755 | have_code = TRUE; |
| 756 | |
| 757 | if (irel->r_type != R_SH_USES) |
| 758 | continue; |
| 759 | |
| 760 | /* Get the section contents. */ |
| 761 | if (contents == NULL) |
| 762 | { |
| 763 | if (coff_section_data (abfd, sec)->contents != NULL) |
| 764 | contents = coff_section_data (abfd, sec)->contents; |
| 765 | else |
| 766 | { |
| 767 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| 768 | goto error_return; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | /* The r_offset field of the R_SH_USES reloc will point us to |
| 773 | the register load. The 4 is because the r_offset field is |
| 774 | computed as though it were a jump offset, which are based |
| 775 | from 4 bytes after the jump instruction. */ |
| 776 | laddr = irel->r_vaddr - sec->vma + 4; |
| 777 | /* Careful to sign extend the 32-bit offset. */ |
| 778 | laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; |
| 779 | if (laddr >= sec->size) |
| 780 | { |
| 781 | (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset", |
| 782 | abfd, (unsigned long) irel->r_vaddr); |
| 783 | continue; |
| 784 | } |
| 785 | insn = bfd_get_16 (abfd, contents + laddr); |
| 786 | |
| 787 | /* If the instruction is not mov.l NN,rN, we don't know what to do. */ |
| 788 | if ((insn & 0xf000) != 0xd000) |
| 789 | { |
| 790 | ((*_bfd_error_handler) |
| 791 | ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x", |
| 792 | abfd, (unsigned long) irel->r_vaddr, insn)); |
| 793 | continue; |
| 794 | } |
| 795 | |
| 796 | /* Get the address from which the register is being loaded. The |
| 797 | displacement in the mov.l instruction is quadrupled. It is a |
| 798 | displacement from four bytes after the movl instruction, but, |
| 799 | before adding in the PC address, two least significant bits |
| 800 | of the PC are cleared. We assume that the section is aligned |
| 801 | on a four byte boundary. */ |
| 802 | paddr = insn & 0xff; |
| 803 | paddr *= 4; |
| 804 | paddr += (laddr + 4) &~ (bfd_vma) 3; |
| 805 | if (paddr >= sec->size) |
| 806 | { |
| 807 | ((*_bfd_error_handler) |
| 808 | ("%B: 0x%lx: warning: bad R_SH_USES load offset", |
| 809 | abfd, (unsigned long) irel->r_vaddr)); |
| 810 | continue; |
| 811 | } |
| 812 | |
| 813 | /* Get the reloc for the address from which the register is |
| 814 | being loaded. This reloc will tell us which function is |
| 815 | actually being called. */ |
| 816 | paddr += sec->vma; |
| 817 | for (irelfn = internal_relocs; irelfn < irelend; irelfn++) |
| 818 | if (irelfn->r_vaddr == paddr |
| 819 | #ifdef COFF_WITH_PE |
| 820 | && (irelfn->r_type == R_SH_IMM32 |
| 821 | || irelfn->r_type == R_SH_IMM32CE |
| 822 | || irelfn->r_type == R_SH_IMAGEBASE) |
| 823 | |
| 824 | #else |
| 825 | && irelfn->r_type == R_SH_IMM32 |
| 826 | #endif |
| 827 | ) |
| 828 | break; |
| 829 | if (irelfn >= irelend) |
| 830 | { |
| 831 | ((*_bfd_error_handler) |
| 832 | ("%B: 0x%lx: warning: could not find expected reloc", |
| 833 | abfd, (unsigned long) paddr)); |
| 834 | continue; |
| 835 | } |
| 836 | |
| 837 | /* Get the value of the symbol referred to by the reloc. */ |
| 838 | if (! _bfd_coff_get_external_symbols (abfd)) |
| 839 | goto error_return; |
| 840 | bfd_coff_swap_sym_in (abfd, |
| 841 | ((bfd_byte *) obj_coff_external_syms (abfd) |
| 842 | + (irelfn->r_symndx |
| 843 | * bfd_coff_symesz (abfd))), |
| 844 | &sym); |
| 845 | if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) |
| 846 | { |
| 847 | ((*_bfd_error_handler) |
| 848 | ("%B: 0x%lx: warning: symbol in unexpected section", |
| 849 | abfd, (unsigned long) paddr)); |
| 850 | continue; |
| 851 | } |
| 852 | |
| 853 | if (sym.n_sclass != C_EXT) |
| 854 | { |
| 855 | symval = (sym.n_value |
| 856 | - sec->vma |
| 857 | + sec->output_section->vma |
| 858 | + sec->output_offset); |
| 859 | } |
| 860 | else |
| 861 | { |
| 862 | struct coff_link_hash_entry *h; |
| 863 | |
| 864 | h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; |
| 865 | BFD_ASSERT (h != NULL); |
| 866 | if (h->root.type != bfd_link_hash_defined |
| 867 | && h->root.type != bfd_link_hash_defweak) |
| 868 | { |
| 869 | /* This appears to be a reference to an undefined |
| 870 | symbol. Just ignore it--it will be caught by the |
| 871 | regular reloc processing. */ |
| 872 | continue; |
| 873 | } |
| 874 | |
| 875 | symval = (h->root.u.def.value |
| 876 | + h->root.u.def.section->output_section->vma |
| 877 | + h->root.u.def.section->output_offset); |
| 878 | } |
| 879 | |
| 880 | symval += bfd_get_32 (abfd, contents + paddr - sec->vma); |
| 881 | |
| 882 | /* See if this function call can be shortened. */ |
| 883 | foff = (symval |
| 884 | - (irel->r_vaddr |
| 885 | - sec->vma |
| 886 | + sec->output_section->vma |
| 887 | + sec->output_offset |
| 888 | + 4)); |
| 889 | if (foff < -0x1000 || foff >= 0x1000) |
| 890 | { |
| 891 | /* After all that work, we can't shorten this function call. */ |
| 892 | continue; |
| 893 | } |
| 894 | |
| 895 | /* Shorten the function call. */ |
| 896 | |
| 897 | /* For simplicity of coding, we are going to modify the section |
| 898 | contents, the section relocs, and the BFD symbol table. We |
| 899 | must tell the rest of the code not to free up this |
| 900 | information. It would be possible to instead create a table |
| 901 | of changes which have to be made, as is done in coff-mips.c; |
| 902 | that would be more work, but would require less memory when |
| 903 | the linker is run. */ |
| 904 | |
| 905 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
| 906 | coff_section_data (abfd, sec)->keep_relocs = TRUE; |
| 907 | |
| 908 | coff_section_data (abfd, sec)->contents = contents; |
| 909 | coff_section_data (abfd, sec)->keep_contents = TRUE; |
| 910 | |
| 911 | obj_coff_keep_syms (abfd) = TRUE; |
| 912 | |
| 913 | /* Replace the jsr with a bsr. */ |
| 914 | |
| 915 | /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and |
| 916 | replace the jsr with a bsr. */ |
| 917 | irel->r_type = R_SH_PCDISP; |
| 918 | irel->r_symndx = irelfn->r_symndx; |
| 919 | if (sym.n_sclass != C_EXT) |
| 920 | { |
| 921 | /* If this needs to be changed because of future relaxing, |
| 922 | it will be handled here like other internal PCDISP |
| 923 | relocs. */ |
| 924 | bfd_put_16 (abfd, |
| 925 | (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), |
| 926 | contents + irel->r_vaddr - sec->vma); |
| 927 | } |
| 928 | else |
| 929 | { |
| 930 | /* We can't fully resolve this yet, because the external |
| 931 | symbol value may be changed by future relaxing. We let |
| 932 | the final link phase handle it. */ |
| 933 | bfd_put_16 (abfd, (bfd_vma) 0xb000, |
| 934 | contents + irel->r_vaddr - sec->vma); |
| 935 | } |
| 936 | |
| 937 | /* See if there is another R_SH_USES reloc referring to the same |
| 938 | register load. */ |
| 939 | for (irelscan = internal_relocs; irelscan < irelend; irelscan++) |
| 940 | if (irelscan->r_type == R_SH_USES |
| 941 | && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) |
| 942 | break; |
| 943 | if (irelscan < irelend) |
| 944 | { |
| 945 | /* Some other function call depends upon this register load, |
| 946 | and we have not yet converted that function call. |
| 947 | Indeed, we may never be able to convert it. There is |
| 948 | nothing else we can do at this point. */ |
| 949 | continue; |
| 950 | } |
| 951 | |
| 952 | /* Look for a R_SH_COUNT reloc on the location where the |
| 953 | function address is stored. Do this before deleting any |
| 954 | bytes, to avoid confusion about the address. */ |
| 955 | for (irelcount = internal_relocs; irelcount < irelend; irelcount++) |
| 956 | if (irelcount->r_vaddr == paddr |
| 957 | && irelcount->r_type == R_SH_COUNT) |
| 958 | break; |
| 959 | |
| 960 | /* Delete the register load. */ |
| 961 | if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) |
| 962 | goto error_return; |
| 963 | |
| 964 | /* That will change things, so, just in case it permits some |
| 965 | other function call to come within range, we should relax |
| 966 | again. Note that this is not required, and it may be slow. */ |
| 967 | *again = TRUE; |
| 968 | |
| 969 | /* Now check whether we got a COUNT reloc. */ |
| 970 | if (irelcount >= irelend) |
| 971 | { |
| 972 | ((*_bfd_error_handler) |
| 973 | ("%B: 0x%lx: warning: could not find expected COUNT reloc", |
| 974 | abfd, (unsigned long) paddr)); |
| 975 | continue; |
| 976 | } |
| 977 | |
| 978 | /* The number of uses is stored in the r_offset field. We've |
| 979 | just deleted one. */ |
| 980 | if (irelcount->r_offset == 0) |
| 981 | { |
| 982 | ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count", |
| 983 | abfd, (unsigned long) paddr)); |
| 984 | continue; |
| 985 | } |
| 986 | |
| 987 | --irelcount->r_offset; |
| 988 | |
| 989 | /* If there are no more uses, we can delete the address. Reload |
| 990 | the address from irelfn, in case it was changed by the |
| 991 | previous call to sh_relax_delete_bytes. */ |
| 992 | if (irelcount->r_offset == 0) |
| 993 | { |
| 994 | if (! sh_relax_delete_bytes (abfd, sec, |
| 995 | irelfn->r_vaddr - sec->vma, 4)) |
| 996 | goto error_return; |
| 997 | } |
| 998 | |
| 999 | /* We've done all we can with that function call. */ |
| 1000 | } |
| 1001 | |
| 1002 | /* Look for load and store instructions that we can align on four |
| 1003 | byte boundaries. */ |
| 1004 | if (have_code) |
| 1005 | { |
| 1006 | bfd_boolean swapped; |
| 1007 | |
| 1008 | /* Get the section contents. */ |
| 1009 | if (contents == NULL) |
| 1010 | { |
| 1011 | if (coff_section_data (abfd, sec)->contents != NULL) |
| 1012 | contents = coff_section_data (abfd, sec)->contents; |
| 1013 | else |
| 1014 | { |
| 1015 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| 1016 | goto error_return; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) |
| 1021 | goto error_return; |
| 1022 | |
| 1023 | if (swapped) |
| 1024 | { |
| 1025 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
| 1026 | coff_section_data (abfd, sec)->keep_relocs = TRUE; |
| 1027 | |
| 1028 | coff_section_data (abfd, sec)->contents = contents; |
| 1029 | coff_section_data (abfd, sec)->keep_contents = TRUE; |
| 1030 | |
| 1031 | obj_coff_keep_syms (abfd) = TRUE; |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | if (internal_relocs != NULL |
| 1036 | && internal_relocs != coff_section_data (abfd, sec)->relocs) |
| 1037 | { |
| 1038 | if (! link_info->keep_memory) |
| 1039 | free (internal_relocs); |
| 1040 | else |
| 1041 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
| 1042 | } |
| 1043 | |
| 1044 | if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) |
| 1045 | { |
| 1046 | if (! link_info->keep_memory) |
| 1047 | free (contents); |
| 1048 | else |
| 1049 | /* Cache the section contents for coff_link_input_bfd. */ |
| 1050 | coff_section_data (abfd, sec)->contents = contents; |
| 1051 | } |
| 1052 | |
| 1053 | return TRUE; |
| 1054 | |
| 1055 | error_return: |
| 1056 | if (internal_relocs != NULL |
| 1057 | && internal_relocs != coff_section_data (abfd, sec)->relocs) |
| 1058 | free (internal_relocs); |
| 1059 | if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) |
| 1060 | free (contents); |
| 1061 | return FALSE; |
| 1062 | } |
| 1063 | |
| 1064 | /* Delete some bytes from a section while relaxing. */ |
| 1065 | |
| 1066 | static bfd_boolean |
| 1067 | sh_relax_delete_bytes (abfd, sec, addr, count) |
| 1068 | bfd *abfd; |
| 1069 | asection *sec; |
| 1070 | bfd_vma addr; |
| 1071 | int count; |
| 1072 | { |
| 1073 | bfd_byte *contents; |
| 1074 | struct internal_reloc *irel, *irelend; |
| 1075 | struct internal_reloc *irelalign; |
