| 1 | /* ELF executable support for BFD. |
| 2 | Copyright 1993, 94, 95, 96, 97, 98, 99, 2000 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of BFD, the Binary File Descriptor library. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify |
| 7 | it under the terms of the GNU General Public License as published by |
| 8 | the Free Software Foundation; either version 2 of the License, or |
| 9 | (at your option) any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | GNU General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with this program; if not, write to the Free Software |
| 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| 19 | |
| 20 | /* |
| 21 | |
| 22 | SECTION |
| 23 | ELF backends |
| 24 | |
| 25 | BFD support for ELF formats is being worked on. |
| 26 | Currently, the best supported back ends are for sparc and i386 |
| 27 | (running svr4 or Solaris 2). |
| 28 | |
| 29 | Documentation of the internals of the support code still needs |
| 30 | to be written. The code is changing quickly enough that we |
| 31 | haven't bothered yet. |
| 32 | */ |
| 33 | |
| 34 | /* For sparc64-cross-sparc32. */ |
| 35 | #define _SYSCALL32 |
| 36 | #include "bfd.h" |
| 37 | #include "sysdep.h" |
| 38 | #include "bfdlink.h" |
| 39 | #include "libbfd.h" |
| 40 | #define ARCH_SIZE 0 |
| 41 | #include "elf-bfd.h" |
| 42 | |
| 43 | static INLINE struct elf_segment_map *make_mapping |
| 44 | PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean)); |
| 45 | static boolean map_sections_to_segments PARAMS ((bfd *)); |
| 46 | static int elf_sort_sections PARAMS ((const PTR, const PTR)); |
| 47 | static boolean assign_file_positions_for_segments PARAMS ((bfd *)); |
| 48 | static boolean assign_file_positions_except_relocs PARAMS ((bfd *)); |
| 49 | static boolean prep_headers PARAMS ((bfd *)); |
| 50 | static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int)); |
| 51 | static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *)); |
| 52 | static char *elf_read PARAMS ((bfd *, long, unsigned int)); |
| 53 | static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); |
| 54 | static boolean assign_section_numbers PARAMS ((bfd *)); |
| 55 | static INLINE int sym_is_global PARAMS ((bfd *, asymbol *)); |
| 56 | static boolean elf_map_symbols PARAMS ((bfd *)); |
| 57 | static bfd_size_type get_program_header_size PARAMS ((bfd *)); |
| 58 | static boolean elfcore_read_notes PARAMS ((bfd *, bfd_vma, bfd_vma)); |
| 59 | |
| 60 | /* Swap version information in and out. The version information is |
| 61 | currently size independent. If that ever changes, this code will |
| 62 | need to move into elfcode.h. */ |
| 63 | |
| 64 | /* Swap in a Verdef structure. */ |
| 65 | |
| 66 | void |
| 67 | _bfd_elf_swap_verdef_in (abfd, src, dst) |
| 68 | bfd *abfd; |
| 69 | const Elf_External_Verdef *src; |
| 70 | Elf_Internal_Verdef *dst; |
| 71 | { |
| 72 | dst->vd_version = bfd_h_get_16 (abfd, src->vd_version); |
| 73 | dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags); |
| 74 | dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx); |
| 75 | dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt); |
| 76 | dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash); |
| 77 | dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux); |
| 78 | dst->vd_next = bfd_h_get_32 (abfd, src->vd_next); |
| 79 | } |
| 80 | |
| 81 | /* Swap out a Verdef structure. */ |
| 82 | |
| 83 | void |
| 84 | _bfd_elf_swap_verdef_out (abfd, src, dst) |
| 85 | bfd *abfd; |
| 86 | const Elf_Internal_Verdef *src; |
| 87 | Elf_External_Verdef *dst; |
| 88 | { |
| 89 | bfd_h_put_16 (abfd, src->vd_version, dst->vd_version); |
| 90 | bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags); |
| 91 | bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx); |
| 92 | bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt); |
| 93 | bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash); |
| 94 | bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux); |
| 95 | bfd_h_put_32 (abfd, src->vd_next, dst->vd_next); |
| 96 | } |
| 97 | |
| 98 | /* Swap in a Verdaux structure. */ |
| 99 | |
| 100 | void |
| 101 | _bfd_elf_swap_verdaux_in (abfd, src, dst) |
| 102 | bfd *abfd; |
| 103 | const Elf_External_Verdaux *src; |
| 104 | Elf_Internal_Verdaux *dst; |
| 105 | { |
| 106 | dst->vda_name = bfd_h_get_32 (abfd, src->vda_name); |
| 107 | dst->vda_next = bfd_h_get_32 (abfd, src->vda_next); |
| 108 | } |
| 109 | |
| 110 | /* Swap out a Verdaux structure. */ |
| 111 | |
| 112 | void |
| 113 | _bfd_elf_swap_verdaux_out (abfd, src, dst) |
| 114 | bfd *abfd; |
| 115 | const Elf_Internal_Verdaux *src; |
| 116 | Elf_External_Verdaux *dst; |
| 117 | { |
| 118 | bfd_h_put_32 (abfd, src->vda_name, dst->vda_name); |
| 119 | bfd_h_put_32 (abfd, src->vda_next, dst->vda_next); |
| 120 | } |
| 121 | |
| 122 | /* Swap in a Verneed structure. */ |
| 123 | |
| 124 | void |
| 125 | _bfd_elf_swap_verneed_in (abfd, src, dst) |
| 126 | bfd *abfd; |
| 127 | const Elf_External_Verneed *src; |
| 128 | Elf_Internal_Verneed *dst; |
| 129 | { |
| 130 | dst->vn_version = bfd_h_get_16 (abfd, src->vn_version); |
| 131 | dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt); |
| 132 | dst->vn_file = bfd_h_get_32 (abfd, src->vn_file); |
| 133 | dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux); |
| 134 | dst->vn_next = bfd_h_get_32 (abfd, src->vn_next); |
| 135 | } |
| 136 | |
| 137 | /* Swap out a Verneed structure. */ |
| 138 | |
| 139 | void |
| 140 | _bfd_elf_swap_verneed_out (abfd, src, dst) |
| 141 | bfd *abfd; |
| 142 | const Elf_Internal_Verneed *src; |
| 143 | Elf_External_Verneed *dst; |
| 144 | { |
| 145 | bfd_h_put_16 (abfd, src->vn_version, dst->vn_version); |
| 146 | bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt); |
| 147 | bfd_h_put_32 (abfd, src->vn_file, dst->vn_file); |
| 148 | bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux); |
| 149 | bfd_h_put_32 (abfd, src->vn_next, dst->vn_next); |
| 150 | } |
| 151 | |
| 152 | /* Swap in a Vernaux structure. */ |
| 153 | |
| 154 | void |
| 155 | _bfd_elf_swap_vernaux_in (abfd, src, dst) |
| 156 | bfd *abfd; |
| 157 | const Elf_External_Vernaux *src; |
| 158 | Elf_Internal_Vernaux *dst; |
| 159 | { |
| 160 | dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash); |
| 161 | dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags); |
| 162 | dst->vna_other = bfd_h_get_16 (abfd, src->vna_other); |
| 163 | dst->vna_name = bfd_h_get_32 (abfd, src->vna_name); |
| 164 | dst->vna_next = bfd_h_get_32 (abfd, src->vna_next); |
| 165 | } |
| 166 | |
| 167 | /* Swap out a Vernaux structure. */ |
| 168 | |
| 169 | void |
| 170 | _bfd_elf_swap_vernaux_out (abfd, src, dst) |
| 171 | bfd *abfd; |
| 172 | const Elf_Internal_Vernaux *src; |
| 173 | Elf_External_Vernaux *dst; |
| 174 | { |
| 175 | bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash); |
| 176 | bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags); |
| 177 | bfd_h_put_16 (abfd, src->vna_other, dst->vna_other); |
| 178 | bfd_h_put_32 (abfd, src->vna_name, dst->vna_name); |
| 179 | bfd_h_put_32 (abfd, src->vna_next, dst->vna_next); |
| 180 | } |
| 181 | |
| 182 | /* Swap in a Versym structure. */ |
| 183 | |
| 184 | void |
| 185 | _bfd_elf_swap_versym_in (abfd, src, dst) |
| 186 | bfd *abfd; |
| 187 | const Elf_External_Versym *src; |
| 188 | Elf_Internal_Versym *dst; |
| 189 | { |
| 190 | dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers); |
| 191 | } |
| 192 | |
| 193 | /* Swap out a Versym structure. */ |
| 194 | |
| 195 | void |
| 196 | _bfd_elf_swap_versym_out (abfd, src, dst) |
| 197 | bfd *abfd; |
| 198 | const Elf_Internal_Versym *src; |
| 199 | Elf_External_Versym *dst; |
| 200 | { |
| 201 | bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers); |
| 202 | } |
| 203 | |
| 204 | /* Standard ELF hash function. Do not change this function; you will |
| 205 | cause invalid hash tables to be generated. */ |
| 206 | |
| 207 | unsigned long |
| 208 | bfd_elf_hash (namearg) |
| 209 | const char *namearg; |
| 210 | { |
| 211 | const unsigned char *name = (const unsigned char *) namearg; |
| 212 | unsigned long h = 0; |
| 213 | unsigned long g; |
| 214 | int ch; |
| 215 | |
| 216 | while ((ch = *name++) != '\0') |
| 217 | { |
| 218 | h = (h << 4) + ch; |
| 219 | if ((g = (h & 0xf0000000)) != 0) |
| 220 | { |
| 221 | h ^= g >> 24; |
| 222 | /* The ELF ABI says `h &= ~g', but this is equivalent in |
| 223 | this case and on some machines one insn instead of two. */ |
| 224 | h ^= g; |
| 225 | } |
| 226 | } |
| 227 | return h; |
| 228 | } |
| 229 | |
| 230 | /* Read a specified number of bytes at a specified offset in an ELF |
| 231 | file, into a newly allocated buffer, and return a pointer to the |
| 232 | buffer. */ |
| 233 | |
| 234 | static char * |
| 235 | elf_read (abfd, offset, size) |
| 236 | bfd *abfd; |
| 237 | long offset; |
| 238 | unsigned int size; |
| 239 | { |
| 240 | char *buf; |
| 241 | |
| 242 | if ((buf = bfd_alloc (abfd, size)) == NULL) |
| 243 | return NULL; |
| 244 | if (bfd_seek (abfd, offset, SEEK_SET) == -1) |
| 245 | return NULL; |
| 246 | if (bfd_read ((PTR) buf, size, 1, abfd) != size) |
| 247 | { |
| 248 | if (bfd_get_error () != bfd_error_system_call) |
| 249 | bfd_set_error (bfd_error_file_truncated); |
| 250 | return NULL; |
| 251 | } |
| 252 | return buf; |
| 253 | } |
| 254 | |
| 255 | boolean |
| 256 | bfd_elf_mkobject (abfd) |
| 257 | bfd *abfd; |
| 258 | { |
| 259 | /* This just does initialization. */ |
| 260 | /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ |
| 261 | elf_tdata (abfd) = (struct elf_obj_tdata *) |
| 262 | bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); |
| 263 | if (elf_tdata (abfd) == 0) |
| 264 | return false; |
| 265 | /* Since everything is done at close time, do we need any |
| 266 | initialization? */ |
| 267 | |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | boolean |
| 272 | bfd_elf_mkcorefile (abfd) |
| 273 | bfd *abfd; |
| 274 | { |
| 275 | /* I think this can be done just like an object file. */ |
| 276 | return bfd_elf_mkobject (abfd); |
| 277 | } |
| 278 | |
| 279 | char * |
| 280 | bfd_elf_get_str_section (abfd, shindex) |
| 281 | bfd *abfd; |
| 282 | unsigned int shindex; |
| 283 | { |
| 284 | Elf_Internal_Shdr **i_shdrp; |
| 285 | char *shstrtab = NULL; |
| 286 | unsigned int offset; |
| 287 | unsigned int shstrtabsize; |
| 288 | |
| 289 | i_shdrp = elf_elfsections (abfd); |
| 290 | if (i_shdrp == 0 || i_shdrp[shindex] == 0) |
| 291 | return 0; |
| 292 | |
| 293 | shstrtab = (char *) i_shdrp[shindex]->contents; |
| 294 | if (shstrtab == NULL) |
| 295 | { |
| 296 | /* No cached one, attempt to read, and cache what we read. */ |
| 297 | offset = i_shdrp[shindex]->sh_offset; |
| 298 | shstrtabsize = i_shdrp[shindex]->sh_size; |
| 299 | shstrtab = elf_read (abfd, offset, shstrtabsize); |
| 300 | i_shdrp[shindex]->contents = (PTR) shstrtab; |
| 301 | } |
| 302 | return shstrtab; |
| 303 | } |
| 304 | |
| 305 | char * |
| 306 | bfd_elf_string_from_elf_section (abfd, shindex, strindex) |
| 307 | bfd *abfd; |
| 308 | unsigned int shindex; |
| 309 | unsigned int strindex; |
| 310 | { |
| 311 | Elf_Internal_Shdr *hdr; |
| 312 | |
| 313 | if (strindex == 0) |
| 314 | return ""; |
| 315 | |
| 316 | hdr = elf_elfsections (abfd)[shindex]; |
| 317 | |
| 318 | if (hdr->contents == NULL |
| 319 | && bfd_elf_get_str_section (abfd, shindex) == NULL) |
| 320 | return NULL; |
| 321 | |
| 322 | if (strindex >= hdr->sh_size) |
| 323 | { |
| 324 | (*_bfd_error_handler) |
| 325 | (_("%s: invalid string offset %u >= %lu for section `%s'"), |
| 326 | bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size, |
| 327 | ((shindex == elf_elfheader(abfd)->e_shstrndx |
| 328 | && strindex == hdr->sh_name) |
| 329 | ? ".shstrtab" |
| 330 | : elf_string_from_elf_strtab (abfd, hdr->sh_name))); |
| 331 | return ""; |
| 332 | } |
| 333 | |
| 334 | return ((char *) hdr->contents) + strindex; |
| 335 | } |
| 336 | |
| 337 | /* Make a BFD section from an ELF section. We store a pointer to the |
| 338 | BFD section in the bfd_section field of the header. */ |
| 339 | |
| 340 | boolean |
| 341 | _bfd_elf_make_section_from_shdr (abfd, hdr, name) |
| 342 | bfd *abfd; |
| 343 | Elf_Internal_Shdr *hdr; |
| 344 | const char *name; |
| 345 | { |
| 346 | asection *newsect; |
| 347 | flagword flags; |
| 348 | struct elf_backend_data *bed; |
| 349 | |
| 350 | if (hdr->bfd_section != NULL) |
| 351 | { |
| 352 | BFD_ASSERT (strcmp (name, |
| 353 | bfd_get_section_name (abfd, hdr->bfd_section)) == 0); |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | newsect = bfd_make_section_anyway (abfd, name); |
| 358 | if (newsect == NULL) |
| 359 | return false; |
| 360 | |
| 361 | newsect->filepos = hdr->sh_offset; |
| 362 | |
| 363 | if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) |
| 364 | || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) |
| 365 | || ! bfd_set_section_alignment (abfd, newsect, |
| 366 | bfd_log2 (hdr->sh_addralign))) |
| 367 | return false; |
| 368 | |
| 369 | flags = SEC_NO_FLAGS; |
| 370 | if (hdr->sh_type != SHT_NOBITS) |
| 371 | flags |= SEC_HAS_CONTENTS; |
| 372 | if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| 373 | { |
| 374 | flags |= SEC_ALLOC; |
| 375 | if (hdr->sh_type != SHT_NOBITS) |
| 376 | flags |= SEC_LOAD; |
| 377 | } |
| 378 | if ((hdr->sh_flags & SHF_WRITE) == 0) |
| 379 | flags |= SEC_READONLY; |
| 380 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) |
| 381 | flags |= SEC_CODE; |
| 382 | else if ((flags & SEC_LOAD) != 0) |
| 383 | flags |= SEC_DATA; |
| 384 | |
| 385 | /* The debugging sections appear to be recognized only by name, not |
| 386 | any sort of flag. */ |
| 387 | { |
| 388 | static const char *debug_sec_names [] = |
| 389 | { |
| 390 | ".debug", |
| 391 | ".gnu.linkonce.wi.", |
| 392 | ".line", |
| 393 | ".stab" |
| 394 | }; |
| 395 | int i; |
| 396 | |
| 397 | for (i = sizeof (debug_sec_names) / sizeof (debug_sec_names[0]); i--;) |
| 398 | if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0) |
| 399 | break; |
| 400 | |
| 401 | if (i >= 0) |
| 402 | flags |= SEC_DEBUGGING; |
| 403 | } |
| 404 | |
| 405 | /* As a GNU extension, if the name begins with .gnu.linkonce, we |
| 406 | only link a single copy of the section. This is used to support |
| 407 | g++. g++ will emit each template expansion in its own section. |
| 408 | The symbols will be defined as weak, so that multiple definitions |
| 409 | are permitted. The GNU linker extension is to actually discard |
| 410 | all but one of the sections. */ |
| 411 | if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) |
| 412 | flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| 413 | |
| 414 | bed = get_elf_backend_data (abfd); |
| 415 | if (bed->elf_backend_section_flags) |
| 416 | if (! bed->elf_backend_section_flags (&flags, hdr)) |
| 417 | return false; |
| 418 | |
| 419 | if (! bfd_set_section_flags (abfd, newsect, flags)) |
| 420 | return false; |
| 421 | |
| 422 | if ((flags & SEC_ALLOC) != 0) |
| 423 | { |
| 424 | Elf_Internal_Phdr *phdr; |
| 425 | unsigned int i; |
| 426 | |
| 427 | /* Look through the phdrs to see if we need to adjust the lma. |
| 428 | If all the p_paddr fields are zero, we ignore them, since |
| 429 | some ELF linkers produce such output. */ |
| 430 | phdr = elf_tdata (abfd)->phdr; |
| 431 | for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| 432 | { |
| 433 | if (phdr->p_paddr != 0) |
| 434 | break; |
| 435 | } |
| 436 | if (i < elf_elfheader (abfd)->e_phnum) |
| 437 | { |
| 438 | phdr = elf_tdata (abfd)->phdr; |
| 439 | for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| 440 | { |
| 441 | if (phdr->p_type == PT_LOAD |
| 442 | && phdr->p_vaddr != phdr->p_paddr |
| 443 | && phdr->p_vaddr <= hdr->sh_addr |
| 444 | && (phdr->p_vaddr + phdr->p_memsz |
| 445 | >= hdr->sh_addr + hdr->sh_size) |
| 446 | && ((flags & SEC_LOAD) == 0 |
| 447 | || (phdr->p_offset <= (bfd_vma) hdr->sh_offset |
| 448 | && (phdr->p_offset + phdr->p_filesz |
| 449 | >= hdr->sh_offset + hdr->sh_size)))) |
| 450 | { |
| 451 | newsect->lma += phdr->p_paddr - phdr->p_vaddr; |
| 452 | break; |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | hdr->bfd_section = newsect; |
| 459 | elf_section_data (newsect)->this_hdr = *hdr; |
| 460 | |
| 461 | return true; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | INTERNAL_FUNCTION |
| 466 | bfd_elf_find_section |
| 467 | |
| 468 | SYNOPSIS |
| 469 | struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); |
| 470 | |
| 471 | DESCRIPTION |
| 472 | Helper functions for GDB to locate the string tables. |
| 473 | Since BFD hides string tables from callers, GDB needs to use an |
| 474 | internal hook to find them. Sun's .stabstr, in particular, |
| 475 | isn't even pointed to by the .stab section, so ordinary |
| 476 | mechanisms wouldn't work to find it, even if we had some. |
| 477 | */ |
| 478 | |
| 479 | struct elf_internal_shdr * |
| 480 | bfd_elf_find_section (abfd, name) |
| 481 | bfd *abfd; |
| 482 | char *name; |
| 483 | { |
| 484 | Elf_Internal_Shdr **i_shdrp; |
| 485 | char *shstrtab; |
| 486 | unsigned int max; |
| 487 | unsigned int i; |
| 488 | |
| 489 | i_shdrp = elf_elfsections (abfd); |
| 490 | if (i_shdrp != NULL) |
| 491 | { |
| 492 | shstrtab = bfd_elf_get_str_section |
| 493 | (abfd, elf_elfheader (abfd)->e_shstrndx); |
| 494 | if (shstrtab != NULL) |
| 495 | { |
| 496 | max = elf_elfheader (abfd)->e_shnum; |
| 497 | for (i = 1; i < max; i++) |
| 498 | if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name)) |
| 499 | return i_shdrp[i]; |
| 500 | } |
| 501 | } |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | const char *const bfd_elf_section_type_names[] = { |
| 506 | "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", |
| 507 | "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", |
| 508 | "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", |
| 509 | }; |
| 510 | |
| 511 | /* ELF relocs are against symbols. If we are producing relocateable |
| 512 | output, and the reloc is against an external symbol, and nothing |
| 513 | has given us any additional addend, the resulting reloc will also |
| 514 | be against the same symbol. In such a case, we don't want to |
| 515 | change anything about the way the reloc is handled, since it will |
| 516 | all be done at final link time. Rather than put special case code |
| 517 | into bfd_perform_relocation, all the reloc types use this howto |
| 518 | function. It just short circuits the reloc if producing |
| 519 | relocateable output against an external symbol. */ |
| 520 | |
| 521 | bfd_reloc_status_type |
| 522 | bfd_elf_generic_reloc (abfd, |
| 523 | reloc_entry, |
| 524 | symbol, |
| 525 | data, |
| 526 | input_section, |
| 527 | output_bfd, |
| 528 | error_message) |
| 529 | bfd *abfd ATTRIBUTE_UNUSED; |
| 530 | arelent *reloc_entry; |
| 531 | asymbol *symbol; |
| 532 | PTR data ATTRIBUTE_UNUSED; |
| 533 | asection *input_section; |
| 534 | bfd *output_bfd; |
| 535 | char **error_message ATTRIBUTE_UNUSED; |
| 536 | { |
| 537 | if (output_bfd != (bfd *) NULL |
| 538 | && (symbol->flags & BSF_SECTION_SYM) == 0 |
| 539 | && (! reloc_entry->howto->partial_inplace |
| 540 | || reloc_entry->addend == 0)) |
| 541 | { |
| 542 | reloc_entry->address += input_section->output_offset; |
| 543 | return bfd_reloc_ok; |
| 544 | } |
| 545 | |
| 546 | return bfd_reloc_continue; |
| 547 | } |
| 548 | \f |
| 549 | /* Print out the program headers. */ |
| 550 | |
| 551 | boolean |
| 552 | _bfd_elf_print_private_bfd_data (abfd, farg) |
| 553 | bfd *abfd; |
| 554 | PTR farg; |
| 555 | { |
| 556 | FILE *f = (FILE *) farg; |
| 557 | Elf_Internal_Phdr *p; |
| 558 | asection *s; |
| 559 | bfd_byte *dynbuf = NULL; |
| 560 | |
| 561 | p = elf_tdata (abfd)->phdr; |
| 562 | if (p != NULL) |
| 563 | { |
| 564 | unsigned int i, c; |
| 565 | |
| 566 | fprintf (f, _("\nProgram Header:\n")); |
| 567 | c = elf_elfheader (abfd)->e_phnum; |
| 568 | for (i = 0; i < c; i++, p++) |
| 569 | { |
| 570 | const char *s; |
| 571 | char buf[20]; |
| 572 | |
| 573 | switch (p->p_type) |
| 574 | { |
| 575 | case PT_NULL: s = "NULL"; break; |
| 576 | case PT_LOAD: s = "LOAD"; break; |
| 577 | case PT_DYNAMIC: s = "DYNAMIC"; break; |
| 578 | case PT_INTERP: s = "INTERP"; break; |
| 579 | case PT_NOTE: s = "NOTE"; break; |
| 580 | case PT_SHLIB: s = "SHLIB"; break; |
| 581 | case PT_PHDR: s = "PHDR"; break; |
| 582 | default: sprintf (buf, "0x%lx", p->p_type); s = buf; break; |
| 583 | } |
| 584 | fprintf (f, "%8s off 0x", s); |
| 585 | fprintf_vma (f, p->p_offset); |
| 586 | fprintf (f, " vaddr 0x"); |
| 587 | fprintf_vma (f, p->p_vaddr); |
| 588 | fprintf (f, " paddr 0x"); |
| 589 | fprintf_vma (f, p->p_paddr); |
| 590 | fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); |
| 591 | fprintf (f, " filesz 0x"); |
| 592 | fprintf_vma (f, p->p_filesz); |
| 593 | fprintf (f, " memsz 0x"); |
| 594 | fprintf_vma (f, p->p_memsz); |
| 595 | fprintf (f, " flags %c%c%c", |
| 596 | (p->p_flags & PF_R) != 0 ? 'r' : '-', |
| 597 | (p->p_flags & PF_W) != 0 ? 'w' : '-', |
| 598 | (p->p_flags & PF_X) != 0 ? 'x' : '-'); |
| 599 | if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0) |
| 600 | fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X)); |
| 601 | fprintf (f, "\n"); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 606 | if (s != NULL) |
| 607 | { |
| 608 | int elfsec; |
| 609 | unsigned long link; |
| 610 | bfd_byte *extdyn, *extdynend; |
| 611 | size_t extdynsize; |
| 612 | void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); |
| 613 | |
| 614 | fprintf (f, _("\nDynamic Section:\n")); |
| 615 | |
| 616 | dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); |
| 617 | if (dynbuf == NULL) |
| 618 | goto error_return; |
| 619 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, |
| 620 | s->_raw_size)) |
| 621 | goto error_return; |
| 622 | |
| 623 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| 624 | if (elfsec == -1) |
| 625 | goto error_return; |
| 626 | link = elf_elfsections (abfd)[elfsec]->sh_link; |
| 627 | |
| 628 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
| 629 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
| 630 | |
| 631 | extdyn = dynbuf; |
| 632 | extdynend = extdyn + s->_raw_size; |
| 633 | for (; extdyn < extdynend; extdyn += extdynsize) |
| 634 | { |
| 635 | Elf_Internal_Dyn dyn; |
| 636 | const char *name; |
| 637 | char ab[20]; |
| 638 | boolean stringp; |
| 639 | |
| 640 | (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); |
| 641 | |
| 642 | if (dyn.d_tag == DT_NULL) |
| 643 | break; |
| 644 | |
| 645 | stringp = false; |
| 646 | switch (dyn.d_tag) |
| 647 | { |
| 648 | default: |
| 649 | sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); |
| 650 | name = ab; |
| 651 | break; |
| 652 | |
| 653 | case DT_NEEDED: name = "NEEDED"; stringp = true; break; |
| 654 | case DT_PLTRELSZ: name = "PLTRELSZ"; break; |
| 655 | case DT_PLTGOT: name = "PLTGOT"; break; |
| 656 | case DT_HASH: name = "HASH"; break; |
| 657 | case DT_STRTAB: name = "STRTAB"; break; |
| 658 | case DT_SYMTAB: name = "SYMTAB"; break; |
| 659 | case DT_RELA: name = "RELA"; break; |
| 660 | case DT_RELASZ: name = "RELASZ"; break; |
| 661 | case DT_RELAENT: name = "RELAENT"; break; |
| 662 | case DT_STRSZ: name = "STRSZ"; break; |
| 663 | case DT_SYMENT: name = "SYMENT"; break; |
| 664 | case DT_INIT: name = "INIT"; break; |
| 665 | case DT_FINI: name = "FINI"; break; |
| 666 | case DT_SONAME: name = "SONAME"; stringp = true; break; |
| 667 | case DT_RPATH: name = "RPATH"; stringp = true; break; |
| 668 | case DT_SYMBOLIC: name = "SYMBOLIC"; break; |
| 669 | case DT_REL: name = "REL"; break; |
| 670 | case DT_RELSZ: name = "RELSZ"; break; |
| 671 | case DT_RELENT: name = "RELENT"; break; |
| 672 | case DT_PLTREL: name = "PLTREL"; break; |
| 673 | case DT_DEBUG: name = "DEBUG"; break; |
| 674 | case DT_TEXTREL: name = "TEXTREL"; break; |
| 675 | case DT_JMPREL: name = "JMPREL"; break; |
| 676 | case DT_BIND_NOW: name = "BIND_NOW"; break; |
| 677 | case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; |
| 678 | case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; |
| 679 | case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; |
| 680 | case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; |
| 681 | case DT_RUNPATH: name = "RUNPATH"; stringp = true; break; |
| 682 | case DT_FLAGS: name = "FLAGS"; break; |
| 683 | case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; |
| 684 | case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; |
| 685 | case DT_CHECKSUM: name = "CHECKSUM"; break; |
| 686 | case DT_PLTPADSZ: name = "PLTPADSZ"; break; |
| 687 | case DT_MOVEENT: name = "MOVEENT"; break; |
| 688 | case DT_MOVESZ: name = "MOVESZ"; break; |
| 689 | case DT_FEATURE: name = "FEATURE"; break; |
| 690 | case DT_POSFLAG_1: name = "POSFLAG_1"; break; |
| 691 | case DT_SYMINSZ: name = "SYMINSZ"; break; |
| 692 | case DT_SYMINENT: name = "SYMINENT"; break; |
| 693 | case DT_CONFIG: name = "CONFIG"; stringp = true; break; |
| 694 | case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break; |
| 695 | case DT_AUDIT: name = "AUDIT"; stringp = true; break; |
| 696 | case DT_PLTPAD: name = "PLTPAD"; break; |
| 697 | case DT_MOVETAB: name = "MOVETAB"; break; |
| 698 | case DT_SYMINFO: name = "SYMINFO"; break; |
| 699 | case DT_RELACOUNT: name = "RELACOUNT"; break; |
| 700 | case DT_RELCOUNT: name = "RELCOUNT"; break; |
| 701 | case DT_FLAGS_1: name = "FLAGS_1"; break; |
| 702 | case DT_VERSYM: name = "VERSYM"; break; |
| 703 | case DT_VERDEF: name = "VERDEF"; break; |
| 704 | case DT_VERDEFNUM: name = "VERDEFNUM"; break; |
