Fix year.
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22/*
23SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34/* For sparc64-cross-sparc32. */
35#define _SYSCALL32
36#include "bfd.h"
37#include "sysdep.h"
38#include "bfdlink.h"
39#include "libbfd.h"
40#define ARCH_SIZE 0
41#include "elf-bfd.h"
42#include "libiberty.h"
43
44static int elf_sort_sections (const void *, const void *);
45static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46static bfd_boolean prep_headers (bfd *);
47static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50/* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54/* Swap in a Verdef structure. */
55
56void
57_bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60{
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68}
69
70/* Swap out a Verdef structure. */
71
72void
73_bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76{
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84}
85
86/* Swap in a Verdaux structure. */
87
88void
89_bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92{
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95}
96
97/* Swap out a Verdaux structure. */
98
99void
100_bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103{
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106}
107
108/* Swap in a Verneed structure. */
109
110void
111_bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114{
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120}
121
122/* Swap out a Verneed structure. */
123
124void
125_bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128{
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134}
135
136/* Swap in a Vernaux structure. */
137
138void
139_bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142{
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148}
149
150/* Swap out a Vernaux structure. */
151
152void
153_bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156{
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162}
163
164/* Swap in a Versym structure. */
165
166void
167_bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170{
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172}
173
174/* Swap out a Versym structure. */
175
176void
177_bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180{
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182}
183
184/* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187unsigned long
188bfd_elf_hash (const char *namearg)
189{
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207}
208
209/* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212unsigned long
213bfd_elf_gnu_hash (const char *namearg)
214{
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222}
223
224bfd_boolean
225bfd_elf_mkobject (bfd *abfd)
226{
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237}
238
239bfd_boolean
240bfd_elf_mkcorefile (bfd *abfd)
241{
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244}
245
246char *
247bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248{
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282}
283
284char *
285bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288{
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313}
314
315/* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321Elf_Internal_Sym *
322bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329{
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420}
421
422/* Look up a symbol name. */
423const char *
424bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428{
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449}
450
451/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458} Elf_Internal_Group;
459
460/* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463static const char *
464group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465{
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485}
486
487/* Set next_in_group list pointer, and group name for NEWSECT. */
488
489static bfd_boolean
490setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491{
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650}
651
652bfd_boolean
653_bfd_elf_setup_sections (bfd *abfd)
654{
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739}
740
741bfd_boolean
742bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743{
744 return elf_next_in_group (sec) != NULL;
745}
746
747/* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750bfd_boolean
751_bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755{
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942}
943
944/*
945INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957*/
958
959struct elf_internal_shdr *
960bfd_elf_find_section (bfd *abfd, char *name)
961{
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981}
982
983const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987};
988
989/* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999bfd_reloc_status_type
1000bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007{
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018}
1019\f
1020/* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022static void
1023merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025{
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028}
1029
1030/* Finish SHF_MERGE section merging. */
1031
1032bfd_boolean
1033_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034{
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062}
1063
1064void
1065_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066{
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073}
1074\f
1075/* Copy the program header and other data from one object module to
1076 another. */
1077
1078bfd_boolean
1079_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080{
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093}
1094
1095static const char *
1096get_segment_type (unsigned int p_type)
1097{
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115}
1116
1117/* Print out the program headers. */
1118
1119bfd_boolean
1120_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121{
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345}
1346
1347/* Display ELF-specific fields of a symbol. */
1348
1349void
1350bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354{
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467}
1468\f
1469/* Create an entry in an ELF linker hash table. */
1470
1471struct bfd_hash_entry *
1472_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475{
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507}
1508
1509/* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512void
1513_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516{
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560}
1561
1562void
1563_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566{
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579}
1580
1581/* Initialize an ELF linker hash table. */
1582
1583bfd_boolean
1584_bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591{
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 memset (table, 0, sizeof * table);
1596 table->init_got_refcount.refcount = can_refcount - 1;
1597 table->init_plt_refcount.refcount = can_refcount - 1;
1598 table->init_got_offset.offset = -(bfd_vma) 1;
1599 table->init_plt_offset.offset = -(bfd_vma) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table->dynsymcount = 1;
1602
1603 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1604 table->root.type = bfd_link_elf_hash_table;
1605
1606 return ret;
1607}
1608
1609/* Create an ELF linker hash table. */
1610
1611struct bfd_link_hash_table *
1612_bfd_elf_link_hash_table_create (bfd *abfd)
1613{
1614 struct elf_link_hash_table *ret;
1615 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1616
1617 ret = bfd_malloc (amt);
1618 if (ret == NULL)
1619 return NULL;
1620
1621 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1622 sizeof (struct elf_link_hash_entry)))
1623 {
1624 free (ret);
1625 return NULL;
1626 }
1627
1628 return &ret->root;
1629}
1630
1631/* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1634
1635void
1636bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1637{
1638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd) == bfd_object)
1640 elf_dt_name (abfd) = name;
1641}
1642
1643int
1644bfd_elf_get_dyn_lib_class (bfd *abfd)
1645{
1646 int lib_class;
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 lib_class = elf_dyn_lib_class (abfd);
1650 else
1651 lib_class = 0;
1652 return lib_class;
1653}
1654
1655void
1656bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1657{
1658 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd) == bfd_object)
1660 elf_dyn_lib_class (abfd) = lib_class;
1661}
1662
1663/* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1665
1666struct bfd_link_needed_list *
1667bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1668 struct bfd_link_info *info)
1669{
1670 if (! is_elf_hash_table (info->hash))
1671 return NULL;
1672 return elf_hash_table (info)->needed;
1673}
1674
1675/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1677
1678struct bfd_link_needed_list *
1679bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1680 struct bfd_link_info *info)
1681{
1682 if (! is_elf_hash_table (info->hash))
1683 return NULL;
1684 return elf_hash_table (info)->runpath;
1685}
1686
1687/* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1690
1691const char *
1692bfd_elf_get_dt_soname (bfd *abfd)
1693{
1694 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd) == bfd_object)
1696 return elf_dt_name (abfd);
1697 return NULL;
1698}
1699
1700/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1702
1703bfd_boolean
1704bfd_elf_get_bfd_needed_list (bfd *abfd,
1705 struct bfd_link_needed_list **pneeded)
1706{
1707 asection *s;
1708 bfd_byte *dynbuf = NULL;
1709 int elfsec;
1710 unsigned long shlink;
1711 bfd_byte *extdyn, *extdynend;
1712 size_t extdynsize;
1713 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1714
1715 *pneeded = NULL;
1716
1717 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd) != bfd_object)
1719 return TRUE;
1720
1721 s = bfd_get_section_by_name (abfd, ".dynamic");
1722 if (s == NULL || s->size == 0)
1723 return TRUE;
1724
1725 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1726 goto error_return;
1727
1728 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1729 if (elfsec == -1)
1730 goto error_return;
1731
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1733
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1736
1737 extdyn = dynbuf;
1738 extdynend = extdyn + s->size;
1739 for (; extdyn < extdynend; extdyn += extdynsize)
1740 {
1741 Elf_Internal_Dyn dyn;
1742
1743 (*swap_dyn_in) (abfd, extdyn, &dyn);
1744
1745 if (dyn.d_tag == DT_NULL)
1746 break;
1747
1748 if (dyn.d_tag == DT_NEEDED)
1749 {
1750 const char *string;
1751 struct bfd_link_needed_list *l;
1752 unsigned int tagv = dyn.d_un.d_val;
1753 bfd_size_type amt;
1754
1755 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1756 if (string == NULL)
1757 goto error_return;
1758
1759 amt = sizeof *l;
1760 l = bfd_alloc (abfd, amt);
1761 if (l == NULL)
1762 goto error_return;
1763
1764 l->by = abfd;
1765 l->name = string;
1766 l->next = *pneeded;
1767 *pneeded = l;
1768 }
1769 }
1770
1771 free (dynbuf);
1772
1773 return TRUE;
1774
1775 error_return:
1776 if (dynbuf != NULL)
1777 free (dynbuf);
1778 return FALSE;
1779}
1780\f
1781/* Allocate an ELF string table--force the first byte to be zero. */
1782
1783struct bfd_strtab_hash *
1784_bfd_elf_stringtab_init (void)
1785{
1786 struct bfd_strtab_hash *ret;
1787
1788 ret = _bfd_stringtab_init ();
1789 if (ret != NULL)
1790 {
1791 bfd_size_type loc;
1792
1793 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1794 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1795 if (loc == (bfd_size_type) -1)
1796 {
1797 _bfd_stringtab_free (ret);
1798 ret = NULL;
1799 }
1800 }
1801 return ret;
1802}
1803\f
1804/* ELF .o/exec file reading */
1805
1806/* Create a new bfd section from an ELF section header. */
1807
1808bfd_boolean
1809bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1810{
1811 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1812 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1814 const char *name;
1815
1816 name = bfd_elf_string_from_elf_section (abfd,
1817 elf_elfheader (abfd)->e_shstrndx,
1818 hdr->sh_name);
1819 if (name == NULL)
1820 return FALSE;
1821
1822 switch (hdr->sh_type)
1823 {
1824 case SHT_NULL:
1825 /* Inactive section. Throw it away. */
1826 return TRUE;
1827
1828 case SHT_PROGBITS: /* Normal section with contents. */
1829 case SHT_NOBITS: /* .bss section. */
1830 case SHT_HASH: /* .hash section. */
1831 case SHT_NOTE: /* .note section. */
1832 case SHT_INIT_ARRAY: /* .init_array section. */
1833 case SHT_FINI_ARRAY: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1838
1839 case SHT_DYNAMIC: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1841 return FALSE;
1842 if (hdr->sh_link > elf_numsections (abfd)
1843 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1844 return FALSE;
1845 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1846 {
1847 Elf_Internal_Shdr *dynsymhdr;
1848
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd) != 0)
1853 {
1854 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 }
1857 else
1858 {
1859 unsigned int i, num_sec;
1860
1861 num_sec = elf_numsections (abfd);
1862 for (i = 1; i < num_sec; i++)
1863 {
1864 dynsymhdr = elf_elfsections (abfd)[i];
1865 if (dynsymhdr->sh_type == SHT_DYNSYM)
1866 {
1867 hdr->sh_link = dynsymhdr->sh_link;
1868 break;
1869 }
1870 }
1871 }
1872 }
1873 break;
1874
1875 case SHT_SYMTAB: /* A symbol table */
1876 if (elf_onesymtab (abfd) == shindex)
1877 return TRUE;
1878
1879 if (hdr->sh_entsize != bed->s->sizeof_sym)
1880 return FALSE;
1881 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1882 elf_onesymtab (abfd) = shindex;
1883 elf_tdata (abfd)->symtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1885 abfd->flags |= HAS_SYMS;
1886
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1892 linker. */
1893 if ((hdr->sh_flags & SHF_ALLOC) != 0
1894 && (abfd->flags & DYNAMIC) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex))
1897 return FALSE;
1898
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1903 {
1904 unsigned int i, num_sec;
1905
1906 num_sec = elf_numsections (abfd);
1907 for (i = shindex + 1; i < num_sec; i++)
1908 {
1909 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1910 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1911 && hdr2->sh_link == shindex)
1912 break;
1913 }
1914 if (i == num_sec)
1915 for (i = 1; i < shindex; i++)
1916 {
1917 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1918 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1919 && hdr2->sh_link == shindex)
1920 break;
1921 }
1922 if (i != shindex)
1923 return bfd_section_from_shdr (abfd, i);
1924 }
1925 return TRUE;
1926
1927 case SHT_DYNSYM: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd) == shindex)
1929 return TRUE;
1930
1931 if (hdr->sh_entsize != bed->s->sizeof_sym)
1932 return FALSE;
1933 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1934 elf_dynsymtab (abfd) = shindex;
1935 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1937 abfd->flags |= HAS_SYMS;
1938
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1942
1943 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd) == shindex)
1945 return TRUE;
1946
1947 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1948 elf_symtab_shndx (abfd) = shindex;
1949 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1950 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1951 return TRUE;
1952
1953 case SHT_STRTAB: /* A string table */
1954 if (hdr->bfd_section != NULL)
1955 return TRUE;
1956 if (ehdr->e_shstrndx == shindex)
1957 {
1958 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1959 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1960 return TRUE;
1961 }
1962 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1963 {
1964 symtab_strtab:
1965 elf_tdata (abfd)->strtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1967 return TRUE;
1968 }
1969 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1970 {
1971 dynsymtab_strtab:
1972 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1973 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1974 elf_elfsections (abfd)[shindex] = hdr;
1975 /* We also treat this as a regular section, so that objcopy
1976 can handle it. */
1977 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1978 shindex);
1979 }
1980
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1985 {
1986 unsigned int i, num_sec;
1987
1988 num_sec = elf_numsections (abfd);
1989 for (i = 1; i < num_sec; i++)
1990 {
1991 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1992 if (hdr2->sh_link == shindex)
1993 {
1994 /* Prevent endless recursion on broken objects. */
1995 if (i == shindex)
1996 return FALSE;
1997 if (! bfd_section_from_shdr (abfd, i))
1998 return FALSE;
1999 if (elf_onesymtab (abfd) == i)
2000 goto symtab_strtab;
2001 if (elf_dynsymtab (abfd) == i)
2002 goto dynsymtab_strtab;
2003 }
2004 }
2005 }
2006 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2007
2008 case SHT_REL:
2009 case SHT_RELA:
2010 /* *These* do a lot of work -- but build no sections! */
2011 {
2012 asection *target_sect;
2013 Elf_Internal_Shdr *hdr2;
2014 unsigned int num_sec = elf_numsections (abfd);
2015
2016 if (hdr->sh_entsize
2017 != (bfd_size_type) (hdr->sh_type == SHT_REL
2018 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2019 return FALSE;
2020
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2023 || hdr->sh_link >= num_sec)
2024 {
2025 ((*_bfd_error_handler)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd, hdr->sh_link, name, shindex));
2028 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2029 shindex);
2030 }
2031
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2040 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2041 {
2042 unsigned int scan;
2043 int found;
2044
2045 found = 0;
2046 for (scan = 1; scan < num_sec; scan++)
2047 {
2048 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2049 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2050 {
2051 if (found != 0)
2052 {
2053 found = 0;
2054 break;
2055 }
2056 found = scan;
2057 }
2058 }
2059 if (found != 0)
2060 hdr->sh_link = found;
2061 }
2062
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2065 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2066 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2067 return FALSE;
2068
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr->sh_link != elf_onesymtab (abfd)
2076 || hdr->sh_info == SHN_UNDEF
2077 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2078 || hdr->sh_info >= num_sec
2079 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2080 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2081 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2082 shindex);
2083
2084 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2085 return FALSE;
2086 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2087 if (target_sect == NULL)
2088 return FALSE;
2089
2090 if ((target_sect->flags & SEC_RELOC) == 0
2091 || target_sect->reloc_count == 0)
2092 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2093 else
2094 {
2095 bfd_size_type amt;
2096 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2097 amt = sizeof (*hdr2);
2098 hdr2 = bfd_alloc (abfd, amt);
2099 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2100 }
2101 *hdr2 = *hdr;
2102 elf_elfsections (abfd)[shindex] = hdr2;
2103 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2104 target_sect->flags |= SEC_RELOC;
2105 target_sect->relocation = NULL;
2106 target_sect->rel_filepos = hdr->sh_offset;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr->sh_size != 0)
2110 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2111 abfd->flags |= HAS_RELOC;
2112 return TRUE;
2113 }
2114
2115 case SHT_GNU_verdef:
2116 elf_dynverdef (abfd) = shindex;
2117 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2118 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2119
2120 case SHT_GNU_versym:
2121 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2122 return FALSE;
2123 elf_dynversym (abfd) = shindex;
2124 elf_tdata (abfd)->dynversym_hdr = *hdr;
2125 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2126
2127 case SHT_GNU_verneed:
2128 elf_dynverref (abfd) = shindex;
2129 elf_tdata (abfd)->dynverref_hdr = *hdr;
2130 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2131
2132 case SHT_SHLIB:
2133 return TRUE;
2134
2135 case SHT_GROUP:
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2138 name. */
2139 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2140 return FALSE;
2141 name = group_signature (abfd, hdr);
2142 if (name == NULL)
2143 return FALSE;
2144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2145 return FALSE;
2146 if (hdr->contents != NULL)
2147 {
2148 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2149 unsigned int n_elt = hdr->sh_size / 4;
2150 asection *s;
2151
2152 if (idx->flags & GRP_COMDAT)
2153 hdr->bfd_section->flags
2154 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2155
2156 /* We try to keep the same section order as it comes in. */
2157 idx += n_elt;
2158 while (--n_elt != 0)
2159 if ((s = (--idx)->shdr->bfd_section) != NULL
2160 && elf_next_in_group (s) != NULL)
2161 {
2162 elf_next_in_group (hdr->bfd_section) = s;
2163 break;
2164 }
2165 }
2166 break;
2167
2168 default:
2169 /* Check for any processor-specific section types. */
2170 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2171 return TRUE;
2172
2173 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2174 {
2175 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd, name, hdr->sh_type);
2182 else
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2185 shindex);
2186 }
2187 else if (hdr->sh_type >= SHT_LOPROC
2188 && hdr->sh_type <= SHT_HIPROC)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler)
2191 (_("%B: don't know how to handle processor specific section "
2192 "`%s' [0x%8x]"),
2193 abfd, name, hdr->sh_type);
2194 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2195 {
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler)
2202 (_("%B: don't know how to handle OS specific section "
2203 "`%s' [0x%8x]"),
2204 abfd, name, hdr->sh_type);
2205 else
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2208 }
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2214
2215 return FALSE;
2216 }
2217
2218 return TRUE;
2219}
2220
2221/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2223
2224asection *
2225bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2229{
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2235
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2238
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2243
2244 if (cache->abfd != abfd)
2245 {
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2248 }
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2253 {
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2258 }
2259 return cache->sec[ent];
2260}
2261
2262/* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2264
2265asection *
2266bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2267{
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2271}
2272
2273static const struct bfd_elf_special_section special_sections_b[] =
2274{
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2277};
2278
2279static const struct bfd_elf_special_section special_sections_c[] =
2280{
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2283};
2284
2285static const struct bfd_elf_special_section special_sections_d[] =
2286{
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298};
2299
2300static const struct bfd_elf_special_section special_sections_f[] =
2301{
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2305};
2306
2307static const struct bfd_elf_special_section special_sections_g[] =
2308{
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2318};
2319
2320static const struct bfd_elf_special_section special_sections_h[] =
2321{
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2324};
2325
2326static const struct bfd_elf_special_section special_sections_i[] =
2327{
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2332};
2333
2334static const struct bfd_elf_special_section special_sections_l[] =
2335{
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2338};
2339
2340static const struct bfd_elf_special_section special_sections_n[] =
2341{
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2345};
2346
2347static const struct bfd_elf_special_section special_sections_p[] =
2348{
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2352};
2353
2354static const struct bfd_elf_special_section special_sections_r[] =
2355{
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2361};
2362
2363static const struct bfd_elf_special_section special_sections_s[] =
2364{
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2371 { NULL, 0, 0, 0, 0 }
2372};
2373
2374static const struct bfd_elf_special_section special_sections_t[] =
2375{
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2379 { NULL, 0, 0, 0, 0 }
2380};
2381
2382static const struct bfd_elf_special_section *special_sections[] =
2383{
2384 special_sections_b, /* 'b' */
2385 special_sections_c, /* 'b' */
2386 special_sections_d, /* 'd' */
2387 NULL, /* 'e' */
2388 special_sections_f, /* 'f' */
2389 special_sections_g, /* 'g' */
2390 special_sections_h, /* 'h' */
2391 special_sections_i, /* 'i' */
2392 NULL, /* 'j' */
2393 NULL, /* 'k' */
2394 special_sections_l, /* 'l' */
2395 NULL, /* 'm' */
2396 special_sections_n, /* 'n' */
2397 NULL, /* 'o' */
2398 special_sections_p, /* 'p' */
2399 NULL, /* 'q' */
2400 special_sections_r, /* 'r' */
2401 special_sections_s, /* 's' */
2402 special_sections_t, /* 't' */
2403};
2404
2405const struct bfd_elf_special_section *
2406_bfd_elf_get_special_section (const char *name,
2407 const struct bfd_elf_special_section *spec,
2408 unsigned int rela)
2409{
2410 int i;
2411 int len;
2412
2413 len = strlen (name);
2414
2415 for (i = 0; spec[i].prefix != NULL; i++)
2416 {
2417 int suffix_len;
2418 int prefix_len = spec[i].prefix_length;
2419
2420 if (len < prefix_len)
2421 continue;
2422 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2423 continue;
2424
2425 suffix_len = spec[i].suffix_length;
2426 if (suffix_len <= 0)
2427 {
2428 if (name[prefix_len] != 0)
2429 {
2430 if (suffix_len == 0)
2431 continue;
2432 if (name[prefix_len] != '.'
2433 && (suffix_len == -2
2434 || (rela && spec[i].type == SHT_REL)))
2435 continue;
2436 }
2437 }
2438 else
2439 {
2440 if (len < prefix_len + suffix_len)
2441 continue;
2442 if (memcmp (name + len - suffix_len,
2443 spec[i].prefix + prefix_len,
2444 suffix_len) != 0)
2445 continue;
2446 }
2447 return &spec[i];
2448 }
2449
2450 return NULL;
2451}
2452
2453const struct bfd_elf_special_section *
2454_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2455{
2456 int i;
2457 const struct bfd_elf_special_section *spec;
2458 const struct elf_backend_data *bed;
2459
2460 /* See if this is one of the special sections. */
2461 if (sec->name == NULL)
2462 return NULL;
2463
2464 bed = get_elf_backend_data (abfd);
2465 spec = bed->special_sections;
2466 if (spec)
2467 {
2468 spec = _bfd_elf_get_special_section (sec->name,
2469 bed->special_sections,
2470 sec->use_rela_p);
2471 if (spec != NULL)
2472 return spec;
2473 }
2474
2475 if (sec->name[0] != '.')
2476 return NULL;
2477
2478 i = sec->name[1] - 'b';
2479 if (i < 0 || i > 't' - 'b')
2480 return NULL;
2481
2482 spec = special_sections[i];
2483
2484 if (spec == NULL)
2485 return NULL;
2486
2487 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2488}
2489
2490bfd_boolean
2491_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2492{
2493 struct bfd_elf_section_data *sdata;
2494 const struct elf_backend_data *bed;
2495 const struct bfd_elf_special_section *ssect;
2496
2497 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2498 if (sdata == NULL)
2499 {
2500 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2501 if (sdata == NULL)
2502 return FALSE;
2503 sec->used_by_bfd = sdata;
2504 }
2505
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed = get_elf_backend_data (abfd);
2508 sec->use_rela_p = bed->default_use_rela_p;
2509
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec->flags && abfd->direction != read_direction)
2517 || (sec->flags & SEC_LINKER_CREATED) != 0)
2518 {
2519 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2520 if (ssect != NULL)
2521 {
2522 elf_section_type (sec) = ssect->type;
2523 elf_section_flags (sec) = ssect->attr;
2524 }
2525 }
2526
2527 return _bfd_generic_new_section_hook (abfd, sec);
2528}
2529
2530/* Create a new bfd section from an ELF program header.
