* sparc64-tdep.c (sparc64_store_arguments)
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25/*
26SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37/* For sparc64-cross-sparc32. */
38#define _SYSCALL32
39#include "sysdep.h"
40#include "bfd.h"
41#include "bfdlink.h"
42#include "libbfd.h"
43#define ARCH_SIZE 0
44#include "elf-bfd.h"
45#include "libiberty.h"
46#include "safe-ctype.h"
47
48#ifdef CORE_HEADER
49#include CORE_HEADER
50#endif
51
52static int elf_sort_sections (const void *, const void *);
53static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54static bfd_boolean prep_headers (bfd *);
55static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60/* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64/* Swap in a Verdef structure. */
65
66void
67_bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70{
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78}
79
80/* Swap out a Verdef structure. */
81
82void
83_bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86{
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94}
95
96/* Swap in a Verdaux structure. */
97
98void
99_bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102{
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105}
106
107/* Swap out a Verdaux structure. */
108
109void
110_bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113{
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116}
117
118/* Swap in a Verneed structure. */
119
120void
121_bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124{
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130}
131
132/* Swap out a Verneed structure. */
133
134void
135_bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138{
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144}
145
146/* Swap in a Vernaux structure. */
147
148void
149_bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152{
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158}
159
160/* Swap out a Vernaux structure. */
161
162void
163_bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166{
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172}
173
174/* Swap in a Versym structure. */
175
176void
177_bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180{
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182}
183
184/* Swap out a Versym structure. */
185
186void
187_bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190{
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192}
193
194/* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197unsigned long
198bfd_elf_hash (const char *namearg)
199{
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217}
218
219/* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222unsigned long
223bfd_elf_gnu_hash (const char *namearg)
224{
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232}
233
234/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236bfd_boolean
237bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240{
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249}
250
251
252bfd_boolean
253bfd_elf_make_object (bfd *abfd)
254{
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258}
259
260bfd_boolean
261bfd_elf_mkcorefile (bfd *abfd)
262{
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265}
266
267static char *
268bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269{
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309}
310
311char *
312bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315{
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343}
344
345/* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353Elf_Internal_Sym *
354bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361{
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462}
463
464/* Look up a symbol name. */
465const char *
466bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470{
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490}
491
492/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499} Elf_Internal_Group;
500
501/* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504static const char *
505group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506{
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528}
529
530/* Set next_in_group list pointer, and group name for NEWSECT. */
531
532static bfd_boolean
533setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534{
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712}
713
714bfd_boolean
715_bfd_elf_setup_sections (bfd *abfd)
716{
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803}
804
805bfd_boolean
806bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807{
808 return elf_next_in_group (sec) != NULL;
809}
810
811/* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814bfd_boolean
815_bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819{
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082}
1083
1084const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088};
1089
1090/* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100bfd_reloc_status_type
1101bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108{
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119}
1120\f
1121/* Copy the program header and other data from one object module to
1122 another. */
1123
1124bfd_boolean
1125_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126{
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142}
1143
1144static const char *
1145get_segment_type (unsigned int p_type)
1146{
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164}
1165
1166/* Print out the program headers. */
1167
1168bfd_boolean
1169_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170{
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404}
1405
1406/* Display ELF-specific fields of a symbol. */
1407
1408void
1409bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413{
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526}
1527
1528/* Allocate an ELF string table--force the first byte to be zero. */
1529
1530struct bfd_strtab_hash *
1531_bfd_elf_stringtab_init (void)
1532{
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549}
1550\f
1551/* ELF .o/exec file reading */
1552
1553/* Create a new bfd section from an ELF section header. */
1554
1555bfd_boolean
1556bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557{
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006}
2007
2008/* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010Elf_Internal_Sym *
2011bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014{
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037}
2038
2039/* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042asection *
2043bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044{
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048}
2049
2050static const struct bfd_elf_special_section special_sections_b[] =
2051{
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054};
2055
2056static const struct bfd_elf_special_section special_sections_c[] =
2057{
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060};
2061
2062static const struct bfd_elf_special_section special_sections_d[] =
2063{
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075};
2076
2077static const struct bfd_elf_special_section special_sections_f[] =
2078{
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082};
2083
2084static const struct bfd_elf_special_section special_sections_g[] =
2085{
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096};
2097
2098static const struct bfd_elf_special_section special_sections_h[] =
2099{
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102};
2103
2104static const struct bfd_elf_special_section special_sections_i[] =
2105{
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110};
2111
2112static const struct bfd_elf_special_section special_sections_l[] =
2113{
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116};
2117
2118static const struct bfd_elf_special_section special_sections_n[] =
2119{
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123};
2124
2125static const struct bfd_elf_special_section special_sections_p[] =
2126{
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130};
2131
2132static const struct bfd_elf_special_section special_sections_r[] =
2133{
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139};
2140
2141static const struct bfd_elf_special_section special_sections_s[] =
2142{
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150};
2151
2152static const struct bfd_elf_special_section special_sections_t[] =
2153{
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158};
2159
2160static const struct bfd_elf_special_section special_sections_z[] =
2161{
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167};
2168
2169static const struct bfd_elf_special_section * const special_sections[] =
2170{
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196};
2197
2198const struct bfd_elf_special_section *
2199_bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202{
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244}
2245
2246const struct bfd_elf_special_section *
2247_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248{
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281}
2282
2283bfd_boolean
2284_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285{
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329}
2330
2331/* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353bfd_boolean
2354_bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358{
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443}
2444
2445bfd_boolean
2446bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447{
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492}
2493
2494/* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497Elf_Internal_Shdr *
2498_bfd_elf_single_rel_hdr (asection *sec)
2499{
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507}
2508
2509/* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514bfd_boolean
2515_bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519{
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551}
2552
2553/* Return the default section type based on the passed in section flags. */
2554
2555int
2556bfd_elf_get_default_section_type (flagword flags)
2557{
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562}
2563
2564struct fake_section_arg
2565{
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568};
2569
2570/* Set up an ELF internal section header for a section. */
2571
2572static void
2573elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574{
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792}
2793
2794/* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799void
2800bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801{
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908}
2909
2910/* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914static bfd_boolean
2915assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916{
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (elf_discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226}
3227
3228/* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231static bfd_boolean
3232sym_is_global (bfd *abfd, asymbol *sym)
3233{
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242}
3243
3244/* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247static bfd_boolean
3248ignore_section_sym (bfd *abfd, asymbol *sym)
3249{
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254}
3255
3256static bfd_boolean
3257elf_map_symbols (bfd *abfd)
3258{
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271#ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274#endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377}
3378
3379/* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382static inline file_ptr
3383align_file_position (file_ptr off, int align)
3384{
3385 return (off + align - 1) & ~(align - 1);
3386}
3387
3388/* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391file_ptr
3392_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395{
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404}
3405
3406/* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410bfd_boolean
3411_bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413{
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511}
3512
3513/* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516static bfd_size_type
3517get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518{
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607}
3608
3609/* Find the segment that contains the output_section of section. */
3610
3611Elf_Internal_Phdr *
3612_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613{
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630}
3631
3632/* Create a mapping from a set of sections to a program segment. */
3633
3634static struct elf_segment_map *
3635make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640{
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665}
3666
3667/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670struct elf_segment_map *
3671_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672{
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685}
3686
3687/* Possibly add or remove segments from the segment map. */
3688
3689static bfd_boolean
3690elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693{
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733}
3734
3735/* Set up a mapping from BFD sections to program segments. */
3736
3737bfd_boolean
3738_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739{
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3748 {
3749 asection *s;
3750 unsigned int i;
3751 struct elf_segment_map *mfirst;
3752 struct elf_segment_map **pm;
3753 asection *last_hdr;
3754 bfd_vma last_size;
3755 unsigned int phdr_index;
3756 bfd_vma maxpagesize;
3757 asection **hdrpp;
3758 bfd_boolean phdr_in_segment = TRUE;
3759 bfd_boolean writable;
3760 int tls_count = 0;
3761 asection *first_tls = NULL;
3762 asection *dynsec, *eh_frame_hdr;
3763 bfd_size_type amt;
3764 bfd_vma addr_mask, wrap_to = 0;
3765
3766 /* Select the allocated sections, and sort them. */
3767
3768 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3769 sizeof (asection *));
3770 if (sections == NULL)
3771 goto error_return;
3772
3773 /* Calculate top address, avoiding undefined behaviour of shift
3774 left operator when shift count is equal to size of type
3775 being shifted. */
3776 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3777 addr_mask = (addr_mask << 1) + 1;
3778
3779 i = 0;
3780 for (s = abfd->sections; s != NULL; s = s->next)
3781 {
3782 if ((s->flags & SEC_ALLOC) != 0)
3783 {
3784 sections[i] = s;
3785 ++i;
3786 /* A wrapping section potentially clashes with header. */
3787 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3788 wrap_to = (s->lma + s->size) & addr_mask;
3789 }
3790 }
3791 BFD_ASSERT (i <= bfd_count_sections (abfd));
3792 count = i;
3793
3794 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3795
3796 /* Build the mapping. */
3797
3798 mfirst = NULL;
3799 pm = &mfirst;
3800
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3803 section. */
3804 s = bfd_get_section_by_name (abfd, ".interp");
3805 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3806 {
3807 amt = sizeof (struct elf_segment_map);
3808 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3809 if (m == NULL)
3810 goto error_return;
3811 m->next = NULL;
3812 m->p_type = PT_PHDR;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m->p_flags = PF_R | PF_X;
3815 m->p_flags_valid = 1;
3816 m->includes_phdrs = 1;
3817
3818 *pm = m;
3819 pm = &m->next;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_INTERP;
3827 m->count = 1;
3828 m->sections[0] = s;
3829
3830 *pm = m;
3831 pm = &m->next;
3832 }
3833
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3837 last_hdr = NULL;
3838 last_size = 0;
3839 phdr_index = 0;
3840 maxpagesize = bed->maxpagesize;
3841 writable = FALSE;
3842 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3843 if (dynsec != NULL
3844 && (dynsec->flags & SEC_LOAD) == 0)
3845 dynsec = NULL;
3846
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3851 if (count > 0)
3852 {
3853 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3854
3855 if (phdr_size == (bfd_size_type) -1)
3856 phdr_size = get_program_header_size (abfd, info);
3857 if ((abfd->flags & D_PAGED) == 0
3858 || (sections[0]->lma & addr_mask) < phdr_size
3859 || ((sections[0]->lma & addr_mask) % maxpagesize
3860 < phdr_size % maxpagesize)
3861 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3862 phdr_in_segment = FALSE;
3863 }
3864
3865 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3866 {
3867 asection *hdr;
3868 bfd_boolean new_segment;
3869
3870 hdr = *hdrpp;
3871
3872 /* See if this section and the last one will fit in the same
3873 segment. */
3874
3875 if (last_hdr == NULL)
3876 {
3877 /* If we don't have a segment yet, then we don't need a new
3878 one (we build the last one after this loop). */
3879 new_segment = FALSE;
3880 }
3881 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3882 {
3883 /* If this section has a different relation between the
3884 virtual address and the load address, then we need a new
3885 segment. */
3886 new_segment = TRUE;
3887 }
3888 else if (hdr->lma < last_hdr->lma + last_size
3889 || last_hdr->lma + last_size < last_hdr->lma)
3890 {
3891 /* If this section has a load address that makes it overlap
3892 the previous section, then we need a new segment. */
3893 new_segment = TRUE;
3894 }
3895 /* In the next test we have to be careful when last_hdr->lma is close
3896 to the end of the address space. If the aligned address wraps
3897 around to the start of the address space, then there are no more
3898 pages left in memory and it is OK to assume that the current
3899 section can be included in the current segment. */
3900 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3901 > last_hdr->lma)
3902 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3903 <= hdr->lma))
3904 {
3905 /* If putting this section in this segment would force us to
3906 skip a page in the segment, then we need a new segment. */
3907 new_segment = TRUE;
3908 }
3909 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3910 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3911 {
3912 /* We don't want to put a loadable section after a
3913 nonloadable section in the same segment.
3914 Consider .tbss sections as loadable for this purpose. */
3915 new_segment = TRUE;
3916 }
3917 else if ((abfd->flags & D_PAGED) == 0)
3918 {
3919 /* If the file is not demand paged, which means that we
3920 don't require the sections to be correctly aligned in the
3921 file, then there is no other reason for a new segment. */
3922 new_segment = FALSE;
3923 }
3924 else if (! writable
3925 && (hdr->flags & SEC_READONLY) == 0
3926 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3927 != (hdr->lma & -maxpagesize)))
3928 {
3929 /* We don't want to put a writable section in a read only
3930 segment, unless they are on the same page in memory
3931 anyhow. We already know that the last section does not
3932 bring us past the current section on the page, so the
3933 only case in which the new section is not on the same
3934 page as the previous section is when the previous section
3935 ends precisely on a page boundary. */
3936 new_segment = TRUE;
3937 }
3938 else
3939 {
3940 /* Otherwise, we can use the same segment. */
3941 new_segment = FALSE;
3942 }
3943
3944 /* Allow interested parties a chance to override our decision. */
3945 if (last_hdr != NULL
3946 && info != NULL
3947 && info->callbacks->override_segment_assignment != NULL)
3948 new_segment
3949 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3950 last_hdr,
3951 new_segment);
3952
3953 if (! new_segment)
3954 {
3955 if ((hdr->flags & SEC_READONLY) == 0)
3956 writable = TRUE;
3957 last_hdr = hdr;
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3960 != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 continue;
3965 }
3966
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3969
3970 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3971 if (m == NULL)
3972 goto error_return;
3973
3974 *pm = m;
3975 pm = &m->next;
3976
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 else
3980 writable = FALSE;
3981
3982 last_hdr = hdr;
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3985 last_size = hdr->size;
3986 else
3987 last_size = 0;
3988 phdr_index = i;
3989 phdr_in_segment = FALSE;
3990 }
3991
3992 /* Create a final PT_LOAD program segment, but not if it's just
3993 for .tbss. */
3994 if (last_hdr != NULL
3995 && (i - phdr_index != 1
3996 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3997 != SEC_THREAD_LOCAL)))
3998 {
3999 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4000 if (m == NULL)
4001 goto error_return;
4002
4003 *pm = m;
4004 pm = &m->next;
4005 }
4006
4007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4008 if (dynsec != NULL)
4009 {
4010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4011 if (m == NULL)
4012 goto error_return;
4013 *pm = m;
4014 pm = &m->next;
4015 }
4016
4017 /* For each batch of consecutive loadable .note sections,
4018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4019 because if we link together nonloadable .note sections and
4020 loadable .note sections, we will generate two .note sections
4021 in the output file. FIXME: Using names for section types is
4022 bogus anyhow. */
4023 for (s = abfd->sections; s != NULL; s = s->next)
4024 {
4025 if ((s->flags & SEC_LOAD) != 0
4026 && CONST_STRNEQ (s->name, ".note"))
4027 {
4028 asection *s2;
4029
4030 count = 1;
4031 amt = sizeof (struct elf_segment_map);
4032 if (s->alignment_power == 2)
4033 for (s2 = s; s2->next != NULL; s2 = s2->next)
4034 {
4035 if (s2->next->alignment_power == 2
4036 && (s2->next->flags & SEC_LOAD) != 0
4037 && CONST_STRNEQ (s2->next->name, ".note")
4038 && align_power (s2->lma + s2->size, 2)
4039 == s2->next->lma)
4040 count++;
4041 else
4042 break;
4043 }
4044 amt += (count - 1) * sizeof (asection *);
4045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4046 if (m == NULL)
4047 goto error_return;
4048 m->next = NULL;
4049 m->p_type = PT_NOTE;
4050 m->count = count;
4051 while (count > 1)
4052 {
4053 m->sections[m->count - count--] = s;
4054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4055 s = s->next;
4056 }
4057 m->sections[m->count - 1] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 *pm = m;
4060 pm = &m->next;
4061 }
4062 if (s->flags & SEC_THREAD_LOCAL)
4063 {
4064 if (! tls_count)
4065 first_tls = s;
4066 tls_count++;
4067 }
4068 }
4069
4070 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4071 if (tls_count > 0)
4072 {
4073 amt = sizeof (struct elf_segment_map);
4074 amt += (tls_count - 1) * sizeof (asection *);
4075 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4076 if (m == NULL)
4077 goto error_return;
4078 m->next = NULL;
4079 m->p_type = PT_TLS;
4080 m->count = tls_count;
4081 /* Mandated PF_R. */
4082 m->p_flags = PF_R;
4083 m->p_flags_valid = 1;
4084 for (i = 0; i < (unsigned int) tls_count; ++i)
4085 {
4086 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4087 m->sections[i] = first_tls;
4088 first_tls = first_tls->next;
4089 }
4090
4091 *pm = m;
4092 pm = &m->next;
4093 }
4094
4095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4096 segment. */
4097 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4098 if (eh_frame_hdr != NULL
4099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4100 {
4101 amt = sizeof (struct elf_segment_map);
4102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4103 if (m == NULL)
4104 goto error_return;
4105 m->next = NULL;
4106 m->p_type = PT_GNU_EH_FRAME;
4107 m->count = 1;
4108 m->sections[0] = eh_frame_hdr->output_section;
4109
4110 *pm = m;
4111 pm = &m->next;
4112 }
4113
4114 if (elf_tdata (abfd)->stack_flags)
4115 {
4116 amt = sizeof (struct elf_segment_map);
4117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4118 if (m == NULL)
4119 goto error_return;
4120 m->next = NULL;
4121 m->p_type = PT_GNU_STACK;
4122 m->p_flags = elf_tdata (abfd)->stack_flags;
4123 m->p_flags_valid = 1;
4124
4125 *pm = m;
4126 pm = &m->next;
4127 }
4128
4129 if (info != NULL && info->relro)
4130 {
4131 for (m = mfirst; m != NULL; m = m->next)
4132 {
4133 if (m->p_type == PT_LOAD)
4134 {
4135 asection *last = m->sections[m->count - 1];
4136 bfd_vma vaddr = m->sections[0]->vma;
4137 bfd_vma filesz = last->vma - vaddr + last->size;
4138
4139 if (vaddr < info->relro_end
4140 && vaddr >= info->relro_start
4141 && (vaddr + filesz) >= info->relro_end)
4142 break;
4143 }
4144 }
4145
4146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4147 if (m != NULL)
4148 {
4149 amt = sizeof (struct elf_segment_map);
4150 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4151 if (m == NULL)
4152 goto error_return;
4153 m->next = NULL;
4154 m->p_type = PT_GNU_RELRO;
4155 m->p_flags = PF_R;
4156 m->p_flags_valid = 1;
4157
4158 *pm = m;
4159 pm = &m->next;
4160 }
4161 }
4162
4163 free (sections);
4164 elf_tdata (abfd)->segment_map = mfirst;
4165 }
4166
4167 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4168 return FALSE;
4169
4170 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4171 ++count;
4172 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4173
4174 return TRUE;
4175
4176 error_return:
4177 if (sections != NULL)
4178 free (sections);
4179 return FALSE;
4180}
4181
4182/* Sort sections by address. */
4183
4184static int
4185elf_sort_sections (const void *arg1, const void *arg2)
4186{
4187 const asection *sec1 = *(const asection **) arg1;
4188 const asection *sec2 = *(const asection **) arg2;
4189 bfd_size_type size1, size2;
4190
4191 /* Sort by LMA first, since this is the address used to
4192 place the section into a segment. */
4193 if (sec1->lma < sec2->lma)
4194 return -1;
4195 else if (sec1->lma > sec2->lma)
4196 return 1;
4197
4198 /* Then sort by VMA. Normally the LMA and the VMA will be
4199 the same, and this will do nothing. */
4200 if (sec1->vma < sec2->vma)
4201 return -1;
4202 else if (sec1->vma > sec2->vma)
4203 return 1;
4204
4205 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4206
4207#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4208
4209 if (TOEND (sec1))
4210 {
4211 if (TOEND (sec2))
4212 {
4213 /* If the indicies are the same, do not return 0
4214 here, but continue to try the next comparison. */
4215 if (sec1->target_index - sec2->target_index != 0)
4216 return sec1->target_index - sec2->target_index;
4217 }
4218 else
4219 return 1;
4220 }
4221 else if (TOEND (sec2))
4222 return -1;
4223
4224#undef TOEND
4225
4226 /* Sort by size, to put zero sized sections
4227 before others at the same address. */
4228
4229 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4230 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4231
4232 if (size1 < size2)
4233 return -1;
4234 if (size1 > size2)
4235 return 1;
4236
4237 return sec1->target_index - sec2->target_index;
4238}
4239
4240/* Ian Lance Taylor writes:
4241
4242 We shouldn't be using % with a negative signed number. That's just
4243 not good. We have to make sure either that the number is not
4244 negative, or that the number has an unsigned type. When the types
4245 are all the same size they wind up as unsigned. When file_ptr is a
4246 larger signed type, the arithmetic winds up as signed long long,
4247 which is wrong.