| 705 | case DT_VERNEED: name = "VERNEED"; break; |
| 706 | case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; |
| 707 | case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break; |
| 708 | case DT_USED: name = "USED"; break; |
| 709 | case DT_FILTER: name = "FILTER"; stringp = true; break; |
| 710 | } |
| 711 | |
| 712 | fprintf (f, " %-11s ", name); |
| 713 | if (! stringp) |
| 714 | fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val); |
| 715 | else |
| 716 | { |
| 717 | const char *string; |
| 718 | |
| 719 | string = bfd_elf_string_from_elf_section (abfd, link, |
| 720 | dyn.d_un.d_val); |
| 721 | if (string == NULL) |
| 722 | goto error_return; |
| 723 | fprintf (f, "%s", string); |
| 724 | } |
| 725 | fprintf (f, "\n"); |
| 726 | } |
| 727 | |
| 728 | free (dynbuf); |
| 729 | dynbuf = NULL; |
| 730 | } |
| 731 | |
| 732 | if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) |
| 733 | || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) |
| 734 | { |
| 735 | if (! _bfd_elf_slurp_version_tables (abfd)) |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | if (elf_dynverdef (abfd) != 0) |
| 740 | { |
| 741 | Elf_Internal_Verdef *t; |
| 742 | |
| 743 | fprintf (f, _("\nVersion definitions:\n")); |
| 744 | for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) |
| 745 | { |
| 746 | fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, |
| 747 | t->vd_flags, t->vd_hash, t->vd_nodename); |
| 748 | if (t->vd_auxptr->vda_nextptr != NULL) |
| 749 | { |
| 750 | Elf_Internal_Verdaux *a; |
| 751 | |
| 752 | fprintf (f, "\t"); |
| 753 | for (a = t->vd_auxptr->vda_nextptr; |
| 754 | a != NULL; |
| 755 | a = a->vda_nextptr) |
| 756 | fprintf (f, "%s ", a->vda_nodename); |
| 757 | fprintf (f, "\n"); |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | if (elf_dynverref (abfd) != 0) |
| 763 | { |
| 764 | Elf_Internal_Verneed *t; |
| 765 | |
| 766 | fprintf (f, _("\nVersion References:\n")); |
| 767 | for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) |
| 768 | { |
| 769 | Elf_Internal_Vernaux *a; |
| 770 | |
| 771 | fprintf (f, _(" required from %s:\n"), t->vn_filename); |
| 772 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 773 | fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, |
| 774 | a->vna_flags, a->vna_other, a->vna_nodename); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | return true; |
| 779 | |
| 780 | error_return: |
| 781 | if (dynbuf != NULL) |
| 782 | free (dynbuf); |
| 783 | return false; |
| 784 | } |
| 785 | |
| 786 | /* Display ELF-specific fields of a symbol. */ |
| 787 | |
| 788 | void |
| 789 | bfd_elf_print_symbol (abfd, filep, symbol, how) |
| 790 | bfd *abfd; |
| 791 | PTR filep; |
| 792 | asymbol *symbol; |
| 793 | bfd_print_symbol_type how; |
| 794 | { |
| 795 | FILE *file = (FILE *) filep; |
| 796 | switch (how) |
| 797 | { |
| 798 | case bfd_print_symbol_name: |
| 799 | fprintf (file, "%s", symbol->name); |
| 800 | break; |
| 801 | case bfd_print_symbol_more: |
| 802 | fprintf (file, "elf "); |
| 803 | fprintf_vma (file, symbol->value); |
| 804 | fprintf (file, " %lx", (long) symbol->flags); |
| 805 | break; |
| 806 | case bfd_print_symbol_all: |
| 807 | { |
| 808 | CONST char *section_name; |
| 809 | CONST char *name = NULL; |
| 810 | struct elf_backend_data *bed; |
| 811 | unsigned char st_other; |
| 812 | |
| 813 | section_name = symbol->section ? symbol->section->name : "(*none*)"; |
| 814 | |
| 815 | bed = get_elf_backend_data (abfd); |
| 816 | if (bed->elf_backend_print_symbol_all) |
| 817 | name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); |
| 818 | |
| 819 | if (name == NULL) |
| 820 | { |
| 821 | name = symbol->name; |
| 822 | bfd_print_symbol_vandf ((PTR) file, symbol); |
| 823 | } |
| 824 | |
| 825 | fprintf (file, " %s\t", section_name); |
| 826 | /* Print the "other" value for a symbol. For common symbols, |
| 827 | we've already printed the size; now print the alignment. |
| 828 | For other symbols, we have no specified alignment, and |
| 829 | we've printed the address; now print the size. */ |
| 830 | fprintf_vma (file, |
| 831 | (bfd_is_com_section (symbol->section) |
| 832 | ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value |
| 833 | : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size)); |
| 834 | |
| 835 | /* If we have version information, print it. */ |
| 836 | if (elf_tdata (abfd)->dynversym_section != 0 |
| 837 | && (elf_tdata (abfd)->dynverdef_section != 0 |
| 838 | || elf_tdata (abfd)->dynverref_section != 0)) |
| 839 | { |
| 840 | unsigned int vernum; |
| 841 | const char *version_string; |
| 842 | |
| 843 | vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; |
| 844 | |
| 845 | if (vernum == 0) |
| 846 | version_string = ""; |
| 847 | else if (vernum == 1) |
| 848 | version_string = "Base"; |
| 849 | else if (vernum <= elf_tdata (abfd)->cverdefs) |
| 850 | version_string = |
| 851 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
| 852 | else |
| 853 | { |
| 854 | Elf_Internal_Verneed *t; |
| 855 | |
| 856 | version_string = ""; |
| 857 | for (t = elf_tdata (abfd)->verref; |
| 858 | t != NULL; |
| 859 | t = t->vn_nextref) |
| 860 | { |
| 861 | Elf_Internal_Vernaux *a; |
| 862 | |
| 863 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 864 | { |
| 865 | if (a->vna_other == vernum) |
| 866 | { |
| 867 | version_string = a->vna_nodename; |
| 868 | break; |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) |
| 875 | fprintf (file, " %-11s", version_string); |
| 876 | else |
| 877 | { |
| 878 | int i; |
| 879 | |
| 880 | fprintf (file, " (%s)", version_string); |
| 881 | for (i = 10 - strlen (version_string); i > 0; --i) |
| 882 | putc (' ', file); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | /* If the st_other field is not zero, print it. */ |
| 887 | st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; |
| 888 | |
| 889 | switch (st_other) |
| 890 | { |
| 891 | case 0: break; |
| 892 | case STV_INTERNAL: fprintf (file, " .internal"); break; |
| 893 | case STV_HIDDEN: fprintf (file, " .hidden"); break; |
| 894 | case STV_PROTECTED: fprintf (file, " .protected"); break; |
| 895 | default: |
| 896 | /* Some other non-defined flags are also present, so print |
| 897 | everything hex. */ |
| 898 | fprintf (file, " 0x%02x", (unsigned int) st_other); |
| 899 | } |
| 900 | |
| 901 | fprintf (file, " %s", name); |
| 902 | } |
| 903 | break; |
| 904 | } |
| 905 | } |
| 906 | \f |
| 907 | /* Create an entry in an ELF linker hash table. */ |
| 908 | |
| 909 | struct bfd_hash_entry * |
| 910 | _bfd_elf_link_hash_newfunc (entry, table, string) |
| 911 | struct bfd_hash_entry *entry; |
| 912 | struct bfd_hash_table *table; |
| 913 | const char *string; |
| 914 | { |
| 915 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; |
| 916 | |
| 917 | /* Allocate the structure if it has not already been allocated by a |
| 918 | subclass. */ |
| 919 | if (ret == (struct elf_link_hash_entry *) NULL) |
| 920 | ret = ((struct elf_link_hash_entry *) |
| 921 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry))); |
| 922 | if (ret == (struct elf_link_hash_entry *) NULL) |
| 923 | return (struct bfd_hash_entry *) ret; |
| 924 | |
| 925 | /* Call the allocation method of the superclass. */ |
| 926 | ret = ((struct elf_link_hash_entry *) |
| 927 | _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| 928 | table, string)); |
| 929 | if (ret != (struct elf_link_hash_entry *) NULL) |
| 930 | { |
| 931 | /* Set local fields. */ |
| 932 | ret->indx = -1; |
| 933 | ret->size = 0; |
| 934 | ret->dynindx = -1; |
| 935 | ret->dynstr_index = 0; |
| 936 | ret->weakdef = NULL; |
| 937 | ret->got.offset = (bfd_vma) -1; |
| 938 | ret->plt.offset = (bfd_vma) -1; |
| 939 | ret->linker_section_pointer = (elf_linker_section_pointers_t *)0; |
| 940 | ret->verinfo.verdef = NULL; |
| 941 | ret->vtable_entries_used = NULL; |
| 942 | ret->vtable_entries_size = 0; |
| 943 | ret->vtable_parent = NULL; |
| 944 | ret->type = STT_NOTYPE; |
| 945 | ret->other = 0; |
| 946 | /* Assume that we have been called by a non-ELF symbol reader. |
| 947 | This flag is then reset by the code which reads an ELF input |
| 948 | file. This ensures that a symbol created by a non-ELF symbol |
| 949 | reader will have the flag set correctly. */ |
| 950 | ret->elf_link_hash_flags = ELF_LINK_NON_ELF; |
| 951 | } |
| 952 | |
| 953 | return (struct bfd_hash_entry *) ret; |
| 954 | } |
| 955 | |
| 956 | /* Copy data from an indirect symbol to its direct symbol, hiding the |
| 957 | old indirect symbol. */ |
| 958 | |
| 959 | void |
| 960 | _bfd_elf_link_hash_copy_indirect (dir, ind) |
| 961 | struct elf_link_hash_entry *dir, *ind; |
| 962 | { |
| 963 | /* Copy down any references that we may have already seen to the |
| 964 | symbol which just became indirect. */ |
| 965 | |
| 966 | dir->elf_link_hash_flags |= |
| 967 | (ind->elf_link_hash_flags |
| 968 | & (ELF_LINK_HASH_REF_DYNAMIC |
| 969 | | ELF_LINK_HASH_REF_REGULAR |
| 970 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK |
| 971 | | ELF_LINK_NON_GOT_REF)); |
| 972 | |
| 973 | /* Copy over the global and procedure linkage table offset entries. |
| 974 | These may have been already set up by a check_relocs routine. */ |
| 975 | if (dir->got.offset == (bfd_vma) -1) |
| 976 | { |
| 977 | dir->got.offset = ind->got.offset; |
| 978 | ind->got.offset = (bfd_vma) -1; |
| 979 | } |
| 980 | BFD_ASSERT (ind->got.offset == (bfd_vma) -1); |
| 981 | |
| 982 | if (dir->plt.offset == (bfd_vma) -1) |
| 983 | { |
| 984 | dir->plt.offset = ind->plt.offset; |
| 985 | ind->plt.offset = (bfd_vma) -1; |
| 986 | } |
| 987 | BFD_ASSERT (ind->plt.offset == (bfd_vma) -1); |
| 988 | |
| 989 | if (dir->dynindx == -1) |
| 990 | { |
| 991 | dir->dynindx = ind->dynindx; |
| 992 | dir->dynstr_index = ind->dynstr_index; |
| 993 | ind->dynindx = -1; |
| 994 | ind->dynstr_index = 0; |
| 995 | } |
| 996 | BFD_ASSERT (ind->dynindx == -1); |
| 997 | } |
| 998 | |
| 999 | void |
| 1000 | _bfd_elf_link_hash_hide_symbol (info, h) |
| 1001 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
| 1002 | struct elf_link_hash_entry *h; |
| 1003 | { |
| 1004 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; |
| 1005 | h->dynindx = -1; |
| 1006 | h->plt.offset = (bfd_vma) -1; |
| 1007 | } |
| 1008 | |
| 1009 | /* Initialize an ELF linker hash table. */ |
| 1010 | |
| 1011 | boolean |
| 1012 | _bfd_elf_link_hash_table_init (table, abfd, newfunc) |
| 1013 | struct elf_link_hash_table *table; |
| 1014 | bfd *abfd; |
| 1015 | struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, |
| 1016 | struct bfd_hash_table *, |
| 1017 | const char *)); |
| 1018 | { |
| 1019 | table->dynamic_sections_created = false; |
| 1020 | table->dynobj = NULL; |
| 1021 | /* The first dynamic symbol is a dummy. */ |
| 1022 | table->dynsymcount = 1; |
| 1023 | table->dynstr = NULL; |
| 1024 | table->bucketcount = 0; |
| 1025 | table->needed = NULL; |
| 1026 | table->runpath = NULL; |
| 1027 | table->hgot = NULL; |
| 1028 | table->stab_info = NULL; |
| 1029 | table->dynlocal = NULL; |
| 1030 | return _bfd_link_hash_table_init (&table->root, abfd, newfunc); |
| 1031 | } |
| 1032 | |
| 1033 | /* Create an ELF linker hash table. */ |
| 1034 | |
| 1035 | struct bfd_link_hash_table * |
| 1036 | _bfd_elf_link_hash_table_create (abfd) |
| 1037 | bfd *abfd; |
| 1038 | { |
| 1039 | struct elf_link_hash_table *ret; |
| 1040 | |
| 1041 | ret = ((struct elf_link_hash_table *) |
| 1042 | bfd_alloc (abfd, sizeof (struct elf_link_hash_table))); |
| 1043 | if (ret == (struct elf_link_hash_table *) NULL) |
| 1044 | return NULL; |
| 1045 | |
| 1046 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc)) |
| 1047 | { |
| 1048 | bfd_release (abfd, ret); |
| 1049 | return NULL; |
| 1050 | } |
| 1051 | |
| 1052 | return &ret->root; |
| 1053 | } |
| 1054 | |
| 1055 | /* This is a hook for the ELF emulation code in the generic linker to |
| 1056 | tell the backend linker what file name to use for the DT_NEEDED |
| 1057 | entry for a dynamic object. The generic linker passes name as an |
| 1058 | empty string to indicate that no DT_NEEDED entry should be made. */ |
| 1059 | |
| 1060 | void |
| 1061 | bfd_elf_set_dt_needed_name (abfd, name) |
| 1062 | bfd *abfd; |
| 1063 | const char *name; |
| 1064 | { |
| 1065 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| 1066 | && bfd_get_format (abfd) == bfd_object) |
| 1067 | elf_dt_name (abfd) = name; |
| 1068 | } |
| 1069 | |
| 1070 | void |
| 1071 | bfd_elf_set_dt_needed_soname (abfd, name) |
| 1072 | bfd *abfd; |
| 1073 | const char *name; |
| 1074 | { |
| 1075 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| 1076 | && bfd_get_format (abfd) == bfd_object) |
| 1077 | elf_dt_soname (abfd) = name; |
| 1078 | } |
| 1079 | |
| 1080 | /* Get the list of DT_NEEDED entries for a link. This is a hook for |
| 1081 | the linker ELF emulation code. */ |
| 1082 | |
| 1083 | struct bfd_link_needed_list * |
| 1084 | bfd_elf_get_needed_list (abfd, info) |
| 1085 | bfd *abfd ATTRIBUTE_UNUSED; |
| 1086 | struct bfd_link_info *info; |
| 1087 | { |
| 1088 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
| 1089 | return NULL; |
| 1090 | return elf_hash_table (info)->needed; |
| 1091 | } |
| 1092 | |
| 1093 | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a |
| 1094 | hook for the linker ELF emulation code. */ |
| 1095 | |
| 1096 | struct bfd_link_needed_list * |
| 1097 | bfd_elf_get_runpath_list (abfd, info) |
| 1098 | bfd *abfd ATTRIBUTE_UNUSED; |
| 1099 | struct bfd_link_info *info; |
| 1100 | { |
| 1101 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
| 1102 | return NULL; |
| 1103 | return elf_hash_table (info)->runpath; |
| 1104 | } |
| 1105 | |
| 1106 | /* Get the name actually used for a dynamic object for a link. This |
| 1107 | is the SONAME entry if there is one. Otherwise, it is the string |
| 1108 | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ |
| 1109 | |
| 1110 | const char * |
| 1111 | bfd_elf_get_dt_soname (abfd) |
| 1112 | bfd *abfd; |
| 1113 | { |
| 1114 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| 1115 | && bfd_get_format (abfd) == bfd_object) |
| 1116 | return elf_dt_name (abfd); |
| 1117 | return NULL; |
| 1118 | } |
| 1119 | |
| 1120 | /* Get the list of DT_NEEDED entries from a BFD. This is a hook for |
| 1121 | the ELF linker emulation code. */ |
| 1122 | |
| 1123 | boolean |
| 1124 | bfd_elf_get_bfd_needed_list (abfd, pneeded) |
| 1125 | bfd *abfd; |
| 1126 | struct bfd_link_needed_list **pneeded; |
| 1127 | { |
| 1128 | asection *s; |
| 1129 | bfd_byte *dynbuf = NULL; |
| 1130 | int elfsec; |
| 1131 | unsigned long link; |
| 1132 | bfd_byte *extdyn, *extdynend; |
| 1133 | size_t extdynsize; |
| 1134 | void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); |
| 1135 | |
| 1136 | *pneeded = NULL; |
| 1137 | |
| 1138 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour |
| 1139 | || bfd_get_format (abfd) != bfd_object) |
| 1140 | return true; |
| 1141 | |
| 1142 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 1143 | if (s == NULL || s->_raw_size == 0) |
| 1144 | return true; |
| 1145 | |
| 1146 | dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); |
| 1147 | if (dynbuf == NULL) |
| 1148 | goto error_return; |
| 1149 | |
| 1150 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, |
| 1151 | s->_raw_size)) |
| 1152 | goto error_return; |
| 1153 | |
| 1154 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| 1155 | if (elfsec == -1) |
| 1156 | goto error_return; |
| 1157 | |
| 1158 | link = elf_elfsections (abfd)[elfsec]->sh_link; |
| 1159 | |
| 1160 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
| 1161 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
| 1162 | |
| 1163 | extdyn = dynbuf; |
| 1164 | extdynend = extdyn + s->_raw_size; |
| 1165 | for (; extdyn < extdynend; extdyn += extdynsize) |
| 1166 | { |
| 1167 | Elf_Internal_Dyn dyn; |
| 1168 | |
| 1169 | (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); |
| 1170 | |
| 1171 | if (dyn.d_tag == DT_NULL) |
| 1172 | break; |
| 1173 | |
| 1174 | if (dyn.d_tag == DT_NEEDED) |
| 1175 | { |
| 1176 | const char *string; |
| 1177 | struct bfd_link_needed_list *l; |
| 1178 | |
| 1179 | string = bfd_elf_string_from_elf_section (abfd, link, |
| 1180 | dyn.d_un.d_val); |
| 1181 | if (string == NULL) |
| 1182 | goto error_return; |
| 1183 | |
| 1184 | l = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof *l); |
| 1185 | if (l == NULL) |
| 1186 | goto error_return; |
| 1187 | |
| 1188 | l->by = abfd; |
| 1189 | l->name = string; |
| 1190 | l->next = *pneeded; |
| 1191 | *pneeded = l; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | free (dynbuf); |
| 1196 | |
| 1197 | return true; |
| 1198 | |
| 1199 | error_return: |
| 1200 | if (dynbuf != NULL) |
| 1201 | free (dynbuf); |
| 1202 | return false; |
| 1203 | } |
| 1204 | \f |
| 1205 | /* Allocate an ELF string table--force the first byte to be zero. */ |
| 1206 | |
| 1207 | struct bfd_strtab_hash * |
| 1208 | _bfd_elf_stringtab_init () |
| 1209 | { |
| 1210 | struct bfd_strtab_hash *ret; |
| 1211 | |
| 1212 | ret = _bfd_stringtab_init (); |
| 1213 | if (ret != NULL) |
| 1214 | { |
| 1215 | bfd_size_type loc; |
| 1216 | |
| 1217 | loc = _bfd_stringtab_add (ret, "", true, false); |
| 1218 | BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); |
| 1219 | if (loc == (bfd_size_type) -1) |
| 1220 | { |
| 1221 | _bfd_stringtab_free (ret); |
| 1222 | ret = NULL; |
| 1223 | } |
| 1224 | } |
| 1225 | return ret; |
| 1226 | } |
| 1227 | \f |
| 1228 | /* ELF .o/exec file reading */ |
| 1229 | |
| 1230 | /* Create a new bfd section from an ELF section header. */ |
| 1231 | |
| 1232 | boolean |
| 1233 | bfd_section_from_shdr (abfd, shindex) |
| 1234 | bfd *abfd; |
| 1235 | unsigned int shindex; |
| 1236 | { |
| 1237 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; |
| 1238 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); |
| 1239 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 1240 | char *name; |
| 1241 | |
| 1242 | name = elf_string_from_elf_strtab (abfd, hdr->sh_name); |
| 1243 | |
| 1244 | switch (hdr->sh_type) |
| 1245 | { |
| 1246 | case SHT_NULL: |
| 1247 | /* Inactive section. Throw it away. */ |
| 1248 | return true; |
| 1249 | |
| 1250 | case SHT_PROGBITS: /* Normal section with contents. */ |
| 1251 | case SHT_DYNAMIC: /* Dynamic linking information. */ |
| 1252 | case SHT_NOBITS: /* .bss section. */ |
| 1253 | case SHT_HASH: /* .hash section. */ |
| 1254 | case SHT_NOTE: /* .note section. */ |
| 1255 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1256 | |
| 1257 | case SHT_SYMTAB: /* A symbol table */ |
| 1258 | if (elf_onesymtab (abfd) == shindex) |
| 1259 | return true; |
| 1260 | |
| 1261 | BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); |
| 1262 | BFD_ASSERT (elf_onesymtab (abfd) == 0); |
| 1263 | elf_onesymtab (abfd) = shindex; |
| 1264 | elf_tdata (abfd)->symtab_hdr = *hdr; |
| 1265 | elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; |
| 1266 | abfd->flags |= HAS_SYMS; |
| 1267 | |
| 1268 | /* Sometimes a shared object will map in the symbol table. If |
| 1269 | SHF_ALLOC is set, and this is a shared object, then we also |
| 1270 | treat this section as a BFD section. We can not base the |
| 1271 | decision purely on SHF_ALLOC, because that flag is sometimes |
| 1272 | set in a relocateable object file, which would confuse the |
| 1273 | linker. */ |
| 1274 | if ((hdr->sh_flags & SHF_ALLOC) != 0 |
| 1275 | && (abfd->flags & DYNAMIC) != 0 |
| 1276 | && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) |
| 1277 | return false; |
| 1278 | |
| 1279 | return true; |
| 1280 | |
| 1281 | case SHT_DYNSYM: /* A dynamic symbol table */ |
| 1282 | if (elf_dynsymtab (abfd) == shindex) |
| 1283 | return true; |
| 1284 | |
| 1285 | BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); |
| 1286 | BFD_ASSERT (elf_dynsymtab (abfd) == 0); |
| 1287 | elf_dynsymtab (abfd) = shindex; |
| 1288 | elf_tdata (abfd)->dynsymtab_hdr = *hdr; |
| 1289 | elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| 1290 | abfd->flags |= HAS_SYMS; |
| 1291 | |
| 1292 | /* Besides being a symbol table, we also treat this as a regular |
| 1293 | section, so that objcopy can handle it. */ |
| 1294 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1295 | |
| 1296 | case SHT_STRTAB: /* A string table */ |
| 1297 | if (hdr->bfd_section != NULL) |
| 1298 | return true; |
| 1299 | if (ehdr->e_shstrndx == shindex) |
| 1300 | { |
| 1301 | elf_tdata (abfd)->shstrtab_hdr = *hdr; |
| 1302 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; |
| 1303 | return true; |
| 1304 | } |
| 1305 | { |
| 1306 | unsigned int i; |
| 1307 | |
| 1308 | for (i = 1; i < ehdr->e_shnum; i++) |
| 1309 | { |
| 1310 | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| 1311 | if (hdr2->sh_link == shindex) |
| 1312 | { |
| 1313 | if (! bfd_section_from_shdr (abfd, i)) |
| 1314 | return false; |
| 1315 | if (elf_onesymtab (abfd) == i) |
| 1316 | { |
| 1317 | elf_tdata (abfd)->strtab_hdr = *hdr; |
| 1318 | elf_elfsections (abfd)[shindex] = |
| 1319 | &elf_tdata (abfd)->strtab_hdr; |
| 1320 | return true; |
| 1321 | } |
| 1322 | if (elf_dynsymtab (abfd) == i) |
| 1323 | { |
| 1324 | elf_tdata (abfd)->dynstrtab_hdr = *hdr; |
| 1325 | elf_elfsections (abfd)[shindex] = hdr = |
| 1326 | &elf_tdata (abfd)->dynstrtab_hdr; |
| 1327 | /* We also treat this as a regular section, so |
| 1328 | that objcopy can handle it. */ |
| 1329 | break; |
| 1330 | } |
| 1331 | #if 0 /* Not handling other string tables specially right now. */ |
| 1332 | hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ |
| 1333 | /* We have a strtab for some random other section. */ |
| 1334 | newsect = (asection *) hdr2->bfd_section; |
| 1335 | if (!newsect) |
| 1336 | break; |
| 1337 | hdr->bfd_section = newsect; |
| 1338 | hdr2 = &elf_section_data (newsect)->str_hdr; |
| 1339 | *hdr2 = *hdr; |
| 1340 | elf_elfsections (abfd)[shindex] = hdr2; |
| 1341 | #endif |
| 1342 | } |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1347 | |
| 1348 | case SHT_REL: |
| 1349 | case SHT_RELA: |
| 1350 | /* *These* do a lot of work -- but build no sections! */ |
| 1351 | { |
| 1352 | asection *target_sect; |
| 1353 | Elf_Internal_Shdr *hdr2; |
| 1354 | |
| 1355 | /* Check for a bogus link to avoid crashing. */ |
| 1356 | if (hdr->sh_link >= ehdr->e_shnum) |
| 1357 | { |
| 1358 | ((*_bfd_error_handler) |
| 1359 | (_("%s: invalid link %lu for reloc section %s (index %u)"), |
| 1360 | bfd_get_filename (abfd), hdr->sh_link, name, shindex)); |
| 1361 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1362 | } |
| 1363 | |
| 1364 | /* For some incomprehensible reason Oracle distributes |
| 1365 | libraries for Solaris in which some of the objects have |
| 1366 | bogus sh_link fields. It would be nice if we could just |
| 1367 | reject them, but, unfortunately, some people need to use |
| 1368 | them. We scan through the section headers; if we find only |
| 1369 | one suitable symbol table, we clobber the sh_link to point |
| 1370 | to it. I hope this doesn't break anything. */ |
| 1371 | if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB |
| 1372 | && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) |
| 1373 | { |
| 1374 | int scan; |
| 1375 | int found; |
| 1376 | |
| 1377 | found = 0; |
| 1378 | for (scan = 1; scan < ehdr->e_shnum; scan++) |
| 1379 | { |
| 1380 | if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB |
| 1381 | || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) |
| 1382 | { |
| 1383 | if (found != 0) |
| 1384 | { |
| 1385 | found = 0; |
| 1386 | break; |
| 1387 | } |
| 1388 | found = scan; |
| 1389 | } |
| 1390 | } |
| 1391 | if (found != 0) |
| 1392 | hdr->sh_link = found; |
| 1393 | } |
| 1394 | |
| 1395 | /* Get the symbol table. */ |
| 1396 | if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB |
| 1397 | && ! bfd_section_from_shdr (abfd, hdr->sh_link)) |
| 1398 | return false; |
| 1399 | |
| 1400 | /* If this reloc section does not use the main symbol table we |
| 1401 | don't treat it as a reloc section. BFD can't adequately |
| 1402 | represent such a section, so at least for now, we don't |
| 1403 | try. We just present it as a normal section. We also |
| 1404 | can't use it as a reloc section if it points to the null |
| 1405 | section. */ |
| 1406 | if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF) |
| 1407 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1408 | |
| 1409 | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) |
| 1410 | return false; |
| 1411 | target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); |
| 1412 | if (target_sect == NULL) |
| 1413 | return false; |
| 1414 | |
| 1415 | if ((target_sect->flags & SEC_RELOC) == 0 |
| 1416 | || target_sect->reloc_count == 0) |
| 1417 | hdr2 = &elf_section_data (target_sect)->rel_hdr; |
| 1418 | else |
| 1419 | { |
| 1420 | BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); |
| 1421 | hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); |
| 1422 | elf_section_data (target_sect)->rel_hdr2 = hdr2; |
| 1423 | } |
| 1424 | *hdr2 = *hdr; |
| 1425 | elf_elfsections (abfd)[shindex] = hdr2; |
| 1426 | target_sect->reloc_count += hdr->sh_size / hdr->sh_entsize; |
| 1427 | target_sect->flags |= SEC_RELOC; |
| 1428 | target_sect->relocation = NULL; |
| 1429 | target_sect->rel_filepos = hdr->sh_offset; |
| 1430 | /* In the section to which the relocations apply, mark whether |
| 1431 | its relocations are of the REL or RELA variety. */ |
| 1432 | if (hdr->sh_size != 0) |
| 1433 | elf_section_data (target_sect)->use_rela_p |
| 1434 | = (hdr->sh_type == SHT_RELA); |
| 1435 | abfd->flags |= HAS_RELOC; |
| 1436 | return true; |
| 1437 | } |
