| 1 | /* Matsushita 10300 specific support for 32-bit ELF |
| 2 | Copyright (C) 1996-2018 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of BFD, the Binary File Descriptor library. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify |
| 7 | it under the terms of the GNU General Public License as published by |
| 8 | the Free Software Foundation; either version 3 of the License, or |
| 9 | (at your option) any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | GNU General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with this program; if not, write to the Free Software |
| 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 19 | MA 02110-1301, USA. */ |
| 20 | |
| 21 | #include "sysdep.h" |
| 22 | #include "bfd.h" |
| 23 | #include "libbfd.h" |
| 24 | #include "elf-bfd.h" |
| 25 | #include "elf/mn10300.h" |
| 26 | #include "libiberty.h" |
| 27 | |
| 28 | /* The mn10300 linker needs to keep track of the number of relocs that |
| 29 | it decides to copy in check_relocs for each symbol. This is so |
| 30 | that it can discard PC relative relocs if it doesn't need them when |
| 31 | linking with -Bsymbolic. We store the information in a field |
| 32 | extending the regular ELF linker hash table. */ |
| 33 | |
| 34 | struct elf32_mn10300_link_hash_entry |
| 35 | { |
| 36 | /* The basic elf link hash table entry. */ |
| 37 | struct elf_link_hash_entry root; |
| 38 | |
| 39 | /* For function symbols, the number of times this function is |
| 40 | called directly (ie by name). */ |
| 41 | unsigned int direct_calls; |
| 42 | |
| 43 | /* For function symbols, the size of this function's stack |
| 44 | (if <= 255 bytes). We stuff this into "call" instructions |
| 45 | to this target when it's valid and profitable to do so. |
| 46 | |
| 47 | This does not include stack allocated by movm! */ |
| 48 | unsigned char stack_size; |
| 49 | |
| 50 | /* For function symbols, arguments (if any) for movm instruction |
| 51 | in the prologue. We stuff this value into "call" instructions |
| 52 | to the target when it's valid and profitable to do so. */ |
| 53 | unsigned char movm_args; |
| 54 | |
| 55 | /* For function symbols, the amount of stack space that would be allocated |
| 56 | by the movm instruction. This is redundant with movm_args, but we |
| 57 | add it to the hash table to avoid computing it over and over. */ |
| 58 | unsigned char movm_stack_size; |
| 59 | |
| 60 | /* When set, convert all "call" instructions to this target into "calls" |
| 61 | instructions. */ |
| 62 | #define MN10300_CONVERT_CALL_TO_CALLS 0x1 |
| 63 | |
| 64 | /* Used to mark functions which have had redundant parts of their |
| 65 | prologue deleted. */ |
| 66 | #define MN10300_DELETED_PROLOGUE_BYTES 0x2 |
| 67 | unsigned char flags; |
| 68 | |
| 69 | /* Calculated value. */ |
| 70 | bfd_vma value; |
| 71 | |
| 72 | #define GOT_UNKNOWN 0 |
| 73 | #define GOT_NORMAL 1 |
| 74 | #define GOT_TLS_GD 2 |
| 75 | #define GOT_TLS_LD 3 |
| 76 | #define GOT_TLS_IE 4 |
| 77 | /* Used to distinguish GOT entries for TLS types from normal GOT entries. */ |
| 78 | unsigned char tls_type; |
| 79 | }; |
| 80 | |
| 81 | /* We derive a hash table from the main elf linker hash table so |
| 82 | we can store state variables and a secondary hash table without |
| 83 | resorting to global variables. */ |
| 84 | struct elf32_mn10300_link_hash_table |
| 85 | { |
| 86 | /* The main hash table. */ |
| 87 | struct elf_link_hash_table root; |
| 88 | |
| 89 | /* A hash table for static functions. We could derive a new hash table |
| 90 | instead of using the full elf32_mn10300_link_hash_table if we wanted |
| 91 | to save some memory. */ |
| 92 | struct elf32_mn10300_link_hash_table *static_hash_table; |
| 93 | |
| 94 | /* Random linker state flags. */ |
| 95 | #define MN10300_HASH_ENTRIES_INITIALIZED 0x1 |
| 96 | char flags; |
| 97 | struct |
| 98 | { |
| 99 | bfd_signed_vma refcount; |
| 100 | bfd_vma offset; |
| 101 | char got_allocated; |
| 102 | char rel_emitted; |
| 103 | } tls_ldm_got; |
| 104 | }; |
| 105 | |
| 106 | #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent)) |
| 107 | |
| 108 | struct elf_mn10300_obj_tdata |
| 109 | { |
| 110 | struct elf_obj_tdata root; |
| 111 | |
| 112 | /* tls_type for each local got entry. */ |
| 113 | char * local_got_tls_type; |
| 114 | }; |
| 115 | |
| 116 | #define elf_mn10300_tdata(abfd) \ |
| 117 | ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any) |
| 118 | |
| 119 | #define elf_mn10300_local_got_tls_type(abfd) \ |
| 120 | (elf_mn10300_tdata (abfd)->local_got_tls_type) |
| 121 | |
| 122 | #ifndef streq |
| 123 | #define streq(a, b) (strcmp ((a),(b)) == 0) |
| 124 | #endif |
| 125 | |
| 126 | /* For MN10300 linker hash table. */ |
| 127 | |
| 128 | /* Get the MN10300 ELF linker hash table from a link_info structure. */ |
| 129 | |
| 130 | #define elf32_mn10300_hash_table(p) \ |
| 131 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| 132 | == MN10300_ELF_DATA ? ((struct elf32_mn10300_link_hash_table *) ((p)->hash)) : NULL) |
| 133 | |
| 134 | #define elf32_mn10300_link_hash_traverse(table, func, info) \ |
| 135 | (elf_link_hash_traverse \ |
| 136 | (&(table)->root, \ |
| 137 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| 138 | (info))) |
| 139 | |
| 140 | static reloc_howto_type elf_mn10300_howto_table[] = |
| 141 | { |
| 142 | /* Dummy relocation. Does nothing. */ |
| 143 | HOWTO (R_MN10300_NONE, |
| 144 | 0, |
| 145 | 3, |
| 146 | 0, |
| 147 | FALSE, |
| 148 | 0, |
| 149 | complain_overflow_dont, |
| 150 | bfd_elf_generic_reloc, |
| 151 | "R_MN10300_NONE", |
| 152 | FALSE, |
| 153 | 0, |
| 154 | 0, |
| 155 | FALSE), |
| 156 | /* Standard 32 bit reloc. */ |
| 157 | HOWTO (R_MN10300_32, |
| 158 | 0, |
| 159 | 2, |
| 160 | 32, |
| 161 | FALSE, |
| 162 | 0, |
| 163 | complain_overflow_bitfield, |
| 164 | bfd_elf_generic_reloc, |
| 165 | "R_MN10300_32", |
| 166 | FALSE, |
| 167 | 0xffffffff, |
| 168 | 0xffffffff, |
| 169 | FALSE), |
| 170 | /* Standard 16 bit reloc. */ |
| 171 | HOWTO (R_MN10300_16, |
| 172 | 0, |
| 173 | 1, |
| 174 | 16, |
| 175 | FALSE, |
| 176 | 0, |
| 177 | complain_overflow_bitfield, |
| 178 | bfd_elf_generic_reloc, |
| 179 | "R_MN10300_16", |
| 180 | FALSE, |
| 181 | 0xffff, |
| 182 | 0xffff, |
| 183 | FALSE), |
| 184 | /* Standard 8 bit reloc. */ |
| 185 | HOWTO (R_MN10300_8, |
| 186 | 0, |
| 187 | 0, |
| 188 | 8, |
| 189 | FALSE, |
| 190 | 0, |
| 191 | complain_overflow_bitfield, |
| 192 | bfd_elf_generic_reloc, |
| 193 | "R_MN10300_8", |
| 194 | FALSE, |
| 195 | 0xff, |
| 196 | 0xff, |
| 197 | FALSE), |
| 198 | /* Standard 32bit pc-relative reloc. */ |
| 199 | HOWTO (R_MN10300_PCREL32, |
| 200 | 0, |
| 201 | 2, |
| 202 | 32, |
| 203 | TRUE, |
| 204 | 0, |
| 205 | complain_overflow_bitfield, |
| 206 | bfd_elf_generic_reloc, |
| 207 | "R_MN10300_PCREL32", |
| 208 | FALSE, |
| 209 | 0xffffffff, |
| 210 | 0xffffffff, |
| 211 | TRUE), |
| 212 | /* Standard 16bit pc-relative reloc. */ |
| 213 | HOWTO (R_MN10300_PCREL16, |
| 214 | 0, |
| 215 | 1, |
| 216 | 16, |
| 217 | TRUE, |
| 218 | 0, |
| 219 | complain_overflow_bitfield, |
| 220 | bfd_elf_generic_reloc, |
| 221 | "R_MN10300_PCREL16", |
| 222 | FALSE, |
| 223 | 0xffff, |
| 224 | 0xffff, |
| 225 | TRUE), |
| 226 | /* Standard 8 pc-relative reloc. */ |
| 227 | HOWTO (R_MN10300_PCREL8, |
| 228 | 0, |
| 229 | 0, |
| 230 | 8, |
| 231 | TRUE, |
| 232 | 0, |
| 233 | complain_overflow_bitfield, |
| 234 | bfd_elf_generic_reloc, |
| 235 | "R_MN10300_PCREL8", |
| 236 | FALSE, |
| 237 | 0xff, |
| 238 | 0xff, |
| 239 | TRUE), |
| 240 | |
| 241 | /* GNU extension to record C++ vtable hierarchy. */ |
| 242 | HOWTO (R_MN10300_GNU_VTINHERIT, /* type */ |
| 243 | 0, /* rightshift */ |
| 244 | 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 245 | 0, /* bitsize */ |
| 246 | FALSE, /* pc_relative */ |
| 247 | 0, /* bitpos */ |
| 248 | complain_overflow_dont, /* complain_on_overflow */ |
| 249 | NULL, /* special_function */ |
| 250 | "R_MN10300_GNU_VTINHERIT", /* name */ |
| 251 | FALSE, /* partial_inplace */ |
| 252 | 0, /* src_mask */ |
| 253 | 0, /* dst_mask */ |
| 254 | FALSE), /* pcrel_offset */ |
| 255 | |
| 256 | /* GNU extension to record C++ vtable member usage */ |
| 257 | HOWTO (R_MN10300_GNU_VTENTRY, /* type */ |
| 258 | 0, /* rightshift */ |
| 259 | 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 260 | 0, /* bitsize */ |
| 261 | FALSE, /* pc_relative */ |
| 262 | 0, /* bitpos */ |
| 263 | complain_overflow_dont, /* complain_on_overflow */ |
| 264 | NULL, /* special_function */ |
| 265 | "R_MN10300_GNU_VTENTRY", /* name */ |
| 266 | FALSE, /* partial_inplace */ |
| 267 | 0, /* src_mask */ |
| 268 | 0, /* dst_mask */ |
| 269 | FALSE), /* pcrel_offset */ |
| 270 | |
| 271 | /* Standard 24 bit reloc. */ |
| 272 | HOWTO (R_MN10300_24, |
| 273 | 0, |
| 274 | 2, |
| 275 | 24, |
| 276 | FALSE, |
| 277 | 0, |
| 278 | complain_overflow_bitfield, |
| 279 | bfd_elf_generic_reloc, |
| 280 | "R_MN10300_24", |
| 281 | FALSE, |
| 282 | 0xffffff, |
| 283 | 0xffffff, |
| 284 | FALSE), |
| 285 | HOWTO (R_MN10300_GOTPC32, /* type */ |
| 286 | 0, /* rightshift */ |
| 287 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 288 | 32, /* bitsize */ |
| 289 | TRUE, /* pc_relative */ |
| 290 | 0, /* bitpos */ |
| 291 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 292 | bfd_elf_generic_reloc, /* */ |
| 293 | "R_MN10300_GOTPC32", /* name */ |
| 294 | FALSE, /* partial_inplace */ |
| 295 | 0xffffffff, /* src_mask */ |
| 296 | 0xffffffff, /* dst_mask */ |
| 297 | TRUE), /* pcrel_offset */ |
| 298 | |
| 299 | HOWTO (R_MN10300_GOTPC16, /* type */ |
| 300 | 0, /* rightshift */ |
| 301 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 302 | 16, /* bitsize */ |
| 303 | TRUE, /* pc_relative */ |
| 304 | 0, /* bitpos */ |
| 305 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 306 | bfd_elf_generic_reloc, /* */ |
| 307 | "R_MN10300_GOTPC16", /* name */ |
| 308 | FALSE, /* partial_inplace */ |
| 309 | 0xffff, /* src_mask */ |
| 310 | 0xffff, /* dst_mask */ |
| 311 | TRUE), /* pcrel_offset */ |
| 312 | |
| 313 | HOWTO (R_MN10300_GOTOFF32, /* type */ |
| 314 | 0, /* rightshift */ |
| 315 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 316 | 32, /* bitsize */ |
| 317 | FALSE, /* pc_relative */ |
| 318 | 0, /* bitpos */ |
| 319 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 320 | bfd_elf_generic_reloc, /* */ |
| 321 | "R_MN10300_GOTOFF32", /* name */ |
| 322 | FALSE, /* partial_inplace */ |
| 323 | 0xffffffff, /* src_mask */ |
| 324 | 0xffffffff, /* dst_mask */ |
| 325 | FALSE), /* pcrel_offset */ |
| 326 | |
| 327 | HOWTO (R_MN10300_GOTOFF24, /* type */ |
| 328 | 0, /* rightshift */ |
| 329 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 330 | 24, /* bitsize */ |
| 331 | FALSE, /* pc_relative */ |
| 332 | 0, /* bitpos */ |
| 333 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 334 | bfd_elf_generic_reloc, /* */ |
| 335 | "R_MN10300_GOTOFF24", /* name */ |
| 336 | FALSE, /* partial_inplace */ |
| 337 | 0xffffff, /* src_mask */ |
| 338 | 0xffffff, /* dst_mask */ |
| 339 | FALSE), /* pcrel_offset */ |
| 340 | |
| 341 | HOWTO (R_MN10300_GOTOFF16, /* type */ |
| 342 | 0, /* rightshift */ |
| 343 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 344 | 16, /* bitsize */ |
| 345 | FALSE, /* pc_relative */ |
| 346 | 0, /* bitpos */ |
| 347 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 348 | bfd_elf_generic_reloc, /* */ |
| 349 | "R_MN10300_GOTOFF16", /* name */ |
| 350 | FALSE, /* partial_inplace */ |
| 351 | 0xffff, /* src_mask */ |
| 352 | 0xffff, /* dst_mask */ |
| 353 | FALSE), /* pcrel_offset */ |
| 354 | |
| 355 | HOWTO (R_MN10300_PLT32, /* type */ |
| 356 | 0, /* rightshift */ |
| 357 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 358 | 32, /* bitsize */ |
| 359 | TRUE, /* pc_relative */ |
| 360 | 0, /* bitpos */ |
| 361 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 362 | bfd_elf_generic_reloc, /* */ |
| 363 | "R_MN10300_PLT32", /* name */ |
| 364 | FALSE, /* partial_inplace */ |
| 365 | 0xffffffff, /* src_mask */ |
| 366 | 0xffffffff, /* dst_mask */ |
| 367 | TRUE), /* pcrel_offset */ |
| 368 | |
| 369 | HOWTO (R_MN10300_PLT16, /* type */ |
| 370 | 0, /* rightshift */ |
| 371 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 372 | 16, /* bitsize */ |
| 373 | TRUE, /* pc_relative */ |
| 374 | 0, /* bitpos */ |
| 375 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 376 | bfd_elf_generic_reloc, /* */ |
| 377 | "R_MN10300_PLT16", /* name */ |
| 378 | FALSE, /* partial_inplace */ |
| 379 | 0xffff, /* src_mask */ |
| 380 | 0xffff, /* dst_mask */ |
| 381 | TRUE), /* pcrel_offset */ |
| 382 | |
| 383 | HOWTO (R_MN10300_GOT32, /* type */ |
| 384 | 0, /* rightshift */ |
| 385 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 386 | 32, /* bitsize */ |
| 387 | FALSE, /* pc_relative */ |
| 388 | 0, /* bitpos */ |
| 389 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 390 | bfd_elf_generic_reloc, /* */ |
| 391 | "R_MN10300_GOT32", /* name */ |
| 392 | FALSE, /* partial_inplace */ |
| 393 | 0xffffffff, /* src_mask */ |
| 394 | 0xffffffff, /* dst_mask */ |
| 395 | FALSE), /* pcrel_offset */ |
| 396 | |
| 397 | HOWTO (R_MN10300_GOT24, /* type */ |
| 398 | 0, /* rightshift */ |
| 399 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 400 | 24, /* bitsize */ |
| 401 | FALSE, /* pc_relative */ |
| 402 | 0, /* bitpos */ |
| 403 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 404 | bfd_elf_generic_reloc, /* */ |
| 405 | "R_MN10300_GOT24", /* name */ |
| 406 | FALSE, /* partial_inplace */ |
| 407 | 0xffffffff, /* src_mask */ |
| 408 | 0xffffffff, /* dst_mask */ |
| 409 | FALSE), /* pcrel_offset */ |
| 410 | |
| 411 | HOWTO (R_MN10300_GOT16, /* type */ |
| 412 | 0, /* rightshift */ |
| 413 | 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 414 | 16, /* bitsize */ |
| 415 | FALSE, /* pc_relative */ |
| 416 | 0, /* bitpos */ |
| 417 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 418 | bfd_elf_generic_reloc, /* */ |
| 419 | "R_MN10300_GOT16", /* name */ |
| 420 | FALSE, /* partial_inplace */ |
| 421 | 0xffffffff, /* src_mask */ |
| 422 | 0xffffffff, /* dst_mask */ |
| 423 | FALSE), /* pcrel_offset */ |
| 424 | |
| 425 | HOWTO (R_MN10300_COPY, /* type */ |
| 426 | 0, /* rightshift */ |
| 427 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 428 | 32, /* bitsize */ |
| 429 | FALSE, /* pc_relative */ |
| 430 | 0, /* bitpos */ |
| 431 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 432 | bfd_elf_generic_reloc, /* */ |
| 433 | "R_MN10300_COPY", /* name */ |
| 434 | FALSE, /* partial_inplace */ |
| 435 | 0xffffffff, /* src_mask */ |
| 436 | 0xffffffff, /* dst_mask */ |
| 437 | FALSE), /* pcrel_offset */ |
| 438 | |
| 439 | HOWTO (R_MN10300_GLOB_DAT, /* type */ |
| 440 | 0, /* rightshift */ |
| 441 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 442 | 32, /* bitsize */ |
| 443 | FALSE, /* pc_relative */ |
| 444 | 0, /* bitpos */ |
| 445 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 446 | bfd_elf_generic_reloc, /* */ |
| 447 | "R_MN10300_GLOB_DAT", /* name */ |
| 448 | FALSE, /* partial_inplace */ |
| 449 | 0xffffffff, /* src_mask */ |
| 450 | 0xffffffff, /* dst_mask */ |
| 451 | FALSE), /* pcrel_offset */ |
| 452 | |
| 453 | HOWTO (R_MN10300_JMP_SLOT, /* type */ |
| 454 | 0, /* rightshift */ |
| 455 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 456 | 32, /* bitsize */ |
| 457 | FALSE, /* pc_relative */ |
| 458 | 0, /* bitpos */ |
| 459 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 460 | bfd_elf_generic_reloc, /* */ |
| 461 | "R_MN10300_JMP_SLOT", /* name */ |
| 462 | FALSE, /* partial_inplace */ |
| 463 | 0xffffffff, /* src_mask */ |
| 464 | 0xffffffff, /* dst_mask */ |
| 465 | FALSE), /* pcrel_offset */ |
| 466 | |
| 467 | HOWTO (R_MN10300_RELATIVE, /* type */ |
| 468 | 0, /* rightshift */ |
| 469 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 470 | 32, /* bitsize */ |
| 471 | FALSE, /* pc_relative */ |
| 472 | 0, /* bitpos */ |
| 473 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 474 | bfd_elf_generic_reloc, /* */ |
| 475 | "R_MN10300_RELATIVE", /* name */ |
| 476 | FALSE, /* partial_inplace */ |
| 477 | 0xffffffff, /* src_mask */ |
| 478 | 0xffffffff, /* dst_mask */ |
| 479 | FALSE), /* pcrel_offset */ |
| 480 | |
| 481 | HOWTO (R_MN10300_TLS_GD, /* type */ |
| 482 | 0, /* rightshift */ |
| 483 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 484 | 32, /* bitsize */ |
| 485 | FALSE, /* pc_relative */ |
| 486 | 0, /* bitpos */ |
| 487 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 488 | bfd_elf_generic_reloc, /* */ |
| 489 | "R_MN10300_TLS_GD", /* name */ |
| 490 | FALSE, /* partial_inplace */ |
| 491 | 0xffffffff, /* src_mask */ |
| 492 | 0xffffffff, /* dst_mask */ |
| 493 | FALSE), /* pcrel_offset */ |
| 494 | |
| 495 | HOWTO (R_MN10300_TLS_LD, /* type */ |
| 496 | 0, /* rightshift */ |
| 497 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 498 | 32, /* bitsize */ |
| 499 | FALSE, /* pc_relative */ |
| 500 | 0, /* bitpos */ |
| 501 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 502 | bfd_elf_generic_reloc, /* */ |
| 503 | "R_MN10300_TLS_LD", /* name */ |
| 504 | FALSE, /* partial_inplace */ |
| 505 | 0xffffffff, /* src_mask */ |
| 506 | 0xffffffff, /* dst_mask */ |
| 507 | FALSE), /* pcrel_offset */ |
| 508 | |
| 509 | HOWTO (R_MN10300_TLS_LDO, /* type */ |
| 510 | 0, /* rightshift */ |
| 511 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 512 | 32, /* bitsize */ |
| 513 | FALSE, /* pc_relative */ |
| 514 | 0, /* bitpos */ |
| 515 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 516 | bfd_elf_generic_reloc, /* */ |
| 517 | "R_MN10300_TLS_LDO", /* name */ |
| 518 | FALSE, /* partial_inplace */ |
| 519 | 0xffffffff, /* src_mask */ |
| 520 | 0xffffffff, /* dst_mask */ |
| 521 | FALSE), /* pcrel_offset */ |
| 522 | |
| 523 | HOWTO (R_MN10300_TLS_GOTIE, /* type */ |
| 524 | 0, /* rightshift */ |
| 525 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 526 | 32, /* bitsize */ |
| 527 | FALSE, /* pc_relative */ |
| 528 | 0, /* bitpos */ |
| 529 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 530 | bfd_elf_generic_reloc, /* */ |
| 531 | "R_MN10300_TLS_GOTIE", /* name */ |
| 532 | FALSE, /* partial_inplace */ |
| 533 | 0xffffffff, /* src_mask */ |
| 534 | 0xffffffff, /* dst_mask */ |
| 535 | FALSE), /* pcrel_offset */ |
| 536 | |
| 537 | HOWTO (R_MN10300_TLS_IE, /* type */ |
| 538 | 0, /* rightshift */ |
| 539 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 540 | 32, /* bitsize */ |
| 541 | FALSE, /* pc_relative */ |
| 542 | 0, /* bitpos */ |
| 543 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 544 | bfd_elf_generic_reloc, /* */ |
| 545 | "R_MN10300_TLS_IE", /* name */ |
| 546 | FALSE, /* partial_inplace */ |
| 547 | 0xffffffff, /* src_mask */ |
| 548 | 0xffffffff, /* dst_mask */ |
| 549 | FALSE), /* pcrel_offset */ |
| 550 | |
| 551 | HOWTO (R_MN10300_TLS_LE, /* type */ |
| 552 | 0, /* rightshift */ |
| 553 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 554 | 32, /* bitsize */ |
| 555 | FALSE, /* pc_relative */ |
| 556 | 0, /* bitpos */ |
| 557 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 558 | bfd_elf_generic_reloc, /* */ |
| 559 | "R_MN10300_TLS_LE", /* name */ |
| 560 | FALSE, /* partial_inplace */ |
| 561 | 0xffffffff, /* src_mask */ |
| 562 | 0xffffffff, /* dst_mask */ |
| 563 | FALSE), /* pcrel_offset */ |
| 564 | |
| 565 | HOWTO (R_MN10300_TLS_DTPMOD, /* type */ |
| 566 | 0, /* rightshift */ |
| 567 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 568 | 32, /* bitsize */ |
| 569 | FALSE, /* pc_relative */ |
| 570 | 0, /* bitpos */ |
| 571 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 572 | bfd_elf_generic_reloc, /* */ |
| 573 | "R_MN10300_TLS_DTPMOD", /* name */ |
| 574 | FALSE, /* partial_inplace */ |
| 575 | 0xffffffff, /* src_mask */ |
| 576 | 0xffffffff, /* dst_mask */ |
| 577 | FALSE), /* pcrel_offset */ |
| 578 | |
| 579 | HOWTO (R_MN10300_TLS_DTPOFF, /* type */ |
| 580 | 0, /* rightshift */ |
| 581 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 582 | 32, /* bitsize */ |
| 583 | FALSE, /* pc_relative */ |
| 584 | 0, /* bitpos */ |
| 585 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 586 | bfd_elf_generic_reloc, /* */ |
| 587 | "R_MN10300_TLS_DTPOFF", /* name */ |
| 588 | FALSE, /* partial_inplace */ |
| 589 | 0xffffffff, /* src_mask */ |
| 590 | 0xffffffff, /* dst_mask */ |
| 591 | FALSE), /* pcrel_offset */ |
| 592 | |
| 593 | HOWTO (R_MN10300_TLS_TPOFF, /* type */ |
| 594 | 0, /* rightshift */ |
| 595 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 596 | 32, /* bitsize */ |
| 597 | FALSE, /* pc_relative */ |
| 598 | 0, /* bitpos */ |
| 599 | complain_overflow_bitfield, /* complain_on_overflow */ |
| 600 | bfd_elf_generic_reloc, /* */ |
| 601 | "R_MN10300_TLS_TPOFF", /* name */ |
| 602 | FALSE, /* partial_inplace */ |
| 603 | 0xffffffff, /* src_mask */ |
| 604 | 0xffffffff, /* dst_mask */ |
| 605 | FALSE), /* pcrel_offset */ |
| 606 | |
| 607 | HOWTO (R_MN10300_SYM_DIFF, /* type */ |
| 608 | 0, /* rightshift */ |
| 609 | 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 610 | 32, /* bitsize */ |
| 611 | FALSE, /* pc_relative */ |
| 612 | 0, /* bitpos */ |
| 613 | complain_overflow_dont,/* complain_on_overflow */ |
| 614 | NULL, /* special handler. */ |
| 615 | "R_MN10300_SYM_DIFF", /* name */ |
| 616 | FALSE, /* partial_inplace */ |
| 617 | 0xffffffff, /* src_mask */ |
| 618 | 0xffffffff, /* dst_mask */ |
| 619 | FALSE), /* pcrel_offset */ |
| 620 | |
| 621 | HOWTO (R_MN10300_ALIGN, /* type */ |
| 622 | 0, /* rightshift */ |
| 623 | 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 624 | 32, /* bitsize */ |
| 625 | FALSE, /* pc_relative */ |
| 626 | 0, /* bitpos */ |
| 627 | complain_overflow_dont,/* complain_on_overflow */ |
| 628 | NULL, /* special handler. */ |
| 629 | "R_MN10300_ALIGN", /* name */ |
| 630 | FALSE, /* partial_inplace */ |
| 631 | 0, /* src_mask */ |
| 632 | 0, /* dst_mask */ |
| 633 | FALSE) /* pcrel_offset */ |
| 634 | }; |
| 635 | |
| 636 | struct mn10300_reloc_map |
| 637 | { |
| 638 | bfd_reloc_code_real_type bfd_reloc_val; |
| 639 | unsigned char elf_reloc_val; |
| 640 | }; |
| 641 | |
| 642 | static const struct mn10300_reloc_map mn10300_reloc_map[] = |
| 643 | { |
| 644 | { BFD_RELOC_NONE, R_MN10300_NONE, }, |
| 645 | { BFD_RELOC_32, R_MN10300_32, }, |
| 646 | { BFD_RELOC_16, R_MN10300_16, }, |
| 647 | { BFD_RELOC_8, R_MN10300_8, }, |
| 648 | { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, }, |
| 649 | { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, }, |
| 650 | { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, }, |
| 651 | { BFD_RELOC_24, R_MN10300_24, }, |
| 652 | { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT }, |
| 653 | { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY }, |
| 654 | { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 }, |
| 655 | { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 }, |
| 656 | { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 }, |
| 657 | { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 }, |
| 658 | { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 }, |
| 659 | { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 }, |
| 660 | { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 }, |
| 661 | { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 }, |
| 662 | { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 }, |
| 663 | { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 }, |
| 664 | { BFD_RELOC_MN10300_COPY, R_MN10300_COPY }, |
| 665 | { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT }, |
| 666 | { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT }, |
| 667 | { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE }, |
| 668 | { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD }, |
| 669 | { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD }, |
| 670 | { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO }, |
| 671 | { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE }, |
| 672 | { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE }, |
| 673 | { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE }, |
| 674 | { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD }, |
| 675 | { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF }, |
| 676 | { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF }, |
| 677 | { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF }, |
| 678 | { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN } |
| 679 | }; |
| 680 | |
| 681 | /* Create the GOT section. */ |
| 682 | |
| 683 | static bfd_boolean |
| 684 | _bfd_mn10300_elf_create_got_section (bfd * abfd, |
| 685 | struct bfd_link_info * info) |
| 686 | { |
| 687 | flagword flags; |
| 688 | flagword pltflags; |
| 689 | asection * s; |
| 690 | struct elf_link_hash_entry * h; |
| 691 | const struct elf_backend_data * bed = get_elf_backend_data (abfd); |
| 692 | struct elf_link_hash_table *htab; |
| 693 | int ptralign; |
| 694 | |
| 695 | /* This function may be called more than once. */ |
| 696 | htab = elf_hash_table (info); |
| 697 | if (htab->sgot != NULL) |
| 698 | return TRUE; |
| 699 | |
| 700 | switch (bed->s->arch_size) |
| 701 | { |
| 702 | case 32: |
| 703 | ptralign = 2; |
| 704 | break; |
| 705 | |
| 706 | case 64: |
| 707 | ptralign = 3; |
| 708 | break; |
| 709 | |
| 710 | default: |
| 711 | bfd_set_error (bfd_error_bad_value); |
| 712 | return FALSE; |
| 713 | } |
| 714 | |
| 715 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| 716 | | SEC_LINKER_CREATED); |
| 717 | |
| 718 | pltflags = flags; |