4248
4249 What we're trying to say here is something like ``increase OFF by
4250 the least amount that will cause it to be equal to the VMA modulo
4251 the page size.'' */
4252/* In other words, something like:
4253
4254 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4255 off_offset = off % bed->maxpagesize;
4256 if (vma_offset < off_offset)
4257 adjustment = vma_offset + bed->maxpagesize - off_offset;
4258 else
4259 adjustment = vma_offset - off_offset;
4260
4261 which can can be collapsed into the expression below. */
4262
4263static file_ptr
4264vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4265{
4266 return ((vma - off) % maxpagesize);
4267}
4268
4269static void
4270print_segment_map (const struct elf_segment_map *m)
4271{
4272 unsigned int j;
4273 const char *pt = get_segment_type (m->p_type);
4274 char buf[32];
4275
4276 if (pt == NULL)
4277 {
4278 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4279 sprintf (buf, "LOPROC+%7.7x",
4280 (unsigned int) (m->p_type - PT_LOPROC));
4281 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4282 sprintf (buf, "LOOS+%7.7x",
4283 (unsigned int) (m->p_type - PT_LOOS));
4284 else
4285 snprintf (buf, sizeof (buf), "%8.8x",
4286 (unsigned int) m->p_type);
4287 pt = buf;
4288 }
4289 fflush (stdout);
4290 fprintf (stderr, "%s:", pt);
4291 for (j = 0; j < m->count; j++)
4292 fprintf (stderr, " %s", m->sections [j]->name);
4293 putc ('\n',stderr);
4294 fflush (stderr);
4295}
4296
4297static bfd_boolean
4298write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4299{
4300 void *buf;
4301 bfd_boolean ret;
4302
4303 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4304 return FALSE;
4305 buf = bfd_zmalloc (len);
4306 if (buf == NULL)
4307 return FALSE;
4308 ret = bfd_bwrite (buf, len, abfd) == len;
4309 free (buf);
4310 return ret;
4311}
4312
4313/* Assign file positions to the sections based on the mapping from
4314 sections to segments. This function also sets up some fields in
4315 the file header. */
4316
4317static bfd_boolean
4318assign_file_positions_for_load_sections (bfd *abfd,
4319 struct bfd_link_info *link_info)
4320{
4321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4322 struct elf_segment_map *m;
4323 Elf_Internal_Phdr *phdrs;
4324 Elf_Internal_Phdr *p;
4325 file_ptr off;
4326 bfd_size_type maxpagesize;
4327 unsigned int alloc;
4328 unsigned int i, j;
4329 bfd_vma header_pad = 0;
4330
4331 if (link_info == NULL
4332 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4333 return FALSE;
4334
4335 alloc = 0;
4336 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4337 {
4338 ++alloc;
4339 if (m->header_size)
4340 header_pad = m->header_size;
4341 }
4342
4343 if (alloc)
4344 {
4345 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4346 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4347 }
4348 else
4349 {
4350 /* PR binutils/12467. */
4351 elf_elfheader (abfd)->e_phoff = 0;
4352 elf_elfheader (abfd)->e_phentsize = 0;
4353 }
4354
4355 elf_elfheader (abfd)->e_phnum = alloc;
4356
4357 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4358 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4359 else
4360 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4361 >= alloc * bed->s->sizeof_phdr);
4362
4363 if (alloc == 0)
4364 {
4365 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4366 return TRUE;
4367 }
4368
4369 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4370 see assign_file_positions_except_relocs, so make sure we have
4371 that amount allocated, with trailing space cleared.
4372 The variable alloc contains the computed need, while elf_tdata
4373 (abfd)->program_header_size contains the size used for the
4374 layout.
4375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4376 where the layout is forced to according to a larger size in the
4377 last iterations for the testcase ld-elf/header. */
4378 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4379 == 0);
4380 phdrs = (Elf_Internal_Phdr *)
4381 bfd_zalloc2 (abfd,
4382 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4383 sizeof (Elf_Internal_Phdr));
4384 elf_tdata (abfd)->phdr = phdrs;
4385 if (phdrs == NULL)
4386 return FALSE;
4387
4388 maxpagesize = 1;
4389 if ((abfd->flags & D_PAGED) != 0)
4390 maxpagesize = bed->maxpagesize;
4391
4392 off = bed->s->sizeof_ehdr;
4393 off += alloc * bed->s->sizeof_phdr;
4394 if (header_pad < (bfd_vma) off)
4395 header_pad = 0;
4396 else
4397 header_pad -= off;
4398 off += header_pad;
4399
4400 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4401 m != NULL;
4402 m = m->next, p++, j++)
4403 {
4404 asection **secpp;
4405 bfd_vma off_adjust;
4406 bfd_boolean no_contents;
4407
4408 /* If elf_segment_map is not from map_sections_to_segments, the
4409 sections may not be correctly ordered. NOTE: sorting should
4410 not be done to the PT_NOTE section of a corefile, which may
4411 contain several pseudo-sections artificially created by bfd.
4412 Sorting these pseudo-sections breaks things badly. */
4413 if (m->count > 1
4414 && !(elf_elfheader (abfd)->e_type == ET_CORE
4415 && m->p_type == PT_NOTE))
4416 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4417 elf_sort_sections);
4418
4419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4420 number of sections with contents contributing to both p_filesz
4421 and p_memsz, followed by a number of sections with no contents
4422 that just contribute to p_memsz. In this loop, OFF tracks next
4423 available file offset for PT_LOAD and PT_NOTE segments. */
4424 p->p_type = m->p_type;
4425 p->p_flags = m->p_flags;
4426
4427 if (m->count == 0)
4428 p->p_vaddr = 0;
4429 else
4430 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4431
4432 if (m->p_paddr_valid)
4433 p->p_paddr = m->p_paddr;
4434 else if (m->count == 0)
4435 p->p_paddr = 0;
4436 else
4437 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4438
4439 if (p->p_type == PT_LOAD
4440 && (abfd->flags & D_PAGED) != 0)
4441 {
4442 /* p_align in demand paged PT_LOAD segments effectively stores
4443 the maximum page size. When copying an executable with
4444 objcopy, we set m->p_align from the input file. Use this
4445 value for maxpagesize rather than bed->maxpagesize, which
4446 may be different. Note that we use maxpagesize for PT_TLS
4447 segment alignment later in this function, so we are relying
4448 on at least one PT_LOAD segment appearing before a PT_TLS
4449 segment. */
4450 if (m->p_align_valid)
4451 maxpagesize = m->p_align;
4452
4453 p->p_align = maxpagesize;
4454 }
4455 else if (m->p_align_valid)
4456 p->p_align = m->p_align;
4457 else if (m->count == 0)
4458 p->p_align = 1 << bed->s->log_file_align;
4459 else
4460 p->p_align = 0;
4461
4462 no_contents = FALSE;
4463 off_adjust = 0;
4464 if (p->p_type == PT_LOAD
4465 && m->count > 0)
4466 {
4467 bfd_size_type align;
4468 unsigned int align_power = 0;
4469
4470 if (m->p_align_valid)
4471 align = p->p_align;
4472 else
4473 {
4474 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4475 {
4476 unsigned int secalign;
4477
4478 secalign = bfd_get_section_alignment (abfd, *secpp);
4479 if (secalign > align_power)
4480 align_power = secalign;
4481 }
4482 align = (bfd_size_type) 1 << align_power;
4483 if (align < maxpagesize)
4484 align = maxpagesize;
4485 }
4486
4487 for (i = 0; i < m->count; i++)
4488 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4489 /* If we aren't making room for this section, then
4490 it must be SHT_NOBITS regardless of what we've
4491 set via struct bfd_elf_special_section. */
4492 elf_section_type (m->sections[i]) = SHT_NOBITS;
4493
4494 /* Find out whether this segment contains any loadable
4495 sections. */
4496 no_contents = TRUE;
4497 for (i = 0; i < m->count; i++)
4498 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4499 {
4500 no_contents = FALSE;
4501 break;
4502 }
4503
4504 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4505 off += off_adjust;
4506 if (no_contents)
4507 {
4508 /* We shouldn't need to align the segment on disk since
4509 the segment doesn't need file space, but the gABI
4510 arguably requires the alignment and glibc ld.so
4511 checks it. So to comply with the alignment
4512 requirement but not waste file space, we adjust
4513 p_offset for just this segment. (OFF_ADJUST is
4514 subtracted from OFF later.) This may put p_offset
4515 past the end of file, but that shouldn't matter. */
4516 }
4517 else
4518 off_adjust = 0;
4519 }
4520 /* Make sure the .dynamic section is the first section in the
4521 PT_DYNAMIC segment. */
4522 else if (p->p_type == PT_DYNAMIC
4523 && m->count > 1
4524 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4525 {
4526 _bfd_error_handler
4527 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4528 abfd);
4529 bfd_set_error (bfd_error_bad_value);
4530 return FALSE;
4531 }
4532 /* Set the note section type to SHT_NOTE. */
4533 else if (p->p_type == PT_NOTE)
4534 for (i = 0; i < m->count; i++)
4535 elf_section_type (m->sections[i]) = SHT_NOTE;
4536
4537 p->p_offset = 0;
4538 p->p_filesz = 0;
4539 p->p_memsz = 0;
4540
4541 if (m->includes_filehdr)
4542 {
4543 if (!m->p_flags_valid)
4544 p->p_flags |= PF_R;
4545 p->p_filesz = bed->s->sizeof_ehdr;
4546 p->p_memsz = bed->s->sizeof_ehdr;
4547 if (m->count > 0)
4548 {
4549 BFD_ASSERT (p->p_type == PT_LOAD);
4550
4551 if (p->p_vaddr < (bfd_vma) off)
4552 {
4553 (*_bfd_error_handler)
4554 (_("%B: Not enough room for program headers, try linking with -N"),
4555 abfd);
4556 bfd_set_error (bfd_error_bad_value);
4557 return FALSE;
4558 }
4559
4560 p->p_vaddr -= off;
4561 if (!m->p_paddr_valid)
4562 p->p_paddr -= off;
4563 }
4564 }
4565
4566 if (m->includes_phdrs)
4567 {
4568 if (!m->p_flags_valid)
4569 p->p_flags |= PF_R;
4570
4571 if (!m->includes_filehdr)
4572 {
4573 p->p_offset = bed->s->sizeof_ehdr;
4574
4575 if (m->count > 0)
4576 {
4577 BFD_ASSERT (p->p_type == PT_LOAD);
4578 p->p_vaddr -= off - p->p_offset;
4579 if (!m->p_paddr_valid)
4580 p->p_paddr -= off - p->p_offset;
4581 }
4582 }
4583
4584 p->p_filesz += alloc * bed->s->sizeof_phdr;
4585 p->p_memsz += alloc * bed->s->sizeof_phdr;
4586 if (m->count)
4587 {
4588 p->p_filesz += header_pad;
4589 p->p_memsz += header_pad;
4590 }
4591 }
4592
4593 if (p->p_type == PT_LOAD
4594 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4595 {
4596 if (!m->includes_filehdr && !m->includes_phdrs)
4597 p->p_offset = off;
4598 else
4599 {
4600 file_ptr adjust;
4601
4602 adjust = off - (p->p_offset + p->p_filesz);
4603 if (!no_contents)
4604 p->p_filesz += adjust;
4605 p->p_memsz += adjust;
4606 }
4607 }
4608
4609 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4610 maps. Set filepos for sections in PT_LOAD segments, and in
4611 core files, for sections in PT_NOTE segments.
4612 assign_file_positions_for_non_load_sections will set filepos
4613 for other sections and update p_filesz for other segments. */
4614 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4615 {
4616 asection *sec;
4617 bfd_size_type align;
4618 Elf_Internal_Shdr *this_hdr;
4619
4620 sec = *secpp;
4621 this_hdr = &elf_section_data (sec)->this_hdr;
4622 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4623
4624 if ((p->p_type == PT_LOAD
4625 || p->p_type == PT_TLS)
4626 && (this_hdr->sh_type != SHT_NOBITS
4627 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4628 && ((this_hdr->sh_flags & SHF_TLS) == 0
4629 || p->p_type == PT_TLS))))
4630 {
4631 bfd_vma p_start = p->p_paddr;
4632 bfd_vma p_end = p_start + p->p_memsz;
4633 bfd_vma s_start = sec->lma;
4634 bfd_vma adjust = s_start - p_end;
4635
4636 if (adjust != 0
4637 && (s_start < p_end
4638 || p_end < p_start))
4639 {
4640 (*_bfd_error_handler)
4641 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4642 (unsigned long) s_start, (unsigned long) p_end);
4643 adjust = 0;
4644 sec->lma = p_end;
4645 }
4646 p->p_memsz += adjust;
4647
4648 if (this_hdr->sh_type != SHT_NOBITS)
4649 {
4650 if (p->p_filesz + adjust < p->p_memsz)
4651 {
4652 /* We have a PROGBITS section following NOBITS ones.
4653 Allocate file space for the NOBITS section(s) and
4654 zero it. */
4655 adjust = p->p_memsz - p->p_filesz;
4656 if (!write_zeros (abfd, off, adjust))
4657 return FALSE;
4658 }
4659 off += adjust;
4660 p->p_filesz += adjust;
4661 }
4662 }
4663
4664 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4665 {
4666 /* The section at i == 0 is the one that actually contains
4667 everything. */
4668 if (i == 0)
4669 {
4670 this_hdr->sh_offset = sec->filepos = off;
4671 off += this_hdr->sh_size;
4672 p->p_filesz = this_hdr->sh_size;
4673 p->p_memsz = 0;
4674 p->p_align = 1;
4675 }
4676 else
4677 {
4678 /* The rest are fake sections that shouldn't be written. */
4679 sec->filepos = 0;
4680 sec->size = 0;
4681 sec->flags = 0;
4682 continue;
4683 }
4684 }
4685 else
4686 {
4687 if (p->p_type == PT_LOAD)
4688 {
4689 this_hdr->sh_offset = sec->filepos = off;
4690 if (this_hdr->sh_type != SHT_NOBITS)
4691 off += this_hdr->sh_size;
4692 }
4693 else if (this_hdr->sh_type == SHT_NOBITS
4694 && (this_hdr->sh_flags & SHF_TLS) != 0
4695 && this_hdr->sh_offset == 0)
4696 {
4697 /* This is a .tbss section that didn't get a PT_LOAD.