| 1438 | break; |
| 1439 | |
| 1440 | case SHT_GNU_verdef: |
| 1441 | elf_dynverdef (abfd) = shindex; |
| 1442 | elf_tdata (abfd)->dynverdef_hdr = *hdr; |
| 1443 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1444 | break; |
| 1445 | |
| 1446 | case SHT_GNU_versym: |
| 1447 | elf_dynversym (abfd) = shindex; |
| 1448 | elf_tdata (abfd)->dynversym_hdr = *hdr; |
| 1449 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1450 | break; |
| 1451 | |
| 1452 | case SHT_GNU_verneed: |
| 1453 | elf_dynverref (abfd) = shindex; |
| 1454 | elf_tdata (abfd)->dynverref_hdr = *hdr; |
| 1455 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
| 1456 | break; |
| 1457 | |
| 1458 | case SHT_SHLIB: |
| 1459 | return true; |
| 1460 | |
| 1461 | default: |
| 1462 | /* Check for any processor-specific section types. */ |
| 1463 | { |
| 1464 | if (bed->elf_backend_section_from_shdr) |
| 1465 | (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); |
| 1466 | } |
| 1467 | break; |
| 1468 | } |
| 1469 | |
| 1470 | return true; |
| 1471 | } |
| 1472 | |
| 1473 | /* Given an ELF section number, retrieve the corresponding BFD |
| 1474 | section. */ |
| 1475 | |
| 1476 | asection * |
| 1477 | bfd_section_from_elf_index (abfd, index) |
| 1478 | bfd *abfd; |
| 1479 | unsigned int index; |
| 1480 | { |
| 1481 | BFD_ASSERT (index > 0 && index < SHN_LORESERVE); |
| 1482 | if (index >= elf_elfheader (abfd)->e_shnum) |
| 1483 | return NULL; |
| 1484 | return elf_elfsections (abfd)[index]->bfd_section; |
| 1485 | } |
| 1486 | |
| 1487 | boolean |
| 1488 | _bfd_elf_new_section_hook (abfd, sec) |
| 1489 | bfd *abfd; |
| 1490 | asection *sec; |
| 1491 | { |
| 1492 | struct bfd_elf_section_data *sdata; |
| 1493 | |
| 1494 | sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, sizeof (*sdata)); |
| 1495 | if (!sdata) |
| 1496 | return false; |
| 1497 | sec->used_by_bfd = (PTR) sdata; |
| 1498 | |
| 1499 | /* Indicate whether or not this section should use RELA relocations. */ |
| 1500 | sdata->use_rela_p |
| 1501 | = get_elf_backend_data (abfd)->default_use_rela_p; |
| 1502 | |
| 1503 | return true; |
| 1504 | } |
| 1505 | |
| 1506 | /* Create a new bfd section from an ELF program header. |
| 1507 | |
| 1508 | Since program segments have no names, we generate a synthetic name |
| 1509 | of the form segment<NUM>, where NUM is generally the index in the |
| 1510 | program header table. For segments that are split (see below) we |
| 1511 | generate the names segment<NUM>a and segment<NUM>b. |
| 1512 | |
| 1513 | Note that some program segments may have a file size that is different than |
| 1514 | (less than) the memory size. All this means is that at execution the |
| 1515 | system must allocate the amount of memory specified by the memory size, |
| 1516 | but only initialize it with the first "file size" bytes read from the |
| 1517 | file. This would occur for example, with program segments consisting |
| 1518 | of combined data+bss. |
| 1519 | |
| 1520 | To handle the above situation, this routine generates TWO bfd sections |
| 1521 | for the single program segment. The first has the length specified by |
| 1522 | the file size of the segment, and the second has the length specified |
| 1523 | by the difference between the two sizes. In effect, the segment is split |
| 1524 | into it's initialized and uninitialized parts. |
| 1525 | |
| 1526 | */ |
| 1527 | |
| 1528 | boolean |
| 1529 | _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename) |
| 1530 | bfd *abfd; |
| 1531 | Elf_Internal_Phdr *hdr; |
| 1532 | int index; |
| 1533 | const char *typename; |
| 1534 | { |
| 1535 | asection *newsect; |
| 1536 | char *name; |
| 1537 | char namebuf[64]; |
| 1538 | int split; |
| 1539 | |
| 1540 | split = ((hdr->p_memsz > 0) |
| 1541 | && (hdr->p_filesz > 0) |
| 1542 | && (hdr->p_memsz > hdr->p_filesz)); |
| 1543 | sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : ""); |
| 1544 | name = bfd_alloc (abfd, strlen (namebuf) + 1); |
| 1545 | if (!name) |
| 1546 | return false; |
| 1547 | strcpy (name, namebuf); |
| 1548 | newsect = bfd_make_section (abfd, name); |
| 1549 | if (newsect == NULL) |
| 1550 | return false; |
| 1551 | newsect->vma = hdr->p_vaddr; |
| 1552 | newsect->lma = hdr->p_paddr; |
| 1553 | newsect->_raw_size = hdr->p_filesz; |
| 1554 | newsect->filepos = hdr->p_offset; |
| 1555 | newsect->flags |= SEC_HAS_CONTENTS; |
| 1556 | if (hdr->p_type == PT_LOAD) |
| 1557 | { |
| 1558 | newsect->flags |= SEC_ALLOC; |
| 1559 | newsect->flags |= SEC_LOAD; |
| 1560 | if (hdr->p_flags & PF_X) |
| 1561 | { |
| 1562 | /* FIXME: all we known is that it has execute PERMISSION, |
| 1563 | may be data. */ |
| 1564 | newsect->flags |= SEC_CODE; |
| 1565 | } |
| 1566 | } |
| 1567 | if (!(hdr->p_flags & PF_W)) |
| 1568 | { |
| 1569 | newsect->flags |= SEC_READONLY; |
| 1570 | } |
| 1571 | |
| 1572 | if (split) |
| 1573 | { |
| 1574 | sprintf (namebuf, "%s%db", typename, index); |
| 1575 | name = bfd_alloc (abfd, strlen (namebuf) + 1); |
| 1576 | if (!name) |
| 1577 | return false; |
| 1578 | strcpy (name, namebuf); |
| 1579 | newsect = bfd_make_section (abfd, name); |
| 1580 | if (newsect == NULL) |
| 1581 | return false; |
| 1582 | newsect->vma = hdr->p_vaddr + hdr->p_filesz; |
| 1583 | newsect->lma = hdr->p_paddr + hdr->p_filesz; |
| 1584 | newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; |
| 1585 | if (hdr->p_type == PT_LOAD) |
| 1586 | { |
| 1587 | newsect->flags |= SEC_ALLOC; |
| 1588 | if (hdr->p_flags & PF_X) |
| 1589 | newsect->flags |= SEC_CODE; |
| 1590 | } |
| 1591 | if (!(hdr->p_flags & PF_W)) |
| 1592 | newsect->flags |= SEC_READONLY; |
| 1593 | } |
| 1594 | |
| 1595 | return true; |
| 1596 | } |
| 1597 | |
| 1598 | boolean |
| 1599 | bfd_section_from_phdr (abfd, hdr, index) |
| 1600 | bfd *abfd; |
| 1601 | Elf_Internal_Phdr *hdr; |
| 1602 | int index; |
| 1603 | { |
| 1604 | struct elf_backend_data *bed; |
| 1605 | |
| 1606 | switch (hdr->p_type) |
| 1607 | { |
| 1608 | case PT_NULL: |
| 1609 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null"); |
| 1610 | |
| 1611 | case PT_LOAD: |
| 1612 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load"); |
| 1613 | |
| 1614 | case PT_DYNAMIC: |
| 1615 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic"); |
| 1616 | |
| 1617 | case PT_INTERP: |
| 1618 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp"); |
| 1619 | |
| 1620 | case PT_NOTE: |
| 1621 | if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note")) |
| 1622 | return false; |
| 1623 | if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) |
| 1624 | return false; |
| 1625 | return true; |
| 1626 | |
| 1627 | case PT_SHLIB: |
| 1628 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib"); |
| 1629 | |
| 1630 | case PT_PHDR: |
| 1631 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr"); |
| 1632 | |
| 1633 | default: |
| 1634 | /* Check for any processor-specific program segment types. |
| 1635 | If no handler for them, default to making "segment" sections. */ |
| 1636 | bed = get_elf_backend_data (abfd); |
| 1637 | if (bed->elf_backend_section_from_phdr) |
| 1638 | return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index); |
| 1639 | else |
| 1640 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment"); |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | /* Initialize REL_HDR, the section-header for new section, containing |
| 1645 | relocations against ASECT. If USE_RELA_P is true, we use RELA |
| 1646 | relocations; otherwise, we use REL relocations. */ |
| 1647 | |
| 1648 | boolean |
| 1649 | _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p) |
| 1650 | bfd *abfd; |
| 1651 | Elf_Internal_Shdr *rel_hdr; |
| 1652 | asection *asect; |
| 1653 | boolean use_rela_p; |
| 1654 | { |
| 1655 | char *name; |
| 1656 | struct elf_backend_data *bed; |
| 1657 | |
| 1658 | bed = get_elf_backend_data (abfd); |
| 1659 | name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); |
| 1660 | if (name == NULL) |
| 1661 | return false; |
| 1662 | sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); |
| 1663 | rel_hdr->sh_name = |
| 1664 | (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, |
| 1665 | true, false); |
| 1666 | if (rel_hdr->sh_name == (unsigned int) -1) |
| 1667 | return false; |
| 1668 | rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; |
| 1669 | rel_hdr->sh_entsize = (use_rela_p |
| 1670 | ? bed->s->sizeof_rela |
| 1671 | : bed->s->sizeof_rel); |
| 1672 | rel_hdr->sh_addralign = bed->s->file_align; |
| 1673 | rel_hdr->sh_flags = 0; |
| 1674 | rel_hdr->sh_addr = 0; |
| 1675 | rel_hdr->sh_size = 0; |
| 1676 | rel_hdr->sh_offset = 0; |
| 1677 | |
| 1678 | return true; |
| 1679 | } |
| 1680 | |
| 1681 | /* Set up an ELF internal section header for a section. */ |
| 1682 | |
| 1683 | static void |
| 1684 | elf_fake_sections (abfd, asect, failedptrarg) |
| 1685 | bfd *abfd; |
| 1686 | asection *asect; |
| 1687 | PTR failedptrarg; |
| 1688 | { |
| 1689 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 1690 | boolean *failedptr = (boolean *) failedptrarg; |
| 1691 | Elf_Internal_Shdr *this_hdr; |
| 1692 | |
| 1693 | if (*failedptr) |
| 1694 | { |
| 1695 | /* We already failed; just get out of the bfd_map_over_sections |
| 1696 | loop. */ |
| 1697 | return; |
| 1698 | } |
| 1699 | |
| 1700 | this_hdr = &elf_section_data (asect)->this_hdr; |
| 1701 | |
| 1702 | this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), |
| 1703 | asect->name, |
| 1704 | true, false); |
| 1705 | if (this_hdr->sh_name == (unsigned long) -1) |
| 1706 | { |
| 1707 | *failedptr = true; |
| 1708 | return; |
| 1709 | } |
| 1710 | |
| 1711 | this_hdr->sh_flags = 0; |
| 1712 | |
| 1713 | if ((asect->flags & SEC_ALLOC) != 0 |
| 1714 | || asect->user_set_vma) |
| 1715 | this_hdr->sh_addr = asect->vma; |
| 1716 | else |
| 1717 | this_hdr->sh_addr = 0; |
| 1718 | |
| 1719 | this_hdr->sh_offset = 0; |
| 1720 | this_hdr->sh_size = asect->_raw_size; |
| 1721 | this_hdr->sh_link = 0; |
| 1722 | this_hdr->sh_addralign = 1 << asect->alignment_power; |
| 1723 | /* The sh_entsize and sh_info fields may have been set already by |
| 1724 | copy_private_section_data. */ |
| 1725 | |
| 1726 | this_hdr->bfd_section = asect; |
| 1727 | this_hdr->contents = NULL; |
| 1728 | |
| 1729 | /* FIXME: This should not be based on section names. */ |
| 1730 | if (strcmp (asect->name, ".dynstr") == 0) |
| 1731 | this_hdr->sh_type = SHT_STRTAB; |
| 1732 | else if (strcmp (asect->name, ".hash") == 0) |
| 1733 | { |
| 1734 | this_hdr->sh_type = SHT_HASH; |
| 1735 | this_hdr->sh_entsize = bed->s->sizeof_hash_entry; |
| 1736 | } |
| 1737 | else if (strcmp (asect->name, ".dynsym") == 0) |
| 1738 | { |
| 1739 | this_hdr->sh_type = SHT_DYNSYM; |
| 1740 | this_hdr->sh_entsize = bed->s->sizeof_sym; |
| 1741 | } |
| 1742 | else if (strcmp (asect->name, ".dynamic") == 0) |
| 1743 | { |
| 1744 | this_hdr->sh_type = SHT_DYNAMIC; |
| 1745 | this_hdr->sh_entsize = bed->s->sizeof_dyn; |
| 1746 | } |
| 1747 | else if (strncmp (asect->name, ".rela", 5) == 0 |
| 1748 | && get_elf_backend_data (abfd)->may_use_rela_p) |
| 1749 | { |
| 1750 | this_hdr->sh_type = SHT_RELA; |
| 1751 | this_hdr->sh_entsize = bed->s->sizeof_rela; |
| 1752 | } |
| 1753 | else if (strncmp (asect->name, ".rel", 4) == 0 |
| 1754 | && get_elf_backend_data (abfd)->may_use_rel_p) |
| 1755 | { |
| 1756 | this_hdr->sh_type = SHT_REL; |
| 1757 | this_hdr->sh_entsize = bed->s->sizeof_rel; |
| 1758 | } |
| 1759 | else if (strncmp (asect->name, ".note", 5) == 0) |
| 1760 | this_hdr->sh_type = SHT_NOTE; |
| 1761 | else if (strncmp (asect->name, ".stab", 5) == 0 |
| 1762 | && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) |
| 1763 | this_hdr->sh_type = SHT_STRTAB; |
| 1764 | else if (strcmp (asect->name, ".gnu.version") == 0) |
| 1765 | { |
| 1766 | this_hdr->sh_type = SHT_GNU_versym; |
| 1767 | this_hdr->sh_entsize = sizeof (Elf_External_Versym); |
| 1768 | } |
| 1769 | else if (strcmp (asect->name, ".gnu.version_d") == 0) |
| 1770 | { |
| 1771 | this_hdr->sh_type = SHT_GNU_verdef; |
| 1772 | this_hdr->sh_entsize = 0; |
| 1773 | /* objcopy or strip will copy over sh_info, but may not set |
| 1774 | cverdefs. The linker will set cverdefs, but sh_info will be |
| 1775 | zero. */ |
| 1776 | if (this_hdr->sh_info == 0) |
| 1777 | this_hdr->sh_info = elf_tdata (abfd)->cverdefs; |
| 1778 | else |
| 1779 | BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 |
| 1780 | || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); |
| 1781 | } |
| 1782 | else if (strcmp (asect->name, ".gnu.version_r") == 0) |
| 1783 | { |
| 1784 | this_hdr->sh_type = SHT_GNU_verneed; |
| 1785 | this_hdr->sh_entsize = 0; |
| 1786 | /* objcopy or strip will copy over sh_info, but may not set |
| 1787 | cverrefs. The linker will set cverrefs, but sh_info will be |
| 1788 | zero. */ |
| 1789 | if (this_hdr->sh_info == 0) |
| 1790 | this_hdr->sh_info = elf_tdata (abfd)->cverrefs; |
| 1791 | else |
| 1792 | BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 |
| 1793 | || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); |
| 1794 | } |
| 1795 | else if ((asect->flags & SEC_ALLOC) != 0 |
| 1796 | && ((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)) |
| 1797 | this_hdr->sh_type = SHT_NOBITS; |
| 1798 | else |
| 1799 | this_hdr->sh_type = SHT_PROGBITS; |
| 1800 | |
| 1801 | if ((asect->flags & SEC_ALLOC) != 0) |
| 1802 | this_hdr->sh_flags |= SHF_ALLOC; |
| 1803 | if ((asect->flags & SEC_READONLY) == 0) |
| 1804 | this_hdr->sh_flags |= SHF_WRITE; |
| 1805 | if ((asect->flags & SEC_CODE) != 0) |
| 1806 | this_hdr->sh_flags |= SHF_EXECINSTR; |
| 1807 | |
| 1808 | /* Check for processor-specific section types. */ |
| 1809 | if (bed->elf_backend_fake_sections) |
| 1810 | (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); |
| 1811 | |
| 1812 | /* If the section has relocs, set up a section header for the |
| 1813 | SHT_REL[A] section. If two relocation sections are required for |
| 1814 | this section, it is up to the processor-specific back-end to |
| 1815 | create the other. */ |
| 1816 | if ((asect->flags & SEC_RELOC) != 0 |
| 1817 | && !_bfd_elf_init_reloc_shdr (abfd, |
| 1818 | &elf_section_data (asect)->rel_hdr, |
| 1819 | asect, |
| 1820 | elf_section_data (asect)->use_rela_p)) |
| 1821 | *failedptr = true; |
| 1822 | } |
| 1823 | |
| 1824 | /* Assign all ELF section numbers. The dummy first section is handled here |
| 1825 | too. The link/info pointers for the standard section types are filled |
| 1826 | in here too, while we're at it. */ |
| 1827 | |
| 1828 | static boolean |
| 1829 | assign_section_numbers (abfd) |
| 1830 | bfd *abfd; |
| 1831 | { |
| 1832 | struct elf_obj_tdata *t = elf_tdata (abfd); |
| 1833 | asection *sec; |
| 1834 | unsigned int section_number; |
| 1835 | Elf_Internal_Shdr **i_shdrp; |
| 1836 | |
| 1837 | section_number = 1; |
| 1838 | |
| 1839 | for (sec = abfd->sections; sec; sec = sec->next) |
| 1840 | { |
| 1841 | struct bfd_elf_section_data *d = elf_section_data (sec); |
| 1842 | |
| 1843 | d->this_idx = section_number++; |
| 1844 | if ((sec->flags & SEC_RELOC) == 0) |
| 1845 | d->rel_idx = 0; |
| 1846 | else |
| 1847 | d->rel_idx = section_number++; |
| 1848 | |
| 1849 | if (d->rel_hdr2) |
| 1850 | d->rel_idx2 = section_number++; |
| 1851 | else |
| 1852 | d->rel_idx2 = 0; |
| 1853 | } |
| 1854 | |
| 1855 | t->shstrtab_section = section_number++; |
| 1856 | elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; |
| 1857 | t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
| 1858 | |
| 1859 | if (bfd_get_symcount (abfd) > 0) |
| 1860 | { |
| 1861 | t->symtab_section = section_number++; |
| 1862 | t->strtab_section = section_number++; |
| 1863 | } |
| 1864 | |
| 1865 | elf_elfheader (abfd)->e_shnum = section_number; |
| 1866 | |
| 1867 | /* Set up the list of section header pointers, in agreement with the |
| 1868 | indices. */ |
| 1869 | i_shdrp = ((Elf_Internal_Shdr **) |
| 1870 | bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); |
| 1871 | if (i_shdrp == NULL) |
| 1872 | return false; |
| 1873 | |
| 1874 | i_shdrp[0] = ((Elf_Internal_Shdr *) |
| 1875 | bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); |
| 1876 | if (i_shdrp[0] == NULL) |
| 1877 | { |
| 1878 | bfd_release (abfd, i_shdrp); |
| 1879 | return false; |
| 1880 | } |
| 1881 | memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); |
| 1882 | |
| 1883 | elf_elfsections (abfd) = i_shdrp; |
| 1884 | |
| 1885 | i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; |
| 1886 | if (bfd_get_symcount (abfd) > 0) |
| 1887 | { |
| 1888 | i_shdrp[t->symtab_section] = &t->symtab_hdr; |
| 1889 | i_shdrp[t->strtab_section] = &t->strtab_hdr; |
| 1890 | t->symtab_hdr.sh_link = t->strtab_section; |
| 1891 | } |
| 1892 | for (sec = abfd->sections; sec; sec = sec->next) |
| 1893 | { |
| 1894 | struct bfd_elf_section_data *d = elf_section_data (sec); |
| 1895 | asection *s; |
| 1896 | const char *name; |
| 1897 | |
| 1898 | i_shdrp[d->this_idx] = &d->this_hdr; |
| 1899 | if (d->rel_idx != 0) |
| 1900 | i_shdrp[d->rel_idx] = &d->rel_hdr; |
| 1901 | if (d->rel_idx2 != 0) |
| 1902 | i_shdrp[d->rel_idx2] = d->rel_hdr2; |
| 1903 | |
| 1904 | /* Fill in the sh_link and sh_info fields while we're at it. */ |
| 1905 | |
| 1906 | /* sh_link of a reloc section is the section index of the symbol |
| 1907 | table. sh_info is the section index of the section to which |
| 1908 | the relocation entries apply. */ |
| 1909 | if (d->rel_idx != 0) |
| 1910 | { |
| 1911 | d->rel_hdr.sh_link = t->symtab_section; |
| 1912 | d->rel_hdr.sh_info = d->this_idx; |
| 1913 | } |
| 1914 | if (d->rel_idx2 != 0) |
| 1915 | { |
| 1916 | d->rel_hdr2->sh_link = t->symtab_section; |
| 1917 | d->rel_hdr2->sh_info = d->this_idx; |
| 1918 | } |
| 1919 | |
| 1920 | switch (d->this_hdr.sh_type) |
| 1921 | { |
| 1922 | case SHT_REL: |
| 1923 | case SHT_RELA: |
| 1924 | /* A reloc section which we are treating as a normal BFD |
| 1925 | section. sh_link is the section index of the symbol |
| 1926 | table. sh_info is the section index of the section to |
| 1927 | which the relocation entries apply. We assume that an |
| 1928 | allocated reloc section uses the dynamic symbol table. |
| 1929 | FIXME: How can we be sure? */ |
| 1930 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 1931 | if (s != NULL) |
| 1932 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 1933 | |
| 1934 | /* We look up the section the relocs apply to by name. */ |
| 1935 | name = sec->name; |
| 1936 | if (d->this_hdr.sh_type == SHT_REL) |
| 1937 | name += 4; |
| 1938 | else |
| 1939 | name += 5; |
| 1940 | s = bfd_get_section_by_name (abfd, name); |
| 1941 | if (s != NULL) |
| 1942 | d->this_hdr.sh_info = elf_section_data (s)->this_idx; |
| 1943 | break; |
| 1944 | |
| 1945 | case SHT_STRTAB: |
| 1946 | /* We assume that a section named .stab*str is a stabs |
| 1947 | string section. We look for a section with the same name |
| 1948 | but without the trailing ``str'', and set its sh_link |
| 1949 | field to point to this section. */ |
| 1950 | if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 |
| 1951 | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) |
| 1952 | { |
| 1953 | size_t len; |
| 1954 | char *alc; |
| 1955 | |
| 1956 | len = strlen (sec->name); |
| 1957 | alc = (char *) bfd_malloc (len - 2); |
| 1958 | if (alc == NULL) |
| 1959 | return false; |
| 1960 | strncpy (alc, sec->name, len - 3); |
| 1961 | alc[len - 3] = '\0'; |
| 1962 | s = bfd_get_section_by_name (abfd, alc); |
| 1963 | free (alc); |
| 1964 | if (s != NULL) |
| 1965 | { |
| 1966 | elf_section_data (s)->this_hdr.sh_link = d->this_idx; |
| 1967 | |
| 1968 | /* This is a .stab section. */ |
| 1969 | elf_section_data (s)->this_hdr.sh_entsize = |
| 1970 | 4 + 2 * bfd_get_arch_size (abfd) / 8; |
| 1971 | } |
| 1972 | } |
| 1973 | break; |
| 1974 | |
| 1975 | case SHT_DYNAMIC: |
| 1976 | case SHT_DYNSYM: |
| 1977 | case SHT_GNU_verneed: |
| 1978 | case SHT_GNU_verdef: |
| 1979 | /* sh_link is the section header index of the string table |
| 1980 | used for the dynamic entries, or the symbol table, or the |
| 1981 | version strings. */ |
| 1982 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
| 1983 | if (s != NULL) |
| 1984 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 1985 | break; |
| 1986 | |
| 1987 | case SHT_HASH: |
| 1988 | case SHT_GNU_versym: |
| 1989 | /* sh_link is the section header index of the symbol table |
| 1990 | this hash table or version table is for. */ |
| 1991 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 1992 | if (s != NULL) |
| 1993 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 1994 | break; |
| 1995 | } |
| 1996 | } |
| 1997 | |
| 1998 | return true; |
| 1999 | } |
| 2000 | |
| 2001 | /* Map symbol from it's internal number to the external number, moving |
| 2002 | all local symbols to be at the head of the list. */ |
| 2003 | |
| 2004 | static INLINE int |
| 2005 | sym_is_global (abfd, sym) |
| 2006 | bfd *abfd; |
| 2007 | asymbol *sym; |
| 2008 | { |
| 2009 | /* If the backend has a special mapping, use it. */ |
| 2010 | if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) |
| 2011 | return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) |
| 2012 | (abfd, sym)); |
| 2013 | |
| 2014 | return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
| 2015 | || bfd_is_und_section (bfd_get_section (sym)) |
| 2016 | || bfd_is_com_section (bfd_get_section (sym))); |
| 2017 | } |
| 2018 | |
| 2019 | static boolean |
| 2020 | elf_map_symbols (abfd) |
| 2021 | bfd *abfd; |
| 2022 | { |
| 2023 | int symcount = bfd_get_symcount (abfd); |
| 2024 | asymbol **syms = bfd_get_outsymbols (abfd); |
| 2025 | asymbol **sect_syms; |
| 2026 | int num_locals = 0; |
| 2027 | int num_globals = 0; |
| 2028 | int num_locals2 = 0; |
| 2029 | int num_globals2 = 0; |
| 2030 | int max_index = 0; |
| 2031 | int num_sections = 0; |
| 2032 | int idx; |
| 2033 | asection *asect; |
| 2034 | asymbol **new_syms; |
| 2035 | asymbol *sym; |
| 2036 | |
| 2037 | #ifdef DEBUG |
| 2038 | fprintf (stderr, "elf_map_symbols\n"); |
| 2039 | fflush (stderr); |
| 2040 | #endif |
| 2041 | |
| 2042 | /* Add a section symbol for each BFD section. FIXME: Is this really |
| 2043 | necessary? */ |
| 2044 | for (asect = abfd->sections; asect; asect = asect->next) |
| 2045 | { |
| 2046 | if (max_index < asect->index) |
| 2047 | max_index = asect->index; |
| 2048 | } |
| 2049 | |
| 2050 | max_index++; |
| 2051 | sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); |
| 2052 | if (sect_syms == NULL) |
| 2053 | return false; |
| 2054 | elf_section_syms (abfd) = sect_syms; |
| 2055 | |
| 2056 | for (idx = 0; idx < symcount; idx++) |
| 2057 | { |
| 2058 | sym = syms[idx]; |
| 2059 | |
| 2060 | if ((sym->flags & BSF_SECTION_SYM) != 0 |
| 2061 | && sym->value == 0) |
| 2062 | { |
| 2063 | asection *sec; |
| 2064 | |
| 2065 | sec = sym->section; |
| 2066 | |
| 2067 | if (sec->owner != NULL) |
| 2068 | { |
| 2069 | if (sec->owner != abfd) |
| 2070 | { |
| 2071 | if (sec->output_offset != 0) |
| 2072 | continue; |
| 2073 | |
| 2074 | sec = sec->output_section; |
| 2075 | |
| 2076 | /* Empty sections in the input files may have had a section |
| 2077 | symbol created for them. (See the comment near the end of |
| 2078 | _bfd_generic_link_output_symbols in linker.c). If the linker |
| 2079 | script discards such sections then we will reach this point. |
| 2080 | Since we know that we cannot avoid this case, we detect it |
| 2081 | and skip the abort and the assignment to the sect_syms array. |
| 2082 | To reproduce this particular case try running the linker |
| 2083 | testsuite test ld-scripts/weak.exp for an ELF port that uses |
| 2084 | the generic linker. */ |
| 2085 | if (sec->owner == NULL) |
| 2086 | continue; |
| 2087 | |
| 2088 | BFD_ASSERT (sec->owner == abfd); |
| 2089 | } |
| 2090 | sect_syms[sec->index] = syms[idx]; |
| 2091 | } |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | for (asect = abfd->sections; asect; asect = asect->next) |
| 2096 | { |
| 2097 | if (sect_syms[asect->index] != NULL) |
| 2098 | continue; |
| 2099 | |
| 2100 | sym = bfd_make_empty_symbol (abfd); |
| 2101 | if (sym == NULL) |
| 2102 | return false; |
| 2103 | sym->the_bfd = abfd; |
| 2104 | sym->name = asect->name; |
| 2105 | sym->value = 0; |
| 2106 | /* Set the flags to 0 to indicate that this one was newly added. */ |
| 2107 | sym->flags = 0; |
| 2108 | sym->section = asect; |
| 2109 | sect_syms[asect->index] = sym; |
| 2110 | num_sections++; |
| 2111 | #ifdef DEBUG |
| 2112 | fprintf (stderr, |
| 2113 | _("creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n"), |
| 2114 | asect->name, (long) asect->vma, asect->index, (long) asect); |
| 2115 | #endif |
| 2116 | } |
| 2117 | |
| 2118 | /* Classify all of the symbols. */ |
| 2119 | for (idx = 0; idx < symcount; idx++) |
| 2120 | { |
| 2121 | if (!sym_is_global (abfd, syms[idx])) |
| 2122 | num_locals++; |
| 2123 | else |
| 2124 | num_globals++; |
| 2125 | } |
| 2126 | for (asect = abfd->sections; asect; asect = asect->next) |
| 2127 | { |
| 2128 | if (sect_syms[asect->index] != NULL |
| 2129 | && sect_syms[asect->index]->flags == 0) |
| 2130 | { |
| 2131 | sect_syms[asect->index]->flags = BSF_SECTION_SYM; |
| 2132 | if (!sym_is_global (abfd, sect_syms[asect->index])) |
| 2133 | num_locals++; |
| 2134 | else |
| 2135 | num_globals++; |
| 2136 | sect_syms[asect->index]->flags = 0; |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | /* Now sort the symbols so the local symbols are first. */ |
| 2141 | new_syms = ((asymbol **) |
| 2142 | bfd_alloc (abfd, |
| 2143 | (num_locals + num_globals) * sizeof (asymbol *))); |
| 2144 | if (new_syms == NULL) |
| 2145 | return false; |