2531
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2536
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2543
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2549
2550 */
2551
2552bfd_boolean
2553_bfd_elf_make_section_from_phdr (bfd *abfd,
2554 Elf_Internal_Phdr *hdr,
2555 int index,
2556 const char *typename)
2557{
2558 asection *newsect;
2559 char *name;
2560 char namebuf[64];
2561 size_t len;
2562 int split;
2563
2564 split = ((hdr->p_memsz > 0)
2565 && (hdr->p_filesz > 0)
2566 && (hdr->p_memsz > hdr->p_filesz));
2567 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2568 len = strlen (namebuf) + 1;
2569 name = bfd_alloc (abfd, len);
2570 if (!name)
2571 return FALSE;
2572 memcpy (name, namebuf, len);
2573 newsect = bfd_make_section (abfd, name);
2574 if (newsect == NULL)
2575 return FALSE;
2576 newsect->vma = hdr->p_vaddr;
2577 newsect->lma = hdr->p_paddr;
2578 newsect->size = hdr->p_filesz;
2579 newsect->filepos = hdr->p_offset;
2580 newsect->flags |= SEC_HAS_CONTENTS;
2581 newsect->alignment_power = bfd_log2 (hdr->p_align);
2582 if (hdr->p_type == PT_LOAD)
2583 {
2584 newsect->flags |= SEC_ALLOC;
2585 newsect->flags |= SEC_LOAD;
2586 if (hdr->p_flags & PF_X)
2587 {
2588 /* FIXME: all we known is that it has execute PERMISSION,
2589 may be data. */
2590 newsect->flags |= SEC_CODE;
2591 }
2592 }
2593 if (!(hdr->p_flags & PF_W))
2594 {
2595 newsect->flags |= SEC_READONLY;
2596 }
2597
2598 if (split)
2599 {
2600 sprintf (namebuf, "%s%db", typename, index);
2601 len = strlen (namebuf) + 1;
2602 name = bfd_alloc (abfd, len);
2603 if (!name)
2604 return FALSE;
2605 memcpy (name, namebuf, len);
2606 newsect = bfd_make_section (abfd, name);
2607 if (newsect == NULL)
2608 return FALSE;
2609 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2610 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2611 newsect->size = hdr->p_memsz - hdr->p_filesz;
2612 if (hdr->p_type == PT_LOAD)
2613 {
2614 newsect->flags |= SEC_ALLOC;
2615 if (hdr->p_flags & PF_X)
2616 newsect->flags |= SEC_CODE;
2617 }
2618 if (!(hdr->p_flags & PF_W))
2619 newsect->flags |= SEC_READONLY;
2620 }
2621
2622 return TRUE;
2623}
2624
2625bfd_boolean
2626bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2627{
2628 const struct elf_backend_data *bed;
2629
2630 switch (hdr->p_type)
2631 {
2632 case PT_NULL:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2634
2635 case PT_LOAD:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2637
2638 case PT_DYNAMIC:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2640
2641 case PT_INTERP:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2643
2644 case PT_NOTE:
2645 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2646 return FALSE;
2647 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2648 return FALSE;
2649 return TRUE;
2650
2651 case PT_SHLIB:
2652 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2653
2654 case PT_PHDR:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2656
2657 case PT_GNU_EH_FRAME:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2659 "eh_frame_hdr");
2660
2661 case PT_GNU_STACK:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2663
2664 case PT_GNU_RELRO:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2666
2667 default:
2668 /* Check for any processor-specific program segment types. */
2669 bed = get_elf_backend_data (abfd);
2670 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2671 }
2672}
2673
2674/* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2677
2678bfd_boolean
2679_bfd_elf_init_reloc_shdr (bfd *abfd,
2680 Elf_Internal_Shdr *rel_hdr,
2681 asection *asect,
2682 bfd_boolean use_rela_p)
2683{
2684 char *name;
2685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2686 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2687
2688 name = bfd_alloc (abfd, amt);
2689 if (name == NULL)
2690 return FALSE;
2691 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2692 rel_hdr->sh_name =
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2694 FALSE);
2695 if (rel_hdr->sh_name == (unsigned int) -1)
2696 return FALSE;
2697 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2698 rel_hdr->sh_entsize = (use_rela_p
2699 ? bed->s->sizeof_rela
2700 : bed->s->sizeof_rel);
2701 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2702 rel_hdr->sh_flags = 0;
2703 rel_hdr->sh_addr = 0;
2704 rel_hdr->sh_size = 0;
2705 rel_hdr->sh_offset = 0;
2706
2707 return TRUE;
2708}
2709
2710/* Set up an ELF internal section header for a section. */
2711
2712static void
2713elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2714{
2715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2716 bfd_boolean *failedptr = failedptrarg;
2717 Elf_Internal_Shdr *this_hdr;
2718
2719 if (*failedptr)
2720 {
2721 /* We already failed; just get out of the bfd_map_over_sections
2722 loop. */
2723 return;
2724 }
2725
2726 this_hdr = &elf_section_data (asect)->this_hdr;
2727
2728 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2729 asect->name, FALSE);
2730 if (this_hdr->sh_name == (unsigned int) -1)
2731 {
2732 *failedptr = TRUE;
2733 return;
2734 }
2735
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2737
2738 if ((asect->flags & SEC_ALLOC) != 0
2739 || asect->user_set_vma)
2740 this_hdr->sh_addr = asect->vma;
2741 else
2742 this_hdr->sh_addr = 0;
2743
2744 this_hdr->sh_offset = 0;
2745 this_hdr->sh_size = asect->size;
2746 this_hdr->sh_link = 0;
2747 this_hdr->sh_addralign = 1 << asect->alignment_power;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2750
2751 this_hdr->bfd_section = asect;
2752 this_hdr->contents = NULL;
2753
2754 /* If the section type is unspecified, we set it based on
2755 asect->flags. */
2756 if (this_hdr->sh_type == SHT_NULL)
2757 {
2758 if ((asect->flags & SEC_GROUP) != 0)
2759 this_hdr->sh_type = SHT_GROUP;
2760 else if ((asect->flags & SEC_ALLOC) != 0
2761 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 || (asect->flags & SEC_NEVER_LOAD) != 0))
2763 this_hdr->sh_type = SHT_NOBITS;
2764 else
2765 this_hdr->sh_type = SHT_PROGBITS;
2766 }
2767
2768 switch (this_hdr->sh_type)
2769 {
2770 default:
2771 break;
2772
2773 case SHT_STRTAB:
2774 case SHT_INIT_ARRAY:
2775 case SHT_FINI_ARRAY:
2776 case SHT_PREINIT_ARRAY:
2777 case SHT_NOTE:
2778 case SHT_NOBITS:
2779 case SHT_PROGBITS:
2780 break;
2781
2782 case SHT_HASH:
2783 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2784 break;
2785
2786 case SHT_DYNSYM:
2787 this_hdr->sh_entsize = bed->s->sizeof_sym;
2788 break;
2789
2790 case SHT_DYNAMIC:
2791 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2792 break;
2793
2794 case SHT_RELA:
2795 if (get_elf_backend_data (abfd)->may_use_rela_p)
2796 this_hdr->sh_entsize = bed->s->sizeof_rela;
2797 break;
2798
2799 case SHT_REL:
2800 if (get_elf_backend_data (abfd)->may_use_rel_p)
2801 this_hdr->sh_entsize = bed->s->sizeof_rel;
2802 break;
2803
2804 case SHT_GNU_versym:
2805 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2806 break;
2807
2808 case SHT_GNU_verdef:
2809 this_hdr->sh_entsize = 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2812 zero. */
2813 if (this_hdr->sh_info == 0)
2814 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2815 else
2816 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2817 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2818 break;
2819
2820 case SHT_GNU_verneed:
2821 this_hdr->sh_entsize = 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2824 zero. */
2825 if (this_hdr->sh_info == 0)
2826 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2827 else
2828 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2829 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2830 break;
2831
2832 case SHT_GROUP:
2833 this_hdr->sh_entsize = 4;
2834 break;
2835
2836 case SHT_GNU_HASH:
2837 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2838 break;
2839 }
2840
2841 if ((asect->flags & SEC_ALLOC) != 0)
2842 this_hdr->sh_flags |= SHF_ALLOC;
2843 if ((asect->flags & SEC_READONLY) == 0)
2844 this_hdr->sh_flags |= SHF_WRITE;
2845 if ((asect->flags & SEC_CODE) != 0)
2846 this_hdr->sh_flags |= SHF_EXECINSTR;
2847 if ((asect->flags & SEC_MERGE) != 0)
2848 {
2849 this_hdr->sh_flags |= SHF_MERGE;
2850 this_hdr->sh_entsize = asect->entsize;
2851 if ((asect->flags & SEC_STRINGS) != 0)
2852 this_hdr->sh_flags |= SHF_STRINGS;
2853 }
2854 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2855 this_hdr->sh_flags |= SHF_GROUP;
2856 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2857 {
2858 this_hdr->sh_flags |= SHF_TLS;
2859 if (asect->size == 0
2860 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2861 {
2862 struct bfd_link_order *o = asect->map_tail.link_order;
2863
2864 this_hdr->sh_size = 0;
2865 if (o != NULL)
2866 {
2867 this_hdr->sh_size = o->offset + o->size;
2868 if (this_hdr->sh_size != 0)
2869 this_hdr->sh_type = SHT_NOBITS;
2870 }
2871 }
2872 }
2873
2874 /* Check for processor-specific section types. */
2875 if (bed->elf_backend_fake_sections
2876 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2877 *failedptr = TRUE;
2878
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect->flags & SEC_RELOC) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd,
2885 &elf_section_data (asect)->rel_hdr,
2886 asect,
2887 asect->use_rela_p))
2888 *failedptr = TRUE;
2889}
2890
2891/* Fill in the contents of a SHT_GROUP section. */
2892
2893void
2894bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2895{
2896 bfd_boolean *failedptr = failedptrarg;
2897 unsigned long symindx;
2898 asection *elt, *first;
2899 unsigned char *loc;
2900 bfd_boolean gas;
2901
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2903 elfxx-ia64.c. */
2904 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2905 || *failedptr)
2906 return;
2907
2908 symindx = 0;
2909 if (elf_group_id (sec) != NULL)
2910 symindx = elf_group_id (sec)->udata.i;
2911
2912 if (symindx == 0)
2913 {
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd) != NULL)
2917 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2918 else
2919 symindx = sec->target_index;
2920 }
2921 elf_section_data (sec)->this_hdr.sh_info = symindx;
2922
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2924 gas = TRUE;
2925 if (sec->contents == NULL)
2926 {
2927 gas = FALSE;
2928 sec->contents = bfd_alloc (abfd, sec->size);
2929
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec)->this_hdr.contents = sec->contents;
2932 if (sec->contents == NULL)
2933 {
2934 *failedptr = TRUE;
2935 return;
2936 }
2937 }
2938
2939 loc = sec->contents + sec->size;
2940
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first = elt = elf_next_in_group (sec);
2945
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2950 while (elt != NULL)
2951 {
2952 asection *s;
2953 unsigned int idx;
2954
2955 loc -= 4;
2956 s = elt;
2957 if (!gas)
2958 s = s->output_section;
2959 idx = 0;
2960 if (s != NULL)
2961 idx = elf_section_data (s)->this_idx;
2962 H_PUT_32 (abfd, idx, loc);
2963 elt = elf_next_in_group (elt);
2964 if (elt == first)
2965 break;
2966 }
2967
2968 if ((loc -= 4) != sec->contents)
2969 abort ();
2970
2971 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2972}
2973
2974/* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2977
2978static bfd_boolean
2979assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2980{
2981 struct elf_obj_tdata *t = elf_tdata (abfd);
2982 asection *sec;
2983 unsigned int section_number, secn;
2984 Elf_Internal_Shdr **i_shdrp;
2985 struct bfd_elf_section_data *d;
2986
2987 section_number = 1;
2988
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2990
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info == NULL || link_info->relocatable)
2993 {
2994 /* Put SHT_GROUP sections first. */
2995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2996 {
2997 d = elf_section_data (sec);
2998
2999 if (d->this_hdr.sh_type == SHT_GROUP)
3000 {
3001 if (sec->flags & SEC_LINKER_CREATED)
3002 {
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd, sec);
3005 abfd->section_count--;
3006 }
3007 else
3008 {
3009 if (section_number == SHN_LORESERVE)
3010 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3011 d->this_idx = section_number++;
3012 }
3013 }
3014 }
3015 }
3016
3017 for (sec = abfd->sections; sec; sec = sec->next)
3018 {
3019 d = elf_section_data (sec);
3020
3021 if (d->this_hdr.sh_type != SHT_GROUP)
3022 {
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 d->this_idx = section_number++;
3026 }
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3028 if ((sec->flags & SEC_RELOC) == 0)
3029 d->rel_idx = 0;
3030 else
3031 {
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 d->rel_idx = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3036 }
3037
3038 if (d->rel_hdr2)
3039 {
3040 if (section_number == SHN_LORESERVE)
3041 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3042 d->rel_idx2 = section_number++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3044 }
3045 else
3046 d->rel_idx2 = 0;
3047 }
3048
3049 if (section_number == SHN_LORESERVE)
3050 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3051 t->shstrtab_section = section_number++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3053 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3054
3055 if (bfd_get_symcount (abfd) > 0)
3056 {
3057 if (section_number == SHN_LORESERVE)
3058 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059 t->symtab_section = section_number++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3061 if (section_number > SHN_LORESERVE - 2)
3062 {
3063 if (section_number == SHN_LORESERVE)
3064 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3065 t->symtab_shndx_section = section_number++;
3066 t->symtab_shndx_hdr.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3068 ".symtab_shndx", FALSE);
3069 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3070 return FALSE;
3071 }
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->strtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3076 }
3077
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3079 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3080
3081 elf_numsections (abfd) = section_number;
3082 elf_elfheader (abfd)->e_shnum = section_number;
3083 if (section_number > SHN_LORESERVE)
3084 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3085
3086 /* Set up the list of section header pointers, in agreement with the
3087 indices. */
3088 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3089 if (i_shdrp == NULL)
3090 return FALSE;
3091
3092 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3093 if (i_shdrp[0] == NULL)
3094 {
3095 bfd_release (abfd, i_shdrp);
3096 return FALSE;
3097 }
3098
3099 elf_elfsections (abfd) = i_shdrp;
3100
3101 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3102 if (bfd_get_symcount (abfd) > 0)
3103 {
3104 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3105 if (elf_numsections (abfd) > SHN_LORESERVE)
3106 {
3107 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3108 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3109 }
3110 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3111 t->symtab_hdr.sh_link = t->strtab_section;
3112 }
3113
3114 for (sec = abfd->sections; sec; sec = sec->next)
3115 {
3116 struct bfd_elf_section_data *d = elf_section_data (sec);
3117 asection *s;
3118 const char *name;
3119
3120 i_shdrp[d->this_idx] = &d->this_hdr;
3121 if (d->rel_idx != 0)
3122 i_shdrp[d->rel_idx] = &d->rel_hdr;
3123 if (d->rel_idx2 != 0)
3124 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3125
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3127
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d->rel_idx != 0)
3132 {
3133 d->rel_hdr.sh_link = t->symtab_section;
3134 d->rel_hdr.sh_info = d->this_idx;
3135 }
3136 if (d->rel_idx2 != 0)
3137 {
3138 d->rel_hdr2->sh_link = t->symtab_section;
3139 d->rel_hdr2->sh_info = d->this_idx;
3140 }
3141
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3144 {
3145 s = elf_linked_to_section (sec);
3146 if (s)
3147 {
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info != NULL)
3150 {
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s))
3153 {
3154 asection *kept;
3155 (*_bfd_error_handler)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd, d->this_hdr.bfd_section,
3158 s, s->owner);
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept = _bfd_elf_check_kept_section (s, link_info);
3162 if (kept == NULL)
3163 {
3164 bfd_set_error (bfd_error_bad_value);
3165 return FALSE;
3166 }
3167 s = kept;
3168 }
3169
3170 s = s->output_section;
3171 BFD_ASSERT (s != NULL);
3172 }
3173 else
3174 {
3175 /* Handle objcopy. */
3176 if (s->output_section == NULL)
3177 {
3178 (*_bfd_error_handler)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd, d->this_hdr.bfd_section, s, s->owner);
3181 bfd_set_error (bfd_error_bad_value);
3182 return FALSE;
3183 }
3184 s = s->output_section;
3185 }
3186 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3187 }
3188 else
3189 {
3190 /* PR 290:
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3194 where s is NULL. */
3195 const struct elf_backend_data *bed
3196 = get_elf_backend_data (abfd);
3197 if (bed->link_order_error_handler)
3198 bed->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3200 abfd, sec);
3201 }
3202 }
3203
3204 switch (d->this_hdr.sh_type)
3205 {
3206 case SHT_REL:
3207 case SHT_RELA:
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217
3218 /* We look up the section the relocs apply to by name. */
3219 name = sec->name;
3220 if (d->this_hdr.sh_type == SHT_REL)
3221 name += 4;
3222 else
3223 name += 5;
3224 s = bfd_get_section_by_name (abfd, name);
3225 if (s != NULL)
3226 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3227 break;
3228
3229 case SHT_STRTAB:
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec->name, ".stab")
3235 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3236 {
3237 size_t len;
3238 char *alc;
3239
3240 len = strlen (sec->name);
3241 alc = bfd_malloc (len - 2);
3242 if (alc == NULL)
3243 return FALSE;
3244 memcpy (alc, sec->name, len - 3);
3245 alc[len - 3] = '\0';
3246 s = bfd_get_section_by_name (abfd, alc);
3247 free (alc);
3248 if (s != NULL)
3249 {
3250 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3251
3252 /* This is a .stab section. */
3253 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3254 elf_section_data (s)->this_hdr.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3256 }
3257 }
3258 break;
3259
3260 case SHT_DYNAMIC:
3261 case SHT_DYNSYM:
3262 case SHT_GNU_verneed:
3263 case SHT_GNU_verdef:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3266 version strings. */
3267 s = bfd_get_section_by_name (abfd, ".dynstr");
3268 if (s != NULL)
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 break;
3271
3272 case SHT_GNU_LIBLIST:
3273 /* sh_link is the section header index of the prelink library
3274 list
3275 used for the dynamic entries, or the symbol table, or the
3276 version strings. */
3277 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3278 ? ".dynstr" : ".gnu.libstr");
3279 if (s != NULL)
3280 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3281 break;
3282
3283 case SHT_HASH:
3284 case SHT_GNU_HASH:
3285 case SHT_GNU_versym:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s = bfd_get_section_by_name (abfd, ".dynsym");
3289 if (s != NULL)
3290 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3291 break;
3292
3293 case SHT_GROUP:
3294 d->this_hdr.sh_link = t->symtab_section;
3295 }
3296 }
3297
3298 for (secn = 1; secn < section_number; ++secn)
3299 if (i_shdrp[secn] == NULL)
3300 i_shdrp[secn] = i_shdrp[0];
3301 else
3302 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3303 i_shdrp[secn]->sh_name);
3304 return TRUE;
3305}
3306
3307/* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3309
3310static bfd_boolean
3311sym_is_global (bfd *abfd, asymbol *sym)
3312{
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3315 if (bed->elf_backend_sym_is_global)
3316 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3317
3318 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym))
3320 || bfd_is_com_section (bfd_get_section (sym)));
3321}
3322
3323/* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3326
3327static bfd_boolean
3328ignore_section_sym (bfd *abfd, asymbol *sym)
3329{
3330 return ((sym->flags & BSF_SECTION_SYM) != 0
3331 && (sym->value != 0
3332 || (sym->section->owner != abfd
3333 && (sym->section->output_section->owner != abfd
3334 || sym->section->output_offset != 0))));
3335}
3336
3337static bfd_boolean
3338elf_map_symbols (bfd *abfd)
3339{
3340 unsigned int symcount = bfd_get_symcount (abfd);
3341 asymbol **syms = bfd_get_outsymbols (abfd);
3342 asymbol **sect_syms;
3343 unsigned int num_locals = 0;
3344 unsigned int num_globals = 0;
3345 unsigned int num_locals2 = 0;
3346 unsigned int num_globals2 = 0;
3347 int max_index = 0;
3348 unsigned int idx;
3349 asection *asect;
3350 asymbol **new_syms;
3351
3352#ifdef DEBUG
3353 fprintf (stderr, "elf_map_symbols\n");
3354 fflush (stderr);
3355#endif
3356
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (max_index < asect->index)
3360 max_index = asect->index;
3361 }
3362
3363 max_index++;
3364 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3365 if (sect_syms == NULL)
3366 return FALSE;
3367 elf_section_syms (abfd) = sect_syms;
3368 elf_num_section_syms (abfd) = max_index;
3369
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 asymbol *sym = syms[idx];
3375
3376 if ((sym->flags & BSF_SECTION_SYM) != 0
3377 && !ignore_section_sym (abfd, sym))
3378 {
3379 asection *sec = sym->section;
3380
3381 if (sec->owner != abfd)
3382 sec = sec->output_section;
3383
3384 sect_syms[sec->index] = syms[idx];
3385 }
3386 }
3387
3388 /* Classify all of the symbols. */
3389 for (idx = 0; idx < symcount; idx++)
3390 {
3391 if (ignore_section_sym (abfd, syms[idx]))
3392 continue;
3393 if (!sym_is_global (abfd, syms[idx]))
3394 num_locals++;
3395 else
3396 num_globals++;
3397 }
3398
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect = abfd->sections; asect; asect = asect->next)
3404 {
3405 if (sect_syms[asect->index] == NULL)
3406 {
3407 if (!sym_is_global (abfd, asect->symbol))
3408 num_locals++;
3409 else
3410 num_globals++;
3411 }
3412 }
3413
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3416
3417 if (new_syms == NULL)
3418 return FALSE;
3419
3420 for (idx = 0; idx < symcount; idx++)
3421 {
3422 asymbol *sym = syms[idx];
3423 unsigned int i;
3424
3425 if (ignore_section_sym (abfd, sym))
3426 continue;
3427 if (!sym_is_global (abfd, sym))
3428 i = num_locals2++;
3429 else
3430 i = num_locals + num_globals2++;
3431 new_syms[i] = sym;
3432 sym->udata.i = i + 1;
3433 }
3434 for (asect = abfd->sections; asect; asect = asect->next)
3435 {
3436 if (sect_syms[asect->index] == NULL)
3437 {
3438 asymbol *sym = asect->symbol;
3439 unsigned int i;
3440
3441 sect_syms[asect->index] = sym;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 }
3450
3451 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3452
3453 elf_num_locals (abfd) = num_locals;
3454 elf_num_globals (abfd) = num_globals;
3455 return TRUE;
3456}
3457
3458/* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3460
3461static inline file_ptr
3462align_file_position (file_ptr off, int align)
3463{
3464 return (off + align - 1) & ~(align - 1);
3465}
3466
3467/* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3469
3470file_ptr
3471_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3472 file_ptr offset,
3473 bfd_boolean align)
3474{
3475 if (align)
3476 {
3477 unsigned int al;
3478
3479 al = i_shdrp->sh_addralign;
3480 if (al > 1)
3481 offset = BFD_ALIGN (offset, al);
3482 }
3483 i_shdrp->sh_offset = offset;
3484 if (i_shdrp->bfd_section != NULL)
3485 i_shdrp->bfd_section->filepos = offset;
3486 if (i_shdrp->sh_type != SHT_NOBITS)
3487 offset += i_shdrp->sh_size;
3488 return offset;
3489}
3490
3491/* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3494
3495bfd_boolean
3496_bfd_elf_compute_section_file_positions (bfd *abfd,
3497 struct bfd_link_info *link_info)
3498{
3499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3500 bfd_boolean failed;
3501 struct bfd_strtab_hash *strtab = NULL;
3502 Elf_Internal_Shdr *shstrtab_hdr;
3503
3504 if (abfd->output_has_begun)
3505 return TRUE;
3506
3507 /* Do any elf backend specific processing first. */
3508 if (bed->elf_backend_begin_write_processing)
3509 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3510
3511 if (! prep_headers (abfd))
3512 return FALSE;
3513
3514 /* Post process the headers if necessary. */
3515 if (bed->elf_backend_post_process_headers)
3516 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3517
3518 failed = FALSE;
3519 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3520 if (failed)
3521 return FALSE;
3522
3523 if (!assign_section_numbers (abfd, link_info))
3524 return FALSE;
3525
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3528 {
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3531
3532 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3533 return FALSE;
3534 }
3535
3536 if (link_info == NULL)
3537 {
3538 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3539 if (failed)
3540 return FALSE;
3541 }
3542
3543 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr->sh_type = SHT_STRTAB;
3546 shstrtab_hdr->sh_flags = 0;
3547 shstrtab_hdr->sh_addr = 0;
3548 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3549 shstrtab_hdr->sh_entsize = 0;
3550 shstrtab_hdr->sh_link = 0;
3551 shstrtab_hdr->sh_info = 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr->sh_addralign = 1;
3554
3555 if (!assign_file_positions_except_relocs (abfd, link_info))
3556 return FALSE;
3557
3558 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3559 {
3560 file_ptr off;
3561 Elf_Internal_Shdr *hdr;
3562
3563 off = elf_tdata (abfd)->next_file_pos;
3564
3565 hdr = &elf_tdata (abfd)->symtab_hdr;
3566 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3567
3568 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3569 if (hdr->sh_size != 0)
3570 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3571
3572 hdr = &elf_tdata (abfd)->strtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3574
3575 elf_tdata (abfd)->next_file_pos = off;
3576
3577 /* Now that we know where the .strtab section goes, write it
3578 out. */
3579 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3580 || ! _bfd_stringtab_emit (abfd, strtab))
3581 return FALSE;
3582 _bfd_stringtab_free (strtab);
3583 }
3584
3585 abfd->output_has_begun = TRUE;
3586
3587 return TRUE;
3588}
3589
3590/* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3592
3593static bfd_size_type
3594get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3595{
3596 size_t segs;
3597 asection *s;
3598 const struct elf_backend_data *bed;
3599
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3602 segs = 2;
3603
3604 s = bfd_get_section_by_name (abfd, ".interp");
3605 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3606 {
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3610 targets. */
3611 segs += 2;
3612 }
3613
3614 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3615 {
3616 /* We need a PT_DYNAMIC segment. */
3617 ++segs;
3618
3619 if (elf_tdata (abfd)->relro)
3620 {
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3623 ++segs;
3624 }
3625 }
3626
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3628 {
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3631 }
3632
3633 if (elf_tdata (abfd)->stack_flags)
3634 {
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3637 }
3638
3639 for (s = abfd->sections; s != NULL; s = s->next)
3640 {
3641 if ((s->flags & SEC_LOAD) != 0
3642 && CONST_STRNEQ (s->name, ".note"))
3643 {
3644 /* We need a PT_NOTE segment. */
3645 ++segs;
3646 }
3647 }
3648
3649 for (s = abfd->sections; s != NULL; s = s->next)
3650 {
3651 if (s->flags & SEC_THREAD_LOCAL)
3652 {
3653 /* We need a PT_TLS segment. */
3654 ++segs;
3655 break;
3656 }
3657 }
3658
3659 /* Let the backend count up any program headers it might need. */
3660 bed = get_elf_backend_data (abfd);
3661 if (bed->elf_backend_additional_program_headers)
3662 {
3663 int a;
3664
3665 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3666 if (a == -1)
3667 abort ();
3668 segs += a;
3669 }
3670
3671 return segs * bed->s->sizeof_phdr;
3672}
3673
3674/* Create a mapping from a set of sections to a program segment. */
3675
3676static struct elf_segment_map *
3677make_mapping (bfd *abfd,
3678 asection **sections,
3679 unsigned int from,
3680 unsigned int to,
3681 bfd_boolean phdr)
3682{
3683 struct elf_segment_map *m;