| 1076 | bfd_vma toaddr; |
| 1077 | bfd_byte *esym, *esymend; |
| 1078 | bfd_size_type symesz; |
| 1079 | struct coff_link_hash_entry **sym_hash; |
| 1080 | asection *o; |
| 1081 | |
| 1082 | contents = coff_section_data (abfd, sec)->contents; |
| 1083 | |
| 1084 | /* The deletion must stop at the next ALIGN reloc for an aligment |
| 1085 | power larger than the number of bytes we are deleting. */ |
| 1086 | |
| 1087 | irelalign = NULL; |
| 1088 | toaddr = sec->size; |
| 1089 | |
| 1090 | irel = coff_section_data (abfd, sec)->relocs; |
| 1091 | irelend = irel + sec->reloc_count; |
| 1092 | for (; irel < irelend; irel++) |
| 1093 | { |
| 1094 | if (irel->r_type == R_SH_ALIGN |
| 1095 | && irel->r_vaddr - sec->vma > addr |
| 1096 | && count < (1 << irel->r_offset)) |
| 1097 | { |
| 1098 | irelalign = irel; |
| 1099 | toaddr = irel->r_vaddr - sec->vma; |
| 1100 | break; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | /* Actually delete the bytes. */ |
| 1105 | memmove (contents + addr, contents + addr + count, |
| 1106 | (size_t) (toaddr - addr - count)); |
| 1107 | if (irelalign == NULL) |
| 1108 | sec->size -= count; |
| 1109 | else |
| 1110 | { |
| 1111 | int i; |
| 1112 | |
| 1113 | #define NOP_OPCODE (0x0009) |
| 1114 | |
| 1115 | BFD_ASSERT ((count & 1) == 0); |
| 1116 | for (i = 0; i < count; i += 2) |
| 1117 | bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
| 1118 | } |
| 1119 | |
| 1120 | /* Adjust all the relocs. */ |
| 1121 | for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) |
| 1122 | { |
| 1123 | bfd_vma nraddr, stop; |
| 1124 | bfd_vma start = 0; |
| 1125 | int insn = 0; |
| 1126 | struct internal_syment sym; |
| 1127 | int off, adjust, oinsn; |
| 1128 | bfd_signed_vma voff = 0; |
| 1129 | bfd_boolean overflow; |
| 1130 | |
| 1131 | /* Get the new reloc address. */ |
| 1132 | nraddr = irel->r_vaddr - sec->vma; |
| 1133 | if ((irel->r_vaddr - sec->vma > addr |
| 1134 | && irel->r_vaddr - sec->vma < toaddr) |
| 1135 | || (irel->r_type == R_SH_ALIGN |
| 1136 | && irel->r_vaddr - sec->vma == toaddr)) |
| 1137 | nraddr -= count; |
| 1138 | |
| 1139 | /* See if this reloc was for the bytes we have deleted, in which |
| 1140 | case we no longer care about it. Don't delete relocs which |
| 1141 | represent addresses, though. */ |
| 1142 | if (irel->r_vaddr - sec->vma >= addr |
| 1143 | && irel->r_vaddr - sec->vma < addr + count |
| 1144 | && irel->r_type != R_SH_ALIGN |
| 1145 | && irel->r_type != R_SH_CODE |
| 1146 | && irel->r_type != R_SH_DATA |
| 1147 | && irel->r_type != R_SH_LABEL) |
| 1148 | irel->r_type = R_SH_UNUSED; |
| 1149 | |
| 1150 | /* If this is a PC relative reloc, see if the range it covers |
| 1151 | includes the bytes we have deleted. */ |
| 1152 | switch (irel->r_type) |
| 1153 | { |
| 1154 | default: |
| 1155 | break; |
| 1156 | |
| 1157 | case R_SH_PCDISP8BY2: |
| 1158 | case R_SH_PCDISP: |
| 1159 | case R_SH_PCRELIMM8BY2: |
| 1160 | case R_SH_PCRELIMM8BY4: |
| 1161 | start = irel->r_vaddr - sec->vma; |
| 1162 | insn = bfd_get_16 (abfd, contents + nraddr); |
| 1163 | break; |
| 1164 | } |
| 1165 | |
| 1166 | switch (irel->r_type) |
| 1167 | { |
| 1168 | default: |
| 1169 | start = stop = addr; |
| 1170 | break; |
| 1171 | |
| 1172 | case R_SH_IMM32: |
| 1173 | #ifdef COFF_WITH_PE |
| 1174 | case R_SH_IMM32CE: |
| 1175 | case R_SH_IMAGEBASE: |
| 1176 | #endif |
| 1177 | /* If this reloc is against a symbol defined in this |
| 1178 | section, and the symbol will not be adjusted below, we |
| 1179 | must check the addend to see it will put the value in |
| 1180 | range to be adjusted, and hence must be changed. */ |
| 1181 | bfd_coff_swap_sym_in (abfd, |
| 1182 | ((bfd_byte *) obj_coff_external_syms (abfd) |
| 1183 | + (irel->r_symndx |
| 1184 | * bfd_coff_symesz (abfd))), |
| 1185 | &sym); |
| 1186 | if (sym.n_sclass != C_EXT |
| 1187 | && sym.n_scnum == sec->target_index |
| 1188 | && ((bfd_vma) sym.n_value <= addr |
| 1189 | || (bfd_vma) sym.n_value >= toaddr)) |
| 1190 | { |
| 1191 | bfd_vma val; |
| 1192 | |
| 1193 | val = bfd_get_32 (abfd, contents + nraddr); |
| 1194 | val += sym.n_value; |
| 1195 | if (val > addr && val < toaddr) |
| 1196 | bfd_put_32 (abfd, val - count, contents + nraddr); |
| 1197 | } |
| 1198 | start = stop = addr; |
| 1199 | break; |
| 1200 | |
| 1201 | case R_SH_PCDISP8BY2: |
| 1202 | off = insn & 0xff; |
| 1203 | if (off & 0x80) |
| 1204 | off -= 0x100; |
| 1205 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| 1206 | break; |
| 1207 | |
| 1208 | case R_SH_PCDISP: |
| 1209 | bfd_coff_swap_sym_in (abfd, |
| 1210 | ((bfd_byte *) obj_coff_external_syms (abfd) |
| 1211 | + (irel->r_symndx |
| 1212 | * bfd_coff_symesz (abfd))), |
| 1213 | &sym); |
| 1214 | if (sym.n_sclass == C_EXT) |
| 1215 | start = stop = addr; |
| 1216 | else |
| 1217 | { |
| 1218 | off = insn & 0xfff; |
| 1219 | if (off & 0x800) |
| 1220 | off -= 0x1000; |
| 1221 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| 1222 | } |
| 1223 | break; |
| 1224 | |
| 1225 | case R_SH_PCRELIMM8BY2: |
| 1226 | off = insn & 0xff; |
| 1227 | stop = start + 4 + off * 2; |
| 1228 | break; |
| 1229 | |
| 1230 | case R_SH_PCRELIMM8BY4: |
| 1231 | off = insn & 0xff; |
| 1232 | stop = (start &~ (bfd_vma) 3) + 4 + off * 4; |
| 1233 | break; |
| 1234 | |
| 1235 | case R_SH_SWITCH8: |
| 1236 | case R_SH_SWITCH16: |
| 1237 | case R_SH_SWITCH32: |
| 1238 | /* These relocs types represent |
| 1239 | .word L2-L1 |
| 1240 | The r_offset field holds the difference between the reloc |
| 1241 | address and L1. That is the start of the reloc, and |
| 1242 | adding in the contents gives us the top. We must adjust |
| 1243 | both the r_offset field and the section contents. */ |
| 1244 | |
| 1245 | start = irel->r_vaddr - sec->vma; |
| 1246 | stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); |
| 1247 | |
| 1248 | if (start > addr |
| 1249 | && start < toaddr |
| 1250 | && (stop <= addr || stop >= toaddr)) |
| 1251 | irel->r_offset += count; |
| 1252 | else if (stop > addr |
| 1253 | && stop < toaddr |
| 1254 | && (start <= addr || start >= toaddr)) |
| 1255 | irel->r_offset -= count; |
| 1256 | |
| 1257 | start = stop; |
| 1258 | |
| 1259 | if (irel->r_type == R_SH_SWITCH16) |
| 1260 | voff = bfd_get_signed_16 (abfd, contents + nraddr); |
| 1261 | else if (irel->r_type == R_SH_SWITCH8) |
| 1262 | voff = bfd_get_8 (abfd, contents + nraddr); |
| 1263 | else |
| 1264 | voff = bfd_get_signed_32 (abfd, contents + nraddr); |
| 1265 | stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
| 1266 | |
| 1267 | break; |
| 1268 | |
| 1269 | case R_SH_USES: |
| 1270 | start = irel->r_vaddr - sec->vma; |
| 1271 | stop = (bfd_vma) ((bfd_signed_vma) start |
| 1272 | + (long) irel->r_offset |
| 1273 | + 4); |
| 1274 | break; |
| 1275 | } |
| 1276 | |
| 1277 | if (start > addr |
| 1278 | && start < toaddr |
| 1279 | && (stop <= addr || stop >= toaddr)) |
| 1280 | adjust = count; |
| 1281 | else if (stop > addr |
| 1282 | && stop < toaddr |
| 1283 | && (start <= addr || start >= toaddr)) |
| 1284 | adjust = - count; |
| 1285 | else |
| 1286 | adjust = 0; |
| 1287 | |
| 1288 | if (adjust != 0) |
| 1289 | { |
| 1290 | oinsn = insn; |
| 1291 | overflow = FALSE; |
| 1292 | switch (irel->r_type) |
| 1293 | { |
| 1294 | default: |
| 1295 | abort (); |
| 1296 | break; |
| 1297 | |
| 1298 | case R_SH_PCDISP8BY2: |
| 1299 | case R_SH_PCRELIMM8BY2: |
| 1300 | insn += adjust / 2; |
| 1301 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
| 1302 | overflow = TRUE; |
| 1303 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| 1304 | break; |
| 1305 | |
| 1306 | case R_SH_PCDISP: |
| 1307 | insn += adjust / 2; |
| 1308 | if ((oinsn & 0xf000) != (insn & 0xf000)) |
| 1309 | overflow = TRUE; |
| 1310 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| 1311 | break; |
| 1312 | |
| 1313 | case R_SH_PCRELIMM8BY4: |
| 1314 | BFD_ASSERT (adjust == count || count >= 4); |
| 1315 | if (count >= 4) |
| 1316 | insn += adjust / 4; |
| 1317 | else |
| 1318 | { |
| 1319 | if ((irel->r_vaddr & 3) == 0) |
| 1320 | ++insn; |
| 1321 | } |
| 1322 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
| 1323 | overflow = TRUE; |
| 1324 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| 1325 | break; |
| 1326 | |
| 1327 | case R_SH_SWITCH8: |
| 1328 | voff += adjust; |
| 1329 | if (voff < 0 || voff >= 0xff) |
| 1330 | overflow = TRUE; |
| 1331 | bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); |
| 1332 | break; |
| 1333 | |
| 1334 | case R_SH_SWITCH16: |
| 1335 | voff += adjust; |
| 1336 | if (voff < - 0x8000 || voff >= 0x8000) |
| 1337 | overflow = TRUE; |
| 1338 | bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); |
| 1339 | break; |
| 1340 | |
| 1341 | case R_SH_SWITCH32: |
| 1342 | voff += adjust; |
| 1343 | bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); |
| 1344 | break; |
| 1345 | |
| 1346 | case R_SH_USES: |
| 1347 | irel->r_offset += adjust; |
| 1348 | break; |
| 1349 | } |
| 1350 | |
| 1351 | if (overflow) |
| 1352 | { |
| 1353 | ((*_bfd_error_handler) |
| 1354 | ("%B: 0x%lx: fatal: reloc overflow while relaxing", |
| 1355 | abfd, (unsigned long) irel->r_vaddr)); |
| 1356 | bfd_set_error (bfd_error_bad_value); |
| 1357 | return FALSE; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | irel->r_vaddr = nraddr + sec->vma; |
| 1362 | } |
| 1363 | |
| 1364 | /* Look through all the other sections. If there contain any IMM32 |
| 1365 | relocs against internal symbols which we are not going to adjust |
| 1366 | below, we may need to adjust the addends. */ |
| 1367 | for (o = abfd->sections; o != NULL; o = o->next) |
| 1368 | { |
| 1369 | struct internal_reloc *internal_relocs; |
| 1370 | struct internal_reloc *irelscan, *irelscanend; |
| 1371 | bfd_byte *ocontents; |
| 1372 | |
| 1373 | if (o == sec |
| 1374 | || (o->flags & SEC_RELOC) == 0 |
| 1375 | || o->reloc_count == 0) |
| 1376 | continue; |
| 1377 | |
| 1378 | /* We always cache the relocs. Perhaps, if info->keep_memory is |
| 1379 | FALSE, we should free them, if we are permitted to, when we |
| 1380 | leave sh_coff_relax_section. */ |
| 1381 | internal_relocs = (_bfd_coff_read_internal_relocs |
| 1382 | (abfd, o, TRUE, (bfd_byte *) NULL, FALSE, |
| 1383 | (struct internal_reloc *) NULL)); |
| 1384 | if (internal_relocs == NULL) |
| 1385 | return FALSE; |
| 1386 | |
| 1387 | ocontents = NULL; |
| 1388 | irelscanend = internal_relocs + o->reloc_count; |
| 1389 | for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) |
| 1390 | { |
| 1391 | struct internal_syment sym; |
| 1392 | |
| 1393 | #ifdef COFF_WITH_PE |
| 1394 | if (irelscan->r_type != R_SH_IMM32 |
| 1395 | && irelscan->r_type != R_SH_IMAGEBASE |
| 1396 | && irelscan->r_type != R_SH_IMM32CE) |
| 1397 | #else |
| 1398 | if (irelscan->r_type != R_SH_IMM32) |
| 1399 | #endif |
| 1400 | continue; |
| 1401 | |
| 1402 | bfd_coff_swap_sym_in (abfd, |
| 1403 | ((bfd_byte *) obj_coff_external_syms (abfd) |
| 1404 | + (irelscan->r_symndx |
| 1405 | * bfd_coff_symesz (abfd))), |
| 1406 | &sym); |
| 1407 | if (sym.n_sclass != C_EXT |
| 1408 | && sym.n_scnum == sec->target_index |
| 1409 | && ((bfd_vma) sym.n_value <= addr |
| 1410 | || (bfd_vma) sym.n_value >= toaddr)) |
| 1411 | { |
| 1412 | bfd_vma val; |
| 1413 | |
| 1414 | if (ocontents == NULL) |
| 1415 | { |
| 1416 | if (coff_section_data (abfd, o)->contents != NULL) |
| 1417 | ocontents = coff_section_data (abfd, o)->contents; |
| 1418 | else |
| 1419 | { |
| 1420 | if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) |
| 1421 | return FALSE; |
| 1422 | /* We always cache the section contents. |
| 1423 | Perhaps, if info->keep_memory is FALSE, we |