| 719 | pltflags |= SEC_CODE; |
| 720 | if (bed->plt_not_loaded) |
| 721 | pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); |
| 722 | if (bed->plt_readonly) |
| 723 | pltflags |= SEC_READONLY; |
| 724 | |
| 725 | s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
| 726 | htab->splt = s; |
| 727 | if (s == NULL |
| 728 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) |
| 729 | return FALSE; |
| 730 | |
| 731 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| 732 | .plt section. */ |
| 733 | if (bed->want_plt_sym) |
| 734 | { |
| 735 | h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| 736 | "_PROCEDURE_LINKAGE_TABLE_"); |
| 737 | htab->hplt = h; |
| 738 | if (h == NULL) |
| 739 | return FALSE; |
| 740 | } |
| 741 | |
| 742 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| 743 | htab->sgot = s; |
| 744 | if (s == NULL |
| 745 | || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| 746 | return FALSE; |
| 747 | |
| 748 | if (bed->want_got_plt) |
| 749 | { |
| 750 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| 751 | htab->sgotplt = s; |
| 752 | if (s == NULL |
| 753 | || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| 754 | return FALSE; |
| 755 | } |
| 756 | |
| 757 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| 758 | (or .got.plt) section. We don't do this in the linker script |
| 759 | because we don't want to define the symbol if we are not creating |
| 760 | a global offset table. */ |
| 761 | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); |
| 762 | htab->hgot = h; |
| 763 | if (h == NULL) |
| 764 | return FALSE; |
| 765 | |
| 766 | /* The first bit of the global offset table is the header. */ |
| 767 | s->size += bed->got_header_size; |
| 768 | |
| 769 | return TRUE; |
| 770 | } |
| 771 | |
| 772 | static reloc_howto_type * |
| 773 | bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| 774 | bfd_reloc_code_real_type code) |
| 775 | { |
| 776 | unsigned int i; |
| 777 | |
| 778 | for (i = ARRAY_SIZE (mn10300_reloc_map); i--;) |
| 779 | if (mn10300_reloc_map[i].bfd_reloc_val == code) |
| 780 | return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val]; |
| 781 | |
| 782 | return NULL; |
| 783 | } |
| 784 | |
| 785 | static reloc_howto_type * |
| 786 | bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| 787 | const char *r_name) |
| 788 | { |
| 789 | unsigned int i; |
| 790 | |
| 791 | for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;) |
| 792 | if (elf_mn10300_howto_table[i].name != NULL |
| 793 | && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0) |
| 794 | return elf_mn10300_howto_table + i; |
| 795 | |
| 796 | return NULL; |
| 797 | } |
| 798 | |
| 799 | /* Set the howto pointer for an MN10300 ELF reloc. */ |
| 800 | |
| 801 | static bfd_boolean |
| 802 | mn10300_info_to_howto (bfd *abfd, |
| 803 | arelent *cache_ptr, |
| 804 | Elf_Internal_Rela *dst) |
| 805 | { |
| 806 | unsigned int r_type; |
| 807 | |
| 808 | r_type = ELF32_R_TYPE (dst->r_info); |
| 809 | if (r_type >= R_MN10300_MAX) |
| 810 | { |
| 811 | /* xgettext:c-format */ |
| 812 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| 813 | abfd, r_type); |
| 814 | bfd_set_error (bfd_error_bad_value); |
| 815 | return FALSE; |
| 816 | } |
| 817 | cache_ptr->howto = elf_mn10300_howto_table + r_type; |
| 818 | return TRUE; |
| 819 | } |
| 820 | |
| 821 | static int |
| 822 | elf_mn10300_tls_transition (struct bfd_link_info * info, |
| 823 | int r_type, |
| 824 | struct elf_link_hash_entry * h, |
| 825 | asection * sec, |
| 826 | bfd_boolean counting) |
| 827 | { |
| 828 | bfd_boolean is_local; |
| 829 | |
| 830 | if (r_type == R_MN10300_TLS_GD |
| 831 | && h != NULL |
| 832 | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| 833 | return R_MN10300_TLS_GOTIE; |
| 834 | |
| 835 | if (bfd_link_pic (info)) |
| 836 | return r_type; |
| 837 | |
| 838 | if (! (sec->flags & SEC_CODE)) |
| 839 | return r_type; |
| 840 | |
| 841 | if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created) |
| 842 | is_local = TRUE; |
| 843 | else |
| 844 | is_local = SYMBOL_CALLS_LOCAL (info, h); |
| 845 | |
| 846 | /* For the main program, these are the transitions we do. */ |
| 847 | switch (r_type) |
| 848 | { |
| 849 | case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE; |
| 850 | case R_MN10300_TLS_LD: return R_MN10300_NONE; |
| 851 | case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE; |
| 852 | case R_MN10300_TLS_IE: |
| 853 | case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type; |
| 854 | } |
| 855 | |
| 856 | return r_type; |
| 857 | } |
| 858 | |
| 859 | /* Return the relocation value for @tpoff relocation |
| 860 | if STT_TLS virtual address is ADDRESS. */ |
| 861 | |
| 862 | static bfd_vma |
| 863 | dtpoff (struct bfd_link_info * info, bfd_vma address) |
| 864 | { |
| 865 | struct elf_link_hash_table *htab = elf_hash_table (info); |
| 866 | |
| 867 | /* If tls_sec is NULL, we should have signalled an error already. */ |
| 868 | if (htab->tls_sec == NULL) |
| 869 | return 0; |
| 870 | return address - htab->tls_sec->vma; |
| 871 | } |
| 872 | |
| 873 | /* Return the relocation value for @tpoff relocation |
| 874 | if STT_TLS virtual address is ADDRESS. */ |
| 875 | |
| 876 | static bfd_vma |
| 877 | tpoff (struct bfd_link_info * info, bfd_vma address) |
| 878 | { |
| 879 | struct elf_link_hash_table *htab = elf_hash_table (info); |
| 880 | |
| 881 | /* If tls_sec is NULL, we should have signalled an error already. */ |
| 882 | if (htab->tls_sec == NULL) |
| 883 | return 0; |
| 884 | return address - (htab->tls_size + htab->tls_sec->vma); |
| 885 | } |
| 886 | |
| 887 | /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need |
| 888 | to skip, after this one. The actual value is the offset between |
| 889 | this reloc and the PLT reloc. */ |
| 890 | |
| 891 | static int |
| 892 | mn10300_do_tls_transition (bfd * input_bfd, |
| 893 | unsigned int r_type, |
| 894 | unsigned int tls_r_type, |
| 895 | bfd_byte * contents, |
| 896 | bfd_vma offset) |
| 897 | { |
| 898 | bfd_byte *op = contents + offset; |
| 899 | int gotreg = 0; |
| 900 | |
| 901 | #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2)) |
| 902 | |
| 903 | /* This is common to all GD/LD transitions, so break it out. */ |
| 904 | if (r_type == R_MN10300_TLS_GD |
| 905 | || r_type == R_MN10300_TLS_LD) |
| 906 | { |
| 907 | op -= 2; |
| 908 | /* mov imm,d0. */ |
| 909 | BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC); |
| 910 | BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC); |
| 911 | /* add aN,d0. */ |
| 912 | BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1); |
| 913 | gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2; |
| 914 | /* Call. */ |
| 915 | BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD); |
| 916 | } |
| 917 | |
| 918 | switch (TLS_PAIR (r_type, tls_r_type)) |
| 919 | { |
| 920 | case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE): |
| 921 | { |
| 922 | /* Keep track of which register we put GOTptr in. */ |
| 923 | /* mov (_x@indntpoff,a2),a0. */ |
| 924 | memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6); |
| 925 | op[1] |= gotreg; |
| 926 | /* add e2,a0. */ |
| 927 | memcpy (op+6, "\xF9\x78\x28", 3); |
| 928 | /* or 0x00000000, d0 - six byte nop. */ |
| 929 | memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| 930 | } |
| 931 | return 7; |
| 932 | |
| 933 | case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE): |
| 934 | { |
| 935 | /* Register is *always* a0. */ |
| 936 | /* mov _x@tpoff,a0. */ |
| 937 | memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6); |
| 938 | /* add e2,a0. */ |
| 939 | memcpy (op+6, "\xF9\x78\x28", 3); |
| 940 | /* or 0x00000000, d0 - six byte nop. */ |
| 941 | memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| 942 | } |
| 943 | return 7; |
| 944 | case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE): |
| 945 | { |
| 946 | /* Register is *always* a0. */ |
| 947 | /* mov e2,a0. */ |
| 948 | memcpy (op, "\xF5\x88", 2); |
| 949 | /* or 0x00000000, d0 - six byte nop. */ |
| 950 | memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6); |
| 951 | /* or 0x00000000, e2 - seven byte nop. */ |
| 952 | memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7); |
| 953 | } |
| 954 | return 7; |
| 955 | |
| 956 | case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE): |
| 957 | /* No changes needed, just the reloc change. */ |
| 958 | return 0; |
| 959 | |
| 960 | /* These are a little tricky, because we have to detect which |
| 961 | opcode is being used (they're different sizes, with the reloc |
| 962 | at different offsets within the opcode) and convert each |
| 963 | accordingly, copying the operands as needed. The conversions |
| 964 | we do are as follows (IE,GOTIE,LE): |
| 965 | |
| 966 | 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn |
| 967 | 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn |
| 968 | 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn |
| 969 | |
| 970 | 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An |
| 971 | 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An |
| 972 | 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An |
| 973 | |
| 974 | 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn |
| 975 | 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn |
| 976 | 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn |
| 977 | |
| 978 | Since the GOT pointer is always $a2, we assume the last |
| 979 | normally won't happen, but let's be paranoid and plan for the |
| 980 | day that GCC optimizes it somewhow. */ |
| 981 | |
| 982 | case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE): |
| 983 | if (op[-2] == 0xFC) |
| 984 | { |
| 985 | op -= 2; |
| 986 | if ((op[1] & 0xFC) == 0xA4) /* Dn */ |
| 987 | { |
| 988 | op[1] &= 0x03; /* Leaves Dn. */ |
| 989 | op[1] |= 0xCC; |
| 990 | } |
| 991 | else /* An */ |
| 992 | { |
| 993 | op[1] &= 0x03; /* Leaves An. */ |
| 994 | op[1] |= 0xDC; |
| 995 | } |
| 996 | } |
| 997 | else if (op[-3] == 0xFE) |
| 998 | op[-2] = 0x08; |
| 999 | else |
| 1000 | abort (); |
| 1001 | break; |
| 1002 | |
| 1003 | case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE): |
| 1004 | if (op[-2] == 0xFC) |
| 1005 | { |
| 1006 | op -= 2; |
| 1007 | if ((op[1] & 0xF0) == 0x00) /* Dn */ |
| 1008 | { |
| 1009 | op[1] &= 0x0C; /* Leaves Dn. */ |
| 1010 | op[1] >>= 2; |
| 1011 | op[1] |= 0xCC; |
| 1012 | } |
| 1013 | else /* An */ |
| 1014 | { |
| 1015 | op[1] &= 0x0C; /* Leaves An. */ |
| 1016 | op[1] >>= 2; |
| 1017 | op[1] |= 0xDC; |
| 1018 | } |
| 1019 | } |
| 1020 | else if (op[-3] == 0xFE) |
| 1021 | op[-2] = 0x08; |
| 1022 | else |
| 1023 | abort (); |
| 1024 | break; |
| 1025 | |
| 1026 | default: |
| 1027 | _bfd_error_handler |
| 1028 | /* xgettext:c-format */ |
| 1029 | (_("%pB: unsupported transition from %s to %s"), |
| 1030 | input_bfd, |
| 1031 | elf_mn10300_howto_table[r_type].name, |
| 1032 | elf_mn10300_howto_table[tls_r_type].name); |
| 1033 | break; |
| 1034 | } |
| 1035 | #undef TLS_PAIR |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | /* Look through the relocs for a section during the first phase. |
| 1040 | Since we don't do .gots or .plts, we just need to consider the |
| 1041 | virtual table relocs for gc. */ |
| 1042 | |
| 1043 | static bfd_boolean |
| 1044 | mn10300_elf_check_relocs (bfd *abfd, |
| 1045 | struct bfd_link_info *info, |
| 1046 | asection *sec, |
| 1047 | const Elf_Internal_Rela *relocs) |
| 1048 | { |
| 1049 | struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| 1050 | bfd_boolean sym_diff_reloc_seen; |
| 1051 | Elf_Internal_Shdr *symtab_hdr; |
| 1052 | Elf_Internal_Sym * isymbuf = NULL; |
| 1053 | struct elf_link_hash_entry **sym_hashes; |
| 1054 | const Elf_Internal_Rela *rel; |
| 1055 | const Elf_Internal_Rela *rel_end; |
| 1056 | bfd * dynobj; |
| 1057 | bfd_vma * local_got_offsets; |
| 1058 | asection * sgot; |
| 1059 | asection * srelgot; |
| 1060 | asection * sreloc; |
| 1061 | bfd_boolean result = FALSE; |
| 1062 | |
| 1063 | sgot = NULL; |
| 1064 | srelgot = NULL; |
| 1065 | sreloc = NULL; |
| 1066 | |
| 1067 | if (bfd_link_relocatable (info)) |
| 1068 | return TRUE; |
| 1069 | |
| 1070 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 1071 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 1072 | sym_hashes = elf_sym_hashes (abfd); |
| 1073 | |
| 1074 | dynobj = elf_hash_table (info)->dynobj; |
| 1075 | local_got_offsets = elf_local_got_offsets (abfd); |
| 1076 | rel_end = relocs + sec->reloc_count; |
| 1077 | sym_diff_reloc_seen = FALSE; |
| 1078 | |
| 1079 | for (rel = relocs; rel < rel_end; rel++) |
| 1080 | { |
| 1081 | struct elf_link_hash_entry *h; |
| 1082 | unsigned long r_symndx; |
| 1083 | unsigned int r_type; |
| 1084 | int tls_type = GOT_NORMAL; |
| 1085 | |
| 1086 | r_symndx = ELF32_R_SYM (rel->r_info); |
| 1087 | if (r_symndx < symtab_hdr->sh_info) |
| 1088 | h = NULL; |
| 1089 | else |
| 1090 | { |
| 1091 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 1092 | while (h->root.type == bfd_link_hash_indirect |
| 1093 | || h->root.type == bfd_link_hash_warning) |
| 1094 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 1095 | } |
| 1096 | |
| 1097 | r_type = ELF32_R_TYPE (rel->r_info); |
| 1098 | r_type = elf_mn10300_tls_transition (info, r_type, h, sec, TRUE); |
| 1099 | |
| 1100 | /* Some relocs require a global offset table. */ |
| 1101 | if (dynobj == NULL) |
| 1102 | { |
| 1103 | switch (r_type) |
| 1104 | { |
| 1105 | case R_MN10300_GOT32: |
| 1106 | case R_MN10300_GOT24: |
| 1107 | case R_MN10300_GOT16: |
| 1108 | case R_MN10300_GOTOFF32: |
| 1109 | case R_MN10300_GOTOFF24: |
| 1110 | case R_MN10300_GOTOFF16: |
| 1111 | case R_MN10300_GOTPC32: |
| 1112 | case R_MN10300_GOTPC16: |
| 1113 | case R_MN10300_TLS_GD: |
| 1114 | case R_MN10300_TLS_LD: |
| 1115 | case R_MN10300_TLS_GOTIE: |
| 1116 | case R_MN10300_TLS_IE: |
| 1117 | elf_hash_table (info)->dynobj = dynobj = abfd; |
| 1118 | if (! _bfd_mn10300_elf_create_got_section (dynobj, info)) |
| 1119 | goto fail; |
| 1120 | break; |
| 1121 | |
| 1122 | default: |
| 1123 | break; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | switch (r_type) |
| 1128 | { |
| 1129 | /* This relocation describes the C++ object vtable hierarchy. |
| 1130 | Reconstruct it for later use during GC. */ |
| 1131 | case R_MN10300_GNU_VTINHERIT: |
| 1132 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| 1133 | goto fail; |
| 1134 | break; |
| 1135 | |
| 1136 | /* This relocation describes which C++ vtable entries are actually |
| 1137 | used. Record for later use during GC. */ |
| 1138 | case R_MN10300_GNU_VTENTRY: |
| 1139 | BFD_ASSERT (h != NULL); |
| 1140 | if (h != NULL |
| 1141 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| 1142 | goto fail; |
| 1143 | break; |
| 1144 | |
| 1145 | case R_MN10300_TLS_LD: |
| 1146 | htab->tls_ldm_got.refcount ++; |
| 1147 | tls_type = GOT_TLS_LD; |
| 1148 | |
| 1149 | if (htab->tls_ldm_got.got_allocated) |
| 1150 | break; |
| 1151 | goto create_got; |
| 1152 | |
| 1153 | case R_MN10300_TLS_IE: |
| 1154 | case R_MN10300_TLS_GOTIE: |
| 1155 | if (bfd_link_pic (info)) |
| 1156 | info->flags |= DF_STATIC_TLS; |
| 1157 | /* Fall through */ |
| 1158 | |
| 1159 | case R_MN10300_TLS_GD: |
| 1160 | case R_MN10300_GOT32: |
| 1161 | case R_MN10300_GOT24: |
| 1162 | case R_MN10300_GOT16: |
| 1163 | create_got: |
| 1164 | /* This symbol requires a global offset table entry. */ |
| 1165 | |
| 1166 | switch (r_type) |
| 1167 | { |
| 1168 | case R_MN10300_TLS_IE: |
| 1169 | case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break; |
| 1170 | case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break; |
| 1171 | default: tls_type = GOT_NORMAL; break; |
| 1172 | } |
| 1173 | |
| 1174 | sgot = htab->root.sgot; |
| 1175 | srelgot = htab->root.srelgot; |
| 1176 | BFD_ASSERT (sgot != NULL && srelgot != NULL); |
| 1177 | |
| 1178 | if (r_type == R_MN10300_TLS_LD) |
| 1179 | { |
| 1180 | htab->tls_ldm_got.offset = sgot->size; |
| 1181 | htab->tls_ldm_got.got_allocated ++; |
| 1182 | } |
| 1183 | else if (h != NULL) |
| 1184 | { |
| 1185 | if (elf_mn10300_hash_entry (h)->tls_type != tls_type |
| 1186 | && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN) |
| 1187 | { |
| 1188 | if (tls_type == GOT_TLS_IE |
| 1189 | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD) |
| 1190 | /* No change - this is ok. */; |
| 1191 | else if (tls_type == GOT_TLS_GD |
| 1192 | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| 1193 | /* Transition GD->IE. */ |
| 1194 | tls_type = GOT_TLS_IE; |
| 1195 | else |
| 1196 | _bfd_error_handler |
| 1197 | /* xgettext:c-format */ |
| 1198 | (_("%pB: %s' accessed both as normal and thread local symbol"), |
| 1199 | abfd, h ? h->root.root.string : "<local>"); |
| 1200 | } |
| 1201 | |
| 1202 | elf_mn10300_hash_entry (h)->tls_type = tls_type; |
| 1203 | |
| 1204 | if (h->got.offset != (bfd_vma) -1) |
| 1205 | /* We have already allocated space in the .got. */ |
| 1206 | break; |
| 1207 | |
| 1208 | h->got.offset = sgot->size; |
| 1209 | |
| 1210 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| 1211 | /* Make sure this symbol is output as a dynamic symbol. */ |
| 1212 | && h->dynindx == -1) |
| 1213 | { |
| 1214 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 1215 | goto fail; |
| 1216 | } |
| 1217 | |
| 1218 | srelgot->size += sizeof (Elf32_External_Rela); |
| 1219 | if (r_type == R_MN10300_TLS_GD) |
| 1220 | srelgot->size += sizeof (Elf32_External_Rela); |
| 1221 | } |
| 1222 | else |
| 1223 | { |
| 1224 | /* This is a global offset table entry for a local |
| 1225 | symbol. */ |
| 1226 | if (local_got_offsets == NULL) |
| 1227 | { |
| 1228 | size_t size; |
| 1229 | unsigned int i; |
| 1230 | |
| 1231 | size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char)); |
| 1232 | local_got_offsets = bfd_alloc (abfd, size); |
| 1233 | |
| 1234 | if (local_got_offsets == NULL) |
| 1235 | goto fail; |
| 1236 | |
| 1237 | elf_local_got_offsets (abfd) = local_got_offsets; |
| 1238 | elf_mn10300_local_got_tls_type (abfd) |
| 1239 | = (char *) (local_got_offsets + symtab_hdr->sh_info); |
| 1240 | |
| 1241 | for (i = 0; i < symtab_hdr->sh_info; i++) |
| 1242 | local_got_offsets[i] = (bfd_vma) -1; |
| 1243 | } |
| 1244 | |
| 1245 | if (local_got_offsets[r_symndx] != (bfd_vma) -1) |
| 1246 | /* We have already allocated space in the .got. */ |
| 1247 | break; |
| 1248 | |
| 1249 | local_got_offsets[r_symndx] = sgot->size; |
| 1250 | |
| 1251 | if (bfd_link_pic (info)) |
| 1252 | { |
| 1253 | /* If we are generating a shared object, we need to |
| 1254 | output a R_MN10300_RELATIVE reloc so that the dynamic |
| 1255 | linker can adjust this GOT entry. */ |
| 1256 | srelgot->size += sizeof (Elf32_External_Rela); |
| 1257 | |
| 1258 | if (r_type == R_MN10300_TLS_GD) |
| 1259 | /* And a R_MN10300_TLS_DTPOFF reloc as well. */ |
| 1260 | srelgot->size += sizeof (Elf32_External_Rela); |
| 1261 | } |
| 1262 | |
| 1263 | elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| 1264 | } |
| 1265 | |
| 1266 | sgot->size += 4; |
| 1267 | if (r_type == R_MN10300_TLS_GD |
| 1268 | || r_type == R_MN10300_TLS_LD) |
| 1269 | sgot->size += 4; |
| 1270 | |
| 1271 | goto need_shared_relocs; |
| 1272 | |
| 1273 | case R_MN10300_PLT32: |
| 1274 | case R_MN10300_PLT16: |
| 1275 | /* This symbol requires a procedure linkage table entry. We |
| 1276 | actually build the entry in adjust_dynamic_symbol, |
| 1277 | because this might be a case of linking PIC code which is |
| 1278 | never referenced by a dynamic object, in which case we |
| 1279 | don't need to generate a procedure linkage table entry |
| 1280 | after all. */ |
| 1281 | |
| 1282 | /* If this is a local symbol, we resolve it directly without |
| 1283 | creating a procedure linkage table entry. */ |
| 1284 | if (h == NULL) |
| 1285 | continue; |
| 1286 | |
| 1287 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| 1288 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| 1289 | break; |
| 1290 | |
| 1291 | h->needs_plt = 1; |
| 1292 | break; |
| 1293 | |
| 1294 | case R_MN10300_24: |
| 1295 | case R_MN10300_16: |
| 1296 | case R_MN10300_8: |
| 1297 | case R_MN10300_PCREL32: |
| 1298 | case R_MN10300_PCREL16: |
| 1299 | case R_MN10300_PCREL8: |
| 1300 | if (h != NULL) |
| 1301 | h->non_got_ref = 1; |
| 1302 | break; |
| 1303 | |
| 1304 | case R_MN10300_SYM_DIFF: |
| 1305 | sym_diff_reloc_seen = TRUE; |
| 1306 | break; |
| 1307 | |
| 1308 | case R_MN10300_32: |
| 1309 | if (h != NULL) |
| 1310 | h->non_got_ref = 1; |
| 1311 | |
| 1312 | need_shared_relocs: |
| 1313 | /* If we are creating a shared library, then we |
| 1314 | need to copy the reloc into the shared library. */ |
| 1315 | if (bfd_link_pic (info) |
| 1316 | && (sec->flags & SEC_ALLOC) != 0 |
| 1317 | /* Do not generate a dynamic reloc for a |
| 1318 | reloc associated with a SYM_DIFF operation. */ |
| 1319 | && ! sym_diff_reloc_seen) |
| 1320 | { |
| 1321 | asection * sym_section = NULL; |
| 1322 | |
| 1323 | /* Find the section containing the |
| 1324 | symbol involved in the relocation. */ |
| 1325 | if (h == NULL) |
| 1326 | { |
| 1327 | Elf_Internal_Sym * isym; |
| 1328 | |
| 1329 | if (isymbuf == NULL) |
| 1330 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| 1331 | symtab_hdr->sh_info, 0, |
| 1332 | NULL, NULL, NULL); |
| 1333 | if (isymbuf) |
| 1334 | { |
| 1335 | isym = isymbuf + r_symndx; |
| 1336 | /* All we care about is whether this local symbol is absolute. */ |
| 1337 | if (isym->st_shndx == SHN_ABS) |
| 1338 | sym_section = bfd_abs_section_ptr; |
| 1339 | } |
| 1340 | } |
| 1341 | else |
| 1342 | { |
| 1343 | if (h->root.type == bfd_link_hash_defined |
| 1344 | || h->root.type == bfd_link_hash_defweak) |
| 1345 | sym_section = h->root.u.def.section; |
| 1346 | } |
| 1347 | |
| 1348 | /* If the symbol is absolute then the relocation can |
| 1349 | be resolved during linking and there is no need for |
| 1350 | a dynamic reloc. */ |
| 1351 | if (sym_section != bfd_abs_section_ptr) |
| 1352 | { |
| 1353 | /* When creating a shared object, we must copy these |
| 1354 | reloc types into the output file. We create a reloc |
| 1355 | section in dynobj and make room for this reloc. */ |
| 1356 | if (sreloc == NULL) |
| 1357 | { |
| 1358 | sreloc = _bfd_elf_make_dynamic_reloc_section |
| 1359 | (sec, dynobj, 2, abfd, /*rela?*/ TRUE); |
| 1360 | if (sreloc == NULL) |
| 1361 | goto fail; |
| 1362 | } |
| 1363 | |
| 1364 | sreloc->size += sizeof (Elf32_External_Rela); |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | break; |
| 1369 | } |
| 1370 | |
| 1371 | if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF) |
| 1372 | sym_diff_reloc_seen = FALSE; |
| 1373 | } |
| 1374 | |
| 1375 | result = TRUE; |
| 1376 | fail: |
| 1377 | if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 1378 | free (isymbuf); |
| 1379 | |
| 1380 | return result; |
| 1381 | } |
| 1382 | |
| 1383 | /* Return the section that should be marked against GC for a given |
| 1384 | relocation. */ |
| 1385 | |
| 1386 | static asection * |
| 1387 | mn10300_elf_gc_mark_hook (asection *sec, |
| 1388 | struct bfd_link_info *info, |
| 1389 | Elf_Internal_Rela *rel, |
| 1390 | struct elf_link_hash_entry *h, |
| 1391 | Elf_Internal_Sym *sym) |
| 1392 | { |
| 1393 | if (h != NULL) |
| 1394 | switch (ELF32_R_TYPE (rel->r_info)) |
| 1395 | { |
| 1396 | case R_MN10300_GNU_VTINHERIT: |
| 1397 | case R_MN10300_GNU_VTENTRY: |
| 1398 | return NULL; |
| 1399 | } |
| 1400 | |
| 1401 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| 1402 | } |
| 1403 | |
| 1404 | /* Perform a relocation as part of a final link. */ |
| 1405 | |
| 1406 | static bfd_reloc_status_type |
| 1407 | mn10300_elf_final_link_relocate (reloc_howto_type *howto, |
| 1408 | bfd *input_bfd, |
| 1409 | bfd *output_bfd ATTRIBUTE_UNUSED, |
| 1410 | asection *input_section, |
| 1411 | bfd_byte *contents, |
| 1412 | bfd_vma offset, |
| 1413 | bfd_vma value, |
| 1414 | bfd_vma addend, |
| 1415 | struct elf_link_hash_entry * h, |
| 1416 | unsigned long symndx, |
| 1417 | struct bfd_link_info *info, |
| 1418 | asection *sym_sec ATTRIBUTE_UNUSED, |
| 1419 | int is_local ATTRIBUTE_UNUSED) |
| 1420 | { |
| 1421 | struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| 1422 | static asection * sym_diff_section; |
| 1423 | static bfd_vma sym_diff_value; |
| 1424 | bfd_boolean is_sym_diff_reloc; |
| 1425 | unsigned long r_type = howto->type; |
| 1426 | bfd_byte * hit_data = contents + offset; |
| 1427 | bfd * dynobj; |
| 1428 | asection * sgot; |
| 1429 | asection * splt; |
| 1430 | asection * sreloc; |
| 1431 | |
| 1432 | dynobj = elf_hash_table (info)->dynobj; |
| 1433 | sgot = NULL; |
| 1434 | splt = NULL; |
| 1435 | sreloc = NULL; |
| 1436 | |
| 1437 | switch (r_type) |
| 1438 | { |
| 1439 | case R_MN10300_24: |
| 1440 | case R_MN10300_16: |
| 1441 | case R_MN10300_8: |
| 1442 | case R_MN10300_PCREL8: |
| 1443 | case R_MN10300_PCREL16: |
| 1444 | case R_MN10300_PCREL32: |
| 1445 | case R_MN10300_GOTOFF32: |
| 1446 | case R_MN10300_GOTOFF24: |
| 1447 | case R_MN10300_GOTOFF16: |
| 1448 | if (bfd_link_pic (info) |
| 1449 | && (input_section->flags & SEC_ALLOC) != 0 |
| 1450 | && h != NULL |
| 1451 | && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| 1452 | return bfd_reloc_dangerous; |
| 1453 | /* Fall through. */ |
| 1454 | case R_MN10300_GOT32: |
| 1455 | /* Issue 2052223: |
| 1456 | Taking the address of a protected function in a shared library |
| 1457 | is illegal. Issue an error message here. */ |
| 1458 | if (bfd_link_pic (info) |
| 1459 | && (input_section->flags & SEC_ALLOC) != 0 |