| 2146 | |
| 2147 | for (idx = 0; idx < symcount; idx++) |
| 2148 | { |
| 2149 | asymbol *sym = syms[idx]; |
| 2150 | int i; |
| 2151 | |
| 2152 | if (!sym_is_global (abfd, sym)) |
| 2153 | i = num_locals2++; |
| 2154 | else |
| 2155 | i = num_locals + num_globals2++; |
| 2156 | new_syms[i] = sym; |
| 2157 | sym->udata.i = i + 1; |
| 2158 | } |
| 2159 | for (asect = abfd->sections; asect; asect = asect->next) |
| 2160 | { |
| 2161 | if (sect_syms[asect->index] != NULL |
| 2162 | && sect_syms[asect->index]->flags == 0) |
| 2163 | { |
| 2164 | asymbol *sym = sect_syms[asect->index]; |
| 2165 | int i; |
| 2166 | |
| 2167 | sym->flags = BSF_SECTION_SYM; |
| 2168 | if (!sym_is_global (abfd, sym)) |
| 2169 | i = num_locals2++; |
| 2170 | else |
| 2171 | i = num_locals + num_globals2++; |
| 2172 | new_syms[i] = sym; |
| 2173 | sym->udata.i = i + 1; |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | bfd_set_symtab (abfd, new_syms, num_locals + num_globals); |
| 2178 | |
| 2179 | elf_num_locals (abfd) = num_locals; |
| 2180 | elf_num_globals (abfd) = num_globals; |
| 2181 | return true; |
| 2182 | } |
| 2183 | |
| 2184 | /* Align to the maximum file alignment that could be required for any |
| 2185 | ELF data structure. */ |
| 2186 | |
| 2187 | static INLINE file_ptr align_file_position PARAMS ((file_ptr, int)); |
| 2188 | static INLINE file_ptr |
| 2189 | align_file_position (off, align) |
| 2190 | file_ptr off; |
| 2191 | int align; |
| 2192 | { |
| 2193 | return (off + align - 1) & ~(align - 1); |
| 2194 | } |
| 2195 | |
| 2196 | /* Assign a file position to a section, optionally aligning to the |
| 2197 | required section alignment. */ |
| 2198 | |
| 2199 | INLINE file_ptr |
| 2200 | _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align) |
| 2201 | Elf_Internal_Shdr *i_shdrp; |
| 2202 | file_ptr offset; |
| 2203 | boolean align; |
| 2204 | { |
| 2205 | if (align) |
| 2206 | { |
| 2207 | unsigned int al; |
| 2208 | |
| 2209 | al = i_shdrp->sh_addralign; |
| 2210 | if (al > 1) |
| 2211 | offset = BFD_ALIGN (offset, al); |
| 2212 | } |
| 2213 | i_shdrp->sh_offset = offset; |
| 2214 | if (i_shdrp->bfd_section != NULL) |
| 2215 | i_shdrp->bfd_section->filepos = offset; |
| 2216 | if (i_shdrp->sh_type != SHT_NOBITS) |
| 2217 | offset += i_shdrp->sh_size; |
| 2218 | return offset; |
| 2219 | } |
| 2220 | |
| 2221 | /* Compute the file positions we are going to put the sections at, and |
| 2222 | otherwise prepare to begin writing out the ELF file. If LINK_INFO |
| 2223 | is not NULL, this is being called by the ELF backend linker. */ |
| 2224 | |
| 2225 | boolean |
| 2226 | _bfd_elf_compute_section_file_positions (abfd, link_info) |
| 2227 | bfd *abfd; |
| 2228 | struct bfd_link_info *link_info; |
| 2229 | { |
| 2230 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 2231 | boolean failed; |
| 2232 | struct bfd_strtab_hash *strtab; |
| 2233 | Elf_Internal_Shdr *shstrtab_hdr; |
| 2234 | |
| 2235 | if (abfd->output_has_begun) |
| 2236 | return true; |
| 2237 | |
| 2238 | /* Do any elf backend specific processing first. */ |
| 2239 | if (bed->elf_backend_begin_write_processing) |
| 2240 | (*bed->elf_backend_begin_write_processing) (abfd, link_info); |
| 2241 | |
| 2242 | if (! prep_headers (abfd)) |
| 2243 | return false; |
| 2244 | |
| 2245 | /* Post process the headers if necessary. */ |
| 2246 | if (bed->elf_backend_post_process_headers) |
| 2247 | (*bed->elf_backend_post_process_headers) (abfd, link_info); |
| 2248 | |
| 2249 | failed = false; |
| 2250 | bfd_map_over_sections (abfd, elf_fake_sections, &failed); |
| 2251 | if (failed) |
| 2252 | return false; |
| 2253 | |
| 2254 | if (!assign_section_numbers (abfd)) |
| 2255 | return false; |
| 2256 | |
| 2257 | /* The backend linker builds symbol table information itself. */ |
| 2258 | if (link_info == NULL && bfd_get_symcount (abfd) > 0) |
| 2259 | { |
| 2260 | /* Non-zero if doing a relocatable link. */ |
| 2261 | int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); |
| 2262 | |
| 2263 | if (! swap_out_syms (abfd, &strtab, relocatable_p)) |
| 2264 | return false; |
| 2265 | } |
| 2266 | |
| 2267 | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; |
| 2268 | /* sh_name was set in prep_headers. */ |
| 2269 | shstrtab_hdr->sh_type = SHT_STRTAB; |
| 2270 | shstrtab_hdr->sh_flags = 0; |
| 2271 | shstrtab_hdr->sh_addr = 0; |
| 2272 | shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
| 2273 | shstrtab_hdr->sh_entsize = 0; |
| 2274 | shstrtab_hdr->sh_link = 0; |
| 2275 | shstrtab_hdr->sh_info = 0; |
| 2276 | /* sh_offset is set in assign_file_positions_except_relocs. */ |
| 2277 | shstrtab_hdr->sh_addralign = 1; |
| 2278 | |
| 2279 | if (!assign_file_positions_except_relocs (abfd)) |
| 2280 | return false; |
| 2281 | |
| 2282 | if (link_info == NULL && bfd_get_symcount (abfd) > 0) |
| 2283 | { |
| 2284 | file_ptr off; |
| 2285 | Elf_Internal_Shdr *hdr; |
| 2286 | |
| 2287 | off = elf_tdata (abfd)->next_file_pos; |
| 2288 | |
| 2289 | hdr = &elf_tdata (abfd)->symtab_hdr; |
| 2290 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| 2291 | |
| 2292 | hdr = &elf_tdata (abfd)->strtab_hdr; |
| 2293 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| 2294 | |
| 2295 | elf_tdata (abfd)->next_file_pos = off; |
| 2296 | |
| 2297 | /* Now that we know where the .strtab section goes, write it |
| 2298 | out. */ |
| 2299 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
| 2300 | || ! _bfd_stringtab_emit (abfd, strtab)) |
| 2301 | return false; |
| 2302 | _bfd_stringtab_free (strtab); |
| 2303 | } |
| 2304 | |
| 2305 | abfd->output_has_begun = true; |
| 2306 | |
| 2307 | return true; |
| 2308 | } |
| 2309 | |
| 2310 | /* Create a mapping from a set of sections to a program segment. */ |
| 2311 | |
| 2312 | static INLINE struct elf_segment_map * |
| 2313 | make_mapping (abfd, sections, from, to, phdr) |
| 2314 | bfd *abfd; |
| 2315 | asection **sections; |
| 2316 | unsigned int from; |
| 2317 | unsigned int to; |
| 2318 | boolean phdr; |
| 2319 | { |
| 2320 | struct elf_segment_map *m; |
| 2321 | unsigned int i; |
| 2322 | asection **hdrpp; |
| 2323 | |
| 2324 | m = ((struct elf_segment_map *) |
| 2325 | bfd_zalloc (abfd, |
| 2326 | (sizeof (struct elf_segment_map) |
| 2327 | + (to - from - 1) * sizeof (asection *)))); |
| 2328 | if (m == NULL) |
| 2329 | return NULL; |
| 2330 | m->next = NULL; |
| 2331 | m->p_type = PT_LOAD; |
| 2332 | for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) |
| 2333 | m->sections[i - from] = *hdrpp; |
| 2334 | m->count = to - from; |
| 2335 | |
| 2336 | if (from == 0 && phdr) |
| 2337 | { |
| 2338 | /* Include the headers in the first PT_LOAD segment. */ |
| 2339 | m->includes_filehdr = 1; |
| 2340 | m->includes_phdrs = 1; |
| 2341 | } |
| 2342 | |
| 2343 | return m; |
| 2344 | } |
| 2345 | |
| 2346 | /* Set up a mapping from BFD sections to program segments. */ |
| 2347 | |
| 2348 | static boolean |
| 2349 | map_sections_to_segments (abfd) |
| 2350 | bfd *abfd; |
| 2351 | { |
| 2352 | asection **sections = NULL; |
| 2353 | asection *s; |
| 2354 | unsigned int i; |
| 2355 | unsigned int count; |
| 2356 | struct elf_segment_map *mfirst; |
| 2357 | struct elf_segment_map **pm; |
| 2358 | struct elf_segment_map *m; |
| 2359 | asection *last_hdr; |
| 2360 | unsigned int phdr_index; |
| 2361 | bfd_vma maxpagesize; |
| 2362 | asection **hdrpp; |
| 2363 | boolean phdr_in_segment = true; |
| 2364 | boolean writable; |
| 2365 | asection *dynsec; |
| 2366 | |
| 2367 | if (elf_tdata (abfd)->segment_map != NULL) |
| 2368 | return true; |
| 2369 | |
| 2370 | if (bfd_count_sections (abfd) == 0) |
| 2371 | return true; |
| 2372 | |
| 2373 | /* Select the allocated sections, and sort them. */ |
| 2374 | |
| 2375 | sections = (asection **) bfd_malloc (bfd_count_sections (abfd) |
| 2376 | * sizeof (asection *)); |
| 2377 | if (sections == NULL) |
| 2378 | goto error_return; |
| 2379 | |
| 2380 | i = 0; |
| 2381 | for (s = abfd->sections; s != NULL; s = s->next) |
| 2382 | { |
| 2383 | if ((s->flags & SEC_ALLOC) != 0) |
| 2384 | { |
| 2385 | sections[i] = s; |
| 2386 | ++i; |
| 2387 | } |
| 2388 | } |
| 2389 | BFD_ASSERT (i <= bfd_count_sections (abfd)); |
| 2390 | count = i; |
| 2391 | |
| 2392 | qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); |
| 2393 | |
| 2394 | /* Build the mapping. */ |
| 2395 | |
| 2396 | mfirst = NULL; |
| 2397 | pm = &mfirst; |
| 2398 | |
| 2399 | /* If we have a .interp section, then create a PT_PHDR segment for |
| 2400 | the program headers and a PT_INTERP segment for the .interp |
| 2401 | section. */ |
| 2402 | s = bfd_get_section_by_name (abfd, ".interp"); |
| 2403 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| 2404 | { |
| 2405 | m = ((struct elf_segment_map *) |
| 2406 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); |
| 2407 | if (m == NULL) |
| 2408 | goto error_return; |
| 2409 | m->next = NULL; |
| 2410 | m->p_type = PT_PHDR; |
| 2411 | /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ |
| 2412 | m->p_flags = PF_R | PF_X; |
| 2413 | m->p_flags_valid = 1; |
| 2414 | m->includes_phdrs = 1; |
| 2415 | |
| 2416 | *pm = m; |
| 2417 | pm = &m->next; |
| 2418 | |
| 2419 | m = ((struct elf_segment_map *) |
| 2420 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); |
| 2421 | if (m == NULL) |
| 2422 | goto error_return; |
| 2423 | m->next = NULL; |
| 2424 | m->p_type = PT_INTERP; |
| 2425 | m->count = 1; |
| 2426 | m->sections[0] = s; |
| 2427 | |
| 2428 | *pm = m; |
| 2429 | pm = &m->next; |
| 2430 | } |
| 2431 | |
| 2432 | /* Look through the sections. We put sections in the same program |
| 2433 | segment when the start of the second section can be placed within |
| 2434 | a few bytes of the end of the first section. */ |
| 2435 | last_hdr = NULL; |
| 2436 | phdr_index = 0; |
| 2437 | maxpagesize = get_elf_backend_data (abfd)->maxpagesize; |
| 2438 | writable = false; |
| 2439 | dynsec = bfd_get_section_by_name (abfd, ".dynamic"); |
| 2440 | if (dynsec != NULL |
| 2441 | && (dynsec->flags & SEC_LOAD) == 0) |
| 2442 | dynsec = NULL; |
| 2443 | |
| 2444 | /* Deal with -Ttext or something similar such that the first section |
| 2445 | is not adjacent to the program headers. This is an |
| 2446 | approximation, since at this point we don't know exactly how many |
| 2447 | program headers we will need. */ |
| 2448 | if (count > 0) |
| 2449 | { |
| 2450 | bfd_size_type phdr_size; |
| 2451 | |
| 2452 | phdr_size = elf_tdata (abfd)->program_header_size; |
| 2453 | if (phdr_size == 0) |
| 2454 | phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr; |
| 2455 | if ((abfd->flags & D_PAGED) == 0 |
| 2456 | || sections[0]->lma < phdr_size |
| 2457 | || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) |
| 2458 | phdr_in_segment = false; |
| 2459 | } |
| 2460 | |
| 2461 | for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) |
| 2462 | { |
| 2463 | asection *hdr; |
| 2464 | boolean new_segment; |
| 2465 | |
| 2466 | hdr = *hdrpp; |
| 2467 | |
| 2468 | /* See if this section and the last one will fit in the same |
| 2469 | segment. */ |
| 2470 | |
| 2471 | if (last_hdr == NULL) |
| 2472 | { |
| 2473 | /* If we don't have a segment yet, then we don't need a new |
| 2474 | one (we build the last one after this loop). */ |
| 2475 | new_segment = false; |
| 2476 | } |
| 2477 | else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) |
| 2478 | { |
| 2479 | /* If this section has a different relation between the |
| 2480 | virtual address and the load address, then we need a new |
| 2481 | segment. */ |
| 2482 | new_segment = true; |
| 2483 | } |
| 2484 | else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) |
| 2485 | < BFD_ALIGN (hdr->lma, maxpagesize)) |
| 2486 | { |
| 2487 | /* If putting this section in this segment would force us to |
| 2488 | skip a page in the segment, then we need a new segment. */ |
| 2489 | new_segment = true; |
| 2490 | } |
| 2491 | else if ((last_hdr->flags & SEC_LOAD) == 0 |
| 2492 | && (hdr->flags & SEC_LOAD) != 0) |
| 2493 | { |
| 2494 | /* We don't want to put a loadable section after a |
| 2495 | nonloadable section in the same segment. */ |
| 2496 | new_segment = true; |
| 2497 | } |
| 2498 | else if ((abfd->flags & D_PAGED) == 0) |
| 2499 | { |
| 2500 | /* If the file is not demand paged, which means that we |
| 2501 | don't require the sections to be correctly aligned in the |
| 2502 | file, then there is no other reason for a new segment. */ |
| 2503 | new_segment = false; |
| 2504 | } |
| 2505 | else if (! writable |
| 2506 | && (hdr->flags & SEC_READONLY) == 0 |
| 2507 | && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) |
| 2508 | == hdr->lma)) |
| 2509 | { |
| 2510 | /* We don't want to put a writable section in a read only |
| 2511 | segment, unless they are on the same page in memory |
| 2512 | anyhow. We already know that the last section does not |
| 2513 | bring us past the current section on the page, so the |
| 2514 | only case in which the new section is not on the same |
| 2515 | page as the previous section is when the previous section |
| 2516 | ends precisely on a page boundary. */ |
| 2517 | new_segment = true; |
| 2518 | } |
| 2519 | else |
| 2520 | { |
| 2521 | /* Otherwise, we can use the same segment. */ |
| 2522 | new_segment = false; |
| 2523 | } |
| 2524 | |
| 2525 | if (! new_segment) |
| 2526 | { |
| 2527 | if ((hdr->flags & SEC_READONLY) == 0) |
| 2528 | writable = true; |
| 2529 | last_hdr = hdr; |
| 2530 | continue; |
| 2531 | } |
| 2532 | |
| 2533 | /* We need a new program segment. We must create a new program |
| 2534 | header holding all the sections from phdr_index until hdr. */ |
| 2535 | |
| 2536 | m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); |
| 2537 | if (m == NULL) |
| 2538 | goto error_return; |
| 2539 | |
| 2540 | *pm = m; |
| 2541 | pm = &m->next; |
| 2542 | |
| 2543 | if ((hdr->flags & SEC_READONLY) == 0) |
| 2544 | writable = true; |
| 2545 | else |
| 2546 | writable = false; |
| 2547 | |
| 2548 | last_hdr = hdr; |
| 2549 | phdr_index = i; |
| 2550 | phdr_in_segment = false; |
| 2551 | } |
| 2552 | |
| 2553 | /* Create a final PT_LOAD program segment. */ |
| 2554 | if (last_hdr != NULL) |
| 2555 | { |
| 2556 | m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); |
| 2557 | if (m == NULL) |
| 2558 | goto error_return; |
| 2559 | |
| 2560 | *pm = m; |
| 2561 | pm = &m->next; |
| 2562 | } |
| 2563 | |
| 2564 | /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ |
| 2565 | if (dynsec != NULL) |
| 2566 | { |
| 2567 | m = ((struct elf_segment_map *) |
| 2568 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); |
| 2569 | if (m == NULL) |
| 2570 | goto error_return; |
| 2571 | m->next = NULL; |
| 2572 | m->p_type = PT_DYNAMIC; |
| 2573 | m->count = 1; |
| 2574 | m->sections[0] = dynsec; |
| 2575 | |
| 2576 | *pm = m; |
| 2577 | pm = &m->next; |
| 2578 | } |
| 2579 | |
| 2580 | /* For each loadable .note section, add a PT_NOTE segment. We don't |
| 2581 | use bfd_get_section_by_name, because if we link together |
| 2582 | nonloadable .note sections and loadable .note sections, we will |
| 2583 | generate two .note sections in the output file. FIXME: Using |
| 2584 | names for section types is bogus anyhow. */ |
| 2585 | for (s = abfd->sections; s != NULL; s = s->next) |
| 2586 | { |
| 2587 | if ((s->flags & SEC_LOAD) != 0 |
| 2588 | && strncmp (s->name, ".note", 5) == 0) |
| 2589 | { |
| 2590 | m = ((struct elf_segment_map *) |
| 2591 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); |
| 2592 | if (m == NULL) |
| 2593 | goto error_return; |
| 2594 | m->next = NULL; |
| 2595 | m->p_type = PT_NOTE; |
| 2596 | m->count = 1; |
| 2597 | m->sections[0] = s; |
| 2598 | |
| 2599 | *pm = m; |
| 2600 | pm = &m->next; |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | free (sections); |
| 2605 | sections = NULL; |
| 2606 | |
| 2607 | elf_tdata (abfd)->segment_map = mfirst; |
| 2608 | return true; |
| 2609 | |
| 2610 | error_return: |
| 2611 | if (sections != NULL) |
| 2612 | free (sections); |
| 2613 | return false; |
| 2614 | } |
| 2615 | |
| 2616 | /* Sort sections by address. */ |
| 2617 | |
| 2618 | static int |
| 2619 | elf_sort_sections (arg1, arg2) |
| 2620 | const PTR arg1; |
| 2621 | const PTR arg2; |
| 2622 | { |
| 2623 | const asection *sec1 = *(const asection **) arg1; |
| 2624 | const asection *sec2 = *(const asection **) arg2; |
| 2625 | |
| 2626 | /* Sort by LMA first, since this is the address used to |
| 2627 | place the section into a segment. */ |
| 2628 | if (sec1->lma < sec2->lma) |
| 2629 | return -1; |
| 2630 | else if (sec1->lma > sec2->lma) |
| 2631 | return 1; |
| 2632 | |
| 2633 | /* Then sort by VMA. Normally the LMA and the VMA will be |
| 2634 | the same, and this will do nothing. */ |
| 2635 | if (sec1->vma < sec2->vma) |
| 2636 | return -1; |
| 2637 | else if (sec1->vma > sec2->vma) |
| 2638 | return 1; |
| 2639 | |
| 2640 | /* Put !SEC_LOAD sections after SEC_LOAD ones. */ |
| 2641 | |
| 2642 | #define TOEND(x) (((x)->flags & SEC_LOAD) == 0) |
| 2643 | |
| 2644 | if (TOEND (sec1)) |
| 2645 | { |
| 2646 | if (TOEND (sec2)) |
| 2647 | return sec1->target_index - sec2->target_index; |
| 2648 | else |
| 2649 | return 1; |
| 2650 | } |
| 2651 | |
| 2652 | if (TOEND (sec2)) |
| 2653 | return -1; |
| 2654 | |
| 2655 | #undef TOEND |
| 2656 | |
| 2657 | /* Sort by size, to put zero sized sections before others at the |
| 2658 | same address. */ |
| 2659 | |
| 2660 | if (sec1->_raw_size < sec2->_raw_size) |
| 2661 | return -1; |
| 2662 | if (sec1->_raw_size > sec2->_raw_size) |
| 2663 | return 1; |
| 2664 | |
| 2665 | return sec1->target_index - sec2->target_index; |
| 2666 | } |
| 2667 | |
| 2668 | /* Assign file positions to the sections based on the mapping from |
| 2669 | sections to segments. This function also sets up some fields in |
| 2670 | the file header, and writes out the program headers. */ |
| 2671 | |
| 2672 | static boolean |
| 2673 | assign_file_positions_for_segments (abfd) |
| 2674 | bfd *abfd; |
| 2675 | { |
| 2676 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 2677 | unsigned int count; |
| 2678 | struct elf_segment_map *m; |
| 2679 | unsigned int alloc; |
| 2680 | Elf_Internal_Phdr *phdrs; |
| 2681 | file_ptr off, voff; |
| 2682 | bfd_vma filehdr_vaddr, filehdr_paddr; |
| 2683 | bfd_vma phdrs_vaddr, phdrs_paddr; |
| 2684 | Elf_Internal_Phdr *p; |
| 2685 | |
| 2686 | if (elf_tdata (abfd)->segment_map == NULL) |
| 2687 | { |
| 2688 | if (! map_sections_to_segments (abfd)) |
| 2689 | return false; |
| 2690 | } |
| 2691 | |
| 2692 | if (bed->elf_backend_modify_segment_map) |
| 2693 | { |
| 2694 | if (! (*bed->elf_backend_modify_segment_map) (abfd)) |
| 2695 | return false; |
| 2696 | } |
| 2697 | |
| 2698 | count = 0; |
| 2699 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| 2700 | ++count; |
| 2701 | |
| 2702 | elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; |
| 2703 | elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; |
| 2704 | elf_elfheader (abfd)->e_phnum = count; |
| 2705 | |
| 2706 | if (count == 0) |
| 2707 | return true; |
| 2708 | |
| 2709 | /* If we already counted the number of program segments, make sure |
| 2710 | that we allocated enough space. This happens when SIZEOF_HEADERS |
| 2711 | is used in a linker script. */ |
| 2712 | alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr; |
| 2713 | if (alloc != 0 && count > alloc) |
| 2714 | { |
| 2715 | ((*_bfd_error_handler) |
| 2716 | (_("%s: Not enough room for program headers (allocated %u, need %u)"), |
| 2717 | bfd_get_filename (abfd), alloc, count)); |
| 2718 | bfd_set_error (bfd_error_bad_value); |
| 2719 | return false; |
| 2720 | } |
| 2721 | |
| 2722 | if (alloc == 0) |
| 2723 | alloc = count; |
| 2724 | |
| 2725 | phdrs = ((Elf_Internal_Phdr *) |
| 2726 | bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr))); |
| 2727 | if (phdrs == NULL) |
| 2728 | return false; |
| 2729 | |
| 2730 | off = bed->s->sizeof_ehdr; |
| 2731 | off += alloc * bed->s->sizeof_phdr; |
| 2732 | |
| 2733 | filehdr_vaddr = 0; |
| 2734 | filehdr_paddr = 0; |
| 2735 | phdrs_vaddr = 0; |
| 2736 | phdrs_paddr = 0; |
| 2737 | |
| 2738 | for (m = elf_tdata (abfd)->segment_map, p = phdrs; |
| 2739 | m != NULL; |
| 2740 | m = m->next, p++) |
| 2741 | { |
| 2742 | unsigned int i; |
| 2743 | asection **secpp; |
| 2744 | |
| 2745 | /* If elf_segment_map is not from map_sections_to_segments, the |
| 2746 | sections may not be correctly ordered. */ |
| 2747 | if (m->count > 0) |
| 2748 | qsort (m->sections, (size_t) m->count, sizeof (asection *), |
| 2749 | elf_sort_sections); |
| 2750 | |
| 2751 | p->p_type = m->p_type; |
| 2752 | p->p_flags = m->p_flags; |
| 2753 | |
| 2754 | if (p->p_type == PT_LOAD |
| 2755 | && m->count > 0 |
| 2756 | && (m->sections[0]->flags & SEC_ALLOC) != 0) |
| 2757 | { |
| 2758 | if ((abfd->flags & D_PAGED) != 0) |
| 2759 | off += (m->sections[0]->vma - off) % bed->maxpagesize; |
| 2760 | else |
| 2761 | { |
| 2762 | bfd_size_type align; |
| 2763 | |
| 2764 | align = 0; |
| 2765 | for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) |
| 2766 | { |
| 2767 | bfd_size_type secalign; |
| 2768 | |
| 2769 | secalign = bfd_get_section_alignment (abfd, *secpp); |
| 2770 | if (secalign > align) |
| 2771 | align = secalign; |
| 2772 | } |
| 2773 | |
| 2774 | off += (m->sections[0]->vma - off) % (1 << align); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | if (m->count == 0) |
| 2779 | p->p_vaddr = 0; |
| 2780 | else |
| 2781 | p->p_vaddr = m->sections[0]->vma; |
| 2782 | |
| 2783 | if (m->p_paddr_valid) |
| 2784 | p->p_paddr = m->p_paddr; |
| 2785 | else if (m->count == 0) |
| 2786 | p->p_paddr = 0; |
| 2787 | else |
| 2788 | p->p_paddr = m->sections[0]->lma; |
| 2789 | |
| 2790 | if (p->p_type == PT_LOAD |
| 2791 | && (abfd->flags & D_PAGED) != 0) |
| 2792 | p->p_align = bed->maxpagesize; |
| 2793 | else if (m->count == 0) |
| 2794 | p->p_align = bed->s->file_align; |
| 2795 | else |
| 2796 | p->p_align = 0; |
| 2797 | |
| 2798 | p->p_offset = 0; |
| 2799 | p->p_filesz = 0; |
| 2800 | p->p_memsz = 0; |
| 2801 | |
| 2802 | if (m->includes_filehdr) |
| 2803 | { |
| 2804 | if (! m->p_flags_valid) |
| 2805 | p->p_flags |= PF_R; |
| 2806 | p->p_offset = 0; |
| 2807 | p->p_filesz = bed->s->sizeof_ehdr; |
| 2808 | p->p_memsz = bed->s->sizeof_ehdr; |
| 2809 | if (m->count > 0) |
| 2810 | { |
| 2811 | BFD_ASSERT (p->p_type == PT_LOAD); |
| 2812 | |
| 2813 | if (p->p_vaddr < (bfd_vma) off) |
| 2814 | { |
| 2815 | _bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"), |
| 2816 | bfd_get_filename (abfd)); |
| 2817 | bfd_set_error (bfd_error_bad_value); |
| 2818 | return false; |
| 2819 | } |
| 2820 | |
| 2821 | p->p_vaddr -= off; |
| 2822 | if (! m->p_paddr_valid) |
| 2823 | p->p_paddr -= off; |
| 2824 | } |
| 2825 | if (p->p_type == PT_LOAD) |
| 2826 | { |
| 2827 | filehdr_vaddr = p->p_vaddr; |
| 2828 | filehdr_paddr = p->p_paddr; |
| 2829 | } |
| 2830 | } |
| 2831 | |
| 2832 | if (m->includes_phdrs) |
| 2833 | { |
| 2834 | if (! m->p_flags_valid) |
| 2835 | p->p_flags |= PF_R; |
| 2836 | |
| 2837 | if (m->includes_filehdr) |
| 2838 | { |
| 2839 | if (p->p_type == PT_LOAD) |
| 2840 | { |
| 2841 | phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr; |
| 2842 | phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr; |
| 2843 | } |
| 2844 | } |
| 2845 | else |
| 2846 | { |
| 2847 | p->p_offset = bed->s->sizeof_ehdr; |
| 2848 | |
| 2849 | if (m->count > 0) |
| 2850 | { |
| 2851 | BFD_ASSERT (p->p_type == PT_LOAD); |
| 2852 | p->p_vaddr -= off - p->p_offset; |
| 2853 | if (! m->p_paddr_valid) |
| 2854 | p->p_paddr -= off - p->p_offset; |
| 2855 | } |
| 2856 | |
| 2857 | if (p->p_type == PT_LOAD) |
| 2858 | { |
| 2859 | phdrs_vaddr = p->p_vaddr; |
| 2860 | phdrs_paddr = p->p_paddr; |
| 2861 | } |
| 2862 | else |
| 2863 | phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; |
| 2864 | } |
| 2865 | |
| 2866 | p->p_filesz += alloc * bed->s->sizeof_phdr; |
| 2867 | p->p_memsz += alloc * bed->s->sizeof_phdr; |
| 2868 | } |
| 2869 | |
| 2870 | if (p->p_type == PT_LOAD |
| 2871 | || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) |
| 2872 | { |
| 2873 | if (! m->includes_filehdr && ! m->includes_phdrs) |
| 2874 | p->p_offset = off; |
| 2875 | else |
| 2876 | { |
| 2877 | file_ptr adjust; |
| 2878 | |
| 2879 | adjust = off - (p->p_offset + p->p_filesz); |
| 2880 | p->p_filesz += adjust; |
| 2881 | p->p_memsz += adjust; |
| 2882 | } |
| 2883 | } |
| 2884 | |
| 2885 | voff = off; |
| 2886 | |
| 2887 | for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) |
| 2888 | { |
| 2889 | asection *sec; |
| 2890 | flagword flags; |
| 2891 | bfd_size_type align; |
| 2892 | |
| 2893 | sec = *secpp; |
| 2894 | flags = sec->flags; |
| 2895 | align = 1 << bfd_get_section_alignment (abfd, sec); |
| 2896 | |
| 2897 | /* The section may have artificial alignment forced by a |
| 2898 | link script. Notice this case by the gap between the |
| 2899 | cumulative phdr vma and the section's vma. */ |
| 2900 | if (p->p_vaddr + p->p_memsz < sec->vma) |
| 2901 | { |
| 2902 | bfd_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz); |
| 2903 | |
| 2904 | p->p_memsz += adjust; |
| 2905 | off += adjust; |
| 2906 | voff += adjust; |
| 2907 | if ((flags & SEC_LOAD) != 0) |
| 2908 | p->p_filesz += adjust; |
| 2909 | } |
| 2910 | |
| 2911 | if (p->p_type == PT_LOAD) |
| 2912 | { |
| 2913 | bfd_signed_vma adjust; |
| 2914 | |
| 2915 | if ((flags & SEC_LOAD) != 0) |
| 2916 | { |
| 2917 | adjust = sec->lma - (p->p_paddr + p->p_memsz); |
| 2918 | if (adjust < 0) |
| 2919 | adjust = 0; |
| 2920 | } |
| 2921 | else if ((flags & SEC_ALLOC) != 0) |
| 2922 | { |
| 2923 | /* The section VMA must equal the file position |