4698 (See _bfd_elf_map_sections_to_segments "Create a
4699 final PT_LOAD".) Set sh_offset to the value it
4700 would have if we had created a zero p_filesz and
4701 p_memsz PT_LOAD header for the section. This
4702 also makes the PT_TLS header have the same
4703 p_offset value. */
4704 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4705 off, align);
4706 this_hdr->sh_offset = sec->filepos = off + adjust;
4707 }
4708
4709 if (this_hdr->sh_type != SHT_NOBITS)
4710 {
4711 p->p_filesz += this_hdr->sh_size;
4712 /* A load section without SHF_ALLOC is something like
4713 a note section in a PT_NOTE segment. These take
4714 file space but are not loaded into memory. */
4715 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4716 p->p_memsz += this_hdr->sh_size;
4717 }
4718 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4719 {
4720 if (p->p_type == PT_TLS)
4721 p->p_memsz += this_hdr->sh_size;
4722
4723 /* .tbss is special. It doesn't contribute to p_memsz of
4724 normal segments. */
4725 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4726 p->p_memsz += this_hdr->sh_size;
4727 }
4728
4729 if (align > p->p_align
4730 && !m->p_align_valid
4731 && (p->p_type != PT_LOAD
4732 || (abfd->flags & D_PAGED) == 0))
4733 p->p_align = align;
4734 }
4735
4736 if (!m->p_flags_valid)
4737 {
4738 p->p_flags |= PF_R;
4739 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4740 p->p_flags |= PF_X;
4741 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4742 p->p_flags |= PF_W;
4743 }
4744 }
4745 off -= off_adjust;
4746
4747 /* Check that all sections are in a PT_LOAD segment.
4748 Don't check funky gdb generated core files. */
4749 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4750 {
4751 bfd_boolean check_vma = TRUE;
4752
4753 for (i = 1; i < m->count; i++)
4754 if (m->sections[i]->vma == m->sections[i - 1]->vma
4755 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4756 ->this_hdr), p) != 0
4757 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4758 ->this_hdr), p) != 0)
4759 {
4760 /* Looks like we have overlays packed into the segment. */
4761 check_vma = FALSE;
4762 break;
4763 }
4764
4765 for (i = 0; i < m->count; i++)
4766 {
4767 Elf_Internal_Shdr *this_hdr;
4768 asection *sec;
4769
4770 sec = m->sections[i];
4771 this_hdr = &(elf_section_data(sec)->this_hdr);
4772 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4773 && !ELF_TBSS_SPECIAL (this_hdr, p))
4774 {
4775 (*_bfd_error_handler)
4776 (_("%B: section `%A' can't be allocated in segment %d"),
4777 abfd, sec, j);
4778 print_segment_map (m);
4779 }
4780 }
4781 }
4782 }
4783
4784 elf_tdata (abfd)->next_file_pos = off;
4785 return TRUE;
4786}
4787
4788/* Assign file positions for the other sections. */
4789
4790static bfd_boolean
4791assign_file_positions_for_non_load_sections (bfd *abfd,
4792 struct bfd_link_info *link_info)
4793{
4794 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4795 Elf_Internal_Shdr **i_shdrpp;
4796 Elf_Internal_Shdr **hdrpp;
4797 Elf_Internal_Phdr *phdrs;
4798 Elf_Internal_Phdr *p;
4799 struct elf_segment_map *m;
4800 bfd_vma filehdr_vaddr, filehdr_paddr;
4801 bfd_vma phdrs_vaddr, phdrs_paddr;
4802 file_ptr off;
4803 unsigned int num_sec;
4804 unsigned int i;
4805 unsigned int count;
4806
4807 i_shdrpp = elf_elfsections (abfd);
4808 num_sec = elf_numsections (abfd);
4809 off = elf_tdata (abfd)->next_file_pos;
4810 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4811 {
4812 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4813 Elf_Internal_Shdr *hdr;
4814
4815 hdr = *hdrpp;
4816 if (hdr->bfd_section != NULL
4817 && (hdr->bfd_section->filepos != 0
4818 || (hdr->sh_type == SHT_NOBITS
4819 && hdr->contents == NULL)))
4820 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4821 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4822 {
4823 if (hdr->sh_size != 0)
4824 (*_bfd_error_handler)
4825 (_("%B: warning: allocated section `%s' not in segment"),
4826 abfd,
4827 (hdr->bfd_section == NULL
4828 ? "*unknown*"
4829 : hdr->bfd_section->name));
4830 /* We don't need to page align empty sections. */
4831 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4832 off += vma_page_aligned_bias (hdr->sh_addr, off,
4833 bed->maxpagesize);
4834 else
4835 off += vma_page_aligned_bias (hdr->sh_addr, off,
4836 hdr->sh_addralign);
4837 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4838 FALSE);
4839 }
4840 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4841 && hdr->bfd_section == NULL)
4842 || hdr == i_shdrpp[tdata->symtab_section]
4843 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4844 || hdr == i_shdrpp[tdata->strtab_section])
4845 hdr->sh_offset = -1;
4846 else
4847 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4848 }
4849
4850 /* Now that we have set the section file positions, we can set up
4851 the file positions for the non PT_LOAD segments. */
4852 count = 0;
4853 filehdr_vaddr = 0;
4854 filehdr_paddr = 0;
4855 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4856 phdrs_paddr = 0;
4857 phdrs = elf_tdata (abfd)->phdr;
4858 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4859 m != NULL;
4860 m = m->next, p++)
4861 {
4862 ++count;
4863 if (p->p_type != PT_LOAD)
4864 continue;
4865
4866 if (m->includes_filehdr)
4867 {
4868 filehdr_vaddr = p->p_vaddr;
4869 filehdr_paddr = p->p_paddr;
4870 }
4871 if (m->includes_phdrs)
4872 {
4873 phdrs_vaddr = p->p_vaddr;
4874 phdrs_paddr = p->p_paddr;
4875 if (m->includes_filehdr)
4876 {
4877 phdrs_vaddr += bed->s->sizeof_ehdr;
4878 phdrs_paddr += bed->s->sizeof_ehdr;
4879 }
4880 }
4881 }
4882
4883 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4884 m != NULL;
4885 m = m->next, p++)
4886 {
4887 if (p->p_type == PT_GNU_RELRO)
4888 {
4889 const Elf_Internal_Phdr *lp;
4890
4891 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4892
4893 if (link_info != NULL)
4894 {
4895 /* During linking the range of the RELRO segment is passed
4896 in link_info. */
4897 for (lp = phdrs; lp < phdrs + count; ++lp)
4898 {
4899 if (lp->p_type == PT_LOAD
4900 && lp->p_vaddr >= link_info->relro_start
4901 && lp->p_vaddr < link_info->relro_end
4902 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4903 break;
4904 }
4905 }
4906 else
4907 {
4908 /* Otherwise we are copying an executable or shared
4909 library, but we need to use the same linker logic. */
4910 for (lp = phdrs; lp < phdrs + count; ++lp)
4911 {
4912 if (lp->p_type == PT_LOAD
4913 && lp->p_paddr == p->p_paddr)
4914 break;
4915 }
4916 }
4917
4918 if (lp < phdrs + count)
4919 {
4920 p->p_vaddr = lp->p_vaddr;
4921 p->p_paddr = lp->p_paddr;
4922 p->p_offset = lp->p_offset;
4923 if (link_info != NULL)
4924 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4925 else if (m->p_size_valid)
4926 p->p_filesz = m->p_size;
4927 else
4928 abort ();
4929 p->p_memsz = p->p_filesz;
4930 p->p_align = 1;
4931 p->p_flags = (lp->p_flags & ~PF_W);
4932 }
4933 else
4934 {
4935 memset (p, 0, sizeof *p);
4936 p->p_type = PT_NULL;
4937 }
4938 }
4939 else if (m->count != 0)
4940 {
4941 if (p->p_type != PT_LOAD
4942 && (p->p_type != PT_NOTE
4943 || bfd_get_format (abfd) != bfd_core))
4944 {
4945 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4946
4947 p->p_filesz = 0;
4948 p->p_offset = m->sections[0]->filepos;
4949 for (i = m->count; i-- != 0;)
4950 {
4951 asection *sect = m->sections[i];
4952 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4953 if (hdr->sh_type != SHT_NOBITS)
4954 {
4955 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4956 + hdr->sh_size);
4957 break;
4958 }
4959 }
4960 }
4961 }
4962 else if (m->includes_filehdr)
4963 {
4964 p->p_vaddr = filehdr_vaddr;
4965 if (! m->p_paddr_valid)
4966 p->p_paddr = filehdr_paddr;
4967 }
4968 else if (m->includes_phdrs)
4969 {
4970 p->p_vaddr = phdrs_vaddr;
4971 if (! m->p_paddr_valid)
4972 p->p_paddr = phdrs_paddr;
4973 }
4974 }
4975
4976 elf_tdata (abfd)->next_file_pos = off;
4977
4978 return TRUE;
4979}
4980
4981/* Work out the file positions of all the sections. This is called by
4982 _bfd_elf_compute_section_file_positions. All the section sizes and
4983 VMAs must be known before this is called.
4984
4985 Reloc sections come in two flavours: Those processed specially as
4986 "side-channel" data attached to a section to which they apply, and
4987 those that bfd doesn't process as relocations. The latter sort are
4988 stored in a normal bfd section by bfd_section_from_shdr. We don't
4989 consider the former sort here, unless they form part of the loadable
4990 image. Reloc sections not assigned here will be handled later by
4991 assign_file_positions_for_relocs.
4992
4993 We also don't set the positions of the .symtab and .strtab here. */
4994
4995static bfd_boolean
4996assign_file_positions_except_relocs (bfd *abfd,
4997 struct bfd_link_info *link_info)
4998{
4999 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5000 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5001 file_ptr off;
5002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5003
5004 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5005 && bfd_get_format (abfd) != bfd_core)
5006 {
5007 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5008 unsigned int num_sec = elf_numsections (abfd);
5009 Elf_Internal_Shdr **hdrpp;
5010 unsigned int i;
5011
5012 /* Start after the ELF header. */
5013 off = i_ehdrp->e_ehsize;
5014
5015 /* We are not creating an executable, which means that we are
5016 not creating a program header, and that the actual order of
5017 the sections in the file is unimportant. */
5018 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5019 {
5020 Elf_Internal_Shdr *hdr;
5021
5022 hdr = *hdrpp;
5023 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5024 && hdr->bfd_section == NULL)
5025 || i == tdata->symtab_section
5026 || i == tdata->symtab_shndx_section
5027 || i == tdata->strtab_section)
5028 {
5029 hdr->sh_offset = -1;
5030 }
5031 else
5032 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5033 }
5034 }
5035 else
5036 {
5037 unsigned int alloc;
5038
5039 /* Assign file positions for the loaded sections based on the
5040 assignment of sections to segments. */
5041 if (!assign_file_positions_for_load_sections (abfd, link_info))
5042 return FALSE;
5043
5044 /* And for non-load sections. */
5045 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5046 return FALSE;
5047
5048 if (bed->elf_backend_modify_program_headers != NULL)
5049 {
5050 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5051 return FALSE;
5052 }
5053
5054 /* Write out the program headers. */
5055 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5056 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5057 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5058 return FALSE;
5059
5060 off = tdata->next_file_pos;
5061 }
5062
5063 /* Place the section headers. */
5064 off = align_file_position (off, 1 << bed->s->log_file_align);
5065 i_ehdrp->e_shoff = off;
5066 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5067
5068 tdata->next_file_pos = off;
5069
5070 return TRUE;
5071}
5072
5073static bfd_boolean
5074prep_headers (bfd *abfd)
5075{
5076 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5077 struct elf_strtab_hash *shstrtab;
5078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5079
5080 i_ehdrp = elf_elfheader (abfd);
5081
5082 shstrtab = _bfd_elf_strtab_init ();
5083 if (shstrtab == NULL)
5084 return FALSE;
5085
5086 elf_shstrtab (abfd) = shstrtab;
5087
5088 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5089 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5090 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5091 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5092
5093 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5094 i_ehdrp->e_ident[EI_DATA] =
5095 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5096 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5097
5098 if ((abfd->flags & DYNAMIC) != 0)
5099 i_ehdrp->e_type = ET_DYN;
5100 else if ((abfd->flags & EXEC_P) != 0)
5101 i_ehdrp->e_type = ET_EXEC;
5102 else if (bfd_get_format (abfd) == bfd_core)
5103 i_ehdrp->e_type = ET_CORE;
5104 else
5105 i_ehdrp->e_type = ET_REL;
5106
5107 switch (bfd_get_arch (abfd))
5108 {
5109 case bfd_arch_unknown:
5110 i_ehdrp->e_machine = EM_NONE;
5111 break;
5112
5113 /* There used to be a long list of cases here, each one setting
5114 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5115 in the corresponding bfd definition. To avoid duplication,
5116 the switch was removed. Machines that need special handling
5117 can generally do it in elf_backend_final_write_processing(),
5118 unless they need the information earlier than the final write.
5119 Such need can generally be supplied by replacing the tests for
5120 e_machine with the conditions used to determine it. */
5121 default:
5122 i_ehdrp->e_machine = bed->elf_machine_code;
5123 }
5124
5125 i_ehdrp->e_version = bed->s->ev_current;
5126 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5127
5128 /* No program header, for now. */
5129 i_ehdrp->e_phoff = 0;
5130 i_ehdrp->e_phentsize = 0;
5131 i_ehdrp->e_phnum = 0;
5132
5133 /* Each bfd section is section header entry. */
5134 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5135 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5136
5137 /* If we're building an executable, we'll need a program header table. */
5138 if (abfd->flags & EXEC_P)
5139 /* It all happens later. */
5140 ;
5141 else
5142 {
5143 i_ehdrp->e_phentsize = 0;
5144 i_ehdrp->e_phoff = 0;
5145 }
5146
5147 elf_tdata (abfd)->symtab_hdr.sh_name =
5148 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5149 elf_tdata (abfd)->strtab_hdr.sh_name =
5150 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5151 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5152 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5153 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5154 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5155 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5156 return FALSE;
5157
5158 return TRUE;
5159}
5160
5161/* Assign file positions for all the reloc sections which are not part
5162 of the loadable file image. */
5163
5164void
5165_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5166{
5167 file_ptr off;
5168 unsigned int i, num_sec;
5169 Elf_Internal_Shdr **shdrpp;
5170
5171 off = elf_tdata (abfd)->next_file_pos;
5172
5173 num_sec = elf_numsections (abfd);
5174 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5175 {
5176 Elf_Internal_Shdr *shdrp;
5177
5178 shdrp = *shdrpp;
5179 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5180 && shdrp->sh_offset == -1)
5181 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5182 }
5183
5184 elf_tdata (abfd)->next_file_pos = off;
5185}
5186
5187bfd_boolean
5188_bfd_elf_write_object_contents (bfd *abfd)
5189{
5190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5191 Elf_Internal_Shdr **i_shdrp;
5192 bfd_boolean failed;
5193 unsigned int count, num_sec;
5194
5195 if (! abfd->output_has_begun
5196 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5197 return FALSE;
5198
5199 i_shdrp = elf_elfsections (abfd);
5200
5201 failed = FALSE;
5202 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5203 if (failed)
5204 return FALSE;
5205
5206 _bfd_elf_assign_file_positions_for_relocs (abfd);
5207
5208 /* After writing the headers, we need to write the sections too... */
5209 num_sec = elf_numsections (abfd);
5210 for (count = 1; count < num_sec; count++)
5211 {
5212 if (bed->elf_backend_section_processing)
5213 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5214 if (i_shdrp[count]->contents)
5215 {
5216 bfd_size_type amt = i_shdrp[count]->sh_size;
5217
5218 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5219 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5220 return FALSE;
5221 }
5222 }
5223
5224 /* Write out the section header names. */
5225 if (elf_shstrtab (abfd) != NULL
5226 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5227 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5228 return FALSE;
5229
5230 if (bed->elf_backend_final_write_processing)
5231 (*bed->elf_backend_final_write_processing) (abfd,
5232 elf_tdata (abfd)->linker);
5233
5234 if (!bed->s->write_shdrs_and_ehdr (abfd))
5235 return FALSE;
5236
5237 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5238 if (elf_tdata (abfd)->after_write_object_contents)
5239 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5240
5241 return TRUE;
5242}
5243
5244bfd_boolean
5245_bfd_elf_write_corefile_contents (bfd *abfd)
5246{
5247 /* Hopefully this can be done just like an object file. */
5248 return _bfd_elf_write_object_contents (abfd);
5249}
5250
5251/* Given a section, search the header to find them. */
5252
5253unsigned int
5254_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5255{
5256 const struct elf_backend_data *bed;
5257 unsigned int sec_index;
5258
5259 if (elf_section_data (asect) != NULL
5260 && elf_section_data (asect)->this_idx != 0)
5261 return elf_section_data (asect)->this_idx;
5262
5263 if (bfd_is_abs_section (asect))
5264 sec_index = SHN_ABS;
5265 else if (bfd_is_com_section (asect))
5266 sec_index = SHN_COMMON;
5267 else if (bfd_is_und_section (asect))
5268 sec_index = SHN_UNDEF;
5269 else
5270 sec_index = SHN_BAD;
5271
5272 bed = get_elf_backend_data (abfd);
5273 if (bed->elf_backend_section_from_bfd_section)
5274 {
5275 int retval = sec_index;
5276
5277 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5278 return retval;
5279 }
5280
5281 if (sec_index == SHN_BAD)
5282 bfd_set_error (bfd_error_nonrepresentable_section);
5283
5284 return sec_index;
5285}
5286
5287/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5288 on error. */
5289
5290int
5291_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5292{
5293 asymbol *asym_ptr = *asym_ptr_ptr;
5294 int idx;
5295 flagword flags = asym_ptr->flags;
5296
5297 /* When gas creates relocations against local labels, it creates its
5298 own symbol for the section, but does put the symbol into the
5299 symbol chain, so udata is 0. When the linker is generating
5300 relocatable output, this section symbol may be for one of the
5301 input sections rather than the output section. */
5302 if (asym_ptr->udata.i == 0
5303 && (flags & BSF_SECTION_SYM)
5304 && asym_ptr->section)
5305 {
5306 asection *sec;
5307 int indx;
5308
5309 sec = asym_ptr->section;
5310 if (sec->owner != abfd && sec->output_section != NULL)
5311 sec = sec->output_section;
5312 if (sec->owner == abfd
5313 && (indx = sec->index) < elf_num_section_syms (abfd)
5314 && elf_section_syms (abfd)[indx] != NULL)
5315 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5316 }
5317
5318 idx = asym_ptr->udata.i;
5319
5320 if (idx == 0)
5321 {
5322 /* This case can occur when using --strip-symbol on a symbol
5323 which is used in a relocation entry. */
5324 (*_bfd_error_handler)
5325 (_("%B: symbol `%s' required but not present"),
5326 abfd, bfd_asymbol_name (asym_ptr));
5327 bfd_set_error (bfd_error_no_symbols);
5328 return -1;
5329 }
5330
5331#if DEBUG & 4
5332 {
5333 fprintf (stderr,
5334 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5335 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5336 fflush (stderr);
5337 }
5338#endif
5339
5340 return idx;
5341}
5342
5343/* Rewrite program header information. */
5344
5345static bfd_boolean
5346rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5347{
5348 Elf_Internal_Ehdr *iehdr;
5349 struct elf_segment_map *map;
5350 struct elf_segment_map *map_first;
5351 struct elf_segment_map **pointer_to_map;
5352 Elf_Internal_Phdr *segment;
5353 asection *section;
5354 unsigned int i;
5355 unsigned int num_segments;
5356 bfd_boolean phdr_included = FALSE;
5357 bfd_boolean p_paddr_valid;
5358 bfd_vma maxpagesize;
5359 struct elf_segment_map *phdr_adjust_seg = NULL;
5360 unsigned int phdr_adjust_num = 0;
5361 const struct elf_backend_data *bed;
5362
5363 bed = get_elf_backend_data (ibfd);
5364 iehdr = elf_elfheader (ibfd);
5365
5366 map_first = NULL;
5367 pointer_to_map = &map_first;
5368
5369 num_segments = elf_elfheader (ibfd)->e_phnum;
5370 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5371
5372 /* Returns the end address of the segment + 1. */
5373#define SEGMENT_END(segment, start) \
5374 (start + (segment->p_memsz > segment->p_filesz \
5375 ? segment->p_memsz : segment->p_filesz))
5376
5377#define SECTION_SIZE(section, segment) \
5378 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5379 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5380 ? section->size : 0)
5381
5382 /* Returns TRUE if the given section is contained within
5383 the given segment. VMA addresses are compared. */
5384#define IS_CONTAINED_BY_VMA(section, segment) \
5385 (section->vma >= segment->p_vaddr \
5386 && (section->vma + SECTION_SIZE (section, segment) \
5387 <= (SEGMENT_END (segment, segment->p_vaddr))))
5388
5389 /* Returns TRUE if the given section is contained within
5390 the given segment. LMA addresses are compared. */
5391#define IS_CONTAINED_BY_LMA(section, segment, base) \
5392 (section->lma >= base \
5393 && (section->lma + SECTION_SIZE (section, segment) \
5394 <= SEGMENT_END (segment, base)))
5395
5396 /* Handle PT_NOTE segment. */
5397#define IS_NOTE(p, s) \
5398 (p->p_type == PT_NOTE \
5399 && elf_section_type (s) == SHT_NOTE \
5400 && (bfd_vma) s->filepos >= p->p_offset \
5401 && ((bfd_vma) s->filepos + s->size \
5402 <= p->p_offset + p->p_filesz))
5403
5404 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5405 etc. */
5406#define IS_COREFILE_NOTE(p, s) \
5407 (IS_NOTE (p, s) \
5408 && bfd_get_format (ibfd) == bfd_core \
5409 && s->vma == 0 \
5410 && s->lma == 0)
5411
5412 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5413 linker, which generates a PT_INTERP section with p_vaddr and
5414 p_memsz set to 0. */
5415#define IS_SOLARIS_PT_INTERP(p, s) \
5416 (p->p_vaddr == 0 \
5417 && p->p_paddr == 0 \
5418 && p->p_memsz == 0 \
5419 && p->p_filesz > 0 \
5420 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5421 && s->size > 0 \
5422 && (bfd_vma) s->filepos >= p->p_offset \
5423 && ((bfd_vma) s->filepos + s->size \
5424 <= p->p_offset + p->p_filesz))
5425
5426 /* Decide if the given section should be included in the given segment.