| 1460 | && h != NULL |
| 1461 | && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED |
| 1462 | && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC) |
| 1463 | && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| 1464 | return bfd_reloc_dangerous; |
| 1465 | } |
| 1466 | |
| 1467 | is_sym_diff_reloc = FALSE; |
| 1468 | if (sym_diff_section != NULL) |
| 1469 | { |
| 1470 | BFD_ASSERT (sym_diff_section == input_section); |
| 1471 | |
| 1472 | switch (r_type) |
| 1473 | { |
| 1474 | case R_MN10300_32: |
| 1475 | case R_MN10300_24: |
| 1476 | case R_MN10300_16: |
| 1477 | case R_MN10300_8: |
| 1478 | value -= sym_diff_value; |
| 1479 | /* If we are computing a 32-bit value for the location lists |
| 1480 | and the result is 0 then we add one to the value. A zero |
| 1481 | value can result because of linker relaxation deleteing |
| 1482 | prologue instructions and using a value of 1 (for the begin |
| 1483 | and end offsets in the location list entry) results in a |
| 1484 | nul entry which does not prevent the following entries from |
| 1485 | being parsed. */ |
| 1486 | if (r_type == R_MN10300_32 |
| 1487 | && value == 0 |
| 1488 | && strcmp (input_section->name, ".debug_loc") == 0) |
| 1489 | value = 1; |
| 1490 | sym_diff_section = NULL; |
| 1491 | is_sym_diff_reloc = TRUE; |
| 1492 | break; |
| 1493 | |
| 1494 | default: |
| 1495 | sym_diff_section = NULL; |
| 1496 | break; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | switch (r_type) |
| 1501 | { |
| 1502 | case R_MN10300_SYM_DIFF: |
| 1503 | BFD_ASSERT (addend == 0); |
| 1504 | /* Cache the input section and value. |
| 1505 | The offset is unreliable, since relaxation may |
| 1506 | have reduced the following reloc's offset. */ |
| 1507 | sym_diff_section = input_section; |
| 1508 | sym_diff_value = value; |
| 1509 | return bfd_reloc_ok; |
| 1510 | |
| 1511 | case R_MN10300_ALIGN: |
| 1512 | case R_MN10300_NONE: |
| 1513 | return bfd_reloc_ok; |
| 1514 | |
| 1515 | case R_MN10300_32: |
| 1516 | if (bfd_link_pic (info) |
| 1517 | /* Do not generate relocs when an R_MN10300_32 has been used |
| 1518 | with an R_MN10300_SYM_DIFF to compute a difference of two |
| 1519 | symbols. */ |
| 1520 | && !is_sym_diff_reloc |
| 1521 | /* Also, do not generate a reloc when the symbol associated |
| 1522 | with the R_MN10300_32 reloc is absolute - there is no |
| 1523 | need for a run time computation in this case. */ |
| 1524 | && sym_sec != bfd_abs_section_ptr |
| 1525 | /* If the section is not going to be allocated at load time |
| 1526 | then there is no need to generate relocs for it. */ |
| 1527 | && (input_section->flags & SEC_ALLOC) != 0) |
| 1528 | { |
| 1529 | Elf_Internal_Rela outrel; |
| 1530 | bfd_boolean skip, relocate; |
| 1531 | |
| 1532 | /* When generating a shared object, these relocations are |
| 1533 | copied into the output file to be resolved at run |
| 1534 | time. */ |
| 1535 | if (sreloc == NULL) |
| 1536 | { |
| 1537 | sreloc = _bfd_elf_get_dynamic_reloc_section |
| 1538 | (input_bfd, input_section, /*rela?*/ TRUE); |
| 1539 | if (sreloc == NULL) |
| 1540 | return FALSE; |
| 1541 | } |
| 1542 | |
| 1543 | skip = FALSE; |
| 1544 | |
| 1545 | outrel.r_offset = _bfd_elf_section_offset (input_bfd, info, |
| 1546 | input_section, offset); |
| 1547 | if (outrel.r_offset == (bfd_vma) -1) |
| 1548 | skip = TRUE; |
| 1549 | |
| 1550 | outrel.r_offset += (input_section->output_section->vma |
| 1551 | + input_section->output_offset); |
| 1552 | |
| 1553 | if (skip) |
| 1554 | { |
| 1555 | memset (&outrel, 0, sizeof outrel); |
| 1556 | relocate = FALSE; |
| 1557 | } |
| 1558 | else |
| 1559 | { |
| 1560 | /* h->dynindx may be -1 if this symbol was marked to |
| 1561 | become local. */ |
| 1562 | if (h == NULL |
| 1563 | || SYMBOL_REFERENCES_LOCAL (info, h)) |
| 1564 | { |
| 1565 | relocate = TRUE; |
| 1566 | outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| 1567 | outrel.r_addend = value + addend; |
| 1568 | } |
| 1569 | else |
| 1570 | { |
| 1571 | BFD_ASSERT (h->dynindx != -1); |
| 1572 | relocate = FALSE; |
| 1573 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32); |
| 1574 | outrel.r_addend = value + addend; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| 1579 | (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents) |
| 1580 | + sreloc->reloc_count)); |
| 1581 | ++sreloc->reloc_count; |
| 1582 | |
| 1583 | /* If this reloc is against an external symbol, we do |
| 1584 | not want to fiddle with the addend. Otherwise, we |
| 1585 | need to include the symbol value so that it becomes |
| 1586 | an addend for the dynamic reloc. */ |
| 1587 | if (! relocate) |
| 1588 | return bfd_reloc_ok; |
| 1589 | } |
| 1590 | value += addend; |
| 1591 | bfd_put_32 (input_bfd, value, hit_data); |
| 1592 | return bfd_reloc_ok; |
| 1593 | |
| 1594 | case R_MN10300_24: |
| 1595 | value += addend; |
| 1596 | |
| 1597 | if ((long) value > 0x7fffff || (long) value < -0x800000) |
| 1598 | return bfd_reloc_overflow; |
| 1599 | |
| 1600 | bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| 1601 | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| 1602 | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| 1603 | return bfd_reloc_ok; |
| 1604 | |
| 1605 | case R_MN10300_16: |
| 1606 | value += addend; |
| 1607 | |
| 1608 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1609 | return bfd_reloc_overflow; |
| 1610 | |
| 1611 | bfd_put_16 (input_bfd, value, hit_data); |
| 1612 | return bfd_reloc_ok; |
| 1613 | |
| 1614 | case R_MN10300_8: |
| 1615 | value += addend; |
| 1616 | |
| 1617 | if ((long) value > 0x7f || (long) value < -0x80) |
| 1618 | return bfd_reloc_overflow; |
| 1619 | |
| 1620 | bfd_put_8 (input_bfd, value, hit_data); |
| 1621 | return bfd_reloc_ok; |
| 1622 | |
| 1623 | case R_MN10300_PCREL8: |
| 1624 | value -= (input_section->output_section->vma |
| 1625 | + input_section->output_offset); |
| 1626 | value -= offset; |
| 1627 | value += addend; |
| 1628 | |
| 1629 | if ((long) value > 0x7f || (long) value < -0x80) |
| 1630 | return bfd_reloc_overflow; |
| 1631 | |
| 1632 | bfd_put_8 (input_bfd, value, hit_data); |
| 1633 | return bfd_reloc_ok; |
| 1634 | |
| 1635 | case R_MN10300_PCREL16: |
| 1636 | value -= (input_section->output_section->vma |
| 1637 | + input_section->output_offset); |
| 1638 | value -= offset; |
| 1639 | value += addend; |
| 1640 | |
| 1641 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1642 | return bfd_reloc_overflow; |
| 1643 | |
| 1644 | bfd_put_16 (input_bfd, value, hit_data); |
| 1645 | return bfd_reloc_ok; |
| 1646 | |
| 1647 | case R_MN10300_PCREL32: |
| 1648 | value -= (input_section->output_section->vma |
| 1649 | + input_section->output_offset); |
| 1650 | value -= offset; |
| 1651 | value += addend; |
| 1652 | |
| 1653 | bfd_put_32 (input_bfd, value, hit_data); |
| 1654 | return bfd_reloc_ok; |
| 1655 | |
| 1656 | case R_MN10300_GNU_VTINHERIT: |
| 1657 | case R_MN10300_GNU_VTENTRY: |
| 1658 | return bfd_reloc_ok; |
| 1659 | |
| 1660 | case R_MN10300_GOTPC32: |
| 1661 | if (dynobj == NULL) |
| 1662 | return bfd_reloc_dangerous; |
| 1663 | |
| 1664 | /* Use global offset table as symbol value. */ |
| 1665 | value = htab->root.sgot->output_section->vma; |
| 1666 | value -= (input_section->output_section->vma |
| 1667 | + input_section->output_offset); |
| 1668 | value -= offset; |
| 1669 | value += addend; |
| 1670 | |
| 1671 | bfd_put_32 (input_bfd, value, hit_data); |
| 1672 | return bfd_reloc_ok; |
| 1673 | |
| 1674 | case R_MN10300_GOTPC16: |
| 1675 | if (dynobj == NULL) |
| 1676 | return bfd_reloc_dangerous; |
| 1677 | |
| 1678 | /* Use global offset table as symbol value. */ |
| 1679 | value = htab->root.sgot->output_section->vma; |
| 1680 | value -= (input_section->output_section->vma |
| 1681 | + input_section->output_offset); |
| 1682 | value -= offset; |
| 1683 | value += addend; |
| 1684 | |
| 1685 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1686 | return bfd_reloc_overflow; |
| 1687 | |
| 1688 | bfd_put_16 (input_bfd, value, hit_data); |
| 1689 | return bfd_reloc_ok; |
| 1690 | |
| 1691 | case R_MN10300_GOTOFF32: |
| 1692 | if (dynobj == NULL) |
| 1693 | return bfd_reloc_dangerous; |
| 1694 | |
| 1695 | value -= htab->root.sgot->output_section->vma; |
| 1696 | value += addend; |
| 1697 | |
| 1698 | bfd_put_32 (input_bfd, value, hit_data); |
| 1699 | return bfd_reloc_ok; |
| 1700 | |
| 1701 | case R_MN10300_GOTOFF24: |
| 1702 | if (dynobj == NULL) |
| 1703 | return bfd_reloc_dangerous; |
| 1704 | |
| 1705 | value -= htab->root.sgot->output_section->vma; |
| 1706 | value += addend; |
| 1707 | |
| 1708 | if ((long) value > 0x7fffff || (long) value < -0x800000) |
| 1709 | return bfd_reloc_overflow; |
| 1710 | |
| 1711 | bfd_put_8 (input_bfd, value, hit_data); |
| 1712 | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| 1713 | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| 1714 | return bfd_reloc_ok; |
| 1715 | |
| 1716 | case R_MN10300_GOTOFF16: |
| 1717 | if (dynobj == NULL) |
| 1718 | return bfd_reloc_dangerous; |
| 1719 | |
| 1720 | value -= htab->root.sgot->output_section->vma; |
| 1721 | value += addend; |
| 1722 | |
| 1723 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1724 | return bfd_reloc_overflow; |
| 1725 | |
| 1726 | bfd_put_16 (input_bfd, value, hit_data); |
| 1727 | return bfd_reloc_ok; |
| 1728 | |
| 1729 | case R_MN10300_PLT32: |
| 1730 | if (h != NULL |
| 1731 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| 1732 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| 1733 | && h->plt.offset != (bfd_vma) -1) |
| 1734 | { |
| 1735 | if (dynobj == NULL) |
| 1736 | return bfd_reloc_dangerous; |
| 1737 | |
| 1738 | splt = htab->root.splt; |
| 1739 | value = (splt->output_section->vma |
| 1740 | + splt->output_offset |
| 1741 | + h->plt.offset) - value; |
| 1742 | } |
| 1743 | |
| 1744 | value -= (input_section->output_section->vma |
| 1745 | + input_section->output_offset); |
| 1746 | value -= offset; |
| 1747 | value += addend; |
| 1748 | |
| 1749 | bfd_put_32 (input_bfd, value, hit_data); |
| 1750 | return bfd_reloc_ok; |
| 1751 | |
| 1752 | case R_MN10300_PLT16: |
| 1753 | if (h != NULL |
| 1754 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| 1755 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| 1756 | && h->plt.offset != (bfd_vma) -1) |
| 1757 | { |
| 1758 | if (dynobj == NULL) |
| 1759 | return bfd_reloc_dangerous; |
| 1760 | |
| 1761 | splt = htab->root.splt; |
| 1762 | value = (splt->output_section->vma |
| 1763 | + splt->output_offset |
| 1764 | + h->plt.offset) - value; |
| 1765 | } |
| 1766 | |
| 1767 | value -= (input_section->output_section->vma |
| 1768 | + input_section->output_offset); |
| 1769 | value -= offset; |
| 1770 | value += addend; |
| 1771 | |
| 1772 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1773 | return bfd_reloc_overflow; |
| 1774 | |
| 1775 | bfd_put_16 (input_bfd, value, hit_data); |
| 1776 | return bfd_reloc_ok; |
| 1777 | |
| 1778 | case R_MN10300_TLS_LDO: |
| 1779 | value = dtpoff (info, value); |
| 1780 | bfd_put_32 (input_bfd, value + addend, hit_data); |
| 1781 | return bfd_reloc_ok; |
| 1782 | |
| 1783 | case R_MN10300_TLS_LE: |
| 1784 | value = tpoff (info, value); |
| 1785 | bfd_put_32 (input_bfd, value + addend, hit_data); |
| 1786 | return bfd_reloc_ok; |
| 1787 | |
| 1788 | case R_MN10300_TLS_LD: |
| 1789 | if (dynobj == NULL) |
| 1790 | return bfd_reloc_dangerous; |
| 1791 | |
| 1792 | sgot = htab->root.sgot; |
| 1793 | BFD_ASSERT (sgot != NULL); |
| 1794 | value = htab->tls_ldm_got.offset + sgot->output_offset; |
| 1795 | bfd_put_32 (input_bfd, value, hit_data); |
| 1796 | |
| 1797 | if (!htab->tls_ldm_got.rel_emitted) |
| 1798 | { |
| 1799 | asection *srelgot = htab->root.srelgot; |
| 1800 | Elf_Internal_Rela rel; |
| 1801 | |
| 1802 | BFD_ASSERT (srelgot != NULL); |
| 1803 | htab->tls_ldm_got.rel_emitted ++; |
| 1804 | rel.r_offset = (sgot->output_section->vma |
| 1805 | + sgot->output_offset |
| 1806 | + htab->tls_ldm_got.offset); |
| 1807 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset); |
| 1808 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4); |
| 1809 | rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| 1810 | rel.r_addend = 0; |
| 1811 | bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| 1812 | (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents |
| 1813 | + srelgot->reloc_count)); |
| 1814 | ++ srelgot->reloc_count; |
| 1815 | } |
| 1816 | |
| 1817 | return bfd_reloc_ok; |
| 1818 | |
| 1819 | case R_MN10300_TLS_GOTIE: |
| 1820 | value = tpoff (info, value); |
| 1821 | /* Fall Through. */ |
| 1822 | |
| 1823 | case R_MN10300_TLS_GD: |
| 1824 | case R_MN10300_TLS_IE: |
| 1825 | case R_MN10300_GOT32: |
| 1826 | case R_MN10300_GOT24: |
| 1827 | case R_MN10300_GOT16: |
| 1828 | if (dynobj == NULL) |
| 1829 | return bfd_reloc_dangerous; |
| 1830 | |
| 1831 | sgot = htab->root.sgot; |
| 1832 | if (r_type == R_MN10300_TLS_GD) |
| 1833 | value = dtpoff (info, value); |
| 1834 | |
| 1835 | if (h != NULL) |
| 1836 | { |
| 1837 | bfd_vma off; |
| 1838 | |
| 1839 | off = h->got.offset; |
| 1840 | /* Offsets in the GOT are allocated in check_relocs |
| 1841 | which is not called for shared libraries... */ |
| 1842 | if (off == (bfd_vma) -1) |
| 1843 | off = 0; |
| 1844 | |
| 1845 | if (sgot->contents != NULL |
| 1846 | && (! elf_hash_table (info)->dynamic_sections_created |
| 1847 | || SYMBOL_REFERENCES_LOCAL (info, h))) |
| 1848 | /* This is actually a static link, or it is a |
| 1849 | -Bsymbolic link and the symbol is defined |
| 1850 | locally, or the symbol was forced to be local |
| 1851 | because of a version file. We must initialize |
| 1852 | this entry in the global offset table. |
| 1853 | |
| 1854 | When doing a dynamic link, we create a .rela.got |
| 1855 | relocation entry to initialize the value. This |
| 1856 | is done in the finish_dynamic_symbol routine. */ |
| 1857 | bfd_put_32 (output_bfd, value, |
| 1858 | sgot->contents + off); |
| 1859 | |
| 1860 | value = sgot->output_offset + off; |
| 1861 | } |
| 1862 | else |
| 1863 | { |
| 1864 | bfd_vma off; |
| 1865 | |
| 1866 | off = elf_local_got_offsets (input_bfd)[symndx]; |
| 1867 | |
| 1868 | if (off & 1) |
| 1869 | bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1)); |
| 1870 | else |
| 1871 | { |
| 1872 | bfd_put_32 (output_bfd, value, sgot->contents + off); |
| 1873 | |
| 1874 | if (bfd_link_pic (info)) |
| 1875 | { |
| 1876 | asection *srelgot = htab->root.srelgot;; |
| 1877 | Elf_Internal_Rela outrel; |
| 1878 | |
| 1879 | BFD_ASSERT (srelgot != NULL); |
| 1880 | |
| 1881 | outrel.r_offset = (sgot->output_section->vma |
| 1882 | + sgot->output_offset |
| 1883 | + off); |
| 1884 | switch (r_type) |
| 1885 | { |
| 1886 | case R_MN10300_TLS_GD: |
| 1887 | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF); |
| 1888 | outrel.r_offset = (sgot->output_section->vma |
| 1889 | + sgot->output_offset |
| 1890 | + off + 4); |
| 1891 | bfd_elf32_swap_reloca_out (output_bfd, & outrel, |
| 1892 | (bfd_byte *) (((Elf32_External_Rela *) |
| 1893 | srelgot->contents) |
| 1894 | + srelgot->reloc_count)); |
| 1895 | ++ srelgot->reloc_count; |
| 1896 | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| 1897 | break; |
| 1898 | case R_MN10300_TLS_GOTIE: |
| 1899 | case R_MN10300_TLS_IE: |
| 1900 | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); |
| 1901 | break; |
| 1902 | default: |
| 1903 | outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| 1904 | break; |
| 1905 | } |
| 1906 | |
| 1907 | outrel.r_addend = value; |
| 1908 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| 1909 | (bfd_byte *) (((Elf32_External_Rela *) |
| 1910 | srelgot->contents) |
| 1911 | + srelgot->reloc_count)); |
| 1912 | ++ srelgot->reloc_count; |
| 1913 | elf_local_got_offsets (input_bfd)[symndx] |= 1; |
| 1914 | } |
| 1915 | |
| 1916 | value = sgot->output_offset + (off & ~(bfd_vma) 1); |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | value += addend; |
| 1921 | |
| 1922 | if (r_type == R_MN10300_TLS_IE) |
| 1923 | { |
| 1924 | value += sgot->output_section->vma; |
| 1925 | bfd_put_32 (input_bfd, value, hit_data); |
| 1926 | return bfd_reloc_ok; |
| 1927 | } |
| 1928 | else if (r_type == R_MN10300_TLS_GOTIE |
| 1929 | || r_type == R_MN10300_TLS_GD |
| 1930 | || r_type == R_MN10300_TLS_LD) |
| 1931 | { |
| 1932 | bfd_put_32 (input_bfd, value, hit_data); |
| 1933 | return bfd_reloc_ok; |
| 1934 | } |
| 1935 | else if (r_type == R_MN10300_GOT32) |
| 1936 | { |
| 1937 | bfd_put_32 (input_bfd, value, hit_data); |
| 1938 | return bfd_reloc_ok; |
| 1939 | } |
| 1940 | else if (r_type == R_MN10300_GOT24) |
| 1941 | { |
| 1942 | if ((long) value > 0x7fffff || (long) value < -0x800000) |
| 1943 | return bfd_reloc_overflow; |
| 1944 | |
| 1945 | bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| 1946 | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| 1947 | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| 1948 | return bfd_reloc_ok; |
| 1949 | } |
| 1950 | else if (r_type == R_MN10300_GOT16) |
| 1951 | { |
| 1952 | if ((long) value > 0x7fff || (long) value < -0x8000) |
| 1953 | return bfd_reloc_overflow; |
| 1954 | |
| 1955 | bfd_put_16 (input_bfd, value, hit_data); |
| 1956 | return bfd_reloc_ok; |
| 1957 | } |
| 1958 | /* Fall through. */ |
| 1959 | |
| 1960 | default: |
| 1961 | return bfd_reloc_notsupported; |
| 1962 | } |
| 1963 | } |
| 1964 | \f |
| 1965 | /* Relocate an MN10300 ELF section. */ |
| 1966 | |
| 1967 | static bfd_boolean |
| 1968 | mn10300_elf_relocate_section (bfd *output_bfd, |
| 1969 | struct bfd_link_info *info, |
| 1970 | bfd *input_bfd, |
| 1971 | asection *input_section, |
| 1972 | bfd_byte *contents, |
| 1973 | Elf_Internal_Rela *relocs, |
| 1974 | Elf_Internal_Sym *local_syms, |
| 1975 | asection **local_sections) |
| 1976 | { |
| 1977 | Elf_Internal_Shdr *symtab_hdr; |
| 1978 | struct elf_link_hash_entry **sym_hashes; |
| 1979 | Elf_Internal_Rela *rel, *relend; |
| 1980 | Elf_Internal_Rela * trel; |
| 1981 | |
| 1982 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 1983 | sym_hashes = elf_sym_hashes (input_bfd); |
| 1984 | |
| 1985 | rel = relocs; |
| 1986 | relend = relocs + input_section->reloc_count; |
| 1987 | for (; rel < relend; rel++) |
| 1988 | { |
| 1989 | int r_type; |
| 1990 | reloc_howto_type *howto; |
| 1991 | unsigned long r_symndx; |
| 1992 | Elf_Internal_Sym *sym; |
| 1993 | asection *sec; |
| 1994 | struct elf32_mn10300_link_hash_entry *h; |
| 1995 | bfd_vma relocation; |
| 1996 | bfd_reloc_status_type r; |
| 1997 | int tls_r_type; |
| 1998 | bfd_boolean unresolved_reloc = FALSE; |
| 1999 | bfd_boolean warned, ignored; |
| 2000 | struct elf_link_hash_entry * hh; |
| 2001 | |
| 2002 | relocation = 0; |
| 2003 | r_symndx = ELF32_R_SYM (rel->r_info); |
| 2004 | r_type = ELF32_R_TYPE (rel->r_info); |
| 2005 | howto = elf_mn10300_howto_table + r_type; |
| 2006 | |
| 2007 | /* Just skip the vtable gc relocs. */ |
| 2008 | if (r_type == R_MN10300_GNU_VTINHERIT |
| 2009 | || r_type == R_MN10300_GNU_VTENTRY) |
| 2010 | continue; |
| 2011 | |
| 2012 | h = NULL; |
| 2013 | sym = NULL; |
| 2014 | sec = NULL; |
| 2015 | if (r_symndx < symtab_hdr->sh_info) |
| 2016 | hh = NULL; |
| 2017 | else |
| 2018 | { |
| 2019 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| 2020 | r_symndx, symtab_hdr, sym_hashes, |
| 2021 | hh, sec, relocation, |
| 2022 | unresolved_reloc, warned, ignored); |
| 2023 | } |
| 2024 | h = elf_mn10300_hash_entry (hh); |
| 2025 | |
| 2026 | tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0); |
| 2027 | if (tls_r_type != r_type) |
| 2028 | { |
| 2029 | bfd_boolean had_plt; |
| 2030 | |
| 2031 | had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type, |
| 2032 | contents, rel->r_offset); |
| 2033 | r_type = tls_r_type; |
| 2034 | howto = elf_mn10300_howto_table + r_type; |
| 2035 | |
| 2036 | if (had_plt) |
| 2037 | for (trel = rel+1; trel < relend; trel++) |
| 2038 | if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32 |
| 2039 | || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32) |
| 2040 | && rel->r_offset + had_plt == trel->r_offset) |
| 2041 | trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE); |
| 2042 | } |
| 2043 | |
| 2044 | if (r_symndx < symtab_hdr->sh_info) |
| 2045 | { |
| 2046 | sym = local_syms + r_symndx; |
| 2047 | sec = local_sections[r_symndx]; |
| 2048 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| 2049 | } |
| 2050 | else |
| 2051 | { |
| 2052 | if ((h->root.root.type == bfd_link_hash_defined |
| 2053 | || h->root.root.type == bfd_link_hash_defweak) |
| 2054 | && ( r_type == R_MN10300_GOTPC32 |
| 2055 | || r_type == R_MN10300_GOTPC16 |
| 2056 | || (( r_type == R_MN10300_PLT32 |
| 2057 | || r_type == R_MN10300_PLT16) |
| 2058 | && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL |
| 2059 | && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN |
| 2060 | && h->root.plt.offset != (bfd_vma) -1) |
| 2061 | || (( r_type == R_MN10300_GOT32 |
| 2062 | || r_type == R_MN10300_GOT24 |
| 2063 | || r_type == R_MN10300_TLS_GD |
| 2064 | || r_type == R_MN10300_TLS_LD |
| 2065 | || r_type == R_MN10300_TLS_GOTIE |
| 2066 | || r_type == R_MN10300_TLS_IE |
| 2067 | || r_type == R_MN10300_GOT16) |
| 2068 | && elf_hash_table (info)->dynamic_sections_created |
| 2069 | && !SYMBOL_REFERENCES_LOCAL (info, hh)) |
| 2070 | || (r_type == R_MN10300_32 |
| 2071 | /* _32 relocs in executables force _COPY relocs, |
| 2072 | such that the address of the symbol ends up |
| 2073 | being local. */ |
| 2074 | && !bfd_link_executable (info) |
| 2075 | && !SYMBOL_REFERENCES_LOCAL (info, hh) |
| 2076 | && ((input_section->flags & SEC_ALLOC) != 0 |
| 2077 | /* DWARF will emit R_MN10300_32 relocations |
| 2078 | in its sections against symbols defined |
| 2079 | externally in shared libraries. We can't |
| 2080 | do anything with them here. */ |
| 2081 | || ((input_section->flags & SEC_DEBUGGING) != 0 |
| 2082 | && h->root.def_dynamic))))) |
| 2083 | /* In these cases, we don't need the relocation |
| 2084 | value. We check specially because in some |
| 2085 | obscure cases sec->output_section will be NULL. */ |
| 2086 | relocation = 0; |
| 2087 | |
| 2088 | else if (!bfd_link_relocatable (info) && unresolved_reloc |
| 2089 | && _bfd_elf_section_offset (output_bfd, info, input_section, |
| 2090 | rel->r_offset) != (bfd_vma) -1) |
| 2091 | |
| 2092 | _bfd_error_handler |
| 2093 | /* xgettext:c-format */ |
| 2094 | (_("%pB(%pA+%#" PRIx64 "): " |
| 2095 | "unresolvable %s relocation against symbol `%s'"), |
| 2096 | input_bfd, |
| 2097 | input_section, |
| 2098 | (uint64_t) rel->r_offset, |
| 2099 | howto->name, |
| 2100 | h->root.root.root.string); |
| 2101 | } |
| 2102 | |
| 2103 | if (sec != NULL && discarded_section (sec)) |
| 2104 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| 2105 | rel, 1, relend, howto, 0, contents); |
| 2106 | |
| 2107 | if (bfd_link_relocatable (info)) |
| 2108 | continue; |
| 2109 | |
| 2110 | r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd, |
| 2111 | input_section, |
| 2112 | contents, rel->r_offset, |
| 2113 | relocation, rel->r_addend, |
| 2114 | (struct elf_link_hash_entry *) h, |
| 2115 | r_symndx, |
| 2116 | info, sec, h == NULL); |
| 2117 | |
| 2118 | if (r != bfd_reloc_ok) |
| 2119 | { |
| 2120 | const char *name; |
| 2121 | const char *msg = NULL; |
| 2122 | |
| 2123 | if (h != NULL) |
| 2124 | name = h->root.root.root.string; |
| 2125 | else |
| 2126 | { |
| 2127 | name = (bfd_elf_string_from_elf_section |
| 2128 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| 2129 | if (name == NULL || *name == '\0') |
| 2130 | name = bfd_section_name (input_bfd, sec); |
| 2131 | } |
| 2132 | |
| 2133 | switch (r) |
| 2134 | { |
| 2135 | case bfd_reloc_overflow: |
| 2136 | (*info->callbacks->reloc_overflow) |
| 2137 | (info, (h ? &h->root.root : NULL), name, howto->name, |
| 2138 | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| 2139 | break; |
| 2140 | |
| 2141 | case bfd_reloc_undefined: |
| 2142 | (*info->callbacks->undefined_symbol) |
| 2143 | (info, name, input_bfd, input_section, rel->r_offset, TRUE); |
| 2144 | break; |
| 2145 | |
| 2146 | case bfd_reloc_outofrange: |
| 2147 | msg = _("internal error: out of range error"); |
| 2148 | goto common_error; |
| 2149 | |
| 2150 | case bfd_reloc_notsupported: |
| 2151 | msg = _("internal error: unsupported relocation error"); |
| 2152 | goto common_error; |
| 2153 | |
| 2154 | case bfd_reloc_dangerous: |
| 2155 | if (r_type == R_MN10300_PCREL32) |
| 2156 | msg = _("error: inappropriate relocation type for shared" |
| 2157 | " library (did you forget -fpic?)"); |
| 2158 | else if (r_type == R_MN10300_GOT32) |
| 2159 | /* xgettext:c-format */ |
| 2160 | msg = _("%pB: taking the address of protected function" |
| 2161 | " '%s' cannot be done when making a shared library"); |
| 2162 | else |
| 2163 | msg = _("internal error: suspicious relocation type used" |
| 2164 | " in shared library"); |
| 2165 | goto common_error; |
| 2166 | |
| 2167 | default: |
| 2168 | msg = _("internal error: unknown error"); |
| 2169 | /* Fall through. */ |
| 2170 | |
| 2171 | common_error: |
| 2172 | _bfd_error_handler (msg, input_bfd, name); |
| 2173 | bfd_set_error (bfd_error_bad_value); |
| 2174 | return FALSE; |
| 2175 | } |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | return TRUE; |
| 2180 | } |
| 2181 | |
| 2182 | /* Finish initializing one hash table entry. */ |
| 2183 | |
| 2184 | static bfd_boolean |
| 2185 | elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry, |
| 2186 | void * in_args) |
| 2187 | { |
| 2188 | struct elf32_mn10300_link_hash_entry *entry; |