| 2924 | modulo the page size. FIXME: I'm not sure if |
| 2925 | this adjustment is really necessary. We used to |
| 2926 | not have the SEC_LOAD case just above, and then |
| 2927 | this was necessary, but now I'm not sure. */ |
| 2928 | if ((abfd->flags & D_PAGED) != 0) |
| 2929 | adjust = (sec->vma - voff) % bed->maxpagesize; |
| 2930 | else |
| 2931 | adjust = (sec->vma - voff) % align; |
| 2932 | } |
| 2933 | else |
| 2934 | adjust = 0; |
| 2935 | |
| 2936 | if (adjust != 0) |
| 2937 | { |
| 2938 | if (i == 0) |
| 2939 | { |
| 2940 | (* _bfd_error_handler) |
| 2941 | (_("Error: First section in segment (%s) starts at 0x%x"), |
| 2942 | bfd_section_name (abfd, sec), sec->lma); |
| 2943 | (* _bfd_error_handler) |
| 2944 | (_(" whereas segment starts at 0x%x"), |
| 2945 | p->p_paddr); |
| 2946 | |
| 2947 | return false; |
| 2948 | } |
| 2949 | p->p_memsz += adjust; |
| 2950 | off += adjust; |
| 2951 | voff += adjust; |
| 2952 | if ((flags & SEC_LOAD) != 0) |
| 2953 | p->p_filesz += adjust; |
| 2954 | } |
| 2955 | |
| 2956 | sec->filepos = off; |
| 2957 | |
| 2958 | /* We check SEC_HAS_CONTENTS here because if NOLOAD is |
| 2959 | used in a linker script we may have a section with |
| 2960 | SEC_LOAD clear but which is supposed to have |
| 2961 | contents. */ |
| 2962 | if ((flags & SEC_LOAD) != 0 |
| 2963 | || (flags & SEC_HAS_CONTENTS) != 0) |
| 2964 | off += sec->_raw_size; |
| 2965 | |
| 2966 | if ((flags & SEC_ALLOC) != 0) |
| 2967 | voff += sec->_raw_size; |
| 2968 | } |
| 2969 | |
| 2970 | if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) |
| 2971 | { |
| 2972 | /* The actual "note" segment has i == 0. |
| 2973 | This is the one that actually contains everything. */ |
| 2974 | if (i == 0) |
| 2975 | { |
| 2976 | sec->filepos = off; |
| 2977 | p->p_filesz = sec->_raw_size; |
| 2978 | off += sec->_raw_size; |
| 2979 | voff = off; |
| 2980 | } |
| 2981 | else |
| 2982 | { |
| 2983 | /* Fake sections -- don't need to be written. */ |
| 2984 | sec->filepos = 0; |
| 2985 | sec->_raw_size = 0; |
| 2986 | flags = sec->flags = 0; |
| 2987 | } |
| 2988 | p->p_memsz = 0; |
| 2989 | p->p_align = 1; |
| 2990 | } |
| 2991 | else |
| 2992 | { |
| 2993 | p->p_memsz += sec->_raw_size; |
| 2994 | |
| 2995 | if ((flags & SEC_LOAD) != 0) |
| 2996 | p->p_filesz += sec->_raw_size; |
| 2997 | |
| 2998 | if (align > p->p_align |
| 2999 | && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0)) |
| 3000 | p->p_align = align; |
| 3001 | } |
| 3002 | |
| 3003 | if (! m->p_flags_valid) |
| 3004 | { |
| 3005 | p->p_flags |= PF_R; |
| 3006 | if ((flags & SEC_CODE) != 0) |
| 3007 | p->p_flags |= PF_X; |
| 3008 | if ((flags & SEC_READONLY) == 0) |
| 3009 | p->p_flags |= PF_W; |
| 3010 | } |
| 3011 | } |
| 3012 | } |
| 3013 | |
| 3014 | /* Now that we have set the section file positions, we can set up |
| 3015 | the file positions for the non PT_LOAD segments. */ |
| 3016 | for (m = elf_tdata (abfd)->segment_map, p = phdrs; |
| 3017 | m != NULL; |
| 3018 | m = m->next, p++) |
| 3019 | { |
| 3020 | if (p->p_type != PT_LOAD && m->count > 0) |
| 3021 | { |
| 3022 | BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs); |
| 3023 | p->p_offset = m->sections[0]->filepos; |
| 3024 | } |
| 3025 | if (m->count == 0) |
| 3026 | { |
| 3027 | if (m->includes_filehdr) |
| 3028 | { |
| 3029 | p->p_vaddr = filehdr_vaddr; |
| 3030 | if (! m->p_paddr_valid) |
| 3031 | p->p_paddr = filehdr_paddr; |
| 3032 | } |
| 3033 | else if (m->includes_phdrs) |
| 3034 | { |
| 3035 | p->p_vaddr = phdrs_vaddr; |
| 3036 | if (! m->p_paddr_valid) |
| 3037 | p->p_paddr = phdrs_paddr; |
| 3038 | } |
| 3039 | } |
| 3040 | } |
| 3041 | |
| 3042 | /* Clear out any program headers we allocated but did not use. */ |
| 3043 | for (; count < alloc; count++, p++) |
| 3044 | { |
| 3045 | memset (p, 0, sizeof *p); |
| 3046 | p->p_type = PT_NULL; |
| 3047 | } |
| 3048 | |
| 3049 | elf_tdata (abfd)->phdr = phdrs; |
| 3050 | |
| 3051 | elf_tdata (abfd)->next_file_pos = off; |
| 3052 | |
| 3053 | /* Write out the program headers. */ |
| 3054 | if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0 |
| 3055 | || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0) |
| 3056 | return false; |
| 3057 | |
| 3058 | return true; |
| 3059 | } |
| 3060 | |
| 3061 | /* Get the size of the program header. |
| 3062 | |
| 3063 | If this is called by the linker before any of the section VMA's are set, it |
| 3064 | can't calculate the correct value for a strange memory layout. This only |
| 3065 | happens when SIZEOF_HEADERS is used in a linker script. In this case, |
| 3066 | SORTED_HDRS is NULL and we assume the normal scenario of one text and one |
| 3067 | data segment (exclusive of .interp and .dynamic). |
| 3068 | |
| 3069 | ??? User written scripts must either not use SIZEOF_HEADERS, or assume there |
| 3070 | will be two segments. */ |
| 3071 | |
| 3072 | static bfd_size_type |
| 3073 | get_program_header_size (abfd) |
| 3074 | bfd *abfd; |
| 3075 | { |
| 3076 | size_t segs; |
| 3077 | asection *s; |
| 3078 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3079 | |
| 3080 | /* We can't return a different result each time we're called. */ |
| 3081 | if (elf_tdata (abfd)->program_header_size != 0) |
| 3082 | return elf_tdata (abfd)->program_header_size; |
| 3083 | |
| 3084 | if (elf_tdata (abfd)->segment_map != NULL) |
| 3085 | { |
| 3086 | struct elf_segment_map *m; |
| 3087 | |
| 3088 | segs = 0; |
| 3089 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| 3090 | ++segs; |
| 3091 | elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; |
| 3092 | return elf_tdata (abfd)->program_header_size; |
| 3093 | } |
| 3094 | |
| 3095 | /* Assume we will need exactly two PT_LOAD segments: one for text |
| 3096 | and one for data. */ |
| 3097 | segs = 2; |
| 3098 | |
| 3099 | s = bfd_get_section_by_name (abfd, ".interp"); |
| 3100 | if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| 3101 | { |
| 3102 | /* If we have a loadable interpreter section, we need a |
| 3103 | PT_INTERP segment. In this case, assume we also need a |
| 3104 | PT_PHDR segment, although that may not be true for all |
| 3105 | targets. */ |
| 3106 | segs += 2; |
| 3107 | } |
| 3108 | |
| 3109 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) |
| 3110 | { |
| 3111 | /* We need a PT_DYNAMIC segment. */ |
| 3112 | ++segs; |
| 3113 | } |
| 3114 | |
| 3115 | for (s = abfd->sections; s != NULL; s = s->next) |
| 3116 | { |
| 3117 | if ((s->flags & SEC_LOAD) != 0 |
| 3118 | && strncmp (s->name, ".note", 5) == 0) |
| 3119 | { |
| 3120 | /* We need a PT_NOTE segment. */ |
| 3121 | ++segs; |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | /* Let the backend count up any program headers it might need. */ |
| 3126 | if (bed->elf_backend_additional_program_headers) |
| 3127 | { |
| 3128 | int a; |
| 3129 | |
| 3130 | a = (*bed->elf_backend_additional_program_headers) (abfd); |
| 3131 | if (a == -1) |
| 3132 | abort (); |
| 3133 | segs += a; |
| 3134 | } |
| 3135 | |
| 3136 | elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; |
| 3137 | return elf_tdata (abfd)->program_header_size; |
| 3138 | } |
| 3139 | |
| 3140 | /* Work out the file positions of all the sections. This is called by |
| 3141 | _bfd_elf_compute_section_file_positions. All the section sizes and |
| 3142 | VMAs must be known before this is called. |
| 3143 | |
| 3144 | We do not consider reloc sections at this point, unless they form |
| 3145 | part of the loadable image. Reloc sections are assigned file |
| 3146 | positions in assign_file_positions_for_relocs, which is called by |
| 3147 | write_object_contents and final_link. |
| 3148 | |
| 3149 | We also don't set the positions of the .symtab and .strtab here. */ |
| 3150 | |
| 3151 | static boolean |
| 3152 | assign_file_positions_except_relocs (abfd) |
| 3153 | bfd *abfd; |
| 3154 | { |
| 3155 | struct elf_obj_tdata * const tdata = elf_tdata (abfd); |
| 3156 | Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); |
| 3157 | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); |
| 3158 | file_ptr off; |
| 3159 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3160 | |
| 3161 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 |
| 3162 | && bfd_get_format (abfd) != bfd_core) |
| 3163 | { |
| 3164 | Elf_Internal_Shdr **hdrpp; |
| 3165 | unsigned int i; |
| 3166 | |
| 3167 | /* Start after the ELF header. */ |
| 3168 | off = i_ehdrp->e_ehsize; |
| 3169 | |
| 3170 | /* We are not creating an executable, which means that we are |
| 3171 | not creating a program header, and that the actual order of |
| 3172 | the sections in the file is unimportant. */ |
| 3173 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) |
| 3174 | { |
| 3175 | Elf_Internal_Shdr *hdr; |
| 3176 | |
| 3177 | hdr = *hdrpp; |
| 3178 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) |
| 3179 | { |
| 3180 | hdr->sh_offset = -1; |
| 3181 | continue; |
| 3182 | } |
| 3183 | if (i == tdata->symtab_section |
| 3184 | || i == tdata->strtab_section) |
| 3185 | { |
| 3186 | hdr->sh_offset = -1; |
| 3187 | continue; |
| 3188 | } |
| 3189 | |
| 3190 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| 3191 | } |
| 3192 | } |
| 3193 | else |
| 3194 | { |
| 3195 | unsigned int i; |
| 3196 | Elf_Internal_Shdr **hdrpp; |
| 3197 | |
| 3198 | /* Assign file positions for the loaded sections based on the |
| 3199 | assignment of sections to segments. */ |
| 3200 | if (! assign_file_positions_for_segments (abfd)) |
| 3201 | return false; |
| 3202 | |
| 3203 | /* Assign file positions for the other sections. */ |
| 3204 | |
| 3205 | off = elf_tdata (abfd)->next_file_pos; |
| 3206 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) |
| 3207 | { |
| 3208 | Elf_Internal_Shdr *hdr; |
| 3209 | |
| 3210 | hdr = *hdrpp; |
| 3211 | if (hdr->bfd_section != NULL |
| 3212 | && hdr->bfd_section->filepos != 0) |
| 3213 | hdr->sh_offset = hdr->bfd_section->filepos; |
| 3214 | else if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| 3215 | { |
| 3216 | ((*_bfd_error_handler) |
| 3217 | (_("%s: warning: allocated section `%s' not in segment"), |
| 3218 | bfd_get_filename (abfd), |
| 3219 | (hdr->bfd_section == NULL |
| 3220 | ? "*unknown*" |
| 3221 | : hdr->bfd_section->name))); |
| 3222 | if ((abfd->flags & D_PAGED) != 0) |
| 3223 | off += (hdr->sh_addr - off) % bed->maxpagesize; |
| 3224 | else |
| 3225 | off += (hdr->sh_addr - off) % hdr->sh_addralign; |
| 3226 | off = _bfd_elf_assign_file_position_for_section (hdr, off, |
| 3227 | false); |
| 3228 | } |
| 3229 | else if (hdr->sh_type == SHT_REL |
| 3230 | || hdr->sh_type == SHT_RELA |
| 3231 | || hdr == i_shdrpp[tdata->symtab_section] |
| 3232 | || hdr == i_shdrpp[tdata->strtab_section]) |
| 3233 | hdr->sh_offset = -1; |
| 3234 | else |
| 3235 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| 3236 | } |
| 3237 | } |
| 3238 | |
| 3239 | /* Place the section headers. */ |
| 3240 | off = align_file_position (off, bed->s->file_align); |
| 3241 | i_ehdrp->e_shoff = off; |
| 3242 | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; |
| 3243 | |
| 3244 | elf_tdata (abfd)->next_file_pos = off; |
| 3245 | |
| 3246 | return true; |
| 3247 | } |
| 3248 | |
| 3249 | static boolean |
| 3250 | prep_headers (abfd) |
| 3251 | bfd *abfd; |
| 3252 | { |
| 3253 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ |
| 3254 | Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ |
| 3255 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ |
| 3256 | int count; |
| 3257 | struct bfd_strtab_hash *shstrtab; |
| 3258 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3259 | |
| 3260 | i_ehdrp = elf_elfheader (abfd); |
| 3261 | i_shdrp = elf_elfsections (abfd); |
| 3262 | |
| 3263 | shstrtab = _bfd_elf_stringtab_init (); |
| 3264 | if (shstrtab == NULL) |
| 3265 | return false; |
| 3266 | |
| 3267 | elf_shstrtab (abfd) = shstrtab; |
| 3268 | |
| 3269 | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; |
| 3270 | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; |
| 3271 | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; |
| 3272 | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; |
| 3273 | |
| 3274 | i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; |
| 3275 | i_ehdrp->e_ident[EI_DATA] = |
| 3276 | bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; |
| 3277 | i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; |
| 3278 | |
| 3279 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NONE; |
| 3280 | i_ehdrp->e_ident[EI_ABIVERSION] = 0; |
| 3281 | |
| 3282 | for (count = EI_PAD; count < EI_NIDENT; count++) |
| 3283 | i_ehdrp->e_ident[count] = 0; |
| 3284 | |
| 3285 | if ((abfd->flags & DYNAMIC) != 0) |
| 3286 | i_ehdrp->e_type = ET_DYN; |
| 3287 | else if ((abfd->flags & EXEC_P) != 0) |
| 3288 | i_ehdrp->e_type = ET_EXEC; |
| 3289 | else if (bfd_get_format (abfd) == bfd_core) |
| 3290 | i_ehdrp->e_type = ET_CORE; |
| 3291 | else |
| 3292 | i_ehdrp->e_type = ET_REL; |
| 3293 | |
| 3294 | switch (bfd_get_arch (abfd)) |
| 3295 | { |
| 3296 | case bfd_arch_unknown: |
| 3297 | i_ehdrp->e_machine = EM_NONE; |
| 3298 | break; |
| 3299 | case bfd_arch_sparc: |
| 3300 | if (bfd_get_arch_size (abfd) == 64) |
| 3301 | i_ehdrp->e_machine = EM_SPARCV9; |
| 3302 | else |
| 3303 | i_ehdrp->e_machine = EM_SPARC; |
| 3304 | break; |
| 3305 | case bfd_arch_i370: |
| 3306 | i_ehdrp->e_machine = EM_S370; |
| 3307 | break; |
| 3308 | case bfd_arch_i386: |
| 3309 | if (bfd_get_arch_size (abfd) == 64) |
| 3310 | i_ehdrp->e_machine = EM_X86_64; |
| 3311 | else |
| 3312 | i_ehdrp->e_machine = EM_386; |
| 3313 | break; |
| 3314 | case bfd_arch_ia64: |
| 3315 | i_ehdrp->e_machine = EM_IA_64; |
| 3316 | break; |
| 3317 | case bfd_arch_m68hc11: |
| 3318 | i_ehdrp->e_machine = EM_68HC11; |
| 3319 | break; |
| 3320 | case bfd_arch_m68hc12: |
| 3321 | i_ehdrp->e_machine = EM_68HC12; |
| 3322 | break; |
| 3323 | case bfd_arch_m68k: |
| 3324 | i_ehdrp->e_machine = EM_68K; |
| 3325 | break; |
| 3326 | case bfd_arch_m88k: |
| 3327 | i_ehdrp->e_machine = EM_88K; |
| 3328 | break; |
| 3329 | case bfd_arch_i860: |
| 3330 | i_ehdrp->e_machine = EM_860; |
| 3331 | break; |
| 3332 | case bfd_arch_i960: |
| 3333 | i_ehdrp->e_machine = EM_960; |
| 3334 | break; |
| 3335 | case bfd_arch_mips: /* MIPS Rxxxx */ |
| 3336 | i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ |
| 3337 | break; |
| 3338 | case bfd_arch_hppa: |
| 3339 | i_ehdrp->e_machine = EM_PARISC; |
| 3340 | break; |
| 3341 | case bfd_arch_powerpc: |
| 3342 | i_ehdrp->e_machine = EM_PPC; |
| 3343 | break; |
| 3344 | case bfd_arch_alpha: |
| 3345 | i_ehdrp->e_machine = EM_ALPHA; |
| 3346 | break; |
| 3347 | case bfd_arch_sh: |
| 3348 | i_ehdrp->e_machine = EM_SH; |
| 3349 | break; |
| 3350 | case bfd_arch_d10v: |
| 3351 | i_ehdrp->e_machine = EM_CYGNUS_D10V; |
| 3352 | break; |
| 3353 | case bfd_arch_d30v: |
| 3354 | i_ehdrp->e_machine = EM_CYGNUS_D30V; |
| 3355 | break; |
| 3356 | case bfd_arch_fr30: |
| 3357 | i_ehdrp->e_machine = EM_CYGNUS_FR30; |
| 3358 | break; |
| 3359 | case bfd_arch_mcore: |
| 3360 | i_ehdrp->e_machine = EM_MCORE; |
| 3361 | break; |
| 3362 | case bfd_arch_avr: |
| 3363 | i_ehdrp->e_machine = EM_AVR; |
| 3364 | break; |
| 3365 | case bfd_arch_v850: |
| 3366 | switch (bfd_get_mach (abfd)) |
| 3367 | { |
| 3368 | default: |
| 3369 | case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break; |
| 3370 | } |
| 3371 | break; |
| 3372 | case bfd_arch_arc: |
| 3373 | i_ehdrp->e_machine = EM_CYGNUS_ARC; |
| 3374 | break; |
| 3375 | case bfd_arch_arm: |
| 3376 | i_ehdrp->e_machine = EM_ARM; |
| 3377 | break; |
| 3378 | case bfd_arch_m32r: |
| 3379 | i_ehdrp->e_machine = EM_CYGNUS_M32R; |
| 3380 | break; |
| 3381 | case bfd_arch_mn10200: |
| 3382 | i_ehdrp->e_machine = EM_CYGNUS_MN10200; |
| 3383 | break; |
| 3384 | case bfd_arch_mn10300: |
| 3385 | i_ehdrp->e_machine = EM_CYGNUS_MN10300; |
| 3386 | break; |
| 3387 | case bfd_arch_pj: |
| 3388 | i_ehdrp->e_machine = EM_PJ; |
| 3389 | break; |
| 3390 | case bfd_arch_cris: |
| 3391 | i_ehdrp->e_machine = EM_CRIS; |
| 3392 | break; |
| 3393 | /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ |
| 3394 | default: |
| 3395 | i_ehdrp->e_machine = EM_NONE; |
| 3396 | } |
| 3397 | i_ehdrp->e_version = bed->s->ev_current; |
| 3398 | i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; |
| 3399 | |
| 3400 | /* No program header, for now. */ |
| 3401 | i_ehdrp->e_phoff = 0; |
| 3402 | i_ehdrp->e_phentsize = 0; |
| 3403 | i_ehdrp->e_phnum = 0; |
| 3404 | |
| 3405 | /* Each bfd section is section header entry. */ |
| 3406 | i_ehdrp->e_entry = bfd_get_start_address (abfd); |
| 3407 | i_ehdrp->e_shentsize = bed->s->sizeof_shdr; |
| 3408 | |
| 3409 | /* If we're building an executable, we'll need a program header table. */ |
| 3410 | if (abfd->flags & EXEC_P) |
| 3411 | { |
| 3412 | /* It all happens later. */ |
| 3413 | #if 0 |
| 3414 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); |
| 3415 | |
| 3416 | /* elf_build_phdrs() returns a (NULL-terminated) array of |
| 3417 | Elf_Internal_Phdrs. */ |
| 3418 | i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); |
| 3419 | i_ehdrp->e_phoff = outbase; |
| 3420 | outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; |
| 3421 | #endif |
| 3422 | } |
| 3423 | else |
| 3424 | { |
| 3425 | i_ehdrp->e_phentsize = 0; |
| 3426 | i_phdrp = 0; |
| 3427 | i_ehdrp->e_phoff = 0; |
| 3428 | } |
| 3429 | |
| 3430 | elf_tdata (abfd)->symtab_hdr.sh_name = |
| 3431 | (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); |
| 3432 | elf_tdata (abfd)->strtab_hdr.sh_name = |
| 3433 | (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); |
| 3434 | elf_tdata (abfd)->shstrtab_hdr.sh_name = |
| 3435 | (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); |
| 3436 | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
| 3437 | || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
| 3438 | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) |
| 3439 | return false; |
| 3440 | |
| 3441 | return true; |
| 3442 | } |
| 3443 | |
| 3444 | /* Assign file positions for all the reloc sections which are not part |
| 3445 | of the loadable file image. */ |
| 3446 | |
| 3447 | void |
| 3448 | _bfd_elf_assign_file_positions_for_relocs (abfd) |
| 3449 | bfd *abfd; |
| 3450 | { |
| 3451 | file_ptr off; |
| 3452 | unsigned int i; |
| 3453 | Elf_Internal_Shdr **shdrpp; |
| 3454 | |
| 3455 | off = elf_tdata (abfd)->next_file_pos; |
| 3456 | |
| 3457 | for (i = 1, shdrpp = elf_elfsections (abfd) + 1; |
| 3458 | i < elf_elfheader (abfd)->e_shnum; |
| 3459 | i++, shdrpp++) |
| 3460 | { |
| 3461 | Elf_Internal_Shdr *shdrp; |
| 3462 | |
| 3463 | shdrp = *shdrpp; |
| 3464 | if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) |
| 3465 | && shdrp->sh_offset == -1) |
| 3466 | off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); |
| 3467 | } |
| 3468 | |
| 3469 | elf_tdata (abfd)->next_file_pos = off; |
| 3470 | } |
| 3471 | |
| 3472 | boolean |
| 3473 | _bfd_elf_write_object_contents (abfd) |
| 3474 | bfd *abfd; |
| 3475 | { |
| 3476 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3477 | Elf_Internal_Ehdr *i_ehdrp; |
| 3478 | Elf_Internal_Shdr **i_shdrp; |
| 3479 | boolean failed; |
| 3480 | unsigned int count; |
| 3481 | |
| 3482 | if (! abfd->output_has_begun |
| 3483 | && ! _bfd_elf_compute_section_file_positions |
| 3484 | (abfd, (struct bfd_link_info *) NULL)) |
| 3485 | return false; |
| 3486 | |
| 3487 | i_shdrp = elf_elfsections (abfd); |
| 3488 | i_ehdrp = elf_elfheader (abfd); |
| 3489 | |
| 3490 | failed = false; |
| 3491 | bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); |
| 3492 | if (failed) |
| 3493 | return false; |
| 3494 | |
| 3495 | _bfd_elf_assign_file_positions_for_relocs (abfd); |
| 3496 | |
| 3497 | /* After writing the headers, we need to write the sections too... */ |
| 3498 | for (count = 1; count < i_ehdrp->e_shnum; count++) |
| 3499 | { |
| 3500 | if (bed->elf_backend_section_processing) |
| 3501 | (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); |
| 3502 | if (i_shdrp[count]->contents) |
| 3503 | { |
| 3504 | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 |
| 3505 | || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, |
| 3506 | 1, abfd) |
| 3507 | != i_shdrp[count]->sh_size)) |
| 3508 | return false; |
| 3509 | } |
| 3510 | } |
| 3511 | |
| 3512 | /* Write out the section header names. */ |
| 3513 | if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 |
| 3514 | || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) |
| 3515 | return false; |
| 3516 | |
| 3517 | if (bed->elf_backend_final_write_processing) |
| 3518 | (*bed->elf_backend_final_write_processing) (abfd, |
| 3519 | elf_tdata (abfd)->linker); |
| 3520 | |
| 3521 | return bed->s->write_shdrs_and_ehdr (abfd); |
| 3522 | } |
| 3523 | |
| 3524 | boolean |
| 3525 | _bfd_elf_write_corefile_contents (abfd) |
| 3526 | bfd *abfd; |
| 3527 | { |
| 3528 | /* Hopefully this can be done just like an object file. */ |
| 3529 | return _bfd_elf_write_object_contents (abfd); |
| 3530 | } |
| 3531 | |
| 3532 | /* Given a section, search the header to find them. */ |
| 3533 | |
| 3534 | int |
| 3535 | _bfd_elf_section_from_bfd_section (abfd, asect) |
| 3536 | bfd *abfd; |
| 3537 | struct sec *asect; |
| 3538 | { |
| 3539 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3540 | Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); |
| 3541 | int index; |
| 3542 | Elf_Internal_Shdr *hdr; |
| 3543 | int maxindex = elf_elfheader (abfd)->e_shnum; |
| 3544 | |
| 3545 | for (index = 0; index < maxindex; index++) |
| 3546 | { |
| 3547 | hdr = i_shdrp[index]; |
| 3548 | if (hdr->bfd_section == asect) |
| 3549 | return index; |
| 3550 | } |
| 3551 | |
| 3552 | if (bed->elf_backend_section_from_bfd_section) |
| 3553 | { |
| 3554 | for (index = 0; index < maxindex; index++) |
| 3555 | { |
| 3556 | int retval; |
| 3557 | |
| 3558 | hdr = i_shdrp[index]; |
| 3559 | retval = index; |
| 3560 | if ((*bed->elf_backend_section_from_bfd_section) |
| 3561 | (abfd, hdr, asect, &retval)) |
| 3562 | return retval; |
| 3563 | } |
| 3564 | } |
| 3565 | |
| 3566 | if (bfd_is_abs_section (asect)) |
| 3567 | return SHN_ABS; |
| 3568 | if (bfd_is_com_section (asect)) |
| 3569 | return SHN_COMMON; |
| 3570 | if (bfd_is_und_section (asect)) |
| 3571 | return SHN_UNDEF; |
| 3572 | |
| 3573 | bfd_set_error (bfd_error_nonrepresentable_section); |
| 3574 | |
| 3575 | return -1; |
| 3576 | } |
| 3577 | |
| 3578 | /* Given a BFD symbol, return the index in the ELF symbol table, or -1 |
| 3579 | on error. */ |
| 3580 | |
| 3581 | int |
| 3582 | _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) |
| 3583 | bfd *abfd; |
| 3584 | asymbol **asym_ptr_ptr; |
| 3585 | { |
| 3586 | asymbol *asym_ptr = *asym_ptr_ptr; |
| 3587 | int idx; |
| 3588 | flagword flags = asym_ptr->flags; |
| 3589 | |
| 3590 | /* When gas creates relocations against local labels, it creates its |
| 3591 | own symbol for the section, but does put the symbol into the |
| 3592 | symbol chain, so udata is 0. When the linker is generating |
| 3593 | relocatable output, this section symbol may be for one of the |
| 3594 | input sections rather than the output section. */ |
| 3595 | if (asym_ptr->udata.i == 0 |
| 3596 | && (flags & BSF_SECTION_SYM) |
| 3597 | && asym_ptr->section) |
| 3598 | { |
| 3599 | int indx; |
| 3600 | |
| 3601 | if (asym_ptr->section->output_section != NULL) |
| 3602 | indx = asym_ptr->section->output_section->index; |
| 3603 | else |
| 3604 | indx = asym_ptr->section->index; |
| 3605 | if (elf_section_syms (abfd)[indx]) |
| 3606 | asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; |
| 3607 | } |
| 3608 | |
| 3609 | idx = asym_ptr->udata.i; |
| 3610 | |
| 3611 | if (idx == 0) |
| 3612 | { |
| 3613 | /* This case can occur when using --strip-symbol on a symbol |
| 3614 | which is used in a relocation entry. */ |
| 3615 | (*_bfd_error_handler) |
| 3616 | (_("%s: symbol `%s' required but not present"), |
| 3617 | bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr)); |
| 3618 | bfd_set_error (bfd_error_no_symbols); |
| 3619 | return -1; |
| 3620 | } |
| 3621 | |
| 3622 | #if DEBUG & 4 |
| 3623 | { |
| 3624 | fprintf (stderr, |
| 3625 | _("elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n"), |
| 3626 | (long) asym_ptr, asym_ptr->name, idx, flags, |
| 3627 | elf_symbol_flags (flags)); |
| 3628 | fflush (stderr); |
| 3629 | } |
| 3630 | #endif |
| 3631 | |
| 3632 | return idx; |
| 3633 | } |
| 3634 | |
| 3635 | /* Copy private BFD data. This copies any program header information. */ |
| 3636 | |
| 3637 | static boolean |
| 3638 | copy_private_bfd_data (ibfd, obfd) |
| 3639 | bfd *ibfd; |
| 3640 | bfd *obfd; |
| 3641 | { |
| 3642 | Elf_Internal_Ehdr * iehdr; |
| 3643 | struct elf_segment_map * map; |
| 3644 | struct elf_segment_map * map_first; |
| 3645 | struct elf_segment_map ** pointer_to_map; |
| 3646 | Elf_Internal_Phdr * segment; |
| 3647 | asection * section; |
| 3648 | unsigned int i; |
| 3649 | unsigned int num_segments; |
| 3650 | boolean phdr_included = false; |
| 3651 | bfd_vma maxpagesize; |
| 3652 | struct elf_segment_map * phdr_adjust_seg = NULL; |
| 3653 | unsigned int phdr_adjust_num = 0; |
| 3654 | |
| 3655 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 3656 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 3657 | return true; |
| 3658 | |
| 3659 | if (elf_tdata (ibfd)->phdr == NULL) |
| 3660 | return true; |
| 3661 | |
| 3662 | iehdr = elf_elfheader (ibfd); |
| 3663 | |
| 3664 | map_first = NULL; |
| 3665 | pointer_to_map = &map_first; |
| 3666 | |
| 3667 | num_segments = elf_elfheader (ibfd)->e_phnum; |
| 3668 | maxpagesize = get_elf_backend_data (obfd)->maxpagesize; |
| 3669 | |