3684 unsigned int i;
3685 asection **hdrpp;
3686 bfd_size_type amt;
3687
3688 amt = sizeof (struct elf_segment_map);
3689 amt += (to - from - 1) * sizeof (asection *);
3690 m = bfd_zalloc (abfd, amt);
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_LOAD;
3695 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3696 m->sections[i - from] = *hdrpp;
3697 m->count = to - from;
3698
3699 if (from == 0 && phdr)
3700 {
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m->includes_filehdr = 1;
3703 m->includes_phdrs = 1;
3704 }
3705
3706 return m;
3707}
3708
3709/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3710 on failure. */
3711
3712struct elf_segment_map *
3713_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3714{
3715 struct elf_segment_map *m;
3716
3717 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3718 if (m == NULL)
3719 return NULL;
3720 m->next = NULL;
3721 m->p_type = PT_DYNAMIC;
3722 m->count = 1;
3723 m->sections[0] = dynsec;
3724
3725 return m;
3726}
3727
3728/* Possibly add or remove segments from the segment map. */
3729
3730static bfd_boolean
3731elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3732{
3733 struct elf_segment_map **m;
3734 const struct elf_backend_data *bed;
3735
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3740 removed. */
3741 m = &elf_tdata (abfd)->segment_map;
3742 while (*m)
3743 {
3744 unsigned int i, new_count;
3745
3746 for (new_count = 0, i = 0; i < (*m)->count; i++)
3747 {
3748 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3749 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3750 || (*m)->p_type != PT_LOAD))
3751 {
3752 (*m)->sections[new_count] = (*m)->sections[i];
3753 new_count++;
3754 }
3755 }
3756 (*m)->count = new_count;
3757
3758 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3759 *m = (*m)->next;
3760 else
3761 m = &(*m)->next;
3762 }
3763
3764 bed = get_elf_backend_data (abfd);
3765 if (bed->elf_backend_modify_segment_map != NULL)
3766 {
3767 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3768 return FALSE;
3769 }
3770
3771 return TRUE;
3772}
3773
3774/* Set up a mapping from BFD sections to program segments. */
3775
3776bfd_boolean
3777_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3778{
3779 unsigned int count;
3780 struct elf_segment_map *m;
3781 asection **sections = NULL;
3782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3783
3784 if (elf_tdata (abfd)->segment_map == NULL
3785 && bfd_count_sections (abfd) != 0)
3786 {
3787 asection *s;
3788 unsigned int i;
3789 struct elf_segment_map *mfirst;
3790 struct elf_segment_map **pm;
3791 asection *last_hdr;
3792 bfd_vma last_size;
3793 unsigned int phdr_index;
3794 bfd_vma maxpagesize;
3795 asection **hdrpp;
3796 bfd_boolean phdr_in_segment = TRUE;
3797 bfd_boolean writable;
3798 int tls_count = 0;
3799 asection *first_tls = NULL;
3800 asection *dynsec, *eh_frame_hdr;
3801 bfd_size_type amt;
3802
3803 /* Select the allocated sections, and sort them. */
3804
3805 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3806 if (sections == NULL)
3807 goto error_return;
3808
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3811 {
3812 if ((s->flags & SEC_ALLOC) != 0)
3813 {
3814 sections[i] = s;
3815 ++i;
3816 }
3817 }
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3820
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3822
3823 /* Build the mapping. */
3824
3825 mfirst = NULL;
3826 pm = &mfirst;
3827
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3833 {
3834 amt = sizeof (struct elf_segment_map);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3844
3845 *pm = m;
3846 pm = &m->next;
3847
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3856
3857 *pm = m;
3858 pm = &m->next;
3859 }
3860
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3873
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3879 {
3880 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3881
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 if ((abfd->flags & D_PAGED) == 0
3885 || sections[0]->lma < phdr_size
3886 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3887 phdr_in_segment = FALSE;
3888 }
3889
3890 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3891 {
3892 asection *hdr;
3893 bfd_boolean new_segment;
3894
3895 hdr = *hdrpp;
3896
3897 /* See if this section and the last one will fit in the same
3898 segment. */
3899
3900 if (last_hdr == NULL)
3901 {
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment = FALSE;
3905 }
3906 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3907 {
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3910 segment. */
3911 new_segment = TRUE;
3912 }
3913 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3914 < BFD_ALIGN (hdr->lma, maxpagesize))
3915 {
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3918 new_segment = TRUE;
3919 }
3920 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3921 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3922 {
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3926 new_segment = TRUE;
3927 }
3928 else if ((abfd->flags & D_PAGED) == 0)
3929 {
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment = FALSE;
3934 }
3935 else if (! writable
3936 && (hdr->flags & SEC_READONLY) == 0
3937 && (((last_hdr->lma + last_size - 1)
3938 & ~(maxpagesize - 1))
3939 != (hdr->lma & ~(maxpagesize - 1))))
3940 {
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3948 new_segment = TRUE;
3949 }
3950 else
3951 {
3952 /* Otherwise, we can use the same segment. */
3953 new_segment = FALSE;
3954 }
3955
3956 if (! new_segment)
3957 {
3958 if ((hdr->flags & SEC_READONLY) == 0)
3959 writable = TRUE;
3960 last_hdr = hdr;
3961 /* .tbss sections effectively have zero size. */
3962 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3963 != SEC_THREAD_LOCAL)
3964 last_size = hdr->size;
3965 else
3966 last_size = 0;
3967 continue;
3968 }
3969
3970 /* We need a new program segment. We must create a new program
3971 header holding all the sections from phdr_index until hdr. */
3972
3973 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3974 if (m == NULL)
3975 goto error_return;
3976
3977 *pm = m;
3978 pm = &m->next;
3979
3980 if ((hdr->flags & SEC_READONLY) == 0)
3981 writable = TRUE;
3982 else
3983 writable = FALSE;
3984
3985 last_hdr = hdr;
3986 /* .tbss sections effectively have zero size. */
3987 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3988 last_size = hdr->size;
3989 else
3990 last_size = 0;
3991 phdr_index = i;
3992 phdr_in_segment = FALSE;
3993 }
3994
3995 /* Create a final PT_LOAD program segment. */
3996 if (last_hdr != NULL)
3997 {
3998 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3999 if (m == NULL)
4000 goto error_return;
4001
4002 *pm = m;
4003 pm = &m->next;
4004 }
4005
4006 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4007 if (dynsec != NULL)
4008 {
4009 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4010 if (m == NULL)
4011 goto error_return;
4012 *pm = m;
4013 pm = &m->next;
4014 }
4015
4016 /* For each loadable .note section, add a PT_NOTE segment. We don't
4017 use bfd_get_section_by_name, because if we link together
4018 nonloadable .note sections and loadable .note sections, we will
4019 generate two .note sections in the output file. FIXME: Using
4020 names for section types is bogus anyhow. */
4021 for (s = abfd->sections; s != NULL; s = s->next)
4022 {
4023 if ((s->flags & SEC_LOAD) != 0
4024 && CONST_STRNEQ (s->name, ".note"))
4025 {
4026 amt = sizeof (struct elf_segment_map);
4027 m = bfd_zalloc (abfd, amt);
4028 if (m == NULL)
4029 goto error_return;
4030 m->next = NULL;
4031 m->p_type = PT_NOTE;
4032 m->count = 1;
4033 m->sections[0] = s;
4034
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038 if (s->flags & SEC_THREAD_LOCAL)
4039 {
4040 if (! tls_count)
4041 first_tls = s;
4042 tls_count++;
4043 }
4044 }
4045
4046 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4047 if (tls_count > 0)
4048 {
4049 int i;
4050
4051 amt = sizeof (struct elf_segment_map);
4052 amt += (tls_count - 1) * sizeof (asection *);
4053 m = bfd_zalloc (abfd, amt);
4054 if (m == NULL)
4055 goto error_return;
4056 m->next = NULL;
4057 m->p_type = PT_TLS;
4058 m->count = tls_count;
4059 /* Mandated PF_R. */
4060 m->p_flags = PF_R;
4061 m->p_flags_valid = 1;
4062 for (i = 0; i < tls_count; ++i)
4063 {
4064 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4065 m->sections[i] = first_tls;
4066 first_tls = first_tls->next;
4067 }
4068
4069 *pm = m;
4070 pm = &m->next;
4071 }
4072
4073 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4074 segment. */
4075 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4076 if (eh_frame_hdr != NULL
4077 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4078 {
4079 amt = sizeof (struct elf_segment_map);
4080 m = bfd_zalloc (abfd, amt);
4081 if (m == NULL)
4082 goto error_return;
4083 m->next = NULL;
4084 m->p_type = PT_GNU_EH_FRAME;
4085 m->count = 1;
4086 m->sections[0] = eh_frame_hdr->output_section;
4087
4088 *pm = m;
4089 pm = &m->next;
4090 }
4091
4092 if (elf_tdata (abfd)->stack_flags)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_STACK;
4100 m->p_flags = elf_tdata (abfd)->stack_flags;
4101 m->p_flags_valid = 1;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (dynsec != NULL && elf_tdata (abfd)->relro)
4108 {
4109 /* We make a PT_GNU_RELRO segment only when there is a
4110 PT_DYNAMIC segment. */
4111 amt = sizeof (struct elf_segment_map);
4112 m = bfd_zalloc (abfd, amt);
4113 if (m == NULL)
4114 goto error_return;
4115 m->next = NULL;
4116 m->p_type = PT_GNU_RELRO;
4117 m->p_flags = PF_R;
4118 m->p_flags_valid = 1;
4119
4120 *pm = m;
4121 pm = &m->next;
4122 }
4123
4124 free (sections);
4125 elf_tdata (abfd)->segment_map = mfirst;
4126 }
4127
4128 if (!elf_modify_segment_map (abfd, info))
4129 return FALSE;
4130
4131 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4132 ++count;
4133 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4134
4135 return TRUE;
4136
4137 error_return:
4138 if (sections != NULL)
4139 free (sections);
4140 return FALSE;
4141}
4142
4143/* Sort sections by address. */
4144
4145static int
4146elf_sort_sections (const void *arg1, const void *arg2)
4147{
4148 const asection *sec1 = *(const asection **) arg1;
4149 const asection *sec2 = *(const asection **) arg2;
4150 bfd_size_type size1, size2;
4151
4152 /* Sort by LMA first, since this is the address used to
4153 place the section into a segment. */
4154 if (sec1->lma < sec2->lma)
4155 return -1;
4156 else if (sec1->lma > sec2->lma)
4157 return 1;
4158
4159 /* Then sort by VMA. Normally the LMA and the VMA will be
4160 the same, and this will do nothing. */
4161 if (sec1->vma < sec2->vma)
4162 return -1;
4163 else if (sec1->vma > sec2->vma)
4164 return 1;
4165
4166 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4167
4168#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4169
4170 if (TOEND (sec1))
4171 {
4172 if (TOEND (sec2))
4173 {
4174 /* If the indicies are the same, do not return 0
4175 here, but continue to try the next comparison. */
4176 if (sec1->target_index - sec2->target_index != 0)
4177 return sec1->target_index - sec2->target_index;
4178 }
4179 else
4180 return 1;
4181 }
4182 else if (TOEND (sec2))
4183 return -1;
4184
4185#undef TOEND
4186
4187 /* Sort by size, to put zero sized sections
4188 before others at the same address. */
4189
4190 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4191 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4192
4193 if (size1 < size2)
4194 return -1;
4195 if (size1 > size2)
4196 return 1;
4197
4198 return sec1->target_index - sec2->target_index;
4199}
4200
4201/* Ian Lance Taylor writes:
4202
4203 We shouldn't be using % with a negative signed number. That's just
4204 not good. We have to make sure either that the number is not
4205 negative, or that the number has an unsigned type. When the types
4206 are all the same size they wind up as unsigned. When file_ptr is a
4207 larger signed type, the arithmetic winds up as signed long long,
4208 which is wrong.
4209
4210 What we're trying to say here is something like ``increase OFF by
4211 the least amount that will cause it to be equal to the VMA modulo
4212 the page size.'' */
4213/* In other words, something like:
4214
4215 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4216 off_offset = off % bed->maxpagesize;
4217 if (vma_offset < off_offset)
4218 adjustment = vma_offset + bed->maxpagesize - off_offset;
4219 else
4220 adjustment = vma_offset - off_offset;
4221
4222 which can can be collapsed into the expression below. */
4223
4224static file_ptr
4225vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4226{
4227 return ((vma - off) % maxpagesize);
4228}
4229
4230/* Assign file positions to the sections based on the mapping from
4231 sections to segments. This function also sets up some fields in
4232 the file header. */
4233
4234static bfd_boolean
4235assign_file_positions_for_load_sections (bfd *abfd,
4236 struct bfd_link_info *link_info)
4237{
4238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4239 struct elf_segment_map *m;
4240 Elf_Internal_Phdr *phdrs;
4241 Elf_Internal_Phdr *p;
4242 file_ptr off, voff;
4243 bfd_size_type maxpagesize;
4244 unsigned int alloc;
4245 unsigned int i;
4246
4247 if (link_info == NULL
4248 && !elf_modify_segment_map (abfd, link_info))
4249 return FALSE;
4250
4251 alloc = 0;
4252 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4253 ++alloc;
4254
4255 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4256 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4257 elf_elfheader (abfd)->e_phnum = alloc;
4258
4259 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4260 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4261 else
4262 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4263 >= alloc * bed->s->sizeof_phdr);
4264
4265 if (alloc == 0)
4266 {
4267 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4268 return TRUE;
4269 }
4270
4271 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4272 elf_tdata (abfd)->phdr = phdrs;
4273 if (phdrs == NULL)
4274 return FALSE;
4275
4276 maxpagesize = 1;
4277 if ((abfd->flags & D_PAGED) != 0)
4278 maxpagesize = bed->maxpagesize;
4279
4280 off = bed->s->sizeof_ehdr;
4281 off += alloc * bed->s->sizeof_phdr;
4282
4283 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4284 m != NULL;
4285 m = m->next, p++)
4286 {
4287 asection **secpp;
4288
4289 /* If elf_segment_map is not from map_sections_to_segments, the
4290 sections may not be correctly ordered. NOTE: sorting should
4291 not be done to the PT_NOTE section of a corefile, which may
4292 contain several pseudo-sections artificially created by bfd.
4293 Sorting these pseudo-sections breaks things badly. */
4294 if (m->count > 1
4295 && !(elf_elfheader (abfd)->e_type == ET_CORE
4296 && m->p_type == PT_NOTE))
4297 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4298 elf_sort_sections);
4299
4300 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4301 number of sections with contents contributing to both p_filesz
4302 and p_memsz, followed by a number of sections with no contents
4303 that just contribute to p_memsz. In this loop, OFF tracks next
4304 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4305 an adjustment we use for segments that have no file contents
4306 but need zero filled memory allocation. */
4307 voff = 0;
4308 p->p_type = m->p_type;
4309 p->p_flags = m->p_flags;
4310
4311 if (m->count == 0)
4312 p->p_vaddr = 0;
4313 else
4314 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4315
4316 if (m->p_paddr_valid)
4317 p->p_paddr = m->p_paddr;
4318 else if (m->count == 0)
4319 p->p_paddr = 0;
4320 else
4321 p->p_paddr = m->sections[0]->lma;
4322
4323 if (p->p_type == PT_LOAD
4324 && (abfd->flags & D_PAGED) != 0)
4325 {
4326 /* p_align in demand paged PT_LOAD segments effectively stores
4327 the maximum page size. When copying an executable with
4328 objcopy, we set m->p_align from the input file. Use this
4329 value for maxpagesize rather than bed->maxpagesize, which
4330 may be different. Note that we use maxpagesize for PT_TLS
4331 segment alignment later in this function, so we are relying
4332 on at least one PT_LOAD segment appearing before a PT_TLS
4333 segment. */
4334 if (m->p_align_valid)
4335 maxpagesize = m->p_align;
4336
4337 p->p_align = maxpagesize;
4338 }
4339 else if (m->count == 0)
4340 p->p_align = 1 << bed->s->log_file_align;
4341 else if (m->p_align_valid)
4342 p->p_align = m->p_align;
4343 else
4344 p->p_align = 0;
4345
4346 if (p->p_type == PT_LOAD
4347 && m->count > 0)
4348 {
4349 bfd_size_type align;
4350 bfd_vma adjust;
4351 unsigned int align_power = 0;
4352
4353 if (m->p_align_valid)
4354 align = p->p_align;
4355 else
4356 {
4357 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4358 {
4359 unsigned int secalign;
4360
4361 secalign = bfd_get_section_alignment (abfd, *secpp);
4362 if (secalign > align_power)
4363 align_power = secalign;
4364 }
4365 align = (bfd_size_type) 1 << align_power;
4366 if (align < maxpagesize)
4367 align = maxpagesize;
4368 }
4369
4370 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4371 off += adjust;
4372 if (adjust != 0
4373 && !m->includes_filehdr
4374 && !m->includes_phdrs
4375 && (ufile_ptr) off >= align)
4376 {
4377 /* If the first section isn't loadable, the same holds for
4378 any other sections. Since the segment won't need file
4379 space, we can make p_offset overlap some prior segment.
4380 However, .tbss is special. If a segment starts with
4381 .tbss, we need to look at the next section to decide
4382 whether the segment has any loadable sections. */
4383 i = 0;
4384 while ((m->sections[i]->flags & SEC_LOAD) == 0
4385 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4386 {
4387 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4388 || ++i >= m->count)
4389 {
4390 off -= adjust;
4391 voff = adjust - align;
4392 break;
4393 }
4394 }
4395 }
4396 }
4397 /* Make sure the .dynamic section is the first section in the
4398 PT_DYNAMIC segment. */
4399 else if (p->p_type == PT_DYNAMIC
4400 && m->count > 1
4401 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4402 {
4403 _bfd_error_handler
4404 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4405 abfd);
4406 bfd_set_error (bfd_error_bad_value);
4407 return FALSE;
4408 }
4409
4410 p->p_offset = 0;
4411 p->p_filesz = 0;
4412 p->p_memsz = 0;
4413
4414 if (m->includes_filehdr)
4415 {
4416 if (! m->p_flags_valid)
4417 p->p_flags |= PF_R;
4418 p->p_offset = 0;
4419 p->p_filesz = bed->s->sizeof_ehdr;
4420 p->p_memsz = bed->s->sizeof_ehdr;
4421 if (m->count > 0)
4422 {
4423 BFD_ASSERT (p->p_type == PT_LOAD);
4424
4425 if (p->p_vaddr < (bfd_vma) off)
4426 {
4427 (*_bfd_error_handler)
4428 (_("%B: Not enough room for program headers, try linking with -N"),
4429 abfd);
4430 bfd_set_error (bfd_error_bad_value);
4431 return FALSE;
4432 }
4433
4434 p->p_vaddr -= off;
4435 if (! m->p_paddr_valid)
4436 p->p_paddr -= off;
4437 }
4438 }
4439
4440 if (m->includes_phdrs)
4441 {
4442 if (! m->p_flags_valid)
4443 p->p_flags |= PF_R;
4444
4445 if (!m->includes_filehdr)
4446 {
4447 p->p_offset = bed->s->sizeof_ehdr;
4448
4449 if (m->count > 0)
4450 {
4451 BFD_ASSERT (p->p_type == PT_LOAD);
4452 p->p_vaddr -= off - p->p_offset;
4453 if (! m->p_paddr_valid)
4454 p->p_paddr -= off - p->p_offset;
4455 }
4456 }
4457
4458 p->p_filesz += alloc * bed->s->sizeof_phdr;
4459 p->p_memsz += alloc * bed->s->sizeof_phdr;
4460 }
4461
4462 if (p->p_type == PT_LOAD
4463 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4464 {
4465 if (! m->includes_filehdr && ! m->includes_phdrs)
4466 p->p_offset = off + voff;
4467 else
4468 {
4469 file_ptr adjust;
4470
4471 adjust = off - (p->p_offset + p->p_filesz);
4472 p->p_filesz += adjust;
4473 p->p_memsz += adjust;
4474 }
4475 }
4476
4477 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4478 maps. Set filepos for sections in PT_LOAD segments, and in
4479 core files, for sections in PT_NOTE segments.
4480 assign_file_positions_for_non_load_sections will set filepos
4481 for other sections and update p_filesz for other segments. */
4482 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4483 {
4484 asection *sec;
4485 flagword flags;
4486 bfd_size_type align;
4487
4488 sec = *secpp;
4489 flags = sec->flags;
4490 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4491
4492 if (p->p_type == PT_LOAD
4493 || p->p_type == PT_TLS)
4494 {
4495 bfd_signed_vma adjust;
4496
4497 if ((flags & SEC_LOAD) != 0)
4498 {
4499 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4500 if (adjust < 0)
4501 {
4502 (*_bfd_error_handler)
4503 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4504 abfd, sec, (unsigned long) sec->lma);
4505 adjust = 0;
4506 }
4507 off += adjust;
4508 p->p_filesz += adjust;
4509 p->p_memsz += adjust;
4510 }
4511 /* .tbss is special. It doesn't contribute to p_memsz of
4512 normal segments. */
4513 else if ((flags & SEC_ALLOC) != 0
4514 && ((flags & SEC_THREAD_LOCAL) == 0
4515 || p->p_type == PT_TLS))
4516 {
4517 /* The section VMA must equal the file position
4518 modulo the page size. */
4519 bfd_size_type page = align;
4520 if (page < maxpagesize)
4521 page = maxpagesize;
4522 adjust = vma_page_aligned_bias (sec->vma,
4523 p->p_vaddr + p->p_memsz,
4524 page);
4525 p->p_memsz += adjust;
4526 }
4527 }
4528
4529 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4530 {
4531 /* The section at i == 0 is the one that actually contains
4532 everything. */
4533 if (i == 0)
4534 {
4535 sec->filepos = off;
4536 off += sec->size;
4537 p->p_filesz = sec->size;
4538 p->p_memsz = 0;
4539 p->p_align = 1;
4540 }
4541 else
4542 {
4543 /* The rest are fake sections that shouldn't be written. */
4544 sec->filepos = 0;
4545 sec->size = 0;
4546 sec->flags = 0;
4547 continue;
4548 }
4549 }
4550 else
4551 {
4552 if (p->p_type == PT_LOAD)
4553 {
4554 sec->filepos = off + voff;
4555 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4556 1997, and the exact reason for it isn't clear. One
4557 plausible explanation is that it is to work around
4558 a problem we have with linker scripts using data
4559 statements in NOLOAD sections. I don't think it
4560 makes a great deal of sense to have such a section
4561 assigned to a PT_LOAD segment, but apparently
4562 people do this. The data statement results in a
4563 bfd_data_link_order being built, and these need
4564 section contents to write into. Eventually, we get
4565 to _bfd_elf_write_object_contents which writes any
4566 section with contents to the output. Make room
4567 here for the write, so that following segments are
4568 not trashed. */
4569 if ((flags & SEC_LOAD) != 0
4570 || (flags & SEC_HAS_CONTENTS) != 0)
4571 off += sec->size;
4572 }
4573
4574 if ((flags & SEC_LOAD) != 0)
4575 {
4576 p->p_filesz += sec->size;
4577 p->p_memsz += sec->size;
4578 }
4579
4580 /* .tbss is special. It doesn't contribute to p_memsz of
4581 normal segments. */
4582 else if ((flags & SEC_ALLOC) != 0
4583 && ((flags & SEC_THREAD_LOCAL) == 0
4584 || p->p_type == PT_TLS))
4585 p->p_memsz += sec->size;
4586
4587 if (p->p_type == PT_TLS
4588 && sec->size == 0
4589 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4590 {
4591 struct bfd_link_order *o = sec->map_tail.link_order;
4592 if (o != NULL)
4593 p->p_memsz += o->offset + o->size;
4594 }
4595
4596 if (p->p_type == PT_GNU_RELRO)
4597 p->p_align = 1;
4598 else if (align > p->p_align
4599 && !m->p_align_valid
4600 && (p->p_type != PT_LOAD
4601 || (abfd->flags & D_PAGED) == 0))
4602 p->p_align = align;
4603 }
4604
4605 if (! m->p_flags_valid)
4606 {
4607 p->p_flags |= PF_R;
4608 if ((flags & SEC_CODE) != 0)
4609 p->p_flags |= PF_X;
4610 if ((flags & SEC_READONLY) == 0)
4611 p->p_flags |= PF_W;
4612 }
4613 }
4614 }
4615
4616 elf_tdata (abfd)->next_file_pos = off;
4617 return TRUE;
4618}
4619
4620/* Assign file positions for the other sections. */
4621
4622static bfd_boolean
4623assign_file_positions_for_non_load_sections (bfd *abfd,
4624 struct bfd_link_info *link_info)
4625{
4626 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4627 Elf_Internal_Shdr **i_shdrpp;
4628 Elf_Internal_Shdr **hdrpp;
4629 Elf_Internal_Phdr *phdrs;
4630 Elf_Internal_Phdr *p;
4631 struct elf_segment_map *m;
4632 bfd_vma filehdr_vaddr, filehdr_paddr;
4633 bfd_vma phdrs_vaddr, phdrs_paddr;
4634 file_ptr off;
4635 unsigned int num_sec;
4636 unsigned int i;
4637 unsigned int count;
4638
4639 i_shdrpp = elf_elfsections (abfd);
4640 num_sec = elf_numsections (abfd);
4641 off = elf_tdata (abfd)->next_file_pos;
4642 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4643 {
4644 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4645 Elf_Internal_Shdr *hdr;
4646
4647 hdr = *hdrpp;
4648 if (hdr->bfd_section != NULL
4649 && (hdr->bfd_section->filepos != 0
4650 || (hdr->sh_type == SHT_NOBITS
4651 && hdr->contents == NULL)))
4652 hdr->sh_offset = hdr->bfd_section->filepos;
4653 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4654 {
4655 if (hdr->sh_size != 0)
4656 ((*_bfd_error_handler)
4657 (_("%B: warning: allocated section `%s' not in segment"),
4658 abfd,
4659 (hdr->bfd_section == NULL
4660 ? "*unknown*"
4661 : hdr->bfd_section->name)));
4662 /* We don't need to page align empty sections. */
4663 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4664 off += vma_page_aligned_bias (hdr->sh_addr, off,
4665 bed->maxpagesize);
4666 else
4667 off += vma_page_aligned_bias (hdr->sh_addr, off,
4668 hdr->sh_addralign);
4669 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4670 FALSE);
4671 }
4672 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4673 && hdr->bfd_section == NULL)
4674 || hdr == i_shdrpp[tdata->symtab_section]
4675 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4676 || hdr == i_shdrpp[tdata->strtab_section])
4677 hdr->sh_offset = -1;
4678 else
4679 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4680
4681 if (i == SHN_LORESERVE - 1)
4682 {
4683 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4684 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4685 }
4686 }
4687
4688 /* Now that we have set the section file positions, we can set up
4689 the file positions for the non PT_LOAD segments. */
4690 count = 0;
4691 filehdr_vaddr = 0;
4692 filehdr_paddr = 0;
4693 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4694 phdrs_paddr = 0;
4695 phdrs = elf_tdata (abfd)->phdr;
4696 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4697 m != NULL;
4698 m = m->next, p++)
4699 {
4700 ++count;
4701 if (p->p_type != PT_LOAD)
4702 continue;
4703
4704 if (m->includes_filehdr)
4705 {
4706 filehdr_vaddr = p->p_vaddr;
4707 filehdr_paddr = p->p_paddr;
4708 }
4709 if (m->includes_phdrs)
4710 {
4711 phdrs_vaddr = p->p_vaddr;
4712 phdrs_paddr = p->p_paddr;
4713 if (m->includes_filehdr)
4714 {
4715 phdrs_vaddr += bed->s->sizeof_ehdr;
4716 phdrs_paddr += bed->s->sizeof_ehdr;
4717 }
4718 }
4719 }
4720
4721 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4722 m != NULL;
4723 m = m->next, p++)
4724 {
4725 if (m->count != 0)
4726 {
4727 if (p->p_type != PT_LOAD
4728 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4729 {
4730 Elf_Internal_Shdr *hdr;
4731 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4732
4733 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4734 p->p_filesz = (m->sections[m->count - 1]->filepos
4735 - m->sections[0]->filepos);
4736 if (hdr->sh_type != SHT_NOBITS)
4737 p->p_filesz += hdr->sh_size;
4738
4739 p->p_offset = m->sections[0]->filepos;
4740 }
4741 }
4742 else
4743 {
4744 if (m->includes_filehdr)
4745 {
4746 p->p_vaddr = filehdr_vaddr;
4747 if (! m->p_paddr_valid)
4748 p->p_paddr = filehdr_paddr;
4749 }
4750 else if (m->includes_phdrs)
4751 {
4752 p->p_vaddr = phdrs_vaddr;
4753 if (! m->p_paddr_valid)
4754 p->p_paddr = phdrs_paddr;
4755 }
4756 else if (p->p_type == PT_GNU_RELRO)
4757 {
4758 Elf_Internal_Phdr *lp;
4759
4760 for (lp = phdrs; lp < phdrs + count; ++lp)
4761 {
4762 if (lp->p_type == PT_LOAD
4763 && lp->p_vaddr <= link_info->relro_end
4764 && lp->p_vaddr >= link_info->relro_start
4765 && (lp->p_vaddr + lp->p_filesz
4766 >= link_info->relro_end))
4767 break;
4768 }
4769
4770 if (lp < phdrs + count
4771 && link_info->relro_end > lp->p_vaddr)
4772 {
4773 p->p_vaddr = lp->p_vaddr;
4774 p->p_paddr = lp->p_paddr;
4775 p->p_offset = lp->p_offset;
4776 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4777 p->p_memsz = p->p_filesz;
4778 p->p_align = 1;
4779 p->p_flags = (lp->p_flags & ~PF_W);
4780 }
4781 else
4782 {
4783 memset (p, 0, sizeof *p);
4784 p->p_type = PT_NULL;
4785 }
4786 }
4787 }
4788 }
4789
4790 elf_tdata (abfd)->next_file_pos = off;
4791
4792 return TRUE;