| 2189 | struct bfd_link_info *link_info = (struct bfd_link_info *) in_args; |
| 2190 | unsigned int byte_count = 0; |
| 2191 | |
| 2192 | entry = (struct elf32_mn10300_link_hash_entry *) gen_entry; |
| 2193 | |
| 2194 | /* If we already know we want to convert "call" to "calls" for calls |
| 2195 | to this symbol, then return now. */ |
| 2196 | if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS) |
| 2197 | return TRUE; |
| 2198 | |
| 2199 | /* If there are no named calls to this symbol, or there's nothing we |
| 2200 | can move from the function itself into the "call" instruction, |
| 2201 | then note that all "call" instructions should be converted into |
| 2202 | "calls" instructions and return. If a symbol is available for |
| 2203 | dynamic symbol resolution (overridable or overriding), avoid |
| 2204 | custom calling conventions. */ |
| 2205 | if (entry->direct_calls == 0 |
| 2206 | || (entry->stack_size == 0 && entry->movm_args == 0) |
| 2207 | || (elf_hash_table (link_info)->dynamic_sections_created |
| 2208 | && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL |
| 2209 | && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN)) |
| 2210 | { |
| 2211 | /* Make a note that we should convert "call" instructions to "calls" |
| 2212 | instructions for calls to this symbol. */ |
| 2213 | entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| 2214 | return TRUE; |
| 2215 | } |
| 2216 | |
| 2217 | /* We may be able to move some instructions from the function itself into |
| 2218 | the "call" instruction. Count how many bytes we might be able to |
| 2219 | eliminate in the function itself. */ |
| 2220 | |
| 2221 | /* A movm instruction is two bytes. */ |
| 2222 | if (entry->movm_args) |
| 2223 | byte_count += 2; |
| 2224 | |
| 2225 | /* Count the insn to allocate stack space too. */ |
| 2226 | if (entry->stack_size > 0) |
| 2227 | { |
| 2228 | if (entry->stack_size <= 128) |
| 2229 | byte_count += 3; |
| 2230 | else |
| 2231 | byte_count += 4; |
| 2232 | } |
| 2233 | |
| 2234 | /* If using "call" will result in larger code, then turn all |
| 2235 | the associated "call" instructions into "calls" instructions. */ |
| 2236 | if (byte_count < entry->direct_calls) |
| 2237 | entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| 2238 | |
| 2239 | /* This routine never fails. */ |
| 2240 | return TRUE; |
| 2241 | } |
| 2242 | |
| 2243 | /* Used to count hash table entries. */ |
| 2244 | |
| 2245 | static bfd_boolean |
| 2246 | elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED, |
| 2247 | void * in_args) |
| 2248 | { |
| 2249 | int *count = (int *) in_args; |
| 2250 | |
| 2251 | (*count) ++; |
| 2252 | return TRUE; |
| 2253 | } |
| 2254 | |
| 2255 | /* Used to enumerate hash table entries into a linear array. */ |
| 2256 | |
| 2257 | static bfd_boolean |
| 2258 | elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry, |
| 2259 | void * in_args) |
| 2260 | { |
| 2261 | struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args; |
| 2262 | |
| 2263 | **ptr = gen_entry; |
| 2264 | (*ptr) ++; |
| 2265 | return TRUE; |
| 2266 | } |
| 2267 | |
| 2268 | /* Used to sort the array created by the above. */ |
| 2269 | |
| 2270 | static int |
| 2271 | sort_by_value (const void *va, const void *vb) |
| 2272 | { |
| 2273 | struct elf32_mn10300_link_hash_entry *a |
| 2274 | = *(struct elf32_mn10300_link_hash_entry **) va; |
| 2275 | struct elf32_mn10300_link_hash_entry *b |
| 2276 | = *(struct elf32_mn10300_link_hash_entry **) vb; |
| 2277 | |
| 2278 | return a->value - b->value; |
| 2279 | } |
| 2280 | |
| 2281 | /* Compute the stack size and movm arguments for the function |
| 2282 | referred to by HASH at address ADDR in section with |
| 2283 | contents CONTENTS, store the information in the hash table. */ |
| 2284 | |
| 2285 | static void |
| 2286 | compute_function_info (bfd *abfd, |
| 2287 | struct elf32_mn10300_link_hash_entry *hash, |
| 2288 | bfd_vma addr, |
| 2289 | unsigned char *contents) |
| 2290 | { |
| 2291 | unsigned char byte1, byte2; |
| 2292 | /* We only care about a very small subset of the possible prologue |
| 2293 | sequences here. Basically we look for: |
| 2294 | |
| 2295 | movm [d2,d3,a2,a3],sp (optional) |
| 2296 | add <size>,sp (optional, and only for sizes which fit in an unsigned |
| 2297 | 8 bit number) |
| 2298 | |
| 2299 | If we find anything else, we quit. */ |
| 2300 | |
| 2301 | /* Look for movm [regs],sp. */ |
| 2302 | byte1 = bfd_get_8 (abfd, contents + addr); |
| 2303 | byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| 2304 | |
| 2305 | if (byte1 == 0xcf) |
| 2306 | { |
| 2307 | hash->movm_args = byte2; |
| 2308 | addr += 2; |
| 2309 | byte1 = bfd_get_8 (abfd, contents + addr); |
| 2310 | byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| 2311 | } |
| 2312 | |
| 2313 | /* Now figure out how much stack space will be allocated by the movm |
| 2314 | instruction. We need this kept separate from the function's normal |
| 2315 | stack space. */ |
| 2316 | if (hash->movm_args) |
| 2317 | { |
| 2318 | /* Space for d2. */ |
| 2319 | if (hash->movm_args & 0x80) |
| 2320 | hash->movm_stack_size += 4; |
| 2321 | |
| 2322 | /* Space for d3. */ |
| 2323 | if (hash->movm_args & 0x40) |
| 2324 | hash->movm_stack_size += 4; |
| 2325 | |
| 2326 | /* Space for a2. */ |
| 2327 | if (hash->movm_args & 0x20) |
| 2328 | hash->movm_stack_size += 4; |
| 2329 | |
| 2330 | /* Space for a3. */ |
| 2331 | if (hash->movm_args & 0x10) |
| 2332 | hash->movm_stack_size += 4; |
| 2333 | |
| 2334 | /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */ |
| 2335 | if (hash->movm_args & 0x08) |
| 2336 | hash->movm_stack_size += 8 * 4; |
| 2337 | |
| 2338 | if (bfd_get_mach (abfd) == bfd_mach_am33 |
| 2339 | || bfd_get_mach (abfd) == bfd_mach_am33_2) |
| 2340 | { |
| 2341 | /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */ |
| 2342 | if (hash->movm_args & 0x1) |
| 2343 | hash->movm_stack_size += 6 * 4; |
| 2344 | |
| 2345 | /* exreg1 space. e4, e5, e6, e7 */ |
| 2346 | if (hash->movm_args & 0x2) |
| 2347 | hash->movm_stack_size += 4 * 4; |
| 2348 | |
| 2349 | /* exreg0 space. e2, e3 */ |
| 2350 | if (hash->movm_args & 0x4) |
| 2351 | hash->movm_stack_size += 2 * 4; |
| 2352 | } |
| 2353 | } |
| 2354 | |
| 2355 | /* Now look for the two stack adjustment variants. */ |
| 2356 | if (byte1 == 0xf8 && byte2 == 0xfe) |
| 2357 | { |
| 2358 | int temp = bfd_get_8 (abfd, contents + addr + 2); |
| 2359 | temp = ((temp & 0xff) ^ (~0x7f)) + 0x80; |
| 2360 | |
| 2361 | hash->stack_size = -temp; |
| 2362 | } |
| 2363 | else if (byte1 == 0xfa && byte2 == 0xfe) |
| 2364 | { |
| 2365 | int temp = bfd_get_16 (abfd, contents + addr + 2); |
| 2366 | temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000; |
| 2367 | temp = -temp; |
| 2368 | |
| 2369 | if (temp < 255) |
| 2370 | hash->stack_size = temp; |
| 2371 | } |
| 2372 | |
| 2373 | /* If the total stack to be allocated by the call instruction is more |
| 2374 | than 255 bytes, then we can't remove the stack adjustment by using |
| 2375 | "call" (we might still be able to remove the "movm" instruction. */ |
| 2376 | if (hash->stack_size + hash->movm_stack_size > 255) |
| 2377 | hash->stack_size = 0; |
| 2378 | } |
| 2379 | |
| 2380 | /* Delete some bytes from a section while relaxing. */ |
| 2381 | |
| 2382 | static bfd_boolean |
| 2383 | mn10300_elf_relax_delete_bytes (bfd *abfd, |
| 2384 | asection *sec, |
| 2385 | bfd_vma addr, |
| 2386 | int count) |
| 2387 | { |
| 2388 | Elf_Internal_Shdr *symtab_hdr; |
| 2389 | unsigned int sec_shndx; |
| 2390 | bfd_byte *contents; |
| 2391 | Elf_Internal_Rela *irel, *irelend; |
| 2392 | Elf_Internal_Rela *irelalign; |
| 2393 | bfd_vma toaddr; |
| 2394 | Elf_Internal_Sym *isym, *isymend; |
| 2395 | struct elf_link_hash_entry **sym_hashes; |
| 2396 | struct elf_link_hash_entry **end_hashes; |
| 2397 | unsigned int symcount; |
| 2398 | |
| 2399 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| 2400 | |
| 2401 | contents = elf_section_data (sec)->this_hdr.contents; |
| 2402 | |
| 2403 | irelalign = NULL; |
| 2404 | toaddr = sec->size; |
| 2405 | |
| 2406 | irel = elf_section_data (sec)->relocs; |
| 2407 | irelend = irel + sec->reloc_count; |
| 2408 | |
| 2409 | if (sec->reloc_count > 0) |
| 2410 | { |
| 2411 | /* If there is an align reloc at the end of the section ignore it. |
| 2412 | GAS creates these relocs for reasons of its own, and they just |
| 2413 | serve to keep the section artifically inflated. */ |
| 2414 | if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN) |
| 2415 | --irelend; |
| 2416 | |
| 2417 | /* The deletion must stop at the next ALIGN reloc for an alignment |
| 2418 | power larger than, or not a multiple of, the number of bytes we |
| 2419 | are deleting. */ |
| 2420 | for (; irel < irelend; irel++) |
| 2421 | { |
| 2422 | int alignment = 1 << irel->r_addend; |
| 2423 | |
| 2424 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| 2425 | && irel->r_offset > addr |
| 2426 | && irel->r_offset < toaddr |
| 2427 | && (count < alignment |
| 2428 | || alignment % count != 0)) |
| 2429 | { |
| 2430 | irelalign = irel; |
| 2431 | toaddr = irel->r_offset; |
| 2432 | break; |
| 2433 | } |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | /* Actually delete the bytes. */ |
| 2438 | memmove (contents + addr, contents + addr + count, |
| 2439 | (size_t) (toaddr - addr - count)); |
| 2440 | |
| 2441 | /* Adjust the section's size if we are shrinking it, or else |
| 2442 | pad the bytes between the end of the shrunken region and |
| 2443 | the start of the next region with NOP codes. */ |
| 2444 | if (irelalign == NULL) |
| 2445 | { |
| 2446 | sec->size -= count; |
| 2447 | /* Include symbols at the end of the section, but |
| 2448 | not at the end of a sub-region of the section. */ |
| 2449 | toaddr ++; |
| 2450 | } |
| 2451 | else |
| 2452 | { |
| 2453 | int i; |
| 2454 | |
| 2455 | #define NOP_OPCODE 0xcb |
| 2456 | |
| 2457 | for (i = 0; i < count; i ++) |
| 2458 | bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
| 2459 | } |
| 2460 | |
| 2461 | /* Adjust all the relocs. */ |
| 2462 | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| 2463 | { |
| 2464 | /* Get the new reloc address. */ |
| 2465 | if ((irel->r_offset > addr |
| 2466 | && irel->r_offset < toaddr) |
| 2467 | || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| 2468 | && irel->r_offset == toaddr)) |
| 2469 | irel->r_offset -= count; |
| 2470 | } |
| 2471 | |
| 2472 | /* Adjust the local symbols in the section, reducing their value |
| 2473 | by the number of bytes deleted. Note - symbols within the deleted |
| 2474 | region are moved to the address of the start of the region, which |
| 2475 | actually means that they will address the byte beyond the end of |
| 2476 | the region once the deletion has been completed. */ |
| 2477 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 2478 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 2479 | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| 2480 | { |
| 2481 | if (isym->st_shndx == sec_shndx |
| 2482 | && isym->st_value > addr |
| 2483 | && isym->st_value < toaddr) |
| 2484 | { |
| 2485 | if (isym->st_value < addr + count) |
| 2486 | isym->st_value = addr; |
| 2487 | else |
| 2488 | isym->st_value -= count; |
| 2489 | } |
| 2490 | /* Adjust the function symbol's size as well. */ |
| 2491 | else if (isym->st_shndx == sec_shndx |
| 2492 | && ELF_ST_TYPE (isym->st_info) == STT_FUNC |
| 2493 | && isym->st_value + isym->st_size > addr |
| 2494 | && isym->st_value + isym->st_size < toaddr) |
| 2495 | isym->st_size -= count; |
| 2496 | } |
| 2497 | |
| 2498 | /* Now adjust the global symbols defined in this section. */ |
| 2499 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| 2500 | - symtab_hdr->sh_info); |
| 2501 | sym_hashes = elf_sym_hashes (abfd); |
| 2502 | end_hashes = sym_hashes + symcount; |
| 2503 | for (; sym_hashes < end_hashes; sym_hashes++) |
| 2504 | { |
| 2505 | struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| 2506 | |
| 2507 | if ((sym_hash->root.type == bfd_link_hash_defined |
| 2508 | || sym_hash->root.type == bfd_link_hash_defweak) |
| 2509 | && sym_hash->root.u.def.section == sec |
| 2510 | && sym_hash->root.u.def.value > addr |
| 2511 | && sym_hash->root.u.def.value < toaddr) |
| 2512 | { |
| 2513 | if (sym_hash->root.u.def.value < addr + count) |
| 2514 | sym_hash->root.u.def.value = addr; |
| 2515 | else |
| 2516 | sym_hash->root.u.def.value -= count; |
| 2517 | } |
| 2518 | /* Adjust the function symbol's size as well. */ |
| 2519 | else if (sym_hash->root.type == bfd_link_hash_defined |
| 2520 | && sym_hash->root.u.def.section == sec |
| 2521 | && sym_hash->type == STT_FUNC |
| 2522 | && sym_hash->root.u.def.value + sym_hash->size > addr |
| 2523 | && sym_hash->root.u.def.value + sym_hash->size < toaddr) |
| 2524 | sym_hash->size -= count; |
| 2525 | } |
| 2526 | |
| 2527 | /* See if we can move the ALIGN reloc forward. |
| 2528 | We have adjusted r_offset for it already. */ |
| 2529 | if (irelalign != NULL) |
| 2530 | { |
| 2531 | bfd_vma alignto, alignaddr; |
| 2532 | |
| 2533 | if ((int) irelalign->r_addend > 0) |
| 2534 | { |
| 2535 | /* This is the old address. */ |
| 2536 | alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); |
| 2537 | /* This is where the align points to now. */ |
| 2538 | alignaddr = BFD_ALIGN (irelalign->r_offset, |
| 2539 | 1 << irelalign->r_addend); |
| 2540 | if (alignaddr < alignto) |
| 2541 | /* Tail recursion. */ |
| 2542 | return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr, |
| 2543 | (int) (alignto - alignaddr)); |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | return TRUE; |
| 2548 | } |
| 2549 | |
| 2550 | /* Return TRUE if a symbol exists at the given address, else return |
| 2551 | FALSE. */ |
| 2552 | |
| 2553 | static bfd_boolean |
| 2554 | mn10300_elf_symbol_address_p (bfd *abfd, |
| 2555 | asection *sec, |
| 2556 | Elf_Internal_Sym *isym, |
| 2557 | bfd_vma addr) |
| 2558 | { |
| 2559 | Elf_Internal_Shdr *symtab_hdr; |
| 2560 | unsigned int sec_shndx; |
| 2561 | Elf_Internal_Sym *isymend; |
| 2562 | struct elf_link_hash_entry **sym_hashes; |
| 2563 | struct elf_link_hash_entry **end_hashes; |
| 2564 | unsigned int symcount; |
| 2565 | |
| 2566 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| 2567 | |
| 2568 | /* Examine all the symbols. */ |
| 2569 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 2570 | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| 2571 | if (isym->st_shndx == sec_shndx |
| 2572 | && isym->st_value == addr) |
| 2573 | return TRUE; |
| 2574 | |
| 2575 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| 2576 | - symtab_hdr->sh_info); |
| 2577 | sym_hashes = elf_sym_hashes (abfd); |
| 2578 | end_hashes = sym_hashes + symcount; |
| 2579 | for (; sym_hashes < end_hashes; sym_hashes++) |
| 2580 | { |
| 2581 | struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| 2582 | |
| 2583 | if ((sym_hash->root.type == bfd_link_hash_defined |
| 2584 | || sym_hash->root.type == bfd_link_hash_defweak) |
| 2585 | && sym_hash->root.u.def.section == sec |
| 2586 | && sym_hash->root.u.def.value == addr) |
| 2587 | return TRUE; |
| 2588 | } |
| 2589 | |
| 2590 | return FALSE; |
| 2591 | } |
| 2592 | |
| 2593 | /* This function handles relaxing for the mn10300. |
| 2594 | |
| 2595 | There are quite a few relaxing opportunities available on the mn10300: |
| 2596 | |
| 2597 | * calls:32 -> calls:16 2 bytes |
| 2598 | * call:32 -> call:16 2 bytes |
| 2599 | |
| 2600 | * call:32 -> calls:32 1 byte |
| 2601 | * call:16 -> calls:16 1 byte |
| 2602 | * These are done anytime using "calls" would result |
| 2603 | in smaller code, or when necessary to preserve the |
| 2604 | meaning of the program. |
| 2605 | |
| 2606 | * call:32 varies |
| 2607 | * call:16 |
| 2608 | * In some circumstances we can move instructions |
| 2609 | from a function prologue into a "call" instruction. |
| 2610 | This is only done if the resulting code is no larger |
| 2611 | than the original code. |
| 2612 | |
| 2613 | * jmp:32 -> jmp:16 2 bytes |
| 2614 | * jmp:16 -> bra:8 1 byte |
| 2615 | |
| 2616 | * If the previous instruction is a conditional branch |
| 2617 | around the jump/bra, we may be able to reverse its condition |
| 2618 | and change its target to the jump's target. The jump/bra |
| 2619 | can then be deleted. 2 bytes |
| 2620 | |
| 2621 | * mov abs32 -> mov abs16 1 or 2 bytes |
| 2622 | |
| 2623 | * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes |
| 2624 | - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes |
| 2625 | |
| 2626 | * Most instructions which accept d32 can relax to d16 1 or 2 bytes |
| 2627 | - Most instructions which accept d16 can relax to d8 1 or 2 bytes |
| 2628 | |
| 2629 | We don't handle imm16->imm8 or d16->d8 as they're very rare |
| 2630 | and somewhat more difficult to support. */ |
| 2631 | |
| 2632 | static bfd_boolean |
| 2633 | mn10300_elf_relax_section (bfd *abfd, |
| 2634 | asection *sec, |
| 2635 | struct bfd_link_info *link_info, |
| 2636 | bfd_boolean *again) |
| 2637 | { |
| 2638 | Elf_Internal_Shdr *symtab_hdr; |
| 2639 | Elf_Internal_Rela *internal_relocs = NULL; |
| 2640 | Elf_Internal_Rela *irel, *irelend; |
| 2641 | bfd_byte *contents = NULL; |
| 2642 | Elf_Internal_Sym *isymbuf = NULL; |
| 2643 | struct elf32_mn10300_link_hash_table *hash_table; |
| 2644 | asection *section = sec; |
| 2645 | bfd_vma align_gap_adjustment; |
| 2646 | |
| 2647 | if (bfd_link_relocatable (link_info)) |
| 2648 | (*link_info->callbacks->einfo) |
| 2649 | (_("%P%F: --relax and -r may not be used together\n")); |
| 2650 | |
| 2651 | /* Assume nothing changes. */ |
| 2652 | *again = FALSE; |
| 2653 | |
| 2654 | /* We need a pointer to the mn10300 specific hash table. */ |
| 2655 | hash_table = elf32_mn10300_hash_table (link_info); |
| 2656 | if (hash_table == NULL) |
| 2657 | return FALSE; |
| 2658 | |
| 2659 | /* Initialize fields in each hash table entry the first time through. */ |
| 2660 | if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0) |
| 2661 | { |
| 2662 | bfd *input_bfd; |
| 2663 | |
| 2664 | /* Iterate over all the input bfds. */ |
| 2665 | for (input_bfd = link_info->input_bfds; |
| 2666 | input_bfd != NULL; |
| 2667 | input_bfd = input_bfd->link.next) |
| 2668 | { |
| 2669 | /* We're going to need all the symbols for each bfd. */ |
| 2670 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 2671 | if (symtab_hdr->sh_info != 0) |
| 2672 | { |
| 2673 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 2674 | if (isymbuf == NULL) |
| 2675 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| 2676 | symtab_hdr->sh_info, 0, |
| 2677 | NULL, NULL, NULL); |
| 2678 | if (isymbuf == NULL) |
| 2679 | goto error_return; |
| 2680 | } |
| 2681 | |
| 2682 | /* Iterate over each section in this bfd. */ |
| 2683 | for (section = input_bfd->sections; |
| 2684 | section != NULL; |
| 2685 | section = section->next) |
| 2686 | { |
| 2687 | struct elf32_mn10300_link_hash_entry *hash; |
| 2688 | asection *sym_sec = NULL; |
| 2689 | const char *sym_name; |
| 2690 | char *new_name; |
| 2691 | |
| 2692 | /* If there's nothing to do in this section, skip it. */ |
| 2693 | if (! ((section->flags & SEC_RELOC) != 0 |
| 2694 | && section->reloc_count != 0)) |
| 2695 | continue; |
| 2696 | if ((section->flags & SEC_ALLOC) == 0) |
| 2697 | continue; |
| 2698 | |
| 2699 | /* Get cached copy of section contents if it exists. */ |
| 2700 | if (elf_section_data (section)->this_hdr.contents != NULL) |
| 2701 | contents = elf_section_data (section)->this_hdr.contents; |
| 2702 | else if (section->size != 0) |
| 2703 | { |
| 2704 | /* Go get them off disk. */ |
| 2705 | if (!bfd_malloc_and_get_section (input_bfd, section, |
| 2706 | &contents)) |
| 2707 | goto error_return; |
| 2708 | } |
| 2709 | else |
| 2710 | contents = NULL; |
| 2711 | |
| 2712 | /* If there aren't any relocs, then there's nothing to do. */ |
| 2713 | if ((section->flags & SEC_RELOC) != 0 |
| 2714 | && section->reloc_count != 0) |
| 2715 | { |
| 2716 | /* Get a copy of the native relocations. */ |
| 2717 | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| 2718 | NULL, NULL, |
| 2719 | link_info->keep_memory); |
| 2720 | if (internal_relocs == NULL) |
| 2721 | goto error_return; |
| 2722 | |
| 2723 | /* Now examine each relocation. */ |
| 2724 | irel = internal_relocs; |
| 2725 | irelend = irel + section->reloc_count; |
| 2726 | for (; irel < irelend; irel++) |
| 2727 | { |
| 2728 | long r_type; |
| 2729 | unsigned long r_index; |
| 2730 | unsigned char code; |
| 2731 | |
| 2732 | r_type = ELF32_R_TYPE (irel->r_info); |
| 2733 | r_index = ELF32_R_SYM (irel->r_info); |
| 2734 | |
| 2735 | if (r_type < 0 || r_type >= (int) R_MN10300_MAX) |
| 2736 | goto error_return; |
| 2737 | |
| 2738 | /* We need the name and hash table entry of the target |
| 2739 | symbol! */ |
| 2740 | hash = NULL; |
| 2741 | sym_sec = NULL; |
| 2742 | |
| 2743 | if (r_index < symtab_hdr->sh_info) |
| 2744 | { |
| 2745 | /* A local symbol. */ |
| 2746 | Elf_Internal_Sym *isym; |
| 2747 | struct elf_link_hash_table *elftab; |
| 2748 | bfd_size_type amt; |
| 2749 | |
| 2750 | isym = isymbuf + r_index; |
| 2751 | if (isym->st_shndx == SHN_UNDEF) |
| 2752 | sym_sec = bfd_und_section_ptr; |
| 2753 | else if (isym->st_shndx == SHN_ABS) |
| 2754 | sym_sec = bfd_abs_section_ptr; |
| 2755 | else if (isym->st_shndx == SHN_COMMON) |
| 2756 | sym_sec = bfd_com_section_ptr; |
| 2757 | else |
| 2758 | sym_sec |
| 2759 | = bfd_section_from_elf_index (input_bfd, |
| 2760 | isym->st_shndx); |
| 2761 | |
| 2762 | sym_name |
| 2763 | = bfd_elf_string_from_elf_section (input_bfd, |
| 2764 | (symtab_hdr |
| 2765 | ->sh_link), |
| 2766 | isym->st_name); |
| 2767 | |
| 2768 | /* If it isn't a function, then we don't care |
| 2769 | about it. */ |
| 2770 | if (ELF_ST_TYPE (isym->st_info) != STT_FUNC) |
| 2771 | continue; |
| 2772 | |
| 2773 | /* Tack on an ID so we can uniquely identify this |
| 2774 | local symbol in the global hash table. */ |
| 2775 | amt = strlen (sym_name) + 10; |
| 2776 | new_name = bfd_malloc (amt); |
| 2777 | if (new_name == NULL) |
| 2778 | goto error_return; |
| 2779 | |
| 2780 | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| 2781 | sym_name = new_name; |
| 2782 | |
| 2783 | elftab = &hash_table->static_hash_table->root; |
| 2784 | hash = ((struct elf32_mn10300_link_hash_entry *) |
| 2785 | elf_link_hash_lookup (elftab, sym_name, |
| 2786 | TRUE, TRUE, FALSE)); |
| 2787 | free (new_name); |
| 2788 | } |
| 2789 | else |
| 2790 | { |
| 2791 | r_index -= symtab_hdr->sh_info; |
| 2792 | hash = (struct elf32_mn10300_link_hash_entry *) |
| 2793 | elf_sym_hashes (input_bfd)[r_index]; |
| 2794 | } |
| 2795 | |
| 2796 | sym_name = hash->root.root.root.string; |
| 2797 | if ((section->flags & SEC_CODE) != 0) |
| 2798 | { |
| 2799 | /* If this is not a "call" instruction, then we |
| 2800 | should convert "call" instructions to "calls" |
| 2801 | instructions. */ |
| 2802 | code = bfd_get_8 (input_bfd, |
| 2803 | contents + irel->r_offset - 1); |
| 2804 | if (code != 0xdd && code != 0xcd) |
| 2805 | hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| 2806 | } |
| 2807 | |
| 2808 | /* If this is a jump/call, then bump the |
| 2809 | direct_calls counter. Else force "call" to |
| 2810 | "calls" conversions. */ |
| 2811 | if (r_type == R_MN10300_PCREL32 |
| 2812 | || r_type == R_MN10300_PLT32 |
| 2813 | || r_type == R_MN10300_PLT16 |
| 2814 | || r_type == R_MN10300_PCREL16) |
| 2815 | hash->direct_calls++; |
| 2816 | else |
| 2817 | hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| 2818 | } |
| 2819 | } |
| 2820 | |
| 2821 | /* Now look at the actual contents to get the stack size, |
| 2822 | and a list of what registers were saved in the prologue |
| 2823 | (ie movm_args). */ |
| 2824 | if ((section->flags & SEC_CODE) != 0) |
| 2825 | { |
| 2826 | Elf_Internal_Sym *isym, *isymend; |
| 2827 | unsigned int sec_shndx; |
| 2828 | struct elf_link_hash_entry **hashes; |
| 2829 | struct elf_link_hash_entry **end_hashes; |
| 2830 | unsigned int symcount; |
| 2831 | |
| 2832 | sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| 2833 | section); |
| 2834 | |
| 2835 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| 2836 | - symtab_hdr->sh_info); |
| 2837 | hashes = elf_sym_hashes (input_bfd); |
| 2838 | end_hashes = hashes + symcount; |
| 2839 | |
| 2840 | /* Look at each function defined in this section and |
| 2841 | update info for that function. */ |
| 2842 | isymend = isymbuf + symtab_hdr->sh_info; |
| 2843 | for (isym = isymbuf; isym < isymend; isym++) |
| 2844 | { |
| 2845 | if (isym->st_shndx == sec_shndx |
| 2846 | && ELF_ST_TYPE (isym->st_info) == STT_FUNC) |
| 2847 | { |
| 2848 | struct elf_link_hash_table *elftab; |
| 2849 | bfd_size_type amt; |
| 2850 | struct elf_link_hash_entry **lhashes = hashes; |
| 2851 | |
| 2852 | /* Skip a local symbol if it aliases a |
| 2853 | global one. */ |
| 2854 | for (; lhashes < end_hashes; lhashes++) |
| 2855 | { |
| 2856 | hash = (struct elf32_mn10300_link_hash_entry *) *lhashes; |
| 2857 | if ((hash->root.root.type == bfd_link_hash_defined |
| 2858 | || hash->root.root.type == bfd_link_hash_defweak) |
| 2859 | && hash->root.root.u.def.section == section |
| 2860 | && hash->root.type == STT_FUNC |
| 2861 | && hash->root.root.u.def.value == isym->st_value) |
| 2862 | break; |
| 2863 | } |
| 2864 | if (lhashes != end_hashes) |
| 2865 | continue; |
| 2866 | |
| 2867 | if (isym->st_shndx == SHN_UNDEF) |
| 2868 | sym_sec = bfd_und_section_ptr; |
| 2869 | else if (isym->st_shndx == SHN_ABS) |