5427 A section will be included if:
5428 1. It is within the address space of the segment -- we use the LMA
5429 if that is set for the segment and the VMA otherwise,
5430 2. It is an allocated section or a NOTE section in a PT_NOTE
5431 segment.
5432 3. There is an output section associated with it,
5433 4. The section has not already been allocated to a previous segment.
5434 5. PT_GNU_STACK segments do not include any sections.
5435 6. PT_TLS segment includes only SHF_TLS sections.
5436 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5437 8. PT_DYNAMIC should not contain empty sections at the beginning
5438 (with the possible exception of .dynamic). */
5439#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5440 ((((segment->p_paddr \
5441 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5442 : IS_CONTAINED_BY_VMA (section, segment)) \
5443 && (section->flags & SEC_ALLOC) != 0) \
5444 || IS_NOTE (segment, section)) \
5445 && segment->p_type != PT_GNU_STACK \
5446 && (segment->p_type != PT_TLS \
5447 || (section->flags & SEC_THREAD_LOCAL)) \
5448 && (segment->p_type == PT_LOAD \
5449 || segment->p_type == PT_TLS \
5450 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5451 && (segment->p_type != PT_DYNAMIC \
5452 || SECTION_SIZE (section, segment) > 0 \
5453 || (segment->p_paddr \
5454 ? segment->p_paddr != section->lma \
5455 : segment->p_vaddr != section->vma) \
5456 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5457 == 0)) \
5458 && !section->segment_mark)
5459
5460/* If the output section of a section in the input segment is NULL,
5461 it is removed from the corresponding output segment. */
5462#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5463 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5464 && section->output_section != NULL)
5465
5466 /* Returns TRUE iff seg1 starts after the end of seg2. */
5467#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5468 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5469
5470 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5471 their VMA address ranges and their LMA address ranges overlap.
5472 It is possible to have overlapping VMA ranges without overlapping LMA
5473 ranges. RedBoot images for example can have both .data and .bss mapped
5474 to the same VMA range, but with the .data section mapped to a different
5475 LMA. */
5476#define SEGMENT_OVERLAPS(seg1, seg2) \
5477 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5478 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5479 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5480 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5481
5482 /* Initialise the segment mark field. */
5483 for (section = ibfd->sections; section != NULL; section = section->next)
5484 section->segment_mark = FALSE;
5485
5486 /* The Solaris linker creates program headers in which all the
5487 p_paddr fields are zero. When we try to objcopy or strip such a
5488 file, we get confused. Check for this case, and if we find it
5489 don't set the p_paddr_valid fields. */
5490 p_paddr_valid = FALSE;
5491 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5492 i < num_segments;
5493 i++, segment++)
5494 if (segment->p_paddr != 0)
5495 {
5496 p_paddr_valid = TRUE;
5497 break;
5498 }
5499
5500 /* Scan through the segments specified in the program header
5501 of the input BFD. For this first scan we look for overlaps
5502 in the loadable segments. These can be created by weird
5503 parameters to objcopy. Also, fix some solaris weirdness. */
5504 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5505 i < num_segments;
5506 i++, segment++)
5507 {
5508 unsigned int j;
5509 Elf_Internal_Phdr *segment2;
5510
5511 if (segment->p_type == PT_INTERP)
5512 for (section = ibfd->sections; section; section = section->next)
5513 if (IS_SOLARIS_PT_INTERP (segment, section))
5514 {
5515 /* Mininal change so that the normal section to segment
5516 assignment code will work. */
5517 segment->p_vaddr = section->vma;
5518 break;
5519 }
5520
5521 if (segment->p_type != PT_LOAD)
5522 {
5523 /* Remove PT_GNU_RELRO segment. */
5524 if (segment->p_type == PT_GNU_RELRO)
5525 segment->p_type = PT_NULL;
5526 continue;
5527 }
5528
5529 /* Determine if this segment overlaps any previous segments. */
5530 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5531 {
5532 bfd_signed_vma extra_length;
5533
5534 if (segment2->p_type != PT_LOAD
5535 || !SEGMENT_OVERLAPS (segment, segment2))
5536 continue;
5537
5538 /* Merge the two segments together. */
5539 if (segment2->p_vaddr < segment->p_vaddr)
5540 {
5541 /* Extend SEGMENT2 to include SEGMENT and then delete
5542 SEGMENT. */
5543 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5544 - SEGMENT_END (segment2, segment2->p_vaddr));
5545
5546 if (extra_length > 0)
5547 {
5548 segment2->p_memsz += extra_length;
5549 segment2->p_filesz += extra_length;
5550 }
5551
5552 segment->p_type = PT_NULL;
5553
5554 /* Since we have deleted P we must restart the outer loop. */
5555 i = 0;
5556 segment = elf_tdata (ibfd)->phdr;
5557 break;
5558 }
5559 else
5560 {
5561 /* Extend SEGMENT to include SEGMENT2 and then delete
5562 SEGMENT2. */
5563 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5564 - SEGMENT_END (segment, segment->p_vaddr));
5565
5566 if (extra_length > 0)
5567 {
5568 segment->p_memsz += extra_length;
5569 segment->p_filesz += extra_length;
5570 }
5571
5572 segment2->p_type = PT_NULL;
5573 }
5574 }
5575 }
5576
5577 /* The second scan attempts to assign sections to segments. */
5578 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5579 i < num_segments;
5580 i++, segment++)
5581 {
5582 unsigned int section_count;
5583 asection **sections;
5584 asection *output_section;
5585 unsigned int isec;
5586 bfd_vma matching_lma;
5587 bfd_vma suggested_lma;
5588 unsigned int j;
5589 bfd_size_type amt;
5590 asection *first_section;
5591 bfd_boolean first_matching_lma;
5592 bfd_boolean first_suggested_lma;
5593
5594 if (segment->p_type == PT_NULL)
5595 continue;
5596
5597 first_section = NULL;
5598 /* Compute how many sections might be placed into this segment. */
5599 for (section = ibfd->sections, section_count = 0;
5600 section != NULL;
5601 section = section->next)
5602 {
5603 /* Find the first section in the input segment, which may be
5604 removed from the corresponding output segment. */
5605 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5606 {
5607 if (first_section == NULL)
5608 first_section = section;
5609 if (section->output_section != NULL)
5610 ++section_count;
5611 }
5612 }
5613
5614 /* Allocate a segment map big enough to contain
5615 all of the sections we have selected. */
5616 amt = sizeof (struct elf_segment_map);
5617 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5618 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5619 if (map == NULL)
5620 return FALSE;
5621
5622 /* Initialise the fields of the segment map. Default to
5623 using the physical address of the segment in the input BFD. */
5624 map->next = NULL;
5625 map->p_type = segment->p_type;
5626 map->p_flags = segment->p_flags;
5627 map->p_flags_valid = 1;
5628
5629 /* If the first section in the input segment is removed, there is
5630 no need to preserve segment physical address in the corresponding
5631 output segment. */
5632 if (!first_section || first_section->output_section != NULL)
5633 {
5634 map->p_paddr = segment->p_paddr;
5635 map->p_paddr_valid = p_paddr_valid;
5636 }
5637
5638 /* Determine if this segment contains the ELF file header
5639 and if it contains the program headers themselves. */
5640 map->includes_filehdr = (segment->p_offset == 0
5641 && segment->p_filesz >= iehdr->e_ehsize);
5642 map->includes_phdrs = 0;
5643
5644 if (!phdr_included || segment->p_type != PT_LOAD)
5645 {
5646 map->includes_phdrs =
5647 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5648 && (segment->p_offset + segment->p_filesz
5649 >= ((bfd_vma) iehdr->e_phoff
5650 + iehdr->e_phnum * iehdr->e_phentsize)));
5651
5652 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5653 phdr_included = TRUE;
5654 }
5655
5656 if (section_count == 0)
5657 {
5658 /* Special segments, such as the PT_PHDR segment, may contain
5659 no sections, but ordinary, loadable segments should contain
5660 something. They are allowed by the ELF spec however, so only
5661 a warning is produced. */
5662 if (segment->p_type == PT_LOAD)
5663 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5664 " detected, is this intentional ?\n"),
5665 ibfd);
5666
5667 map->count = 0;
5668 *pointer_to_map = map;
5669 pointer_to_map = &map->next;
5670
5671 continue;
5672 }
5673
5674 /* Now scan the sections in the input BFD again and attempt
5675 to add their corresponding output sections to the segment map.
5676 The problem here is how to handle an output section which has
5677 been moved (ie had its LMA changed). There are four possibilities:
5678
5679 1. None of the sections have been moved.
5680 In this case we can continue to use the segment LMA from the
5681 input BFD.
5682
5683 2. All of the sections have been moved by the same amount.
5684 In this case we can change the segment's LMA to match the LMA
5685 of the first section.
5686
5687 3. Some of the sections have been moved, others have not.
5688 In this case those sections which have not been moved can be
5689 placed in the current segment which will have to have its size,
5690 and possibly its LMA changed, and a new segment or segments will
5691 have to be created to contain the other sections.
5692
5693 4. The sections have been moved, but not by the same amount.
5694 In this case we can change the segment's LMA to match the LMA
5695 of the first section and we will have to create a new segment
5696 or segments to contain the other sections.
5697
5698 In order to save time, we allocate an array to hold the section
5699 pointers that we are interested in. As these sections get assigned
5700 to a segment, they are removed from this array. */
5701
5702 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5703 if (sections == NULL)
5704 return FALSE;
5705
5706 /* Step One: Scan for segment vs section LMA conflicts.
5707 Also add the sections to the section array allocated above.
5708 Also add the sections to the current segment. In the common
5709 case, where the sections have not been moved, this means that
5710 we have completely filled the segment, and there is nothing
5711 more to do. */
5712 isec = 0;
5713 matching_lma = 0;
5714 suggested_lma = 0;
5715 first_matching_lma = TRUE;
5716 first_suggested_lma = TRUE;
5717
5718 for (section = ibfd->sections;
5719 section != NULL;
5720 section = section->next)
5721 if (section == first_section)
5722 break;
5723
5724 for (j = 0; section != NULL; section = section->next)
5725 {
5726 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5727 {
5728 output_section = section->output_section;
5729
5730 sections[j++] = section;
5731
5732 /* The Solaris native linker always sets p_paddr to 0.
5733 We try to catch that case here, and set it to the
5734 correct value. Note - some backends require that
5735 p_paddr be left as zero. */
5736 if (!p_paddr_valid
5737 && segment->p_vaddr != 0
5738 && !bed->want_p_paddr_set_to_zero
5739 && isec == 0
5740 && output_section->lma != 0
5741 && output_section->vma == (segment->p_vaddr
5742 + (map->includes_filehdr
5743 ? iehdr->e_ehsize
5744 : 0)
5745 + (map->includes_phdrs
5746 ? (iehdr->e_phnum
5747 * iehdr->e_phentsize)
5748 : 0)))
5749 map->p_paddr = segment->p_vaddr;
5750
5751 /* Match up the physical address of the segment with the
5752 LMA address of the output section. */
5753 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5754 || IS_COREFILE_NOTE (segment, section)
5755 || (bed->want_p_paddr_set_to_zero
5756 && IS_CONTAINED_BY_VMA (output_section, segment)))
5757 {
5758 if (first_matching_lma || output_section->lma < matching_lma)
5759 {
5760 matching_lma = output_section->lma;
5761 first_matching_lma = FALSE;
5762 }
5763
5764 /* We assume that if the section fits within the segment
5765 then it does not overlap any other section within that
5766 segment. */
5767 map->sections[isec++] = output_section;
5768 }
5769 else if (first_suggested_lma)
5770 {
5771 suggested_lma = output_section->lma;
5772 first_suggested_lma = FALSE;
5773 }
5774
5775 if (j == section_count)
5776 break;
5777 }
5778 }
5779
5780 BFD_ASSERT (j == section_count);
5781
5782 /* Step Two: Adjust the physical address of the current segment,
5783 if necessary. */
5784 if (isec == section_count)
5785 {
5786 /* All of the sections fitted within the segment as currently
5787 specified. This is the default case. Add the segment to
5788 the list of built segments and carry on to process the next
5789 program header in the input BFD. */
5790 map->count = section_count;
5791 *pointer_to_map = map;
5792 pointer_to_map = &map->next;
5793
5794 if (p_paddr_valid
5795 && !bed->want_p_paddr_set_to_zero
5796 && matching_lma != map->p_paddr
5797 && !map->includes_filehdr
5798 && !map->includes_phdrs)
5799 /* There is some padding before the first section in the
5800 segment. So, we must account for that in the output
5801 segment's vma. */
5802 map->p_vaddr_offset = matching_lma - map->p_paddr;
5803
5804 free (sections);
5805 continue;
5806 }
5807 else
5808 {
5809 if (!first_matching_lma)
5810 {
5811 /* At least one section fits inside the current segment.
5812 Keep it, but modify its physical address to match the
5813 LMA of the first section that fitted. */
5814 map->p_paddr = matching_lma;
5815 }
5816 else
5817 {
5818 /* None of the sections fitted inside the current segment.