| 1424 | should free them, if we are permitted to, |
| 1425 | when we leave sh_coff_relax_section. */ |
| 1426 | coff_section_data (abfd, o)->contents = ocontents; |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); |
| 1431 | val += sym.n_value; |
| 1432 | if (val > addr && val < toaddr) |
| 1433 | bfd_put_32 (abfd, val - count, |
| 1434 | ocontents + irelscan->r_vaddr - o->vma); |
| 1435 | |
| 1436 | coff_section_data (abfd, o)->keep_contents = TRUE; |
| 1437 | } |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | /* Adjusting the internal symbols will not work if something has |
| 1442 | already retrieved the generic symbols. It would be possible to |
| 1443 | make this work by adjusting the generic symbols at the same time. |
| 1444 | However, this case should not arise in normal usage. */ |
| 1445 | if (obj_symbols (abfd) != NULL |
| 1446 | || obj_raw_syments (abfd) != NULL) |
| 1447 | { |
| 1448 | ((*_bfd_error_handler) |
| 1449 | ("%B: fatal: generic symbols retrieved before relaxing", abfd)); |
| 1450 | bfd_set_error (bfd_error_invalid_operation); |
| 1451 | return FALSE; |
| 1452 | } |
| 1453 | |
| 1454 | /* Adjust all the symbols. */ |
| 1455 | sym_hash = obj_coff_sym_hashes (abfd); |
| 1456 | symesz = bfd_coff_symesz (abfd); |
| 1457 | esym = (bfd_byte *) obj_coff_external_syms (abfd); |
| 1458 | esymend = esym + obj_raw_syment_count (abfd) * symesz; |
| 1459 | while (esym < esymend) |
| 1460 | { |
| 1461 | struct internal_syment isym; |
| 1462 | |
| 1463 | bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym); |
| 1464 | |
| 1465 | if (isym.n_scnum == sec->target_index |
| 1466 | && (bfd_vma) isym.n_value > addr |
| 1467 | && (bfd_vma) isym.n_value < toaddr) |
| 1468 | { |
| 1469 | isym.n_value -= count; |
| 1470 | |
| 1471 | bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym); |
| 1472 | |
| 1473 | if (*sym_hash != NULL) |
| 1474 | { |
| 1475 | BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined |
| 1476 | || (*sym_hash)->root.type == bfd_link_hash_defweak); |
| 1477 | BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr |
| 1478 | && (*sym_hash)->root.u.def.value < toaddr); |
| 1479 | (*sym_hash)->root.u.def.value -= count; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | esym += (isym.n_numaux + 1) * symesz; |
| 1484 | sym_hash += isym.n_numaux + 1; |
| 1485 | } |
| 1486 | |
| 1487 | /* See if we can move the ALIGN reloc forward. We have adjusted |
| 1488 | r_vaddr for it already. */ |
| 1489 | if (irelalign != NULL) |
| 1490 | { |
| 1491 | bfd_vma alignto, alignaddr; |
| 1492 | |
| 1493 | alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); |
| 1494 | alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, |
| 1495 | 1 << irelalign->r_offset); |
| 1496 | if (alignto != alignaddr) |
| 1497 | { |
| 1498 | /* Tail recursion. */ |
| 1499 | return sh_relax_delete_bytes (abfd, sec, alignaddr, |
| 1500 | (int) (alignto - alignaddr)); |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | return TRUE; |
| 1505 | } |
| 1506 | \f |
| 1507 | /* This is yet another version of the SH opcode table, used to rapidly |
| 1508 | get information about a particular instruction. */ |
| 1509 | |
| 1510 | /* The opcode map is represented by an array of these structures. The |
| 1511 | array is indexed by the high order four bits in the instruction. */ |
| 1512 | |
| 1513 | struct sh_major_opcode |
| 1514 | { |
| 1515 | /* A pointer to the instruction list. This is an array which |
| 1516 | contains all the instructions with this major opcode. */ |
| 1517 | const struct sh_minor_opcode *minor_opcodes; |
| 1518 | /* The number of elements in minor_opcodes. */ |
| 1519 | unsigned short count; |
| 1520 | }; |
| 1521 | |
| 1522 | /* This structure holds information for a set of SH opcodes. The |
| 1523 | instruction code is anded with the mask value, and the resulting |
| 1524 | value is used to search the order opcode list. */ |
| 1525 | |
| 1526 | struct sh_minor_opcode |
| 1527 | { |
| 1528 | /* The sorted opcode list. */ |
| 1529 | const struct sh_opcode *opcodes; |
| 1530 | /* The number of elements in opcodes. */ |
| 1531 | unsigned short count; |
| 1532 | /* The mask value to use when searching the opcode list. */ |
| 1533 | unsigned short mask; |
| 1534 | }; |
| 1535 | |
| 1536 | /* This structure holds information for an SH instruction. An array |
| 1537 | of these structures is sorted in order by opcode. */ |
| 1538 | |
| 1539 | struct sh_opcode |
| 1540 | { |
| 1541 | /* The code for this instruction, after it has been anded with the |
| 1542 | mask value in the sh_major_opcode structure. */ |
| 1543 | unsigned short opcode; |
| 1544 | /* Flags for this instruction. */ |
| 1545 | unsigned long flags; |
| 1546 | }; |
| 1547 | |
| 1548 | /* Flag which appear in the sh_opcode structure. */ |
| 1549 | |
| 1550 | /* This instruction loads a value from memory. */ |
| 1551 | #define LOAD (0x1) |
| 1552 | |
| 1553 | /* This instruction stores a value to memory. */ |
| 1554 | #define STORE (0x2) |
| 1555 | |
| 1556 | /* This instruction is a branch. */ |
| 1557 | #define BRANCH (0x4) |
| 1558 | |
| 1559 | /* This instruction has a delay slot. */ |
| 1560 | #define DELAY (0x8) |
| 1561 | |
| 1562 | /* This instruction uses the value in the register in the field at |
| 1563 | mask 0x0f00 of the instruction. */ |
| 1564 | #define USES1 (0x10) |
| 1565 | #define USES1_REG(x) ((x & 0x0f00) >> 8) |
| 1566 | |
| 1567 | /* This instruction uses the value in the register in the field at |
| 1568 | mask 0x00f0 of the instruction. */ |
| 1569 | #define USES2 (0x20) |
| 1570 | #define USES2_REG(x) ((x & 0x00f0) >> 4) |
| 1571 | |
| 1572 | /* This instruction uses the value in register 0. */ |
| 1573 | #define USESR0 (0x40) |
| 1574 | |
| 1575 | /* This instruction sets the value in the register in the field at |
| 1576 | mask 0x0f00 of the instruction. */ |
| 1577 | #define SETS1 (0x80) |
| 1578 | #define SETS1_REG(x) ((x & 0x0f00) >> 8) |
| 1579 | |
| 1580 | /* This instruction sets the value in the register in the field at |
| 1581 | mask 0x00f0 of the instruction. */ |
| 1582 | #define SETS2 (0x100) |
| 1583 | #define SETS2_REG(x) ((x & 0x00f0) >> 4) |
| 1584 | |
| 1585 | /* This instruction sets register 0. */ |
| 1586 | #define SETSR0 (0x200) |
| 1587 | |
| 1588 | /* This instruction sets a special register. */ |
| 1589 | #define SETSSP (0x400) |
| 1590 | |
| 1591 | /* This instruction uses a special register. */ |
| 1592 | #define USESSP (0x800) |
| 1593 | |
| 1594 | /* This instruction uses the floating point register in the field at |
| 1595 | mask 0x0f00 of the instruction. */ |
| 1596 | #define USESF1 (0x1000) |
| 1597 | #define USESF1_REG(x) ((x & 0x0f00) >> 8) |
| 1598 | |
| 1599 | /* This instruction uses the floating point register in the field at |
| 1600 | mask 0x00f0 of the instruction. */ |
| 1601 | #define USESF2 (0x2000) |
| 1602 | #define USESF2_REG(x) ((x & 0x00f0) >> 4) |
| 1603 | |
| 1604 | /* This instruction uses floating point register 0. */ |
| 1605 | #define USESF0 (0x4000) |
| 1606 | |
| 1607 | /* This instruction sets the floating point register in the field at |
| 1608 | mask 0x0f00 of the instruction. */ |
| 1609 | #define SETSF1 (0x8000) |
| 1610 | #define SETSF1_REG(x) ((x & 0x0f00) >> 8) |
| 1611 | |
| 1612 | #define USESAS (0x10000) |
| 1613 | #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) |
| 1614 | #define USESR8 (0x20000) |
| 1615 | #define SETSAS (0x40000) |
| 1616 | #define SETSAS_REG(x) USESAS_REG (x) |
| 1617 | |
| 1618 | #define MAP(a) a, sizeof a / sizeof a[0] |
| 1619 | |
| 1620 | #ifndef COFF_IMAGE_WITH_PE |
| 1621 | static bfd_boolean sh_insn_uses_reg |
| 1622 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1623 | static bfd_boolean sh_insn_sets_reg |
| 1624 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1625 | static bfd_boolean sh_insn_uses_or_sets_reg |
| 1626 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1627 | static bfd_boolean sh_insn_uses_freg |
| 1628 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1629 | static bfd_boolean sh_insn_sets_freg |
| 1630 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1631 | static bfd_boolean sh_insn_uses_or_sets_freg |
| 1632 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int)); |
| 1633 | static bfd_boolean sh_insns_conflict |
| 1634 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int, |
| 1635 | const struct sh_opcode *)); |
| 1636 | static bfd_boolean sh_load_use |
| 1637 | PARAMS ((unsigned int, const struct sh_opcode *, unsigned int, |
| 1638 | const struct sh_opcode *)); |
| 1639 | |
| 1640 | /* The opcode maps. */ |
| 1641 | |
| 1642 | static const struct sh_opcode sh_opcode00[] = |
| 1643 | { |
| 1644 | { 0x0008, SETSSP }, /* clrt */ |
| 1645 | { 0x0009, 0 }, /* nop */ |
| 1646 | { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ |
| 1647 | { 0x0018, SETSSP }, /* sett */ |
| 1648 | { 0x0019, SETSSP }, /* div0u */ |
| 1649 | { 0x001b, 0 }, /* sleep */ |
| 1650 | { 0x0028, SETSSP }, /* clrmac */ |
| 1651 | { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ |
| 1652 | { 0x0038, USESSP | SETSSP }, /* ldtlb */ |
| 1653 | { 0x0048, SETSSP }, /* clrs */ |
| 1654 | { 0x0058, SETSSP } /* sets */ |
| 1655 | }; |
| 1656 | |
| 1657 | static const struct sh_opcode sh_opcode01[] = |
| 1658 | { |
| 1659 | { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ |
| 1660 | { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ |
| 1661 | { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ |
| 1662 | { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ |
| 1663 | { 0x0029, SETS1 | USESSP }, /* movt rn */ |
| 1664 | { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ |
| 1665 | { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ |
| 1666 | { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ |
| 1667 | { 0x0083, LOAD | USES1 }, /* pref @rn */ |
| 1668 | { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ |
| 1669 | { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ |
| 1670 | { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ |
| 1671 | { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ |
| 1672 | { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ |
| 1673 | }; |
| 1674 | |
| 1675 | static const struct sh_opcode sh_opcode02[] = |
| 1676 | { |
| 1677 | { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */ |
| 1678 | { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ |
| 1679 | { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ |
| 1680 | { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ |
| 1681 | { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ |
| 1682 | { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ |
| 1683 | { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ |
| 1684 | { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ |
| 1685 | { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ |
| 1686 | }; |
| 1687 | |
| 1688 | static const struct sh_minor_opcode sh_opcode0[] = |
| 1689 | { |
| 1690 | { MAP (sh_opcode00), 0xffff }, |
| 1691 | { MAP (sh_opcode01), 0xf0ff }, |
| 1692 | { MAP (sh_opcode02), 0xf00f } |
| 1693 | }; |
| 1694 | |
| 1695 | static const struct sh_opcode sh_opcode10[] = |
| 1696 | { |
| 1697 | { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ |
| 1698 | }; |
| 1699 | |
| 1700 | static const struct sh_minor_opcode sh_opcode1[] = |
| 1701 | { |
| 1702 | { MAP (sh_opcode10), 0xf000 } |
| 1703 | }; |
| 1704 | |
| 1705 | static const struct sh_opcode sh_opcode20[] = |
| 1706 | { |
| 1707 | { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ |
| 1708 | { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ |
| 1709 | { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ |
| 1710 | { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ |
| 1711 | { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ |
| 1712 | { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ |
| 1713 | { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ |
| 1714 | { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ |
| 1715 | { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ |
| 1716 | { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ |
| 1717 | { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ |
| 1718 | { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ |
| 1719 | { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ |
| 1720 | { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ |
| 1721 | { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ |
| 1722 | }; |
| 1723 | |
| 1724 | static const struct sh_minor_opcode sh_opcode2[] = |
| 1725 | { |
| 1726 | { MAP (sh_opcode20), 0xf00f } |
| 1727 | }; |
| 1728 | |
| 1729 | static const struct sh_opcode sh_opcode30[] = |
| 1730 | { |
| 1731 | { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ |
| 1732 | { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ |
| 1733 | { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ |
| 1734 | { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ |
| 1735 | { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ |
| 1736 | { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ |
| 1737 | { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ |
| 1738 | { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ |
| 1739 | { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ |
| 1740 | { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ |
| 1741 | { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ |
| 1742 | { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ |
| 1743 | { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ |
| 1744 | { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ |
| 1745 | }; |
| 1746 | |
| 1747 | static const struct sh_minor_opcode sh_opcode3[] = |
| 1748 | { |
| 1749 | { MAP (sh_opcode30), 0xf00f } |
| 1750 | }; |
| 1751 | |
| 1752 | static const struct sh_opcode sh_opcode40[] = |
| 1753 | { |
| 1754 | { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ |
| 1755 | { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ |
| 1756 | { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ |
| 1757 | { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ |
| 1758 | { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ |
| 1759 | { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ |
| 1760 | { 0x4008, SETS1 | USES1 }, /* shll2 rn */ |
| 1761 | { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ |
| 1762 | { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ |
| 1763 | { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ |
| 1764 | { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ |
| 1765 | { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ |
| 1766 | { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ |
| 1767 | { 0x4014, SETSSP | USES1 }, /* setrc rm */ |
| 1768 | { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ |
| 1769 | { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ |
| 1770 | { 0x4018, SETS1 | USES1 }, /* shll8 rn */ |
| 1771 | { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ |
| 1772 | { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ |
| 1773 | { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ |
| 1774 | { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ |
| 1775 | { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ |
| 1776 | { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ |
| 1777 | { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ |
| 1778 | { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ |
| 1779 | { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ |
| 1780 | { 0x4028, SETS1 | USES1 }, /* shll16 rn */ |
| 1781 | { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ |
| 1782 | { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ |
| 1783 | { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ |
| 1784 | { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ |
| 1785 | { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ |
| 1786 | { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ |
| 1787 | { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ |
| 1788 | { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ |
| 1789 | { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ |
| 1790 | { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ |
| 1791 | { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ |
| 1792 | { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ |
| 1793 | { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ |
| 1794 | { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ |
| 1795 | { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ |
| 1796 | { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ |
| 1797 | { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ |
| 1798 | { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ |
| 1799 | { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ |
| 1800 | { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ |
| 1801 | { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ |
| 1802 | { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ |
| 1803 | { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ |
| 1804 | { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ |
| 1805 | }; |
| 1806 | |
| 1807 | static const struct sh_opcode sh_opcode41[] = |
| 1808 | { |
| 1809 | { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */ |
| 1810 | { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */ |
| 1811 | { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ |
| 1812 | { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ |
| 1813 | { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */ |
| 1814 | { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ |
| 1815 | }; |
| 1816 | |
| 1817 | static const struct sh_minor_opcode sh_opcode4[] = |
| 1818 | { |
| 1819 | { MAP (sh_opcode40), 0xf0ff }, |
| 1820 | { MAP (sh_opcode41), 0xf00f } |
| 1821 | }; |
| 1822 | |
| 1823 | static const struct sh_opcode sh_opcode50[] = |
| 1824 | { |
| 1825 | { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ |
| 1826 | }; |
| 1827 | |
| 1828 | static const struct sh_minor_opcode sh_opcode5[] = |
| 1829 | { |
| 1830 | { MAP (sh_opcode50), 0xf000 } |
| 1831 | }; |
| 1832 | |
| 1833 | static const struct sh_opcode sh_opcode60[] = |
| 1834 | { |
| 1835 | { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ |
| 1836 | { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ |
| 1837 | { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ |
| 1838 | { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ |
| 1839 | { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ |
| 1840 | { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ |
| 1841 | { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ |
| 1842 | { 0x6007, SETS1 | USES2 }, /* not rm,rn */ |
| 1843 | { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ |
| 1844 | { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ |
| 1845 | { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ |
| 1846 | { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ |
| 1847 | { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ |
| 1848 | { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ |
| 1849 | { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ |
| 1850 | { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ |
| 1851 | }; |
| 1852 | |
| 1853 | static const struct sh_minor_opcode sh_opcode6[] = |
| 1854 | { |
| 1855 | { MAP (sh_opcode60), 0xf00f } |
| 1856 | }; |
| 1857 | |
| 1858 | static const struct sh_opcode sh_opcode70[] = |
| 1859 | { |
| 1860 | { 0x7000, SETS1 | USES1 } /* add #imm,rn */ |
| 1861 | }; |
| 1862 | |
| 1863 | static const struct sh_minor_opcode sh_opcode7[] = |
| 1864 | { |
| 1865 | { MAP (sh_opcode70), 0xf000 } |
| 1866 | }; |
| 1867 | |
| 1868 | static const struct sh_opcode sh_opcode80[] = |
| 1869 | { |
| 1870 | { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ |
| 1871 | { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ |
| 1872 | { 0x8200, SETSSP }, /* setrc #imm */ |
| 1873 | { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ |
| 1874 | { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ |
| 1875 | { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ |
| 1876 | { 0x8900, BRANCH | USESSP }, /* bt label */ |
| 1877 | { 0x8b00, BRANCH | USESSP }, /* bf label */ |
| 1878 | { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ |
| 1879 | { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ |
| 1880 | { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ |
| 1881 | { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ |
| 1882 | }; |
| 1883 | |
| 1884 | static const struct sh_minor_opcode sh_opcode8[] = |
| 1885 | { |
| 1886 | { MAP (sh_opcode80), 0xff00 } |
| 1887 | }; |
| 1888 | |
| 1889 | static const struct sh_opcode sh_opcode90[] = |
| 1890 | { |
| 1891 | { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ |
| 1892 | }; |
| 1893 | |
| 1894 | static const struct sh_minor_opcode sh_opcode9[] = |
| 1895 | { |
| 1896 | { MAP (sh_opcode90), 0xf000 } |
| 1897 | }; |
| 1898 | |
| 1899 | static const struct sh_opcode sh_opcodea0[] = |
| 1900 | { |
| 1901 | { 0xa000, BRANCH | DELAY } /* bra label */ |
| 1902 | }; |
| 1903 | |
| 1904 | static const struct sh_minor_opcode sh_opcodea[] = |
| 1905 | { |
| 1906 | { MAP (sh_opcodea0), 0xf000 } |
| 1907 | }; |
| 1908 | |
| 1909 | static const struct sh_opcode sh_opcodeb0[] = |
| 1910 | { |
| 1911 | { 0xb000, BRANCH | DELAY } /* bsr label */ |
| 1912 | }; |
| 1913 | |
| 1914 | static const struct sh_minor_opcode sh_opcodeb[] = |
| 1915 | { |
| 1916 | { MAP (sh_opcodeb0), 0xf000 } |
| 1917 | }; |
| 1918 | |
| 1919 | static const struct sh_opcode sh_opcodec0[] = |
| 1920 | { |
| 1921 | { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ |
| 1922 | { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ |
| 1923 | { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ |
| 1924 | { 0xc300, BRANCH | USESSP }, /* trapa #imm */ |
| 1925 | { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ |
| 1926 | { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ |
| 1927 | { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ |
| 1928 | { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ |
| 1929 | { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ |
| 1930 | { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ |
| 1931 | { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ |
| 1932 | { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ |
| 1933 | { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ |
| 1934 | { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ |
| 1935 | { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ |
| 1936 | { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ |
| 1937 | }; |
| 1938 | |
| 1939 | static const struct sh_minor_opcode sh_opcodec[] = |
| 1940 | { |
| 1941 | { MAP (sh_opcodec0), 0xff00 } |
| 1942 | }; |
| 1943 | |
| 1944 | static const struct sh_opcode sh_opcoded0[] = |
| 1945 | { |
| 1946 | { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ |
| 1947 | }; |
| 1948 | |
| 1949 | static const struct sh_minor_opcode sh_opcoded[] = |
| 1950 | { |
| 1951 | { MAP (sh_opcoded0), 0xf000 } |