| 2870 | sym_sec = bfd_abs_section_ptr; |
| 2871 | else if (isym->st_shndx == SHN_COMMON) |
| 2872 | sym_sec = bfd_com_section_ptr; |
| 2873 | else |
| 2874 | sym_sec |
| 2875 | = bfd_section_from_elf_index (input_bfd, |
| 2876 | isym->st_shndx); |
| 2877 | |
| 2878 | sym_name = (bfd_elf_string_from_elf_section |
| 2879 | (input_bfd, symtab_hdr->sh_link, |
| 2880 | isym->st_name)); |
| 2881 | |
| 2882 | /* Tack on an ID so we can uniquely identify this |
| 2883 | local symbol in the global hash table. */ |
| 2884 | amt = strlen (sym_name) + 10; |
| 2885 | new_name = bfd_malloc (amt); |
| 2886 | if (new_name == NULL) |
| 2887 | goto error_return; |
| 2888 | |
| 2889 | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| 2890 | sym_name = new_name; |
| 2891 | |
| 2892 | elftab = &hash_table->static_hash_table->root; |
| 2893 | hash = ((struct elf32_mn10300_link_hash_entry *) |
| 2894 | elf_link_hash_lookup (elftab, sym_name, |
| 2895 | TRUE, TRUE, FALSE)); |
| 2896 | free (new_name); |
| 2897 | compute_function_info (input_bfd, hash, |
| 2898 | isym->st_value, contents); |
| 2899 | hash->value = isym->st_value; |
| 2900 | } |
| 2901 | } |
| 2902 | |
| 2903 | for (; hashes < end_hashes; hashes++) |
| 2904 | { |
| 2905 | hash = (struct elf32_mn10300_link_hash_entry *) *hashes; |
| 2906 | if ((hash->root.root.type == bfd_link_hash_defined |
| 2907 | || hash->root.root.type == bfd_link_hash_defweak) |
| 2908 | && hash->root.root.u.def.section == section |
| 2909 | && hash->root.type == STT_FUNC) |
| 2910 | compute_function_info (input_bfd, hash, |
| 2911 | (hash)->root.root.u.def.value, |
| 2912 | contents); |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | /* Cache or free any memory we allocated for the relocs. */ |
| 2917 | if (internal_relocs != NULL |
| 2918 | && elf_section_data (section)->relocs != internal_relocs) |
| 2919 | free (internal_relocs); |
| 2920 | internal_relocs = NULL; |
| 2921 | |
| 2922 | /* Cache or free any memory we allocated for the contents. */ |
| 2923 | if (contents != NULL |
| 2924 | && elf_section_data (section)->this_hdr.contents != contents) |
| 2925 | { |
| 2926 | if (! link_info->keep_memory) |
| 2927 | free (contents); |
| 2928 | else |
| 2929 | { |
| 2930 | /* Cache the section contents for elf_link_input_bfd. */ |
| 2931 | elf_section_data (section)->this_hdr.contents = contents; |
| 2932 | } |
| 2933 | } |
| 2934 | contents = NULL; |
| 2935 | } |
| 2936 | |
| 2937 | /* Cache or free any memory we allocated for the symbols. */ |
| 2938 | if (isymbuf != NULL |
| 2939 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 2940 | { |
| 2941 | if (! link_info->keep_memory) |
| 2942 | free (isymbuf); |
| 2943 | else |
| 2944 | { |
| 2945 | /* Cache the symbols for elf_link_input_bfd. */ |
| 2946 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 2947 | } |
| 2948 | } |
| 2949 | isymbuf = NULL; |
| 2950 | } |
| 2951 | |
| 2952 | /* Now iterate on each symbol in the hash table and perform |
| 2953 | the final initialization steps on each. */ |
| 2954 | elf32_mn10300_link_hash_traverse (hash_table, |
| 2955 | elf32_mn10300_finish_hash_table_entry, |
| 2956 | link_info); |
| 2957 | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| 2958 | elf32_mn10300_finish_hash_table_entry, |
| 2959 | link_info); |
| 2960 | |
| 2961 | { |
| 2962 | /* This section of code collects all our local symbols, sorts |
| 2963 | them by value, and looks for multiple symbols referring to |
| 2964 | the same address. For those symbols, the flags are merged. |
| 2965 | At this point, the only flag that can be set is |
| 2966 | MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags |
| 2967 | together. */ |
| 2968 | int static_count = 0, i; |
| 2969 | struct elf32_mn10300_link_hash_entry **entries; |
| 2970 | struct elf32_mn10300_link_hash_entry **ptr; |
| 2971 | |
| 2972 | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| 2973 | elf32_mn10300_count_hash_table_entries, |
| 2974 | &static_count); |
| 2975 | |
| 2976 | entries = bfd_malloc (static_count * sizeof (* ptr)); |
| 2977 | |
| 2978 | ptr = entries; |
| 2979 | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| 2980 | elf32_mn10300_list_hash_table_entries, |
| 2981 | & ptr); |
| 2982 | |
| 2983 | qsort (entries, static_count, sizeof (entries[0]), sort_by_value); |
| 2984 | |
| 2985 | for (i = 0; i < static_count - 1; i++) |
| 2986 | if (entries[i]->value && entries[i]->value == entries[i+1]->value) |
| 2987 | { |
| 2988 | int v = entries[i]->flags; |
| 2989 | int j; |
| 2990 | |
| 2991 | for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++) |
| 2992 | v |= entries[j]->flags; |
| 2993 | |
| 2994 | for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++) |
| 2995 | entries[j]->flags = v; |
| 2996 | |
| 2997 | i = j - 1; |
| 2998 | } |
| 2999 | } |
| 3000 | |
| 3001 | /* All entries in the hash table are fully initialized. */ |
| 3002 | hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED; |
| 3003 | |
| 3004 | /* Now that everything has been initialized, go through each |
| 3005 | code section and delete any prologue insns which will be |
| 3006 | redundant because their operations will be performed by |
| 3007 | a "call" instruction. */ |
| 3008 | for (input_bfd = link_info->input_bfds; |
| 3009 | input_bfd != NULL; |
| 3010 | input_bfd = input_bfd->link.next) |
| 3011 | { |
| 3012 | /* We're going to need all the local symbols for each bfd. */ |
| 3013 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 3014 | if (symtab_hdr->sh_info != 0) |
| 3015 | { |
| 3016 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 3017 | if (isymbuf == NULL) |
| 3018 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| 3019 | symtab_hdr->sh_info, 0, |
| 3020 | NULL, NULL, NULL); |
| 3021 | if (isymbuf == NULL) |
| 3022 | goto error_return; |
| 3023 | } |
| 3024 | |
| 3025 | /* Walk over each section in this bfd. */ |
| 3026 | for (section = input_bfd->sections; |
| 3027 | section != NULL; |
| 3028 | section = section->next) |
| 3029 | { |
| 3030 | unsigned int sec_shndx; |
| 3031 | Elf_Internal_Sym *isym, *isymend; |
| 3032 | struct elf_link_hash_entry **hashes; |
| 3033 | struct elf_link_hash_entry **end_hashes; |
| 3034 | unsigned int symcount; |
| 3035 | |
| 3036 | /* Skip non-code sections and empty sections. */ |
| 3037 | if ((section->flags & SEC_CODE) == 0 || section->size == 0) |
| 3038 | continue; |
| 3039 | |
| 3040 | if (section->reloc_count != 0) |
| 3041 | { |
| 3042 | /* Get a copy of the native relocations. */ |
| 3043 | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| 3044 | NULL, NULL, |
| 3045 | link_info->keep_memory); |
| 3046 | if (internal_relocs == NULL) |
| 3047 | goto error_return; |
| 3048 | } |
| 3049 | |
| 3050 | /* Get cached copy of section contents if it exists. */ |
| 3051 | if (elf_section_data (section)->this_hdr.contents != NULL) |
| 3052 | contents = elf_section_data (section)->this_hdr.contents; |
| 3053 | else |
| 3054 | { |
| 3055 | /* Go get them off disk. */ |
| 3056 | if (!bfd_malloc_and_get_section (input_bfd, section, |
| 3057 | &contents)) |
| 3058 | goto error_return; |
| 3059 | } |
| 3060 | |
| 3061 | sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| 3062 | section); |
| 3063 | |
| 3064 | /* Now look for any function in this section which needs |
| 3065 | insns deleted from its prologue. */ |
| 3066 | isymend = isymbuf + symtab_hdr->sh_info; |
| 3067 | for (isym = isymbuf; isym < isymend; isym++) |
| 3068 | { |
| 3069 | struct elf32_mn10300_link_hash_entry *sym_hash; |
| 3070 | asection *sym_sec = NULL; |
| 3071 | const char *sym_name; |
| 3072 | char *new_name; |
| 3073 | struct elf_link_hash_table *elftab; |
| 3074 | bfd_size_type amt; |
| 3075 | |
| 3076 | if (isym->st_shndx != sec_shndx) |
| 3077 | continue; |
| 3078 | |
| 3079 | if (isym->st_shndx == SHN_UNDEF) |
| 3080 | sym_sec = bfd_und_section_ptr; |
| 3081 | else if (isym->st_shndx == SHN_ABS) |
| 3082 | sym_sec = bfd_abs_section_ptr; |
| 3083 | else if (isym->st_shndx == SHN_COMMON) |
| 3084 | sym_sec = bfd_com_section_ptr; |
| 3085 | else |
| 3086 | sym_sec |
| 3087 | = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| 3088 | |
| 3089 | sym_name |
| 3090 | = bfd_elf_string_from_elf_section (input_bfd, |
| 3091 | symtab_hdr->sh_link, |
| 3092 | isym->st_name); |
| 3093 | |
| 3094 | /* Tack on an ID so we can uniquely identify this |
| 3095 | local symbol in the global hash table. */ |
| 3096 | amt = strlen (sym_name) + 10; |
| 3097 | new_name = bfd_malloc (amt); |
| 3098 | if (new_name == NULL) |
| 3099 | goto error_return; |
| 3100 | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| 3101 | sym_name = new_name; |
| 3102 | |
| 3103 | elftab = & hash_table->static_hash_table->root; |
| 3104 | sym_hash = (struct elf32_mn10300_link_hash_entry *) |
| 3105 | elf_link_hash_lookup (elftab, sym_name, |
| 3106 | FALSE, FALSE, FALSE); |
| 3107 | |
| 3108 | free (new_name); |
| 3109 | if (sym_hash == NULL) |
| 3110 | continue; |
| 3111 | |
| 3112 | if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| 3113 | && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) |
| 3114 | { |
| 3115 | int bytes = 0; |
| 3116 | |
| 3117 | /* Note that we've changed things. */ |
| 3118 | elf_section_data (section)->relocs = internal_relocs; |
| 3119 | elf_section_data (section)->this_hdr.contents = contents; |
| 3120 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3121 | |
| 3122 | /* Count how many bytes we're going to delete. */ |
| 3123 | if (sym_hash->movm_args) |
| 3124 | bytes += 2; |
| 3125 | |
| 3126 | if (sym_hash->stack_size > 0) |
| 3127 | { |
| 3128 | if (sym_hash->stack_size <= 128) |
| 3129 | bytes += 3; |
| 3130 | else |
| 3131 | bytes += 4; |
| 3132 | } |
| 3133 | |
| 3134 | /* Note that we've deleted prologue bytes for this |
| 3135 | function. */ |
| 3136 | sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| 3137 | |
| 3138 | /* Actually delete the bytes. */ |
| 3139 | if (!mn10300_elf_relax_delete_bytes (input_bfd, |
| 3140 | section, |
| 3141 | isym->st_value, |
| 3142 | bytes)) |
| 3143 | goto error_return; |
| 3144 | |
| 3145 | /* Something changed. Not strictly necessary, but |
| 3146 | may lead to more relaxing opportunities. */ |
| 3147 | *again = TRUE; |
| 3148 | } |
| 3149 | } |
| 3150 | |
| 3151 | /* Look for any global functions in this section which |
| 3152 | need insns deleted from their prologues. */ |
| 3153 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| 3154 | - symtab_hdr->sh_info); |
| 3155 | hashes = elf_sym_hashes (input_bfd); |
| 3156 | end_hashes = hashes + symcount; |
| 3157 | for (; hashes < end_hashes; hashes++) |
| 3158 | { |
| 3159 | struct elf32_mn10300_link_hash_entry *sym_hash; |
| 3160 | |
| 3161 | sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes; |
| 3162 | if ((sym_hash->root.root.type == bfd_link_hash_defined |
| 3163 | || sym_hash->root.root.type == bfd_link_hash_defweak) |
| 3164 | && sym_hash->root.root.u.def.section == section |
| 3165 | && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| 3166 | && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) |
| 3167 | { |
| 3168 | int bytes = 0; |
| 3169 | bfd_vma symval; |
| 3170 | struct elf_link_hash_entry **hh; |
| 3171 | |
| 3172 | /* Note that we've changed things. */ |
| 3173 | elf_section_data (section)->relocs = internal_relocs; |
| 3174 | elf_section_data (section)->this_hdr.contents = contents; |
| 3175 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3176 | |
| 3177 | /* Count how many bytes we're going to delete. */ |
| 3178 | if (sym_hash->movm_args) |
| 3179 | bytes += 2; |
| 3180 | |
| 3181 | if (sym_hash->stack_size > 0) |
| 3182 | { |
| 3183 | if (sym_hash->stack_size <= 128) |
| 3184 | bytes += 3; |
| 3185 | else |
| 3186 | bytes += 4; |
| 3187 | } |
| 3188 | |
| 3189 | /* Note that we've deleted prologue bytes for this |
| 3190 | function. */ |
| 3191 | sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| 3192 | |
| 3193 | /* Actually delete the bytes. */ |
| 3194 | symval = sym_hash->root.root.u.def.value; |
| 3195 | if (!mn10300_elf_relax_delete_bytes (input_bfd, |
| 3196 | section, |
| 3197 | symval, |
| 3198 | bytes)) |
| 3199 | goto error_return; |
| 3200 | |
| 3201 | /* There may be other C++ functions symbols with the same |
| 3202 | address. If so then mark these as having had their |
| 3203 | prologue bytes deleted as well. */ |
| 3204 | for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++) |
| 3205 | { |
| 3206 | struct elf32_mn10300_link_hash_entry *h; |
| 3207 | |
| 3208 | h = (struct elf32_mn10300_link_hash_entry *) * hh; |
| 3209 | |
| 3210 | if (h != sym_hash |
| 3211 | && (h->root.root.type == bfd_link_hash_defined |
| 3212 | || h->root.root.type == bfd_link_hash_defweak) |
| 3213 | && h->root.root.u.def.section == section |
| 3214 | && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| 3215 | && h->root.root.u.def.value == symval |
| 3216 | && h->root.type == STT_FUNC) |
| 3217 | h->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| 3218 | } |
| 3219 | |
| 3220 | /* Something changed. Not strictly necessary, but |
| 3221 | may lead to more relaxing opportunities. */ |
| 3222 | *again = TRUE; |
| 3223 | } |
| 3224 | } |
| 3225 | |
| 3226 | /* Cache or free any memory we allocated for the relocs. */ |
| 3227 | if (internal_relocs != NULL |
| 3228 | && elf_section_data (section)->relocs != internal_relocs) |
| 3229 | free (internal_relocs); |
| 3230 | internal_relocs = NULL; |
| 3231 | |
| 3232 | /* Cache or free any memory we allocated for the contents. */ |
| 3233 | if (contents != NULL |
| 3234 | && elf_section_data (section)->this_hdr.contents != contents) |
| 3235 | { |
| 3236 | if (! link_info->keep_memory) |
| 3237 | free (contents); |
| 3238 | else |
| 3239 | /* Cache the section contents for elf_link_input_bfd. */ |
| 3240 | elf_section_data (section)->this_hdr.contents = contents; |
| 3241 | } |
| 3242 | contents = NULL; |
| 3243 | } |
| 3244 | |
| 3245 | /* Cache or free any memory we allocated for the symbols. */ |
| 3246 | if (isymbuf != NULL |
| 3247 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 3248 | { |
| 3249 | if (! link_info->keep_memory) |
| 3250 | free (isymbuf); |
| 3251 | else |
| 3252 | /* Cache the symbols for elf_link_input_bfd. */ |
| 3253 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3254 | } |
| 3255 | isymbuf = NULL; |
| 3256 | } |
| 3257 | } |
| 3258 | |
| 3259 | /* (Re)initialize for the basic instruction shortening/relaxing pass. */ |
| 3260 | contents = NULL; |
| 3261 | internal_relocs = NULL; |
| 3262 | isymbuf = NULL; |
| 3263 | /* For error_return. */ |
| 3264 | section = sec; |
| 3265 | |
| 3266 | /* We don't have to do anything for a relocatable link, if |
| 3267 | this section does not have relocs, or if this is not a |
| 3268 | code section. */ |
| 3269 | if (bfd_link_relocatable (link_info) |
| 3270 | || (sec->flags & SEC_RELOC) == 0 |
| 3271 | || sec->reloc_count == 0 |
| 3272 | || (sec->flags & SEC_CODE) == 0) |
| 3273 | return TRUE; |
| 3274 | |
| 3275 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 3276 | |
| 3277 | /* Get a copy of the native relocations. */ |
| 3278 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
| 3279 | link_info->keep_memory); |
| 3280 | if (internal_relocs == NULL) |
| 3281 | goto error_return; |
| 3282 | |
| 3283 | /* Scan for worst case alignment gap changes. Note that this logic |
| 3284 | is not ideal; what we should do is run this scan for every |
| 3285 | opcode/address range and adjust accordingly, but that's |
| 3286 | expensive. Worst case is that for an alignment of N bytes, we |
| 3287 | move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc |
| 3288 | all before it. Plus, this still doesn't cover cross-section |
| 3289 | jumps with section alignment. */ |
| 3290 | irelend = internal_relocs + sec->reloc_count; |
| 3291 | align_gap_adjustment = 0; |
| 3292 | for (irel = internal_relocs; irel < irelend; irel++) |
| 3293 | { |
| 3294 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN) |
| 3295 | { |
| 3296 | bfd_vma adj = 1 << irel->r_addend; |
| 3297 | bfd_vma aend = irel->r_offset; |
| 3298 | |
| 3299 | aend = BFD_ALIGN (aend, 1 << irel->r_addend); |
| 3300 | adj = 2 * adj - adj - 1; |
| 3301 | |
| 3302 | /* Record the biggest adjustmnet. Skip any alignment at the |
| 3303 | end of our section. */ |
| 3304 | if (align_gap_adjustment < adj |
| 3305 | && aend < sec->output_section->vma + sec->output_offset + sec->size) |
| 3306 | align_gap_adjustment = adj; |
| 3307 | } |
| 3308 | } |
| 3309 | |
| 3310 | /* Walk through them looking for relaxing opportunities. */ |
| 3311 | irelend = internal_relocs + sec->reloc_count; |
| 3312 | for (irel = internal_relocs; irel < irelend; irel++) |
| 3313 | { |
| 3314 | bfd_vma symval; |
| 3315 | bfd_signed_vma jump_offset; |
| 3316 | asection *sym_sec = NULL; |
| 3317 | struct elf32_mn10300_link_hash_entry *h = NULL; |
| 3318 | |
| 3319 | /* If this isn't something that can be relaxed, then ignore |
| 3320 | this reloc. */ |
| 3321 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE |
| 3322 | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8 |
| 3323 | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX) |
| 3324 | continue; |
| 3325 | |
| 3326 | /* Get the section contents if we haven't done so already. */ |
| 3327 | if (contents == NULL) |
| 3328 | { |
| 3329 | /* Get cached copy if it exists. */ |
| 3330 | if (elf_section_data (sec)->this_hdr.contents != NULL) |
| 3331 | contents = elf_section_data (sec)->this_hdr.contents; |
| 3332 | else |
| 3333 | { |
| 3334 | /* Go get them off disk. */ |
| 3335 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| 3336 | goto error_return; |
| 3337 | } |
| 3338 | } |
| 3339 | |
| 3340 | /* Read this BFD's symbols if we haven't done so already. */ |
| 3341 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| 3342 | { |
| 3343 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 3344 | if (isymbuf == NULL) |
| 3345 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| 3346 | symtab_hdr->sh_info, 0, |
| 3347 | NULL, NULL, NULL); |
| 3348 | if (isymbuf == NULL) |
| 3349 | goto error_return; |
| 3350 | } |
| 3351 | |
| 3352 | /* Get the value of the symbol referred to by the reloc. */ |
| 3353 | if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
| 3354 | { |
| 3355 | Elf_Internal_Sym *isym; |
| 3356 | const char *sym_name; |
| 3357 | char *new_name; |
| 3358 | |
| 3359 | /* A local symbol. */ |
| 3360 | isym = isymbuf + ELF32_R_SYM (irel->r_info); |
| 3361 | if (isym->st_shndx == SHN_UNDEF) |
| 3362 | sym_sec = bfd_und_section_ptr; |
| 3363 | else if (isym->st_shndx == SHN_ABS) |
| 3364 | sym_sec = bfd_abs_section_ptr; |
| 3365 | else if (isym->st_shndx == SHN_COMMON) |
| 3366 | sym_sec = bfd_com_section_ptr; |
| 3367 | else |
| 3368 | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| 3369 | |
| 3370 | sym_name = bfd_elf_string_from_elf_section (abfd, |
| 3371 | symtab_hdr->sh_link, |
| 3372 | isym->st_name); |
| 3373 | |
| 3374 | if ((sym_sec->flags & SEC_MERGE) |
| 3375 | && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| 3376 | { |
| 3377 | symval = isym->st_value; |
| 3378 | |
| 3379 | /* GAS may reduce relocations against symbols in SEC_MERGE |
| 3380 | sections to a relocation against the section symbol when |
| 3381 | the original addend was zero. When the reloc is against |
| 3382 | a section symbol we should include the addend in the |
| 3383 | offset passed to _bfd_merged_section_offset, since the |
| 3384 | location of interest is the original symbol. On the |
| 3385 | other hand, an access to "sym+addend" where "sym" is not |
| 3386 | a section symbol should not include the addend; Such an |
| 3387 | access is presumed to be an offset from "sym"; The |
| 3388 | location of interest is just "sym". */ |
| 3389 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| 3390 | symval += irel->r_addend; |
| 3391 | |
| 3392 | symval = _bfd_merged_section_offset (abfd, & sym_sec, |
| 3393 | elf_section_data (sym_sec)->sec_info, |
| 3394 | symval); |
| 3395 | |
| 3396 | if (ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
| 3397 | symval += irel->r_addend; |
| 3398 | |
| 3399 | symval += sym_sec->output_section->vma |
| 3400 | + sym_sec->output_offset - irel->r_addend; |
| 3401 | } |
| 3402 | else |
| 3403 | symval = (isym->st_value |
| 3404 | + sym_sec->output_section->vma |
| 3405 | + sym_sec->output_offset); |
| 3406 | |
| 3407 | /* Tack on an ID so we can uniquely identify this |
| 3408 | local symbol in the global hash table. */ |
| 3409 | new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10); |
| 3410 | if (new_name == NULL) |
| 3411 | goto error_return; |
| 3412 | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| 3413 | sym_name = new_name; |
| 3414 | |
| 3415 | h = (struct elf32_mn10300_link_hash_entry *) |
| 3416 | elf_link_hash_lookup (&hash_table->static_hash_table->root, |
| 3417 | sym_name, FALSE, FALSE, FALSE); |
| 3418 | free (new_name); |
| 3419 | } |
| 3420 | else |
| 3421 | { |
| 3422 | unsigned long indx; |
| 3423 | |
| 3424 | /* An external symbol. */ |
| 3425 | indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; |
| 3426 | h = (struct elf32_mn10300_link_hash_entry *) |
| 3427 | (elf_sym_hashes (abfd)[indx]); |
| 3428 | BFD_ASSERT (h != NULL); |
| 3429 | if (h->root.root.type != bfd_link_hash_defined |
| 3430 | && h->root.root.type != bfd_link_hash_defweak) |
| 3431 | /* This appears to be a reference to an undefined |
| 3432 | symbol. Just ignore it--it will be caught by the |
| 3433 | regular reloc processing. */ |
| 3434 | continue; |
| 3435 | |
| 3436 | /* Check for a reference to a discarded symbol and ignore it. */ |
| 3437 | if (h->root.root.u.def.section->output_section == NULL) |
| 3438 | continue; |
| 3439 | |
| 3440 | sym_sec = h->root.root.u.def.section->output_section; |
| 3441 | |
| 3442 | symval = (h->root.root.u.def.value |
| 3443 | + h->root.root.u.def.section->output_section->vma |
| 3444 | + h->root.root.u.def.section->output_offset); |
| 3445 | } |
| 3446 | |
| 3447 | /* For simplicity of coding, we are going to modify the section |
| 3448 | contents, the section relocs, and the BFD symbol table. We |
| 3449 | must tell the rest of the code not to free up this |
| 3450 | information. It would be possible to instead create a table |
| 3451 | of changes which have to be made, as is done in coff-mips.c; |
| 3452 | that would be more work, but would require less memory when |
| 3453 | the linker is run. */ |
| 3454 | |
| 3455 | /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative |
| 3456 | branch/call, also deal with "call" -> "calls" conversions and |
| 3457 | insertion of prologue data into "call" instructions. */ |
| 3458 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32 |
| 3459 | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32) |
| 3460 | { |
| 3461 | bfd_vma value = symval; |
| 3462 | |
| 3463 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32 |
| 3464 | && h != NULL |
| 3465 | && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL |
| 3466 | && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN |
| 3467 | && h->root.plt.offset != (bfd_vma) -1) |
| 3468 | { |
| 3469 | asection * splt; |
| 3470 | |
| 3471 | splt = hash_table->root.splt; |
| 3472 | value = ((splt->output_section->vma |
| 3473 | + splt->output_offset |
| 3474 | + h->root.plt.offset) |
| 3475 | - (sec->output_section->vma |
| 3476 | + sec->output_offset |
| 3477 | + irel->r_offset)); |
| 3478 | } |
| 3479 | |
| 3480 | /* If we've got a "call" instruction that needs to be turned |
| 3481 | into a "calls" instruction, do so now. It saves a byte. */ |
| 3482 | if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) |
| 3483 | { |
| 3484 | unsigned char code; |
| 3485 | |
| 3486 | /* Get the opcode. */ |
| 3487 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3488 | |
| 3489 | /* Make sure we're working with a "call" instruction! */ |
| 3490 | if (code == 0xdd) |
| 3491 | { |
| 3492 | /* Note that we've changed the relocs, section contents, |
| 3493 | etc. */ |
| 3494 | elf_section_data (sec)->relocs = internal_relocs; |
| 3495 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3496 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3497 | |
| 3498 | /* Fix the opcode. */ |
| 3499 | bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1); |
| 3500 | bfd_put_8 (abfd, 0xff, contents + irel->r_offset); |
| 3501 | |
| 3502 | /* Fix irel->r_offset and irel->r_addend. */ |
| 3503 | irel->r_offset += 1; |
| 3504 | irel->r_addend += 1; |
| 3505 | |
| 3506 | /* Delete one byte of data. */ |
| 3507 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3508 | irel->r_offset + 3, 1)) |
| 3509 | goto error_return; |
| 3510 | |
| 3511 | /* That will change things, so, we should relax again. |
| 3512 | Note that this is not required, and it may be slow. */ |
| 3513 | *again = TRUE; |
| 3514 | } |
| 3515 | } |
| 3516 | else if (h) |
| 3517 | { |
| 3518 | /* We've got a "call" instruction which needs some data |
| 3519 | from target function filled in. */ |
| 3520 | unsigned char code; |
| 3521 | |
| 3522 | /* Get the opcode. */ |
| 3523 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3524 | |
| 3525 | /* Insert data from the target function into the "call" |
| 3526 | instruction if needed. */ |
| 3527 | if (code == 0xdd) |
| 3528 | { |
| 3529 | bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4); |
| 3530 | bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, |
| 3531 | contents + irel->r_offset + 5); |
| 3532 | } |
| 3533 | } |