5819 Change the current segment's physical address to match
5820 the LMA of the first section. */
5821 map->p_paddr = suggested_lma;
5822 }
5823
5824 /* Offset the segment physical address from the lma
5825 to allow for space taken up by elf headers. */
5826 if (map->includes_filehdr)
5827 {
5828 if (map->p_paddr >= iehdr->e_ehsize)
5829 map->p_paddr -= iehdr->e_ehsize;
5830 else
5831 {
5832 map->includes_filehdr = FALSE;
5833 map->includes_phdrs = FALSE;
5834 }
5835 }
5836
5837 if (map->includes_phdrs)
5838 {
5839 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5840 {
5841 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5842
5843 /* iehdr->e_phnum is just an estimate of the number
5844 of program headers that we will need. Make a note
5845 here of the number we used and the segment we chose
5846 to hold these headers, so that we can adjust the
5847 offset when we know the correct value. */
5848 phdr_adjust_num = iehdr->e_phnum;
5849 phdr_adjust_seg = map;
5850 }
5851 else
5852 map->includes_phdrs = FALSE;
5853 }
5854 }
5855
5856 /* Step Three: Loop over the sections again, this time assigning
5857 those that fit to the current segment and removing them from the
5858 sections array; but making sure not to leave large gaps. Once all
5859 possible sections have been assigned to the current segment it is
5860 added to the list of built segments and if sections still remain
5861 to be assigned, a new segment is constructed before repeating
5862 the loop. */
5863 isec = 0;
5864 do
5865 {
5866 map->count = 0;
5867 suggested_lma = 0;
5868 first_suggested_lma = TRUE;
5869
5870 /* Fill the current segment with sections that fit. */
5871 for (j = 0; j < section_count; j++)
5872 {
5873 section = sections[j];
5874
5875 if (section == NULL)
5876 continue;
5877
5878 output_section = section->output_section;
5879
5880 BFD_ASSERT (output_section != NULL);
5881
5882 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5883 || IS_COREFILE_NOTE (segment, section))
5884 {
5885 if (map->count == 0)
5886 {
5887 /* If the first section in a segment does not start at
5888 the beginning of the segment, then something is
5889 wrong. */
5890 if (output_section->lma
5891 != (map->p_paddr
5892 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5893 + (map->includes_phdrs
5894 ? iehdr->e_phnum * iehdr->e_phentsize
5895 : 0)))
5896 abort ();
5897 }
5898 else
5899 {
5900 asection *prev_sec;
5901
5902 prev_sec = map->sections[map->count - 1];
5903
5904 /* If the gap between the end of the previous section
5905 and the start of this section is more than
5906 maxpagesize then we need to start a new segment. */
5907 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5908 maxpagesize)
5909 < BFD_ALIGN (output_section->lma, maxpagesize))
5910 || (prev_sec->lma + prev_sec->size
5911 > output_section->lma))
5912 {
5913 if (first_suggested_lma)
5914 {
5915 suggested_lma = output_section->lma;
5916 first_suggested_lma = FALSE;
5917 }
5918
5919 continue;
5920 }
5921 }
5922
5923 map->sections[map->count++] = output_section;
5924 ++isec;
5925 sections[j] = NULL;
5926 section->segment_mark = TRUE;
5927 }
5928 else if (first_suggested_lma)
5929 {
5930 suggested_lma = output_section->lma;
5931 first_suggested_lma = FALSE;
5932 }
5933 }
5934
5935 BFD_ASSERT (map->count > 0);
5936
5937 /* Add the current segment to the list of built segments. */
5938 *pointer_to_map = map;
5939 pointer_to_map = &map->next;
5940
5941 if (isec < section_count)
5942 {
5943 /* We still have not allocated all of the sections to
5944 segments. Create a new segment here, initialise it
5945 and carry on looping. */
5946 amt = sizeof (struct elf_segment_map);
5947 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5948 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5949 if (map == NULL)
5950 {
5951 free (sections);
5952 return FALSE;
5953 }
5954
5955 /* Initialise the fields of the segment map. Set the physical
5956 physical address to the LMA of the first section that has
5957 not yet been assigned. */
5958 map->next = NULL;
5959 map->p_type = segment->p_type;
5960 map->p_flags = segment->p_flags;
5961 map->p_flags_valid = 1;
5962 map->p_paddr = suggested_lma;
5963 map->p_paddr_valid = p_paddr_valid;
5964 map->includes_filehdr = 0;
5965 map->includes_phdrs = 0;
5966 }
5967 }
5968 while (isec < section_count);
5969
5970 free (sections);
5971 }
5972
5973 elf_tdata (obfd)->segment_map = map_first;
5974
5975 /* If we had to estimate the number of program headers that were
5976 going to be needed, then check our estimate now and adjust
5977 the offset if necessary. */
5978 if (phdr_adjust_seg != NULL)
5979 {
5980 unsigned int count;
5981
5982 for (count = 0, map = map_first; map != NULL; map = map->next)
5983 count++;
5984
5985 if (count > phdr_adjust_num)
5986 phdr_adjust_seg->p_paddr
5987 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5988 }
5989
5990#undef SEGMENT_END
5991#undef SECTION_SIZE
5992#undef IS_CONTAINED_BY_VMA
5993#undef IS_CONTAINED_BY_LMA
5994#undef IS_NOTE
5995#undef IS_COREFILE_NOTE
5996#undef IS_SOLARIS_PT_INTERP
5997#undef IS_SECTION_IN_INPUT_SEGMENT
5998#undef INCLUDE_SECTION_IN_SEGMENT
5999#undef SEGMENT_AFTER_SEGMENT
6000#undef SEGMENT_OVERLAPS
6001 return TRUE;
6002}
6003
6004/* Copy ELF program header information. */
6005
6006static bfd_boolean
6007copy_elf_program_header (bfd *ibfd, bfd *obfd)
6008{
6009 Elf_Internal_Ehdr *iehdr;
6010 struct elf_segment_map *map;
6011 struct elf_segment_map *map_first;
6012 struct elf_segment_map **pointer_to_map;
6013 Elf_Internal_Phdr *segment;
6014 unsigned int i;
6015 unsigned int num_segments;
6016 bfd_boolean phdr_included = FALSE;
6017 bfd_boolean p_paddr_valid;
6018
6019 iehdr = elf_elfheader (ibfd);
6020
6021 map_first = NULL;
6022 pointer_to_map = &map_first;
6023
6024 /* If all the segment p_paddr fields are zero, don't set
6025 map->p_paddr_valid. */
6026 p_paddr_valid = FALSE;
6027 num_segments = elf_elfheader (ibfd)->e_phnum;
6028 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6029 i < num_segments;
6030 i++, segment++)
6031 if (segment->p_paddr != 0)
6032 {
6033 p_paddr_valid = TRUE;
6034 break;
6035 }
6036
6037 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6038 i < num_segments;
6039 i++, segment++)
6040 {
6041 asection *section;
6042 unsigned int section_count;
6043 bfd_size_type amt;
6044 Elf_Internal_Shdr *this_hdr;
6045 asection *first_section = NULL;
6046 asection *lowest_section;
6047
6048 /* Compute how many sections are in this segment. */
6049 for (section = ibfd->sections, section_count = 0;
6050 section != NULL;
6051 section = section->next)
6052 {
6053 this_hdr = &(elf_section_data(section)->this_hdr);
6054 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6055 {
6056 if (first_section == NULL)
6057 first_section = section;
6058 section_count++;
6059 }
6060 }
6061
6062 /* Allocate a segment map big enough to contain
6063 all of the sections we have selected. */
6064 amt = sizeof (struct elf_segment_map);
6065 if (section_count != 0)
6066 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6067 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6068 if (map == NULL)
6069 return FALSE;
6070
6071 /* Initialize the fields of the output segment map with the
6072 input segment. */
6073 map->next = NULL;
6074 map->p_type = segment->p_type;
6075 map->p_flags = segment->p_flags;
6076 map->p_flags_valid = 1;
6077 map->p_paddr = segment->p_paddr;
6078 map->p_paddr_valid = p_paddr_valid;
6079 map->p_align = segment->p_align;
6080 map->p_align_valid = 1;
6081 map->p_vaddr_offset = 0;
6082
6083 if (map->p_type == PT_GNU_RELRO)
6084 {
6085 /* The PT_GNU_RELRO segment may contain the first a few
6086 bytes in the .got.plt section even if the whole .got.plt
6087 section isn't in the PT_GNU_RELRO segment. We won't
6088 change the size of the PT_GNU_RELRO segment. */
6089 map->p_size = segment->p_memsz;
6090 map->p_size_valid = 1;
6091 }
6092
6093 /* Determine if this segment contains the ELF file header
6094 and if it contains the program headers themselves. */
6095 map->includes_filehdr = (segment->p_offset == 0
6096 && segment->p_filesz >= iehdr->e_ehsize);
6097
6098 map->includes_phdrs = 0;
6099 if (! phdr_included || segment->p_type != PT_LOAD)
6100 {
6101 map->includes_phdrs =
6102 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6103 && (segment->p_offset + segment->p_filesz
6104 >= ((bfd_vma) iehdr->e_phoff
6105 + iehdr->e_phnum * iehdr->e_phentsize)));
6106
6107 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6108 phdr_included = TRUE;
6109 }
6110
6111 lowest_section = first_section;
6112 if (section_count != 0)
6113 {
6114 unsigned int isec = 0;
6115
6116 for (section = first_section;
6117 section != NULL;
6118 section = section->next)
6119 {
6120 this_hdr = &(elf_section_data(section)->this_hdr);
6121 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6122 {
6123 map->sections[isec++] = section->output_section;
6124 if (section->lma < lowest_section->lma)
6125 lowest_section = section;
6126 if ((section->flags & SEC_ALLOC) != 0)
6127 {
6128 bfd_vma seg_off;
6129
6130 /* Section lmas are set up from PT_LOAD header
6131 p_paddr in _bfd_elf_make_section_from_shdr.
6132 If this header has a p_paddr that disagrees
6133 with the section lma, flag the p_paddr as
6134 invalid. */
6135 if ((section->flags & SEC_LOAD) != 0)
6136 seg_off = this_hdr->sh_offset - segment->p_offset;
6137 else
6138 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6139 if (section->lma - segment->p_paddr != seg_off)
6140 map->p_paddr_valid = FALSE;
6141 }
6142 if (isec == section_count)
6143 break;
6144 }
6145 }
6146 }
6147
6148 if (map->includes_filehdr && lowest_section != NULL)
6149 /* We need to keep the space used by the headers fixed. */
6150 map->header_size = lowest_section->vma - segment->p_vaddr;
6151
6152 if (!map->includes_phdrs
6153 && !map->includes_filehdr
6154 && map->p_paddr_valid)
6155 /* There is some other padding before the first section. */
6156 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6157 - segment->p_paddr);
6158
6159 map->count = section_count;
6160 *pointer_to_map = map;
6161 pointer_to_map = &map->next;
6162 }
6163
6164 elf_tdata (obfd)->segment_map = map_first;
6165 return TRUE;
6166}
6167
6168/* Copy private BFD data. This copies or rewrites ELF program header
6169 information. */
6170
6171static bfd_boolean
6172copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6173{
6174 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6175 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6176 return TRUE;
6177
6178 if (elf_tdata (ibfd)->phdr == NULL)
6179 return TRUE;
6180
6181 if (ibfd->xvec == obfd->xvec)
6182 {
6183 /* Check to see if any sections in the input BFD
6184 covered by ELF program header have changed. */
6185 Elf_Internal_Phdr *segment;
6186 asection *section, *osec;
6187 unsigned int i, num_segments;
6188 Elf_Internal_Shdr *this_hdr;
6189 const struct elf_backend_data *bed;
6190
6191 bed = get_elf_backend_data (ibfd);
6192
6193 /* Regenerate the segment map if p_paddr is set to 0. */
6194 if (bed->want_p_paddr_set_to_zero)
6195 goto rewrite;
6196
6197 /* Initialize the segment mark field. */
6198 for (section = obfd->sections; section != NULL;
6199 section = section->next)
6200 section->segment_mark = FALSE;
6201
6202 num_segments = elf_elfheader (ibfd)->e_phnum;
6203 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6204 i < num_segments;
6205 i++, segment++)
6206 {
6207 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6208 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6209 which severly confuses things, so always regenerate the segment
6210 map in this case. */
6211 if (segment->p_paddr == 0
6212 && segment->p_memsz == 0
6213 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6214 goto rewrite;
6215
6216 for (section = ibfd->sections;
6217 section != NULL; section = section->next)
6218 {
6219 /* We mark the output section so that we know it comes
6220 from the input BFD. */
6221 osec = section->output_section;
6222 if (osec)
6223 osec->segment_mark = TRUE;
6224
6225 /* Check if this section is covered by the segment. */
6226 this_hdr = &(elf_section_data(section)->this_hdr);
6227 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6228 {
6229 /* FIXME: Check if its output section is changed or
6230 removed. What else do we need to check? */
6231 if (osec == NULL
6232 || section->flags != osec->flags
6233 || section->lma != osec->lma
6234 || section->vma != osec->vma
6235 || section->size != osec->size
6236 || section->rawsize != osec->rawsize
6237 || section->alignment_power != osec->alignment_power)
6238 goto rewrite;
6239 }
6240 }
6241 }
6242
6243 /* Check to see if any output section do not come from the
6244 input BFD. */
6245 for (section = obfd->sections; section != NULL;
6246 section = section->next)
6247 {
6248 if (section->segment_mark == FALSE)
6249 goto rewrite;
6250 else
6251 section->segment_mark = FALSE;
6252 }
6253
6254 return copy_elf_program_header (ibfd, obfd);
6255 }
6256
6257rewrite:
6258 return rewrite_elf_program_header (ibfd, obfd);
6259}
6260
6261/* Initialize private output section information from input section. */
6262
6263bfd_boolean
6264_bfd_elf_init_private_section_data (bfd *ibfd,
6265 asection *isec,
6266 bfd *obfd,
6267 asection *osec,
6268 struct bfd_link_info *link_info)
6269
6270{
6271 Elf_Internal_Shdr *ihdr, *ohdr;
6272 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6273
6274 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6275 || obfd->xvec->flavour != bfd_target_elf_flavour)
6276 return TRUE;
6277
6278 BFD_ASSERT (elf_section_data (osec) != NULL);
6279
6280 /* For objcopy and relocatable link, don't copy the output ELF
6281 section type from input if the output BFD section flags have been
6282 set to something different. For a final link allow some flags
6283 that the linker clears to differ. */
6284 if (elf_section_type (osec) == SHT_NULL
6285 && (osec->flags == isec->flags
6286 || (final_link
6287 && ((osec->flags ^ isec->flags)
6288 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6289 elf_section_type (osec) = elf_section_type (isec);
6290
6291 /* FIXME: Is this correct for all OS/PROC specific flags? */
6292 elf_section_flags (osec) |= (elf_section_flags (isec)
6293 & (SHF_MASKOS | SHF_MASKPROC));
6294
6295 /* Set things up for objcopy and relocatable link. The output
6296 SHT_GROUP section will have its elf_next_in_group pointing back
6297 to the input group members. Ignore linker created group section.
6298 See elfNN_ia64_object_p in elfxx-ia64.c. */
6299 if (!final_link)
6300 {
6301 if (elf_sec_group (isec) == NULL
6302 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6303 {
6304 if (elf_section_flags (isec) & SHF_GROUP)
6305 elf_section_flags (osec) |= SHF_GROUP;
6306 elf_next_in_group (osec) = elf_next_in_group (isec);
6307 elf_section_data (osec)->group = elf_section_data (isec)->group;
6308 }
6309 }
6310
6311 ihdr = &elf_section_data (isec)->this_hdr;
6312
6313 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6314 don't use the output section of the linked-to section since it
6315 may be NULL at this point. */
6316 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6317 {
6318 ohdr = &elf_section_data (osec)->this_hdr;
6319 ohdr->sh_flags |= SHF_LINK_ORDER;
6320 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6321 }
6322
6323 osec->use_rela_p = isec->use_rela_p;
6324
6325 return TRUE;
6326}
6327
6328/* Copy private section information. This copies over the entsize
6329 field, and sometimes the info field. */
6330
6331bfd_boolean
6332_bfd_elf_copy_private_section_data (bfd *ibfd,
6333 asection *isec,
6334 bfd *obfd,
6335 asection *osec)
6336{
6337 Elf_Internal_Shdr *ihdr, *ohdr;
6338
6339 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6340 || obfd->xvec->flavour != bfd_target_elf_flavour)
6341 return TRUE;
6342
6343 ihdr = &elf_section_data (isec)->this_hdr;
6344 ohdr = &elf_section_data (osec)->this_hdr;
6345
6346 ohdr->sh_entsize = ihdr->sh_entsize;
6347
6348 if (ihdr->sh_type == SHT_SYMTAB
6349 || ihdr->sh_type == SHT_DYNSYM
6350 || ihdr->sh_type == SHT_GNU_verneed
6351 || ihdr->sh_type == SHT_GNU_verdef)
6352 ohdr->sh_info = ihdr->sh_info;
6353
6354 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6355 NULL);
6356}
6357
6358/* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6359 necessary if we are removing either the SHT_GROUP section or any of
6360 the group member sections. DISCARDED is the value that a section's
6361 output_section has if the section will be discarded, NULL when this
6362 function is called from objcopy, bfd_abs_section_ptr when called
6363 from the linker. */
6364
6365bfd_boolean
6366_bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6367{
6368 asection *isec;
6369
6370 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6371 if (elf_section_type (isec) == SHT_GROUP)
6372 {
6373 asection *first = elf_next_in_group (isec);
6374 asection *s = first;
6375 bfd_size_type removed = 0;
6376
6377 while (s != NULL)
6378 {
6379 /* If this member section is being output but the
6380 SHT_GROUP section is not, then clear the group info
6381 set up by _bfd_elf_copy_private_section_data. */
6382 if (s->output_section != discarded
6383 && isec->output_section == discarded)
6384 {
6385 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6386 elf_group_name (s->output_section) = NULL;
6387 }
6388 /* Conversely, if the member section is not being output
6389 but the SHT_GROUP section is, then adjust its size. */
6390 else if (s->output_section == discarded
6391 && isec->output_section != discarded)
6392 removed += 4;
6393 s = elf_next_in_group (s);
6394 if (s == first)
6395 break;
6396 }
6397 if (removed != 0)
6398 {
6399 if (discarded != NULL)
6400 {
6401 /* If we've been called for ld -r, then we need to
6402 adjust the input section size. This function may
6403 be called multiple times, so save the original
6404 size. */
6405 if (isec->rawsize == 0)
6406 isec->rawsize = isec->size;
6407 isec->size = isec->rawsize - removed;
6408 }
6409 else
6410 {
6411 /* Adjust the output section size when called from
6412 objcopy. */
6413 isec->output_section->size -= removed;
6414 }
6415 }
6416 }
6417
6418 return TRUE;
6419}
6420
6421/* Copy private header information. */
6422
6423bfd_boolean
6424_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6425{
6426 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6427 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6428 return TRUE;
6429
6430 /* Copy over private BFD data if it has not already been copied.