| 3670 | /* Returns the end address of the segment + 1. */ |
| 3671 | #define SEGMENT_END(segment, start) \ |
| 3672 | (start + (segment->p_memsz > segment->p_filesz \ |
| 3673 | ? segment->p_memsz : segment->p_filesz)) |
| 3674 | |
| 3675 | /* Returns true if the given section is contained within |
| 3676 | the given segment. VMA addresses are compared. */ |
| 3677 | #define IS_CONTAINED_BY_VMA(section, segment) \ |
| 3678 | (section->vma >= segment->p_vaddr \ |
| 3679 | && (section->vma + section->_raw_size) \ |
| 3680 | <= (SEGMENT_END (segment, segment->p_vaddr))) |
| 3681 | |
| 3682 | /* Returns true if the given section is contained within |
| 3683 | the given segment. LMA addresses are compared. */ |
| 3684 | #define IS_CONTAINED_BY_LMA(section, segment, base) \ |
| 3685 | (section->lma >= base \ |
| 3686 | && (section->lma + section->_raw_size) \ |
| 3687 | <= SEGMENT_END (segment, base)) |
| 3688 | |
| 3689 | /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */ |
| 3690 | #define IS_COREFILE_NOTE(p, s) \ |
| 3691 | (p->p_type == PT_NOTE \ |
| 3692 | && bfd_get_format (ibfd) == bfd_core \ |
| 3693 | && s->vma == 0 && s->lma == 0 \ |
| 3694 | && (bfd_vma) s->filepos >= p->p_offset \ |
| 3695 | && (bfd_vma) s->filepos + s->_raw_size \ |
| 3696 | <= p->p_offset + p->p_filesz) |
| 3697 | |
| 3698 | /* The complicated case when p_vaddr is 0 is to handle the Solaris |
| 3699 | linker, which generates a PT_INTERP section with p_vaddr and |
| 3700 | p_memsz set to 0. */ |
| 3701 | #define IS_SOLARIS_PT_INTERP(p, s) \ |
| 3702 | ( p->p_vaddr == 0 \ |
| 3703 | && p->p_filesz > 0 \ |
| 3704 | && (s->flags & SEC_HAS_CONTENTS) != 0 \ |
| 3705 | && s->_raw_size > 0 \ |
| 3706 | && (bfd_vma) s->filepos >= p->p_offset \ |
| 3707 | && ((bfd_vma) s->filepos + s->_raw_size \ |
| 3708 | <= p->p_offset + p->p_filesz)) |
| 3709 | |
| 3710 | /* Decide if the given section should be included in the given segment. |
| 3711 | A section will be included if: |
| 3712 | 1. It is within the address space of the segment, |
| 3713 | 2. It is an allocated segment, |
| 3714 | 3. There is an output section associated with it, |
| 3715 | 4. The section has not already been allocated to a previous segment. */ |
| 3716 | #define INCLUDE_SECTION_IN_SEGMENT(section, segment) \ |
| 3717 | ((((IS_CONTAINED_BY_VMA (section, segment) \ |
| 3718 | || IS_SOLARIS_PT_INTERP (segment, section)) \ |
| 3719 | && (section->flags & SEC_ALLOC) != 0) \ |
| 3720 | || IS_COREFILE_NOTE (segment, section)) \ |
| 3721 | && section->output_section != NULL \ |
| 3722 | && section->segment_mark == false) |
| 3723 | |
| 3724 | /* Returns true iff seg1 starts after the end of seg2. */ |
| 3725 | #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \ |
| 3726 | (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr)) |
| 3727 | |
| 3728 | /* Returns true iff seg1 and seg2 overlap. */ |
| 3729 | #define SEGMENT_OVERLAPS(seg1, seg2) \ |
| 3730 | (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1))) |
| 3731 | |
| 3732 | /* Initialise the segment mark field. */ |
| 3733 | for (section = ibfd->sections; section != NULL; section = section->next) |
| 3734 | section->segment_mark = false; |
| 3735 | |
| 3736 | /* Scan through the segments specified in the program header |
| 3737 | of the input BFD. For this first scan we look for overlaps |
| 3738 | in the loadable segments. These can be created by wierd |
| 3739 | parameters to objcopy. */ |
| 3740 | for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| 3741 | i < num_segments; |
| 3742 | i++, segment++) |
| 3743 | { |
| 3744 | unsigned int j; |
| 3745 | Elf_Internal_Phdr *segment2; |
| 3746 | |
| 3747 | if (segment->p_type != PT_LOAD) |
| 3748 | continue; |
| 3749 | |
| 3750 | /* Determine if this segment overlaps any previous segments. */ |
| 3751 | for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++) |
| 3752 | { |
| 3753 | bfd_signed_vma extra_length; |
| 3754 | |
| 3755 | if (segment2->p_type != PT_LOAD |
| 3756 | || ! SEGMENT_OVERLAPS (segment, segment2)) |
| 3757 | continue; |
| 3758 | |
| 3759 | /* Merge the two segments together. */ |
| 3760 | if (segment2->p_vaddr < segment->p_vaddr) |
| 3761 | { |
| 3762 | /* Extend SEGMENT2 to include SEGMENT and then delete |
| 3763 | SEGMENT. */ |
| 3764 | extra_length = |
| 3765 | SEGMENT_END (segment, segment->p_vaddr) |
| 3766 | - SEGMENT_END (segment2, segment2->p_vaddr); |
| 3767 | |
| 3768 | if (extra_length > 0) |
| 3769 | { |
| 3770 | segment2->p_memsz += extra_length; |
| 3771 | segment2->p_filesz += extra_length; |
| 3772 | } |
| 3773 | |
| 3774 | segment->p_type = PT_NULL; |
| 3775 | |
| 3776 | /* Since we have deleted P we must restart the outer loop. */ |
| 3777 | i = 0; |
| 3778 | segment = elf_tdata (ibfd)->phdr; |
| 3779 | break; |
| 3780 | } |
| 3781 | else |
| 3782 | { |
| 3783 | /* Extend SEGMENT to include SEGMENT2 and then delete |
| 3784 | SEGMENT2. */ |
| 3785 | extra_length = |
| 3786 | SEGMENT_END (segment2, segment2->p_vaddr) |
| 3787 | - SEGMENT_END (segment, segment->p_vaddr); |
| 3788 | |
| 3789 | if (extra_length > 0) |
| 3790 | { |
| 3791 | segment->p_memsz += extra_length; |
| 3792 | segment->p_filesz += extra_length; |
| 3793 | } |
| 3794 | |
| 3795 | segment2->p_type = PT_NULL; |
| 3796 | } |
| 3797 | } |
| 3798 | } |
| 3799 | |
| 3800 | /* The second scan attempts to assign sections to segments. */ |
| 3801 | for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| 3802 | i < num_segments; |
| 3803 | i ++, segment ++) |
| 3804 | { |
| 3805 | unsigned int section_count; |
| 3806 | asection ** sections; |
| 3807 | asection * output_section; |
| 3808 | unsigned int isec; |
| 3809 | bfd_vma matching_lma; |
| 3810 | bfd_vma suggested_lma; |
| 3811 | unsigned int j; |
| 3812 | |
| 3813 | if (segment->p_type == PT_NULL) |
| 3814 | continue; |
| 3815 | |
| 3816 | /* Compute how many sections might be placed into this segment. */ |
| 3817 | section_count = 0; |
| 3818 | for (section = ibfd->sections; section != NULL; section = section->next) |
| 3819 | if (INCLUDE_SECTION_IN_SEGMENT (section, segment)) |
| 3820 | ++section_count; |
| 3821 | |
| 3822 | /* Allocate a segment map big enough to contain all of the |
| 3823 | sections we have selected. */ |
| 3824 | map = ((struct elf_segment_map *) |
| 3825 | bfd_alloc (obfd, |
| 3826 | (sizeof (struct elf_segment_map) |
| 3827 | + ((size_t) section_count - 1) * sizeof (asection *)))); |
| 3828 | if (map == NULL) |
| 3829 | return false; |
| 3830 | |
| 3831 | /* Initialise the fields of the segment map. Default to |
| 3832 | using the physical address of the segment in the input BFD. */ |
| 3833 | map->next = NULL; |
| 3834 | map->p_type = segment->p_type; |
| 3835 | map->p_flags = segment->p_flags; |
| 3836 | map->p_flags_valid = 1; |
| 3837 | map->p_paddr = segment->p_paddr; |
| 3838 | map->p_paddr_valid = 1; |
| 3839 | |
| 3840 | /* Determine if this segment contains the ELF file header |
| 3841 | and if it contains the program headers themselves. */ |
| 3842 | map->includes_filehdr = (segment->p_offset == 0 |
| 3843 | && segment->p_filesz >= iehdr->e_ehsize); |
| 3844 | |
| 3845 | map->includes_phdrs = 0; |
| 3846 | |
| 3847 | if (! phdr_included || segment->p_type != PT_LOAD) |
| 3848 | { |
| 3849 | map->includes_phdrs = |
| 3850 | (segment->p_offset <= (bfd_vma) iehdr->e_phoff |
| 3851 | && (segment->p_offset + segment->p_filesz |
| 3852 | >= ((bfd_vma) iehdr->e_phoff |
| 3853 | + iehdr->e_phnum * iehdr->e_phentsize))); |
| 3854 | |
| 3855 | if (segment->p_type == PT_LOAD && map->includes_phdrs) |
| 3856 | phdr_included = true; |
| 3857 | } |
| 3858 | |
| 3859 | if (section_count == 0) |
| 3860 | { |
| 3861 | /* Special segments, such as the PT_PHDR segment, may contain |
| 3862 | no sections, but ordinary, loadable segments should contain |
| 3863 | something. */ |
| 3864 | if (segment->p_type == PT_LOAD) |
| 3865 | _bfd_error_handler |
| 3866 | (_("%s: warning: Empty loadable segment detected\n"), |
| 3867 | bfd_get_filename (ibfd)); |
| 3868 | |
| 3869 | map->count = 0; |
| 3870 | *pointer_to_map = map; |
| 3871 | pointer_to_map = &map->next; |
| 3872 | |
| 3873 | continue; |
| 3874 | } |
| 3875 | |
| 3876 | /* Now scan the sections in the input BFD again and attempt |
| 3877 | to add their corresponding output sections to the segment map. |
| 3878 | The problem here is how to handle an output section which has |
| 3879 | been moved (ie had its LMA changed). There are four possibilities: |
| 3880 | |
| 3881 | 1. None of the sections have been moved. |
| 3882 | In this case we can continue to use the segment LMA from the |
| 3883 | input BFD. |
| 3884 | |
| 3885 | 2. All of the sections have been moved by the same amount. |
| 3886 | In this case we can change the segment's LMA to match the LMA |
| 3887 | of the first section. |
| 3888 | |
| 3889 | 3. Some of the sections have been moved, others have not. |
| 3890 | In this case those sections which have not been moved can be |
| 3891 | placed in the current segment which will have to have its size, |
| 3892 | and possibly its LMA changed, and a new segment or segments will |
| 3893 | have to be created to contain the other sections. |
| 3894 | |
| 3895 | 4. The sections have been moved, but not be the same amount. |
| 3896 | In this case we can change the segment's LMA to match the LMA |
| 3897 | of the first section and we will have to create a new segment |
| 3898 | or segments to contain the other sections. |
| 3899 | |
| 3900 | In order to save time, we allocate an array to hold the section |
| 3901 | pointers that we are interested in. As these sections get assigned |
| 3902 | to a segment, they are removed from this array. */ |
| 3903 | |
| 3904 | sections = (asection **) bfd_malloc |
| 3905 | (sizeof (asection *) * section_count); |
| 3906 | if (sections == NULL) |
| 3907 | return false; |
| 3908 | |
| 3909 | /* Step One: Scan for segment vs section LMA conflicts. |
| 3910 | Also add the sections to the section array allocated above. |
| 3911 | Also add the sections to the current segment. In the common |
| 3912 | case, where the sections have not been moved, this means that |
| 3913 | we have completely filled the segment, and there is nothing |
| 3914 | more to do. */ |
| 3915 | isec = 0; |
| 3916 | matching_lma = 0; |
| 3917 | suggested_lma = 0; |
| 3918 | |
| 3919 | for (j = 0, section = ibfd->sections; |
| 3920 | section != NULL; |
| 3921 | section = section->next) |
| 3922 | { |
| 3923 | if (INCLUDE_SECTION_IN_SEGMENT (section, segment)) |
| 3924 | { |
| 3925 | output_section = section->output_section; |
| 3926 | |
| 3927 | sections[j ++] = section; |
| 3928 | |
| 3929 | /* The Solaris native linker always sets p_paddr to 0. |
| 3930 | We try to catch that case here, and set it to the |
| 3931 | correct value. */ |
| 3932 | if (segment->p_paddr == 0 |
| 3933 | && segment->p_vaddr != 0 |
| 3934 | && isec == 0 |
| 3935 | && output_section->lma != 0 |
| 3936 | && (output_section->vma == (segment->p_vaddr |
| 3937 | + (map->includes_filehdr |
| 3938 | ? iehdr->e_ehsize |
| 3939 | : 0) |
| 3940 | + (map->includes_phdrs |
| 3941 | ? iehdr->e_phnum * iehdr->e_phentsize |
| 3942 | : 0)))) |
| 3943 | map->p_paddr = segment->p_vaddr; |
| 3944 | |
| 3945 | /* Match up the physical address of the segment with the |
| 3946 | LMA address of the output section. */ |
| 3947 | if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) |
| 3948 | || IS_COREFILE_NOTE (segment, section)) |
| 3949 | { |
| 3950 | if (matching_lma == 0) |
| 3951 | matching_lma = output_section->lma; |
| 3952 | |
| 3953 | /* We assume that if the section fits within the segment |
| 3954 | then it does not overlap any other section within that |
| 3955 | segment. */ |
| 3956 | map->sections[isec ++] = output_section; |
| 3957 | } |
| 3958 | else if (suggested_lma == 0) |
| 3959 | suggested_lma = output_section->lma; |
| 3960 | } |
| 3961 | } |
| 3962 | |
| 3963 | BFD_ASSERT (j == section_count); |
| 3964 | |
| 3965 | /* Step Two: Adjust the physical address of the current segment, |
| 3966 | if necessary. */ |
| 3967 | if (isec == section_count) |
| 3968 | { |
| 3969 | /* All of the sections fitted within the segment as currently |
| 3970 | specified. This is the default case. Add the segment to |
| 3971 | the list of built segments and carry on to process the next |
| 3972 | program header in the input BFD. */ |
| 3973 | map->count = section_count; |
| 3974 | *pointer_to_map = map; |
| 3975 | pointer_to_map = &map->next; |
| 3976 | |
| 3977 | free (sections); |
| 3978 | continue; |
| 3979 | } |
| 3980 | else |
| 3981 | { |
| 3982 | if (matching_lma != 0) |
| 3983 | { |
| 3984 | /* At least one section fits inside the current segment. |
| 3985 | Keep it, but modify its physical address to match the |
| 3986 | LMA of the first section that fitted. */ |
| 3987 | map->p_paddr = matching_lma; |
| 3988 | } |
| 3989 | else |
| 3990 | { |
| 3991 | /* None of the sections fitted inside the current segment. |
| 3992 | Change the current segment's physical address to match |
| 3993 | the LMA of the first section. */ |
| 3994 | map->p_paddr = suggested_lma; |
| 3995 | } |
| 3996 | |
| 3997 | /* Offset the segment physical address from the lma |
| 3998 | to allow for space taken up by elf headers. */ |
| 3999 | if (map->includes_filehdr) |
| 4000 | map->p_paddr -= iehdr->e_ehsize; |
| 4001 | |
| 4002 | if (map->includes_phdrs) |
| 4003 | { |
| 4004 | map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; |
| 4005 | |
| 4006 | /* iehdr->e_phnum is just an estimate of the number |
| 4007 | of program headers that we will need. Make a note |
| 4008 | here of the number we used and the segment we chose |
| 4009 | to hold these headers, so that we can adjust the |
| 4010 | offset when we know the correct value. */ |
| 4011 | phdr_adjust_num = iehdr->e_phnum; |
| 4012 | phdr_adjust_seg = map; |
| 4013 | } |
| 4014 | } |
| 4015 | |
| 4016 | /* Step Three: Loop over the sections again, this time assigning |
| 4017 | those that fit to the current segment and remvoing them from the |
| 4018 | sections array; but making sure not to leave large gaps. Once all |
| 4019 | possible sections have been assigned to the current segment it is |
| 4020 | added to the list of built segments and if sections still remain |
| 4021 | to be assigned, a new segment is constructed before repeating |
| 4022 | the loop. */ |
| 4023 | isec = 0; |
| 4024 | do |
| 4025 | { |
| 4026 | map->count = 0; |
| 4027 | suggested_lma = 0; |
| 4028 | |
| 4029 | /* Fill the current segment with sections that fit. */ |
| 4030 | for (j = 0; j < section_count; j++) |
| 4031 | { |
| 4032 | section = sections[j]; |
| 4033 | |
| 4034 | if (section == NULL) |
| 4035 | continue; |
| 4036 | |
| 4037 | output_section = section->output_section; |
| 4038 | |
| 4039 | BFD_ASSERT (output_section != NULL); |
| 4040 | |
| 4041 | if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) |
| 4042 | || IS_COREFILE_NOTE (segment, section)) |
| 4043 | { |
| 4044 | if (map->count == 0) |
| 4045 | { |
| 4046 | /* If the first section in a segment does not start at |
| 4047 | the beginning of the segment, then something is |
| 4048 | wrong. */ |
| 4049 | if (output_section->lma != |
| 4050 | (map->p_paddr |
| 4051 | + (map->includes_filehdr ? iehdr->e_ehsize : 0) |
| 4052 | + (map->includes_phdrs |
| 4053 | ? iehdr->e_phnum * iehdr->e_phentsize |
| 4054 | : 0))) |
| 4055 | abort (); |
| 4056 | } |
| 4057 | else |
| 4058 | { |
| 4059 | asection * prev_sec; |
| 4060 | |
| 4061 | prev_sec = map->sections[map->count - 1]; |
| 4062 | |
| 4063 | /* If the gap between the end of the previous section |
| 4064 | and the start of this section is more than |
| 4065 | maxpagesize then we need to start a new segment. */ |
| 4066 | if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size, maxpagesize) |
| 4067 | < BFD_ALIGN (output_section->lma, maxpagesize)) |
| 4068 | || ((prev_sec->lma + prev_sec->_raw_size) > output_section->lma)) |
| 4069 | { |
| 4070 | if (suggested_lma == 0) |
| 4071 | suggested_lma = output_section->lma; |
| 4072 | |
| 4073 | continue; |
| 4074 | } |
| 4075 | } |
| 4076 | |
| 4077 | map->sections[map->count++] = output_section; |
| 4078 | ++isec; |
| 4079 | sections[j] = NULL; |
| 4080 | section->segment_mark = true; |
| 4081 | } |
| 4082 | else if (suggested_lma == 0) |
| 4083 | suggested_lma = output_section->lma; |
| 4084 | } |
| 4085 | |
| 4086 | BFD_ASSERT (map->count > 0); |
| 4087 | |
| 4088 | /* Add the current segment to the list of built segments. */ |
| 4089 | *pointer_to_map = map; |
| 4090 | pointer_to_map = &map->next; |
| 4091 | |
| 4092 | if (isec < section_count) |
| 4093 | { |
| 4094 | /* We still have not allocated all of the sections to |
| 4095 | segments. Create a new segment here, initialise it |
| 4096 | and carry on looping. */ |
| 4097 | map = ((struct elf_segment_map *) |
| 4098 | bfd_alloc (obfd, |
| 4099 | (sizeof (struct elf_segment_map) |
| 4100 | + ((size_t) section_count - 1) |
| 4101 | * sizeof (asection *)))); |
| 4102 | if (map == NULL) |
| 4103 | return false; |
| 4104 | |
| 4105 | /* Initialise the fields of the segment map. Set the physical |
| 4106 | physical address to the LMA of the first section that has |
| 4107 | not yet been assigned. */ |
| 4108 | map->next = NULL; |
| 4109 | map->p_type = segment->p_type; |
| 4110 | map->p_flags = segment->p_flags; |
| 4111 | map->p_flags_valid = 1; |
| 4112 | map->p_paddr = suggested_lma; |
| 4113 | map->p_paddr_valid = 1; |
| 4114 | map->includes_filehdr = 0; |
| 4115 | map->includes_phdrs = 0; |
| 4116 | } |
| 4117 | } |
| 4118 | while (isec < section_count); |
| 4119 | |
| 4120 | free (sections); |
| 4121 | } |
| 4122 | |
| 4123 | /* The Solaris linker creates program headers in which all the |
| 4124 | p_paddr fields are zero. When we try to objcopy or strip such a |
| 4125 | file, we get confused. Check for this case, and if we find it |
| 4126 | reset the p_paddr_valid fields. */ |
| 4127 | for (map = map_first; map != NULL; map = map->next) |
| 4128 | if (map->p_paddr != 0) |
| 4129 | break; |
| 4130 | if (map == NULL) |
| 4131 | { |
| 4132 | for (map = map_first; map != NULL; map = map->next) |
| 4133 | map->p_paddr_valid = 0; |
| 4134 | } |
| 4135 | |
| 4136 | elf_tdata (obfd)->segment_map = map_first; |
| 4137 | |
| 4138 | /* If we had to estimate the number of program headers that were |
| 4139 | going to be needed, then check our estimate know and adjust |
| 4140 | the offset if necessary. */ |
| 4141 | if (phdr_adjust_seg != NULL) |
| 4142 | { |
| 4143 | unsigned int count; |
| 4144 | |
| 4145 | for (count = 0, map = map_first; map != NULL; map = map->next) |
| 4146 | count++; |
| 4147 | |
| 4148 | if (count > phdr_adjust_num) |
| 4149 | phdr_adjust_seg->p_paddr |
| 4150 | -= (count - phdr_adjust_num) * iehdr->e_phentsize; |
| 4151 | } |
| 4152 | |
| 4153 | #if 0 |
| 4154 | /* Final Step: Sort the segments into ascending order of physical |
| 4155 | address. */ |
| 4156 | if (map_first != NULL) |
| 4157 | { |
| 4158 | struct elf_segment_map *prev; |
| 4159 | |
| 4160 | prev = map_first; |
| 4161 | for (map = map_first->next; map != NULL; prev = map, map = map->next) |
| 4162 | { |
| 4163 | /* Yes I know - its a bubble sort.... */ |
| 4164 | if (map->next != NULL && (map->next->p_paddr < map->p_paddr)) |
| 4165 | { |
| 4166 | /* Swap map and map->next. */ |
| 4167 | prev->next = map->next; |
| 4168 | map->next = map->next->next; |
| 4169 | prev->next->next = map; |
| 4170 | |
| 4171 | /* Restart loop. */ |
| 4172 | map = map_first; |
| 4173 | } |
| 4174 | } |
| 4175 | } |
| 4176 | #endif |
| 4177 | |
| 4178 | #undef SEGMENT_END |
| 4179 | #undef IS_CONTAINED_BY_VMA |
| 4180 | #undef IS_CONTAINED_BY_LMA |
| 4181 | #undef IS_COREFILE_NOTE |
| 4182 | #undef IS_SOLARIS_PT_INTERP |
| 4183 | #undef INCLUDE_SECTION_IN_SEGMENT |
| 4184 | #undef SEGMENT_AFTER_SEGMENT |
| 4185 | #undef SEGMENT_OVERLAPS |
| 4186 | return true; |
| 4187 | } |
| 4188 | |
| 4189 | /* Copy private section information. This copies over the entsize |
| 4190 | field, and sometimes the info field. */ |
| 4191 | |
| 4192 | boolean |
| 4193 | _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec) |
| 4194 | bfd *ibfd; |
| 4195 | asection *isec; |
| 4196 | bfd *obfd; |
| 4197 | asection *osec; |
| 4198 | { |
| 4199 | Elf_Internal_Shdr *ihdr, *ohdr; |
| 4200 | |
| 4201 | if (ibfd->xvec->flavour != bfd_target_elf_flavour |
| 4202 | || obfd->xvec->flavour != bfd_target_elf_flavour) |
| 4203 | return true; |
| 4204 | |
| 4205 | /* Copy over private BFD data if it has not already been copied. |
| 4206 | This must be done here, rather than in the copy_private_bfd_data |
| 4207 | entry point, because the latter is called after the section |
| 4208 | contents have been set, which means that the program headers have |
| 4209 | already been worked out. */ |
| 4210 | if (elf_tdata (obfd)->segment_map == NULL |
| 4211 | && elf_tdata (ibfd)->phdr != NULL) |
| 4212 | { |
| 4213 | asection *s; |
| 4214 | |
| 4215 | /* Only set up the segments if there are no more SEC_ALLOC |
| 4216 | sections. FIXME: This won't do the right thing if objcopy is |
| 4217 | used to remove the last SEC_ALLOC section, since objcopy |
| 4218 | won't call this routine in that case. */ |
| 4219 | for (s = isec->next; s != NULL; s = s->next) |
| 4220 | if ((s->flags & SEC_ALLOC) != 0) |
| 4221 | break; |
| 4222 | if (s == NULL) |
| 4223 | { |
| 4224 | if (! copy_private_bfd_data (ibfd, obfd)) |
| 4225 | return false; |
| 4226 | } |
| 4227 | } |
| 4228 | |
| 4229 | ihdr = &elf_section_data (isec)->this_hdr; |
| 4230 | ohdr = &elf_section_data (osec)->this_hdr; |
| 4231 | |
| 4232 | ohdr->sh_entsize = ihdr->sh_entsize; |
| 4233 | |
| 4234 | if (ihdr->sh_type == SHT_SYMTAB |
| 4235 | || ihdr->sh_type == SHT_DYNSYM |
| 4236 | || ihdr->sh_type == SHT_GNU_verneed |
| 4237 | || ihdr->sh_type == SHT_GNU_verdef) |
| 4238 | ohdr->sh_info = ihdr->sh_info; |
| 4239 | |
| 4240 | elf_section_data (osec)->use_rela_p |
| 4241 | = elf_section_data (isec)->use_rela_p; |
| 4242 | |
| 4243 | return true; |
| 4244 | } |
| 4245 | |
| 4246 | /* Copy private symbol information. If this symbol is in a section |
| 4247 | which we did not map into a BFD section, try to map the section |
| 4248 | index correctly. We use special macro definitions for the mapped |
| 4249 | section indices; these definitions are interpreted by the |
| 4250 | swap_out_syms function. */ |
| 4251 | |
| 4252 | #define MAP_ONESYMTAB (SHN_LORESERVE - 1) |
| 4253 | #define MAP_DYNSYMTAB (SHN_LORESERVE - 2) |
| 4254 | #define MAP_STRTAB (SHN_LORESERVE - 3) |
| 4255 | #define MAP_SHSTRTAB (SHN_LORESERVE - 4) |
| 4256 | |
| 4257 | boolean |
| 4258 | _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg) |
| 4259 | bfd *ibfd; |
| 4260 | asymbol *isymarg; |
| 4261 | bfd *obfd; |
| 4262 | asymbol *osymarg; |
| 4263 | { |
| 4264 | elf_symbol_type *isym, *osym; |
| 4265 | |
| 4266 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 4267 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 4268 | return true; |
| 4269 | |
| 4270 | isym = elf_symbol_from (ibfd, isymarg); |
| 4271 | osym = elf_symbol_from (obfd, osymarg); |
| 4272 | |
| 4273 | if (isym != NULL |
| 4274 | && osym != NULL |
| 4275 | && bfd_is_abs_section (isym->symbol.section)) |
| 4276 | { |
| 4277 | unsigned int shndx; |
| 4278 | |
| 4279 | shndx = isym->internal_elf_sym.st_shndx; |
| 4280 | if (shndx == elf_onesymtab (ibfd)) |
| 4281 | shndx = MAP_ONESYMTAB; |
| 4282 | else if (shndx == elf_dynsymtab (ibfd)) |
| 4283 | shndx = MAP_DYNSYMTAB; |
| 4284 | else if (shndx == elf_tdata (ibfd)->strtab_section) |
| 4285 | shndx = MAP_STRTAB; |
| 4286 | else if (shndx == elf_tdata (ibfd)->shstrtab_section) |
| 4287 | shndx = MAP_SHSTRTAB; |
| 4288 | osym->internal_elf_sym.st_shndx = shndx; |
| 4289 | } |
| 4290 | |
| 4291 | return true; |
| 4292 | } |
| 4293 | |
| 4294 | /* Swap out the symbols. */ |
| 4295 | |
| 4296 | static boolean |
| 4297 | swap_out_syms (abfd, sttp, relocatable_p) |
| 4298 | bfd *abfd; |
| 4299 | struct bfd_strtab_hash **sttp; |
| 4300 | int relocatable_p; |
| 4301 | { |
| 4302 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 4303 | |
| 4304 | if (!elf_map_symbols (abfd)) |
| 4305 | return false; |
| 4306 | |
| 4307 | /* Dump out the symtabs. */ |
| 4308 | { |
| 4309 | int symcount = bfd_get_symcount (abfd); |
| 4310 | asymbol **syms = bfd_get_outsymbols (abfd); |
| 4311 | struct bfd_strtab_hash *stt; |
| 4312 | Elf_Internal_Shdr *symtab_hdr; |
| 4313 | Elf_Internal_Shdr *symstrtab_hdr; |
| 4314 | char *outbound_syms; |
| 4315 | int idx; |
| 4316 | |
| 4317 | stt = _bfd_elf_stringtab_init (); |
| 4318 | if (stt == NULL) |
| 4319 | return false; |
| 4320 | |
| 4321 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 4322 | symtab_hdr->sh_type = SHT_SYMTAB; |
| 4323 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; |
| 4324 | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); |
| 4325 | symtab_hdr->sh_info = elf_num_locals (abfd) + 1; |
| 4326 | symtab_hdr->sh_addralign = bed->s->file_align; |
| 4327 | |
| 4328 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
| 4329 | symstrtab_hdr->sh_type = SHT_STRTAB; |
| 4330 | |
| 4331 | outbound_syms = bfd_alloc (abfd, |
| 4332 | (1 + symcount) * bed->s->sizeof_sym); |
| 4333 | if (outbound_syms == NULL) |
| 4334 | return false; |
| 4335 | symtab_hdr->contents = (PTR) outbound_syms; |
| 4336 | |
| 4337 | /* now generate the data (for "contents") */ |
| 4338 | { |
| 4339 | /* Fill in zeroth symbol and swap it out. */ |
| 4340 | Elf_Internal_Sym sym; |
| 4341 | sym.st_name = 0; |
| 4342 | sym.st_value = 0; |
| 4343 | sym.st_size = 0; |
| 4344 | sym.st_info = 0; |