4793}
4794
4795/* Work out the file positions of all the sections. This is called by
4796 _bfd_elf_compute_section_file_positions. All the section sizes and
4797 VMAs must be known before this is called.
4798
4799 Reloc sections come in two flavours: Those processed specially as
4800 "side-channel" data attached to a section to which they apply, and
4801 those that bfd doesn't process as relocations. The latter sort are
4802 stored in a normal bfd section by bfd_section_from_shdr. We don't
4803 consider the former sort here, unless they form part of the loadable
4804 image. Reloc sections not assigned here will be handled later by
4805 assign_file_positions_for_relocs.
4806
4807 We also don't set the positions of the .symtab and .strtab here. */
4808
4809static bfd_boolean
4810assign_file_positions_except_relocs (bfd *abfd,
4811 struct bfd_link_info *link_info)
4812{
4813 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4814 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4815 file_ptr off;
4816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4817
4818 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4819 && bfd_get_format (abfd) != bfd_core)
4820 {
4821 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4822 unsigned int num_sec = elf_numsections (abfd);
4823 Elf_Internal_Shdr **hdrpp;
4824 unsigned int i;
4825
4826 /* Start after the ELF header. */
4827 off = i_ehdrp->e_ehsize;
4828
4829 /* We are not creating an executable, which means that we are
4830 not creating a program header, and that the actual order of
4831 the sections in the file is unimportant. */
4832 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4833 {
4834 Elf_Internal_Shdr *hdr;
4835
4836 hdr = *hdrpp;
4837 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4838 && hdr->bfd_section == NULL)
4839 || i == tdata->symtab_section
4840 || i == tdata->symtab_shndx_section
4841 || i == tdata->strtab_section)
4842 {
4843 hdr->sh_offset = -1;
4844 }
4845 else
4846 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4847
4848 if (i == SHN_LORESERVE - 1)
4849 {
4850 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4851 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4852 }
4853 }
4854 }
4855 else
4856 {
4857 unsigned int alloc;
4858
4859 /* Assign file positions for the loaded sections based on the
4860 assignment of sections to segments. */
4861 if (!assign_file_positions_for_load_sections (abfd, link_info))
4862 return FALSE;
4863
4864 /* And for non-load sections. */
4865 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4866 return FALSE;
4867
4868 if (bed->elf_backend_modify_program_headers != NULL)
4869 {
4870 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4871 return FALSE;
4872 }
4873
4874 /* Write out the program headers. */
4875 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4876 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4877 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4878 return FALSE;
4879
4880 off = tdata->next_file_pos;
4881 }
4882
4883 /* Place the section headers. */
4884 off = align_file_position (off, 1 << bed->s->log_file_align);
4885 i_ehdrp->e_shoff = off;
4886 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4887
4888 tdata->next_file_pos = off;
4889
4890 return TRUE;
4891}
4892
4893static bfd_boolean
4894prep_headers (bfd *abfd)
4895{
4896 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4897 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4898 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4899 struct elf_strtab_hash *shstrtab;
4900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4901
4902 i_ehdrp = elf_elfheader (abfd);
4903 i_shdrp = elf_elfsections (abfd);
4904
4905 shstrtab = _bfd_elf_strtab_init ();
4906 if (shstrtab == NULL)
4907 return FALSE;
4908
4909 elf_shstrtab (abfd) = shstrtab;
4910
4911 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4912 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4913 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4914 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4915
4916 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4917 i_ehdrp->e_ident[EI_DATA] =
4918 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4919 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4920
4921 if ((abfd->flags & DYNAMIC) != 0)
4922 i_ehdrp->e_type = ET_DYN;
4923 else if ((abfd->flags & EXEC_P) != 0)
4924 i_ehdrp->e_type = ET_EXEC;
4925 else if (bfd_get_format (abfd) == bfd_core)
4926 i_ehdrp->e_type = ET_CORE;
4927 else
4928 i_ehdrp->e_type = ET_REL;
4929
4930 switch (bfd_get_arch (abfd))
4931 {
4932 case bfd_arch_unknown:
4933 i_ehdrp->e_machine = EM_NONE;
4934 break;
4935
4936 /* There used to be a long list of cases here, each one setting
4937 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4938 in the corresponding bfd definition. To avoid duplication,
4939 the switch was removed. Machines that need special handling
4940 can generally do it in elf_backend_final_write_processing(),
4941 unless they need the information earlier than the final write.
4942 Such need can generally be supplied by replacing the tests for
4943 e_machine with the conditions used to determine it. */
4944 default:
4945 i_ehdrp->e_machine = bed->elf_machine_code;
4946 }
4947
4948 i_ehdrp->e_version = bed->s->ev_current;
4949 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4950
4951 /* No program header, for now. */
4952 i_ehdrp->e_phoff = 0;
4953 i_ehdrp->e_phentsize = 0;
4954 i_ehdrp->e_phnum = 0;
4955
4956 /* Each bfd section is section header entry. */
4957 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4958 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4959
4960 /* If we're building an executable, we'll need a program header table. */
4961 if (abfd->flags & EXEC_P)
4962 /* It all happens later. */
4963 ;
4964 else
4965 {
4966 i_ehdrp->e_phentsize = 0;
4967 i_phdrp = 0;
4968 i_ehdrp->e_phoff = 0;
4969 }
4970
4971 elf_tdata (abfd)->symtab_hdr.sh_name =
4972 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4973 elf_tdata (abfd)->strtab_hdr.sh_name =
4974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4975 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4976 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4977 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4978 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4979 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4980 return FALSE;
4981
4982 return TRUE;
4983}
4984
4985/* Assign file positions for all the reloc sections which are not part
4986 of the loadable file image. */
4987
4988void
4989_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4990{
4991 file_ptr off;
4992 unsigned int i, num_sec;
4993 Elf_Internal_Shdr **shdrpp;
4994
4995 off = elf_tdata (abfd)->next_file_pos;
4996
4997 num_sec = elf_numsections (abfd);
4998 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4999 {
5000 Elf_Internal_Shdr *shdrp;
5001
5002 shdrp = *shdrpp;
5003 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5004 && shdrp->sh_offset == -1)
5005 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5006 }
5007
5008 elf_tdata (abfd)->next_file_pos = off;
5009}
5010
5011bfd_boolean
5012_bfd_elf_write_object_contents (bfd *abfd)
5013{
5014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5015 Elf_Internal_Ehdr *i_ehdrp;
5016 Elf_Internal_Shdr **i_shdrp;
5017 bfd_boolean failed;
5018 unsigned int count, num_sec;
5019
5020 if (! abfd->output_has_begun
5021 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5022 return FALSE;
5023
5024 i_shdrp = elf_elfsections (abfd);
5025 i_ehdrp = elf_elfheader (abfd);
5026
5027 failed = FALSE;
5028 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5029 if (failed)
5030 return FALSE;
5031
5032 _bfd_elf_assign_file_positions_for_relocs (abfd);
5033
5034 /* After writing the headers, we need to write the sections too... */
5035 num_sec = elf_numsections (abfd);
5036 for (count = 1; count < num_sec; count++)
5037 {
5038 if (bed->elf_backend_section_processing)
5039 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5040 if (i_shdrp[count]->contents)
5041 {
5042 bfd_size_type amt = i_shdrp[count]->sh_size;
5043
5044 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5045 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5046 return FALSE;
5047 }
5048 if (count == SHN_LORESERVE - 1)
5049 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5050 }
5051
5052 /* Write out the section header names. */
5053 if (elf_shstrtab (abfd) != NULL
5054 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5055 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5056 return FALSE;
5057
5058 if (bed->elf_backend_final_write_processing)
5059 (*bed->elf_backend_final_write_processing) (abfd,
5060 elf_tdata (abfd)->linker);
5061
5062 return bed->s->write_shdrs_and_ehdr (abfd);
5063}
5064
5065bfd_boolean
5066_bfd_elf_write_corefile_contents (bfd *abfd)
5067{
5068 /* Hopefully this can be done just like an object file. */
5069 return _bfd_elf_write_object_contents (abfd);
5070}
5071
5072/* Given a section, search the header to find them. */
5073
5074int
5075_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5076{
5077 const struct elf_backend_data *bed;
5078 int index;
5079
5080 if (elf_section_data (asect) != NULL
5081 && elf_section_data (asect)->this_idx != 0)
5082 return elf_section_data (asect)->this_idx;
5083
5084 if (bfd_is_abs_section (asect))
5085 index = SHN_ABS;
5086 else if (bfd_is_com_section (asect))
5087 index = SHN_COMMON;
5088 else if (bfd_is_und_section (asect))
5089 index = SHN_UNDEF;
5090 else
5091 index = -1;
5092
5093 bed = get_elf_backend_data (abfd);
5094 if (bed->elf_backend_section_from_bfd_section)
5095 {
5096 int retval = index;
5097
5098 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5099 return retval;
5100 }
5101
5102 if (index == -1)
5103 bfd_set_error (bfd_error_nonrepresentable_section);
5104
5105 return index;
5106}
5107
5108/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5109 on error. */
5110
5111int
5112_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5113{
5114 asymbol *asym_ptr = *asym_ptr_ptr;
5115 int idx;
5116 flagword flags = asym_ptr->flags;
5117
5118 /* When gas creates relocations against local labels, it creates its
5119 own symbol for the section, but does put the symbol into the
5120 symbol chain, so udata is 0. When the linker is generating
5121 relocatable output, this section symbol may be for one of the
5122 input sections rather than the output section. */
5123 if (asym_ptr->udata.i == 0
5124 && (flags & BSF_SECTION_SYM)
5125 && asym_ptr->section)
5126 {
5127 asection *sec;
5128 int indx;
5129
5130 sec = asym_ptr->section;
5131 if (sec->owner != abfd && sec->output_section != NULL)
5132 sec = sec->output_section;
5133 if (sec->owner == abfd
5134 && (indx = sec->index) < elf_num_section_syms (abfd)
5135 && elf_section_syms (abfd)[indx] != NULL)
5136 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5137 }
5138
5139 idx = asym_ptr->udata.i;
5140
5141 if (idx == 0)
5142 {
5143 /* This case can occur when using --strip-symbol on a symbol
5144 which is used in a relocation entry. */
5145 (*_bfd_error_handler)
5146 (_("%B: symbol `%s' required but not present"),
5147 abfd, bfd_asymbol_name (asym_ptr));
5148 bfd_set_error (bfd_error_no_symbols);
5149 return -1;
5150 }
5151
5152#if DEBUG & 4
5153 {
5154 fprintf (stderr,
5155 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5156 (long) asym_ptr, asym_ptr->name, idx, flags,
5157 elf_symbol_flags (flags));
5158 fflush (stderr);
5159 }
5160#endif
5161
5162 return idx;
5163}
5164
5165/* Rewrite program header information. */
5166
5167static bfd_boolean
5168rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5169{
5170 Elf_Internal_Ehdr *iehdr;
5171 struct elf_segment_map *map;
5172 struct elf_segment_map *map_first;
5173 struct elf_segment_map **pointer_to_map;
5174 Elf_Internal_Phdr *segment;
5175 asection *section;
5176 unsigned int i;
5177 unsigned int num_segments;
5178 bfd_boolean phdr_included = FALSE;
5179 bfd_vma maxpagesize;
5180 struct elf_segment_map *phdr_adjust_seg = NULL;
5181 unsigned int phdr_adjust_num = 0;
5182 const struct elf_backend_data *bed;
5183
5184 bed = get_elf_backend_data (ibfd);
5185 iehdr = elf_elfheader (ibfd);
5186
5187 map_first = NULL;
5188 pointer_to_map = &map_first;
5189
5190 num_segments = elf_elfheader (ibfd)->e_phnum;
5191 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5192
5193 /* Returns the end address of the segment + 1. */
5194#define SEGMENT_END(segment, start) \
5195 (start + (segment->p_memsz > segment->p_filesz \
5196 ? segment->p_memsz : segment->p_filesz))
5197
5198#define SECTION_SIZE(section, segment) \
5199 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5200 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5201 ? section->size : 0)
5202
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. VMA addresses are compared. */
5205#define IS_CONTAINED_BY_VMA(section, segment) \
5206 (section->vma >= segment->p_vaddr \
5207 && (section->vma + SECTION_SIZE (section, segment) \
5208 <= (SEGMENT_END (segment, segment->p_vaddr))))
5209
5210 /* Returns TRUE if the given section is contained within
5211 the given segment. LMA addresses are compared. */
5212#define IS_CONTAINED_BY_LMA(section, segment, base) \
5213 (section->lma >= base \
5214 && (section->lma + SECTION_SIZE (section, segment) \
5215 <= SEGMENT_END (segment, base)))
5216
5217 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5218#define IS_COREFILE_NOTE(p, s) \
5219 (p->p_type == PT_NOTE \
5220 && bfd_get_format (ibfd) == bfd_core \
5221 && s->vma == 0 && s->lma == 0 \
5222 && (bfd_vma) s->filepos >= p->p_offset \
5223 && ((bfd_vma) s->filepos + s->size \
5224 <= p->p_offset + p->p_filesz))
5225
5226 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5227 linker, which generates a PT_INTERP section with p_vaddr and
5228 p_memsz set to 0. */
5229#define IS_SOLARIS_PT_INTERP(p, s) \
5230 (p->p_vaddr == 0 \
5231 && p->p_paddr == 0 \
5232 && p->p_memsz == 0 \
5233 && p->p_filesz > 0 \
5234 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5235 && s->size > 0 \
5236 && (bfd_vma) s->filepos >= p->p_offset \
5237 && ((bfd_vma) s->filepos + s->size \
5238 <= p->p_offset + p->p_filesz))
5239
5240 /* Decide if the given section should be included in the given segment.
5241 A section will be included if:
5242 1. It is within the address space of the segment -- we use the LMA
5243 if that is set for the segment and the VMA otherwise,
5244 2. It is an allocated segment,
5245 3. There is an output section associated with it,
5246 4. The section has not already been allocated to a previous segment.
5247 5. PT_GNU_STACK segments do not include any sections.
5248 6. PT_TLS segment includes only SHF_TLS sections.
5249 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5250 8. PT_DYNAMIC should not contain empty sections at the beginning
5251 (with the possible exception of .dynamic). */
5252#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5253 ((((segment->p_paddr \
5254 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5255 : IS_CONTAINED_BY_VMA (section, segment)) \
5256 && (section->flags & SEC_ALLOC) != 0) \
5257 || IS_COREFILE_NOTE (segment, section)) \
5258 && segment->p_type != PT_GNU_STACK \
5259 && (segment->p_type != PT_TLS \
5260 || (section->flags & SEC_THREAD_LOCAL)) \
5261 && (segment->p_type == PT_LOAD \
5262 || segment->p_type == PT_TLS \
5263 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5264 && (segment->p_type != PT_DYNAMIC \
5265 || SECTION_SIZE (section, segment) > 0 \
5266 || (segment->p_paddr \
5267 ? segment->p_paddr != section->lma \
5268 : segment->p_vaddr != section->vma) \
5269 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5270 == 0)) \
5271 && ! section->segment_mark)
5272
5273/* If the output section of a section in the input segment is NULL,
5274 it is removed from the corresponding output segment. */
5275#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5276 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5277 && section->output_section != NULL)
5278
5279 /* Returns TRUE iff seg1 starts after the end of seg2. */
5280#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5281 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5282
5283 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5284 their VMA address ranges and their LMA address ranges overlap.
5285 It is possible to have overlapping VMA ranges without overlapping LMA
5286 ranges. RedBoot images for example can have both .data and .bss mapped
5287 to the same VMA range, but with the .data section mapped to a different
5288 LMA. */
5289#define SEGMENT_OVERLAPS(seg1, seg2) \
5290 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5291 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5292 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5293 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5294
5295 /* Initialise the segment mark field. */
5296 for (section = ibfd->sections; section != NULL; section = section->next)
5297 section->segment_mark = FALSE;
5298
5299 /* Scan through the segments specified in the program header
5300 of the input BFD. For this first scan we look for overlaps
5301 in the loadable segments. These can be created by weird
5302 parameters to objcopy. Also, fix some solaris weirdness. */
5303 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5304 i < num_segments;
5305 i++, segment++)
5306 {
5307 unsigned int j;
5308 Elf_Internal_Phdr *segment2;
5309
5310 if (segment->p_type == PT_INTERP)
5311 for (section = ibfd->sections; section; section = section->next)
5312 if (IS_SOLARIS_PT_INTERP (segment, section))
5313 {
5314 /* Mininal change so that the normal section to segment
5315 assignment code will work. */
5316 segment->p_vaddr = section->vma;
5317 break;
5318 }
5319
5320 if (segment->p_type != PT_LOAD)
5321 continue;
5322
5323 /* Determine if this segment overlaps any previous segments. */
5324 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5325 {
5326 bfd_signed_vma extra_length;
5327
5328 if (segment2->p_type != PT_LOAD
5329 || ! SEGMENT_OVERLAPS (segment, segment2))
5330 continue;
5331
5332 /* Merge the two segments together. */
5333 if (segment2->p_vaddr < segment->p_vaddr)
5334 {
5335 /* Extend SEGMENT2 to include SEGMENT and then delete
5336 SEGMENT. */
5337 extra_length =
5338 SEGMENT_END (segment, segment->p_vaddr)
5339 - SEGMENT_END (segment2, segment2->p_vaddr);
5340
5341 if (extra_length > 0)
5342 {
5343 segment2->p_memsz += extra_length;
5344 segment2->p_filesz += extra_length;
5345 }
5346
5347 segment->p_type = PT_NULL;
5348
5349 /* Since we have deleted P we must restart the outer loop. */
5350 i = 0;
5351 segment = elf_tdata (ibfd)->phdr;
5352 break;
5353 }
5354 else
5355 {
5356 /* Extend SEGMENT to include SEGMENT2 and then delete
5357 SEGMENT2. */
5358 extra_length =
5359 SEGMENT_END (segment2, segment2->p_vaddr)
5360 - SEGMENT_END (segment, segment->p_vaddr);
5361
5362 if (extra_length > 0)
5363 {
5364 segment->p_memsz += extra_length;
5365 segment->p_filesz += extra_length;
5366 }
5367
5368 segment2->p_type = PT_NULL;
5369 }
5370 }
5371 }
5372
5373 /* The second scan attempts to assign sections to segments. */
5374 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5375 i < num_segments;
5376 i ++, segment ++)
5377 {
5378 unsigned int section_count;
5379 asection ** sections;
5380 asection * output_section;
5381 unsigned int isec;
5382 bfd_vma matching_lma;
5383 bfd_vma suggested_lma;
5384 unsigned int j;
5385 bfd_size_type amt;
5386 asection * first_section;
5387
5388 if (segment->p_type == PT_NULL)
5389 continue;
5390
5391 first_section = NULL;
5392 /* Compute how many sections might be placed into this segment. */
5393 for (section = ibfd->sections, section_count = 0;
5394 section != NULL;
5395 section = section->next)
5396 {
5397 /* Find the first section in the input segment, which may be
5398 removed from the corresponding output segment. */
5399 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5400 {
5401 if (first_section == NULL)
5402 first_section = section;
5403 if (section->output_section != NULL)
5404 ++section_count;
5405 }
5406 }
5407
5408 /* Allocate a segment map big enough to contain
5409 all of the sections we have selected. */
5410 amt = sizeof (struct elf_segment_map);
5411 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5412 map = bfd_zalloc (obfd, amt);
5413 if (map == NULL)
5414 return FALSE;
5415
5416 /* Initialise the fields of the segment map. Default to
5417 using the physical address of the segment in the input BFD. */
5418 map->next = NULL;
5419 map->p_type = segment->p_type;
5420 map->p_flags = segment->p_flags;
5421 map->p_flags_valid = 1;
5422
5423 /* If the first section in the input segment is removed, there is
5424 no need to preserve segment physical address in the corresponding
5425 output segment. */
5426 if (!first_section || first_section->output_section != NULL)
5427 {
5428 map->p_paddr = segment->p_paddr;
5429 map->p_paddr_valid = 1;
5430 }
5431
5432 /* Determine if this segment contains the ELF file header
5433 and if it contains the program headers themselves. */
5434 map->includes_filehdr = (segment->p_offset == 0
5435 && segment->p_filesz >= iehdr->e_ehsize);
5436
5437 map->includes_phdrs = 0;
5438
5439 if (! phdr_included || segment->p_type != PT_LOAD)
5440 {
5441 map->includes_phdrs =
5442 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5443 && (segment->p_offset + segment->p_filesz
5444 >= ((bfd_vma) iehdr->e_phoff
5445 + iehdr->e_phnum * iehdr->e_phentsize)));
5446
5447 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5448 phdr_included = TRUE;
5449 }
5450
5451 if (section_count == 0)
5452 {
5453 /* Special segments, such as the PT_PHDR segment, may contain
5454 no sections, but ordinary, loadable segments should contain
5455 something. They are allowed by the ELF spec however, so only
5456 a warning is produced. */
5457 if (segment->p_type == PT_LOAD)
5458 (*_bfd_error_handler)
5459 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5460 ibfd);
5461
5462 map->count = 0;
5463 *pointer_to_map = map;
5464 pointer_to_map = &map->next;
5465
5466 continue;
5467 }
5468
5469 /* Now scan the sections in the input BFD again and attempt
5470 to add their corresponding output sections to the segment map.
5471 The problem here is how to handle an output section which has
5472 been moved (ie had its LMA changed). There are four possibilities:
5473
5474 1. None of the sections have been moved.
5475 In this case we can continue to use the segment LMA from the
5476 input BFD.
5477
5478 2. All of the sections have been moved by the same amount.
5479 In this case we can change the segment's LMA to match the LMA
5480 of the first section.
5481
5482 3. Some of the sections have been moved, others have not.
5483 In this case those sections which have not been moved can be
5484 placed in the current segment which will have to have its size,
5485 and possibly its LMA changed, and a new segment or segments will
5486 have to be created to contain the other sections.
5487
5488 4. The sections have been moved, but not by the same amount.
5489 In this case we can change the segment's LMA to match the LMA
5490 of the first section and we will have to create a new segment
5491 or segments to contain the other sections.