| 3534 | |
| 3535 | /* Deal with pc-relative gunk. */ |
| 3536 | value -= (sec->output_section->vma + sec->output_offset); |
| 3537 | value -= irel->r_offset; |
| 3538 | value += irel->r_addend; |
| 3539 | |
| 3540 | /* See if the value will fit in 16 bits, note the high value is |
| 3541 | 0x7fff + 2 as the target will be two bytes closer if we are |
| 3542 | able to relax, if it's in the same section. */ |
| 3543 | if (sec->output_section == sym_sec->output_section) |
| 3544 | jump_offset = 0x8001; |
| 3545 | else |
| 3546 | jump_offset = 0x7fff; |
| 3547 | |
| 3548 | /* Account for jumps across alignment boundaries using |
| 3549 | align_gap_adjustment. */ |
| 3550 | if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment |
| 3551 | && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment)) |
| 3552 | { |
| 3553 | unsigned char code; |
| 3554 | |
| 3555 | /* Get the opcode. */ |
| 3556 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3557 | |
| 3558 | if (code != 0xdc && code != 0xdd && code != 0xff) |
| 3559 | continue; |
| 3560 | |
| 3561 | /* Note that we've changed the relocs, section contents, etc. */ |
| 3562 | elf_section_data (sec)->relocs = internal_relocs; |
| 3563 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3564 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3565 | |
| 3566 | /* Fix the opcode. */ |
| 3567 | if (code == 0xdc) |
| 3568 | bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1); |
| 3569 | else if (code == 0xdd) |
| 3570 | bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1); |
| 3571 | else if (code == 0xff) |
| 3572 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| 3573 | |
| 3574 | /* Fix the relocation's type. */ |
| 3575 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 3576 | (ELF32_R_TYPE (irel->r_info) |
| 3577 | == (int) R_MN10300_PLT32) |
| 3578 | ? R_MN10300_PLT16 : |
| 3579 | R_MN10300_PCREL16); |
| 3580 | |
| 3581 | /* Delete two bytes of data. */ |
| 3582 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3583 | irel->r_offset + 1, 2)) |
| 3584 | goto error_return; |
| 3585 | |
| 3586 | /* That will change things, so, we should relax again. |
| 3587 | Note that this is not required, and it may be slow. */ |
| 3588 | *again = TRUE; |
| 3589 | } |
| 3590 | } |
| 3591 | |
| 3592 | /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative |
| 3593 | branch. */ |
| 3594 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16) |
| 3595 | { |
| 3596 | bfd_vma value = symval; |
| 3597 | |
| 3598 | /* If we've got a "call" instruction that needs to be turned |
| 3599 | into a "calls" instruction, do so now. It saves a byte. */ |
| 3600 | if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) |
| 3601 | { |
| 3602 | unsigned char code; |
| 3603 | |
| 3604 | /* Get the opcode. */ |
| 3605 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3606 | |
| 3607 | /* Make sure we're working with a "call" instruction! */ |
| 3608 | if (code == 0xcd) |
| 3609 | { |
| 3610 | /* Note that we've changed the relocs, section contents, |
| 3611 | etc. */ |
| 3612 | elf_section_data (sec)->relocs = internal_relocs; |
| 3613 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3614 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3615 | |
| 3616 | /* Fix the opcode. */ |
| 3617 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1); |
| 3618 | bfd_put_8 (abfd, 0xff, contents + irel->r_offset); |
| 3619 | |
| 3620 | /* Fix irel->r_offset and irel->r_addend. */ |
| 3621 | irel->r_offset += 1; |
| 3622 | irel->r_addend += 1; |
| 3623 | |
| 3624 | /* Delete one byte of data. */ |
| 3625 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3626 | irel->r_offset + 1, 1)) |
| 3627 | goto error_return; |
| 3628 | |
| 3629 | /* That will change things, so, we should relax again. |
| 3630 | Note that this is not required, and it may be slow. */ |
| 3631 | *again = TRUE; |
| 3632 | } |
| 3633 | } |
| 3634 | else if (h) |
| 3635 | { |
| 3636 | unsigned char code; |
| 3637 | |
| 3638 | /* Get the opcode. */ |
| 3639 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3640 | |
| 3641 | /* Insert data from the target function into the "call" |
| 3642 | instruction if needed. */ |
| 3643 | if (code == 0xcd) |
| 3644 | { |
| 3645 | bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2); |
| 3646 | bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, |
| 3647 | contents + irel->r_offset + 3); |
| 3648 | } |
| 3649 | } |
| 3650 | |
| 3651 | /* Deal with pc-relative gunk. */ |
| 3652 | value -= (sec->output_section->vma + sec->output_offset); |
| 3653 | value -= irel->r_offset; |
| 3654 | value += irel->r_addend; |
| 3655 | |
| 3656 | /* See if the value will fit in 8 bits, note the high value is |
| 3657 | 0x7f + 1 as the target will be one bytes closer if we are |
| 3658 | able to relax. */ |
| 3659 | if ((long) value < 0x80 && (long) value > -0x80) |
| 3660 | { |
| 3661 | unsigned char code; |
| 3662 | |
| 3663 | /* Get the opcode. */ |
| 3664 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3665 | |
| 3666 | if (code != 0xcc) |
| 3667 | continue; |
| 3668 | |
| 3669 | /* Note that we've changed the relocs, section contents, etc. */ |
| 3670 | elf_section_data (sec)->relocs = internal_relocs; |
| 3671 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3672 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3673 | |
| 3674 | /* Fix the opcode. */ |
| 3675 | bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1); |
| 3676 | |
| 3677 | /* Fix the relocation's type. */ |
| 3678 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 3679 | R_MN10300_PCREL8); |
| 3680 | |
| 3681 | /* Delete one byte of data. */ |
| 3682 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3683 | irel->r_offset + 1, 1)) |
| 3684 | goto error_return; |
| 3685 | |
| 3686 | /* That will change things, so, we should relax again. |
| 3687 | Note that this is not required, and it may be slow. */ |
| 3688 | *again = TRUE; |
| 3689 | } |
| 3690 | } |
| 3691 | |
| 3692 | /* Try to eliminate an unconditional 8 bit pc-relative branch |
| 3693 | which immediately follows a conditional 8 bit pc-relative |
| 3694 | branch around the unconditional branch. |
| 3695 | |
| 3696 | original: new: |
| 3697 | bCC lab1 bCC' lab2 |
| 3698 | bra lab2 |
| 3699 | lab1: lab1: |
| 3700 | |
| 3701 | This happens when the bCC can't reach lab2 at assembly time, |
| 3702 | but due to other relaxations it can reach at link time. */ |
| 3703 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8) |
| 3704 | { |
| 3705 | Elf_Internal_Rela *nrel; |
| 3706 | bfd_vma value = symval; |
| 3707 | unsigned char code; |
| 3708 | |
| 3709 | /* Deal with pc-relative gunk. */ |
| 3710 | value -= (sec->output_section->vma + sec->output_offset); |
| 3711 | value -= irel->r_offset; |
| 3712 | value += irel->r_addend; |
| 3713 | |
| 3714 | /* Do nothing if this reloc is the last byte in the section. */ |
| 3715 | if (irel->r_offset == sec->size) |
| 3716 | continue; |
| 3717 | |
| 3718 | /* See if the next instruction is an unconditional pc-relative |
| 3719 | branch, more often than not this test will fail, so we |
| 3720 | test it first to speed things up. */ |
| 3721 | code = bfd_get_8 (abfd, contents + irel->r_offset + 1); |
| 3722 | if (code != 0xca) |
| 3723 | continue; |
| 3724 | |
| 3725 | /* Also make sure the next relocation applies to the next |
| 3726 | instruction and that it's a pc-relative 8 bit branch. */ |
| 3727 | nrel = irel + 1; |
| 3728 | if (nrel == irelend |
| 3729 | || irel->r_offset + 2 != nrel->r_offset |
| 3730 | || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8) |
| 3731 | continue; |
| 3732 | |
| 3733 | /* Make sure our destination immediately follows the |
| 3734 | unconditional branch. */ |
| 3735 | if (symval != (sec->output_section->vma + sec->output_offset |
| 3736 | + irel->r_offset + 3)) |
| 3737 | continue; |
| 3738 | |
| 3739 | /* Now make sure we are a conditional branch. This may not |
| 3740 | be necessary, but why take the chance. |
| 3741 | |
| 3742 | Note these checks assume that R_MN10300_PCREL8 relocs |
| 3743 | only occur on bCC and bCCx insns. If they occured |
| 3744 | elsewhere, we'd need to know the start of this insn |
| 3745 | for this check to be accurate. */ |
| 3746 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 3747 | if (code != 0xc0 && code != 0xc1 && code != 0xc2 |
| 3748 | && code != 0xc3 && code != 0xc4 && code != 0xc5 |
| 3749 | && code != 0xc6 && code != 0xc7 && code != 0xc8 |
| 3750 | && code != 0xc9 && code != 0xe8 && code != 0xe9 |
| 3751 | && code != 0xea && code != 0xeb) |
| 3752 | continue; |
| 3753 | |
| 3754 | /* We also have to be sure there is no symbol/label |
| 3755 | at the unconditional branch. */ |
| 3756 | if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf, |
| 3757 | irel->r_offset + 1)) |
| 3758 | continue; |
| 3759 | |
| 3760 | /* Note that we've changed the relocs, section contents, etc. */ |
| 3761 | elf_section_data (sec)->relocs = internal_relocs; |
| 3762 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3763 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3764 | |
| 3765 | /* Reverse the condition of the first branch. */ |
| 3766 | switch (code) |
| 3767 | { |
| 3768 | case 0xc8: |
| 3769 | code = 0xc9; |
| 3770 | break; |
| 3771 | case 0xc9: |
| 3772 | code = 0xc8; |
| 3773 | break; |
| 3774 | case 0xc0: |
| 3775 | code = 0xc2; |
| 3776 | break; |
| 3777 | case 0xc2: |
| 3778 | code = 0xc0; |
| 3779 | break; |
| 3780 | case 0xc3: |
| 3781 | code = 0xc1; |
| 3782 | break; |
| 3783 | case 0xc1: |
| 3784 | code = 0xc3; |
| 3785 | break; |
| 3786 | case 0xc4: |
| 3787 | code = 0xc6; |
| 3788 | break; |
| 3789 | case 0xc6: |
| 3790 | code = 0xc4; |
| 3791 | break; |
| 3792 | case 0xc7: |
| 3793 | code = 0xc5; |
| 3794 | break; |
| 3795 | case 0xc5: |
| 3796 | code = 0xc7; |
| 3797 | break; |
| 3798 | case 0xe8: |
| 3799 | code = 0xe9; |
| 3800 | break; |
| 3801 | case 0x9d: |
| 3802 | code = 0xe8; |
| 3803 | break; |
| 3804 | case 0xea: |
| 3805 | code = 0xeb; |
| 3806 | break; |
| 3807 | case 0xeb: |
| 3808 | code = 0xea; |
| 3809 | break; |
| 3810 | } |
| 3811 | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| 3812 | |
| 3813 | /* Set the reloc type and symbol for the first branch |
| 3814 | from the second branch. */ |
| 3815 | irel->r_info = nrel->r_info; |
| 3816 | |
| 3817 | /* Make the reloc for the second branch a null reloc. */ |
| 3818 | nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info), |
| 3819 | R_MN10300_NONE); |
| 3820 | |
| 3821 | /* Delete two bytes of data. */ |
| 3822 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3823 | irel->r_offset + 1, 2)) |
| 3824 | goto error_return; |
| 3825 | |
| 3826 | /* That will change things, so, we should relax again. |
| 3827 | Note that this is not required, and it may be slow. */ |
| 3828 | *again = TRUE; |
| 3829 | } |
| 3830 | |
| 3831 | /* Try to turn a 24 immediate, displacement or absolute address |
| 3832 | into a 8 immediate, displacement or absolute address. */ |
| 3833 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24) |
| 3834 | { |
| 3835 | bfd_vma value = symval; |
| 3836 | value += irel->r_addend; |
| 3837 | |
| 3838 | /* See if the value will fit in 8 bits. */ |
| 3839 | if ((long) value < 0x7f && (long) value > -0x80) |
| 3840 | { |
| 3841 | unsigned char code; |
| 3842 | |
| 3843 | /* AM33 insns which have 24 operands are 6 bytes long and |
| 3844 | will have 0xfd as the first byte. */ |
| 3845 | |
| 3846 | /* Get the first opcode. */ |
| 3847 | code = bfd_get_8 (abfd, contents + irel->r_offset - 3); |
| 3848 | |
| 3849 | if (code == 0xfd) |
| 3850 | { |
| 3851 | /* Get the second opcode. */ |
| 3852 | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| 3853 | |
| 3854 | /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit |
| 3855 | equivalent instructions exists. */ |
| 3856 | if (code != 0x6b && code != 0x7b |
| 3857 | && code != 0x8b && code != 0x9b |
| 3858 | && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 |
| 3859 | || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b |
| 3860 | || (code & 0x0f) == 0x0e)) |
| 3861 | { |
| 3862 | /* Not safe if the high bit is on as relaxing may |
| 3863 | move the value out of high mem and thus not fit |
| 3864 | in a signed 8bit value. This is currently over |
| 3865 | conservative. */ |
| 3866 | if ((value & 0x80) == 0) |
| 3867 | { |
| 3868 | /* Note that we've changed the relocation contents, |
| 3869 | etc. */ |
| 3870 | elf_section_data (sec)->relocs = internal_relocs; |
| 3871 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3872 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3873 | |
| 3874 | /* Fix the opcode. */ |
| 3875 | bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3); |
| 3876 | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| 3877 | |
| 3878 | /* Fix the relocation's type. */ |
| 3879 | irel->r_info = |
| 3880 | ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 3881 | R_MN10300_8); |
| 3882 | |
| 3883 | /* Delete two bytes of data. */ |
| 3884 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3885 | irel->r_offset + 1, 2)) |
| 3886 | goto error_return; |
| 3887 | |
| 3888 | /* That will change things, so, we should relax |
| 3889 | again. Note that this is not required, and it |
| 3890 | may be slow. */ |
| 3891 | *again = TRUE; |
| 3892 | break; |
| 3893 | } |
| 3894 | } |
| 3895 | } |
| 3896 | } |
| 3897 | } |
| 3898 | |
| 3899 | /* Try to turn a 32bit immediate, displacement or absolute address |
| 3900 | into a 16bit immediate, displacement or absolute address. */ |
| 3901 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32 |
| 3902 | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32 |
| 3903 | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) |
| 3904 | { |
| 3905 | bfd_vma value = symval; |
| 3906 | |
| 3907 | if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32) |
| 3908 | { |
| 3909 | asection * sgot; |
| 3910 | |
| 3911 | sgot = hash_table->root.sgot; |
| 3912 | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32) |
| 3913 | { |
| 3914 | value = sgot->output_offset; |
| 3915 | |
| 3916 | if (h) |
| 3917 | value += h->root.got.offset; |
| 3918 | else |
| 3919 | value += (elf_local_got_offsets |
| 3920 | (abfd)[ELF32_R_SYM (irel->r_info)]); |
| 3921 | } |
| 3922 | else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) |
| 3923 | value -= sgot->output_section->vma; |
| 3924 | else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32) |
| 3925 | value = (sgot->output_section->vma |
| 3926 | - (sec->output_section->vma |
| 3927 | + sec->output_offset |
| 3928 | + irel->r_offset)); |
| 3929 | else |
| 3930 | abort (); |
| 3931 | } |
| 3932 | |
| 3933 | value += irel->r_addend; |
| 3934 | |
| 3935 | /* See if the value will fit in 24 bits. |
| 3936 | We allow any 16bit match here. We prune those we can't |
| 3937 | handle below. */ |
| 3938 | if ((long) value < 0x7fffff && (long) value > -0x800000) |
| 3939 | { |
| 3940 | unsigned char code; |
| 3941 | |
| 3942 | /* AM33 insns which have 32bit operands are 7 bytes long and |
| 3943 | will have 0xfe as the first byte. */ |
| 3944 | |
| 3945 | /* Get the first opcode. */ |
| 3946 | code = bfd_get_8 (abfd, contents + irel->r_offset - 3); |
| 3947 | |
| 3948 | if (code == 0xfe) |
| 3949 | { |
| 3950 | /* Get the second opcode. */ |
| 3951 | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| 3952 | |
| 3953 | /* All the am33 32 -> 24 relaxing possibilities. */ |
| 3954 | /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit |
| 3955 | equivalent instructions exists. */ |
| 3956 | if (code != 0x6b && code != 0x7b |
| 3957 | && code != 0x8b && code != 0x9b |
| 3958 | && (ELF32_R_TYPE (irel->r_info) |
| 3959 | != (int) R_MN10300_GOTPC32) |
| 3960 | && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 |
| 3961 | || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b |
| 3962 | || (code & 0x0f) == 0x0e)) |
| 3963 | { |
| 3964 | /* Not safe if the high bit is on as relaxing may |
| 3965 | move the value out of high mem and thus not fit |
| 3966 | in a signed 16bit value. This is currently over |
| 3967 | conservative. */ |
| 3968 | if ((value & 0x8000) == 0) |
| 3969 | { |
| 3970 | /* Note that we've changed the relocation contents, |
| 3971 | etc. */ |
| 3972 | elf_section_data (sec)->relocs = internal_relocs; |
| 3973 | elf_section_data (sec)->this_hdr.contents = contents; |
| 3974 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 3975 | |
| 3976 | /* Fix the opcode. */ |
| 3977 | bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3); |
| 3978 | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| 3979 | |
| 3980 | /* Fix the relocation's type. */ |
| 3981 | irel->r_info = |
| 3982 | ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 3983 | (ELF32_R_TYPE (irel->r_info) |
| 3984 | == (int) R_MN10300_GOTOFF32) |
| 3985 | ? R_MN10300_GOTOFF24 |
| 3986 | : (ELF32_R_TYPE (irel->r_info) |
| 3987 | == (int) R_MN10300_GOT32) |
| 3988 | ? R_MN10300_GOT24 : |
| 3989 | R_MN10300_24); |
| 3990 | |
| 3991 | /* Delete one byte of data. */ |
| 3992 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 3993 | irel->r_offset + 3, 1)) |
| 3994 | goto error_return; |
| 3995 | |
| 3996 | /* That will change things, so, we should relax |
| 3997 | again. Note that this is not required, and it |
| 3998 | may be slow. */ |
| 3999 | *again = TRUE; |
| 4000 | break; |
| 4001 | } |
| 4002 | } |
| 4003 | } |
| 4004 | } |
| 4005 | |
| 4006 | /* See if the value will fit in 16 bits. |
| 4007 | We allow any 16bit match here. We prune those we can't |
| 4008 | handle below. */ |
| 4009 | if ((long) value < 0x7fff && (long) value > -0x8000) |
| 4010 | { |
| 4011 | unsigned char code; |
| 4012 | |
| 4013 | /* Most insns which have 32bit operands are 6 bytes long; |
| 4014 | exceptions are pcrel insns and bit insns. |
| 4015 | |
| 4016 | We handle pcrel insns above. We don't bother trying |
| 4017 | to handle the bit insns here. |
| 4018 | |
| 4019 | The first byte of the remaining insns will be 0xfc. */ |
| 4020 | |
| 4021 | /* Get the first opcode. */ |
| 4022 | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| 4023 | |
| 4024 | if (code != 0xfc) |
| 4025 | continue; |
| 4026 | |
| 4027 | /* Get the second opcode. */ |
| 4028 | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| 4029 | |
| 4030 | if ((code & 0xf0) < 0x80) |
| 4031 | switch (code & 0xf0) |
| 4032 | { |
| 4033 | /* mov (d32,am),dn -> mov (d32,am),dn |
| 4034 | mov dm,(d32,am) -> mov dn,(d32,am) |
| 4035 | mov (d32,am),an -> mov (d32,am),an |
| 4036 | mov dm,(d32,am) -> mov dn,(d32,am) |
| 4037 | movbu (d32,am),dn -> movbu (d32,am),dn |
| 4038 | movbu dm,(d32,am) -> movbu dn,(d32,am) |
| 4039 | movhu (d32,am),dn -> movhu (d32,am),dn |
| 4040 | movhu dm,(d32,am) -> movhu dn,(d32,am) */ |
| 4041 | case 0x00: |
| 4042 | case 0x10: |
| 4043 | case 0x20: |
| 4044 | case 0x30: |
| 4045 | case 0x40: |
| 4046 | case 0x50: |
| 4047 | case 0x60: |
| 4048 | case 0x70: |
| 4049 | /* Not safe if the high bit is on as relaxing may |
| 4050 | move the value out of high mem and thus not fit |
| 4051 | in a signed 16bit value. */ |
| 4052 | if (code == 0xcc |
| 4053 | && (value & 0x8000)) |
| 4054 | continue; |
| 4055 | |
| 4056 | /* Note that we've changed the relocation contents, etc. */ |
| 4057 | elf_section_data (sec)->relocs = internal_relocs; |
| 4058 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4059 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4060 | |
| 4061 | /* Fix the opcode. */ |
| 4062 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| 4063 | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| 4064 | |
| 4065 | /* Fix the relocation's type. */ |
| 4066 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4067 | (ELF32_R_TYPE (irel->r_info) |
| 4068 | == (int) R_MN10300_GOTOFF32) |
| 4069 | ? R_MN10300_GOTOFF16 |
| 4070 | : (ELF32_R_TYPE (irel->r_info) |
| 4071 | == (int) R_MN10300_GOT32) |
| 4072 | ? R_MN10300_GOT16 |
| 4073 | : (ELF32_R_TYPE (irel->r_info) |
| 4074 | == (int) R_MN10300_GOTPC32) |
| 4075 | ? R_MN10300_GOTPC16 : |
| 4076 | R_MN10300_16); |
| 4077 | |
| 4078 | /* Delete two bytes of data. */ |
| 4079 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4080 | irel->r_offset + 2, 2)) |
| 4081 | goto error_return; |
| 4082 | |
| 4083 | /* That will change things, so, we should relax again. |
| 4084 | Note that this is not required, and it may be slow. */ |
| 4085 | *again = TRUE; |
| 4086 | break; |
| 4087 | } |
| 4088 | else if ((code & 0xf0) == 0x80 |
| 4089 | || (code & 0xf0) == 0x90) |
| 4090 | switch (code & 0xf3) |
| 4091 | { |
| 4092 | /* mov dn,(abs32) -> mov dn,(abs16) |
| 4093 | movbu dn,(abs32) -> movbu dn,(abs16) |
| 4094 | movhu dn,(abs32) -> movhu dn,(abs16) */ |
| 4095 | case 0x81: |
| 4096 | case 0x82: |
| 4097 | case 0x83: |
| 4098 | /* Note that we've changed the relocation contents, etc. */ |
| 4099 | elf_section_data (sec)->relocs = internal_relocs; |
| 4100 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4101 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4102 | |
| 4103 | if ((code & 0xf3) == 0x81) |
| 4104 | code = 0x01 + (code & 0x0c); |
| 4105 | else if ((code & 0xf3) == 0x82) |
| 4106 | code = 0x02 + (code & 0x0c); |
| 4107 | else if ((code & 0xf3) == 0x83) |
| 4108 | code = 0x03 + (code & 0x0c); |
| 4109 | else |
| 4110 | abort (); |
| 4111 | |
| 4112 | /* Fix the opcode. */ |
| 4113 | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| 4114 | |
| 4115 | /* Fix the relocation's type. */ |
| 4116 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4117 | (ELF32_R_TYPE (irel->r_info) |
| 4118 | == (int) R_MN10300_GOTOFF32) |
| 4119 | ? R_MN10300_GOTOFF16 |
| 4120 | : (ELF32_R_TYPE (irel->r_info) |
| 4121 | == (int) R_MN10300_GOT32) |
| 4122 | ? R_MN10300_GOT16 |
| 4123 | : (ELF32_R_TYPE (irel->r_info) |
| 4124 | == (int) R_MN10300_GOTPC32) |
| 4125 | ? R_MN10300_GOTPC16 : |
| 4126 | R_MN10300_16); |
| 4127 | |
| 4128 | /* The opcode got shorter too, so we have to fix the |
| 4129 | addend and offset too! */ |
| 4130 | irel->r_offset -= 1; |
| 4131 | |
| 4132 | /* Delete three bytes of data. */ |
| 4133 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4134 | irel->r_offset + 1, 3)) |
| 4135 | goto error_return; |
| 4136 | |
| 4137 | /* That will change things, so, we should relax again. |
| 4138 | Note that this is not required, and it may be slow. */ |
| 4139 | *again = TRUE; |
| 4140 | break; |
| 4141 | |
| 4142 | /* mov am,(abs32) -> mov am,(abs16) |
| 4143 | mov am,(d32,sp) -> mov am,(d16,sp) |
| 4144 | mov dm,(d32,sp) -> mov dm,(d32,sp) |
| 4145 | movbu dm,(d32,sp) -> movbu dm,(d32,sp) |
| 4146 | movhu dm,(d32,sp) -> movhu dm,(d32,sp) */ |
| 4147 | case 0x80: |
| 4148 | case 0x90: |
| 4149 | case 0x91: |
| 4150 | case 0x92: |
| 4151 | case 0x93: |
| 4152 | /* sp-based offsets are zero-extended. */ |
| 4153 | if (code >= 0x90 && code <= 0x93 |
| 4154 | && (long) value < 0) |
| 4155 | continue; |
| 4156 | |
| 4157 | /* Note that we've changed the relocation contents, etc. */ |
| 4158 | elf_section_data (sec)->relocs = internal_relocs; |
| 4159 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4160 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4161 | |
| 4162 | /* Fix the opcode. */ |
| 4163 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| 4164 | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| 4165 | |
| 4166 | /* Fix the relocation's type. */ |
| 4167 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4168 | (ELF32_R_TYPE (irel->r_info) |
| 4169 | == (int) R_MN10300_GOTOFF32) |
| 4170 | ? R_MN10300_GOTOFF16 |
| 4171 | : (ELF32_R_TYPE (irel->r_info) |
| 4172 | == (int) R_MN10300_GOT32) |
| 4173 | ? R_MN10300_GOT16 |
| 4174 | : (ELF32_R_TYPE (irel->r_info) |
| 4175 | == (int) R_MN10300_GOTPC32) |
| 4176 | ? R_MN10300_GOTPC16 : |
| 4177 | R_MN10300_16); |
| 4178 | |
| 4179 | /* Delete two bytes of data. */ |
| 4180 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4181 | irel->r_offset + 2, 2)) |
| 4182 | goto error_return; |
| 4183 | |
| 4184 | /* That will change things, so, we should relax again. |
| 4185 | Note that this is not required, and it may be slow. */ |
| 4186 | *again = TRUE; |
| 4187 | break; |
| 4188 | } |
| 4189 | else if ((code & 0xf0) < 0xf0) |
| 4190 | switch (code & 0xfc) |
| 4191 | { |
| 4192 | /* mov imm32,dn -> mov imm16,dn |
| 4193 | mov imm32,an -> mov imm16,an |
| 4194 | mov (abs32),dn -> mov (abs16),dn |
| 4195 | movbu (abs32),dn -> movbu (abs16),dn |
| 4196 | movhu (abs32),dn -> movhu (abs16),dn */ |
| 4197 | case 0xcc: |
| 4198 | case 0xdc: |
| 4199 | case 0xa4: |
| 4200 | case 0xa8: |
| 4201 | case 0xac: |
| 4202 | /* Not safe if the high bit is on as relaxing may |
| 4203 | move the value out of high mem and thus not fit |
| 4204 | in a signed 16bit value. */ |
| 4205 | if (code == 0xcc |
| 4206 | && (value & 0x8000)) |
| 4207 | continue; |
| 4208 | |
| 4209 | /* "mov imm16, an" zero-extends the immediate. */ |
| 4210 | if ((code & 0xfc) == 0xdc |
| 4211 | && (long) value < 0) |
| 4212 | continue; |
| 4213 | |
| 4214 | /* Note that we've changed the relocation contents, etc. */ |
| 4215 | elf_section_data (sec)->relocs = internal_relocs; |
| 4216 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4217 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4218 | |
| 4219 | if ((code & 0xfc) == 0xcc) |
| 4220 | code = 0x2c + (code & 0x03); |
| 4221 | else if ((code & 0xfc) == 0xdc) |
| 4222 | code = 0x24 + (code & 0x03); |
| 4223 | else if ((code & 0xfc) == 0xa4) |
| 4224 | code = 0x30 + (code & 0x03); |