6431 This must be done here, rather than in the copy_private_bfd_data
6432 entry point, because the latter is called after the section
6433 contents have been set, which means that the program headers have
6434 already been worked out. */
6435 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6436 {
6437 if (! copy_private_bfd_data (ibfd, obfd))
6438 return FALSE;
6439 }
6440
6441 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6442}
6443
6444/* Copy private symbol information. If this symbol is in a section
6445 which we did not map into a BFD section, try to map the section
6446 index correctly. We use special macro definitions for the mapped
6447 section indices; these definitions are interpreted by the
6448 swap_out_syms function. */
6449
6450#define MAP_ONESYMTAB (SHN_HIOS + 1)
6451#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6452#define MAP_STRTAB (SHN_HIOS + 3)
6453#define MAP_SHSTRTAB (SHN_HIOS + 4)
6454#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6455
6456bfd_boolean
6457_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6458 asymbol *isymarg,
6459 bfd *obfd,
6460 asymbol *osymarg)
6461{
6462 elf_symbol_type *isym, *osym;
6463
6464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6466 return TRUE;
6467
6468 isym = elf_symbol_from (ibfd, isymarg);
6469 osym = elf_symbol_from (obfd, osymarg);
6470
6471 if (isym != NULL
6472 && isym->internal_elf_sym.st_shndx != 0
6473 && osym != NULL
6474 && bfd_is_abs_section (isym->symbol.section))
6475 {
6476 unsigned int shndx;
6477
6478 shndx = isym->internal_elf_sym.st_shndx;
6479 if (shndx == elf_onesymtab (ibfd))
6480 shndx = MAP_ONESYMTAB;
6481 else if (shndx == elf_dynsymtab (ibfd))
6482 shndx = MAP_DYNSYMTAB;
6483 else if (shndx == elf_tdata (ibfd)->strtab_section)
6484 shndx = MAP_STRTAB;
6485 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6486 shndx = MAP_SHSTRTAB;
6487 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6488 shndx = MAP_SYM_SHNDX;
6489 osym->internal_elf_sym.st_shndx = shndx;
6490 }
6491
6492 return TRUE;
6493}
6494
6495/* Swap out the symbols. */
6496
6497static bfd_boolean
6498swap_out_syms (bfd *abfd,
6499 struct bfd_strtab_hash **sttp,
6500 int relocatable_p)
6501{
6502 const struct elf_backend_data *bed;
6503 int symcount;
6504 asymbol **syms;
6505 struct bfd_strtab_hash *stt;
6506 Elf_Internal_Shdr *symtab_hdr;
6507 Elf_Internal_Shdr *symtab_shndx_hdr;
6508 Elf_Internal_Shdr *symstrtab_hdr;
6509 bfd_byte *outbound_syms;
6510 bfd_byte *outbound_shndx;
6511 int idx;
6512 bfd_size_type amt;
6513 bfd_boolean name_local_sections;
6514
6515 if (!elf_map_symbols (abfd))
6516 return FALSE;
6517
6518 /* Dump out the symtabs. */
6519 stt = _bfd_elf_stringtab_init ();
6520 if (stt == NULL)
6521 return FALSE;
6522
6523 bed = get_elf_backend_data (abfd);
6524 symcount = bfd_get_symcount (abfd);
6525 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6526 symtab_hdr->sh_type = SHT_SYMTAB;
6527 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6528 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6529 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6530 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6531
6532 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6533 symstrtab_hdr->sh_type = SHT_STRTAB;
6534
6535 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6536 bed->s->sizeof_sym);
6537 if (outbound_syms == NULL)
6538 {
6539 _bfd_stringtab_free (stt);
6540 return FALSE;
6541 }
6542 symtab_hdr->contents = outbound_syms;
6543
6544 outbound_shndx = NULL;
6545 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6546 if (symtab_shndx_hdr->sh_name != 0)
6547 {
6548 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6549 outbound_shndx = (bfd_byte *)
6550 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6551 if (outbound_shndx == NULL)
6552 {
6553 _bfd_stringtab_free (stt);
6554 return FALSE;
6555 }
6556
6557 symtab_shndx_hdr->contents = outbound_shndx;
6558 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6559 symtab_shndx_hdr->sh_size = amt;
6560 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6561 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6562 }
6563
6564 /* Now generate the data (for "contents"). */
6565 {
6566 /* Fill in zeroth symbol and swap it out. */
6567 Elf_Internal_Sym sym;
6568 sym.st_name = 0;
6569 sym.st_value = 0;
6570 sym.st_size = 0;
6571 sym.st_info = 0;
6572 sym.st_other = 0;
6573 sym.st_shndx = SHN_UNDEF;
6574 sym.st_target_internal = 0;
6575 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6576 outbound_syms += bed->s->sizeof_sym;
6577 if (outbound_shndx != NULL)
6578 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6579 }
6580
6581 name_local_sections
6582 = (bed->elf_backend_name_local_section_symbols
6583 && bed->elf_backend_name_local_section_symbols (abfd));
6584
6585 syms = bfd_get_outsymbols (abfd);
6586 for (idx = 0; idx < symcount; idx++)
6587 {
6588 Elf_Internal_Sym sym;
6589 bfd_vma value = syms[idx]->value;
6590 elf_symbol_type *type_ptr;
6591 flagword flags = syms[idx]->flags;
6592 int type;
6593
6594 if (!name_local_sections
6595 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6596 {
6597 /* Local section symbols have no name. */
6598 sym.st_name = 0;
6599 }
6600 else
6601 {
6602 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6603 syms[idx]->name,
6604 TRUE, FALSE);
6605 if (sym.st_name == (unsigned long) -1)
6606 {
6607 _bfd_stringtab_free (stt);
6608 return FALSE;
6609 }
6610 }
6611
6612 type_ptr = elf_symbol_from (abfd, syms[idx]);
6613
6614 if ((flags & BSF_SECTION_SYM) == 0
6615 && bfd_is_com_section (syms[idx]->section))
6616 {
6617 /* ELF common symbols put the alignment into the `value' field,
6618 and the size into the `size' field. This is backwards from
6619 how BFD handles it, so reverse it here. */
6620 sym.st_size = value;
6621 if (type_ptr == NULL
6622 || type_ptr->internal_elf_sym.st_value == 0)
6623 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6624 else
6625 sym.st_value = type_ptr->internal_elf_sym.st_value;
6626 sym.st_shndx = _bfd_elf_section_from_bfd_section
6627 (abfd, syms[idx]->section);
6628 }
6629 else
6630 {
6631 asection *sec = syms[idx]->section;
6632 unsigned int shndx;
6633
6634 if (sec->output_section)
6635 {
6636 value += sec->output_offset;
6637 sec = sec->output_section;
6638 }
6639
6640 /* Don't add in the section vma for relocatable output. */
6641 if (! relocatable_p)
6642 value += sec->vma;
6643 sym.st_value = value;
6644 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6645
6646 if (bfd_is_abs_section (sec)
6647 && type_ptr != NULL
6648 && type_ptr->internal_elf_sym.st_shndx != 0)
6649 {
6650 /* This symbol is in a real ELF section which we did
6651 not create as a BFD section. Undo the mapping done
6652 by copy_private_symbol_data. */
6653 shndx = type_ptr->internal_elf_sym.st_shndx;
6654 switch (shndx)
6655 {
6656 case MAP_ONESYMTAB:
6657 shndx = elf_onesymtab (abfd);
6658 break;
6659 case MAP_DYNSYMTAB:
6660 shndx = elf_dynsymtab (abfd);
6661 break;
6662 case MAP_STRTAB:
6663 shndx = elf_tdata (abfd)->strtab_section;
6664 break;
6665 case MAP_SHSTRTAB:
6666 shndx = elf_tdata (abfd)->shstrtab_section;
6667 break;
6668 case MAP_SYM_SHNDX:
6669 shndx = elf_tdata (abfd)->symtab_shndx_section;
6670 break;
6671 default:
6672 break;
6673 }
6674 }
6675 else
6676 {
6677 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6678
6679 if (shndx == SHN_BAD)
6680 {
6681 asection *sec2;
6682
6683 /* Writing this would be a hell of a lot easier if
6684 we had some decent documentation on bfd, and
6685 knew what to expect of the library, and what to
6686 demand of applications. For example, it
6687 appears that `objcopy' might not set the
6688 section of a symbol to be a section that is
6689 actually in the output file. */
6690 sec2 = bfd_get_section_by_name (abfd, sec->name);
6691 if (sec2 == NULL)
6692 {
6693 _bfd_error_handler (_("\
6694Unable to find equivalent output section for symbol '%s' from section '%s'"),
6695 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6696 sec->name);
6697 bfd_set_error (bfd_error_invalid_operation);
6698 _bfd_stringtab_free (stt);
6699 return FALSE;
6700 }
6701
6702 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6703 BFD_ASSERT (shndx != SHN_BAD);
6704 }
6705 }
6706
6707 sym.st_shndx = shndx;
6708 }
6709
6710 if ((flags & BSF_THREAD_LOCAL) != 0)
6711 type = STT_TLS;
6712 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6713 type = STT_GNU_IFUNC;
6714 else if ((flags & BSF_FUNCTION) != 0)
6715 type = STT_FUNC;
6716 else if ((flags & BSF_OBJECT) != 0)
6717 type = STT_OBJECT;
6718 else if ((flags & BSF_RELC) != 0)
6719 type = STT_RELC;
6720 else if ((flags & BSF_SRELC) != 0)
6721 type = STT_SRELC;
6722 else
6723 type = STT_NOTYPE;
6724
6725 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6726 type = STT_TLS;
6727
6728 /* Processor-specific types. */
6729 if (type_ptr != NULL
6730 && bed->elf_backend_get_symbol_type)
6731 type = ((*bed->elf_backend_get_symbol_type)
6732 (&type_ptr->internal_elf_sym, type));
6733
6734 if (flags & BSF_SECTION_SYM)
6735 {
6736 if (flags & BSF_GLOBAL)
6737 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6738 else
6739 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6740 }
6741 else if (bfd_is_com_section (syms[idx]->section))
6742 {
6743#ifdef USE_STT_COMMON
6744 if (type == STT_OBJECT)
6745 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6746 else
6747#endif
6748 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6749 }
6750 else if (bfd_is_und_section (syms[idx]->section))
6751 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6752 ? STB_WEAK
6753 : STB_GLOBAL),
6754 type);
6755 else if (flags & BSF_FILE)
6756 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6757 else
6758 {
6759 int bind = STB_LOCAL;
6760
6761 if (flags & BSF_LOCAL)
6762 bind = STB_LOCAL;
6763 else if (flags & BSF_GNU_UNIQUE)
6764 bind = STB_GNU_UNIQUE;
6765 else if (flags & BSF_WEAK)
6766 bind = STB_WEAK;
6767 else if (flags & BSF_GLOBAL)
6768 bind = STB_GLOBAL;
6769
6770 sym.st_info = ELF_ST_INFO (bind, type);
6771 }
6772
6773 if (type_ptr != NULL)
6774 {
6775 sym.st_other = type_ptr->internal_elf_sym.st_other;
6776 sym.st_target_internal
6777 = type_ptr->internal_elf_sym.st_target_internal;
6778 }
6779 else
6780 {
6781 sym.st_other = 0;
6782 sym.st_target_internal = 0;
6783 }
6784
6785 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6786 outbound_syms += bed->s->sizeof_sym;
6787 if (outbound_shndx != NULL)
6788 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6789 }
6790
6791 *sttp = stt;
6792 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6793 symstrtab_hdr->sh_type = SHT_STRTAB;
6794
6795 symstrtab_hdr->sh_flags = 0;
6796 symstrtab_hdr->sh_addr = 0;
6797 symstrtab_hdr->sh_entsize = 0;
6798 symstrtab_hdr->sh_link = 0;
6799 symstrtab_hdr->sh_info = 0;
6800 symstrtab_hdr->sh_addralign = 1;
6801
6802 return TRUE;
6803}
6804
6805/* Return the number of bytes required to hold the symtab vector.