5492
5493 In order to save time, we allocate an array to hold the section
5494 pointers that we are interested in. As these sections get assigned
5495 to a segment, they are removed from this array. */
5496
5497 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5498 to work around this long long bug. */
5499 sections = bfd_malloc2 (section_count, sizeof (asection *));
5500 if (sections == NULL)
5501 return FALSE;
5502
5503 /* Step One: Scan for segment vs section LMA conflicts.
5504 Also add the sections to the section array allocated above.
5505 Also add the sections to the current segment. In the common
5506 case, where the sections have not been moved, this means that
5507 we have completely filled the segment, and there is nothing
5508 more to do. */
5509 isec = 0;
5510 matching_lma = 0;
5511 suggested_lma = 0;
5512
5513 for (j = 0, section = ibfd->sections;
5514 section != NULL;
5515 section = section->next)
5516 {
5517 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5518 {
5519 output_section = section->output_section;
5520
5521 sections[j ++] = section;
5522
5523 /* The Solaris native linker always sets p_paddr to 0.
5524 We try to catch that case here, and set it to the
5525 correct value. Note - some backends require that
5526 p_paddr be left as zero. */
5527 if (segment->p_paddr == 0
5528 && segment->p_vaddr != 0
5529 && (! bed->want_p_paddr_set_to_zero)
5530 && isec == 0
5531 && output_section->lma != 0
5532 && (output_section->vma == (segment->p_vaddr
5533 + (map->includes_filehdr
5534 ? iehdr->e_ehsize
5535 : 0)
5536 + (map->includes_phdrs
5537 ? (iehdr->e_phnum
5538 * iehdr->e_phentsize)
5539 : 0))))
5540 map->p_paddr = segment->p_vaddr;
5541
5542 /* Match up the physical address of the segment with the
5543 LMA address of the output section. */
5544 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5545 || IS_COREFILE_NOTE (segment, section)
5546 || (bed->want_p_paddr_set_to_zero &&
5547 IS_CONTAINED_BY_VMA (output_section, segment))
5548 )
5549 {
5550 if (matching_lma == 0)
5551 matching_lma = output_section->lma;
5552
5553 /* We assume that if the section fits within the segment
5554 then it does not overlap any other section within that
5555 segment. */
5556 map->sections[isec ++] = output_section;
5557 }
5558 else if (suggested_lma == 0)
5559 suggested_lma = output_section->lma;
5560 }
5561 }
5562
5563 BFD_ASSERT (j == section_count);
5564
5565 /* Step Two: Adjust the physical address of the current segment,
5566 if necessary. */
5567 if (isec == section_count)
5568 {
5569 /* All of the sections fitted within the segment as currently
5570 specified. This is the default case. Add the segment to
5571 the list of built segments and carry on to process the next
5572 program header in the input BFD. */
5573 map->count = section_count;
5574 *pointer_to_map = map;
5575 pointer_to_map = &map->next;
5576
5577 if (matching_lma != map->p_paddr
5578 && !map->includes_filehdr && !map->includes_phdrs)
5579 /* There is some padding before the first section in the
5580 segment. So, we must account for that in the output
5581 segment's vma. */
5582 map->p_vaddr_offset = matching_lma - map->p_paddr;
5583
5584 free (sections);
5585 continue;
5586 }
5587 else
5588 {
5589 if (matching_lma != 0)
5590 {
5591 /* At least one section fits inside the current segment.
5592 Keep it, but modify its physical address to match the
5593 LMA of the first section that fitted. */
5594 map->p_paddr = matching_lma;
5595 }
5596 else
5597 {
5598 /* None of the sections fitted inside the current segment.
5599 Change the current segment's physical address to match
5600 the LMA of the first section. */
5601 map->p_paddr = suggested_lma;
5602 }
5603
5604 /* Offset the segment physical address from the lma
5605 to allow for space taken up by elf headers. */
5606 if (map->includes_filehdr)
5607 map->p_paddr -= iehdr->e_ehsize;
5608
5609 if (map->includes_phdrs)
5610 {
5611 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5612
5613 /* iehdr->e_phnum is just an estimate of the number
5614 of program headers that we will need. Make a note
5615 here of the number we used and the segment we chose
5616 to hold these headers, so that we can adjust the
5617 offset when we know the correct value. */
5618 phdr_adjust_num = iehdr->e_phnum;
5619 phdr_adjust_seg = map;
5620 }
5621 }
5622
5623 /* Step Three: Loop over the sections again, this time assigning
5624 those that fit to the current segment and removing them from the
5625 sections array; but making sure not to leave large gaps. Once all
5626 possible sections have been assigned to the current segment it is
5627 added to the list of built segments and if sections still remain
5628 to be assigned, a new segment is constructed before repeating
5629 the loop. */
5630 isec = 0;
5631 do
5632 {
5633 map->count = 0;
5634 suggested_lma = 0;
5635
5636 /* Fill the current segment with sections that fit. */
5637 for (j = 0; j < section_count; j++)
5638 {
5639 section = sections[j];
5640
5641 if (section == NULL)
5642 continue;
5643
5644 output_section = section->output_section;
5645
5646 BFD_ASSERT (output_section != NULL);
5647
5648 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5649 || IS_COREFILE_NOTE (segment, section))
5650 {
5651 if (map->count == 0)
5652 {
5653 /* If the first section in a segment does not start at
5654 the beginning of the segment, then something is
5655 wrong. */
5656 if (output_section->lma !=
5657 (map->p_paddr
5658 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5659 + (map->includes_phdrs
5660 ? iehdr->e_phnum * iehdr->e_phentsize
5661 : 0)))
5662 abort ();
5663 }
5664 else
5665 {
5666 asection * prev_sec;
5667
5668 prev_sec = map->sections[map->count - 1];
5669
5670 /* If the gap between the end of the previous section
5671 and the start of this section is more than
5672 maxpagesize then we need to start a new segment. */
5673 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5674 maxpagesize)
5675 < BFD_ALIGN (output_section->lma, maxpagesize))
5676 || ((prev_sec->lma + prev_sec->size)
5677 > output_section->lma))
5678 {
5679 if (suggested_lma == 0)
5680 suggested_lma = output_section->lma;
5681
5682 continue;
5683 }
5684 }
5685
5686 map->sections[map->count++] = output_section;
5687 ++isec;
5688 sections[j] = NULL;
5689 section->segment_mark = TRUE;
5690 }
5691 else if (suggested_lma == 0)
5692 suggested_lma = output_section->lma;
5693 }
5694
5695 BFD_ASSERT (map->count > 0);
5696
5697 /* Add the current segment to the list of built segments. */
5698 *pointer_to_map = map;
5699 pointer_to_map = &map->next;
5700
5701 if (isec < section_count)
5702 {
5703 /* We still have not allocated all of the sections to
5704 segments. Create a new segment here, initialise it
5705 and carry on looping. */
5706 amt = sizeof (struct elf_segment_map);
5707 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5708 map = bfd_alloc (obfd, amt);
5709 if (map == NULL)
5710 {
5711 free (sections);
5712 return FALSE;
5713 }
5714
5715 /* Initialise the fields of the segment map. Set the physical
5716 physical address to the LMA of the first section that has
5717 not yet been assigned. */
5718 map->next = NULL;
5719 map->p_type = segment->p_type;
5720 map->p_flags = segment->p_flags;
5721 map->p_flags_valid = 1;
5722 map->p_paddr = suggested_lma;
5723 map->p_paddr_valid = 1;
5724 map->includes_filehdr = 0;
5725 map->includes_phdrs = 0;
5726 }
5727 }
5728 while (isec < section_count);
5729
5730 free (sections);
5731 }
5732
5733 /* The Solaris linker creates program headers in which all the
5734 p_paddr fields are zero. When we try to objcopy or strip such a
5735 file, we get confused. Check for this case, and if we find it
5736 reset the p_paddr_valid fields. */
5737 for (map = map_first; map != NULL; map = map->next)
5738 if (map->p_paddr != 0)
5739 break;
5740 if (map == NULL)
5741 for (map = map_first; map != NULL; map = map->next)
5742 map->p_paddr_valid = 0;
5743
5744 elf_tdata (obfd)->segment_map = map_first;
5745
5746 /* If we had to estimate the number of program headers that were
5747 going to be needed, then check our estimate now and adjust
5748 the offset if necessary. */
5749 if (phdr_adjust_seg != NULL)
5750 {
5751 unsigned int count;
5752
5753 for (count = 0, map = map_first; map != NULL; map = map->next)
5754 count++;
5755
5756 if (count > phdr_adjust_num)
5757 phdr_adjust_seg->p_paddr
5758 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5759 }
5760
5761#undef SEGMENT_END
5762#undef SECTION_SIZE
5763#undef IS_CONTAINED_BY_VMA
5764#undef IS_CONTAINED_BY_LMA
5765#undef IS_COREFILE_NOTE
5766#undef IS_SOLARIS_PT_INTERP
5767#undef IS_SECTION_IN_INPUT_SEGMENT
5768#undef INCLUDE_SECTION_IN_SEGMENT
5769#undef SEGMENT_AFTER_SEGMENT
5770#undef SEGMENT_OVERLAPS
5771 return TRUE;
5772}
5773
5774/* Copy ELF program header information. */
5775
5776static bfd_boolean
5777copy_elf_program_header (bfd *ibfd, bfd *obfd)
5778{
5779 Elf_Internal_Ehdr *iehdr;
5780 struct elf_segment_map *map;
5781 struct elf_segment_map *map_first;
5782 struct elf_segment_map **pointer_to_map;
5783 Elf_Internal_Phdr *segment;
5784 unsigned int i;
5785 unsigned int num_segments;
5786 bfd_boolean phdr_included = FALSE;
5787
5788 iehdr = elf_elfheader (ibfd);
5789
5790 map_first = NULL;
5791 pointer_to_map = &map_first;
5792
5793 num_segments = elf_elfheader (ibfd)->e_phnum;
5794 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5795 i < num_segments;
5796 i++, segment++)
5797 {
5798 asection *section;
5799 unsigned int section_count;
5800 bfd_size_type amt;
5801 Elf_Internal_Shdr *this_hdr;
5802 asection *first_section = NULL;
5803
5804 /* FIXME: Do we need to copy PT_NULL segment? */
5805 if (segment->p_type == PT_NULL)
5806 continue;
5807
5808 /* Compute how many sections are in this segment. */
5809 for (section = ibfd->sections, section_count = 0;
5810 section != NULL;
5811 section = section->next)
5812 {
5813 this_hdr = &(elf_section_data(section)->this_hdr);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5815 {
5816 if (!first_section)
5817 first_section = section;
5818 section_count++;
5819 }
5820 }
5821
5822 /* Allocate a segment map big enough to contain
5823 all of the sections we have selected. */
5824 amt = sizeof (struct elf_segment_map);
5825 if (section_count != 0)
5826 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5827 map = bfd_zalloc (obfd, amt);
5828 if (map == NULL)
5829 return FALSE;
5830
5831 /* Initialize the fields of the output segment map with the
5832 input segment. */
5833 map->next = NULL;
5834 map->p_type = segment->p_type;
5835 map->p_flags = segment->p_flags;
5836 map->p_flags_valid = 1;
5837 map->p_paddr = segment->p_paddr;
5838 map->p_paddr_valid = 1;
5839 map->p_align = segment->p_align;
5840 map->p_align_valid = 1;
5841 map->p_vaddr_offset = 0;
5842
5843 /* Determine if this segment contains the ELF file header
5844 and if it contains the program headers themselves. */
5845 map->includes_filehdr = (segment->p_offset == 0
5846 && segment->p_filesz >= iehdr->e_ehsize);
5847
5848 map->includes_phdrs = 0;
5849 if (! phdr_included || segment->p_type != PT_LOAD)
5850 {
5851 map->includes_phdrs =
5852 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5853 && (segment->p_offset + segment->p_filesz
5854 >= ((bfd_vma) iehdr->e_phoff
5855 + iehdr->e_phnum * iehdr->e_phentsize)));
5856
5857 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5858 phdr_included = TRUE;
5859 }
5860
5861 if (!map->includes_phdrs && !map->includes_filehdr)
5862 /* There is some other padding before the first section. */
5863 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5864 - segment->p_paddr);
5865
5866 if (section_count != 0)
5867 {
5868 unsigned int isec = 0;
5869
5870 for (section = first_section;
5871 section != NULL;
5872 section = section->next)
5873 {
5874 this_hdr = &(elf_section_data(section)->this_hdr);
5875 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5876 {
5877 map->sections[isec++] = section->output_section;
5878 if (isec == section_count)
5879 break;
5880 }
5881 }
5882 }
5883
5884 map->count = section_count;
5885 *pointer_to_map = map;
5886 pointer_to_map = &map->next;
5887 }
5888
5889 elf_tdata (obfd)->segment_map = map_first;
5890 return TRUE;
5891}
5892
5893/* Copy private BFD data. This copies or rewrites ELF program header
5894 information. */
5895
5896static bfd_boolean
5897copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5898{
5899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5900 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5901 return TRUE;
5902
5903 if (elf_tdata (ibfd)->phdr == NULL)
5904 return TRUE;
5905
5906 if (ibfd->xvec == obfd->xvec)
5907 {
5908 /* Check if any sections in the input BFD covered by ELF program
5909 header are changed. */
5910 Elf_Internal_Phdr *segment;
5911 asection *section, *osec;
5912 unsigned int i, num_segments;
5913 Elf_Internal_Shdr *this_hdr;
5914
5915 /* Initialize the segment mark field. */
5916 for (section = obfd->sections; section != NULL;
5917 section = section->next)
5918 section->segment_mark = FALSE;
5919
5920 num_segments = elf_elfheader (ibfd)->e_phnum;
5921 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5922 i < num_segments;
5923 i++, segment++)
5924 {
5925 for (section = ibfd->sections;
5926 section != NULL; section = section->next)
5927 {
5928 /* We mark the output section so that we know it comes
5929 from the input BFD. */
5930 osec = section->output_section;
5931 if (osec)
5932 osec->segment_mark = TRUE;
5933
5934 /* Check if this section is covered by the segment. */
5935 this_hdr = &(elf_section_data(section)->this_hdr);
5936 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5937 {
5938 /* FIXME: Check if its output section is changed or
5939 removed. What else do we need to check? */
5940 if (osec == NULL
5941 || section->flags != osec->flags
5942 || section->lma != osec->lma
5943 || section->vma != osec->vma
5944 || section->size != osec->size
5945 || section->rawsize != osec->rawsize
5946 || section->alignment_power != osec->alignment_power)
5947 goto rewrite;
5948 }
5949 }
5950 }
5951
5952 /* Check to see if any output section doesn't come from the
5953 input BFD. */
5954 for (section = obfd->sections; section != NULL;
5955 section = section->next)
5956 {
5957 if (section->segment_mark == FALSE)
5958 goto rewrite;
5959 else
5960 section->segment_mark = FALSE;
5961 }
5962
5963 return copy_elf_program_header (ibfd, obfd);
5964 }
5965
5966rewrite:
5967 return rewrite_elf_program_header (ibfd, obfd);
5968}
5969
5970/* Initialize private output section information from input section. */
5971
5972bfd_boolean
5973_bfd_elf_init_private_section_data (bfd *ibfd,
5974 asection *isec,
5975 bfd *obfd,
5976 asection *osec,
5977 struct bfd_link_info *link_info)
5978
5979{
5980 Elf_Internal_Shdr *ihdr, *ohdr;
5981 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5982
5983 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5984 || obfd->xvec->flavour != bfd_target_elf_flavour)
5985 return TRUE;
5986
5987 /* Don't copy the output ELF section type from input if the
5988 output BFD section flags have been set to something different.
5989 elf_fake_sections will set ELF section type based on BFD
5990 section flags. */
5991 if (osec->flags == isec->flags || !osec->flags)
5992 {
5993 BFD_ASSERT (osec->flags == isec->flags
5994 || (!osec->flags
5995 && elf_section_type (osec) == SHT_NULL));
5996 elf_section_type (osec) = elf_section_type (isec);
5997 }
5998
5999 /* FIXME: Is this correct for all OS/PROC specific flags? */
6000 elf_section_flags (osec) |= (elf_section_flags (isec)
6001 & (SHF_MASKOS | SHF_MASKPROC));
6002
6003 /* Set things up for objcopy and relocatable link. The output
6004 SHT_GROUP section will have its elf_next_in_group pointing back
6005 to the input group members. Ignore linker created group section.
6006 See elfNN_ia64_object_p in elfxx-ia64.c. */
6007 if (need_group)
6008 {
6009 if (elf_sec_group (isec) == NULL
6010 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6011 {
6012 if (elf_section_flags (isec) & SHF_GROUP)
6013 elf_section_flags (osec) |= SHF_GROUP;
6014 elf_next_in_group (osec) = elf_next_in_group (isec);
6015 elf_group_name (osec) = elf_group_name (isec);
6016 }
6017 }
6018
6019 ihdr = &elf_section_data (isec)->this_hdr;
6020
6021 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6022 don't use the output section of the linked-to section since it
6023 may be NULL at this point. */
6024 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6025 {
6026 ohdr = &elf_section_data (osec)->this_hdr;
6027 ohdr->sh_flags |= SHF_LINK_ORDER;
6028 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6029 }
6030
6031 osec->use_rela_p = isec->use_rela_p;
6032
6033 return TRUE;
6034}
6035
6036/* Copy private section information. This copies over the entsize
6037 field, and sometimes the info field. */
6038
6039bfd_boolean
6040_bfd_elf_copy_private_section_data (bfd *ibfd,
6041 asection *isec,
6042 bfd *obfd,
6043 asection *osec)
6044{
6045 Elf_Internal_Shdr *ihdr, *ohdr;
6046
6047 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6048 || obfd->xvec->flavour != bfd_target_elf_flavour)
6049 return TRUE;
6050
6051 ihdr = &elf_section_data (isec)->this_hdr;
6052 ohdr = &elf_section_data (osec)->this_hdr;
6053
6054 ohdr->sh_entsize = ihdr->sh_entsize;
6055
6056 if (ihdr->sh_type == SHT_SYMTAB
6057 || ihdr->sh_type == SHT_DYNSYM
6058 || ihdr->sh_type == SHT_GNU_verneed
6059 || ihdr->sh_type == SHT_GNU_verdef)
6060 ohdr->sh_info = ihdr->sh_info;
6061
6062 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6063 NULL);
6064}
6065
6066/* Copy private header information. */
6067
6068bfd_boolean
6069_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6070{
6071 asection *isec;
6072
6073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6075 return TRUE;
6076
6077 /* Copy over private BFD data if it has not already been copied.
6078 This must be done here, rather than in the copy_private_bfd_data
6079 entry point, because the latter is called after the section
6080 contents have been set, which means that the program headers have
6081 already been worked out. */
6082 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6083 {
6084 if (! copy_private_bfd_data (ibfd, obfd))
6085 return FALSE;
6086 }
6087
6088 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6089 but this might be wrong if we deleted the group section. */
6090 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6091 if (elf_section_type (isec) == SHT_GROUP
6092 && isec->output_section == NULL)
6093 {
6094 asection *first = elf_next_in_group (isec);
6095 asection *s = first;
6096 while (s != NULL)
6097 {
6098 if (s->output_section != NULL)
6099 {
6100 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6101 elf_group_name (s->output_section) = NULL;
6102 }
6103 s = elf_next_in_group (s);
6104 if (s == first)
6105 break;
6106 }
6107 }
6108
6109 return TRUE;
6110}
6111
6112/* Copy private symbol information. If this symbol is in a section
6113 which we did not map into a BFD section, try to map the section
6114 index correctly. We use special macro definitions for the mapped
6115 section indices; these definitions are interpreted by the
6116 swap_out_syms function. */
6117
6118#define MAP_ONESYMTAB (SHN_HIOS + 1)
6119#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6120#define MAP_STRTAB (SHN_HIOS + 3)
6121#define MAP_SHSTRTAB (SHN_HIOS + 4)
6122#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6123
6124bfd_boolean
6125_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6126 asymbol *isymarg,
6127 bfd *obfd,
6128 asymbol *osymarg)
6129{
6130 elf_symbol_type *isym, *osym;
6131
6132 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6133 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6134 return TRUE;
6135
6136 isym = elf_symbol_from (ibfd, isymarg);
6137 osym = elf_symbol_from (obfd, osymarg);
6138
6139 if (isym != NULL
6140 && osym != NULL
6141 && bfd_is_abs_section (isym->symbol.section))
6142 {
6143 unsigned int shndx;
6144
6145 shndx = isym->internal_elf_sym.st_shndx;
6146 if (shndx == elf_onesymtab (ibfd))
6147 shndx = MAP_ONESYMTAB;
6148 else if (shndx == elf_dynsymtab (ibfd))
6149 shndx = MAP_DYNSYMTAB;
6150 else if (shndx == elf_tdata (ibfd)->strtab_section)
6151 shndx = MAP_STRTAB;
6152 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6153 shndx = MAP_SHSTRTAB;
6154 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6155 shndx = MAP_SYM_SHNDX;
6156 osym->internal_elf_sym.st_shndx = shndx;
6157 }
6158
6159 return TRUE;
6160}
6161
6162/* Swap out the symbols. */
6163
6164static bfd_boolean
6165swap_out_syms (bfd *abfd,
6166 struct bfd_strtab_hash **sttp,
6167 int relocatable_p)
6168{
6169 const struct elf_backend_data *bed;
6170 int symcount;
6171 asymbol **syms;
6172 struct bfd_strtab_hash *stt;
6173 Elf_Internal_Shdr *symtab_hdr;
6174 Elf_Internal_Shdr *symtab_shndx_hdr;
6175 Elf_Internal_Shdr *symstrtab_hdr;
6176 bfd_byte *outbound_syms;
6177 bfd_byte *outbound_shndx;
6178 int idx;
6179 bfd_size_type amt;
6180 bfd_boolean name_local_sections;
6181
6182 if (!elf_map_symbols (abfd))
6183 return FALSE;
6184
6185 /* Dump out the symtabs. */
6186 stt = _bfd_elf_stringtab_init ();
6187 if (stt == NULL)
6188 return FALSE;
6189
6190 bed = get_elf_backend_data (abfd);
6191 symcount = bfd_get_symcount (abfd);
6192 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6193 symtab_hdr->sh_type = SHT_SYMTAB;
6194 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6195 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6196 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6197 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6198
6199 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6200 symstrtab_hdr->sh_type = SHT_STRTAB;
6201
6202 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6203 if (outbound_syms == NULL)
6204 {
6205 _bfd_stringtab_free (stt);
6206 return FALSE;
6207 }
6208 symtab_hdr->contents = outbound_syms;
6209
6210 outbound_shndx = NULL;
6211 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6212 if (symtab_shndx_hdr->sh_name != 0)
6213 {
6214 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6215 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6216 sizeof (Elf_External_Sym_Shndx));
6217 if (outbound_shndx == NULL)
6218 {
6219 _bfd_stringtab_free (stt);
6220 return FALSE;
6221 }
6222
6223 symtab_shndx_hdr->contents = outbound_shndx;
6224 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6225 symtab_shndx_hdr->sh_size = amt;
6226 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6227 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6228 }
6229
6230 /* Now generate the data (for "contents"). */
6231 {
6232 /* Fill in zeroth symbol and swap it out. */
6233 Elf_Internal_Sym sym;
6234 sym.st_name = 0;
6235 sym.st_value = 0;
6236 sym.st_size = 0;
6237 sym.st_info = 0;
6238 sym.st_other = 0;
6239 sym.st_shndx = SHN_UNDEF;
6240 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6241 outbound_syms += bed->s->sizeof_sym;
6242 if (outbound_shndx != NULL)
6243 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6244 }
6245
6246 name_local_sections
6247 = (bed->elf_backend_name_local_section_symbols
6248 && bed->elf_backend_name_local_section_symbols (abfd));
6249
6250 syms = bfd_get_outsymbols (abfd);
6251 for (idx = 0; idx < symcount; idx++)
6252 {
6253 Elf_Internal_Sym sym;
6254 bfd_vma value = syms[idx]->value;
6255 elf_symbol_type *type_ptr;
6256 flagword flags = syms[idx]->flags;
6257 int type;
6258
6259 if (!name_local_sections
6260 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6261 {
6262 /* Local section symbols have no name. */
6263 sym.st_name = 0;
6264 }
6265 else
6266 {
6267 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6268 syms[idx]->name,
6269 TRUE, FALSE);
6270 if (sym.st_name == (unsigned long) -1)
6271 {
6272 _bfd_stringtab_free (stt);
6273 return FALSE;
6274 }
6275 }
6276
6277 type_ptr = elf_symbol_from (abfd, syms[idx]);
6278
6279 if ((flags & BSF_SECTION_SYM) == 0
6280 && bfd_is_com_section (syms[idx]->section))
6281 {
6282 /* ELF common symbols put the alignment into the `value' field,
6283 and the size into the `size' field. This is backwards from
6284 how BFD handles it, so reverse it here. */
6285 sym.st_size = value;
6286 if (type_ptr == NULL
6287 || type_ptr->internal_elf_sym.st_value == 0)
6288 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6289 else
6290 sym.st_value = type_ptr->internal_elf_sym.st_value;
6291 sym.st_shndx = _bfd_elf_section_from_bfd_section
6292 (abfd, syms[idx]->section);
6293 }
6294 else
6295 {
6296 asection *sec = syms[idx]->section;
6297 int shndx;
6298
6299 if (sec->output_section)
6300 {
6301 value += sec->output_offset;
6302 sec = sec->output_section;
6303 }
6304
6305 /* Don't add in the section vma for relocatable output. */
6306 if (! relocatable_p)
6307 value += sec->vma;
6308 sym.st_value = value;
6309 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6310
6311 if (bfd_is_abs_section (sec)
6312 && type_ptr != NULL
6313 && type_ptr->internal_elf_sym.st_shndx != 0)
6314 {
6315 /* This symbol is in a real ELF section which we did
6316 not create as a BFD section. Undo the mapping done
6317 by copy_private_symbol_data. */
6318 shndx = type_ptr->internal_elf_sym.st_shndx;
6319 switch (shndx)
6320 {
6321 case MAP_ONESYMTAB:
6322 shndx = elf_onesymtab (abfd);
6323 break;
6324 case MAP_DYNSYMTAB:
6325 shndx = elf_dynsymtab (abfd);
6326 break;
6327 case MAP_STRTAB:
6328 shndx = elf_tdata (abfd)->strtab_section;
6329 break;
6330 case MAP_SHSTRTAB:
6331 shndx = elf_tdata (abfd)->shstrtab_section;
6332 break;
6333 case MAP_SYM_SHNDX:
6334 shndx = elf_tdata (abfd)->symtab_shndx_section;
6335 break;
6336 default:
6337 break;
6338 }
6339 }
6340 else
6341 {
6342 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6343
6344 if (shndx == -1)
6345 {
6346 asection *sec2;
6347
6348 /* Writing this would be a hell of a lot easier if
6349 we had some decent documentation on bfd, and
6350 knew what to expect of the library, and what to
6351 demand of applications. For example, it
6352 appears that `objcopy' might not set the
6353 section of a symbol to be a section that is
6354 actually in the output file. */
6355 sec2 = bfd_get_section_by_name (abfd, sec->name);
6356 if (sec2 == NULL)
6357 {
6358 _bfd_error_handler (_("\
6359Unable to find equivalent output section for symbol '%s' from section '%s'"),
6360 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6361 sec->name);
6362 bfd_set_error (bfd_error_invalid_operation);
6363 _bfd_stringtab_free (stt);
6364 return FALSE;
6365 }
6366
6367 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6368 BFD_ASSERT (shndx != -1);
6369 }
6370 }
6371
6372 sym.st_shndx = shndx;
6373 }
6374
6375 if ((flags & BSF_THREAD_LOCAL) != 0)
6376 type = STT_TLS;
6377 else if ((flags & BSF_FUNCTION) != 0)
6378 type = STT_FUNC;
6379 else if ((flags & BSF_OBJECT) != 0)
6380 type = STT_OBJECT;
6381 else
6382 type = STT_NOTYPE;
6383
6384 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6385 type = STT_TLS;
6386
6387 /* Processor-specific types. */
6388 if (type_ptr != NULL
6389 && bed->elf_backend_get_symbol_type)
6390 type = ((*bed->elf_backend_get_symbol_type)
6391 (&type_ptr->internal_elf_sym, type));
6392
6393 if (flags & BSF_SECTION_SYM)
6394 {
6395 if (flags & BSF_GLOBAL)
6396 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6397 else
6398 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6399 }
6400 else if (bfd_is_com_section (syms[idx]->section))
6401 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6402 else if (bfd_is_und_section (syms[idx]->section))
6403 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6404 ? STB_WEAK
6405 : STB_GLOBAL),
6406 type);
6407 else if (flags & BSF_FILE)
6408 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6409 else
6410 {
6411 int bind = STB_LOCAL;
6412
6413 if (flags & BSF_LOCAL)
6414 bind = STB_LOCAL;
6415 else if (flags & BSF_WEAK)
6416 bind = STB_WEAK;
6417 else if (flags & BSF_GLOBAL)
6418 bind = STB_GLOBAL;
6419
6420 sym.st_info = ELF_ST_INFO (bind, type);
6421 }
6422
6423 if (type_ptr != NULL)
6424 sym.st_other = type_ptr->internal_elf_sym.st_other;
6425 else
6426 sym.st_other = 0;
6427
6428 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6429 outbound_syms += bed->s->sizeof_sym;
6430 if (outbound_shndx != NULL)
6431 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6432 }
6433
6434 *sttp = stt;
6435 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6436 symstrtab_hdr->sh_type = SHT_STRTAB;
6437
6438 symstrtab_hdr->sh_flags = 0;
6439 symstrtab_hdr->sh_addr = 0;
6440 symstrtab_hdr->sh_entsize = 0;
6441 symstrtab_hdr->sh_link = 0;
6442 symstrtab_hdr->sh_info = 0;
6443 symstrtab_hdr->sh_addralign = 1;
6444
6445 return TRUE;
6446}
6447
6448/* Return the number of bytes required to hold the symtab vector.