| 4225 | else if ((code & 0xfc) == 0xa8) |
| 4226 | code = 0x34 + (code & 0x03); |
| 4227 | else if ((code & 0xfc) == 0xac) |
| 4228 | code = 0x38 + (code & 0x03); |
| 4229 | else |
| 4230 | abort (); |
| 4231 | |
| 4232 | /* Fix the opcode. */ |
| 4233 | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| 4234 | |
| 4235 | /* Fix the relocation's type. */ |
| 4236 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4237 | (ELF32_R_TYPE (irel->r_info) |
| 4238 | == (int) R_MN10300_GOTOFF32) |
| 4239 | ? R_MN10300_GOTOFF16 |
| 4240 | : (ELF32_R_TYPE (irel->r_info) |
| 4241 | == (int) R_MN10300_GOT32) |
| 4242 | ? R_MN10300_GOT16 |
| 4243 | : (ELF32_R_TYPE (irel->r_info) |
| 4244 | == (int) R_MN10300_GOTPC32) |
| 4245 | ? R_MN10300_GOTPC16 : |
| 4246 | R_MN10300_16); |
| 4247 | |
| 4248 | /* The opcode got shorter too, so we have to fix the |
| 4249 | addend and offset too! */ |
| 4250 | irel->r_offset -= 1; |
| 4251 | |
| 4252 | /* Delete three bytes of data. */ |
| 4253 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4254 | irel->r_offset + 1, 3)) |
| 4255 | goto error_return; |
| 4256 | |
| 4257 | /* That will change things, so, we should relax again. |
| 4258 | Note that this is not required, and it may be slow. */ |
| 4259 | *again = TRUE; |
| 4260 | break; |
| 4261 | |
| 4262 | /* mov (abs32),an -> mov (abs16),an |
| 4263 | mov (d32,sp),an -> mov (d16,sp),an |
| 4264 | mov (d32,sp),dn -> mov (d16,sp),dn |
| 4265 | movbu (d32,sp),dn -> movbu (d16,sp),dn |
| 4266 | movhu (d32,sp),dn -> movhu (d16,sp),dn |
| 4267 | add imm32,dn -> add imm16,dn |
| 4268 | cmp imm32,dn -> cmp imm16,dn |
| 4269 | add imm32,an -> add imm16,an |
| 4270 | cmp imm32,an -> cmp imm16,an |
| 4271 | and imm32,dn -> and imm16,dn |
| 4272 | or imm32,dn -> or imm16,dn |
| 4273 | xor imm32,dn -> xor imm16,dn |
| 4274 | btst imm32,dn -> btst imm16,dn */ |
| 4275 | |
| 4276 | case 0xa0: |
| 4277 | case 0xb0: |
| 4278 | case 0xb1: |
| 4279 | case 0xb2: |
| 4280 | case 0xb3: |
| 4281 | case 0xc0: |
| 4282 | case 0xc8: |
| 4283 | |
| 4284 | case 0xd0: |
| 4285 | case 0xd8: |
| 4286 | case 0xe0: |
| 4287 | case 0xe1: |
| 4288 | case 0xe2: |
| 4289 | case 0xe3: |
| 4290 | /* cmp imm16, an zero-extends the immediate. */ |
| 4291 | if (code == 0xdc |
| 4292 | && (long) value < 0) |
| 4293 | continue; |
| 4294 | |
| 4295 | /* So do sp-based offsets. */ |
| 4296 | if (code >= 0xb0 && code <= 0xb3 |
| 4297 | && (long) value < 0) |
| 4298 | continue; |
| 4299 | |
| 4300 | /* Note that we've changed the relocation contents, etc. */ |
| 4301 | elf_section_data (sec)->relocs = internal_relocs; |
| 4302 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4303 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4304 | |
| 4305 | /* Fix the opcode. */ |
| 4306 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| 4307 | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| 4308 | |
| 4309 | /* Fix the relocation's type. */ |
| 4310 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4311 | (ELF32_R_TYPE (irel->r_info) |
| 4312 | == (int) R_MN10300_GOTOFF32) |
| 4313 | ? R_MN10300_GOTOFF16 |
| 4314 | : (ELF32_R_TYPE (irel->r_info) |
| 4315 | == (int) R_MN10300_GOT32) |
| 4316 | ? R_MN10300_GOT16 |
| 4317 | : (ELF32_R_TYPE (irel->r_info) |
| 4318 | == (int) R_MN10300_GOTPC32) |
| 4319 | ? R_MN10300_GOTPC16 : |
| 4320 | R_MN10300_16); |
| 4321 | |
| 4322 | /* Delete two bytes of data. */ |
| 4323 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4324 | irel->r_offset + 2, 2)) |
| 4325 | goto error_return; |
| 4326 | |
| 4327 | /* That will change things, so, we should relax again. |
| 4328 | Note that this is not required, and it may be slow. */ |
| 4329 | *again = TRUE; |
| 4330 | break; |
| 4331 | } |
| 4332 | else if (code == 0xfe) |
| 4333 | { |
| 4334 | /* add imm32,sp -> add imm16,sp */ |
| 4335 | |
| 4336 | /* Note that we've changed the relocation contents, etc. */ |
| 4337 | elf_section_data (sec)->relocs = internal_relocs; |
| 4338 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4339 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4340 | |
| 4341 | /* Fix the opcode. */ |
| 4342 | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| 4343 | bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1); |
| 4344 | |
| 4345 | /* Fix the relocation's type. */ |
| 4346 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| 4347 | (ELF32_R_TYPE (irel->r_info) |
| 4348 | == (int) R_MN10300_GOT32) |
| 4349 | ? R_MN10300_GOT16 |
| 4350 | : (ELF32_R_TYPE (irel->r_info) |
| 4351 | == (int) R_MN10300_GOTOFF32) |
| 4352 | ? R_MN10300_GOTOFF16 |
| 4353 | : (ELF32_R_TYPE (irel->r_info) |
| 4354 | == (int) R_MN10300_GOTPC32) |
| 4355 | ? R_MN10300_GOTPC16 : |
| 4356 | R_MN10300_16); |
| 4357 | |
| 4358 | /* Delete two bytes of data. */ |
| 4359 | if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| 4360 | irel->r_offset + 2, 2)) |
| 4361 | goto error_return; |
| 4362 | |
| 4363 | /* That will change things, so, we should relax again. |
| 4364 | Note that this is not required, and it may be slow. */ |
| 4365 | *again = TRUE; |
| 4366 | break; |
| 4367 | } |
| 4368 | } |
| 4369 | } |
| 4370 | } |
| 4371 | |
| 4372 | if (isymbuf != NULL |
| 4373 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 4374 | { |
| 4375 | if (! link_info->keep_memory) |
| 4376 | free (isymbuf); |
| 4377 | else |
| 4378 | { |
| 4379 | /* Cache the symbols for elf_link_input_bfd. */ |
| 4380 | symtab_hdr->contents = (unsigned char *) isymbuf; |
| 4381 | } |
| 4382 | } |
| 4383 | |
| 4384 | if (contents != NULL |
| 4385 | && elf_section_data (sec)->this_hdr.contents != contents) |
| 4386 | { |
| 4387 | if (! link_info->keep_memory) |
| 4388 | free (contents); |
| 4389 | else |
| 4390 | { |
| 4391 | /* Cache the section contents for elf_link_input_bfd. */ |
| 4392 | elf_section_data (sec)->this_hdr.contents = contents; |
| 4393 | } |
| 4394 | } |
| 4395 | |
| 4396 | if (internal_relocs != NULL |
| 4397 | && elf_section_data (sec)->relocs != internal_relocs) |
| 4398 | free (internal_relocs); |
| 4399 | |
| 4400 | return TRUE; |
| 4401 | |
| 4402 | error_return: |
| 4403 | if (isymbuf != NULL |
| 4404 | && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 4405 | free (isymbuf); |
| 4406 | if (contents != NULL |
| 4407 | && elf_section_data (section)->this_hdr.contents != contents) |
| 4408 | free (contents); |
| 4409 | if (internal_relocs != NULL |
| 4410 | && elf_section_data (section)->relocs != internal_relocs) |
| 4411 | free (internal_relocs); |
| 4412 | |
| 4413 | return FALSE; |
| 4414 | } |
| 4415 | |
| 4416 | /* This is a version of bfd_generic_get_relocated_section_contents |
| 4417 | which uses mn10300_elf_relocate_section. */ |
| 4418 | |
| 4419 | static bfd_byte * |
| 4420 | mn10300_elf_get_relocated_section_contents (bfd *output_bfd, |
| 4421 | struct bfd_link_info *link_info, |
| 4422 | struct bfd_link_order *link_order, |
| 4423 | bfd_byte *data, |
| 4424 | bfd_boolean relocatable, |
| 4425 | asymbol **symbols) |
| 4426 | { |
| 4427 | Elf_Internal_Shdr *symtab_hdr; |
| 4428 | asection *input_section = link_order->u.indirect.section; |
| 4429 | bfd *input_bfd = input_section->owner; |
| 4430 | asection **sections = NULL; |
| 4431 | Elf_Internal_Rela *internal_relocs = NULL; |
| 4432 | Elf_Internal_Sym *isymbuf = NULL; |
| 4433 | |
| 4434 | /* We only need to handle the case of relaxing, or of having a |
| 4435 | particular set of section contents, specially. */ |
| 4436 | if (relocatable |
| 4437 | || elf_section_data (input_section)->this_hdr.contents == NULL) |
| 4438 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, |
| 4439 | link_order, data, |
| 4440 | relocatable, |
| 4441 | symbols); |
| 4442 | |
| 4443 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 4444 | |
| 4445 | memcpy (data, elf_section_data (input_section)->this_hdr.contents, |
| 4446 | (size_t) input_section->size); |
| 4447 | |
| 4448 | if ((input_section->flags & SEC_RELOC) != 0 |
| 4449 | && input_section->reloc_count > 0) |
| 4450 | { |
| 4451 | asection **secpp; |
| 4452 | Elf_Internal_Sym *isym, *isymend; |
| 4453 | bfd_size_type amt; |
| 4454 | |
| 4455 | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section, |
| 4456 | NULL, NULL, FALSE); |
| 4457 | if (internal_relocs == NULL) |
| 4458 | goto error_return; |
| 4459 | |
| 4460 | if (symtab_hdr->sh_info != 0) |
| 4461 | { |
| 4462 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| 4463 | if (isymbuf == NULL) |
| 4464 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| 4465 | symtab_hdr->sh_info, 0, |
| 4466 | NULL, NULL, NULL); |
| 4467 | if (isymbuf == NULL) |
| 4468 | goto error_return; |
| 4469 | } |
| 4470 | |
| 4471 | amt = symtab_hdr->sh_info; |
| 4472 | amt *= sizeof (asection *); |
| 4473 | sections = bfd_malloc (amt); |
| 4474 | if (sections == NULL && amt != 0) |
| 4475 | goto error_return; |
| 4476 | |
| 4477 | isymend = isymbuf + symtab_hdr->sh_info; |
| 4478 | for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) |
| 4479 | { |
| 4480 | asection *isec; |
| 4481 | |
| 4482 | if (isym->st_shndx == SHN_UNDEF) |
| 4483 | isec = bfd_und_section_ptr; |
| 4484 | else if (isym->st_shndx == SHN_ABS) |
| 4485 | isec = bfd_abs_section_ptr; |
| 4486 | else if (isym->st_shndx == SHN_COMMON) |
| 4487 | isec = bfd_com_section_ptr; |
| 4488 | else |
| 4489 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| 4490 | |
| 4491 | *secpp = isec; |
| 4492 | } |
| 4493 | |
| 4494 | if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd, |
| 4495 | input_section, data, internal_relocs, |
| 4496 | isymbuf, sections)) |
| 4497 | goto error_return; |
| 4498 | |
| 4499 | if (sections != NULL) |
| 4500 | free (sections); |
| 4501 | if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 4502 | free (isymbuf); |
| 4503 | if (internal_relocs != elf_section_data (input_section)->relocs) |
| 4504 | free (internal_relocs); |
| 4505 | } |
| 4506 | |
| 4507 | return data; |
| 4508 | |
| 4509 | error_return: |
| 4510 | if (sections != NULL) |
| 4511 | free (sections); |
| 4512 | if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) |
| 4513 | free (isymbuf); |
| 4514 | if (internal_relocs != NULL |
| 4515 | && internal_relocs != elf_section_data (input_section)->relocs) |
| 4516 | free (internal_relocs); |
| 4517 | return NULL; |
| 4518 | } |
| 4519 | |
| 4520 | /* Assorted hash table functions. */ |
| 4521 | |
| 4522 | /* Initialize an entry in the link hash table. */ |
| 4523 | |
| 4524 | /* Create an entry in an MN10300 ELF linker hash table. */ |
| 4525 | |
| 4526 | static struct bfd_hash_entry * |
| 4527 | elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry, |
| 4528 | struct bfd_hash_table *table, |
| 4529 | const char *string) |
| 4530 | { |
| 4531 | struct elf32_mn10300_link_hash_entry *ret = |
| 4532 | (struct elf32_mn10300_link_hash_entry *) entry; |
| 4533 | |
| 4534 | /* Allocate the structure if it has not already been allocated by a |
| 4535 | subclass. */ |
| 4536 | if (ret == NULL) |
| 4537 | ret = (struct elf32_mn10300_link_hash_entry *) |
| 4538 | bfd_hash_allocate (table, sizeof (* ret)); |
| 4539 | if (ret == NULL) |
| 4540 | return (struct bfd_hash_entry *) ret; |
| 4541 | |
| 4542 | /* Call the allocation method of the superclass. */ |
| 4543 | ret = (struct elf32_mn10300_link_hash_entry *) |
| 4544 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| 4545 | table, string); |
| 4546 | if (ret != NULL) |
| 4547 | { |
| 4548 | ret->direct_calls = 0; |
| 4549 | ret->stack_size = 0; |
| 4550 | ret->movm_args = 0; |
| 4551 | ret->movm_stack_size = 0; |
| 4552 | ret->flags = 0; |
| 4553 | ret->value = 0; |
| 4554 | ret->tls_type = GOT_UNKNOWN; |
| 4555 | } |
| 4556 | |
| 4557 | return (struct bfd_hash_entry *) ret; |
| 4558 | } |
| 4559 | |
| 4560 | static void |
| 4561 | _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info, |
| 4562 | struct elf_link_hash_entry * dir, |
| 4563 | struct elf_link_hash_entry * ind) |
| 4564 | { |
| 4565 | struct elf32_mn10300_link_hash_entry * edir; |
| 4566 | struct elf32_mn10300_link_hash_entry * eind; |
| 4567 | |
| 4568 | edir = elf_mn10300_hash_entry (dir); |
| 4569 | eind = elf_mn10300_hash_entry (ind); |
| 4570 | |
| 4571 | if (ind->root.type == bfd_link_hash_indirect |
| 4572 | && dir->got.refcount <= 0) |
| 4573 | { |
| 4574 | edir->tls_type = eind->tls_type; |
| 4575 | eind->tls_type = GOT_UNKNOWN; |
| 4576 | } |
| 4577 | edir->direct_calls = eind->direct_calls; |
| 4578 | edir->stack_size = eind->stack_size; |
| 4579 | edir->movm_args = eind->movm_args; |
| 4580 | edir->movm_stack_size = eind->movm_stack_size; |
| 4581 | edir->flags = eind->flags; |
| 4582 | |
| 4583 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| 4584 | } |
| 4585 | |
| 4586 | /* Destroy an mn10300 ELF linker hash table. */ |
| 4587 | |
| 4588 | static void |
| 4589 | elf32_mn10300_link_hash_table_free (bfd *obfd) |
| 4590 | { |
| 4591 | struct elf32_mn10300_link_hash_table *ret |
| 4592 | = (struct elf32_mn10300_link_hash_table *) obfd->link.hash; |
| 4593 | |
| 4594 | obfd->link.hash = &ret->static_hash_table->root.root; |
| 4595 | _bfd_elf_link_hash_table_free (obfd); |
| 4596 | obfd->is_linker_output = TRUE; |
| 4597 | obfd->link.hash = &ret->root.root; |
| 4598 | _bfd_elf_link_hash_table_free (obfd); |
| 4599 | } |
| 4600 | |
| 4601 | /* Create an mn10300 ELF linker hash table. */ |
| 4602 | |
| 4603 | static struct bfd_link_hash_table * |
| 4604 | elf32_mn10300_link_hash_table_create (bfd *abfd) |
| 4605 | { |
| 4606 | struct elf32_mn10300_link_hash_table *ret; |
| 4607 | bfd_size_type amt = sizeof (* ret); |
| 4608 | |
| 4609 | ret = bfd_zmalloc (amt); |
| 4610 | if (ret == NULL) |
| 4611 | return NULL; |
| 4612 | |
| 4613 | amt = sizeof (struct elf_link_hash_table); |
| 4614 | ret->static_hash_table = bfd_zmalloc (amt); |
| 4615 | if (ret->static_hash_table == NULL) |
| 4616 | { |
| 4617 | free (ret); |
| 4618 | return NULL; |
| 4619 | } |
| 4620 | |
| 4621 | if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd, |
| 4622 | elf32_mn10300_link_hash_newfunc, |
| 4623 | sizeof (struct elf32_mn10300_link_hash_entry), |
| 4624 | MN10300_ELF_DATA)) |
| 4625 | { |
| 4626 | free (ret->static_hash_table); |
| 4627 | free (ret); |
| 4628 | return NULL; |
| 4629 | } |
| 4630 | |
| 4631 | abfd->is_linker_output = FALSE; |
| 4632 | abfd->link.hash = NULL; |
| 4633 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| 4634 | elf32_mn10300_link_hash_newfunc, |
| 4635 | sizeof (struct elf32_mn10300_link_hash_entry), |
| 4636 | MN10300_ELF_DATA)) |
| 4637 | { |
| 4638 | abfd->is_linker_output = TRUE; |
| 4639 | abfd->link.hash = &ret->static_hash_table->root.root; |
| 4640 | _bfd_elf_link_hash_table_free (abfd); |
| 4641 | free (ret); |
| 4642 | return NULL; |
| 4643 | } |
| 4644 | ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free; |
| 4645 | |
| 4646 | ret->tls_ldm_got.offset = -1; |
| 4647 | |
| 4648 | return & ret->root.root; |
| 4649 | } |
| 4650 | |
| 4651 | static unsigned long |
| 4652 | elf_mn10300_mach (flagword flags) |
| 4653 | { |
| 4654 | switch (flags & EF_MN10300_MACH) |
| 4655 | { |
| 4656 | case E_MN10300_MACH_MN10300: |
| 4657 | default: |
| 4658 | return bfd_mach_mn10300; |
| 4659 | |
| 4660 | case E_MN10300_MACH_AM33: |
| 4661 | return bfd_mach_am33; |
| 4662 | |
| 4663 | case E_MN10300_MACH_AM33_2: |
| 4664 | return bfd_mach_am33_2; |
| 4665 | } |
| 4666 | } |
| 4667 | |
| 4668 | /* The final processing done just before writing out a MN10300 ELF object |
| 4669 | file. This gets the MN10300 architecture right based on the machine |
| 4670 | number. */ |
| 4671 | |
| 4672 | static void |
| 4673 | _bfd_mn10300_elf_final_write_processing (bfd *abfd, |
| 4674 | bfd_boolean linker ATTRIBUTE_UNUSED) |
| 4675 | { |
| 4676 | unsigned long val; |
| 4677 | |
| 4678 | switch (bfd_get_mach (abfd)) |
| 4679 | { |
| 4680 | default: |
| 4681 | case bfd_mach_mn10300: |
| 4682 | val = E_MN10300_MACH_MN10300; |
| 4683 | break; |
| 4684 | |
| 4685 | case bfd_mach_am33: |
| 4686 | val = E_MN10300_MACH_AM33; |
| 4687 | break; |
| 4688 | |
| 4689 | case bfd_mach_am33_2: |
| 4690 | val = E_MN10300_MACH_AM33_2; |
| 4691 | break; |
| 4692 | } |
| 4693 | |
| 4694 | elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH); |
| 4695 | elf_elfheader (abfd)->e_flags |= val; |
| 4696 | } |
| 4697 | |
| 4698 | static bfd_boolean |
| 4699 | _bfd_mn10300_elf_object_p (bfd *abfd) |
| 4700 | { |
| 4701 | bfd_default_set_arch_mach (abfd, bfd_arch_mn10300, |
| 4702 | elf_mn10300_mach (elf_elfheader (abfd)->e_flags)); |
| 4703 | return TRUE; |
| 4704 | } |
| 4705 | |
| 4706 | /* Merge backend specific data from an object file to the output |
| 4707 | object file when linking. */ |
| 4708 | |
| 4709 | static bfd_boolean |
| 4710 | _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| 4711 | { |
| 4712 | bfd *obfd = info->output_bfd; |
| 4713 | |
| 4714 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 4715 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 4716 | return TRUE; |
| 4717 | |
| 4718 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| 4719 | && bfd_get_mach (obfd) < bfd_get_mach (ibfd)) |
| 4720 | { |
| 4721 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| 4722 | bfd_get_mach (ibfd))) |
| 4723 | return FALSE; |
| 4724 | } |
| 4725 | |
| 4726 | return TRUE; |
| 4727 | } |
| 4728 | |
| 4729 | #define PLT0_ENTRY_SIZE 15 |
| 4730 | #define PLT_ENTRY_SIZE 20 |
| 4731 | #define PIC_PLT_ENTRY_SIZE 24 |
| 4732 | |
| 4733 | static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] = |
| 4734 | { |
| 4735 | 0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */ |
| 4736 | 0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */ |
| 4737 | 0xf0, 0xf4, /* jmp (a0) */ |
| 4738 | }; |
| 4739 | |
| 4740 | static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] = |
| 4741 | { |
| 4742 | 0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */ |
| 4743 | 0xf0, 0xf4, /* jmp (a0) */ |
| 4744 | 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ |
| 4745 | 0xdc, 0, 0, 0, 0, /* jmp .plt0 */ |
| 4746 | }; |
| 4747 | |
| 4748 | static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] = |
| 4749 | { |
| 4750 | 0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */ |
| 4751 | 0xf0, 0xf4, /* jmp (a0) */ |
| 4752 | 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ |
| 4753 | 0xf8, 0x22, 8, /* mov (8,a2),a0 */ |
| 4754 | 0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */ |
| 4755 | 0xf0, 0xf4, /* jmp (a0) */ |
| 4756 | }; |
| 4757 | |
| 4758 | /* Return size of the first PLT entry. */ |
| 4759 | #define elf_mn10300_sizeof_plt0(info) \ |
| 4760 | (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE) |
| 4761 | |
| 4762 | /* Return size of a PLT entry. */ |
| 4763 | #define elf_mn10300_sizeof_plt(info) \ |
| 4764 | (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE) |
| 4765 | |
| 4766 | /* Return offset of the PLT0 address in an absolute PLT entry. */ |
| 4767 | #define elf_mn10300_plt_plt0_offset(info) 16 |
| 4768 | |
| 4769 | /* Return offset of the linker in PLT0 entry. */ |
| 4770 | #define elf_mn10300_plt0_linker_offset(info) 2 |
| 4771 | |
| 4772 | /* Return offset of the GOT id in PLT0 entry. */ |
| 4773 | #define elf_mn10300_plt0_gotid_offset(info) 9 |
| 4774 | |
| 4775 | /* Return offset of the temporary in PLT entry. */ |
| 4776 | #define elf_mn10300_plt_temp_offset(info) 8 |
| 4777 | |
| 4778 | /* Return offset of the symbol in PLT entry. */ |
| 4779 | #define elf_mn10300_plt_symbol_offset(info) 2 |
| 4780 | |
| 4781 | /* Return offset of the relocation in PLT entry. */ |
| 4782 | #define elf_mn10300_plt_reloc_offset(info) 11 |
| 4783 | |
| 4784 | /* The name of the dynamic interpreter. This is put in the .interp |
| 4785 | section. */ |
| 4786 | |
| 4787 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| 4788 | |
| 4789 | /* Create dynamic sections when linking against a dynamic object. */ |
| 4790 | |
| 4791 | static bfd_boolean |
| 4792 | _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| 4793 | { |
| 4794 | flagword flags; |
| 4795 | asection * s; |
| 4796 | const struct elf_backend_data * bed = get_elf_backend_data (abfd); |
| 4797 | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| 4798 | int ptralign = 0; |
| 4799 | |
| 4800 | switch (bed->s->arch_size) |
| 4801 | { |
| 4802 | case 32: |
| 4803 | ptralign = 2; |
| 4804 | break; |
| 4805 | |
| 4806 | case 64: |
| 4807 | ptralign = 3; |
| 4808 | break; |
| 4809 | |
| 4810 | default: |
| 4811 | bfd_set_error (bfd_error_bad_value); |
| 4812 | return FALSE; |
| 4813 | } |
| 4814 | |
| 4815 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
| 4816 | .rel[a].bss sections. */ |
| 4817 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| 4818 | | SEC_LINKER_CREATED); |
| 4819 | |
| 4820 | s = bfd_make_section_anyway_with_flags (abfd, |
| 4821 | (bed->default_use_rela_p |
| 4822 | ? ".rela.plt" : ".rel.plt"), |
| 4823 | flags | SEC_READONLY); |
| 4824 | htab->root.srelplt = s; |
| 4825 | if (s == NULL |
| 4826 | || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| 4827 | return FALSE; |
| 4828 | |
| 4829 | if (! _bfd_mn10300_elf_create_got_section (abfd, info)) |
| 4830 | return FALSE; |
| 4831 | |
| 4832 | if (bed->want_dynbss) |
| 4833 | { |
| 4834 | /* The .dynbss section is a place to put symbols which are defined |
| 4835 | by dynamic objects, are referenced by regular objects, and are |
| 4836 | not functions. We must allocate space for them in the process |
| 4837 | image and use a R_*_COPY reloc to tell the dynamic linker to |
| 4838 | initialize them at run time. The linker script puts the .dynbss |
| 4839 | section into the .bss section of the final image. */ |
| 4840 | s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
| 4841 | SEC_ALLOC | SEC_LINKER_CREATED); |
| 4842 | if (s == NULL) |
| 4843 | return FALSE; |
| 4844 | |
| 4845 | /* The .rel[a].bss section holds copy relocs. This section is not |
| 4846 | normally needed. We need to create it here, though, so that the |
| 4847 | linker will map it to an output section. We can't just create it |
| 4848 | only if we need it, because we will not know whether we need it |
| 4849 | until we have seen all the input files, and the first time the |
| 4850 | main linker code calls BFD after examining all the input files |
| 4851 | (size_dynamic_sections) the input sections have already been |
| 4852 | mapped to the output sections. If the section turns out not to |
| 4853 | be needed, we can discard it later. We will never need this |
| 4854 | section when generating a shared object, since they do not use |
| 4855 | copy relocs. */ |
| 4856 | if (! bfd_link_pic (info)) |
| 4857 | { |
| 4858 | s = bfd_make_section_anyway_with_flags (abfd, |
| 4859 | (bed->default_use_rela_p |
| 4860 | ? ".rela.bss" : ".rel.bss"), |
| 4861 | flags | SEC_READONLY); |
| 4862 | if (s == NULL |
| 4863 | || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| 4864 | return FALSE; |
| 4865 | } |
| 4866 | } |
| 4867 | |
| 4868 | return TRUE; |
| 4869 | } |
| 4870 | \f |
| 4871 | /* Adjust a symbol defined by a dynamic object and referenced by a |
| 4872 | regular object. The current definition is in some section of the |
| 4873 | dynamic object, but we're not including those sections. We have to |
| 4874 | change the definition to something the rest of the link can |
| 4875 | understand. */ |
| 4876 | |
| 4877 | static bfd_boolean |
| 4878 | _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info, |
| 4879 | struct elf_link_hash_entry * h) |
| 4880 | { |
| 4881 | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| 4882 | bfd * dynobj; |
| 4883 | asection * s; |
| 4884 | |
| 4885 | dynobj = htab->root.dynobj; |
| 4886 | |
| 4887 | /* Make sure we know what is going on here. */ |
| 4888 | BFD_ASSERT (dynobj != NULL |
| 4889 | && (h->needs_plt |
| 4890 | || h->is_weakalias |
| 4891 | || (h->def_dynamic |
| 4892 | && h->ref_regular |
| 4893 | && !h->def_regular))); |
| 4894 | |
| 4895 | /* If this is a function, put it in the procedure linkage table. We |
| 4896 | will fill in the contents of the procedure linkage table later, |
| 4897 | when we know the address of the .got section. */ |
| 4898 | if (h->type == STT_FUNC |
| 4899 | || h->needs_plt) |
| 4900 | { |
| 4901 | if (! bfd_link_pic (info) |
| 4902 | && !h->def_dynamic |
| 4903 | && !h->ref_dynamic) |
| 4904 | { |
| 4905 | /* This case can occur if we saw a PLT reloc in an input |
| 4906 | file, but the symbol was never referred to by a dynamic |
| 4907 | object. In such a case, we don't actually need to build |
| 4908 | a procedure linkage table, and we can just do a REL32 |
| 4909 | reloc instead. */ |
| 4910 | BFD_ASSERT (h->needs_plt); |
| 4911 | return TRUE; |
| 4912 | } |
| 4913 | |
| 4914 | /* Make sure this symbol is output as a dynamic symbol. */ |
| 4915 | if (h->dynindx == -1) |
| 4916 | { |
| 4917 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 4918 | return FALSE; |
| 4919 | } |
| 4920 | |
| 4921 | s = htab->root.splt; |
| 4922 | BFD_ASSERT (s != NULL); |
| 4923 | |
| 4924 | /* If this is the first .plt entry, make room for the special |
| 4925 | first entry. */ |
| 4926 | if (s->size == 0) |
| 4927 | s->size += elf_mn10300_sizeof_plt0 (info); |
| 4928 | |
| 4929 | /* If this symbol is not defined in a regular file, and we are |
| 4930 | not generating a shared library, then set the symbol to this |
| 4931 | location in the .plt. This is required to make function |
| 4932 | pointers compare as equal between the normal executable and |
| 4933 | the shared library. */ |
| 4934 | if (! bfd_link_pic (info) |
| 4935 | && !h->def_regular) |