| 1952 | }; |
| 1953 | |
| 1954 | static const struct sh_opcode sh_opcodee0[] = |
| 1955 | { |
| 1956 | { 0xe000, SETS1 } /* mov #imm,rn */ |
| 1957 | }; |
| 1958 | |
| 1959 | static const struct sh_minor_opcode sh_opcodee[] = |
| 1960 | { |
| 1961 | { MAP (sh_opcodee0), 0xf000 } |
| 1962 | }; |
| 1963 | |
| 1964 | static const struct sh_opcode sh_opcodef0[] = |
| 1965 | { |
| 1966 | { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ |
| 1967 | { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ |
| 1968 | { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ |
| 1969 | { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ |
| 1970 | { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ |
| 1971 | { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ |
| 1972 | { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ |
| 1973 | { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ |
| 1974 | { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ |
| 1975 | { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ |
| 1976 | { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ |
| 1977 | { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ |
| 1978 | { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ |
| 1979 | { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ |
| 1980 | }; |
| 1981 | |
| 1982 | static const struct sh_opcode sh_opcodef1[] = |
| 1983 | { |
| 1984 | { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ |
| 1985 | { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ |
| 1986 | { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ |
| 1987 | { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ |
| 1988 | { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ |
| 1989 | { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ |
| 1990 | { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ |
| 1991 | { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ |
| 1992 | { 0xf08d, SETSF1 }, /* fldi0 fn */ |
| 1993 | { 0xf09d, SETSF1 } /* fldi1 fn */ |
| 1994 | }; |
| 1995 | |
| 1996 | static const struct sh_minor_opcode sh_opcodef[] = |
| 1997 | { |
| 1998 | { MAP (sh_opcodef0), 0xf00f }, |
| 1999 | { MAP (sh_opcodef1), 0xf0ff } |
| 2000 | }; |
| 2001 | |
| 2002 | static struct sh_major_opcode sh_opcodes[] = |
| 2003 | { |
| 2004 | { MAP (sh_opcode0) }, |
| 2005 | { MAP (sh_opcode1) }, |
| 2006 | { MAP (sh_opcode2) }, |
| 2007 | { MAP (sh_opcode3) }, |
| 2008 | { MAP (sh_opcode4) }, |
| 2009 | { MAP (sh_opcode5) }, |
| 2010 | { MAP (sh_opcode6) }, |
| 2011 | { MAP (sh_opcode7) }, |
| 2012 | { MAP (sh_opcode8) }, |
| 2013 | { MAP (sh_opcode9) }, |
| 2014 | { MAP (sh_opcodea) }, |
| 2015 | { MAP (sh_opcodeb) }, |
| 2016 | { MAP (sh_opcodec) }, |
| 2017 | { MAP (sh_opcoded) }, |
| 2018 | { MAP (sh_opcodee) }, |
| 2019 | { MAP (sh_opcodef) } |
| 2020 | }; |
| 2021 | |
| 2022 | /* The double data transfer / parallel processing insns are not |
| 2023 | described here. This will cause sh_align_load_span to leave them alone. */ |
| 2024 | |
| 2025 | static const struct sh_opcode sh_dsp_opcodef0[] = |
| 2026 | { |
| 2027 | { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ |
| 2028 | { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ |
| 2029 | { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ |
| 2030 | { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ |
| 2031 | { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ |
| 2032 | { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ |
| 2033 | { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ |
| 2034 | { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ |
| 2035 | }; |
| 2036 | |
| 2037 | static const struct sh_minor_opcode sh_dsp_opcodef[] = |
| 2038 | { |
| 2039 | { MAP (sh_dsp_opcodef0), 0xfc0d } |
| 2040 | }; |
| 2041 | |
| 2042 | /* Given an instruction, return a pointer to the corresponding |
| 2043 | sh_opcode structure. Return NULL if the instruction is not |
| 2044 | recognized. */ |
| 2045 | |
| 2046 | static const struct sh_opcode * |
| 2047 | sh_insn_info (insn) |
| 2048 | unsigned int insn; |
| 2049 | { |
| 2050 | const struct sh_major_opcode *maj; |
| 2051 | const struct sh_minor_opcode *min, *minend; |
| 2052 | |
| 2053 | maj = &sh_opcodes[(insn & 0xf000) >> 12]; |
| 2054 | min = maj->minor_opcodes; |
| 2055 | minend = min + maj->count; |
| 2056 | for (; min < minend; min++) |
| 2057 | { |
| 2058 | unsigned int l; |
| 2059 | const struct sh_opcode *op, *opend; |
| 2060 | |
| 2061 | l = insn & min->mask; |
| 2062 | op = min->opcodes; |
| 2063 | opend = op + min->count; |
| 2064 | |
| 2065 | /* Since the opcodes tables are sorted, we could use a binary |
| 2066 | search here if the count were above some cutoff value. */ |
| 2067 | for (; op < opend; op++) |
| 2068 | if (op->opcode == l) |
| 2069 | return op; |
| 2070 | } |
| 2071 | |
| 2072 | return NULL; |
| 2073 | } |
| 2074 | |
| 2075 | /* See whether an instruction uses or sets a general purpose register */ |
| 2076 | |
| 2077 | static bfd_boolean |
| 2078 | sh_insn_uses_or_sets_reg (insn, op, reg) |
| 2079 | unsigned int insn; |
| 2080 | const struct sh_opcode *op; |
| 2081 | unsigned int reg; |
| 2082 | { |
| 2083 | if (sh_insn_uses_reg (insn, op, reg)) |
| 2084 | return TRUE; |
| 2085 | |
| 2086 | return sh_insn_sets_reg (insn, op, reg); |
| 2087 | } |
| 2088 | |
| 2089 | /* See whether an instruction uses a general purpose register. */ |
| 2090 | |
| 2091 | static bfd_boolean |
| 2092 | sh_insn_uses_reg (insn, op, reg) |
| 2093 | unsigned int insn; |
| 2094 | const struct sh_opcode *op; |
| 2095 | unsigned int reg; |
| 2096 | { |
| 2097 | unsigned int f; |
| 2098 | |
| 2099 | f = op->flags; |
| 2100 | |
| 2101 | if ((f & USES1) != 0 |
| 2102 | && USES1_REG (insn) == reg) |
| 2103 | return TRUE; |
| 2104 | if ((f & USES2) != 0 |
| 2105 | && USES2_REG (insn) == reg) |
| 2106 | return TRUE; |
| 2107 | if ((f & USESR0) != 0 |
| 2108 | && reg == 0) |
| 2109 | return TRUE; |
| 2110 | if ((f & USESAS) && reg == USESAS_REG (insn)) |
| 2111 | return TRUE; |
| 2112 | if ((f & USESR8) && reg == 8) |
| 2113 | return TRUE; |
| 2114 | |
| 2115 | return FALSE; |
| 2116 | } |
| 2117 | |
| 2118 | /* See whether an instruction sets a general purpose register. */ |
| 2119 | |
| 2120 | static bfd_boolean |
| 2121 | sh_insn_sets_reg (insn, op, reg) |
| 2122 | unsigned int insn; |
| 2123 | const struct sh_opcode *op; |
| 2124 | unsigned int reg; |
| 2125 | { |
| 2126 | unsigned int f; |
| 2127 | |
| 2128 | f = op->flags; |
| 2129 | |
| 2130 | if ((f & SETS1) != 0 |
| 2131 | && SETS1_REG (insn) == reg) |
| 2132 | return TRUE; |
| 2133 | if ((f & SETS2) != 0 |
| 2134 | && SETS2_REG (insn) == reg) |
| 2135 | return TRUE; |
| 2136 | if ((f & SETSR0) != 0 |
| 2137 | && reg == 0) |
| 2138 | return TRUE; |
| 2139 | if ((f & SETSAS) && reg == SETSAS_REG (insn)) |
| 2140 | return TRUE; |
| 2141 | |
| 2142 | return FALSE; |
| 2143 | } |
| 2144 | |
| 2145 | /* See whether an instruction uses or sets a floating point register */ |
| 2146 | |
| 2147 | static bfd_boolean |
| 2148 | sh_insn_uses_or_sets_freg (insn, op, reg) |
| 2149 | unsigned int insn; |
| 2150 | const struct sh_opcode *op; |
| 2151 | unsigned int reg; |
| 2152 | { |
| 2153 | if (sh_insn_uses_freg (insn, op, reg)) |
| 2154 | return TRUE; |
| 2155 | |
| 2156 | return sh_insn_sets_freg (insn, op, reg); |
| 2157 | } |
| 2158 | |
| 2159 | /* See whether an instruction uses a floating point register. */ |
| 2160 | |
| 2161 | static bfd_boolean |
| 2162 | sh_insn_uses_freg (insn, op, freg) |
| 2163 | unsigned int insn; |
| 2164 | const struct sh_opcode *op; |
| 2165 | unsigned int freg; |
| 2166 | { |
| 2167 | unsigned int f; |
| 2168 | |
| 2169 | f = op->flags; |
| 2170 | |
| 2171 | /* We can't tell if this is a double-precision insn, so just play safe |
| 2172 | and assume that it might be. So not only have we test FREG against |
| 2173 | itself, but also even FREG against FREG+1 - if the using insn uses |
| 2174 | just the low part of a double precision value - but also an odd |
| 2175 | FREG against FREG-1 - if the setting insn sets just the low part |
| 2176 | of a double precision value. |
| 2177 | So what this all boils down to is that we have to ignore the lowest |
| 2178 | bit of the register number. */ |
| 2179 | |
| 2180 | if ((f & USESF1) != 0 |
| 2181 | && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) |
| 2182 | return TRUE; |
| 2183 | if ((f & USESF2) != 0 |
| 2184 | && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) |
| 2185 | return TRUE; |
| 2186 | if ((f & USESF0) != 0 |
| 2187 | && freg == 0) |
| 2188 | return TRUE; |
| 2189 | |
| 2190 | return FALSE; |
| 2191 | } |
| 2192 | |
| 2193 | /* See whether an instruction sets a floating point register. */ |
| 2194 | |
| 2195 | static bfd_boolean |
| 2196 | sh_insn_sets_freg (insn, op, freg) |
| 2197 | unsigned int insn; |
| 2198 | const struct sh_opcode *op; |
| 2199 | unsigned int freg; |
| 2200 | { |
| 2201 | unsigned int f; |
| 2202 | |
| 2203 | f = op->flags; |
| 2204 | |
| 2205 | /* We can't tell if this is a double-precision insn, so just play safe |
| 2206 | and assume that it might be. So not only have we test FREG against |
| 2207 | itself, but also even FREG against FREG+1 - if the using insn uses |
| 2208 | just the low part of a double precision value - but also an odd |
| 2209 | FREG against FREG-1 - if the setting insn sets just the low part |
| 2210 | of a double precision value. |
| 2211 | So what this all boils down to is that we have to ignore the lowest |
| 2212 | bit of the register number. */ |
| 2213 | |
| 2214 | if ((f & SETSF1) != 0 |
| 2215 | && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) |
| 2216 | return TRUE; |
| 2217 | |
| 2218 | return FALSE; |
| 2219 | } |
| 2220 | |
| 2221 | /* See whether instructions I1 and I2 conflict, assuming I1 comes |
| 2222 | before I2. OP1 and OP2 are the corresponding sh_opcode structures. |
| 2223 | This should return TRUE if there is a conflict, or FALSE if the |
| 2224 | instructions can be swapped safely. */ |
| 2225 | |
| 2226 | static bfd_boolean |
| 2227 | sh_insns_conflict (i1, op1, i2, op2) |
| 2228 | unsigned int i1; |
| 2229 | const struct sh_opcode *op1; |
| 2230 | unsigned int i2; |
| 2231 | const struct sh_opcode *op2; |
| 2232 | { |
| 2233 | unsigned int f1, f2; |
| 2234 | |
| 2235 | f1 = op1->flags; |
| 2236 | f2 = op2->flags; |
| 2237 | |
| 2238 | /* Load of fpscr conflicts with floating point operations. |
| 2239 | FIXME: shouldn't test raw opcodes here. */ |
| 2240 | if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) |
| 2241 | || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) |
| 2242 | return TRUE; |
| 2243 | |
| 2244 | if ((f1 & (BRANCH | DELAY)) != 0 |
| 2245 | || (f2 & (BRANCH | DELAY)) != 0) |
| 2246 | return TRUE; |
| 2247 | |
| 2248 | if (((f1 | f2) & SETSSP) |
| 2249 | && (f1 & (SETSSP | USESSP)) |
| 2250 | && (f2 & (SETSSP | USESSP))) |
| 2251 | return TRUE; |
| 2252 | |
| 2253 | if ((f1 & SETS1) != 0 |
| 2254 | && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) |
| 2255 | return TRUE; |
| 2256 | if ((f1 & SETS2) != 0 |
| 2257 | && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) |
| 2258 | return TRUE; |
| 2259 | if ((f1 & SETSR0) != 0 |
| 2260 | && sh_insn_uses_or_sets_reg (i2, op2, 0)) |
| 2261 | return TRUE; |
| 2262 | if ((f1 & SETSAS) |
| 2263 | && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) |
| 2264 | return TRUE; |
| 2265 | if ((f1 & SETSF1) != 0 |
| 2266 | && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) |
| 2267 | return TRUE; |
| 2268 | |
| 2269 | if ((f2 & SETS1) != 0 |