| 4345 | sym.st_other = 0; |
| 4346 | sym.st_shndx = SHN_UNDEF; |
| 4347 | bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); |
| 4348 | outbound_syms += bed->s->sizeof_sym; |
| 4349 | } |
| 4350 | for (idx = 0; idx < symcount; idx++) |
| 4351 | { |
| 4352 | Elf_Internal_Sym sym; |
| 4353 | bfd_vma value = syms[idx]->value; |
| 4354 | elf_symbol_type *type_ptr; |
| 4355 | flagword flags = syms[idx]->flags; |
| 4356 | int type; |
| 4357 | |
| 4358 | if ((flags & BSF_SECTION_SYM) != 0) |
| 4359 | { |
| 4360 | /* Section symbols have no name. */ |
| 4361 | sym.st_name = 0; |
| 4362 | } |
| 4363 | else |
| 4364 | { |
| 4365 | sym.st_name = (unsigned long) _bfd_stringtab_add (stt, |
| 4366 | syms[idx]->name, |
| 4367 | true, false); |
| 4368 | if (sym.st_name == (unsigned long) -1) |
| 4369 | return false; |
| 4370 | } |
| 4371 | |
| 4372 | type_ptr = elf_symbol_from (abfd, syms[idx]); |
| 4373 | |
| 4374 | if ((flags & BSF_SECTION_SYM) == 0 |
| 4375 | && bfd_is_com_section (syms[idx]->section)) |
| 4376 | { |
| 4377 | /* ELF common symbols put the alignment into the `value' field, |
| 4378 | and the size into the `size' field. This is backwards from |
| 4379 | how BFD handles it, so reverse it here. */ |
| 4380 | sym.st_size = value; |
| 4381 | if (type_ptr == NULL |
| 4382 | || type_ptr->internal_elf_sym.st_value == 0) |
| 4383 | sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); |
| 4384 | else |
| 4385 | sym.st_value = type_ptr->internal_elf_sym.st_value; |
| 4386 | sym.st_shndx = _bfd_elf_section_from_bfd_section |
| 4387 | (abfd, syms[idx]->section); |
| 4388 | } |
| 4389 | else |
| 4390 | { |
| 4391 | asection *sec = syms[idx]->section; |
| 4392 | int shndx; |
| 4393 | |
| 4394 | if (sec->output_section) |
| 4395 | { |
| 4396 | value += sec->output_offset; |
| 4397 | sec = sec->output_section; |
| 4398 | } |
| 4399 | /* Don't add in the section vma for relocatable output. */ |
| 4400 | if (! relocatable_p) |
| 4401 | value += sec->vma; |
| 4402 | sym.st_value = value; |
| 4403 | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; |
| 4404 | |
| 4405 | if (bfd_is_abs_section (sec) |
| 4406 | && type_ptr != NULL |
| 4407 | && type_ptr->internal_elf_sym.st_shndx != 0) |
| 4408 | { |
| 4409 | /* This symbol is in a real ELF section which we did |
| 4410 | not create as a BFD section. Undo the mapping done |
| 4411 | by copy_private_symbol_data. */ |
| 4412 | shndx = type_ptr->internal_elf_sym.st_shndx; |
| 4413 | switch (shndx) |
| 4414 | { |
| 4415 | case MAP_ONESYMTAB: |
| 4416 | shndx = elf_onesymtab (abfd); |
| 4417 | break; |
| 4418 | case MAP_DYNSYMTAB: |
| 4419 | shndx = elf_dynsymtab (abfd); |
| 4420 | break; |
| 4421 | case MAP_STRTAB: |
| 4422 | shndx = elf_tdata (abfd)->strtab_section; |
| 4423 | break; |
| 4424 | case MAP_SHSTRTAB: |
| 4425 | shndx = elf_tdata (abfd)->shstrtab_section; |
| 4426 | break; |
| 4427 | default: |
| 4428 | break; |
| 4429 | } |
| 4430 | } |
| 4431 | else |
| 4432 | { |
| 4433 | shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| 4434 | |
| 4435 | if (shndx == -1) |
| 4436 | { |
| 4437 | asection *sec2; |
| 4438 | |
| 4439 | /* Writing this would be a hell of a lot easier if |
| 4440 | we had some decent documentation on bfd, and |
| 4441 | knew what to expect of the library, and what to |
| 4442 | demand of applications. For example, it |
| 4443 | appears that `objcopy' might not set the |
| 4444 | section of a symbol to be a section that is |
| 4445 | actually in the output file. */ |
| 4446 | sec2 = bfd_get_section_by_name (abfd, sec->name); |
| 4447 | BFD_ASSERT (sec2 != 0); |
| 4448 | shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); |
| 4449 | BFD_ASSERT (shndx != -1); |
| 4450 | } |
| 4451 | } |
| 4452 | |
| 4453 | sym.st_shndx = shndx; |
| 4454 | } |
| 4455 | |
| 4456 | if ((flags & BSF_FUNCTION) != 0) |
| 4457 | type = STT_FUNC; |
| 4458 | else if ((flags & BSF_OBJECT) != 0) |
| 4459 | type = STT_OBJECT; |
| 4460 | else |
| 4461 | type = STT_NOTYPE; |
| 4462 | |
| 4463 | /* Processor-specific types */ |
| 4464 | if (type_ptr != NULL |
| 4465 | && bed->elf_backend_get_symbol_type) |
| 4466 | type = (*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type); |
| 4467 | |
| 4468 | if (flags & BSF_SECTION_SYM) |
| 4469 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| 4470 | else if (bfd_is_com_section (syms[idx]->section)) |
| 4471 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); |
| 4472 | else if (bfd_is_und_section (syms[idx]->section)) |
| 4473 | sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) |
| 4474 | ? STB_WEAK |
| 4475 | : STB_GLOBAL), |
| 4476 | type); |
| 4477 | else if (flags & BSF_FILE) |
| 4478 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
| 4479 | else |
| 4480 | { |
| 4481 | int bind = STB_LOCAL; |
| 4482 | |
| 4483 | if (flags & BSF_LOCAL) |
| 4484 | bind = STB_LOCAL; |
| 4485 | else if (flags & BSF_WEAK) |
| 4486 | bind = STB_WEAK; |
| 4487 | else if (flags & BSF_GLOBAL) |
| 4488 | bind = STB_GLOBAL; |
| 4489 | |
| 4490 | sym.st_info = ELF_ST_INFO (bind, type); |
| 4491 | } |
| 4492 | |
| 4493 | if (type_ptr != NULL) |
| 4494 | sym.st_other = type_ptr->internal_elf_sym.st_other; |
| 4495 | else |
| 4496 | sym.st_other = 0; |
| 4497 | |
| 4498 | bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); |
| 4499 | outbound_syms += bed->s->sizeof_sym; |
| 4500 | } |
| 4501 | |
| 4502 | *sttp = stt; |
| 4503 | symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); |
| 4504 | symstrtab_hdr->sh_type = SHT_STRTAB; |
| 4505 | |
| 4506 | symstrtab_hdr->sh_flags = 0; |
| 4507 | symstrtab_hdr->sh_addr = 0; |
| 4508 | symstrtab_hdr->sh_entsize = 0; |
| 4509 | symstrtab_hdr->sh_link = 0; |
| 4510 | symstrtab_hdr->sh_info = 0; |
| 4511 | symstrtab_hdr->sh_addralign = 1; |
| 4512 | } |
| 4513 | |
| 4514 | return true; |
| 4515 | } |
| 4516 | |
| 4517 | /* Return the number of bytes required to hold the symtab vector. |
| 4518 | |
| 4519 | Note that we base it on the count plus 1, since we will null terminate |
| 4520 | the vector allocated based on this size. However, the ELF symbol table |
| 4521 | always has a dummy entry as symbol #0, so it ends up even. */ |
| 4522 | |
| 4523 | long |
| 4524 | _bfd_elf_get_symtab_upper_bound (abfd) |
| 4525 | bfd *abfd; |
| 4526 | { |
| 4527 | long symcount; |
| 4528 | long symtab_size; |
| 4529 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; |
| 4530 | |
| 4531 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
| 4532 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); |
| 4533 | |
| 4534 | return symtab_size; |
| 4535 | } |
| 4536 | |
| 4537 | long |
| 4538 | _bfd_elf_get_dynamic_symtab_upper_bound (abfd) |
| 4539 | bfd *abfd; |
| 4540 | { |
| 4541 | long symcount; |
| 4542 | long symtab_size; |
| 4543 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| 4544 | |
| 4545 | if (elf_dynsymtab (abfd) == 0) |
| 4546 | { |
| 4547 | bfd_set_error (bfd_error_invalid_operation); |
| 4548 | return -1; |
| 4549 | } |
| 4550 | |
| 4551 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
| 4552 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); |
| 4553 | |
| 4554 | return symtab_size; |
| 4555 | } |
| 4556 | |
| 4557 | long |
| 4558 | _bfd_elf_get_reloc_upper_bound (abfd, asect) |
| 4559 | bfd *abfd ATTRIBUTE_UNUSED; |
| 4560 | sec_ptr asect; |
| 4561 | { |
| 4562 | return (asect->reloc_count + 1) * sizeof (arelent *); |
| 4563 | } |
| 4564 | |
| 4565 | /* Canonicalize the relocs. */ |
| 4566 | |
| 4567 | long |
| 4568 | _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols) |
| 4569 | bfd *abfd; |
| 4570 | sec_ptr section; |
| 4571 | arelent **relptr; |
| 4572 | asymbol **symbols; |
| 4573 | { |
| 4574 | arelent *tblptr; |
| 4575 | unsigned int i; |
| 4576 | |
| 4577 | if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd, |
| 4578 | section, |
| 4579 | symbols, |
| 4580 | false)) |
| 4581 | return -1; |
| 4582 | |
| 4583 | tblptr = section->relocation; |
| 4584 | for (i = 0; i < section->reloc_count; i++) |
| 4585 | *relptr++ = tblptr++; |
| 4586 | |
| 4587 | *relptr = NULL; |
| 4588 | |
| 4589 | return section->reloc_count; |
| 4590 | } |
| 4591 | |
| 4592 | long |
| 4593 | _bfd_elf_get_symtab (abfd, alocation) |
| 4594 | bfd *abfd; |
| 4595 | asymbol **alocation; |
| 4596 | { |
| 4597 | long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table |
| 4598 | (abfd, alocation, false); |
| 4599 | |
| 4600 | if (symcount >= 0) |
| 4601 | bfd_get_symcount (abfd) = symcount; |
| 4602 | return symcount; |
| 4603 | } |
| 4604 | |
| 4605 | long |
| 4606 | _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation) |
| 4607 | bfd *abfd; |
| 4608 | asymbol **alocation; |
| 4609 | { |
| 4610 | return get_elf_backend_data (abfd)->s->slurp_symbol_table |
| 4611 | (abfd, alocation, true); |
| 4612 | } |
| 4613 | |
| 4614 | /* Return the size required for the dynamic reloc entries. Any |
| 4615 | section that was actually installed in the BFD, and has type |
| 4616 | SHT_REL or SHT_RELA, and uses the dynamic symbol table, is |
| 4617 | considered to be a dynamic reloc section. */ |
| 4618 | |
| 4619 | long |
| 4620 | _bfd_elf_get_dynamic_reloc_upper_bound (abfd) |
| 4621 | bfd *abfd; |
| 4622 | { |
| 4623 | long ret; |
| 4624 | asection *s; |
| 4625 | |
| 4626 | if (elf_dynsymtab (abfd) == 0) |
| 4627 | { |
| 4628 | bfd_set_error (bfd_error_invalid_operation); |
| 4629 | return -1; |
| 4630 | } |
| 4631 | |
| 4632 | ret = sizeof (arelent *); |
| 4633 | for (s = abfd->sections; s != NULL; s = s->next) |
| 4634 | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) |
| 4635 | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL |
| 4636 | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) |
| 4637 | ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize) |
| 4638 | * sizeof (arelent *)); |
| 4639 | |
| 4640 | return ret; |
| 4641 | } |
| 4642 | |
| 4643 | /* Canonicalize the dynamic relocation entries. Note that we return |
| 4644 | the dynamic relocations as a single block, although they are |
| 4645 | actually associated with particular sections; the interface, which |
| 4646 | was designed for SunOS style shared libraries, expects that there |
| 4647 | is only one set of dynamic relocs. Any section that was actually |
| 4648 | installed in the BFD, and has type SHT_REL or SHT_RELA, and uses |
| 4649 | the dynamic symbol table, is considered to be a dynamic reloc |
| 4650 | section. */ |
| 4651 | |
| 4652 | long |
| 4653 | _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms) |
| 4654 | bfd *abfd; |
| 4655 | arelent **storage; |
| 4656 | asymbol **syms; |
| 4657 | { |
| 4658 | boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean)); |
| 4659 | asection *s; |
| 4660 | long ret; |
| 4661 | |
| 4662 | if (elf_dynsymtab (abfd) == 0) |
| 4663 | { |
| 4664 | bfd_set_error (bfd_error_invalid_operation); |
| 4665 | return -1; |
| 4666 | } |
| 4667 | |
| 4668 | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
| 4669 | ret = 0; |
| 4670 | for (s = abfd->sections; s != NULL; s = s->next) |
| 4671 | { |
| 4672 | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) |
| 4673 | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL |
| 4674 | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) |
| 4675 | { |
| 4676 | arelent *p; |
| 4677 | long count, i; |
| 4678 | |
| 4679 | if (! (*slurp_relocs) (abfd, s, syms, true)) |
| 4680 | return -1; |
| 4681 | count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize; |
| 4682 | p = s->relocation; |
| 4683 | for (i = 0; i < count; i++) |
| 4684 | *storage++ = p++; |
| 4685 | ret += count; |
| 4686 | } |
| 4687 | } |
| 4688 | |
| 4689 | *storage = NULL; |
| 4690 | |
| 4691 | return ret; |
| 4692 | } |
| 4693 | \f |
| 4694 | /* Read in the version information. */ |
| 4695 | |
| 4696 | boolean |
| 4697 | _bfd_elf_slurp_version_tables (abfd) |
| 4698 | bfd *abfd; |
| 4699 | { |
| 4700 | bfd_byte *contents = NULL; |
| 4701 | |
| 4702 | if (elf_dynverdef (abfd) != 0) |
| 4703 | { |
| 4704 | Elf_Internal_Shdr *hdr; |
| 4705 | Elf_External_Verdef *everdef; |
| 4706 | Elf_Internal_Verdef *iverdef; |
| 4707 | Elf_Internal_Verdef *iverdefarr; |
| 4708 | Elf_Internal_Verdef iverdefmem; |
| 4709 | unsigned int i; |
| 4710 | unsigned int maxidx; |
| 4711 | |
| 4712 | hdr = &elf_tdata (abfd)->dynverdef_hdr; |
| 4713 | |
| 4714 | contents = (bfd_byte *) bfd_malloc (hdr->sh_size); |
| 4715 | if (contents == NULL) |
| 4716 | goto error_return; |
| 4717 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
| 4718 | || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size) |
| 4719 | goto error_return; |
| 4720 | |
| 4721 | /* We know the number of entries in the section but not the maximum |
| 4722 | index. Therefore we have to run through all entries and find |
| 4723 | the maximum. */ |
| 4724 | everdef = (Elf_External_Verdef *) contents; |
| 4725 | maxidx = 0; |
| 4726 | for (i = 0; i < hdr->sh_info; ++i) |
| 4727 | { |
| 4728 | _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); |
| 4729 | |
| 4730 | if ((iverdefmem.vd_ndx & VERSYM_VERSION) > maxidx) |
| 4731 | maxidx = iverdefmem.vd_ndx & VERSYM_VERSION; |
| 4732 | |
| 4733 | everdef = ((Elf_External_Verdef *) |
| 4734 | ((bfd_byte *) everdef + iverdefmem.vd_next)); |
| 4735 | } |
| 4736 | |
| 4737 | elf_tdata (abfd)->verdef = |
| 4738 | ((Elf_Internal_Verdef *) |
| 4739 | bfd_zalloc (abfd, maxidx * sizeof (Elf_Internal_Verdef))); |
| 4740 | if (elf_tdata (abfd)->verdef == NULL) |
| 4741 | goto error_return; |
| 4742 | |
| 4743 | elf_tdata (abfd)->cverdefs = maxidx; |
| 4744 | |
| 4745 | everdef = (Elf_External_Verdef *) contents; |
| 4746 | iverdefarr = elf_tdata (abfd)->verdef; |
| 4747 | for (i = 0; i < hdr->sh_info; i++) |
| 4748 | { |
| 4749 | Elf_External_Verdaux *everdaux; |
| 4750 | Elf_Internal_Verdaux *iverdaux; |
| 4751 | unsigned int j; |
| 4752 | |
| 4753 | _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); |
| 4754 | |
| 4755 | iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; |
| 4756 | memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); |
| 4757 | |
| 4758 | iverdef->vd_bfd = abfd; |
| 4759 | |
| 4760 | iverdef->vd_auxptr = ((Elf_Internal_Verdaux *) |
| 4761 | bfd_alloc (abfd, |
| 4762 | (iverdef->vd_cnt |
| 4763 | * sizeof (Elf_Internal_Verdaux)))); |
| 4764 | if (iverdef->vd_auxptr == NULL) |
| 4765 | goto error_return; |
| 4766 | |
| 4767 | everdaux = ((Elf_External_Verdaux *) |
| 4768 | ((bfd_byte *) everdef + iverdef->vd_aux)); |
| 4769 | iverdaux = iverdef->vd_auxptr; |
| 4770 | for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) |
| 4771 | { |
| 4772 | _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); |
| 4773 | |
| 4774 | iverdaux->vda_nodename = |
| 4775 | bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| 4776 | iverdaux->vda_name); |
| 4777 | if (iverdaux->vda_nodename == NULL) |
| 4778 | goto error_return; |
| 4779 | |
| 4780 | if (j + 1 < iverdef->vd_cnt) |
| 4781 | iverdaux->vda_nextptr = iverdaux + 1; |
| 4782 | else |
| 4783 | iverdaux->vda_nextptr = NULL; |
| 4784 | |
| 4785 | everdaux = ((Elf_External_Verdaux *) |
| 4786 | ((bfd_byte *) everdaux + iverdaux->vda_next)); |
| 4787 | } |
| 4788 | |
| 4789 | iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; |
| 4790 | |
| 4791 | if (i + 1 < hdr->sh_info) |
| 4792 | iverdef->vd_nextdef = iverdef + 1; |
| 4793 | else |
| 4794 | iverdef->vd_nextdef = NULL; |
| 4795 | |
| 4796 | everdef = ((Elf_External_Verdef *) |
| 4797 | ((bfd_byte *) everdef + iverdef->vd_next)); |
| 4798 | } |
| 4799 | |
| 4800 | free (contents); |
| 4801 | contents = NULL; |
| 4802 | } |
| 4803 | |
| 4804 | if (elf_dynverref (abfd) != 0) |
| 4805 | { |
| 4806 | Elf_Internal_Shdr *hdr; |
| 4807 | Elf_External_Verneed *everneed; |
| 4808 | Elf_Internal_Verneed *iverneed; |
| 4809 | unsigned int i; |
| 4810 | |
| 4811 | hdr = &elf_tdata (abfd)->dynverref_hdr; |
| 4812 | |
| 4813 | elf_tdata (abfd)->verref = |
| 4814 | ((Elf_Internal_Verneed *) |
| 4815 | bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed))); |
| 4816 | if (elf_tdata (abfd)->verref == NULL) |
| 4817 | goto error_return; |
| 4818 | |
| 4819 | elf_tdata (abfd)->cverrefs = hdr->sh_info; |
| 4820 | |
| 4821 | contents = (bfd_byte *) bfd_malloc (hdr->sh_size); |
| 4822 | if (contents == NULL) |
| 4823 | goto error_return; |
| 4824 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
| 4825 | || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size) |
| 4826 | goto error_return; |
| 4827 | |
| 4828 | everneed = (Elf_External_Verneed *) contents; |
| 4829 | iverneed = elf_tdata (abfd)->verref; |
| 4830 | for (i = 0; i < hdr->sh_info; i++, iverneed++) |
| 4831 | { |
| 4832 | Elf_External_Vernaux *evernaux; |
| 4833 | Elf_Internal_Vernaux *ivernaux; |
| 4834 | unsigned int j; |
| 4835 | |
| 4836 | _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); |
| 4837 | |
| 4838 | iverneed->vn_bfd = abfd; |
| 4839 | |
| 4840 | iverneed->vn_filename = |
| 4841 | bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| 4842 | iverneed->vn_file); |
| 4843 | if (iverneed->vn_filename == NULL) |
| 4844 | goto error_return; |
| 4845 | |
| 4846 | iverneed->vn_auxptr = |
| 4847 | ((Elf_Internal_Vernaux *) |
| 4848 | bfd_alloc (abfd, |
| 4849 | iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux))); |
| 4850 | |
| 4851 | evernaux = ((Elf_External_Vernaux *) |
| 4852 | ((bfd_byte *) everneed + iverneed->vn_aux)); |
| 4853 | ivernaux = iverneed->vn_auxptr; |
| 4854 | for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) |
| 4855 | { |
| 4856 | _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); |
| 4857 | |
| 4858 | ivernaux->vna_nodename = |
| 4859 | bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| 4860 | ivernaux->vna_name); |
| 4861 | if (ivernaux->vna_nodename == NULL) |
| 4862 | goto error_return; |
| 4863 | |
| 4864 | if (j + 1 < iverneed->vn_cnt) |
| 4865 | ivernaux->vna_nextptr = ivernaux + 1; |
| 4866 | else |
| 4867 | ivernaux->vna_nextptr = NULL; |
| 4868 | |
| 4869 | evernaux = ((Elf_External_Vernaux *) |
| 4870 | ((bfd_byte *) evernaux + ivernaux->vna_next)); |
| 4871 | } |
| 4872 | |
| 4873 | if (i + 1 < hdr->sh_info) |
| 4874 | iverneed->vn_nextref = iverneed + 1; |
| 4875 | else |
| 4876 | iverneed->vn_nextref = NULL; |
| 4877 | |
| 4878 | everneed = ((Elf_External_Verneed *) |
| 4879 | ((bfd_byte *) everneed + iverneed->vn_next)); |
| 4880 | } |
| 4881 | |
| 4882 | free (contents); |
| 4883 | contents = NULL; |
| 4884 | } |
| 4885 | |
| 4886 | return true; |
| 4887 | |
| 4888 | error_return: |
| 4889 | if (contents == NULL) |
| 4890 | free (contents); |
| 4891 | return false; |
| 4892 | } |
| 4893 | \f |
| 4894 | asymbol * |
| 4895 | _bfd_elf_make_empty_symbol (abfd) |
| 4896 | bfd *abfd; |
| 4897 | { |
| 4898 | elf_symbol_type *newsym; |
| 4899 | |
| 4900 | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); |
| 4901 | if (!newsym) |
| 4902 | return NULL; |
| 4903 | else |
| 4904 | { |
| 4905 | newsym->symbol.the_bfd = abfd; |
| 4906 | return &newsym->symbol; |
| 4907 | } |
| 4908 | } |
| 4909 | |
| 4910 | void |
| 4911 | _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret) |
| 4912 | bfd *ignore_abfd ATTRIBUTE_UNUSED; |
| 4913 | asymbol *symbol; |
| 4914 | symbol_info *ret; |
| 4915 | { |
| 4916 | bfd_symbol_info (symbol, ret); |
| 4917 | } |
| 4918 | |
| 4919 | /* Return whether a symbol name implies a local symbol. Most targets |
| 4920 | use this function for the is_local_label_name entry point, but some |
| 4921 | override it. */ |
| 4922 | |
| 4923 | boolean |
| 4924 | _bfd_elf_is_local_label_name (abfd, name) |
| 4925 | bfd *abfd ATTRIBUTE_UNUSED; |
| 4926 | const char *name; |
| 4927 | { |
| 4928 | /* Normal local symbols start with ``.L''. */ |
| 4929 | if (name[0] == '.' && name[1] == 'L') |
| 4930 | return true; |
| 4931 | |
| 4932 | /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate |
| 4933 | DWARF debugging symbols starting with ``..''. */ |
| 4934 | if (name[0] == '.' && name[1] == '.') |
| 4935 | return true; |
| 4936 | |
| 4937 | /* gcc will sometimes generate symbols beginning with ``_.L_'' when |
| 4938 | emitting DWARF debugging output. I suspect this is actually a |
| 4939 | small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call |
| 4940 | ASM_GENERATE_INTERNAL_LABEL, and this causes the leading |
| 4941 | underscore to be emitted on some ELF targets). For ease of use, |
| 4942 | we treat such symbols as local. */ |
| 4943 | if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') |
| 4944 | return true; |
| 4945 | |
| 4946 | return false; |
| 4947 | } |
| 4948 | |
| 4949 | alent * |
| 4950 | _bfd_elf_get_lineno (ignore_abfd, symbol) |
| 4951 | bfd *ignore_abfd ATTRIBUTE_UNUSED; |
| 4952 | asymbol *symbol ATTRIBUTE_UNUSED; |
| 4953 | { |
| 4954 | abort (); |
| 4955 | return NULL; |
| 4956 | } |
| 4957 | |
| 4958 | boolean |
| 4959 | _bfd_elf_set_arch_mach (abfd, arch, machine) |
| 4960 | bfd *abfd; |
| 4961 | enum bfd_architecture arch; |
| 4962 | unsigned long machine; |
| 4963 | { |
| 4964 | /* If this isn't the right architecture for this backend, and this |
| 4965 | isn't the generic backend, fail. */ |
| 4966 | if (arch != get_elf_backend_data (abfd)->arch |
| 4967 | && arch != bfd_arch_unknown |
| 4968 | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) |
| 4969 | return false; |
| 4970 | |
| 4971 | return bfd_default_set_arch_mach (abfd, arch, machine); |
| 4972 | } |
| 4973 | |
| 4974 | /* Find the nearest line to a particular section and offset, for error |
| 4975 | reporting. */ |
| 4976 | |
| 4977 | boolean |
| 4978 | _bfd_elf_find_nearest_line (abfd, |
| 4979 | section, |
| 4980 | symbols, |
| 4981 | offset, |
| 4982 | filename_ptr, |
| 4983 | functionname_ptr, |
| 4984 | line_ptr) |
| 4985 | bfd *abfd; |
| 4986 | asection *section; |
| 4987 | asymbol **symbols; |
| 4988 | bfd_vma offset; |
| 4989 | CONST char **filename_ptr; |
| 4990 | CONST char **functionname_ptr; |
| 4991 | unsigned int *line_ptr; |
| 4992 | { |
| 4993 | boolean found; |
| 4994 | const char *filename; |
| 4995 | asymbol *func; |
| 4996 | bfd_vma low_func; |
| 4997 | asymbol **p; |
| 4998 | |
| 4999 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, |
| 5000 | filename_ptr, functionname_ptr, |
| 5001 | line_ptr)) |
| 5002 | return true; |
| 5003 | |
| 5004 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, |
| 5005 | filename_ptr, functionname_ptr, |
| 5006 | line_ptr, 0, |
| 5007 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
| 5008 | return true; |
| 5009 | |
| 5010 | if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, |
| 5011 | &found, filename_ptr, |
| 5012 | functionname_ptr, line_ptr, |
| 5013 | &elf_tdata (abfd)->line_info)) |
| 5014 | return false; |
| 5015 | if (found) |
| 5016 | return true; |
| 5017 | |
| 5018 | if (symbols == NULL) |
| 5019 | return false; |
| 5020 | |
| 5021 | filename = NULL; |
| 5022 | func = NULL; |
| 5023 | low_func = 0; |
| 5024 | |
| 5025 | for (p = symbols; *p != NULL; p++) |
| 5026 | { |
| 5027 | elf_symbol_type *q; |
| 5028 | |
| 5029 | q = (elf_symbol_type *) *p; |
| 5030 | |
| 5031 | if (bfd_get_section (&q->symbol) != section) |
| 5032 | continue; |
| 5033 | |
| 5034 | switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) |
| 5035 | { |
| 5036 | default: |
| 5037 | break; |
| 5038 | case STT_FILE: |
| 5039 | filename = bfd_asymbol_name (&q->symbol); |
| 5040 | break; |
| 5041 | case STT_NOTYPE: |
| 5042 | case STT_FUNC: |
| 5043 | if (q->symbol.section == section |
| 5044 | && q->symbol.value >= low_func |
| 5045 | && q->symbol.value <= offset) |
| 5046 | { |
| 5047 | func = (asymbol *) q; |
| 5048 | low_func = q->symbol.value; |
| 5049 | } |
| 5050 | break; |
| 5051 | } |
| 5052 | } |
| 5053 | |
| 5054 | if (func == NULL) |
| 5055 | return false; |
| 5056 | |
| 5057 | *filename_ptr = filename; |
| 5058 | *functionname_ptr = bfd_asymbol_name (func); |
| 5059 | *line_ptr = 0; |
| 5060 | return true; |
| 5061 | } |
| 5062 | |
| 5063 | int |
| 5064 | _bfd_elf_sizeof_headers (abfd, reloc) |
| 5065 | bfd *abfd; |
| 5066 | boolean reloc; |
| 5067 | { |
| 5068 | int ret; |
| 5069 | |
| 5070 | ret = get_elf_backend_data (abfd)->s->sizeof_ehdr; |
| 5071 | if (! reloc) |
| 5072 | ret += get_program_header_size (abfd); |
| 5073 | return ret; |
| 5074 | } |
| 5075 | |
| 5076 | boolean |
| 5077 | _bfd_elf_set_section_contents (abfd, section, location, offset, count) |
| 5078 | bfd *abfd; |
| 5079 | sec_ptr section; |
| 5080 | PTR location; |
| 5081 | file_ptr offset; |
| 5082 | bfd_size_type count; |
| 5083 | { |
| 5084 | Elf_Internal_Shdr *hdr; |
| 5085 | |
| 5086 | if (! abfd->output_has_begun |
| 5087 | && ! _bfd_elf_compute_section_file_positions |
| 5088 | (abfd, (struct bfd_link_info *) NULL)) |
| 5089 | return false; |
| 5090 | |
| 5091 | hdr = &elf_section_data (section)->this_hdr; |
| 5092 | |
| 5093 | if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) |
| 5094 | return false; |
| 5095 | if (bfd_write (location, 1, count, abfd) != count) |
| 5096 | return false; |
| 5097 | |
| 5098 | return true; |
| 5099 | } |
| 5100 | |
| 5101 | void |
| 5102 | _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst) |
| 5103 | bfd *abfd ATTRIBUTE_UNUSED; |
| 5104 | arelent *cache_ptr ATTRIBUTE_UNUSED; |
| 5105 | Elf_Internal_Rela *dst ATTRIBUTE_UNUSED; |
| 5106 | { |
| 5107 | abort (); |
| 5108 | } |
| 5109 | |
| 5110 | #if 0 |
| 5111 | void |
| 5112 | _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst) |
| 5113 | bfd *abfd; |
| 5114 | arelent *cache_ptr; |
| 5115 | Elf_Internal_Rel *dst; |
| 5116 | { |
| 5117 | abort (); |
| 5118 | } |
| 5119 | #endif |
| 5120 | |
| 5121 | /* Try to convert a non-ELF reloc into an ELF one. */ |
| 5122 | |