6806
6807 Note that we base it on the count plus 1, since we will null terminate
6808 the vector allocated based on this size. However, the ELF symbol table
6809 always has a dummy entry as symbol #0, so it ends up even. */
6810
6811long
6812_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6813{
6814 long symcount;
6815 long symtab_size;
6816 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6817
6818 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6819 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6820 if (symcount > 0)
6821 symtab_size -= sizeof (asymbol *);
6822
6823 return symtab_size;
6824}
6825
6826long
6827_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6828{
6829 long symcount;
6830 long symtab_size;
6831 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6832
6833 if (elf_dynsymtab (abfd) == 0)
6834 {
6835 bfd_set_error (bfd_error_invalid_operation);
6836 return -1;
6837 }
6838
6839 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6840 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6841 if (symcount > 0)
6842 symtab_size -= sizeof (asymbol *);
6843
6844 return symtab_size;
6845}
6846
6847long
6848_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6849 sec_ptr asect)
6850{
6851 return (asect->reloc_count + 1) * sizeof (arelent *);
6852}
6853
6854/* Canonicalize the relocs. */
6855
6856long
6857_bfd_elf_canonicalize_reloc (bfd *abfd,
6858 sec_ptr section,
6859 arelent **relptr,
6860 asymbol **symbols)
6861{
6862 arelent *tblptr;
6863 unsigned int i;
6864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6865
6866 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6867 return -1;
6868
6869 tblptr = section->relocation;
6870 for (i = 0; i < section->reloc_count; i++)
6871 *relptr++ = tblptr++;
6872
6873 *relptr = NULL;
6874
6875 return section->reloc_count;
6876}
6877
6878long
6879_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6880{
6881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6882 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6883
6884 if (symcount >= 0)
6885 bfd_get_symcount (abfd) = symcount;
6886 return symcount;
6887}
6888
6889long
6890_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6891 asymbol **allocation)
6892{
6893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6894 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6895
6896 if (symcount >= 0)
6897 bfd_get_dynamic_symcount (abfd) = symcount;
6898 return symcount;
6899}
6900
6901/* Return the size required for the dynamic reloc entries. Any loadable
6902 section that was actually installed in the BFD, and has type SHT_REL
6903 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6904 dynamic reloc section. */
6905
6906long
6907_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6908{
6909 long ret;
6910 asection *s;
6911
6912 if (elf_dynsymtab (abfd) == 0)
6913 {
6914 bfd_set_error (bfd_error_invalid_operation);
6915 return -1;
6916 }
6917
6918 ret = sizeof (arelent *);
6919 for (s = abfd->sections; s != NULL; s = s->next)
6920 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6921 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6922 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6923 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6924 * sizeof (arelent *));
6925
6926 return ret;
6927}
6928
6929/* Canonicalize the dynamic relocation entries. Note that we return the
6930 dynamic relocations as a single block, although they are actually
6931 associated with particular sections; the interface, which was
6932 designed for SunOS style shared libraries, expects that there is only
6933 one set of dynamic relocs. Any loadable section that was actually
6934 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6935 dynamic symbol table, is considered to be a dynamic reloc section. */
6936
6937long
6938_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6939 arelent **storage,
6940 asymbol **syms)
6941{
6942 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6943 asection *s;
6944 long ret;
6945
6946 if (elf_dynsymtab (abfd) == 0)
6947 {
6948 bfd_set_error (bfd_error_invalid_operation);
6949 return -1;
6950 }
6951
6952 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6953 ret = 0;
6954 for (s = abfd->sections; s != NULL; s = s->next)
6955 {
6956 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6957 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6958 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6959 {
6960 arelent *p;
6961 long count, i;
6962
6963 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6964 return -1;
6965 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6966 p = s->relocation;
6967 for (i = 0; i < count; i++)
6968 *storage++ = p++;
6969 ret += count;
6970 }
6971 }
6972
6973 *storage = NULL;
6974
6975 return ret;
6976}
6977\f
6978/* Read in the version information. */
6979
6980bfd_boolean
6981_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6982{
6983 bfd_byte *contents = NULL;
6984 unsigned int freeidx = 0;
6985
6986 if (elf_dynverref (abfd) != 0)
6987 {
6988 Elf_Internal_Shdr *hdr;
6989 Elf_External_Verneed *everneed;
6990 Elf_Internal_Verneed *iverneed;
6991 unsigned int i;
6992 bfd_byte *contents_end;
6993
6994 hdr = &elf_tdata (abfd)->dynverref_hdr;
6995
6996 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6997 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6998 if (elf_tdata (abfd)->verref == NULL)
6999 goto error_return;
7000
7001 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7002
7003 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7004 if (contents == NULL)
7005 {
7006error_return_verref:
7007 elf_tdata (abfd)->verref = NULL;
7008 elf_tdata (abfd)->cverrefs = 0;
7009 goto error_return;
7010 }
7011 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7012 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7013 goto error_return_verref;
7014
7015 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7016 goto error_return_verref;
7017
7018 BFD_ASSERT (sizeof (Elf_External_Verneed)
7019 == sizeof (Elf_External_Vernaux));
7020 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7021 everneed = (Elf_External_Verneed *) contents;
7022 iverneed = elf_tdata (abfd)->verref;
7023 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7024 {
7025 Elf_External_Vernaux *evernaux;
7026 Elf_Internal_Vernaux *ivernaux;
7027 unsigned int j;
7028
7029 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7030
7031 iverneed->vn_bfd = abfd;
7032
7033 iverneed->vn_filename =
7034 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7035 iverneed->vn_file);
7036 if (iverneed->vn_filename == NULL)
7037 goto error_return_verref;
7038
7039 if (iverneed->vn_cnt == 0)
7040 iverneed->vn_auxptr = NULL;
7041 else
7042 {
7043 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7044 bfd_alloc2 (abfd, iverneed->vn_cnt,
7045 sizeof (Elf_Internal_Vernaux));
7046 if (iverneed->vn_auxptr == NULL)
7047 goto error_return_verref;
7048 }
7049
7050 if (iverneed->vn_aux
7051 > (size_t) (contents_end - (bfd_byte *) everneed))
7052 goto error_return_verref;
7053
7054 evernaux = ((Elf_External_Vernaux *)
7055 ((bfd_byte *) everneed + iverneed->vn_aux));
7056 ivernaux = iverneed->vn_auxptr;
7057 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7058 {
7059 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7060
7061 ivernaux->vna_nodename =
7062 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7063 ivernaux->vna_name);
7064 if (ivernaux->vna_nodename == NULL)
7065 goto error_return_verref;
7066
7067 if (j + 1 < iverneed->vn_cnt)
7068 ivernaux->vna_nextptr = ivernaux + 1;
7069 else
7070 ivernaux->vna_nextptr = NULL;
7071
7072 if (ivernaux->vna_next
7073 > (size_t) (contents_end - (bfd_byte *) evernaux))
7074 goto error_return_verref;
7075
7076 evernaux = ((Elf_External_Vernaux *)
7077 ((bfd_byte *) evernaux + ivernaux->vna_next));
7078
7079 if (ivernaux->vna_other > freeidx)
7080 freeidx = ivernaux->vna_other;
7081 }
7082
7083 if (i + 1 < hdr->sh_info)
7084 iverneed->vn_nextref = iverneed + 1;
7085 else
7086 iverneed->vn_nextref = NULL;
7087
7088 if (iverneed->vn_next
7089 > (size_t) (contents_end - (bfd_byte *) everneed))
7090 goto error_return_verref;
7091
7092 everneed = ((Elf_External_Verneed *)
7093 ((bfd_byte *) everneed + iverneed->vn_next));
7094 }
7095
7096 free (contents);
7097 contents = NULL;
7098 }
7099
7100 if (elf_dynverdef (abfd) != 0)
7101 {
7102 Elf_Internal_Shdr *hdr;
7103 Elf_External_Verdef *everdef;
7104 Elf_Internal_Verdef *iverdef;
7105 Elf_Internal_Verdef *iverdefarr;
7106 Elf_Internal_Verdef iverdefmem;
7107 unsigned int i;
7108 unsigned int maxidx;
7109 bfd_byte *contents_end_def, *contents_end_aux;
7110
7111 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7112
7113 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7114 if (contents == NULL)
7115 goto error_return;
7116 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7117 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7118 goto error_return;
7119
7120 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7121 goto error_return;
7122
7123 BFD_ASSERT (sizeof (Elf_External_Verdef)
7124 >= sizeof (Elf_External_Verdaux));
7125 contents_end_def = contents + hdr->sh_size
7126 - sizeof (Elf_External_Verdef);
7127 contents_end_aux = contents + hdr->sh_size
7128 - sizeof (Elf_External_Verdaux);
7129
7130 /* We know the number of entries in the section but not the maximum
7131 index. Therefore we have to run through all entries and find
7132 the maximum. */
7133 everdef = (Elf_External_Verdef *) contents;
7134 maxidx = 0;
7135 for (i = 0; i < hdr->sh_info; ++i)
7136 {
7137 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7138
7139 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7140 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7141
7142 if (iverdefmem.vd_next
7143 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7144 goto error_return;
7145
7146 everdef = ((Elf_External_Verdef *)
7147 ((bfd_byte *) everdef + iverdefmem.vd_next));
7148 }
7149
7150 if (default_imported_symver)
7151 {
7152 if (freeidx > maxidx)
7153 maxidx = ++freeidx;
7154 else
7155 freeidx = ++maxidx;
7156 }
7157 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7158 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7159 if (elf_tdata (abfd)->verdef == NULL)
7160 goto error_return;
7161
7162 elf_tdata (abfd)->cverdefs = maxidx;
7163
7164 everdef = (Elf_External_Verdef *) contents;
7165 iverdefarr = elf_tdata (abfd)->verdef;
7166 for (i = 0; i < hdr->sh_info; i++)
7167 {
7168 Elf_External_Verdaux *everdaux;
7169 Elf_Internal_Verdaux *iverdaux;
7170 unsigned int j;
7171
7172 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7173
7174 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7175 {
7176error_return_verdef:
7177 elf_tdata (abfd)->verdef = NULL;
7178 elf_tdata (abfd)->cverdefs = 0;
7179 goto error_return;
7180 }
7181
7182 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7183 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7184
7185 iverdef->vd_bfd = abfd;
7186
7187 if (iverdef->vd_cnt == 0)
7188 iverdef->vd_auxptr = NULL;
7189 else
7190 {
7191 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7192 bfd_alloc2 (abfd, iverdef->vd_cnt,
7193 sizeof (Elf_Internal_Verdaux));
7194 if (iverdef->vd_auxptr == NULL)
7195 goto error_return_verdef;
7196 }
7197
7198 if (iverdef->vd_aux
7199 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7200 goto error_return_verdef;
7201
7202 everdaux = ((Elf_External_Verdaux *)
7203 ((bfd_byte *) everdef + iverdef->vd_aux));
7204 iverdaux = iverdef->vd_auxptr;
7205 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7206 {
7207 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7208
7209 iverdaux->vda_nodename =
7210 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7211 iverdaux->vda_name);
7212 if (iverdaux->vda_nodename == NULL)
7213 goto error_return_verdef;
7214
7215 if (j + 1 < iverdef->vd_cnt)
7216 iverdaux->vda_nextptr = iverdaux + 1;
7217 else
7218 iverdaux->vda_nextptr = NULL;
7219
7220 if (iverdaux->vda_next
7221 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7222 goto error_return_verdef;
7223
7224 everdaux = ((Elf_External_Verdaux *)
7225 ((bfd_byte *) everdaux + iverdaux->vda_next));
7226 }
7227
7228 if (iverdef->vd_cnt)
7229 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7230
7231 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7232 iverdef->vd_nextdef = iverdef + 1;
7233 else
7234 iverdef->vd_nextdef = NULL;
7235
7236 everdef = ((Elf_External_Verdef *)
7237 ((bfd_byte *) everdef + iverdef->vd_next));
7238 }
7239
7240 free (contents);
7241 contents = NULL;
7242 }
7243 else if (default_imported_symver)
7244 {
7245 if (freeidx < 3)
7246 freeidx = 3;
7247 else
7248 freeidx++;
7249
7250 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7251 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7252 if (elf_tdata (abfd)->verdef == NULL)
7253 goto error_return;
7254
7255 elf_tdata (abfd)->cverdefs = freeidx;
7256 }
7257
7258 /* Create a default version based on the soname. */
7259 if (default_imported_symver)
7260 {
7261 Elf_Internal_Verdef *iverdef;
7262 Elf_Internal_Verdaux *iverdaux;
7263
7264 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7265
7266 iverdef->vd_version = VER_DEF_CURRENT;
7267 iverdef->vd_flags = 0;
7268 iverdef->vd_ndx = freeidx;
7269 iverdef->vd_cnt = 1;
7270
7271 iverdef->vd_bfd = abfd;
7272
7273 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7274 if (iverdef->vd_nodename == NULL)
7275 goto error_return_verdef;
7276 iverdef->vd_nextdef = NULL;
7277 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7278 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7279 if (iverdef->vd_auxptr == NULL)
7280 goto error_return_verdef;
7281
7282 iverdaux = iverdef->vd_auxptr;
7283 iverdaux->vda_nodename = iverdef->vd_nodename;
7284 iverdaux->vda_nextptr = NULL;
7285 }
7286
7287 return TRUE;
7288
7289 error_return:
7290 if (contents != NULL)
7291 free (contents);
7292 return FALSE;
7293}
7294\f
7295asymbol *
7296_bfd_elf_make_empty_symbol (bfd *abfd)
7297{
7298 elf_symbol_type *newsym;
7299 bfd_size_type amt = sizeof (elf_symbol_type);
7300
7301 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7302 if (!newsym)
7303 return NULL;
7304 else
7305 {
7306 newsym->symbol.the_bfd = abfd;
7307 return &newsym->symbol;
7308 }
7309}
7310
7311void
7312_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7313 asymbol *symbol,
7314 symbol_info *ret)
7315{
7316 bfd_symbol_info (symbol, ret);
7317}
7318
7319/* Return whether a symbol name implies a local symbol. Most targets
7320 use this function for the is_local_label_name entry point, but some
7321 override it. */
7322
7323bfd_boolean
7324_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7325 const char *name)
7326{
7327 /* Normal local symbols start with ``.L''. */
7328 if (name[0] == '.' && name[1] == 'L')
7329 return TRUE;
7330
7331 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7332 DWARF debugging symbols starting with ``..''. */
7333 if (name[0] == '.' && name[1] == '.')
7334 return TRUE;
7335
7336 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7337 emitting DWARF debugging output. I suspect this is actually a
7338 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7339 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7340 underscore to be emitted on some ELF targets). For ease of use,
7341 we treat such symbols as local. */
7342 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7343 return TRUE;
7344
7345 return FALSE;
7346}
7347
7348alent *
7349_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7350 asymbol *symbol ATTRIBUTE_UNUSED)
7351{
7352 abort ();
7353 return NULL;
7354}
7355
7356bfd_boolean
7357_bfd_elf_set_arch_mach (bfd *abfd,
7358 enum bfd_architecture arch,
7359 unsigned long machine)
7360{
7361 /* If this isn't the right architecture for this backend, and this
7362 isn't the generic backend, fail. */
7363 if (arch != get_elf_backend_data (abfd)->arch
7364 && arch != bfd_arch_unknown
7365 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7366 return FALSE;
7367
7368 return bfd_default_set_arch_mach (abfd, arch, machine);
7369}
7370
7371/* Find the function to a particular section and offset,
7372 for error reporting. */
7373
7374static bfd_boolean
7375elf_find_function (bfd *abfd,
7376 asection *section,
7377 asymbol **symbols,
7378 bfd_vma offset,
7379 const char **filename_ptr,
7380 const char **functionname_ptr)
7381{
7382 const char *filename;
7383 asymbol *func, *file;
7384 bfd_vma low_func;
7385 asymbol **p;
7386 /* ??? Given multiple file symbols, it is impossible to reliably
7387 choose the right file name for global symbols. File symbols are
7388 local symbols, and thus all file symbols must sort before any
7389 global symbols. The ELF spec may be interpreted to say that a
7390 file symbol must sort before other local symbols, but currently
7391 ld -r doesn't do this. So, for ld -r output, it is possible to
7392 make a better choice of file name for local symbols by ignoring
7393 file symbols appearing after a given local symbol. */
7394 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7396
7397 if (symbols == NULL)
7398 return FALSE;
7399
7400 filename = NULL;
7401 func = NULL;
7402 file = NULL;
7403 low_func = 0;
7404 state = nothing_seen;
7405
7406 for (p = symbols; *p != NULL; p++)
7407 {
7408 asymbol *sym = *p;
7409 asection *code_sec;
7410 bfd_vma code_off;
7411
7412 if ((sym->flags & BSF_FILE) != 0)
7413 {
7414 file = sym;
7415 if (state == symbol_seen)
7416 state = file_after_symbol_seen;
7417 continue;
7418 }
7419
7420 if (bed->maybe_function_sym (sym, &code_sec, &code_off)
7421 && code_sec == section
7422 && code_off >= low_func
7423 && code_off <= offset)
7424 {
7425 func = sym;
7426 low_func = code_off;
7427 filename = NULL;
7428 if (file != NULL
7429 && ((sym->flags & BSF_LOCAL) != 0
7430 || state != file_after_symbol_seen))
7431 filename = bfd_asymbol_name (file);
7432 }
7433 if (state == nothing_seen)
7434 state = symbol_seen;
7435 }
7436
7437 if (func == NULL)
7438 return FALSE;
7439
7440 if (filename_ptr)
7441 *filename_ptr = filename;
7442 if (functionname_ptr)
7443 *functionname_ptr = bfd_asymbol_name (func);
7444
7445 return TRUE;
7446}
7447
7448/* Find the nearest line to a particular section and offset,
7449 for error reporting. */
7450
7451bfd_boolean
7452_bfd_elf_find_nearest_line (bfd *abfd,
7453 asection *section,
7454 asymbol **symbols,
7455 bfd_vma offset,
7456 const char **filename_ptr,
7457 const char **functionname_ptr,
7458 unsigned int *line_ptr)
7459{
7460 bfd_boolean found;
7461
7462 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7463 filename_ptr, functionname_ptr,
7464 line_ptr))
7465 {
7466 if (!*functionname_ptr)
7467 elf_find_function (abfd, section, symbols, offset,
7468 *filename_ptr ? NULL : filename_ptr,
7469 functionname_ptr);
7470
7471 return TRUE;
7472 }
7473
7474 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7475 section, symbols, offset,
7476 filename_ptr, functionname_ptr,
7477 line_ptr, 0,
7478 &elf_tdata (abfd)->dwarf2_find_line_info))
7479 {
7480 if (!*functionname_ptr)
7481 elf_find_function (abfd, section, symbols, offset,
7482 *filename_ptr ? NULL : filename_ptr,
7483 functionname_ptr);
7484
7485 return TRUE;
7486 }
7487
7488 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7489 &found, filename_ptr,
7490 functionname_ptr, line_ptr,
7491 &elf_tdata (abfd)->line_info))
7492 return FALSE;
7493 if (found && (*functionname_ptr || *line_ptr))
7494 return TRUE;
7495
7496 if (symbols == NULL)
7497 return FALSE;
7498
7499 if (! elf_find_function (abfd, section, symbols, offset,
7500 filename_ptr, functionname_ptr))
7501 return FALSE;
7502
7503 *line_ptr = 0;
7504 return TRUE;
7505}
7506
7507/* Find the line for a symbol. */
7508
7509bfd_boolean
7510_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7511 const char **filename_ptr, unsigned int *line_ptr)
7512{
7513 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7514 filename_ptr, line_ptr, 0,
7515 &elf_tdata (abfd)->dwarf2_find_line_info);
7516}
7517
7518/* After a call to bfd_find_nearest_line, successive calls to
7519 bfd_find_inliner_info can be used to get source information about
7520 each level of function inlining that terminated at the address
7521 passed to bfd_find_nearest_line. Currently this is only supported
7522 for DWARF2 with appropriate DWARF3 extensions. */
7523
7524bfd_boolean
7525_bfd_elf_find_inliner_info (bfd *abfd,
7526 const char **filename_ptr,
7527 const char **functionname_ptr,
7528 unsigned int *line_ptr)
7529{
7530 bfd_boolean found;
7531 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7532 functionname_ptr, line_ptr,
7533 & elf_tdata (abfd)->dwarf2_find_line_info);
7534 return found;
7535}
7536
7537int
7538_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7539{
7540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7541 int ret = bed->s->sizeof_ehdr;
7542
7543 if (!info->relocatable)
7544 {
7545 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7546
7547 if (phdr_size == (bfd_size_type) -1)
7548 {
7549 struct elf_segment_map *m;
7550
7551 phdr_size = 0;
7552 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7553 phdr_size += bed->s->sizeof_phdr;
7554
7555 if (phdr_size == 0)
7556 phdr_size = get_program_header_size (abfd, info);
7557 }
7558
7559 elf_tdata (abfd)->program_header_size = phdr_size;
7560 ret += phdr_size;
7561 }
7562
7563 return ret;
7564}
7565
7566bfd_boolean
7567_bfd_elf_set_section_contents (bfd *abfd,
7568 sec_ptr section,
7569 const void *location,
7570 file_ptr offset,
7571 bfd_size_type count)
7572{
7573 Elf_Internal_Shdr *hdr;
7574 bfd_signed_vma pos;
7575
7576 if (! abfd->output_has_begun
7577 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7578 return FALSE;
7579
7580 hdr = &elf_section_data (section)->this_hdr;
7581 pos = hdr->sh_offset + offset;
7582 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7583 || bfd_bwrite (location, count, abfd) != count)
7584 return FALSE;
7585
7586 return TRUE;
7587}
7588
7589void
7590_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7591 arelent *cache_ptr ATTRIBUTE_UNUSED,
7592 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7593{
7594 abort ();
7595}
7596
7597/* Try to convert a non-ELF reloc into an ELF one. */
7598
7599bfd_boolean
7600_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7601{
7602 /* Check whether we really have an ELF howto. */
7603
7604 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7605 {
7606 bfd_reloc_code_real_type code;
7607 reloc_howto_type *howto;
7608
7609 /* Alien reloc: Try to determine its type to replace it with an
7610 equivalent ELF reloc. */
7611
7612 if (areloc->howto->pc_relative)
7613 {
7614 switch (areloc->howto->bitsize)
7615 {
7616 case 8:
7617 code = BFD_RELOC_8_PCREL;
7618 break;
7619 case 12:
7620 code = BFD_RELOC_12_PCREL;
7621 break;
7622 case 16:
7623 code = BFD_RELOC_16_PCREL;
7624 break;
7625 case 24:
7626 code = BFD_RELOC_24_PCREL;
7627 break;
7628 case 32:
7629 code = BFD_RELOC_32_PCREL;
7630 break;
7631 case 64:
7632 code = BFD_RELOC_64_PCREL;
7633 break;
7634 default:
7635 goto fail;
7636 }
7637
7638 howto = bfd_reloc_type_lookup (abfd, code);
7639
7640 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7641 {
7642 if (howto->pcrel_offset)
7643 areloc->addend += areloc->address;
7644 else
7645 areloc->addend -= areloc->address; /* addend is unsigned!! */
7646 }
7647 }
7648 else
7649 {
7650 switch (areloc->howto->bitsize)
7651 {
7652 case 8:
7653 code = BFD_RELOC_8;
7654 break;
7655 case 14:
7656 code = BFD_RELOC_14;
7657 break;
7658 case 16:
7659 code = BFD_RELOC_16;
7660 break;
7661 case 26:
7662 code = BFD_RELOC_26;
7663 break;
7664 case 32:
7665 code = BFD_RELOC_32;
7666 break;
7667 case 64:
7668 code = BFD_RELOC_64;
7669 break;
7670 default:
7671 goto fail;
7672 }
7673
7674 howto = bfd_reloc_type_lookup (abfd, code);
7675 }
7676
7677 if (howto)
7678 areloc->howto = howto;
7679 else
7680 goto fail;
7681 }
7682
7683 return TRUE;
7684
7685 fail:
7686 (*_bfd_error_handler)
7687 (_("%B: unsupported relocation type %s"),
7688 abfd, areloc->howto->name);
7689 bfd_set_error (bfd_error_bad_value);
7690 return FALSE;
7691}
7692
7693bfd_boolean
7694_bfd_elf_close_and_cleanup (bfd *abfd)
7695{
7696 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7697 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7698 {
7699 if (elf_shstrtab (abfd) != NULL)
7700 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7701 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7702 }
7703
7704 return _bfd_generic_close_and_cleanup (abfd);
7705}
7706
7707/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7708 in the relocation's offset. Thus we cannot allow any sort of sanity
7709 range-checking to interfere. There is nothing else to do in processing
7710 this reloc. */
7711
7712bfd_reloc_status_type
7713_bfd_elf_rel_vtable_reloc_fn
7714 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7715 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7716 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7717 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7718{
7719 return bfd_reloc_ok;
7720}
7721\f
7722/* Elf core file support. Much of this only works on native
7723 toolchains, since we rely on knowing the
7724 machine-dependent procfs structure in order to pick
7725 out details about the corefile. */
7726
7727#ifdef HAVE_SYS_PROCFS_H
7728/* Needed for new procfs interface on sparc-solaris. */
7729# define _STRUCTURED_PROC 1
7730# include <sys/procfs.h>
7731#endif
7732
7733/* Return a PID that identifies a "thread" for threaded cores, or the
7734 PID of the main process for non-threaded cores. */
7735
7736static int
7737elfcore_make_pid (bfd *abfd)
7738{
7739 int pid;
7740
7741 pid = elf_tdata (abfd)->core_lwpid;
7742 if (pid == 0)
7743 pid = elf_tdata (abfd)->core_pid;
7744
7745 return pid;
7746}
7747
7748/* If there isn't a section called NAME, make one, using
7749 data from SECT. Note, this function will generate a
7750 reference to NAME, so you shouldn't deallocate or
7751 overwrite it. */
7752
7753static bfd_boolean
7754elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7755{
7756 asection *sect2;
7757
7758 if (bfd_get_section_by_name (abfd, name) != NULL)
7759 return TRUE;
7760
7761 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7762 if (sect2 == NULL)
7763 return FALSE;
7764
7765 sect2->size = sect->size;
7766 sect2->filepos = sect->filepos;
7767 sect2->alignment_power = sect->alignment_power;
7768 return TRUE;
7769}
7770
7771/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7772 actually creates up to two pseudosections:
7773 - For the single-threaded case, a section named NAME, unless
7774 such a section already exists.