| 2270 | && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) |
| 2271 | return TRUE; |
| 2272 | if ((f2 & SETS2) != 0 |
| 2273 | && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) |
| 2274 | return TRUE; |
| 2275 | if ((f2 & SETSR0) != 0 |
| 2276 | && sh_insn_uses_or_sets_reg (i1, op1, 0)) |
| 2277 | return TRUE; |
| 2278 | if ((f2 & SETSAS) |
| 2279 | && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) |
| 2280 | return TRUE; |
| 2281 | if ((f2 & SETSF1) != 0 |
| 2282 | && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) |
| 2283 | return TRUE; |
| 2284 | |
| 2285 | /* The instructions do not conflict. */ |
| 2286 | return FALSE; |
| 2287 | } |
| 2288 | |
| 2289 | /* I1 is a load instruction, and I2 is some other instruction. Return |
| 2290 | TRUE if I1 loads a register which I2 uses. */ |
| 2291 | |
| 2292 | static bfd_boolean |
| 2293 | sh_load_use (i1, op1, i2, op2) |
| 2294 | unsigned int i1; |
| 2295 | const struct sh_opcode *op1; |
| 2296 | unsigned int i2; |
| 2297 | const struct sh_opcode *op2; |
| 2298 | { |
| 2299 | unsigned int f1; |
| 2300 | |
| 2301 | f1 = op1->flags; |
| 2302 | |
| 2303 | if ((f1 & LOAD) == 0) |
| 2304 | return FALSE; |
| 2305 | |
| 2306 | /* If both SETS1 and SETSSP are set, that means a load to a special |
| 2307 | register using postincrement addressing mode, which we don't care |
| 2308 | about here. */ |
| 2309 | if ((f1 & SETS1) != 0 |
| 2310 | && (f1 & SETSSP) == 0 |
| 2311 | && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) |
| 2312 | return TRUE; |
| 2313 | |
| 2314 | if ((f1 & SETSR0) != 0 |
| 2315 | && sh_insn_uses_reg (i2, op2, 0)) |
| 2316 | return TRUE; |
| 2317 | |
| 2318 | if ((f1 & SETSF1) != 0 |
| 2319 | && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) |
| 2320 | return TRUE; |
| 2321 | |
| 2322 | return FALSE; |
| 2323 | } |
| 2324 | |
| 2325 | /* Try to align loads and stores within a span of memory. This is |
| 2326 | called by both the ELF and the COFF sh targets. ABFD and SEC are |
| 2327 | the BFD and section we are examining. CONTENTS is the contents of |
| 2328 | the section. SWAP is the routine to call to swap two instructions. |
| 2329 | RELOCS is a pointer to the internal relocation information, to be |
| 2330 | passed to SWAP. PLABEL is a pointer to the current label in a |
| 2331 | sorted list of labels; LABEL_END is the end of the list. START and |
| 2332 | STOP are the range of memory to examine. If a swap is made, |
| 2333 | *PSWAPPED is set to TRUE. */ |
| 2334 | |
| 2335 | #ifdef COFF_WITH_PE |
| 2336 | static |
| 2337 | #endif |
| 2338 | bfd_boolean |
| 2339 | _bfd_sh_align_load_span (abfd, sec, contents, swap, relocs, |
| 2340 | plabel, label_end, start, stop, pswapped) |
| 2341 | bfd *abfd; |
| 2342 | asection *sec; |
| 2343 | bfd_byte *contents; |
| 2344 | bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma)); |
| 2345 | PTR relocs; |
| 2346 | bfd_vma **plabel; |
| 2347 | bfd_vma *label_end; |
| 2348 | bfd_vma start; |
| 2349 | bfd_vma stop; |
| 2350 | bfd_boolean *pswapped; |
| 2351 | { |
| 2352 | int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp |
| 2353 | || abfd->arch_info->mach == bfd_mach_sh3_dsp); |
| 2354 | bfd_vma i; |
| 2355 | |
| 2356 | /* The SH4 has a Harvard architecture, hence aligning loads is not |
| 2357 | desirable. In fact, it is counter-productive, since it interferes |
| 2358 | with the schedules generated by the compiler. */ |
| 2359 | if (abfd->arch_info->mach == bfd_mach_sh4) |
| 2360 | return TRUE; |
| 2361 | |
| 2362 | /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP |
| 2363 | instructions. */ |
| 2364 | if (dsp) |
| 2365 | { |
| 2366 | sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; |
| 2367 | sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef; |
| 2368 | } |
| 2369 | |
| 2370 | /* Instructions should be aligned on 2 byte boundaries. */ |
| 2371 | if ((start & 1) == 1) |
| 2372 | ++start; |
| 2373 | |
| 2374 | /* Now look through the unaligned addresses. */ |
| 2375 | i = start; |
| 2376 | if ((i & 2) == 0) |
| 2377 | i += 2; |
| 2378 | for (; i < stop; i += 4) |
| 2379 | { |
| 2380 | unsigned int insn; |
| 2381 | const struct sh_opcode *op; |
| 2382 | unsigned int prev_insn = 0; |
| 2383 | const struct sh_opcode *prev_op = NULL; |
| 2384 | |
| 2385 | insn = bfd_get_16 (abfd, contents + i); |
| 2386 | op = sh_insn_info (insn); |
| 2387 | if (op == NULL |
| 2388 | || (op->flags & (LOAD | STORE)) == 0) |
| 2389 | continue; |
| 2390 | |
| 2391 | /* This is a load or store which is not on a four byte boundary. */ |
| 2392 | |
| 2393 | while (*plabel < label_end && **plabel < i) |
| 2394 | ++*plabel; |
| 2395 | |
| 2396 | if (i > start) |
| 2397 | { |
| 2398 | prev_insn = bfd_get_16 (abfd, contents + i - 2); |
| 2399 | /* If INSN is the field b of a parallel processing insn, it is not |
| 2400 | a load / store after all. Note that the test here might mistake |
| 2401 | the field_b of a pcopy insn for the starting code of a parallel |
| 2402 | processing insn; this might miss a swapping opportunity, but at |
| 2403 | least we're on the safe side. */ |
| 2404 | if (dsp && (prev_insn & 0xfc00) == 0xf800) |
| 2405 | continue; |
| 2406 | |
| 2407 | /* Check if prev_insn is actually the field b of a parallel |
| 2408 | processing insn. Again, this can give a spurious match |
| 2409 | after a pcopy. */ |
| 2410 | if (dsp && i - 2 > start) |
| 2411 | { |
| 2412 | unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); |
| 2413 | |
| 2414 | if ((pprev_insn & 0xfc00) == 0xf800) |
| 2415 | prev_op = NULL; |
| 2416 | else |
| 2417 | prev_op = sh_insn_info (prev_insn); |
| 2418 | } |
| 2419 | else |
| 2420 | prev_op = sh_insn_info (prev_insn); |
| 2421 | |
| 2422 | /* If the load/store instruction is in a delay slot, we |
| 2423 | can't swap. */ |
| 2424 | if (prev_op == NULL |
| 2425 | || (prev_op->flags & DELAY) != 0) |
| 2426 | continue; |
| 2427 | } |
| 2428 | if (i > start |
| 2429 | && (*plabel >= label_end || **plabel != i) |
| 2430 | && prev_op != NULL |
| 2431 | && (prev_op->flags & (LOAD | STORE)) == 0 |
| 2432 | && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) |
| 2433 | { |
| 2434 | bfd_boolean ok; |
| 2435 | |
| 2436 | /* The load/store instruction does not have a label, and |
| 2437 | there is a previous instruction; PREV_INSN is not |
| 2438 | itself a load/store instruction, and PREV_INSN and |
| 2439 | INSN do not conflict. */ |
| 2440 | |
| 2441 | ok = TRUE; |
| 2442 | |
| 2443 | if (i >= start + 4) |
| 2444 | { |
| 2445 | unsigned int prev2_insn; |
| 2446 | const struct sh_opcode *prev2_op; |
| 2447 | |
| 2448 | prev2_insn = bfd_get_16 (abfd, contents + i - 4); |
| 2449 | prev2_op = sh_insn_info (prev2_insn); |
| 2450 | |
| 2451 | /* If the instruction before PREV_INSN has a delay |
| 2452 | slot--that is, PREV_INSN is in a delay slot--we |
| 2453 | can not swap. */ |
| 2454 | if (prev2_op == NULL |
| 2455 | || (prev2_op->flags & DELAY) != 0) |
| 2456 | ok = FALSE; |
| 2457 | |
| 2458 | /* If the instruction before PREV_INSN is a load, |
| 2459 | and it sets a register which INSN uses, then |
| 2460 | putting INSN immediately after PREV_INSN will |
| 2461 | cause a pipeline bubble, so there is no point to |
| 2462 | making the swap. */ |
| 2463 | if (ok |
| 2464 | && (prev2_op->flags & LOAD) != 0 |
| 2465 | && sh_load_use (prev2_insn, prev2_op, insn, op)) |
| 2466 | ok = FALSE; |
| 2467 | } |
| 2468 | |
| 2469 | if (ok) |
| 2470 | { |
| 2471 | if (! (*swap) (abfd, sec, relocs, contents, i - 2)) |
| 2472 | return FALSE; |
| 2473 | *pswapped = TRUE; |
| 2474 | continue; |
| 2475 | } |
| 2476 | } |
| 2477 | |
| 2478 | while (*plabel < label_end && **plabel < i + 2) |
| 2479 | ++*plabel; |
| 2480 | |
| 2481 | if (i + 2 < stop |
| 2482 | && (*plabel >= label_end || **plabel != i + 2)) |
| 2483 | { |
| 2484 | unsigned int next_insn; |
| 2485 | const struct sh_opcode *next_op; |
| 2486 | |
| 2487 | /* There is an instruction after the load/store |
| 2488 | instruction, and it does not have a label. */ |
| 2489 | next_insn = bfd_get_16 (abfd, contents + i + 2); |
| 2490 | next_op = sh_insn_info (next_insn); |
| 2491 | if (next_op != NULL |
| 2492 | && (next_op->flags & (LOAD | STORE)) == 0 |
| 2493 | && ! sh_insns_conflict (insn, op, next_insn, next_op)) |
| 2494 | { |
| 2495 | bfd_boolean ok; |
| 2496 | |
| 2497 | /* NEXT_INSN is not itself a load/store instruction, |
| 2498 | and it does not conflict with INSN. */ |
| 2499 | |
| 2500 | ok = TRUE; |
| 2501 | |
| 2502 | /* If PREV_INSN is a load, and it sets a register |
| 2503 | which NEXT_INSN uses, then putting NEXT_INSN |
| 2504 | immediately after PREV_INSN will cause a pipeline |
| 2505 | bubble, so there is no reason to make this swap. */ |
| 2506 | if (prev_op != NULL |
| 2507 | && (prev_op->flags & LOAD) != 0 |
| 2508 | && sh_load_use (prev_insn, prev_op, next_insn, next_op)) |
| 2509 | ok = FALSE; |
| 2510 | |
| 2511 | /* If INSN is a load, and it sets a register which |
| 2512 | the insn after NEXT_INSN uses, then doing the |
| 2513 | swap will cause a pipeline bubble, so there is no |
| 2514 | reason to make the swap. However, if the insn |
| 2515 | after NEXT_INSN is itself a load or store |
| 2516 | instruction, then it is misaligned, so |
| 2517 | optimistically hope that it will be swapped |
| 2518 | itself, and just live with the pipeline bubble if |
| 2519 | it isn't. */ |
| 2520 | if (ok |
| 2521 | && i + 4 < stop |
| 2522 | && (op->flags & LOAD) != 0) |
| 2523 | { |
| 2524 | unsigned int next2_insn; |
| 2525 | const struct sh_opcode *next2_op; |
| 2526 | |
| 2527 | next2_insn = bfd_get_16 (abfd, contents + i + 4); |
| 2528 | next2_op = sh_insn_info (next2_insn); |
| 2529 | if (next2_op == NULL |
| 2530 | || ((next2_op->flags & (LOAD | STORE)) == 0 |
| 2531 | && sh_load_use (insn, op, next2_insn, next2_op))) |
| 2532 | ok = FALSE; |
| 2533 | } |
| 2534 | |
| 2535 | if (ok) |
| 2536 | { |
| 2537 | if (! (*swap) (abfd, sec, relocs, contents, i)) |
| 2538 | return FALSE; |
| 2539 | *pswapped = TRUE; |
| 2540 | continue; |
| 2541 | } |
| 2542 | } |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | return TRUE; |
| 2547 | } |
| 2548 | #endif /* not COFF_IMAGE_WITH_PE */ |
| 2549 | |
| 2550 | /* Look for loads and stores which we can align to four byte |
| 2551 | boundaries. See the longer comment above sh_relax_section for why |
| 2552 | this is desirable. This sets *PSWAPPED if some instruction was |
| 2553 | swapped. */ |
| 2554 | |
| 2555 | static bfd_boolean |
| 2556 | sh_align_loads (abfd, sec, internal_relocs, contents, pswapped) |
| 2557 | bfd *abfd; |
| 2558 | asection *sec; |
| 2559 | struct internal_reloc *internal_relocs; |
| 2560 | bfd_byte *contents; |
| 2561 | bfd_boolean *pswapped; |
| 2562 | { |
| 2563 | struct internal_reloc *irel, *irelend; |
| 2564 | bfd_vma *labels = NULL; |
| 2565 | bfd_vma *label, *label_end; |
| 2566 | bfd_size_type amt; |
| 2567 | |
| 2568 | *pswapped = FALSE; |
| 2569 | |
| 2570 | irelend = internal_relocs + sec->reloc_count; |
| 2571 | |
| 2572 | /* Get all the addresses with labels on them. */ |
| 2573 | amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); |
| 2574 | labels = (bfd_vma *) bfd_malloc (amt); |
| 2575 | if (labels == NULL) |
| 2576 | goto error_return; |
| 2577 | label_end = labels; |
| 2578 | for (irel = internal_relocs; irel < irelend; irel++) |
| 2579 | { |
| 2580 | if (irel->r_type == R_SH_LABEL) |
| 2581 | { |
| 2582 | *label_end = irel->r_vaddr - sec->vma; |
| 2583 | ++label_end; |
| 2584 | } |
| 2585 | } |
| 2586 | |
| 2587 | /* Note that the assembler currently always outputs relocs in |