6449
6450 Note that we base it on the count plus 1, since we will null terminate
6451 the vector allocated based on this size. However, the ELF symbol table
6452 always has a dummy entry as symbol #0, so it ends up even. */
6453
6454long
6455_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6456{
6457 long symcount;
6458 long symtab_size;
6459 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6460
6461 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6462 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6463 if (symcount > 0)
6464 symtab_size -= sizeof (asymbol *);
6465
6466 return symtab_size;
6467}
6468
6469long
6470_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6471{
6472 long symcount;
6473 long symtab_size;
6474 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6475
6476 if (elf_dynsymtab (abfd) == 0)
6477 {
6478 bfd_set_error (bfd_error_invalid_operation);
6479 return -1;
6480 }
6481
6482 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6483 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6484 if (symcount > 0)
6485 symtab_size -= sizeof (asymbol *);
6486
6487 return symtab_size;
6488}
6489
6490long
6491_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6492 sec_ptr asect)
6493{
6494 return (asect->reloc_count + 1) * sizeof (arelent *);
6495}
6496
6497/* Canonicalize the relocs. */
6498
6499long
6500_bfd_elf_canonicalize_reloc (bfd *abfd,
6501 sec_ptr section,
6502 arelent **relptr,
6503 asymbol **symbols)
6504{
6505 arelent *tblptr;
6506 unsigned int i;
6507 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6508
6509 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6510 return -1;
6511
6512 tblptr = section->relocation;
6513 for (i = 0; i < section->reloc_count; i++)
6514 *relptr++ = tblptr++;
6515
6516 *relptr = NULL;
6517
6518 return section->reloc_count;
6519}
6520
6521long
6522_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6523{
6524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6525 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6526
6527 if (symcount >= 0)
6528 bfd_get_symcount (abfd) = symcount;
6529 return symcount;
6530}
6531
6532long
6533_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6534 asymbol **allocation)
6535{
6536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6537 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6538
6539 if (symcount >= 0)
6540 bfd_get_dynamic_symcount (abfd) = symcount;
6541 return symcount;
6542}
6543
6544/* Return the size required for the dynamic reloc entries. Any loadable
6545 section that was actually installed in the BFD, and has type SHT_REL
6546 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6547 dynamic reloc section. */
6548
6549long
6550_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6551{
6552 long ret;
6553 asection *s;
6554
6555 if (elf_dynsymtab (abfd) == 0)
6556 {
6557 bfd_set_error (bfd_error_invalid_operation);
6558 return -1;
6559 }
6560
6561 ret = sizeof (arelent *);
6562 for (s = abfd->sections; s != NULL; s = s->next)
6563 if ((s->flags & SEC_LOAD) != 0
6564 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6565 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6566 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6567 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6568 * sizeof (arelent *));
6569
6570 return ret;
6571}
6572
6573/* Canonicalize the dynamic relocation entries. Note that we return the
6574 dynamic relocations as a single block, although they are actually
6575 associated with particular sections; the interface, which was
6576 designed for SunOS style shared libraries, expects that there is only
6577 one set of dynamic relocs. Any loadable section that was actually
6578 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6579 dynamic symbol table, is considered to be a dynamic reloc section. */
6580
6581long
6582_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6583 arelent **storage,
6584 asymbol **syms)
6585{
6586 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6587 asection *s;
6588 long ret;
6589
6590 if (elf_dynsymtab (abfd) == 0)
6591 {
6592 bfd_set_error (bfd_error_invalid_operation);
6593 return -1;
6594 }
6595
6596 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6597 ret = 0;
6598 for (s = abfd->sections; s != NULL; s = s->next)
6599 {
6600 if ((s->flags & SEC_LOAD) != 0
6601 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6602 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6603 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6604 {
6605 arelent *p;
6606 long count, i;
6607
6608 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6609 return -1;
6610 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6611 p = s->relocation;
6612 for (i = 0; i < count; i++)
6613 *storage++ = p++;
6614 ret += count;
6615 }
6616 }
6617
6618 *storage = NULL;
6619
6620 return ret;
6621}
6622\f
6623/* Read in the version information. */
6624
6625bfd_boolean
6626_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6627{
6628 bfd_byte *contents = NULL;
6629 unsigned int freeidx = 0;
6630
6631 if (elf_dynverref (abfd) != 0)
6632 {
6633 Elf_Internal_Shdr *hdr;
6634 Elf_External_Verneed *everneed;
6635 Elf_Internal_Verneed *iverneed;
6636 unsigned int i;
6637 bfd_byte *contents_end;
6638
6639 hdr = &elf_tdata (abfd)->dynverref_hdr;
6640
6641 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6642 sizeof (Elf_Internal_Verneed));
6643 if (elf_tdata (abfd)->verref == NULL)
6644 goto error_return;
6645
6646 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6647
6648 contents = bfd_malloc (hdr->sh_size);
6649 if (contents == NULL)
6650 {
6651error_return_verref:
6652 elf_tdata (abfd)->verref = NULL;
6653 elf_tdata (abfd)->cverrefs = 0;
6654 goto error_return;
6655 }
6656 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6657 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6658 goto error_return_verref;
6659
6660 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6661 goto error_return_verref;
6662
6663 BFD_ASSERT (sizeof (Elf_External_Verneed)
6664 == sizeof (Elf_External_Vernaux));
6665 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6666 everneed = (Elf_External_Verneed *) contents;
6667 iverneed = elf_tdata (abfd)->verref;
6668 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6669 {
6670 Elf_External_Vernaux *evernaux;
6671 Elf_Internal_Vernaux *ivernaux;
6672 unsigned int j;
6673
6674 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6675
6676 iverneed->vn_bfd = abfd;
6677
6678 iverneed->vn_filename =
6679 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6680 iverneed->vn_file);
6681 if (iverneed->vn_filename == NULL)
6682 goto error_return_verref;
6683
6684 if (iverneed->vn_cnt == 0)
6685 iverneed->vn_auxptr = NULL;
6686 else
6687 {
6688 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6689 sizeof (Elf_Internal_Vernaux));
6690 if (iverneed->vn_auxptr == NULL)
6691 goto error_return_verref;
6692 }
6693
6694 if (iverneed->vn_aux
6695 > (size_t) (contents_end - (bfd_byte *) everneed))
6696 goto error_return_verref;
6697
6698 evernaux = ((Elf_External_Vernaux *)
6699 ((bfd_byte *) everneed + iverneed->vn_aux));
6700 ivernaux = iverneed->vn_auxptr;
6701 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6702 {
6703 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6704
6705 ivernaux->vna_nodename =
6706 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6707 ivernaux->vna_name);
6708 if (ivernaux->vna_nodename == NULL)
6709 goto error_return_verref;
6710
6711 if (j + 1 < iverneed->vn_cnt)
6712 ivernaux->vna_nextptr = ivernaux + 1;
6713 else
6714 ivernaux->vna_nextptr = NULL;
6715
6716 if (ivernaux->vna_next
6717 > (size_t) (contents_end - (bfd_byte *) evernaux))
6718 goto error_return_verref;
6719
6720 evernaux = ((Elf_External_Vernaux *)
6721 ((bfd_byte *) evernaux + ivernaux->vna_next));
6722
6723 if (ivernaux->vna_other > freeidx)
6724 freeidx = ivernaux->vna_other;
6725 }
6726
6727 if (i + 1 < hdr->sh_info)
6728 iverneed->vn_nextref = iverneed + 1;
6729 else
6730 iverneed->vn_nextref = NULL;
6731
6732 if (iverneed->vn_next
6733 > (size_t) (contents_end - (bfd_byte *) everneed))
6734 goto error_return_verref;
6735
6736 everneed = ((Elf_External_Verneed *)
6737 ((bfd_byte *) everneed + iverneed->vn_next));
6738 }
6739
6740 free (contents);
6741 contents = NULL;
6742 }
6743
6744 if (elf_dynverdef (abfd) != 0)
6745 {
6746 Elf_Internal_Shdr *hdr;
6747 Elf_External_Verdef *everdef;
6748 Elf_Internal_Verdef *iverdef;
6749 Elf_Internal_Verdef *iverdefarr;
6750 Elf_Internal_Verdef iverdefmem;
6751 unsigned int i;
6752 unsigned int maxidx;
6753 bfd_byte *contents_end_def, *contents_end_aux;
6754
6755 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6756
6757 contents = bfd_malloc (hdr->sh_size);
6758 if (contents == NULL)
6759 goto error_return;
6760 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6761 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6762 goto error_return;
6763
6764 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6765 goto error_return;
6766
6767 BFD_ASSERT (sizeof (Elf_External_Verdef)
6768 >= sizeof (Elf_External_Verdaux));
6769 contents_end_def = contents + hdr->sh_size
6770 - sizeof (Elf_External_Verdef);
6771 contents_end_aux = contents + hdr->sh_size
6772 - sizeof (Elf_External_Verdaux);
6773
6774 /* We know the number of entries in the section but not the maximum
6775 index. Therefore we have to run through all entries and find
6776 the maximum. */
6777 everdef = (Elf_External_Verdef *) contents;
6778 maxidx = 0;
6779 for (i = 0; i < hdr->sh_info; ++i)
6780 {
6781 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6782
6783 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6784 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6785
6786 if (iverdefmem.vd_next
6787 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6788 goto error_return;
6789
6790 everdef = ((Elf_External_Verdef *)
6791 ((bfd_byte *) everdef + iverdefmem.vd_next));
6792 }
6793
6794 if (default_imported_symver)
6795 {
6796 if (freeidx > maxidx)
6797 maxidx = ++freeidx;
6798 else
6799 freeidx = ++maxidx;
6800 }
6801 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6802 sizeof (Elf_Internal_Verdef));
6803 if (elf_tdata (abfd)->verdef == NULL)
6804 goto error_return;
6805
6806 elf_tdata (abfd)->cverdefs = maxidx;
6807
6808 everdef = (Elf_External_Verdef *) contents;
6809 iverdefarr = elf_tdata (abfd)->verdef;
6810 for (i = 0; i < hdr->sh_info; i++)
6811 {
6812 Elf_External_Verdaux *everdaux;
6813 Elf_Internal_Verdaux *iverdaux;
6814 unsigned int j;
6815
6816 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6817
6818 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6819 {
6820error_return_verdef:
6821 elf_tdata (abfd)->verdef = NULL;
6822 elf_tdata (abfd)->cverdefs = 0;
6823 goto error_return;
6824 }
6825
6826 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6827 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6828
6829 iverdef->vd_bfd = abfd;
6830
6831 if (iverdef->vd_cnt == 0)
6832 iverdef->vd_auxptr = NULL;
6833 else
6834 {
6835 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6836 sizeof (Elf_Internal_Verdaux));
6837 if (iverdef->vd_auxptr == NULL)
6838 goto error_return_verdef;
6839 }
6840
6841 if (iverdef->vd_aux
6842 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6843 goto error_return_verdef;
6844
6845 everdaux = ((Elf_External_Verdaux *)
6846 ((bfd_byte *) everdef + iverdef->vd_aux));
6847 iverdaux = iverdef->vd_auxptr;
6848 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6849 {
6850 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6851
6852 iverdaux->vda_nodename =
6853 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6854 iverdaux->vda_name);
6855 if (iverdaux->vda_nodename == NULL)
6856 goto error_return_verdef;
6857
6858 if (j + 1 < iverdef->vd_cnt)
6859 iverdaux->vda_nextptr = iverdaux + 1;
6860 else
6861 iverdaux->vda_nextptr = NULL;
6862
6863 if (iverdaux->vda_next
6864 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6865 goto error_return_verdef;
6866
6867 everdaux = ((Elf_External_Verdaux *)
6868 ((bfd_byte *) everdaux + iverdaux->vda_next));
6869 }
6870
6871 if (iverdef->vd_cnt)
6872 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6873
6874 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6875 iverdef->vd_nextdef = iverdef + 1;
6876 else
6877 iverdef->vd_nextdef = NULL;
6878
6879 everdef = ((Elf_External_Verdef *)
6880 ((bfd_byte *) everdef + iverdef->vd_next));
6881 }
6882
6883 free (contents);
6884 contents = NULL;
6885 }
6886 else if (default_imported_symver)
6887 {
6888 if (freeidx < 3)
6889 freeidx = 3;
6890 else
6891 freeidx++;
6892
6893 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6894 sizeof (Elf_Internal_Verdef));
6895 if (elf_tdata (abfd)->verdef == NULL)
6896 goto error_return;
6897
6898 elf_tdata (abfd)->cverdefs = freeidx;
6899 }
6900
6901 /* Create a default version based on the soname. */
6902 if (default_imported_symver)
6903 {
6904 Elf_Internal_Verdef *iverdef;
6905 Elf_Internal_Verdaux *iverdaux;
6906
6907 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6908
6909 iverdef->vd_version = VER_DEF_CURRENT;
6910 iverdef->vd_flags = 0;
6911 iverdef->vd_ndx = freeidx;
6912 iverdef->vd_cnt = 1;
6913
6914 iverdef->vd_bfd = abfd;
6915
6916 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6917 if (iverdef->vd_nodename == NULL)
6918 goto error_return_verdef;
6919 iverdef->vd_nextdef = NULL;
6920 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6921 if (iverdef->vd_auxptr == NULL)
6922 goto error_return_verdef;
6923
6924 iverdaux = iverdef->vd_auxptr;
6925 iverdaux->vda_nodename = iverdef->vd_nodename;
6926 iverdaux->vda_nextptr = NULL;
6927 }
6928
6929 return TRUE;
6930
6931 error_return:
6932 if (contents != NULL)
6933 free (contents);
6934 return FALSE;
6935}
6936\f
6937asymbol *
6938_bfd_elf_make_empty_symbol (bfd *abfd)
6939{
6940 elf_symbol_type *newsym;
6941 bfd_size_type amt = sizeof (elf_symbol_type);
6942
6943 newsym = bfd_zalloc (abfd, amt);
6944 if (!newsym)
6945 return NULL;
6946 else
6947 {
6948 newsym->symbol.the_bfd = abfd;
6949 return &newsym->symbol;
6950 }
6951}
6952
6953void
6954_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6955 asymbol *symbol,
6956 symbol_info *ret)
6957{
6958 bfd_symbol_info (symbol, ret);
6959}
6960
6961/* Return whether a symbol name implies a local symbol. Most targets
6962 use this function for the is_local_label_name entry point, but some
6963 override it. */
6964
6965bfd_boolean
6966_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6967 const char *name)
6968{
6969 /* Normal local symbols start with ``.L''. */
6970 if (name[0] == '.' && name[1] == 'L')
6971 return TRUE;
6972
6973 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6974 DWARF debugging symbols starting with ``..''. */
6975 if (name[0] == '.' && name[1] == '.')
6976 return TRUE;
6977
6978 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6979 emitting DWARF debugging output. I suspect this is actually a
6980 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6981 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6982 underscore to be emitted on some ELF targets). For ease of use,
6983 we treat such symbols as local. */
6984 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6985 return TRUE;
6986
6987 return FALSE;
6988}
6989
6990alent *
6991_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6992 asymbol *symbol ATTRIBUTE_UNUSED)
6993{
6994 abort ();
6995 return NULL;
6996}
6997
6998bfd_boolean
6999_bfd_elf_set_arch_mach (bfd *abfd,
7000 enum bfd_architecture arch,
7001 unsigned long machine)
7002{
7003 /* If this isn't the right architecture for this backend, and this
7004 isn't the generic backend, fail. */
7005 if (arch != get_elf_backend_data (abfd)->arch
7006 && arch != bfd_arch_unknown
7007 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7008 return FALSE;
7009
7010 return bfd_default_set_arch_mach (abfd, arch, machine);
7011}
7012
7013/* Find the function to a particular section and offset,
7014 for error reporting. */
7015
7016static bfd_boolean
7017elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7018 asection *section,
7019 asymbol **symbols,
7020 bfd_vma offset,
7021 const char **filename_ptr,
7022 const char **functionname_ptr)
7023{
7024 const char *filename;
7025 asymbol *func, *file;
7026 bfd_vma low_func;
7027 asymbol **p;
7028 /* ??? Given multiple file symbols, it is impossible to reliably
7029 choose the right file name for global symbols. File symbols are
7030 local symbols, and thus all file symbols must sort before any
7031 global symbols. The ELF spec may be interpreted to say that a
7032 file symbol must sort before other local symbols, but currently
7033 ld -r doesn't do this. So, for ld -r output, it is possible to
7034 make a better choice of file name for local symbols by ignoring
7035 file symbols appearing after a given local symbol. */
7036 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7037
7038 filename = NULL;
7039 func = NULL;
7040 file = NULL;
7041 low_func = 0;
7042 state = nothing_seen;
7043
7044 for (p = symbols; *p != NULL; p++)
7045 {
7046 elf_symbol_type *q;
7047
7048 q = (elf_symbol_type *) *p;
7049
7050 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7051 {
7052 default:
7053 break;
7054 case STT_FILE:
7055 file = &q->symbol;
7056 if (state == symbol_seen)
7057 state = file_after_symbol_seen;
7058 continue;
7059 case STT_NOTYPE:
7060 case STT_FUNC:
7061 if (bfd_get_section (&q->symbol) == section
7062 && q->symbol.value >= low_func
7063 && q->symbol.value <= offset)
7064 {
7065 func = (asymbol *) q;
7066 low_func = q->symbol.value;
7067 filename = NULL;
7068 if (file != NULL
7069 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7070 || state != file_after_symbol_seen))
7071 filename = bfd_asymbol_name (file);
7072 }
7073 break;
7074 }
7075 if (state == nothing_seen)
7076 state = symbol_seen;
7077 }
7078
7079 if (func == NULL)
7080 return FALSE;
7081
7082 if (filename_ptr)
7083 *filename_ptr = filename;
7084 if (functionname_ptr)
7085 *functionname_ptr = bfd_asymbol_name (func);
7086
7087 return TRUE;
7088}
7089
7090/* Find the nearest line to a particular section and offset,
7091 for error reporting. */
7092
7093bfd_boolean
7094_bfd_elf_find_nearest_line (bfd *abfd,
7095 asection *section,
7096 asymbol **symbols,
7097 bfd_vma offset,
7098 const char **filename_ptr,
7099 const char **functionname_ptr,
7100 unsigned int *line_ptr)
7101{
7102 bfd_boolean found;
7103
7104 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7105 filename_ptr, functionname_ptr,
7106 line_ptr))
7107 {
7108 if (!*functionname_ptr)
7109 elf_find_function (abfd, section, symbols, offset,
7110 *filename_ptr ? NULL : filename_ptr,
7111 functionname_ptr);
7112
7113 return TRUE;
7114 }
7115
7116 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7117 filename_ptr, functionname_ptr,
7118 line_ptr, 0,
7119 &elf_tdata (abfd)->dwarf2_find_line_info))
7120 {
7121 if (!*functionname_ptr)
7122 elf_find_function (abfd, section, symbols, offset,
7123 *filename_ptr ? NULL : filename_ptr,
7124 functionname_ptr);
7125
7126 return TRUE;
7127 }
7128
7129 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7130 &found, filename_ptr,
7131 functionname_ptr, line_ptr,
7132 &elf_tdata (abfd)->line_info))
7133 return FALSE;
7134 if (found && (*functionname_ptr || *line_ptr))
7135 return TRUE;
7136
7137 if (symbols == NULL)
7138 return FALSE;
7139
7140 if (! elf_find_function (abfd, section, symbols, offset,
7141 filename_ptr, functionname_ptr))
7142 return FALSE;
7143
7144 *line_ptr = 0;
7145 return TRUE;
7146}
7147
7148/* Find the line for a symbol. */
7149
7150bfd_boolean
7151_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7152 const char **filename_ptr, unsigned int *line_ptr)
7153{
7154 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7155 filename_ptr, line_ptr, 0,
7156 &elf_tdata (abfd)->dwarf2_find_line_info);
7157}
7158
7159/* After a call to bfd_find_nearest_line, successive calls to
7160 bfd_find_inliner_info can be used to get source information about
7161 each level of function inlining that terminated at the address
7162 passed to bfd_find_nearest_line. Currently this is only supported
7163 for DWARF2 with appropriate DWARF3 extensions. */
7164
7165bfd_boolean
7166_bfd_elf_find_inliner_info (bfd *abfd,
7167 const char **filename_ptr,
7168 const char **functionname_ptr,
7169 unsigned int *line_ptr)
7170{
7171 bfd_boolean found;
7172 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7173 functionname_ptr, line_ptr,
7174 & elf_tdata (abfd)->dwarf2_find_line_info);
7175 return found;
7176}
7177
7178int
7179_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7180{
7181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7182 int ret = bed->s->sizeof_ehdr;
7183
7184 if (!info->relocatable)
7185 {
7186 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7187
7188 if (phdr_size == (bfd_size_type) -1)
7189 {
7190 struct elf_segment_map *m;
7191
7192 phdr_size = 0;
7193 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7194 phdr_size += bed->s->sizeof_phdr;
7195
7196 if (phdr_size == 0)
7197 phdr_size = get_program_header_size (abfd, info);
7198 }
7199
7200 elf_tdata (abfd)->program_header_size = phdr_size;
7201 ret += phdr_size;
7202 }
7203
7204 return ret;
7205}
7206
7207bfd_boolean
7208_bfd_elf_set_section_contents (bfd *abfd,
7209 sec_ptr section,
7210 const void *location,
7211 file_ptr offset,
7212 bfd_size_type count)
7213{
7214 Elf_Internal_Shdr *hdr;
7215 bfd_signed_vma pos;
7216
7217 if (! abfd->output_has_begun
7218 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7219 return FALSE;
7220
7221 hdr = &elf_section_data (section)->this_hdr;
7222 pos = hdr->sh_offset + offset;
7223 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7224 || bfd_bwrite (location, count, abfd) != count)
7225 return FALSE;
7226
7227 return TRUE;
7228}
7229
7230void
7231_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7232 arelent *cache_ptr ATTRIBUTE_UNUSED,
7233 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7234{
7235 abort ();
7236}
7237
7238/* Try to convert a non-ELF reloc into an ELF one. */
7239
7240bfd_boolean
7241_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7242{
7243 /* Check whether we really have an ELF howto. */
7244
7245 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7246 {
7247 bfd_reloc_code_real_type code;
7248 reloc_howto_type *howto;
7249
7250 /* Alien reloc: Try to determine its type to replace it with an
7251 equivalent ELF reloc. */
7252
7253 if (areloc->howto->pc_relative)
7254 {
7255 switch (areloc->howto->bitsize)
7256 {
7257 case 8:
7258 code = BFD_RELOC_8_PCREL;
7259 break;
7260 case 12:
7261 code = BFD_RELOC_12_PCREL;
7262 break;
7263 case 16:
7264 code = BFD_RELOC_16_PCREL;
7265 break;
7266 case 24:
7267 code = BFD_RELOC_24_PCREL;
7268 break;
7269 case 32:
7270 code = BFD_RELOC_32_PCREL;
7271 break;
7272 case 64:
7273 code = BFD_RELOC_64_PCREL;
7274 break;
7275 default:
7276 goto fail;
7277 }
7278
7279 howto = bfd_reloc_type_lookup (abfd, code);
7280
7281 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7282 {
7283 if (howto->pcrel_offset)
7284 areloc->addend += areloc->address;
7285 else
7286 areloc->addend -= areloc->address; /* addend is unsigned!! */
7287 }
7288 }
7289 else
7290 {
7291 switch (areloc->howto->bitsize)
7292 {
7293 case 8:
7294 code = BFD_RELOC_8;
7295 break;
7296 case 14:
7297 code = BFD_RELOC_14;
7298 break;
7299 case 16:
7300 code = BFD_RELOC_16;
7301 break;
7302 case 26:
7303 code = BFD_RELOC_26;
7304 break;
7305 case 32:
7306 code = BFD_RELOC_32;
7307 break;
7308 case 64:
7309 code = BFD_RELOC_64;
7310 break;
7311 default:
7312 goto fail;
7313 }
7314
7315 howto = bfd_reloc_type_lookup (abfd, code);
7316 }
7317
7318 if (howto)
7319 areloc->howto = howto;
7320 else
7321 goto fail;
7322 }
7323
7324 return TRUE;
7325
7326 fail:
7327 (*_bfd_error_handler)
7328 (_("%B: unsupported relocation type %s"),
7329 abfd, areloc->howto->name);
7330 bfd_set_error (bfd_error_bad_value);
7331 return FALSE;
7332}
7333
7334bfd_boolean
7335_bfd_elf_close_and_cleanup (bfd *abfd)
7336{
7337 if (bfd_get_format (abfd) == bfd_object)
7338 {
7339 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7340 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7341 _bfd_dwarf2_cleanup_debug_info (abfd);
7342 }
7343
7344 return _bfd_generic_close_and_cleanup (abfd);
7345}
7346
7347/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7348 in the relocation's offset. Thus we cannot allow any sort of sanity
7349 range-checking to interfere. There is nothing else to do in processing
7350 this reloc. */
7351
7352bfd_reloc_status_type
7353_bfd_elf_rel_vtable_reloc_fn
7354 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7355 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7356 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7357 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7358{
7359 return bfd_reloc_ok;
7360}
7361\f
7362/* Elf core file support. Much of this only works on native
7363 toolchains, since we rely on knowing the
7364 machine-dependent procfs structure in order to pick
7365 out details about the corefile. */
7366
7367#ifdef HAVE_SYS_PROCFS_H
7368# include <sys/procfs.h>
7369#endif
7370
7371/* FIXME: this is kinda wrong, but it's what gdb wants. */
7372
7373static int
7374elfcore_make_pid (bfd *abfd)
7375{
7376 return ((elf_tdata (abfd)->core_lwpid << 16)
7377 + (elf_tdata (abfd)->core_pid));
7378}
7379
7380/* If there isn't a section called NAME, make one, using
7381 data from SECT. Note, this function will generate a
7382 reference to NAME, so you shouldn't deallocate or
7383 overwrite it. */
7384
7385static bfd_boolean
7386elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7387{
7388 asection *sect2;
7389
7390 if (bfd_get_section_by_name (abfd, name) != NULL)
7391 return TRUE;
7392
7393 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7394 if (sect2 == NULL)
7395 return FALSE;
7396
7397 sect2->size = sect->size;
7398 sect2->filepos = sect->filepos;
7399 sect2->alignment_power = sect->alignment_power;
7400 return TRUE;
7401}
7402
7403/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7404 actually creates up to two pseudosections:
7405 - For the single-threaded case, a section named NAME, unless
7406 such a section already exists.