| 4936 | { |
| 4937 | h->root.u.def.section = s; |
| 4938 | h->root.u.def.value = s->size; |
| 4939 | } |
| 4940 | |
| 4941 | h->plt.offset = s->size; |
| 4942 | |
| 4943 | /* Make room for this entry. */ |
| 4944 | s->size += elf_mn10300_sizeof_plt (info); |
| 4945 | |
| 4946 | /* We also need to make an entry in the .got.plt section, which |
| 4947 | will be placed in the .got section by the linker script. */ |
| 4948 | s = htab->root.sgotplt; |
| 4949 | BFD_ASSERT (s != NULL); |
| 4950 | s->size += 4; |
| 4951 | |
| 4952 | /* We also need to make an entry in the .rela.plt section. */ |
| 4953 | s = htab->root.srelplt; |
| 4954 | BFD_ASSERT (s != NULL); |
| 4955 | s->size += sizeof (Elf32_External_Rela); |
| 4956 | |
| 4957 | return TRUE; |
| 4958 | } |
| 4959 | |
| 4960 | /* If this is a weak symbol, and there is a real definition, the |
| 4961 | processor independent code will have arranged for us to see the |
| 4962 | real definition first, and we can just use the same value. */ |
| 4963 | if (h->is_weakalias) |
| 4964 | { |
| 4965 | struct elf_link_hash_entry *def = weakdef (h); |
| 4966 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| 4967 | h->root.u.def.section = def->root.u.def.section; |
| 4968 | h->root.u.def.value = def->root.u.def.value; |
| 4969 | return TRUE; |
| 4970 | } |
| 4971 | |
| 4972 | /* This is a reference to a symbol defined by a dynamic object which |
| 4973 | is not a function. */ |
| 4974 | |
| 4975 | /* If we are creating a shared library, we must presume that the |
| 4976 | only references to the symbol are via the global offset table. |
| 4977 | For such cases we need not do anything here; the relocations will |
| 4978 | be handled correctly by relocate_section. */ |
| 4979 | if (bfd_link_pic (info)) |
| 4980 | return TRUE; |
| 4981 | |
| 4982 | /* If there are no references to this symbol that do not use the |
| 4983 | GOT, we don't need to generate a copy reloc. */ |
| 4984 | if (!h->non_got_ref) |
| 4985 | return TRUE; |
| 4986 | |
| 4987 | /* We must allocate the symbol in our .dynbss section, which will |
| 4988 | become part of the .bss section of the executable. There will be |
| 4989 | an entry for this symbol in the .dynsym section. The dynamic |
| 4990 | object will contain position independent code, so all references |
| 4991 | from the dynamic object to this symbol will go through the global |
| 4992 | offset table. The dynamic linker will use the .dynsym entry to |
| 4993 | determine the address it must put in the global offset table, so |
| 4994 | both the dynamic object and the regular object will refer to the |
| 4995 | same memory location for the variable. */ |
| 4996 | |
| 4997 | s = bfd_get_linker_section (dynobj, ".dynbss"); |
| 4998 | BFD_ASSERT (s != NULL); |
| 4999 | |
| 5000 | /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to |
| 5001 | copy the initial value out of the dynamic object and into the |
| 5002 | runtime process image. We need to remember the offset into the |
| 5003 | .rela.bss section we are going to use. */ |
| 5004 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| 5005 | { |
| 5006 | asection * srel; |
| 5007 | |
| 5008 | srel = bfd_get_linker_section (dynobj, ".rela.bss"); |
| 5009 | BFD_ASSERT (srel != NULL); |
| 5010 | srel->size += sizeof (Elf32_External_Rela); |
| 5011 | h->needs_copy = 1; |
| 5012 | } |
| 5013 | |
| 5014 | return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| 5015 | } |
| 5016 | |
| 5017 | /* Set the sizes of the dynamic sections. */ |
| 5018 | |
| 5019 | static bfd_boolean |
| 5020 | _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd, |
| 5021 | struct bfd_link_info * info) |
| 5022 | { |
| 5023 | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| 5024 | bfd * dynobj; |
| 5025 | asection * s; |
| 5026 | bfd_boolean plt; |
| 5027 | bfd_boolean relocs; |
| 5028 | bfd_boolean reltext; |
| 5029 | |
| 5030 | dynobj = htab->root.dynobj; |
| 5031 | BFD_ASSERT (dynobj != NULL); |
| 5032 | |
| 5033 | if (elf_hash_table (info)->dynamic_sections_created) |
| 5034 | { |
| 5035 | /* Set the contents of the .interp section to the interpreter. */ |
| 5036 | if (bfd_link_executable (info) && !info->nointerp) |
| 5037 | { |
| 5038 | s = bfd_get_linker_section (dynobj, ".interp"); |
| 5039 | BFD_ASSERT (s != NULL); |
| 5040 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| 5041 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| 5042 | } |
| 5043 | } |
| 5044 | else |
| 5045 | { |
| 5046 | /* We may have created entries in the .rela.got section. |
| 5047 | However, if we are not creating the dynamic sections, we will |
| 5048 | not actually use these entries. Reset the size of .rela.got, |
| 5049 | which will cause it to get stripped from the output file |
| 5050 | below. */ |
| 5051 | s = htab->root.sgot; |
| 5052 | if (s != NULL) |
| 5053 | s->size = 0; |
| 5054 | } |
| 5055 | |
| 5056 | if (htab->tls_ldm_got.refcount > 0) |
| 5057 | { |
| 5058 | s = htab->root.srelgot; |
| 5059 | BFD_ASSERT (s != NULL); |
| 5060 | s->size += sizeof (Elf32_External_Rela); |
| 5061 | } |
| 5062 | |
| 5063 | /* The check_relocs and adjust_dynamic_symbol entry points have |
| 5064 | determined the sizes of the various dynamic sections. Allocate |
| 5065 | memory for them. */ |
| 5066 | plt = FALSE; |
| 5067 | relocs = FALSE; |
| 5068 | reltext = FALSE; |
| 5069 | for (s = dynobj->sections; s != NULL; s = s->next) |
| 5070 | { |
| 5071 | const char * name; |
| 5072 | |
| 5073 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
| 5074 | continue; |
| 5075 | |
| 5076 | /* It's OK to base decisions on the section name, because none |
| 5077 | of the dynobj section names depend upon the input files. */ |
| 5078 | name = bfd_get_section_name (dynobj, s); |
| 5079 | |
| 5080 | if (streq (name, ".plt")) |
| 5081 | { |
| 5082 | /* Remember whether there is a PLT. */ |
| 5083 | plt = s->size != 0; |
| 5084 | } |
| 5085 | else if (CONST_STRNEQ (name, ".rela")) |
| 5086 | { |
| 5087 | if (s->size != 0) |
| 5088 | { |
| 5089 | asection * target; |
| 5090 | |
| 5091 | /* Remember whether there are any reloc sections other |
| 5092 | than .rela.plt. */ |
| 5093 | if (! streq (name, ".rela.plt")) |
| 5094 | { |
| 5095 | const char * outname; |
| 5096 | |
| 5097 | relocs = TRUE; |
| 5098 | |
| 5099 | /* If this relocation section applies to a read only |
| 5100 | section, then we probably need a DT_TEXTREL |
| 5101 | entry. The entries in the .rela.plt section |
| 5102 | really apply to the .got section, which we |
| 5103 | created ourselves and so know is not readonly. */ |
| 5104 | outname = bfd_get_section_name (output_bfd, |
| 5105 | s->output_section); |
| 5106 | target = bfd_get_section_by_name (output_bfd, outname + 5); |
| 5107 | if (target != NULL |
| 5108 | && (target->flags & SEC_READONLY) != 0 |
| 5109 | && (target->flags & SEC_ALLOC) != 0) |
| 5110 | reltext = TRUE; |
| 5111 | } |
| 5112 | |
| 5113 | /* We use the reloc_count field as a counter if we need |
| 5114 | to copy relocs into the output file. */ |
| 5115 | s->reloc_count = 0; |
| 5116 | } |
| 5117 | } |
| 5118 | else if (! CONST_STRNEQ (name, ".got") |
| 5119 | && ! streq (name, ".dynbss")) |
| 5120 | /* It's not one of our sections, so don't allocate space. */ |
| 5121 | continue; |
| 5122 | |
| 5123 | if (s->size == 0) |
| 5124 | { |
| 5125 | /* If we don't need this section, strip it from the |
| 5126 | output file. This is mostly to handle .rela.bss and |
| 5127 | .rela.plt. We must create both sections in |
| 5128 | create_dynamic_sections, because they must be created |
| 5129 | before the linker maps input sections to output |
| 5130 | sections. The linker does that before |
| 5131 | adjust_dynamic_symbol is called, and it is that |
| 5132 | function which decides whether anything needs to go |
| 5133 | into these sections. */ |
| 5134 | s->flags |= SEC_EXCLUDE; |
| 5135 | continue; |
| 5136 | } |
| 5137 | |
| 5138 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| 5139 | continue; |
| 5140 | |
| 5141 | /* Allocate memory for the section contents. We use bfd_zalloc |
| 5142 | here in case unused entries are not reclaimed before the |
| 5143 | section's contents are written out. This should not happen, |
| 5144 | but this way if it does, we get a R_MN10300_NONE reloc |
| 5145 | instead of garbage. */ |
| 5146 | s->contents = bfd_zalloc (dynobj, s->size); |
| 5147 | if (s->contents == NULL) |
| 5148 | return FALSE; |
| 5149 | } |
| 5150 | |
| 5151 | if (elf_hash_table (info)->dynamic_sections_created) |
| 5152 | { |
| 5153 | /* Add some entries to the .dynamic section. We fill in the |
| 5154 | values later, in _bfd_mn10300_elf_finish_dynamic_sections, |
| 5155 | but we must add the entries now so that we get the correct |
| 5156 | size for the .dynamic section. The DT_DEBUG entry is filled |
| 5157 | in by the dynamic linker and used by the debugger. */ |
| 5158 | if (! bfd_link_pic (info)) |
| 5159 | { |
| 5160 | if (!_bfd_elf_add_dynamic_entry (info, DT_DEBUG, 0)) |
| 5161 | return FALSE; |
| 5162 | } |
| 5163 | |
| 5164 | if (plt) |
| 5165 | { |
| 5166 | if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0) |
| 5167 | || !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0) |
| 5168 | || !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA) |
| 5169 | || !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0)) |
| 5170 | return FALSE; |
| 5171 | } |
| 5172 | |
| 5173 | if (relocs) |
| 5174 | { |
| 5175 | if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0) |
| 5176 | || !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0) |
| 5177 | || !_bfd_elf_add_dynamic_entry (info, DT_RELAENT, |
| 5178 | sizeof (Elf32_External_Rela))) |
| 5179 | return FALSE; |
| 5180 | } |
| 5181 | |
| 5182 | if (reltext) |
| 5183 | { |
| 5184 | if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0)) |
| 5185 | return FALSE; |
| 5186 | } |
| 5187 | } |
| 5188 | |
| 5189 | return TRUE; |
| 5190 | } |
| 5191 | |
| 5192 | /* Finish up dynamic symbol handling. We set the contents of various |
| 5193 | dynamic sections here. */ |
| 5194 | |
| 5195 | static bfd_boolean |
| 5196 | _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd, |
| 5197 | struct bfd_link_info * info, |
| 5198 | struct elf_link_hash_entry * h, |
| 5199 | Elf_Internal_Sym * sym) |
| 5200 | { |
| 5201 | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| 5202 | bfd * dynobj; |
| 5203 | |
| 5204 | dynobj = htab->root.dynobj; |
| 5205 | |
| 5206 | if (h->plt.offset != (bfd_vma) -1) |
| 5207 | { |
| 5208 | asection * splt; |
| 5209 | asection * sgot; |
| 5210 | asection * srel; |
| 5211 | bfd_vma plt_index; |
| 5212 | bfd_vma got_offset; |
| 5213 | Elf_Internal_Rela rel; |
| 5214 | |
| 5215 | /* This symbol has an entry in the procedure linkage table. Set |
| 5216 | it up. */ |
| 5217 | |
| 5218 | BFD_ASSERT (h->dynindx != -1); |
| 5219 | |
| 5220 | splt = htab->root.splt; |
| 5221 | sgot = htab->root.sgotplt; |
| 5222 | srel = htab->root.srelplt; |
| 5223 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); |
| 5224 | |
| 5225 | /* Get the index in the procedure linkage table which |
| 5226 | corresponds to this symbol. This is the index of this symbol |
| 5227 | in all the symbols for which we are making plt entries. The |
| 5228 | first entry in the procedure linkage table is reserved. */ |
| 5229 | plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info)) |
| 5230 | / elf_mn10300_sizeof_plt (info)); |
| 5231 | |
| 5232 | /* Get the offset into the .got table of the entry that |
| 5233 | corresponds to this function. Each .got entry is 4 bytes. |
| 5234 | The first three are reserved. */ |
| 5235 | got_offset = (plt_index + 3) * 4; |
| 5236 | |
| 5237 | /* Fill in the entry in the procedure linkage table. */ |
| 5238 | if (! bfd_link_pic (info)) |
| 5239 | { |
| 5240 | memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry, |
| 5241 | elf_mn10300_sizeof_plt (info)); |
| 5242 | bfd_put_32 (output_bfd, |
| 5243 | (sgot->output_section->vma |
| 5244 | + sgot->output_offset |
| 5245 | + got_offset), |
| 5246 | (splt->contents + h->plt.offset |
| 5247 | + elf_mn10300_plt_symbol_offset (info))); |
| 5248 | |
| 5249 | bfd_put_32 (output_bfd, |
| 5250 | (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)), |
| 5251 | (splt->contents + h->plt.offset |
| 5252 | + elf_mn10300_plt_plt0_offset (info))); |
| 5253 | } |
| 5254 | else |
| 5255 | { |
| 5256 | memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry, |
| 5257 | elf_mn10300_sizeof_plt (info)); |
| 5258 | |
| 5259 | bfd_put_32 (output_bfd, got_offset, |
| 5260 | (splt->contents + h->plt.offset |
| 5261 | + elf_mn10300_plt_symbol_offset (info))); |
| 5262 | } |
| 5263 | |
| 5264 | bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), |
| 5265 | (splt->contents + h->plt.offset |
| 5266 | + elf_mn10300_plt_reloc_offset (info))); |
| 5267 | |
| 5268 | /* Fill in the entry in the global offset table. */ |
| 5269 | bfd_put_32 (output_bfd, |
| 5270 | (splt->output_section->vma |
| 5271 | + splt->output_offset |
| 5272 | + h->plt.offset |
| 5273 | + elf_mn10300_plt_temp_offset (info)), |
| 5274 | sgot->contents + got_offset); |
| 5275 | |
| 5276 | /* Fill in the entry in the .rela.plt section. */ |
| 5277 | rel.r_offset = (sgot->output_section->vma |
| 5278 | + sgot->output_offset |
| 5279 | + got_offset); |
| 5280 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT); |
| 5281 | rel.r_addend = 0; |
| 5282 | bfd_elf32_swap_reloca_out (output_bfd, &rel, |
| 5283 | (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| 5284 | + plt_index)); |
| 5285 | |
| 5286 | if (!h->def_regular) |
| 5287 | /* Mark the symbol as undefined, rather than as defined in |
| 5288 | the .plt section. Leave the value alone. */ |
| 5289 | sym->st_shndx = SHN_UNDEF; |
| 5290 | } |
| 5291 | |
| 5292 | if (h->got.offset != (bfd_vma) -1) |
| 5293 | { |
| 5294 | asection * sgot; |
| 5295 | asection * srel; |
| 5296 | Elf_Internal_Rela rel; |
| 5297 | |
| 5298 | /* This symbol has an entry in the global offset table. Set it up. */ |
| 5299 | sgot = htab->root.sgot; |
| 5300 | srel = htab->root.srelgot; |
| 5301 | BFD_ASSERT (sgot != NULL && srel != NULL); |
| 5302 | |
| 5303 | rel.r_offset = (sgot->output_section->vma |
| 5304 | + sgot->output_offset |
| 5305 | + (h->got.offset & ~1)); |
| 5306 | |
| 5307 | switch (elf_mn10300_hash_entry (h)->tls_type) |
| 5308 | { |
| 5309 | case GOT_TLS_GD: |
| 5310 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| 5311 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4); |
| 5312 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD); |
| 5313 | rel.r_addend = 0; |
| 5314 | bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| 5315 | (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| 5316 | + srel->reloc_count)); |
| 5317 | ++ srel->reloc_count; |
| 5318 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF); |
| 5319 | rel.r_offset += 4; |
| 5320 | rel.r_addend = 0; |
| 5321 | break; |
| 5322 | |
| 5323 | case GOT_TLS_IE: |
| 5324 | /* We originally stored the addend in the GOT, but at this |
| 5325 | point, we want to move it to the reloc instead as that's |
| 5326 | where the dynamic linker wants it. */ |
| 5327 | rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset); |
| 5328 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| 5329 | if (h->dynindx == -1) |
| 5330 | rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); |
| 5331 | else |
| 5332 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF); |
| 5333 | break; |
| 5334 | |
| 5335 | default: |
| 5336 | /* If this is a -Bsymbolic link, and the symbol is defined |
| 5337 | locally, we just want to emit a RELATIVE reloc. Likewise if |
| 5338 | the symbol was forced to be local because of a version file. |
| 5339 | The entry in the global offset table will already have been |
| 5340 | initialized in the relocate_section function. */ |
| 5341 | if (bfd_link_pic (info) |
| 5342 | && (info->symbolic || h->dynindx == -1) |
| 5343 | && h->def_regular) |
| 5344 | { |
| 5345 | rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| 5346 | rel.r_addend = (h->root.u.def.value |
| 5347 | + h->root.u.def.section->output_section->vma |
| 5348 | + h->root.u.def.section->output_offset); |
| 5349 | } |
| 5350 | else |
| 5351 | { |
| 5352 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| 5353 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT); |
| 5354 | rel.r_addend = 0; |
| 5355 | } |
| 5356 | } |
| 5357 | |
| 5358 | if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE) |
| 5359 | { |
| 5360 | bfd_elf32_swap_reloca_out (output_bfd, &rel, |
| 5361 | (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| 5362 | + srel->reloc_count)); |
| 5363 | ++ srel->reloc_count; |
| 5364 | } |
| 5365 | } |
| 5366 | |
| 5367 | if (h->needs_copy) |
| 5368 | { |
| 5369 | asection * s; |
| 5370 | Elf_Internal_Rela rel; |
| 5371 | |
| 5372 | /* This symbol needs a copy reloc. Set it up. */ |
| 5373 | BFD_ASSERT (h->dynindx != -1 |
| 5374 | && (h->root.type == bfd_link_hash_defined |
| 5375 | || h->root.type == bfd_link_hash_defweak)); |
| 5376 | |
| 5377 | s = bfd_get_linker_section (dynobj, ".rela.bss"); |
| 5378 | BFD_ASSERT (s != NULL); |
| 5379 | |
| 5380 | rel.r_offset = (h->root.u.def.value |
| 5381 | + h->root.u.def.section->output_section->vma |
| 5382 | + h->root.u.def.section->output_offset); |
| 5383 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY); |
| 5384 | rel.r_addend = 0; |
| 5385 | bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| 5386 | (bfd_byte *) ((Elf32_External_Rela *) s->contents |
| 5387 | + s->reloc_count)); |
| 5388 | ++ s->reloc_count; |
| 5389 | } |
| 5390 | |
| 5391 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
| 5392 | if (h == elf_hash_table (info)->hdynamic |
| 5393 | || h == elf_hash_table (info)->hgot) |
| 5394 | sym->st_shndx = SHN_ABS; |
| 5395 | |
| 5396 | return TRUE; |
| 5397 | } |
| 5398 | |
| 5399 | /* Finish up the dynamic sections. */ |
| 5400 | |
| 5401 | static bfd_boolean |
| 5402 | _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd, |
| 5403 | struct bfd_link_info * info) |
| 5404 | { |
| 5405 | bfd * dynobj; |
| 5406 | asection * sgot; |
| 5407 | asection * sdyn; |
| 5408 | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| 5409 | |
| 5410 | dynobj = htab->root.dynobj; |
| 5411 | sgot = htab->root.sgotplt; |
| 5412 | BFD_ASSERT (sgot != NULL); |
| 5413 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| 5414 | |
| 5415 | if (elf_hash_table (info)->dynamic_sections_created) |
| 5416 | { |
| 5417 | asection * splt; |
| 5418 | Elf32_External_Dyn * dyncon; |
| 5419 | Elf32_External_Dyn * dynconend; |
| 5420 | |
| 5421 | BFD_ASSERT (sdyn != NULL); |
| 5422 | |
| 5423 | dyncon = (Elf32_External_Dyn *) sdyn->contents; |
| 5424 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
| 5425 | |
| 5426 | for (; dyncon < dynconend; dyncon++) |
| 5427 | { |
| 5428 | Elf_Internal_Dyn dyn; |
| 5429 | asection * s; |
| 5430 | |
| 5431 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); |
| 5432 | |
| 5433 | switch (dyn.d_tag) |
| 5434 | { |
| 5435 | default: |
| 5436 | break; |
| 5437 | |
| 5438 | case DT_PLTGOT: |
| 5439 | s = htab->root.sgot; |
| 5440 | goto get_vma; |
| 5441 | |
| 5442 | case DT_JMPREL: |
| 5443 | s = htab->root.srelplt; |
| 5444 | get_vma: |
| 5445 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| 5446 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
| 5447 | break; |
| 5448 | |
| 5449 | case DT_PLTRELSZ: |
| 5450 | s = htab->root.srelplt; |
| 5451 | dyn.d_un.d_val = s->size; |
| 5452 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
| 5453 | break; |
| 5454 | } |
| 5455 | } |
| 5456 | |
| 5457 | /* Fill in the first entry in the procedure linkage table. */ |
| 5458 | splt = htab->root.splt; |
| 5459 | if (splt && splt->size > 0) |
| 5460 | { |
| 5461 | if (bfd_link_pic (info)) |
| 5462 | { |
| 5463 | memcpy (splt->contents, elf_mn10300_pic_plt_entry, |
| 5464 | elf_mn10300_sizeof_plt (info)); |
| 5465 | } |
| 5466 | else |
| 5467 | { |
| 5468 | memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE); |
| 5469 | bfd_put_32 (output_bfd, |
| 5470 | sgot->output_section->vma + sgot->output_offset + 4, |
| 5471 | splt->contents + elf_mn10300_plt0_gotid_offset (info)); |
| 5472 | bfd_put_32 (output_bfd, |
| 5473 | sgot->output_section->vma + sgot->output_offset + 8, |
| 5474 | splt->contents + elf_mn10300_plt0_linker_offset (info)); |
| 5475 | } |
| 5476 | |
| 5477 | /* UnixWare sets the entsize of .plt to 4, although that doesn't |
| 5478 | really seem like the right value. */ |
| 5479 | elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; |
| 5480 | |
| 5481 | /* UnixWare sets the entsize of .plt to 4, but this is incorrect |
| 5482 | as it means that the size of the PLT0 section (15 bytes) is not |
| 5483 | a multiple of the sh_entsize. Some ELF tools flag this as an |
| 5484 | error. We could pad PLT0 to 16 bytes, but that would introduce |
| 5485 | compatibilty issues with previous toolchains, so instead we |
| 5486 | just set the entry size to 1. */ |
| 5487 | elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1; |
| 5488 | } |
| 5489 | } |
| 5490 | |
| 5491 | /* Fill in the first three entries in the global offset table. */ |
| 5492 | if (sgot->size > 0) |
| 5493 | { |
| 5494 | if (sdyn == NULL) |
| 5495 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); |
| 5496 | else |
| 5497 | bfd_put_32 (output_bfd, |
| 5498 | sdyn->output_section->vma + sdyn->output_offset, |
| 5499 | sgot->contents); |
| 5500 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); |
| 5501 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); |
| 5502 | } |
| 5503 | |
| 5504 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; |
| 5505 | |
| 5506 | return TRUE; |
| 5507 | } |
| 5508 | |
| 5509 | /* Classify relocation types, such that combreloc can sort them |
| 5510 | properly. */ |
| 5511 | |
| 5512 | static enum elf_reloc_type_class |
| 5513 | _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| 5514 | const asection *rel_sec ATTRIBUTE_UNUSED, |
| 5515 | const Elf_Internal_Rela *rela) |
| 5516 | { |
| 5517 | switch ((int) ELF32_R_TYPE (rela->r_info)) |
| 5518 | { |
| 5519 | case R_MN10300_RELATIVE: return reloc_class_relative; |
| 5520 | case R_MN10300_JMP_SLOT: return reloc_class_plt; |
| 5521 | case R_MN10300_COPY: return reloc_class_copy; |
| 5522 | default: return reloc_class_normal; |
| 5523 | } |
| 5524 | } |
| 5525 | |
| 5526 | /* Allocate space for an MN10300 extension to the bfd elf data structure. */ |
| 5527 | |
| 5528 | static bfd_boolean |
| 5529 | mn10300_elf_mkobject (bfd *abfd) |
| 5530 | { |
| 5531 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata), |
| 5532 | MN10300_ELF_DATA); |
| 5533 | } |
| 5534 | |
| 5535 | #define bfd_elf32_mkobject mn10300_elf_mkobject |
| 5536 | |
| 5537 | #ifndef ELF_ARCH |
| 5538 | #define TARGET_LITTLE_SYM mn10300_elf32_vec |
| 5539 | #define TARGET_LITTLE_NAME "elf32-mn10300" |
| 5540 | #define ELF_ARCH bfd_arch_mn10300 |
| 5541 | #define ELF_TARGET_ID MN10300_ELF_DATA |
| 5542 | #define ELF_MACHINE_CODE EM_MN10300 |
| 5543 | #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300 |
| 5544 | #define ELF_MAXPAGESIZE 0x1000 |
| 5545 | #endif |
| 5546 | |
| 5547 | #define elf_info_to_howto mn10300_info_to_howto |
| 5548 | #define elf_info_to_howto_rel NULL |
| 5549 | #define elf_backend_can_gc_sections 1 |
| 5550 | #define elf_backend_rela_normal 1 |
| 5551 | #define elf_backend_check_relocs mn10300_elf_check_relocs |
| 5552 | #define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook |
| 5553 | #define elf_backend_relocate_section mn10300_elf_relocate_section |
| 5554 | #define bfd_elf32_bfd_relax_section mn10300_elf_relax_section |
| 5555 | #define bfd_elf32_bfd_get_relocated_section_contents \ |
| 5556 | mn10300_elf_get_relocated_section_contents |
| 5557 | #define bfd_elf32_bfd_link_hash_table_create \ |
| 5558 | elf32_mn10300_link_hash_table_create |
| 5559 | |
| 5560 | #ifndef elf_symbol_leading_char |
| 5561 | #define elf_symbol_leading_char '_' |
| 5562 | #endif |
| 5563 | |
| 5564 | /* So we can set bits in e_flags. */ |
| 5565 | #define elf_backend_final_write_processing \ |
| 5566 | _bfd_mn10300_elf_final_write_processing |
| 5567 | #define elf_backend_object_p _bfd_mn10300_elf_object_p |
| 5568 | |
| 5569 | #define bfd_elf32_bfd_merge_private_bfd_data \ |
| 5570 | _bfd_mn10300_elf_merge_private_bfd_data |
| 5571 | |
| 5572 | #define elf_backend_can_gc_sections 1 |
| 5573 | #define elf_backend_create_dynamic_sections \ |
| 5574 | _bfd_mn10300_elf_create_dynamic_sections |
| 5575 | #define elf_backend_adjust_dynamic_symbol \ |
| 5576 | _bfd_mn10300_elf_adjust_dynamic_symbol |
| 5577 | #define elf_backend_size_dynamic_sections \ |
| 5578 | _bfd_mn10300_elf_size_dynamic_sections |
| 5579 | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
| 5580 | #define elf_backend_finish_dynamic_symbol \ |
| 5581 | _bfd_mn10300_elf_finish_dynamic_symbol |
| 5582 | #define elf_backend_finish_dynamic_sections \ |
| 5583 | _bfd_mn10300_elf_finish_dynamic_sections |
| 5584 | #define elf_backend_copy_indirect_symbol \ |
| 5585 | _bfd_mn10300_copy_indirect_symbol |
| 5586 | #define elf_backend_reloc_type_class \ |
| 5587 | _bfd_mn10300_elf_reloc_type_class |
| 5588 | |
| 5589 | #define elf_backend_want_got_plt 1 |
| 5590 | #define elf_backend_plt_readonly 1 |
| 5591 | #define elf_backend_want_plt_sym 0 |
| 5592 | #define elf_backend_got_header_size 12 |
| 5593 | #define elf_backend_dtrel_excludes_plt 1 |
| 5594 | |
| 5595 | #include "elf32-target.h" |