| 2588 | address order. If that ever changes, this code will need to sort |
| 2589 | the label values and the relocs. */ |
| 2590 | |
| 2591 | label = labels; |
| 2592 | |
| 2593 | for (irel = internal_relocs; irel < irelend; irel++) |
| 2594 | { |
| 2595 | bfd_vma start, stop; |
| 2596 | |
| 2597 | if (irel->r_type != R_SH_CODE) |
| 2598 | continue; |
| 2599 | |
| 2600 | start = irel->r_vaddr - sec->vma; |
| 2601 | |
| 2602 | for (irel++; irel < irelend; irel++) |
| 2603 | if (irel->r_type == R_SH_DATA) |
| 2604 | break; |
| 2605 | if (irel < irelend) |
| 2606 | stop = irel->r_vaddr - sec->vma; |
| 2607 | else |
| 2608 | stop = sec->size; |
| 2609 | |
| 2610 | if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, |
| 2611 | (PTR) internal_relocs, &label, |
| 2612 | label_end, start, stop, pswapped)) |
| 2613 | goto error_return; |
| 2614 | } |
| 2615 | |
| 2616 | free (labels); |
| 2617 | |
| 2618 | return TRUE; |
| 2619 | |
| 2620 | error_return: |
| 2621 | if (labels != NULL) |
| 2622 | free (labels); |
| 2623 | return FALSE; |
| 2624 | } |
| 2625 | |
| 2626 | /* Swap two SH instructions. */ |
| 2627 | |
| 2628 | static bfd_boolean |
| 2629 | sh_swap_insns (abfd, sec, relocs, contents, addr) |
| 2630 | bfd *abfd; |
| 2631 | asection *sec; |
| 2632 | PTR relocs; |
| 2633 | bfd_byte *contents; |
| 2634 | bfd_vma addr; |
| 2635 | { |
| 2636 | struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; |
| 2637 | unsigned short i1, i2; |
| 2638 | struct internal_reloc *irel, *irelend; |
| 2639 | |
| 2640 | /* Swap the instructions themselves. */ |
| 2641 | i1 = bfd_get_16 (abfd, contents + addr); |
| 2642 | i2 = bfd_get_16 (abfd, contents + addr + 2); |
| 2643 | bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); |
| 2644 | bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); |
| 2645 | |
| 2646 | /* Adjust all reloc addresses. */ |
| 2647 | irelend = internal_relocs + sec->reloc_count; |
| 2648 | for (irel = internal_relocs; irel < irelend; irel++) |
| 2649 | { |
| 2650 | int type, add; |
| 2651 | |
| 2652 | /* There are a few special types of relocs that we don't want to |
| 2653 | adjust. These relocs do not apply to the instruction itself, |
| 2654 | but are only associated with the address. */ |
| 2655 | type = irel->r_type; |
| 2656 | if (type == R_SH_ALIGN |
| 2657 | || type == R_SH_CODE |
| 2658 | || type == R_SH_DATA |
| 2659 | || type == R_SH_LABEL) |
| 2660 | continue; |
| 2661 | |
| 2662 | /* If an R_SH_USES reloc points to one of the addresses being |
| 2663 | swapped, we must adjust it. It would be incorrect to do this |
| 2664 | for a jump, though, since we want to execute both |
| 2665 | instructions after the jump. (We have avoided swapping |
| 2666 | around a label, so the jump will not wind up executing an |
| 2667 | instruction it shouldn't). */ |
| 2668 | if (type == R_SH_USES) |
| 2669 | { |
| 2670 | bfd_vma off; |
| 2671 | |
| 2672 | off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; |
| 2673 | if (off == addr) |
| 2674 | irel->r_offset += 2; |
| 2675 | else if (off == addr + 2) |
| 2676 | irel->r_offset -= 2; |
| 2677 | } |
| 2678 | |
| 2679 | if (irel->r_vaddr - sec->vma == addr) |
| 2680 | { |
| 2681 | irel->r_vaddr += 2; |
| 2682 | add = -2; |
| 2683 | } |
| 2684 | else if (irel->r_vaddr - sec->vma == addr + 2) |
| 2685 | { |
| 2686 | irel->r_vaddr -= 2; |
| 2687 | add = 2; |
| 2688 | } |
| 2689 | else |
| 2690 | add = 0; |
| 2691 | |
| 2692 | if (add != 0) |
| 2693 | { |
| 2694 | bfd_byte *loc; |
| 2695 | unsigned short insn, oinsn; |
| 2696 | bfd_boolean overflow; |
| 2697 | |
| 2698 | loc = contents + irel->r_vaddr - sec->vma; |
| 2699 | overflow = FALSE; |
| 2700 | switch (type) |
| 2701 | { |
| 2702 | default: |
| 2703 | break; |
| 2704 | |
| 2705 | case R_SH_PCDISP8BY2: |
| 2706 | case R_SH_PCRELIMM8BY2: |
| 2707 | insn = bfd_get_16 (abfd, loc); |
| 2708 | oinsn = insn; |
| 2709 | insn += add / 2; |
| 2710 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
| 2711 | overflow = TRUE; |
| 2712 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| 2713 | break; |
| 2714 | |
| 2715 | case R_SH_PCDISP: |
| 2716 | insn = bfd_get_16 (abfd, loc); |
| 2717 | oinsn = insn; |
| 2718 | insn += add / 2; |
| 2719 | if ((oinsn & 0xf000) != (insn & 0xf000)) |
| 2720 | overflow = TRUE; |
| 2721 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| 2722 | break; |
| 2723 | |
| 2724 | case R_SH_PCRELIMM8BY4: |
| 2725 | /* This reloc ignores the least significant 3 bits of |
| 2726 | the program counter before adding in the offset. |
| 2727 | This means that if ADDR is at an even address, the |
| 2728 | swap will not affect the offset. If ADDR is an at an |
| 2729 | odd address, then the instruction will be crossing a |
| 2730 | four byte boundary, and must be adjusted. */ |
| 2731 | if ((addr & 3) != 0) |
| 2732 | { |
| 2733 | insn = bfd_get_16 (abfd, loc); |
| 2734 | oinsn = insn; |
| 2735 | insn += add / 2; |
| 2736 | if ((oinsn & 0xff00) != (insn & 0xff00)) |
| 2737 | overflow = TRUE; |
| 2738 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| 2739 | } |
| 2740 | |
| 2741 | break; |
| 2742 | } |
| 2743 | |
| 2744 | if (overflow) |
| 2745 | { |
| 2746 | ((*_bfd_error_handler) |
| 2747 | ("%B: 0x%lx: fatal: reloc overflow while relaxing", |
| 2748 | abfd, (unsigned long) irel->r_vaddr)); |
| 2749 | bfd_set_error (bfd_error_bad_value); |
| 2750 | return FALSE; |
| 2751 | } |
| 2752 | } |
| 2753 | } |
| 2754 | |
| 2755 | return TRUE; |
| 2756 | } |
| 2757 | \f |
| 2758 | /* This is a modification of _bfd_coff_generic_relocate_section, which |
| 2759 | will handle SH relaxing. */ |
| 2760 | |
| 2761 | static bfd_boolean |
| 2762 | sh_relocate_section (output_bfd, info, input_bfd, input_section, contents, |
| 2763 | relocs, syms, sections) |
| 2764 | bfd *output_bfd ATTRIBUTE_UNUSED; |
| 2765 | struct bfd_link_info *info; |
| 2766 | bfd *input_bfd; |
| 2767 | asection *input_section; |
| 2768 | bfd_byte *contents; |
| 2769 | struct internal_reloc *relocs; |
| 2770 | struct internal_syment *syms; |
| 2771 | asection **sections; |
| 2772 | { |
| 2773 | struct internal_reloc *rel; |
| 2774 | struct internal_reloc *relend; |
| 2775 | |
| 2776 | rel = relocs; |
| 2777 | relend = rel + input_section->reloc_count; |
| 2778 | for (; rel < relend; rel++) |
| 2779 | { |
| 2780 | long symndx; |
| 2781 | struct coff_link_hash_entry *h; |
| 2782 | struct internal_syment *sym; |
| 2783 | bfd_vma addend; |
| 2784 | bfd_vma val; |
| 2785 | reloc_howto_type *howto; |
| 2786 | bfd_reloc_status_type rstat; |
| 2787 | |
| 2788 | /* Almost all relocs have to do with relaxing. If any work must |
| 2789 | be done for them, it has been done in sh_relax_section. */ |
| 2790 | if (rel->r_type != R_SH_IMM32 |
| 2791 | #ifdef COFF_WITH_PE |
| 2792 | && rel->r_type != R_SH_IMM32CE |
| 2793 | && rel->r_type != R_SH_IMAGEBASE |
| 2794 | #endif |
| 2795 | && rel->r_type != R_SH_PCDISP) |
| 2796 | continue; |
| 2797 | |
| 2798 | symndx = rel->r_symndx; |
| 2799 | |
| 2800 | if (symndx == -1) |
| 2801 | { |
| 2802 | h = NULL; |
| 2803 | sym = NULL; |
| 2804 | } |
| 2805 | else |
| 2806 | { |
| 2807 | if (symndx < 0 |
| 2808 | || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) |
| 2809 | { |
| 2810 | (*_bfd_error_handler) |
| 2811 | ("%B: illegal symbol index %ld in relocs", |
| 2812 | input_bfd, symndx); |
| 2813 | bfd_set_error (bfd_error_bad_value); |
| 2814 | return FALSE; |
| 2815 | } |
| 2816 | h = obj_coff_sym_hashes (input_bfd)[symndx]; |
| 2817 | sym = syms + symndx; |
| 2818 | } |
| 2819 | |
| 2820 | if (sym != NULL && sym->n_scnum != 0) |
| 2821 | addend = - sym->n_value; |
| 2822 | else |
| 2823 | addend = 0; |
| 2824 | |
| 2825 | if (rel->r_type == R_SH_PCDISP) |
| 2826 | addend -= 4; |
| 2827 | |
| 2828 | if (rel->r_type >= SH_COFF_HOWTO_COUNT) |
| 2829 | howto = NULL; |
| 2830 | else |
| 2831 | howto = &sh_coff_howtos[rel->r_type]; |
| 2832 | |
| 2833 | if (howto == NULL) |
| 2834 | { |
| 2835 | bfd_set_error (bfd_error_bad_value); |
| 2836 | return FALSE; |
| 2837 | } |
| 2838 | |
| 2839 | #ifdef COFF_WITH_PE |
| 2840 | if (rel->r_type == R_SH_IMAGEBASE) |
| 2841 | addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; |
| 2842 | #endif |
| 2843 | |
| 2844 | val = 0; |
| 2845 | |
| 2846 | if (h == NULL) |
| 2847 | { |
| 2848 | asection *sec; |
| 2849 | |
| 2850 | /* There is nothing to do for an internal PCDISP reloc. */ |
| 2851 | if (rel->r_type == R_SH_PCDISP) |
| 2852 | continue; |
| 2853 | |
| 2854 | if (symndx == -1) |
| 2855 | { |
| 2856 | sec = bfd_abs_section_ptr; |
| 2857 | val = 0; |
| 2858 | } |
| 2859 | else |
| 2860 | { |
| 2861 | sec = sections[symndx]; |
| 2862 | val = (sec->output_section->vma |
| 2863 | + sec->output_offset |
| 2864 | + sym->n_value |
| 2865 | - sec->vma); |
| 2866 | } |
| 2867 | } |
| 2868 | else |
| 2869 | { |
| 2870 | if (h->root.type == bfd_link_hash_defined |
| 2871 | || h->root.type == bfd_link_hash_defweak) |
| 2872 | { |
| 2873 | asection *sec; |
| 2874 | |
| 2875 | sec = h->root.u.def.section; |
| 2876 | val = (h->root.u.def.value |
| 2877 | + sec->output_section->vma |
| 2878 | + sec->output_offset); |
| 2879 | } |
| 2880 | else if (! info->relocatable) |
| 2881 | { |
| 2882 | if (! ((*info->callbacks->undefined_symbol) |
| 2883 | (info, h->root.root.string, input_bfd, input_section, |
| 2884 | rel->r_vaddr - input_section->vma, TRUE))) |
| 2885 | return FALSE; |
| 2886 | } |
| 2887 | } |
| 2888 | |
| 2889 | rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, |
| 2890 | contents, |
| 2891 | rel->r_vaddr - input_section->vma, |
| 2892 | val, addend); |
| 2893 | |
| 2894 | switch (rstat) |
| 2895 | { |
| 2896 | default: |
| 2897 | abort (); |
| 2898 | case bfd_reloc_ok: |
| 2899 | break; |
| 2900 | case bfd_reloc_overflow: |
| 2901 | { |
| 2902 | const char *name; |
| 2903 | char buf[SYMNMLEN + 1]; |
| 2904 | |
| 2905 | if (symndx == -1) |
| 2906 | name = "*ABS*"; |
| 2907 | else if (h != NULL) |
| 2908 | name = NULL; |
| 2909 | else if (sym->_n._n_n._n_zeroes == 0 |
| 2910 | && sym->_n._n_n._n_offset != 0) |
| 2911 | name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; |
| 2912 | else |
| 2913 | { |
| 2914 | strncpy (buf, sym->_n._n_name, SYMNMLEN); |
| 2915 | buf[SYMNMLEN] = '\0'; |
| 2916 | name = buf; |
| 2917 | } |
| 2918 | |
| 2919 | if (! ((*info->callbacks->reloc_overflow) |
| 2920 | (info, (h ? &h->root : NULL), name, howto->name, |
| 2921 | (bfd_vma) 0, input_bfd, input_section, |
| 2922 | rel->r_vaddr - input_section->vma))) |
| 2923 | return FALSE; |
| 2924 | } |
| 2925 | } |
| 2926 | } |
| 2927 | |
| 2928 | return TRUE; |
| 2929 | } |
| 2930 | |
| 2931 | /* This is a version of bfd_generic_get_relocated_section_contents |
| 2932 | which uses sh_relocate_section. */ |
| 2933 | |
| 2934 | static bfd_byte * |
| 2935 | sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order, |
| 2936 | data, relocatable, symbols) |
| 2937 | bfd *output_bfd; |
| 2938 | struct bfd_link_info *link_info; |
| 2939 | struct bfd_link_order *link_order; |
| 2940 | bfd_byte *data; |
| 2941 | bfd_boolean relocatable; |
| 2942 | asymbol **symbols; |
| 2943 | { |
| 2944 | asection *input_section = link_order->u.indirect.section; |
| 2945 | bfd *input_bfd = input_section->owner; |
| 2946 | asection **sections = NULL; |
| 2947 | struct internal_reloc *internal_relocs = NULL; |
| 2948 | struct internal_syment *internal_syms = NULL; |
| 2949 | |
| 2950 | /* We only need to handle the case of relaxing, or of having a |
| 2951 | particular set of section contents, specially. */ |
| 2952 | if (relocatable |
| 2953 | || coff_section_data (input_bfd, input_section) == NULL |