7407 - For the multi-threaded case, a section named "NAME/PID", where
7408 PID is elfcore_make_pid (abfd).
7409 Both pseudosections have identical contents. */
7410bfd_boolean
7411_bfd_elfcore_make_pseudosection (bfd *abfd,
7412 char *name,
7413 size_t size,
7414 ufile_ptr filepos)
7415{
7416 char buf[100];
7417 char *threaded_name;
7418 size_t len;
7419 asection *sect;
7420
7421 /* Build the section name. */
7422
7423 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7424 len = strlen (buf) + 1;
7425 threaded_name = bfd_alloc (abfd, len);
7426 if (threaded_name == NULL)
7427 return FALSE;
7428 memcpy (threaded_name, buf, len);
7429
7430 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7431 SEC_HAS_CONTENTS);
7432 if (sect == NULL)
7433 return FALSE;
7434 sect->size = size;
7435 sect->filepos = filepos;
7436 sect->alignment_power = 2;
7437
7438 return elfcore_maybe_make_sect (abfd, name, sect);
7439}
7440
7441/* prstatus_t exists on:
7442 solaris 2.5+
7443 linux 2.[01] + glibc
7444 unixware 4.2
7445*/
7446
7447#if defined (HAVE_PRSTATUS_T)
7448
7449static bfd_boolean
7450elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7451{
7452 size_t size;
7453 int offset;
7454
7455 if (note->descsz == sizeof (prstatus_t))
7456 {
7457 prstatus_t prstat;
7458
7459 size = sizeof (prstat.pr_reg);
7460 offset = offsetof (prstatus_t, pr_reg);
7461 memcpy (&prstat, note->descdata, sizeof (prstat));
7462
7463 /* Do not overwrite the core signal if it
7464 has already been set by another thread. */
7465 if (elf_tdata (abfd)->core_signal == 0)
7466 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7467 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7468
7469 /* pr_who exists on:
7470 solaris 2.5+
7471 unixware 4.2
7472 pr_who doesn't exist on:
7473 linux 2.[01]
7474 */
7475#if defined (HAVE_PRSTATUS_T_PR_WHO)
7476 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7477#endif
7478 }
7479#if defined (HAVE_PRSTATUS32_T)
7480 else if (note->descsz == sizeof (prstatus32_t))
7481 {
7482 /* 64-bit host, 32-bit corefile */
7483 prstatus32_t prstat;
7484
7485 size = sizeof (prstat.pr_reg);
7486 offset = offsetof (prstatus32_t, pr_reg);
7487 memcpy (&prstat, note->descdata, sizeof (prstat));
7488
7489 /* Do not overwrite the core signal if it
7490 has already been set by another thread. */
7491 if (elf_tdata (abfd)->core_signal == 0)
7492 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7493 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7494
7495 /* pr_who exists on:
7496 solaris 2.5+
7497 unixware 4.2
7498 pr_who doesn't exist on:
7499 linux 2.[01]
7500 */
7501#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7502 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7503#endif
7504 }
7505#endif /* HAVE_PRSTATUS32_T */
7506 else
7507 {
7508 /* Fail - we don't know how to handle any other
7509 note size (ie. data object type). */
7510 return TRUE;
7511 }
7512
7513 /* Make a ".reg/999" section and a ".reg" section. */
7514 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7515 size, note->descpos + offset);
7516}
7517#endif /* defined (HAVE_PRSTATUS_T) */
7518
7519/* Create a pseudosection containing the exact contents of NOTE. */
7520static bfd_boolean
7521elfcore_make_note_pseudosection (bfd *abfd,
7522 char *name,
7523 Elf_Internal_Note *note)
7524{
7525 return _bfd_elfcore_make_pseudosection (abfd, name,
7526 note->descsz, note->descpos);
7527}
7528
7529/* There isn't a consistent prfpregset_t across platforms,
7530 but it doesn't matter, because we don't have to pick this
7531 data structure apart. */
7532
7533static bfd_boolean
7534elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7535{
7536 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7537}
7538
7539/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7540 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7541 literally. */
7542
7543static bfd_boolean
7544elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7545{
7546 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7547}
7548
7549#if defined (HAVE_PRPSINFO_T)
7550typedef prpsinfo_t elfcore_psinfo_t;
7551#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7552typedef prpsinfo32_t elfcore_psinfo32_t;
7553#endif
7554#endif
7555
7556#if defined (HAVE_PSINFO_T)
7557typedef psinfo_t elfcore_psinfo_t;
7558#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7559typedef psinfo32_t elfcore_psinfo32_t;
7560#endif
7561#endif
7562
7563/* return a malloc'ed copy of a string at START which is at
7564 most MAX bytes long, possibly without a terminating '\0'.
7565 the copy will always have a terminating '\0'. */
7566
7567char *
7568_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7569{
7570 char *dups;
7571 char *end = memchr (start, '\0', max);
7572 size_t len;
7573
7574 if (end == NULL)
7575 len = max;
7576 else
7577 len = end - start;
7578
7579 dups = bfd_alloc (abfd, len + 1);
7580 if (dups == NULL)
7581 return NULL;
7582
7583 memcpy (dups, start, len);
7584 dups[len] = '\0';
7585
7586 return dups;
7587}
7588
7589#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7590static bfd_boolean
7591elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7592{
7593 if (note->descsz == sizeof (elfcore_psinfo_t))
7594 {
7595 elfcore_psinfo_t psinfo;
7596
7597 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7598
7599 elf_tdata (abfd)->core_program
7600 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7601 sizeof (psinfo.pr_fname));
7602
7603 elf_tdata (abfd)->core_command
7604 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7605 sizeof (psinfo.pr_psargs));
7606 }
7607#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7608 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7609 {
7610 /* 64-bit host, 32-bit corefile */
7611 elfcore_psinfo32_t psinfo;
7612
7613 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7614
7615 elf_tdata (abfd)->core_program
7616 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7617 sizeof (psinfo.pr_fname));
7618
7619 elf_tdata (abfd)->core_command
7620 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7621 sizeof (psinfo.pr_psargs));
7622 }
7623#endif
7624
7625 else
7626 {
7627 /* Fail - we don't know how to handle any other
7628 note size (ie. data object type). */
7629 return TRUE;
7630 }
7631
7632 /* Note that for some reason, a spurious space is tacked
7633 onto the end of the args in some (at least one anyway)
7634 implementations, so strip it off if it exists. */
7635
7636 {
7637 char *command = elf_tdata (abfd)->core_command;
7638 int n = strlen (command);
7639
7640 if (0 < n && command[n - 1] == ' ')
7641 command[n - 1] = '\0';
7642 }
7643
7644 return TRUE;
7645}
7646#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7647
7648#if defined (HAVE_PSTATUS_T)
7649static bfd_boolean
7650elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7651{
7652 if (note->descsz == sizeof (pstatus_t)
7653#if defined (HAVE_PXSTATUS_T)
7654 || note->descsz == sizeof (pxstatus_t)
7655#endif
7656 )
7657 {
7658 pstatus_t pstat;
7659
7660 memcpy (&pstat, note->descdata, sizeof (pstat));
7661
7662 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7663 }
7664#if defined (HAVE_PSTATUS32_T)
7665 else if (note->descsz == sizeof (pstatus32_t))
7666 {
7667 /* 64-bit host, 32-bit corefile */
7668 pstatus32_t pstat;
7669
7670 memcpy (&pstat, note->descdata, sizeof (pstat));
7671
7672 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7673 }
7674#endif
7675 /* Could grab some more details from the "representative"
7676 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7677 NT_LWPSTATUS note, presumably. */
7678
7679 return TRUE;
7680}
7681#endif /* defined (HAVE_PSTATUS_T) */
7682
7683#if defined (HAVE_LWPSTATUS_T)
7684static bfd_boolean
7685elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7686{
7687 lwpstatus_t lwpstat;
7688 char buf[100];
7689 char *name;
7690 size_t len;
7691 asection *sect;
7692
7693 if (note->descsz != sizeof (lwpstat)
7694#if defined (HAVE_LWPXSTATUS_T)
7695 && note->descsz != sizeof (lwpxstatus_t)
7696#endif
7697 )
7698 return TRUE;
7699
7700 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7701
7702 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7703 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7704
7705 /* Make a ".reg/999" section. */
7706
7707 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7708 len = strlen (buf) + 1;
7709 name = bfd_alloc (abfd, len);
7710 if (name == NULL)
7711 return FALSE;
7712 memcpy (name, buf, len);
7713
7714 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7715 if (sect == NULL)
7716 return FALSE;
7717
7718#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7719 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7720 sect->filepos = note->descpos
7721 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7722#endif
7723
7724#if defined (HAVE_LWPSTATUS_T_PR_REG)
7725 sect->size = sizeof (lwpstat.pr_reg);
7726 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7727#endif
7728
7729 sect->alignment_power = 2;
7730
7731 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7732 return FALSE;
7733
7734 /* Make a ".reg2/999" section */
7735
7736 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7737 len = strlen (buf) + 1;
7738 name = bfd_alloc (abfd, len);
7739 if (name == NULL)
7740 return FALSE;
7741 memcpy (name, buf, len);
7742
7743 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7744 if (sect == NULL)
7745 return FALSE;
7746
7747#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7748 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7749 sect->filepos = note->descpos
7750 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7751#endif
7752
7753#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7754 sect->size = sizeof (lwpstat.pr_fpreg);
7755 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7756#endif
7757
7758 sect->alignment_power = 2;
7759
7760 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7761}
7762#endif /* defined (HAVE_LWPSTATUS_T) */
7763
7764#if defined (HAVE_WIN32_PSTATUS_T)
7765static bfd_boolean
7766elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7767{
7768 char buf[30];
7769 char *name;
7770 size_t len;
7771 asection *sect;
7772 win32_pstatus_t pstatus;
7773
7774 if (note->descsz < sizeof (pstatus))
7775 return TRUE;
7776
7777 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7778
7779 switch (pstatus.data_type)
7780 {
7781 case NOTE_INFO_PROCESS:
7782 /* FIXME: need to add ->core_command. */
7783 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7784 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7785 break;
7786
7787 case NOTE_INFO_THREAD:
7788 /* Make a ".reg/999" section. */
7789 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7790
7791 len = strlen (buf) + 1;
7792 name = bfd_alloc (abfd, len);
7793 if (name == NULL)
7794 return FALSE;
7795
7796 memcpy (name, buf, len);
7797
7798 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7799 if (sect == NULL)
7800 return FALSE;
7801
7802 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7803 sect->filepos = (note->descpos
7804 + offsetof (struct win32_pstatus,
7805 data.thread_info.thread_context));
7806 sect->alignment_power = 2;
7807
7808 if (pstatus.data.thread_info.is_active_thread)
7809 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7810 return FALSE;
7811 break;
7812
7813 case NOTE_INFO_MODULE:
7814 /* Make a ".module/xxxxxxxx" section. */
7815 sprintf (buf, ".module/%08lx",
7816 (long) pstatus.data.module_info.base_address);
7817
7818 len = strlen (buf) + 1;
7819 name = bfd_alloc (abfd, len);
7820 if (name == NULL)
7821 return FALSE;
7822
7823 memcpy (name, buf, len);
7824
7825 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7826
7827 if (sect == NULL)
7828 return FALSE;
7829
7830 sect->size = note->descsz;
7831 sect->filepos = note->descpos;
7832 sect->alignment_power = 2;
7833 break;
7834
7835 default:
7836 return TRUE;
7837 }
7838
7839 return TRUE;
7840}
7841#endif /* HAVE_WIN32_PSTATUS_T */
7842
7843static bfd_boolean
7844elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7845{
7846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7847
7848 switch (note->type)
7849 {
7850 default:
7851 return TRUE;
7852
7853 case NT_PRSTATUS:
7854 if (bed->elf_backend_grok_prstatus)
7855 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7856 return TRUE;
7857#if defined (HAVE_PRSTATUS_T)
7858 return elfcore_grok_prstatus (abfd, note);
7859#else
7860 return TRUE;
7861#endif
7862
7863#if defined (HAVE_PSTATUS_T)
7864 case NT_PSTATUS:
7865 return elfcore_grok_pstatus (abfd, note);
7866#endif
7867
7868#if defined (HAVE_LWPSTATUS_T)
7869 case NT_LWPSTATUS:
7870 return elfcore_grok_lwpstatus (abfd, note);
7871#endif
7872
7873 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7874 return elfcore_grok_prfpreg (abfd, note);
7875
7876#if defined (HAVE_WIN32_PSTATUS_T)
7877 case NT_WIN32PSTATUS:
7878 return elfcore_grok_win32pstatus (abfd, note);
7879#endif
7880
7881 case NT_PRXFPREG: /* Linux SSE extension */
7882 if (note->namesz == 6
7883 && strcmp (note->namedata, "LINUX") == 0)
7884 return elfcore_grok_prxfpreg (abfd, note);
7885 else
7886 return TRUE;
7887
7888 case NT_PRPSINFO:
7889 case NT_PSINFO:
7890 if (bed->elf_backend_grok_psinfo)
7891 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7892 return TRUE;
7893#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7894 return elfcore_grok_psinfo (abfd, note);
7895#else
7896 return TRUE;
7897#endif
7898
7899 case NT_AUXV:
7900 {
7901 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7902 SEC_HAS_CONTENTS);
7903
7904 if (sect == NULL)
7905 return FALSE;
7906 sect->size = note->descsz;
7907 sect->filepos = note->descpos;
7908 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7909
7910 return TRUE;
7911 }
7912 }
7913}
7914
7915static bfd_boolean
7916elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7917{
7918 char *cp;
7919
7920 cp = strchr (note->namedata, '@');
7921 if (cp != NULL)
7922 {
7923 *lwpidp = atoi(cp + 1);
7924 return TRUE;
7925 }
7926 return FALSE;
7927}
7928
7929static bfd_boolean
7930elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7931{
7932
7933 /* Signal number at offset 0x08. */
7934 elf_tdata (abfd)->core_signal
7935 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7936
7937 /* Process ID at offset 0x50. */
7938 elf_tdata (abfd)->core_pid
7939 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7940
7941 /* Command name at 0x7c (max 32 bytes, including nul). */
7942 elf_tdata (abfd)->core_command
7943 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7944
7945 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7946 note);
7947}
7948
7949static bfd_boolean
7950elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7951{
7952 int lwp;
7953
7954 if (elfcore_netbsd_get_lwpid (note, &lwp))
7955 elf_tdata (abfd)->core_lwpid = lwp;
7956
7957 if (note->type == NT_NETBSDCORE_PROCINFO)
7958 {
7959 /* NetBSD-specific core "procinfo". Note that we expect to
7960 find this note before any of the others, which is fine,
7961 since the kernel writes this note out first when it
7962 creates a core file. */
7963
7964 return elfcore_grok_netbsd_procinfo (abfd, note);
7965 }
7966
7967 /* As of Jan 2002 there are no other machine-independent notes
7968 defined for NetBSD core files. If the note type is less
7969 than the start of the machine-dependent note types, we don't
7970 understand it. */
7971
7972 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7973 return TRUE;
7974
7975
7976 switch (bfd_get_arch (abfd))
7977 {
7978 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7979 PT_GETFPREGS == mach+2. */
7980
7981 case bfd_arch_alpha:
7982 case bfd_arch_sparc:
7983 switch (note->type)
7984 {
7985 case NT_NETBSDCORE_FIRSTMACH+0:
7986 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7987
7988 case NT_NETBSDCORE_FIRSTMACH+2:
7989 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7990
7991 default:
7992 return TRUE;
7993 }
7994
7995 /* On all other arch's, PT_GETREGS == mach+1 and
7996 PT_GETFPREGS == mach+3. */
7997
7998 default:
7999 switch (note->type)
8000 {
8001 case NT_NETBSDCORE_FIRSTMACH+1:
8002 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8003
8004 case NT_NETBSDCORE_FIRSTMACH+3:
8005 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8006
8007 default:
8008 return TRUE;
8009 }
8010 }
8011 /* NOTREACHED */
8012}
8013
8014static bfd_boolean
8015elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8016{
8017 void *ddata = note->descdata;
8018 char buf[100];
8019 char *name;
8020 asection *sect;
8021 short sig;
8022 unsigned flags;
8023
8024 /* nto_procfs_status 'pid' field is at offset 0. */
8025 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8026
8027 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8028 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8029
8030 /* nto_procfs_status 'flags' field is at offset 8. */
8031 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8032
8033 /* nto_procfs_status 'what' field is at offset 14. */
8034 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8035 {
8036 elf_tdata (abfd)->core_signal = sig;
8037 elf_tdata (abfd)->core_lwpid = *tid;
8038 }
8039
8040 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8041 do not come from signals so we make sure we set the current
8042 thread just in case. */
8043 if (flags & 0x00000080)
8044 elf_tdata (abfd)->core_lwpid = *tid;
8045
8046 /* Make a ".qnx_core_status/%d" section. */
8047 sprintf (buf, ".qnx_core_status/%ld", *tid);
8048
8049 name = bfd_alloc (abfd, strlen (buf) + 1);
8050 if (name == NULL)
8051 return FALSE;
8052 strcpy (name, buf);
8053
8054 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8055 if (sect == NULL)
8056 return FALSE;
8057
8058 sect->size = note->descsz;
8059 sect->filepos = note->descpos;
8060 sect->alignment_power = 2;
8061
8062 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8063}
8064
8065static bfd_boolean
8066elfcore_grok_nto_regs (bfd *abfd,
8067 Elf_Internal_Note *note,
8068 long tid,
8069 char *base)
8070{
8071 char buf[100];
8072 char *name;
8073 asection *sect;
8074
8075 /* Make a "(base)/%d" section. */
8076 sprintf (buf, "%s/%ld", base, tid);
8077
8078 name = bfd_alloc (abfd, strlen (buf) + 1);
8079 if (name == NULL)
8080 return FALSE;
8081 strcpy (name, buf);
8082
8083 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8084 if (sect == NULL)
8085 return FALSE;
8086
8087 sect->size = note->descsz;
8088 sect->filepos = note->descpos;
8089 sect->alignment_power = 2;
8090
8091 /* This is the current thread. */
8092 if (elf_tdata (abfd)->core_lwpid == tid)
8093 return elfcore_maybe_make_sect (abfd, base, sect);
8094
8095 return TRUE;
8096}
8097
8098#define BFD_QNT_CORE_INFO 7
8099#define BFD_QNT_CORE_STATUS 8
8100#define BFD_QNT_CORE_GREG 9
8101#define BFD_QNT_CORE_FPREG 10
8102
8103static bfd_boolean
8104elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8105{
8106 /* Every GREG section has a STATUS section before it. Store the
8107 tid from the previous call to pass down to the next gregs
8108 function. */
8109 static long tid = 1;
8110
8111 switch (note->type)
8112 {
8113 case BFD_QNT_CORE_INFO:
8114 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8115 case BFD_QNT_CORE_STATUS:
8116 return elfcore_grok_nto_status (abfd, note, &tid);
8117 case BFD_QNT_CORE_GREG:
8118 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8119 case BFD_QNT_CORE_FPREG:
8120 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8121 default:
8122 return TRUE;
8123 }
8124}
8125
8126/* Function: elfcore_write_note
8127
8128 Inputs:
8129 buffer to hold note, and current size of buffer
8130 name of note
8131 type of note
8132 data for note
8133 size of data for note
8134
8135 Writes note to end of buffer. ELF64 notes are written exactly as
8136 for ELF32, despite the current (as of 2006) ELF gabi specifying
8137 that they ought to have 8-byte namesz and descsz field, and have
8138 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8139
8140 Return:
8141 Pointer to realloc'd buffer, *BUFSIZ updated. */
8142
8143char *
8144elfcore_write_note (bfd *abfd,
8145 char *buf,
8146 int *bufsiz,
8147 const char *name,
8148 int type,
8149 const void *input,
8150 int size)
8151{
8152 Elf_External_Note *xnp;
8153 size_t namesz;
8154 size_t newspace;
8155 char *dest;
8156
8157 namesz = 0;
8158 if (name != NULL)
8159 namesz = strlen (name) + 1;
8160
8161 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8162
8163 buf = realloc (buf, *bufsiz + newspace);
8164 dest = buf + *bufsiz;
8165 *bufsiz += newspace;
8166 xnp = (Elf_External_Note *) dest;
8167 H_PUT_32 (abfd, namesz, xnp->namesz);
8168 H_PUT_32 (abfd, size, xnp->descsz);
8169 H_PUT_32 (abfd, type, xnp->type);
8170 dest = xnp->name;
8171 if (name != NULL)
8172 {
8173 memcpy (dest, name, namesz);
8174 dest += namesz;
8175 while (namesz & 3)
8176 {
8177 *dest++ = '\0';
8178 ++namesz;
8179 }
8180 }
8181 memcpy (dest, input, size);
8182 dest += size;
8183 while (size & 3)
8184 {
8185 *dest++ = '\0';
8186 ++size;
8187 }
8188 return buf;
8189}
8190
8191#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8192char *
8193elfcore_write_prpsinfo (bfd *abfd,
8194 char *buf,
8195 int *bufsiz,
8196 const char *fname,
8197 const char *psargs)
8198{
8199 const char *note_name = "CORE";
8200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8201
8202 if (bed->elf_backend_write_core_note != NULL)
8203 {
8204 char *ret;
8205 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8206 NT_PRPSINFO, fname, psargs);
8207 if (ret != NULL)
8208 return ret;
8209 }
8210
8211#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8212 if (bed->s->elfclass == ELFCLASS32)
8213 {
8214#if defined (HAVE_PSINFO32_T)
8215 psinfo32_t data;
8216 int note_type = NT_PSINFO;
8217#else
8218 prpsinfo32_t data;
8219 int note_type = NT_PRPSINFO;
8220#endif
8221
8222 memset (&data, 0, sizeof (data));
8223 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8224 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8225 return elfcore_write_note (abfd, buf, bufsiz,
8226 note_name, note_type, &data, sizeof (data));
8227 }
8228 else
8229#endif
8230 {
8231#if defined (HAVE_PSINFO_T)
8232 psinfo_t data;
8233 int note_type = NT_PSINFO;
8234#else
8235 prpsinfo_t data;
8236 int note_type = NT_PRPSINFO;
8237#endif
8238
8239 memset (&data, 0, sizeof (data));
8240 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8241 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8242 return elfcore_write_note (abfd, buf, bufsiz,
8243 note_name, note_type, &data, sizeof (data));
8244 }
8245}
8246#endif /* PSINFO_T or PRPSINFO_T */
8247
8248#if defined (HAVE_PRSTATUS_T)
8249char *
8250elfcore_write_prstatus (bfd *abfd,
8251 char *buf,
8252 int *bufsiz,
8253 long pid,
8254 int cursig,
8255 const void *gregs)
8256{
8257 const char *note_name = "CORE";
8258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8259
8260 if (bed->elf_backend_write_core_note != NULL)
8261 {
8262 char *ret;
8263 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8264 NT_PRSTATUS,
8265 pid, cursig, gregs);
8266 if (ret != NULL)
8267 return ret;
8268 }
8269
8270#if defined (HAVE_PRSTATUS32_T)
8271 if (bed->s->elfclass == ELFCLASS32)
8272 {
8273 prstatus32_t prstat;
8274
8275 memset (&prstat, 0, sizeof (prstat));
8276 prstat.pr_pid = pid;