| 5123 | boolean |
| 5124 | _bfd_elf_validate_reloc (abfd, areloc) |
| 5125 | bfd *abfd; |
| 5126 | arelent *areloc; |
| 5127 | { |
| 5128 | /* Check whether we really have an ELF howto. */ |
| 5129 | |
| 5130 | if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) |
| 5131 | { |
| 5132 | bfd_reloc_code_real_type code; |
| 5133 | reloc_howto_type *howto; |
| 5134 | |
| 5135 | /* Alien reloc: Try to determine its type to replace it with an |
| 5136 | equivalent ELF reloc. */ |
| 5137 | |
| 5138 | if (areloc->howto->pc_relative) |
| 5139 | { |
| 5140 | switch (areloc->howto->bitsize) |
| 5141 | { |
| 5142 | case 8: |
| 5143 | code = BFD_RELOC_8_PCREL; |
| 5144 | break; |
| 5145 | case 12: |
| 5146 | code = BFD_RELOC_12_PCREL; |
| 5147 | break; |
| 5148 | case 16: |
| 5149 | code = BFD_RELOC_16_PCREL; |
| 5150 | break; |
| 5151 | case 24: |
| 5152 | code = BFD_RELOC_24_PCREL; |
| 5153 | break; |
| 5154 | case 32: |
| 5155 | code = BFD_RELOC_32_PCREL; |
| 5156 | break; |
| 5157 | case 64: |
| 5158 | code = BFD_RELOC_64_PCREL; |
| 5159 | break; |
| 5160 | default: |
| 5161 | goto fail; |
| 5162 | } |
| 5163 | |
| 5164 | howto = bfd_reloc_type_lookup (abfd, code); |
| 5165 | |
| 5166 | if (areloc->howto->pcrel_offset != howto->pcrel_offset) |
| 5167 | { |
| 5168 | if (howto->pcrel_offset) |
| 5169 | areloc->addend += areloc->address; |
| 5170 | else |
| 5171 | areloc->addend -= areloc->address; /* addend is unsigned!! */ |
| 5172 | } |
| 5173 | } |
| 5174 | else |
| 5175 | { |
| 5176 | switch (areloc->howto->bitsize) |
| 5177 | { |
| 5178 | case 8: |
| 5179 | code = BFD_RELOC_8; |
| 5180 | break; |
| 5181 | case 14: |
| 5182 | code = BFD_RELOC_14; |
| 5183 | break; |
| 5184 | case 16: |
| 5185 | code = BFD_RELOC_16; |
| 5186 | break; |
| 5187 | case 26: |
| 5188 | code = BFD_RELOC_26; |
| 5189 | break; |
| 5190 | case 32: |
| 5191 | code = BFD_RELOC_32; |
| 5192 | break; |
| 5193 | case 64: |
| 5194 | code = BFD_RELOC_64; |
| 5195 | break; |
| 5196 | default: |
| 5197 | goto fail; |
| 5198 | } |
| 5199 | |
| 5200 | howto = bfd_reloc_type_lookup (abfd, code); |
| 5201 | } |
| 5202 | |
| 5203 | if (howto) |
| 5204 | areloc->howto = howto; |
| 5205 | else |
| 5206 | goto fail; |
| 5207 | } |
| 5208 | |
| 5209 | return true; |
| 5210 | |
| 5211 | fail: |
| 5212 | (*_bfd_error_handler) |
| 5213 | (_("%s: unsupported relocation type %s"), |
| 5214 | bfd_get_filename (abfd), areloc->howto->name); |
| 5215 | bfd_set_error (bfd_error_bad_value); |
| 5216 | return false; |
| 5217 | } |
| 5218 | |
| 5219 | boolean |
| 5220 | _bfd_elf_close_and_cleanup (abfd) |
| 5221 | bfd *abfd; |
| 5222 | { |
| 5223 | if (bfd_get_format (abfd) == bfd_object) |
| 5224 | { |
| 5225 | if (elf_shstrtab (abfd) != NULL) |
| 5226 | _bfd_stringtab_free (elf_shstrtab (abfd)); |
| 5227 | } |
| 5228 | |
| 5229 | return _bfd_generic_close_and_cleanup (abfd); |
| 5230 | } |
| 5231 | |
| 5232 | /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY |
| 5233 | in the relocation's offset. Thus we cannot allow any sort of sanity |
| 5234 | range-checking to interfere. There is nothing else to do in processing |
| 5235 | this reloc. */ |
| 5236 | |
| 5237 | bfd_reloc_status_type |
| 5238 | _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg) |
| 5239 | bfd *abfd ATTRIBUTE_UNUSED; |
| 5240 | arelent *re ATTRIBUTE_UNUSED; |
| 5241 | struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED; |
| 5242 | PTR data ATTRIBUTE_UNUSED; |
| 5243 | asection *is ATTRIBUTE_UNUSED; |
| 5244 | bfd *obfd ATTRIBUTE_UNUSED; |
| 5245 | char **errmsg ATTRIBUTE_UNUSED; |
| 5246 | { |
| 5247 | return bfd_reloc_ok; |
| 5248 | } |
| 5249 | \f |
| 5250 | /* Elf core file support. Much of this only works on native |
| 5251 | toolchains, since we rely on knowing the |
| 5252 | machine-dependent procfs structure in order to pick |
| 5253 | out details about the corefile. */ |
| 5254 | |
| 5255 | #ifdef HAVE_SYS_PROCFS_H |
| 5256 | # include <sys/procfs.h> |
| 5257 | #endif |
| 5258 | |
| 5259 | /* Define offsetof for those systems which lack it. */ |
| 5260 | |
| 5261 | #ifndef offsetof |
| 5262 | # define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) |
| 5263 | #endif |
| 5264 | |
| 5265 | /* FIXME: this is kinda wrong, but it's what gdb wants. */ |
| 5266 | |
| 5267 | static int |
| 5268 | elfcore_make_pid (abfd) |
| 5269 | bfd *abfd; |
| 5270 | { |
| 5271 | return ((elf_tdata (abfd)->core_lwpid << 16) |
| 5272 | + (elf_tdata (abfd)->core_pid)); |
| 5273 | } |
| 5274 | |
| 5275 | /* If there isn't a section called NAME, make one, using |
| 5276 | data from SECT. Note, this function will generate a |
| 5277 | reference to NAME, so you shouldn't deallocate or |
| 5278 | overwrite it. */ |
| 5279 | |
| 5280 | static boolean |
| 5281 | elfcore_maybe_make_sect (abfd, name, sect) |
| 5282 | bfd *abfd; |
| 5283 | char *name; |
| 5284 | asection *sect; |
| 5285 | { |
| 5286 | asection *sect2; |
| 5287 | |
| 5288 | if (bfd_get_section_by_name (abfd, name) != NULL) |
| 5289 | return true; |
| 5290 | |
| 5291 | sect2 = bfd_make_section (abfd, name); |
| 5292 | if (sect2 == NULL) |
| 5293 | return false; |
| 5294 | |
| 5295 | sect2->_raw_size = sect->_raw_size; |
| 5296 | sect2->filepos = sect->filepos; |
| 5297 | sect2->flags = sect->flags; |
| 5298 | sect2->alignment_power = sect->alignment_power; |
| 5299 | return true; |
| 5300 | } |
| 5301 | |
| 5302 | /* prstatus_t exists on: |
| 5303 | solaris 2.5+ |
| 5304 | linux 2.[01] + glibc |
| 5305 | unixware 4.2 |
| 5306 | */ |
| 5307 | |
| 5308 | #if defined (HAVE_PRSTATUS_T) |
| 5309 | static boolean |
| 5310 | elfcore_grok_prstatus (abfd, note) |
| 5311 | bfd *abfd; |
| 5312 | Elf_Internal_Note *note; |
| 5313 | { |
| 5314 | char buf[100]; |
| 5315 | char *name; |
| 5316 | asection *sect; |
| 5317 | int raw_size; |
| 5318 | int offset; |
| 5319 | |
| 5320 | if (note->descsz == sizeof (prstatus_t)) |
| 5321 | { |
| 5322 | prstatus_t prstat; |
| 5323 | |
| 5324 | raw_size = sizeof (prstat.pr_reg); |
| 5325 | offset = offsetof (prstatus_t, pr_reg); |
| 5326 | memcpy (&prstat, note->descdata, sizeof (prstat)); |
| 5327 | |
| 5328 | elf_tdata (abfd)->core_signal = prstat.pr_cursig; |
| 5329 | elf_tdata (abfd)->core_pid = prstat.pr_pid; |
| 5330 | |
| 5331 | /* pr_who exists on: |
| 5332 | solaris 2.5+ |
| 5333 | unixware 4.2 |
| 5334 | pr_who doesn't exist on: |
| 5335 | linux 2.[01] |
| 5336 | */ |
| 5337 | #if defined (HAVE_PRSTATUS_T_PR_WHO) |
| 5338 | elf_tdata (abfd)->core_lwpid = prstat.pr_who; |
| 5339 | #endif |
| 5340 | } |
| 5341 | #if defined (HAVE_PRSTATUS32_T) |
| 5342 | else if (note->descsz == sizeof (prstatus32_t)) |
| 5343 | { |
| 5344 | /* 64-bit host, 32-bit corefile */ |
| 5345 | prstatus32_t prstat; |
| 5346 | |
| 5347 | raw_size = sizeof (prstat.pr_reg); |
| 5348 | offset = offsetof (prstatus32_t, pr_reg); |
| 5349 | memcpy (&prstat, note->descdata, sizeof (prstat)); |
| 5350 | |
| 5351 | elf_tdata (abfd)->core_signal = prstat.pr_cursig; |
| 5352 | elf_tdata (abfd)->core_pid = prstat.pr_pid; |
| 5353 | |
| 5354 | /* pr_who exists on: |
| 5355 | solaris 2.5+ |
| 5356 | unixware 4.2 |
| 5357 | pr_who doesn't exist on: |
| 5358 | linux 2.[01] |
| 5359 | */ |
| 5360 | #if defined (HAVE_PRSTATUS32_T_PR_WHO) |
| 5361 | elf_tdata (abfd)->core_lwpid = prstat.pr_who; |
| 5362 | #endif |
| 5363 | } |
| 5364 | #endif /* HAVE_PRSTATUS32_T */ |
| 5365 | else |
| 5366 | { |
| 5367 | /* Fail - we don't know how to handle any other |
| 5368 | note size (ie. data object type). */ |
| 5369 | return true; |
| 5370 | } |
| 5371 | |
| 5372 | /* Make a ".reg/999" section. */ |
| 5373 | |
| 5374 | sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); |
| 5375 | name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5376 | if (name == NULL) |
| 5377 | return false; |
| 5378 | strcpy (name, buf); |
| 5379 | |
| 5380 | sect = bfd_make_section (abfd, name); |
| 5381 | if (sect == NULL) |
| 5382 | return false; |
| 5383 | |
| 5384 | sect->_raw_size = raw_size; |
| 5385 | sect->filepos = note->descpos + offset; |
| 5386 | |
| 5387 | sect->flags = SEC_HAS_CONTENTS; |
| 5388 | sect->alignment_power = 2; |
| 5389 | |
| 5390 | if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) |
| 5391 | return false; |
| 5392 | |
| 5393 | return true; |
| 5394 | } |
| 5395 | #endif /* defined (HAVE_PRSTATUS_T) */ |
| 5396 | |
| 5397 | /* Create a pseudosection containing the exact contents of NOTE. This |
| 5398 | actually creates up to two pseudosections: |
| 5399 | - For the single-threaded case, a section named NAME, unless |
| 5400 | such a section already exists. |
| 5401 | - For the multi-threaded case, a section named "NAME/PID", where |
| 5402 | PID is elfcore_make_pid (abfd). |
| 5403 | Both pseudosections have identical contents: the contents of NOTE. */ |
| 5404 | |
| 5405 | static boolean |
| 5406 | elfcore_make_note_pseudosection (abfd, name, note) |
| 5407 | bfd *abfd; |
| 5408 | char *name; |
| 5409 | Elf_Internal_Note *note; |
| 5410 | { |
| 5411 | char buf[100]; |
| 5412 | char *threaded_name; |
| 5413 | asection *sect; |
| 5414 | |
| 5415 | /* Build the section name. */ |
| 5416 | |
| 5417 | sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); |
| 5418 | threaded_name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5419 | if (threaded_name == NULL) |
| 5420 | return false; |
| 5421 | strcpy (threaded_name, buf); |
| 5422 | |
| 5423 | sect = bfd_make_section (abfd, threaded_name); |
| 5424 | if (sect == NULL) |
| 5425 | return false; |
| 5426 | sect->_raw_size = note->descsz; |
| 5427 | sect->filepos = note->descpos; |
| 5428 | sect->flags = SEC_HAS_CONTENTS; |
| 5429 | sect->alignment_power = 2; |
| 5430 | |
| 5431 | if (! elfcore_maybe_make_sect (abfd, name, sect)) |
| 5432 | return false; |
| 5433 | |
| 5434 | return true; |
| 5435 | } |
| 5436 | |
| 5437 | /* There isn't a consistent prfpregset_t across platforms, |
| 5438 | but it doesn't matter, because we don't have to pick this |
| 5439 | data structure apart. */ |
| 5440 | |
| 5441 | static boolean |
| 5442 | elfcore_grok_prfpreg (abfd, note) |
| 5443 | bfd *abfd; |
| 5444 | Elf_Internal_Note *note; |
| 5445 | { |
| 5446 | return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| 5447 | } |
| 5448 | |
| 5449 | /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note |
| 5450 | type of 5 (NT_PRXFPREG). Just include the whole note's contents |
| 5451 | literally. */ |
| 5452 | |
| 5453 | static boolean |
| 5454 | elfcore_grok_prxfpreg (abfd, note) |
| 5455 | bfd *abfd; |
| 5456 | Elf_Internal_Note *note; |
| 5457 | { |
| 5458 | return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); |
| 5459 | } |
| 5460 | |
| 5461 | #if defined (HAVE_PRPSINFO_T) |
| 5462 | typedef prpsinfo_t elfcore_psinfo_t; |
| 5463 | #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ |
| 5464 | typedef prpsinfo32_t elfcore_psinfo32_t; |
| 5465 | #endif |
| 5466 | #endif |
| 5467 | |
| 5468 | #if defined (HAVE_PSINFO_T) |
| 5469 | typedef psinfo_t elfcore_psinfo_t; |
| 5470 | #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ |
| 5471 | typedef psinfo32_t elfcore_psinfo32_t; |
| 5472 | #endif |
| 5473 | #endif |
| 5474 | |
| 5475 | #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) |
| 5476 | |
| 5477 | /* return a malloc'ed copy of a string at START which is at |
| 5478 | most MAX bytes long, possibly without a terminating '\0'. |
| 5479 | the copy will always have a terminating '\0'. */ |
| 5480 | |
| 5481 | static char* |
| 5482 | elfcore_strndup (abfd, start, max) |
| 5483 | bfd *abfd; |
| 5484 | char *start; |
| 5485 | int max; |
| 5486 | { |
| 5487 | char *dup; |
| 5488 | char *end = memchr (start, '\0', max); |
| 5489 | int len; |
| 5490 | |
| 5491 | if (end == NULL) |
| 5492 | len = max; |
| 5493 | else |
| 5494 | len = end - start; |
| 5495 | |
| 5496 | dup = bfd_alloc (abfd, len + 1); |
| 5497 | if (dup == NULL) |
| 5498 | return NULL; |
| 5499 | |
| 5500 | memcpy (dup, start, len); |
| 5501 | dup[len] = '\0'; |
| 5502 | |
| 5503 | return dup; |
| 5504 | } |
| 5505 | |
| 5506 | static boolean |
| 5507 | elfcore_grok_psinfo (abfd, note) |
| 5508 | bfd *abfd; |
| 5509 | Elf_Internal_Note *note; |
| 5510 | { |
| 5511 | if (note->descsz == sizeof (elfcore_psinfo_t)) |
| 5512 | { |
| 5513 | elfcore_psinfo_t psinfo; |
| 5514 | |
| 5515 | memcpy (&psinfo, note->descdata, sizeof (psinfo)); |
| 5516 | |
| 5517 | elf_tdata (abfd)->core_program |
| 5518 | = elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); |
| 5519 | |
| 5520 | elf_tdata (abfd)->core_command |
| 5521 | = elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); |
| 5522 | } |
| 5523 | #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) |
| 5524 | else if (note->descsz == sizeof (elfcore_psinfo32_t)) |
| 5525 | { |
| 5526 | /* 64-bit host, 32-bit corefile */ |
| 5527 | elfcore_psinfo32_t psinfo; |
| 5528 | |
| 5529 | memcpy (&psinfo, note->descdata, sizeof (psinfo)); |
| 5530 | |
| 5531 | elf_tdata (abfd)->core_program |
| 5532 | = elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); |
| 5533 | |
| 5534 | elf_tdata (abfd)->core_command |
| 5535 | = elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); |
| 5536 | } |
| 5537 | #endif |
| 5538 | |
| 5539 | else |
| 5540 | { |
| 5541 | /* Fail - we don't know how to handle any other |
| 5542 | note size (ie. data object type). */ |
| 5543 | return true; |
| 5544 | } |
| 5545 | |
| 5546 | /* Note that for some reason, a spurious space is tacked |
| 5547 | onto the end of the args in some (at least one anyway) |
| 5548 | implementations, so strip it off if it exists. */ |
| 5549 | |
| 5550 | { |
| 5551 | char *command = elf_tdata (abfd)->core_command; |
| 5552 | int n = strlen (command); |
| 5553 | |
| 5554 | if (0 < n && command[n - 1] == ' ') |
| 5555 | command[n - 1] = '\0'; |
| 5556 | } |
| 5557 | |
| 5558 | return true; |
| 5559 | } |
| 5560 | #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ |
| 5561 | |
| 5562 | #if defined (HAVE_PSTATUS_T) |
| 5563 | static boolean |
| 5564 | elfcore_grok_pstatus (abfd, note) |
| 5565 | bfd *abfd; |
| 5566 | Elf_Internal_Note *note; |
| 5567 | { |
| 5568 | if (note->descsz == sizeof (pstatus_t) |
| 5569 | #if defined (HAVE_PXSTATUS_T) |
| 5570 | || note->descsz == sizeof (pxstatus_t) |
| 5571 | #endif |
| 5572 | ) |
| 5573 | { |
| 5574 | pstatus_t pstat; |
| 5575 | |
| 5576 | memcpy (&pstat, note->descdata, sizeof (pstat)); |
| 5577 | |
| 5578 | elf_tdata (abfd)->core_pid = pstat.pr_pid; |
| 5579 | } |
| 5580 | #if defined (HAVE_PSTATUS32_T) |
| 5581 | else if (note->descsz == sizeof (pstatus32_t)) |
| 5582 | { |
| 5583 | /* 64-bit host, 32-bit corefile */ |
| 5584 | pstatus32_t pstat; |
| 5585 | |
| 5586 | memcpy (&pstat, note->descdata, sizeof (pstat)); |
| 5587 | |
| 5588 | elf_tdata (abfd)->core_pid = pstat.pr_pid; |
| 5589 | } |
| 5590 | #endif |
| 5591 | /* Could grab some more details from the "representative" |
| 5592 | lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an |
| 5593 | NT_LWPSTATUS note, presumably. */ |
| 5594 | |
| 5595 | return true; |
| 5596 | } |
| 5597 | #endif /* defined (HAVE_PSTATUS_T) */ |
| 5598 | |
| 5599 | #if defined (HAVE_LWPSTATUS_T) |
| 5600 | static boolean |
| 5601 | elfcore_grok_lwpstatus (abfd, note) |
| 5602 | bfd *abfd; |
| 5603 | Elf_Internal_Note *note; |
| 5604 | { |
| 5605 | lwpstatus_t lwpstat; |
| 5606 | char buf[100]; |
| 5607 | char *name; |
| 5608 | asection *sect; |
| 5609 | |
| 5610 | if (note->descsz != sizeof (lwpstat) |
| 5611 | #if defined (HAVE_LWPXSTATUS_T) |
| 5612 | && note->descsz != sizeof (lwpxstatus_t) |
| 5613 | #endif |
| 5614 | ) |
| 5615 | return true; |
| 5616 | |
| 5617 | memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); |
| 5618 | |
| 5619 | elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid; |
| 5620 | elf_tdata (abfd)->core_signal = lwpstat.pr_cursig; |
| 5621 | |
| 5622 | /* Make a ".reg/999" section. */ |
| 5623 | |
| 5624 | sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); |
| 5625 | name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5626 | if (name == NULL) |
| 5627 | return false; |
| 5628 | strcpy (name, buf); |
| 5629 | |
| 5630 | sect = bfd_make_section (abfd, name); |
| 5631 | if (sect == NULL) |
| 5632 | return false; |
| 5633 | |
| 5634 | #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) |
| 5635 | sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); |
| 5636 | sect->filepos = note->descpos |
| 5637 | + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); |
| 5638 | #endif |
| 5639 | |
| 5640 | #if defined (HAVE_LWPSTATUS_T_PR_REG) |
| 5641 | sect->_raw_size = sizeof (lwpstat.pr_reg); |
| 5642 | sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); |
| 5643 | #endif |
| 5644 | |
| 5645 | sect->flags = SEC_HAS_CONTENTS; |
| 5646 | sect->alignment_power = 2; |
| 5647 | |
| 5648 | if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) |
| 5649 | return false; |
| 5650 | |
| 5651 | /* Make a ".reg2/999" section */ |
| 5652 | |
| 5653 | sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); |
| 5654 | name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5655 | if (name == NULL) |
| 5656 | return false; |
| 5657 | strcpy (name, buf); |
| 5658 | |
| 5659 | sect = bfd_make_section (abfd, name); |
| 5660 | if (sect == NULL) |
| 5661 | return false; |
| 5662 | |
| 5663 | #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) |
| 5664 | sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); |
| 5665 | sect->filepos = note->descpos |
| 5666 | + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); |
| 5667 | #endif |
| 5668 | |
| 5669 | #if defined (HAVE_LWPSTATUS_T_PR_FPREG) |
| 5670 | sect->_raw_size = sizeof (lwpstat.pr_fpreg); |
| 5671 | sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); |
| 5672 | #endif |
| 5673 | |
| 5674 | sect->flags = SEC_HAS_CONTENTS; |
| 5675 | sect->alignment_power = 2; |
| 5676 | |
| 5677 | if (!elfcore_maybe_make_sect (abfd, ".reg2", sect)) |
| 5678 | return false; |
| 5679 | |
| 5680 | return true; |
| 5681 | } |
| 5682 | #endif /* defined (HAVE_LWPSTATUS_T) */ |
| 5683 | |
| 5684 | #if defined (HAVE_WIN32_PSTATUS_T) |
| 5685 | static boolean |
| 5686 | elfcore_grok_win32pstatus (abfd, note) |
| 5687 | bfd *abfd; |
| 5688 | Elf_Internal_Note *note; |
| 5689 | { |
| 5690 | char buf[30]; |
| 5691 | char *name; |
| 5692 | asection *sect; |
| 5693 | win32_pstatus_t pstatus; |
| 5694 | |
| 5695 | if (note->descsz < sizeof (pstatus)) |
| 5696 | return true; |
| 5697 | |
| 5698 | memcpy (&pstatus, note->descdata, note->descsz); |
| 5699 | |
| 5700 | switch (pstatus.data_type) |
| 5701 | { |
| 5702 | case NOTE_INFO_PROCESS: |
| 5703 | /* FIXME: need to add ->core_command. */ |
| 5704 | elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal; |
| 5705 | elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid; |
| 5706 | break; |
| 5707 | |
| 5708 | case NOTE_INFO_THREAD: |
| 5709 | /* Make a ".reg/999" section. */ |
| 5710 | sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid); |
| 5711 | |
| 5712 | name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5713 | if (name == NULL) |
| 5714 | return false; |
| 5715 | |
| 5716 | strcpy (name, buf); |
| 5717 | |
| 5718 | sect = bfd_make_section (abfd, name); |
| 5719 | if (sect == NULL) |
| 5720 | return false; |
| 5721 | |
| 5722 | sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context); |
| 5723 | sect->filepos = note->descpos + offsetof (struct win32_pstatus, |
| 5724 | data.thread_info.thread_context); |
| 5725 | sect->flags = SEC_HAS_CONTENTS; |
| 5726 | sect->alignment_power = 2; |
| 5727 | |
| 5728 | if (pstatus.data.thread_info.is_active_thread) |
| 5729 | if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) |
| 5730 | return false; |
| 5731 | break; |
| 5732 | |
| 5733 | case NOTE_INFO_MODULE: |
| 5734 | /* Make a ".module/xxxxxxxx" section. */ |
| 5735 | sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address); |
| 5736 | |
| 5737 | name = bfd_alloc (abfd, strlen (buf) + 1); |
| 5738 | if (name == NULL) |
| 5739 | return false; |
| 5740 | |
| 5741 | strcpy (name, buf); |
| 5742 | |
| 5743 | sect = bfd_make_section (abfd, name); |
| 5744 | |
| 5745 | if (sect == NULL) |
| 5746 | return false; |
| 5747 | |
| 5748 | sect->_raw_size = note->descsz; |
| 5749 | sect->filepos = note->descpos; |
| 5750 | sect->flags = SEC_HAS_CONTENTS; |
| 5751 | sect->alignment_power = 2; |
| 5752 | break; |
| 5753 | |
| 5754 | default: |
| 5755 | return true; |
| 5756 | } |
| 5757 | |
| 5758 | return true; |
| 5759 | } |
| 5760 | #endif /* HAVE_WIN32_PSTATUS_T */ |
| 5761 | |
| 5762 | static boolean |
| 5763 | elfcore_grok_note (abfd, note) |
| 5764 | bfd *abfd; |
| 5765 | Elf_Internal_Note *note; |
| 5766 | { |
| 5767 | switch (note->type) |
| 5768 | { |
| 5769 | default: |
| 5770 | return true; |
| 5771 | |
| 5772 | #if defined (HAVE_PRSTATUS_T) |
| 5773 | case NT_PRSTATUS: |
| 5774 | return elfcore_grok_prstatus (abfd, note); |
| 5775 | #endif |
| 5776 | |
| 5777 | #if defined (HAVE_PSTATUS_T) |
| 5778 | case NT_PSTATUS: |
| 5779 | return elfcore_grok_pstatus (abfd, note); |
| 5780 | #endif |
| 5781 | |
| 5782 | #if defined (HAVE_LWPSTATUS_T) |
| 5783 | case NT_LWPSTATUS: |
| 5784 | return elfcore_grok_lwpstatus (abfd, note); |
| 5785 | #endif |
| 5786 | |
| 5787 | case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ |
| 5788 | return elfcore_grok_prfpreg (abfd, note); |
| 5789 | |
| 5790 | #if defined (HAVE_WIN32_PSTATUS_T) |
| 5791 | case NT_WIN32PSTATUS: |
| 5792 | return elfcore_grok_win32pstatus (abfd, note); |
| 5793 | #endif |
| 5794 | |
| 5795 | case NT_PRXFPREG: /* Linux SSE extension */ |
| 5796 | if (note->namesz == 5 |
| 5797 | && ! strcmp (note->namedata, "LINUX")) |
| 5798 | return elfcore_grok_prxfpreg (abfd, note); |
| 5799 | else |
| 5800 | return true; |
| 5801 | |
| 5802 | #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) |
| 5803 | case NT_PRPSINFO: |
| 5804 | case NT_PSINFO: |
| 5805 | return elfcore_grok_psinfo (abfd, note); |
| 5806 | #endif |
| 5807 | } |
| 5808 | } |
| 5809 | |
| 5810 | static boolean |
| 5811 | elfcore_read_notes (abfd, offset, size) |
| 5812 | bfd *abfd; |
| 5813 | bfd_vma offset; |
| 5814 | bfd_vma size; |
| 5815 | { |
| 5816 | char *buf; |
| 5817 | char *p; |
| 5818 | |
| 5819 | if (size <= 0) |
| 5820 | return true; |
| 5821 | |
| 5822 | if (bfd_seek (abfd, offset, SEEK_SET) == -1) |
| 5823 | return false; |
| 5824 | |
| 5825 | buf = bfd_malloc ((size_t) size); |
| 5826 | if (buf == NULL) |
| 5827 | return false; |
| 5828 | |
| 5829 | if (bfd_read (buf, size, 1, abfd) != size) |
| 5830 | { |
| 5831 | error: |
| 5832 | free (buf); |
| 5833 | return false; |
| 5834 | } |
| 5835 | |
| 5836 | p = buf; |
| 5837 | while (p < buf + size) |
| 5838 | { |
| 5839 | /* FIXME: bad alignment assumption. */ |
| 5840 | Elf_External_Note *xnp = (Elf_External_Note *) p; |
| 5841 | Elf_Internal_Note in; |
| 5842 | |
| 5843 | in.type = bfd_h_get_32 (abfd, (bfd_byte *) xnp->type); |
| 5844 | |
| 5845 | in.namesz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->namesz); |
| 5846 | in.namedata = xnp->name; |
| 5847 | |
| 5848 | in.descsz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->descsz); |
| 5849 | in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); |
| 5850 | in.descpos = offset + (in.descdata - buf); |
| 5851 | |
| 5852 | if (! elfcore_grok_note (abfd, &in)) |
| 5853 | goto error; |
| 5854 | |
| 5855 | p = in.descdata + BFD_ALIGN (in.descsz, 4); |
| 5856 | } |
| 5857 | |
| 5858 | free (buf); |
| 5859 | return true; |
| 5860 | } |
| 5861 | |
| 5862 | /* FIXME: This function is now unnecessary. Callers can just call |
| 5863 | bfd_section_from_phdr directly. */ |
| 5864 | |
| 5865 | boolean |
| 5866 | _bfd_elfcore_section_from_phdr (abfd, phdr, sec_num) |
| 5867 | bfd *abfd; |
| 5868 | Elf_Internal_Phdr* phdr; |
| 5869 | int sec_num; |
| 5870 | { |
| 5871 | if (! bfd_section_from_phdr (abfd, phdr, sec_num)) |
| 5872 | return false; |
| 5873 | |
| 5874 | return true; |
| 5875 | } |
| 5876 | \f |
| 5877 | /* Providing external access to the ELF program header table. */ |
| 5878 | |
| 5879 | /* Return an upper bound on the number of bytes required to store a |
| 5880 | copy of ABFD's program header table entries. Return -1 if an error |
| 5881 | occurs; bfd_get_error will return an appropriate code. */ |
| 5882 | |
| 5883 | long |
| 5884 | bfd_get_elf_phdr_upper_bound (abfd) |
| 5885 | bfd *abfd; |
| 5886 | { |
| 5887 | if (abfd->xvec->flavour != bfd_target_elf_flavour) |
| 5888 | { |
| 5889 | bfd_set_error (bfd_error_wrong_format); |
| 5890 | return -1; |
| 5891 | } |
| 5892 | |
| 5893 | return (elf_elfheader (abfd)->e_phnum |
| 5894 | * sizeof (Elf_Internal_Phdr)); |
| 5895 | } |
| 5896 | |
| 5897 | /* Copy ABFD's program header table entries to *PHDRS. The entries |
| 5898 | will be stored as an array of Elf_Internal_Phdr structures, as |
| 5899 | defined in include/elf/internal.h. To find out how large the |
| 5900 | buffer needs to be, call bfd_get_elf_phdr_upper_bound. |
| 5901 | |
| 5902 | Return the number of program header table entries read, or -1 if an |
| 5903 | error occurs; bfd_get_error will return an appropriate code. */ |
| 5904 | |
| 5905 | int |
| 5906 | bfd_get_elf_phdrs (abfd, phdrs) |
| 5907 | bfd *abfd; |
| 5908 | void *phdrs; |
| 5909 | { |
| 5910 | int num_phdrs; |
| 5911 | |
| 5912 | if (abfd->xvec->flavour != bfd_target_elf_flavour) |
| 5913 | { |
| 5914 | bfd_set_error (bfd_error_wrong_format); |
| 5915 | return -1; |
| 5916 | } |
| 5917 | |
| 5918 | num_phdrs = elf_elfheader (abfd)->e_phnum; |
| 5919 | memcpy (phdrs, elf_tdata (abfd)->phdr, |
| 5920 | num_phdrs * sizeof (Elf_Internal_Phdr)); |
| 5921 | |
| 5922 | return num_phdrs; |
| 5923 | } |