| 2954 | || coff_section_data (input_bfd, input_section)->contents == NULL) |
| 2955 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, |
| 2956 | link_order, data, |
| 2957 | relocatable, |
| 2958 | symbols); |
| 2959 | |
| 2960 | memcpy (data, coff_section_data (input_bfd, input_section)->contents, |
| 2961 | (size_t) input_section->size); |
| 2962 | |
| 2963 | if ((input_section->flags & SEC_RELOC) != 0 |
| 2964 | && input_section->reloc_count > 0) |
| 2965 | { |
| 2966 | bfd_size_type symesz = bfd_coff_symesz (input_bfd); |
| 2967 | bfd_byte *esym, *esymend; |
| 2968 | struct internal_syment *isymp; |
| 2969 | asection **secpp; |
| 2970 | bfd_size_type amt; |
| 2971 | |
| 2972 | if (! _bfd_coff_get_external_symbols (input_bfd)) |
| 2973 | goto error_return; |
| 2974 | |
| 2975 | internal_relocs = (_bfd_coff_read_internal_relocs |
| 2976 | (input_bfd, input_section, FALSE, (bfd_byte *) NULL, |
| 2977 | FALSE, (struct internal_reloc *) NULL)); |
| 2978 | if (internal_relocs == NULL) |
| 2979 | goto error_return; |
| 2980 | |
| 2981 | amt = obj_raw_syment_count (input_bfd); |
| 2982 | amt *= sizeof (struct internal_syment); |
| 2983 | internal_syms = (struct internal_syment *) bfd_malloc (amt); |
| 2984 | if (internal_syms == NULL) |
| 2985 | goto error_return; |
| 2986 | |
| 2987 | amt = obj_raw_syment_count (input_bfd); |
| 2988 | amt *= sizeof (asection *); |
| 2989 | sections = (asection **) bfd_malloc (amt); |
| 2990 | if (sections == NULL) |
| 2991 | goto error_return; |
| 2992 | |
| 2993 | isymp = internal_syms; |
| 2994 | secpp = sections; |
| 2995 | esym = (bfd_byte *) obj_coff_external_syms (input_bfd); |
| 2996 | esymend = esym + obj_raw_syment_count (input_bfd) * symesz; |
| 2997 | while (esym < esymend) |
| 2998 | { |
| 2999 | bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp); |
| 3000 | |
| 3001 | if (isymp->n_scnum != 0) |
| 3002 | *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); |
| 3003 | else |
| 3004 | { |
| 3005 | if (isymp->n_value == 0) |
| 3006 | *secpp = bfd_und_section_ptr; |
| 3007 | else |
| 3008 | *secpp = bfd_com_section_ptr; |
| 3009 | } |
| 3010 | |
| 3011 | esym += (isymp->n_numaux + 1) * symesz; |
| 3012 | secpp += isymp->n_numaux + 1; |
| 3013 | isymp += isymp->n_numaux + 1; |
| 3014 | } |
| 3015 | |
| 3016 | if (! sh_relocate_section (output_bfd, link_info, input_bfd, |
| 3017 | input_section, data, internal_relocs, |
| 3018 | internal_syms, sections)) |
| 3019 | goto error_return; |
| 3020 | |
| 3021 | free (sections); |
| 3022 | sections = NULL; |
| 3023 | free (internal_syms); |
| 3024 | internal_syms = NULL; |
| 3025 | free (internal_relocs); |
| 3026 | internal_relocs = NULL; |
| 3027 | } |
| 3028 | |
| 3029 | return data; |
| 3030 | |
| 3031 | error_return: |
| 3032 | if (internal_relocs != NULL) |
| 3033 | free (internal_relocs); |
| 3034 | if (internal_syms != NULL) |
| 3035 | free (internal_syms); |
| 3036 | if (sections != NULL) |
| 3037 | free (sections); |
| 3038 | return NULL; |
| 3039 | } |
| 3040 | |
| 3041 | /* The target vectors. */ |
| 3042 | |
| 3043 | #ifndef TARGET_SHL_SYM |
| 3044 | CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) |
| 3045 | #endif |
| 3046 | |
| 3047 | #ifdef TARGET_SHL_SYM |
| 3048 | #define TARGET_SYM TARGET_SHL_SYM |
| 3049 | #else |
| 3050 | #define TARGET_SYM shlcoff_vec |
| 3051 | #endif |
| 3052 | |
| 3053 | #ifndef TARGET_SHL_NAME |
| 3054 | #define TARGET_SHL_NAME "coff-shl" |
| 3055 | #endif |
| 3056 | |
| 3057 | #ifdef COFF_WITH_PE |
| 3058 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, |
| 3059 | SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); |
| 3060 | #else |
| 3061 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, |
| 3062 | 0, '_', NULL, COFF_SWAP_TABLE) |
| 3063 | #endif |
| 3064 | |
| 3065 | #ifndef TARGET_SHL_SYM |
| 3066 | static const bfd_target * coff_small_object_p PARAMS ((bfd *)); |
| 3067 | static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *)); |
| 3068 | /* Some people want versions of the SH COFF target which do not align |
| 3069 | to 16 byte boundaries. We implement that by adding a couple of new |
| 3070 | target vectors. These are just like the ones above, but they |
| 3071 | change the default section alignment. To generate them in the |
| 3072 | assembler, use -small. To use them in the linker, use -b |
| 3073 | coff-sh{l}-small and -oformat coff-sh{l}-small. |
| 3074 | |
| 3075 | Yes, this is a horrible hack. A general solution for setting |
| 3076 | section alignment in COFF is rather complex. ELF handles this |
| 3077 | correctly. */ |
| 3078 | |
| 3079 | /* Only recognize the small versions if the target was not defaulted. |
| 3080 | Otherwise we won't recognize the non default endianness. */ |
| 3081 | |
| 3082 | static const bfd_target * |
| 3083 | coff_small_object_p (abfd) |
| 3084 | bfd *abfd; |
| 3085 | { |
| 3086 | if (abfd->target_defaulted) |
| 3087 | { |
| 3088 | bfd_set_error (bfd_error_wrong_format); |
| 3089 | return NULL; |
| 3090 | } |
| 3091 | return coff_object_p (abfd); |
| 3092 | } |
| 3093 | |
| 3094 | /* Set the section alignment for the small versions. */ |
| 3095 | |
| 3096 | static bfd_boolean |
| 3097 | coff_small_new_section_hook (abfd, section) |
| 3098 | bfd *abfd; |
| 3099 | asection *section; |
| 3100 | { |
| 3101 | if (! coff_new_section_hook (abfd, section)) |
| 3102 | return FALSE; |
| 3103 | |
| 3104 | /* We must align to at least a four byte boundary, because longword |
| 3105 | accesses must be on a four byte boundary. */ |
| 3106 | if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) |
| 3107 | section->alignment_power = 2; |
| 3108 | |
| 3109 | return TRUE; |
| 3110 | } |
| 3111 | |
| 3112 | /* This is copied from bfd_coff_std_swap_table so that we can change |
| 3113 | the default section alignment power. */ |
| 3114 | |
| 3115 | static const bfd_coff_backend_data bfd_coff_small_swap_table = |
| 3116 | { |
| 3117 | coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, |
| 3118 | coff_swap_aux_out, coff_swap_sym_out, |
| 3119 | coff_swap_lineno_out, coff_swap_reloc_out, |
| 3120 | coff_swap_filehdr_out, coff_swap_aouthdr_out, |
| 3121 | coff_swap_scnhdr_out, |
| 3122 | FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, |
| 3123 | #ifdef COFF_LONG_FILENAMES |
| 3124 | TRUE, |
| 3125 | #else |
| 3126 | FALSE, |
| 3127 | #endif |
| 3128 | #ifdef COFF_LONG_SECTION_NAMES |
| 3129 | TRUE, |
| 3130 | #else |
| 3131 | FALSE, |
| 3132 | #endif |
| 3133 | 2, |
| 3134 | #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS |
| 3135 | TRUE, |
| 3136 | #else |
| 3137 | FALSE, |
| 3138 | #endif |
| 3139 | #ifdef COFF_DEBUG_STRING_WIDE_PREFIX |
| 3140 | 4, |
| 3141 | #else |
| 3142 | 2, |
| 3143 | #endif |
| 3144 | coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, |
| 3145 | coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, |
| 3146 | coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, |
| 3147 | coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, |
| 3148 | coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, |
| 3149 | coff_classify_symbol, coff_compute_section_file_positions, |
| 3150 | coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, |
| 3151 | coff_adjust_symndx, coff_link_add_one_symbol, |
| 3152 | coff_link_output_has_begun, coff_final_link_postscript |
| 3153 | }; |
| 3154 | |
| 3155 | #define coff_small_close_and_cleanup \ |
| 3156 | coff_close_and_cleanup |
| 3157 | #define coff_small_bfd_free_cached_info \ |
| 3158 | coff_bfd_free_cached_info |
| 3159 | #define coff_small_get_section_contents \ |
| 3160 | coff_get_section_contents |
| 3161 | #define coff_small_get_section_contents_in_window \ |
| 3162 | coff_get_section_contents_in_window |
| 3163 | |
| 3164 | extern const bfd_target shlcoff_small_vec; |
| 3165 | |
| 3166 | const bfd_target shcoff_small_vec = |
| 3167 | { |
| 3168 | "coff-sh-small", /* name */ |
| 3169 | bfd_target_coff_flavour, |
| 3170 | BFD_ENDIAN_BIG, /* data byte order is big */ |
| 3171 | BFD_ENDIAN_BIG, /* header byte order is big */ |
| 3172 | |
| 3173 | (HAS_RELOC | EXEC_P | /* object flags */ |
| 3174 | HAS_LINENO | HAS_DEBUG | |
| 3175 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), |
| 3176 | |
| 3177 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), |
| 3178 | '_', /* leading symbol underscore */ |
| 3179 | '/', /* ar_pad_char */ |
| 3180 | 15, /* ar_max_namelen */ |
| 3181 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
| 3182 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
| 3183 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ |
| 3184 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
| 3185 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
| 3186 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ |
| 3187 | |
| 3188 | {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ |
| 3189 | bfd_generic_archive_p, _bfd_dummy_target}, |
| 3190 | {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ |
| 3191 | bfd_false}, |
| 3192 | {bfd_false, coff_write_object_contents, /* bfd_write_contents */ |
| 3193 | _bfd_write_archive_contents, bfd_false}, |
| 3194 | |
| 3195 | BFD_JUMP_TABLE_GENERIC (coff_small), |
| 3196 | BFD_JUMP_TABLE_COPY (coff), |
| 3197 | BFD_JUMP_TABLE_CORE (_bfd_nocore), |
| 3198 | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), |
| 3199 | BFD_JUMP_TABLE_SYMBOLS (coff), |
| 3200 | BFD_JUMP_TABLE_RELOCS (coff), |
| 3201 | BFD_JUMP_TABLE_WRITE (coff), |
| 3202 | BFD_JUMP_TABLE_LINK (coff), |
| 3203 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), |
| 3204 | |
| 3205 | & shlcoff_small_vec, |
| 3206 | |
| 3207 | (PTR) &bfd_coff_small_swap_table |
| 3208 | }; |
| 3209 | |
| 3210 | const bfd_target shlcoff_small_vec = |
| 3211 | { |
| 3212 | "coff-shl-small", /* name */ |
| 3213 | bfd_target_coff_flavour, |
| 3214 | BFD_ENDIAN_LITTLE, /* data byte order is little */ |
| 3215 | BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ |
| 3216 | |
| 3217 | (HAS_RELOC | EXEC_P | /* object flags */ |
| 3218 | HAS_LINENO | HAS_DEBUG | |
| 3219 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), |
| 3220 | |
| 3221 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), |
| 3222 | '_', /* leading symbol underscore */ |
| 3223 | '/', /* ar_pad_char */ |
| 3224 | 15, /* ar_max_namelen */ |
| 3225 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, |
| 3226 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, |
| 3227 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ |
| 3228 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, |
| 3229 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, |
| 3230 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ |
| 3231 | |
| 3232 | {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ |
| 3233 | bfd_generic_archive_p, _bfd_dummy_target}, |
| 3234 | {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ |
| 3235 | bfd_false}, |
| 3236 | {bfd_false, coff_write_object_contents, /* bfd_write_contents */ |
| 3237 | _bfd_write_archive_contents, bfd_false}, |
| 3238 | |
| 3239 | BFD_JUMP_TABLE_GENERIC (coff_small), |
| 3240 | BFD_JUMP_TABLE_COPY (coff), |
| 3241 | BFD_JUMP_TABLE_CORE (_bfd_nocore), |
| 3242 | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), |
| 3243 | BFD_JUMP_TABLE_SYMBOLS (coff), |
| 3244 | BFD_JUMP_TABLE_RELOCS (coff), |
| 3245 | BFD_JUMP_TABLE_WRITE (coff), |
| 3246 | BFD_JUMP_TABLE_LINK (coff), |
| 3247 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), |
| 3248 | |
| 3249 | & shcoff_small_vec, |
| 3250 | |
| 3251 | (PTR) &bfd_coff_small_swap_table |
| 3252 | }; |
| 3253 | #endif |