8277 prstat.pr_cursig = cursig;
8278 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8279 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8280 NT_PRSTATUS, &prstat, sizeof (prstat));
8281 }
8282 else
8283#endif
8284 {
8285 prstatus_t prstat;
8286
8287 memset (&prstat, 0, sizeof (prstat));
8288 prstat.pr_pid = pid;
8289 prstat.pr_cursig = cursig;
8290 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8291 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8292 NT_PRSTATUS, &prstat, sizeof (prstat));
8293 }
8294}
8295#endif /* HAVE_PRSTATUS_T */
8296
8297#if defined (HAVE_LWPSTATUS_T)
8298char *
8299elfcore_write_lwpstatus (bfd *abfd,
8300 char *buf,
8301 int *bufsiz,
8302 long pid,
8303 int cursig,
8304 const void *gregs)
8305{
8306 lwpstatus_t lwpstat;
8307 const char *note_name = "CORE";
8308
8309 memset (&lwpstat, 0, sizeof (lwpstat));
8310 lwpstat.pr_lwpid = pid >> 16;
8311 lwpstat.pr_cursig = cursig;
8312#if defined (HAVE_LWPSTATUS_T_PR_REG)
8313 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8314#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8315#if !defined(gregs)
8316 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8317 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8318#else
8319 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8320 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8321#endif
8322#endif
8323 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8324 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8325}
8326#endif /* HAVE_LWPSTATUS_T */
8327
8328#if defined (HAVE_PSTATUS_T)
8329char *
8330elfcore_write_pstatus (bfd *abfd,
8331 char *buf,
8332 int *bufsiz,
8333 long pid,
8334 int cursig ATTRIBUTE_UNUSED,
8335 const void *gregs ATTRIBUTE_UNUSED)
8336{
8337 const char *note_name = "CORE";
8338#if defined (HAVE_PSTATUS32_T)
8339 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8340
8341 if (bed->s->elfclass == ELFCLASS32)
8342 {
8343 pstatus32_t pstat;
8344
8345 memset (&pstat, 0, sizeof (pstat));
8346 pstat.pr_pid = pid & 0xffff;
8347 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8348 NT_PSTATUS, &pstat, sizeof (pstat));
8349 return buf;
8350 }
8351 else
8352#endif
8353 {
8354 pstatus_t pstat;
8355
8356 memset (&pstat, 0, sizeof (pstat));
8357 pstat.pr_pid = pid & 0xffff;
8358 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8359 NT_PSTATUS, &pstat, sizeof (pstat));
8360 return buf;
8361 }
8362}
8363#endif /* HAVE_PSTATUS_T */
8364
8365char *
8366elfcore_write_prfpreg (bfd *abfd,
8367 char *buf,
8368 int *bufsiz,
8369 const void *fpregs,
8370 int size)
8371{
8372 const char *note_name = "CORE";
8373 return elfcore_write_note (abfd, buf, bufsiz,
8374 note_name, NT_FPREGSET, fpregs, size);
8375}
8376
8377char *
8378elfcore_write_prxfpreg (bfd *abfd,
8379 char *buf,
8380 int *bufsiz,
8381 const void *xfpregs,
8382 int size)
8383{
8384 char *note_name = "LINUX";
8385 return elfcore_write_note (abfd, buf, bufsiz,
8386 note_name, NT_PRXFPREG, xfpregs, size);
8387}
8388
8389static bfd_boolean
8390elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8391{
8392 char *buf;
8393 char *p;
8394
8395 if (size <= 0)
8396 return TRUE;
8397
8398 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8399 return FALSE;
8400
8401 buf = bfd_malloc (size);
8402 if (buf == NULL)
8403 return FALSE;
8404
8405 if (bfd_bread (buf, size, abfd) != size)
8406 {
8407 error:
8408 free (buf);
8409 return FALSE;
8410 }
8411
8412 p = buf;
8413 while (p < buf + size)
8414 {
8415 /* FIXME: bad alignment assumption. */
8416 Elf_External_Note *xnp = (Elf_External_Note *) p;
8417 Elf_Internal_Note in;
8418
8419 in.type = H_GET_32 (abfd, xnp->type);
8420
8421 in.namesz = H_GET_32 (abfd, xnp->namesz);
8422 in.namedata = xnp->name;
8423
8424 in.descsz = H_GET_32 (abfd, xnp->descsz);
8425 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8426 in.descpos = offset + (in.descdata - buf);
8427
8428 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8429 {
8430 if (! elfcore_grok_netbsd_note (abfd, &in))
8431 goto error;
8432 }
8433 else if (CONST_STRNEQ (in.namedata, "QNX"))
8434 {
8435 if (! elfcore_grok_nto_note (abfd, &in))
8436 goto error;
8437 }
8438 else
8439 {
8440 if (! elfcore_grok_note (abfd, &in))
8441 goto error;
8442 }
8443
8444 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8445 }
8446
8447 free (buf);
8448 return TRUE;
8449}
8450\f
8451/* Providing external access to the ELF program header table. */
8452
8453/* Return an upper bound on the number of bytes required to store a
8454 copy of ABFD's program header table entries. Return -1 if an error
8455 occurs; bfd_get_error will return an appropriate code. */
8456
8457long
8458bfd_get_elf_phdr_upper_bound (bfd *abfd)
8459{
8460 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8461 {
8462 bfd_set_error (bfd_error_wrong_format);
8463 return -1;
8464 }
8465
8466 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8467}
8468
8469/* Copy ABFD's program header table entries to *PHDRS. The entries
8470 will be stored as an array of Elf_Internal_Phdr structures, as
8471 defined in include/elf/internal.h. To find out how large the
8472 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8473
8474 Return the number of program header table entries read, or -1 if an
8475 error occurs; bfd_get_error will return an appropriate code. */
8476
8477int
8478bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8479{
8480 int num_phdrs;
8481
8482 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8483 {
8484 bfd_set_error (bfd_error_wrong_format);
8485 return -1;
8486 }
8487
8488 num_phdrs = elf_elfheader (abfd)->e_phnum;
8489 memcpy (phdrs, elf_tdata (abfd)->phdr,
8490 num_phdrs * sizeof (Elf_Internal_Phdr));
8491
8492 return num_phdrs;
8493}
8494
8495void
8496_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8497{
8498#ifdef BFD64
8499 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8500
8501 i_ehdrp = elf_elfheader (abfd);
8502 if (i_ehdrp == NULL)
8503 sprintf_vma (buf, value);
8504 else
8505 {
8506 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8507 {
8508#if BFD_HOST_64BIT_LONG
8509 sprintf (buf, "%016lx", value);
8510#else
8511 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8512 _bfd_int64_low (value));
8513#endif
8514 }
8515 else
8516 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8517 }
8518#else
8519 sprintf_vma (buf, value);
8520#endif
8521}
8522
8523void
8524_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8525{
8526#ifdef BFD64
8527 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8528
8529 i_ehdrp = elf_elfheader (abfd);
8530 if (i_ehdrp == NULL)
8531 fprintf_vma ((FILE *) stream, value);
8532 else
8533 {
8534 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8535 {
8536#if BFD_HOST_64BIT_LONG
8537 fprintf ((FILE *) stream, "%016lx", value);
8538#else
8539 fprintf ((FILE *) stream, "%08lx%08lx",
8540 _bfd_int64_high (value), _bfd_int64_low (value));
8541#endif
8542 }
8543 else
8544 fprintf ((FILE *) stream, "%08lx",
8545 (unsigned long) (value & 0xffffffff));
8546 }
8547#else
8548 fprintf_vma ((FILE *) stream, value);
8549#endif
8550}
8551
8552enum elf_reloc_type_class
8553_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8554{
8555 return reloc_class_normal;
8556}
8557
8558/* For RELA architectures, return the relocation value for a
8559 relocation against a local symbol. */
8560
8561bfd_vma
8562_bfd_elf_rela_local_sym (bfd *abfd,
8563 Elf_Internal_Sym *sym,
8564 asection **psec,
8565 Elf_Internal_Rela *rel)
8566{
8567 asection *sec = *psec;
8568 bfd_vma relocation;
8569
8570 relocation = (sec->output_section->vma
8571 + sec->output_offset
8572 + sym->st_value);
8573 if ((sec->flags & SEC_MERGE)
8574 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8575 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8576 {
8577 rel->r_addend =
8578 _bfd_merged_section_offset (abfd, psec,
8579 elf_section_data (sec)->sec_info,
8580 sym->st_value + rel->r_addend);
8581 if (sec != *psec)
8582 {
8583 /* If we have changed the section, and our original section is
8584 marked with SEC_EXCLUDE, it means that the original
8585 SEC_MERGE section has been completely subsumed in some
8586 other SEC_MERGE section. In this case, we need to leave
8587 some info around for --emit-relocs. */
8588 if ((sec->flags & SEC_EXCLUDE) != 0)
8589 sec->kept_section = *psec;
8590 sec = *psec;
8591 }
8592 rel->r_addend -= relocation;
8593 rel->r_addend += sec->output_section->vma + sec->output_offset;
8594 }
8595 return relocation;
8596}
8597
8598bfd_vma
8599_bfd_elf_rel_local_sym (bfd *abfd,
8600 Elf_Internal_Sym *sym,
8601 asection **psec,
8602 bfd_vma addend)
8603{
8604 asection *sec = *psec;
8605
8606 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8607 return sym->st_value + addend;
8608
8609 return _bfd_merged_section_offset (abfd, psec,
8610 elf_section_data (sec)->sec_info,
8611 sym->st_value + addend);
8612}
8613
8614bfd_vma
8615_bfd_elf_section_offset (bfd *abfd,
8616 struct bfd_link_info *info,
8617 asection *sec,
8618 bfd_vma offset)
8619{
8620 switch (sec->sec_info_type)
8621 {
8622 case ELF_INFO_TYPE_STABS:
8623 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8624 offset);
8625 case ELF_INFO_TYPE_EH_FRAME:
8626 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8627 default:
8628 return offset;
8629 }
8630}
8631\f
8632/* Create a new BFD as if by bfd_openr. Rather than opening a file,
8633 reconstruct an ELF file by reading the segments out of remote memory
8634 based on the ELF file header at EHDR_VMA and the ELF program headers it
8635 points to. If not null, *LOADBASEP is filled in with the difference
8636 between the VMAs from which the segments were read, and the VMAs the
8637 file headers (and hence BFD's idea of each section's VMA) put them at.
8638
8639 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8640 remote memory at target address VMA into the local buffer at MYADDR; it
8641 should return zero on success or an `errno' code on failure. TEMPL must
8642 be a BFD for an ELF target with the word size and byte order found in
8643 the remote memory. */
8644
8645bfd *
8646bfd_elf_bfd_from_remote_memory
8647 (bfd *templ,
8648 bfd_vma ehdr_vma,
8649 bfd_vma *loadbasep,
8650 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8651{
8652 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8653 (templ, ehdr_vma, loadbasep, target_read_memory);
8654}
8655\f
8656long
8657_bfd_elf_get_synthetic_symtab (bfd *abfd,
8658 long symcount ATTRIBUTE_UNUSED,
8659 asymbol **syms ATTRIBUTE_UNUSED,
8660 long dynsymcount,
8661 asymbol **dynsyms,
8662 asymbol **ret)
8663{
8664 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8665 asection *relplt;
8666 asymbol *s;
8667 const char *relplt_name;
8668 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8669 arelent *p;
8670 long count, i, n;
8671 size_t size;
8672 Elf_Internal_Shdr *hdr;
8673 char *names;
8674 asection *plt;
8675
8676 *ret = NULL;
8677
8678 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8679 return 0;
8680
8681 if (dynsymcount <= 0)
8682 return 0;
8683
8684 if (!bed->plt_sym_val)
8685 return 0;
8686
8687 relplt_name = bed->relplt_name;
8688 if (relplt_name == NULL)
8689 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8690 relplt = bfd_get_section_by_name (abfd, relplt_name);
8691 if (relplt == NULL)
8692 return 0;
8693
8694 hdr = &elf_section_data (relplt)->this_hdr;
8695 if (hdr->sh_link != elf_dynsymtab (abfd)
8696 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8697 return 0;
8698
8699 plt = bfd_get_section_by_name (abfd, ".plt");
8700 if (plt == NULL)
8701 return 0;
8702
8703 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8704 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8705 return -1;
8706
8707 count = relplt->size / hdr->sh_entsize;
8708 size = count * sizeof (asymbol);
8709 p = relplt->relocation;
8710 for (i = 0; i < count; i++, s++, p++)
8711 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8712
8713 s = *ret = bfd_malloc (size);
8714 if (s == NULL)
8715 return -1;
8716
8717 names = (char *) (s + count);
8718 p = relplt->relocation;
8719 n = 0;
8720 for (i = 0; i < count; i++, s++, p++)
8721 {
8722 size_t len;
8723 bfd_vma addr;
8724
8725 addr = bed->plt_sym_val (i, plt, p);
8726 if (addr == (bfd_vma) -1)
8727 continue;
8728
8729 *s = **p->sym_ptr_ptr;
8730 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8731 we are defining a symbol, ensure one of them is set. */
8732 if ((s->flags & BSF_LOCAL) == 0)
8733 s->flags |= BSF_GLOBAL;
8734 s->section = plt;
8735 s->value = addr - plt->vma;
8736 s->name = names;
8737 len = strlen ((*p->sym_ptr_ptr)->name);
8738 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8739 names += len;
8740 memcpy (names, "@plt", sizeof ("@plt"));
8741 names += sizeof ("@plt");
8742 ++n;
8743 }
8744
8745 return n;
8746}
8747
8748struct elf_symbuf_symbol
8749{
8750 unsigned long st_name; /* Symbol name, index in string tbl */
8751 unsigned char st_info; /* Type and binding attributes */
8752 unsigned char st_other; /* Visibilty, and target specific */
8753};
8754
8755struct elf_symbuf_head
8756{
8757 struct elf_symbuf_symbol *ssym;
8758 bfd_size_type count;
8759 unsigned int st_shndx;
8760};
8761
8762struct elf_symbol
8763{
8764 union
8765 {
8766 Elf_Internal_Sym *isym;
8767 struct elf_symbuf_symbol *ssym;
8768 } u;
8769 const char *name;
8770};
8771
8772/* Sort references to symbols by ascending section number. */
8773
8774static int
8775elf_sort_elf_symbol (const void *arg1, const void *arg2)
8776{
8777 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8778 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8779
8780 return s1->st_shndx - s2->st_shndx;
8781}
8782
8783static int
8784elf_sym_name_compare (const void *arg1, const void *arg2)
8785{
8786 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8787 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8788 return strcmp (s1->name, s2->name);
8789}
8790
8791static struct elf_symbuf_head *
8792elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8793{
8794 Elf_Internal_Sym **ind, **indbufend, **indbuf
8795 = bfd_malloc2 (symcount, sizeof (*indbuf));
8796 struct elf_symbuf_symbol *ssym;
8797 struct elf_symbuf_head *ssymbuf, *ssymhead;
8798 bfd_size_type i, shndx_count;
8799
8800 if (indbuf == NULL)
8801 return NULL;
8802
8803 for (ind = indbuf, i = 0; i < symcount; i++)
8804 if (isymbuf[i].st_shndx != SHN_UNDEF)
8805 *ind++ = &isymbuf[i];
8806 indbufend = ind;
8807
8808 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8809 elf_sort_elf_symbol);
8810
8811 shndx_count = 0;
8812 if (indbufend > indbuf)
8813 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8814 if (ind[0]->st_shndx != ind[1]->st_shndx)
8815 shndx_count++;
8816
8817 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8818 + (indbufend - indbuf) * sizeof (*ssymbuf));
8819 if (ssymbuf == NULL)
8820 {
8821 free (indbuf);
8822 return NULL;
8823 }
8824
8825 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8826 ssymbuf->ssym = NULL;
8827 ssymbuf->count = shndx_count;
8828 ssymbuf->st_shndx = 0;
8829 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8830 {
8831 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8832 {
8833 ssymhead++;
8834 ssymhead->ssym = ssym;
8835 ssymhead->count = 0;
8836 ssymhead->st_shndx = (*ind)->st_shndx;
8837 }
8838 ssym->st_name = (*ind)->st_name;
8839 ssym->st_info = (*ind)->st_info;
8840 ssym->st_other = (*ind)->st_other;
8841 ssymhead->count++;
8842 }
8843 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8844
8845 free (indbuf);
8846 return ssymbuf;
8847}
8848
8849/* Check if 2 sections define the same set of local and global
8850 symbols. */
8851
8852bfd_boolean
8853bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8854 struct bfd_link_info *info)
8855{
8856 bfd *bfd1, *bfd2;
8857 const struct elf_backend_data *bed1, *bed2;
8858 Elf_Internal_Shdr *hdr1, *hdr2;
8859 bfd_size_type symcount1, symcount2;
8860 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8861 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8862 Elf_Internal_Sym *isym, *isymend;
8863 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8864 bfd_size_type count1, count2, i;
8865 int shndx1, shndx2;
8866 bfd_boolean result;
8867
8868 bfd1 = sec1->owner;
8869 bfd2 = sec2->owner;
8870
8871 /* If both are .gnu.linkonce sections, they have to have the same
8872 section name. */
8873 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8874 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8875 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8876 sec2->name + sizeof ".gnu.linkonce") == 0;
8877
8878 /* Both sections have to be in ELF. */
8879 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8880 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8881 return FALSE;
8882
8883 if (elf_section_type (sec1) != elf_section_type (sec2))
8884 return FALSE;
8885
8886 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8887 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8888 {
8889 /* If both are members of section groups, they have to have the
8890 same group name. */
8891 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8892 return FALSE;
8893 }
8894
8895 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8896 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8897 if (shndx1 == -1 || shndx2 == -1)
8898 return FALSE;
8899
8900 bed1 = get_elf_backend_data (bfd1);
8901 bed2 = get_elf_backend_data (bfd2);
8902 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8903 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8904 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8905 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8906
8907 if (symcount1 == 0 || symcount2 == 0)
8908 return FALSE;
8909
8910 result = FALSE;
8911 isymbuf1 = NULL;
8912 isymbuf2 = NULL;
8913 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8914 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8915
8916 if (ssymbuf1 == NULL)
8917 {
8918 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8919 NULL, NULL, NULL);
8920 if (isymbuf1 == NULL)
8921 goto done;
8922
8923 if (!info->reduce_memory_overheads)
8924 elf_tdata (bfd1)->symbuf = ssymbuf1
8925 = elf_create_symbuf (symcount1, isymbuf1);
8926 }
8927
8928 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8929 {
8930 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8931 NULL, NULL, NULL);
8932 if (isymbuf2 == NULL)
8933 goto done;
8934
8935 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8936 elf_tdata (bfd2)->symbuf = ssymbuf2
8937 = elf_create_symbuf (symcount2, isymbuf2);
8938 }
8939
8940 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8941 {
8942 /* Optimized faster version. */
8943 bfd_size_type lo, hi, mid;
8944 struct elf_symbol *symp;
8945 struct elf_symbuf_symbol *ssym, *ssymend;
8946
8947 lo = 0;
8948 hi = ssymbuf1->count;
8949 ssymbuf1++;
8950 count1 = 0;
8951 while (lo < hi)
8952 {
8953 mid = (lo + hi) / 2;
8954 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
8955 hi = mid;
8956 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
8957 lo = mid + 1;
8958 else
8959 {
8960 count1 = ssymbuf1[mid].count;
8961 ssymbuf1 += mid;
8962 break;
8963 }
8964 }
8965
8966 lo = 0;
8967 hi = ssymbuf2->count;
8968 ssymbuf2++;
8969 count2 = 0;
8970 while (lo < hi)
8971 {
8972 mid = (lo + hi) / 2;
8973 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
8974 hi = mid;
8975 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
8976 lo = mid + 1;
8977 else
8978 {
8979 count2 = ssymbuf2[mid].count;
8980 ssymbuf2 += mid;
8981 break;
8982 }
8983 }
8984
8985 if (count1 == 0 || count2 == 0 || count1 != count2)
8986 goto done;
8987
8988 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8989 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
8990 if (symtable1 == NULL || symtable2 == NULL)
8991 goto done;
8992
8993 symp = symtable1;
8994 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8995 ssym < ssymend; ssym++, symp++)
8996 {
8997 symp->u.ssym = ssym;
8998 symp->name = bfd_elf_string_from_elf_section (bfd1,
8999 hdr1->sh_link,
9000 ssym->st_name);
9001 }
9002
9003 symp = symtable2;
9004 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9005 ssym < ssymend; ssym++, symp++)
9006 {
9007 symp->u.ssym = ssym;
9008 symp->name = bfd_elf_string_from_elf_section (bfd2,
9009 hdr2->sh_link,
9010 ssym->st_name);
9011 }
9012
9013 /* Sort symbol by name. */
9014 qsort (symtable1, count1, sizeof (struct elf_symbol),
9015 elf_sym_name_compare);
9016 qsort (symtable2, count1, sizeof (struct elf_symbol),
9017 elf_sym_name_compare);
9018
9019 for (i = 0; i < count1; i++)
9020 /* Two symbols must have the same binding, type and name. */
9021 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9022 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9023 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9024 goto done;
9025
9026 result = TRUE;
9027 goto done;
9028 }
9029
9030 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9031 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9032 if (symtable1 == NULL || symtable2 == NULL)
9033 goto done;
9034
9035 /* Count definitions in the section. */
9036 count1 = 0;
9037 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9038 if (isym->st_shndx == (unsigned int) shndx1)
9039 symtable1[count1++].u.isym = isym;
9040
9041 count2 = 0;
9042 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9043 if (isym->st_shndx == (unsigned int) shndx2)
9044 symtable2[count2++].u.isym = isym;
9045
9046 if (count1 == 0 || count2 == 0 || count1 != count2)
9047 goto done;
9048
9049 for (i = 0; i < count1; i++)
9050 symtable1[i].name
9051 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9052 symtable1[i].u.isym->st_name);
9053
9054 for (i = 0; i < count2; i++)
9055 symtable2[i].name
9056 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9057 symtable2[i].u.isym->st_name);
9058
9059 /* Sort symbol by name. */
9060 qsort (symtable1, count1, sizeof (struct elf_symbol),
9061 elf_sym_name_compare);
9062 qsort (symtable2, count1, sizeof (struct elf_symbol),
9063 elf_sym_name_compare);
9064
9065 for (i = 0; i < count1; i++)
9066 /* Two symbols must have the same binding, type and name. */
9067 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9068 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9069 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9070 goto done;
9071
9072 result = TRUE;
9073
9074done:
9075 if (symtable1)
9076 free (symtable1);
9077 if (symtable2)
9078 free (symtable2);
9079 if (isymbuf1)
9080 free (isymbuf1);
9081 if (isymbuf2)
9082 free (isymbuf2);
9083
9084 return result;
9085}
9086
9087/* It is only used by x86-64 so far. */
9088asection _bfd_elf_large_com_section
9089 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9090 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9091
9092/* Return TRUE if 2 section types are compatible. */
9093
9094bfd_boolean
9095_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9096 bfd *bbfd, const asection *bsec)
9097{
9098 if (asec == NULL
9099 || bsec == NULL
9100 || abfd->xvec->flavour != bfd_target_elf_flavour
9101 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9102 return TRUE;
9103
9104 return elf_section_type (asec) == elf_section_type (bsec);
9105}
This page took 0.078298 seconds and 4 git commands to generate.