7775 - For the multi-threaded case, a section named "NAME/PID", where
7776 PID is elfcore_make_pid (abfd).
7777 Both pseudosections have identical contents. */
7778bfd_boolean
7779_bfd_elfcore_make_pseudosection (bfd *abfd,
7780 char *name,
7781 size_t size,
7782 ufile_ptr filepos)
7783{
7784 char buf[100];
7785 char *threaded_name;
7786 size_t len;
7787 asection *sect;
7788
7789 /* Build the section name. */
7790
7791 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7792 len = strlen (buf) + 1;
7793 threaded_name = (char *) bfd_alloc (abfd, len);
7794 if (threaded_name == NULL)
7795 return FALSE;
7796 memcpy (threaded_name, buf, len);
7797
7798 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7799 SEC_HAS_CONTENTS);
7800 if (sect == NULL)
7801 return FALSE;
7802 sect->size = size;
7803 sect->filepos = filepos;
7804 sect->alignment_power = 2;
7805
7806 return elfcore_maybe_make_sect (abfd, name, sect);
7807}
7808
7809/* prstatus_t exists on:
7810 solaris 2.5+
7811 linux 2.[01] + glibc
7812 unixware 4.2
7813*/
7814
7815#if defined (HAVE_PRSTATUS_T)
7816
7817static bfd_boolean
7818elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7819{
7820 size_t size;
7821 int offset;
7822
7823 if (note->descsz == sizeof (prstatus_t))
7824 {
7825 prstatus_t prstat;
7826
7827 size = sizeof (prstat.pr_reg);
7828 offset = offsetof (prstatus_t, pr_reg);
7829 memcpy (&prstat, note->descdata, sizeof (prstat));
7830
7831 /* Do not overwrite the core signal if it
7832 has already been set by another thread. */
7833 if (elf_tdata (abfd)->core_signal == 0)
7834 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7835 if (elf_tdata (abfd)->core_pid == 0)
7836 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7837
7838 /* pr_who exists on:
7839 solaris 2.5+
7840 unixware 4.2
7841 pr_who doesn't exist on:
7842 linux 2.[01]
7843 */
7844#if defined (HAVE_PRSTATUS_T_PR_WHO)
7845 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7846#else
7847 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7848#endif
7849 }
7850#if defined (HAVE_PRSTATUS32_T)
7851 else if (note->descsz == sizeof (prstatus32_t))
7852 {
7853 /* 64-bit host, 32-bit corefile */
7854 prstatus32_t prstat;
7855
7856 size = sizeof (prstat.pr_reg);
7857 offset = offsetof (prstatus32_t, pr_reg);
7858 memcpy (&prstat, note->descdata, sizeof (prstat));
7859
7860 /* Do not overwrite the core signal if it
7861 has already been set by another thread. */
7862 if (elf_tdata (abfd)->core_signal == 0)
7863 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7864 if (elf_tdata (abfd)->core_pid == 0)
7865 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7866
7867 /* pr_who exists on:
7868 solaris 2.5+
7869 unixware 4.2
7870 pr_who doesn't exist on:
7871 linux 2.[01]
7872 */
7873#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7874 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7875#else
7876 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7877#endif
7878 }
7879#endif /* HAVE_PRSTATUS32_T */
7880 else
7881 {
7882 /* Fail - we don't know how to handle any other
7883 note size (ie. data object type). */
7884 return TRUE;
7885 }
7886
7887 /* Make a ".reg/999" section and a ".reg" section. */
7888 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7889 size, note->descpos + offset);
7890}
7891#endif /* defined (HAVE_PRSTATUS_T) */
7892
7893/* Create a pseudosection containing the exact contents of NOTE. */
7894static bfd_boolean
7895elfcore_make_note_pseudosection (bfd *abfd,
7896 char *name,
7897 Elf_Internal_Note *note)
7898{
7899 return _bfd_elfcore_make_pseudosection (abfd, name,
7900 note->descsz, note->descpos);
7901}
7902
7903/* There isn't a consistent prfpregset_t across platforms,
7904 but it doesn't matter, because we don't have to pick this
7905 data structure apart. */
7906
7907static bfd_boolean
7908elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7909{
7910 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7911}
7912
7913/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7914 type of NT_PRXFPREG. Just include the whole note's contents
7915 literally. */
7916
7917static bfd_boolean
7918elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7919{
7920 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7921}
7922
7923/* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7924 with a note type of NT_X86_XSTATE. Just include the whole note's
7925 contents literally. */
7926
7927static bfd_boolean
7928elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7929{
7930 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7931}
7932
7933static bfd_boolean
7934elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7935{
7936 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7937}
7938
7939static bfd_boolean
7940elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7941{
7942 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7943}
7944
7945static bfd_boolean
7946elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7947{
7948 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7949}
7950
7951static bfd_boolean
7952elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7953{
7954 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7955}
7956
7957static bfd_boolean
7958elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7959{
7960 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7961}
7962
7963static bfd_boolean
7964elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7965{
7966 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7967}
7968
7969static bfd_boolean
7970elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7971{
7972 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7973}
7974
7975static bfd_boolean
7976elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7977{
7978 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7979}
7980
7981static bfd_boolean
7982elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
7983{
7984 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
7985}
7986
7987static bfd_boolean
7988elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
7989{
7990 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
7991}
7992
7993static bfd_boolean
7994elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
7995{
7996 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
7997}
7998
7999#if defined (HAVE_PRPSINFO_T)
8000typedef prpsinfo_t elfcore_psinfo_t;
8001#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8002typedef prpsinfo32_t elfcore_psinfo32_t;
8003#endif
8004#endif
8005
8006#if defined (HAVE_PSINFO_T)
8007typedef psinfo_t elfcore_psinfo_t;
8008#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8009typedef psinfo32_t elfcore_psinfo32_t;
8010#endif
8011#endif
8012
8013/* return a malloc'ed copy of a string at START which is at
8014 most MAX bytes long, possibly without a terminating '\0'.
8015 the copy will always have a terminating '\0'. */
8016
8017char *
8018_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8019{
8020 char *dups;
8021 char *end = (char *) memchr (start, '\0', max);
8022 size_t len;
8023
8024 if (end == NULL)
8025 len = max;
8026 else
8027 len = end - start;
8028
8029 dups = (char *) bfd_alloc (abfd, len + 1);
8030 if (dups == NULL)
8031 return NULL;
8032
8033 memcpy (dups, start, len);
8034 dups[len] = '\0';
8035
8036 return dups;
8037}
8038
8039#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8040static bfd_boolean
8041elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8042{
8043 if (note->descsz == sizeof (elfcore_psinfo_t))
8044 {
8045 elfcore_psinfo_t psinfo;
8046
8047 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8048
8049#if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8050 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8051#endif
8052 elf_tdata (abfd)->core_program
8053 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8054 sizeof (psinfo.pr_fname));
8055
8056 elf_tdata (abfd)->core_command
8057 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8058 sizeof (psinfo.pr_psargs));
8059 }
8060#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8061 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8062 {
8063 /* 64-bit host, 32-bit corefile */
8064 elfcore_psinfo32_t psinfo;
8065
8066 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8067
8068#if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8069 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8070#endif
8071 elf_tdata (abfd)->core_program
8072 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8073 sizeof (psinfo.pr_fname));
8074
8075 elf_tdata (abfd)->core_command
8076 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8077 sizeof (psinfo.pr_psargs));
8078 }
8079#endif
8080
8081 else
8082 {
8083 /* Fail - we don't know how to handle any other
8084 note size (ie. data object type). */
8085 return TRUE;
8086 }
8087
8088 /* Note that for some reason, a spurious space is tacked
8089 onto the end of the args in some (at least one anyway)
8090 implementations, so strip it off if it exists. */
8091
8092 {
8093 char *command = elf_tdata (abfd)->core_command;
8094 int n = strlen (command);
8095
8096 if (0 < n && command[n - 1] == ' ')
8097 command[n - 1] = '\0';
8098 }
8099
8100 return TRUE;
8101}
8102#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8103
8104#if defined (HAVE_PSTATUS_T)
8105static bfd_boolean
8106elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8107{
8108 if (note->descsz == sizeof (pstatus_t)
8109#if defined (HAVE_PXSTATUS_T)
8110 || note->descsz == sizeof (pxstatus_t)
8111#endif
8112 )
8113 {
8114 pstatus_t pstat;
8115
8116 memcpy (&pstat, note->descdata, sizeof (pstat));
8117
8118 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8119 }
8120#if defined (HAVE_PSTATUS32_T)
8121 else if (note->descsz == sizeof (pstatus32_t))
8122 {
8123 /* 64-bit host, 32-bit corefile */
8124 pstatus32_t pstat;
8125
8126 memcpy (&pstat, note->descdata, sizeof (pstat));
8127
8128 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8129 }
8130#endif
8131 /* Could grab some more details from the "representative"
8132 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8133 NT_LWPSTATUS note, presumably. */
8134
8135 return TRUE;
8136}
8137#endif /* defined (HAVE_PSTATUS_T) */
8138
8139#if defined (HAVE_LWPSTATUS_T)
8140static bfd_boolean
8141elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8142{
8143 lwpstatus_t lwpstat;
8144 char buf[100];
8145 char *name;
8146 size_t len;
8147 asection *sect;
8148
8149 if (note->descsz != sizeof (lwpstat)
8150#if defined (HAVE_LWPXSTATUS_T)
8151 && note->descsz != sizeof (lwpxstatus_t)
8152#endif
8153 )
8154 return TRUE;
8155
8156 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8157
8158 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8159 /* Do not overwrite the core signal if it has already been set by
8160 another thread. */
8161 if (elf_tdata (abfd)->core_signal == 0)
8162 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8163
8164 /* Make a ".reg/999" section. */
8165
8166 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8167 len = strlen (buf) + 1;
8168 name = bfd_alloc (abfd, len);
8169 if (name == NULL)
8170 return FALSE;
8171 memcpy (name, buf, len);
8172
8173 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8174 if (sect == NULL)
8175 return FALSE;
8176
8177#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8178 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8179 sect->filepos = note->descpos
8180 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8181#endif
8182
8183#if defined (HAVE_LWPSTATUS_T_PR_REG)
8184 sect->size = sizeof (lwpstat.pr_reg);
8185 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8186#endif
8187
8188 sect->alignment_power = 2;
8189
8190 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8191 return FALSE;
8192
8193 /* Make a ".reg2/999" section */
8194
8195 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8196 len = strlen (buf) + 1;
8197 name = bfd_alloc (abfd, len);
8198 if (name == NULL)
8199 return FALSE;
8200 memcpy (name, buf, len);
8201
8202 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8203 if (sect == NULL)
8204 return FALSE;
8205
8206#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8207 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8208 sect->filepos = note->descpos
8209 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8210#endif
8211
8212#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8213 sect->size = sizeof (lwpstat.pr_fpreg);
8214 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8215#endif
8216
8217 sect->alignment_power = 2;
8218
8219 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8220}
8221#endif /* defined (HAVE_LWPSTATUS_T) */
8222
8223static bfd_boolean
8224elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8225{
8226 char buf[30];
8227 char *name;
8228 size_t len;
8229 asection *sect;
8230 int type;
8231 int is_active_thread;
8232 bfd_vma base_addr;
8233
8234 if (note->descsz < 728)
8235 return TRUE;
8236
8237 if (! CONST_STRNEQ (note->namedata, "win32"))
8238 return TRUE;
8239
8240 type = bfd_get_32 (abfd, note->descdata);
8241
8242 switch (type)
8243 {
8244 case 1 /* NOTE_INFO_PROCESS */:
8245 /* FIXME: need to add ->core_command. */
8246 /* process_info.pid */
8247 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8248 /* process_info.signal */
8249 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8250 break;
8251
8252 case 2 /* NOTE_INFO_THREAD */:
8253 /* Make a ".reg/999" section. */
8254 /* thread_info.tid */
8255 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8256
8257 len = strlen (buf) + 1;
8258 name = (char *) bfd_alloc (abfd, len);
8259 if (name == NULL)
8260 return FALSE;
8261
8262 memcpy (name, buf, len);
8263
8264 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8265 if (sect == NULL)
8266 return FALSE;
8267
8268 /* sizeof (thread_info.thread_context) */
8269 sect->size = 716;
8270 /* offsetof (thread_info.thread_context) */
8271 sect->filepos = note->descpos + 12;
8272 sect->alignment_power = 2;
8273
8274 /* thread_info.is_active_thread */
8275 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8276
8277 if (is_active_thread)
8278 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8279 return FALSE;
8280 break;
8281
8282 case 3 /* NOTE_INFO_MODULE */:
8283 /* Make a ".module/xxxxxxxx" section. */
8284 /* module_info.base_address */
8285 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8286 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8287
8288 len = strlen (buf) + 1;
8289 name = (char *) bfd_alloc (abfd, len);
8290 if (name == NULL)
8291 return FALSE;
8292
8293 memcpy (name, buf, len);
8294
8295 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8296
8297 if (sect == NULL)
8298 return FALSE;
8299
8300 sect->size = note->descsz;
8301 sect->filepos = note->descpos;
8302 sect->alignment_power = 2;
8303 break;
8304
8305 default:
8306 return TRUE;
8307 }
8308
8309 return TRUE;
8310}
8311
8312static bfd_boolean
8313elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8314{
8315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8316
8317 switch (note->type)
8318 {
8319 default:
8320 return TRUE;
8321
8322 case NT_PRSTATUS:
8323 if (bed->elf_backend_grok_prstatus)
8324 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8325 return TRUE;
8326#if defined (HAVE_PRSTATUS_T)
8327 return elfcore_grok_prstatus (abfd, note);
8328#else
8329 return TRUE;
8330#endif
8331
8332#if defined (HAVE_PSTATUS_T)
8333 case NT_PSTATUS:
8334 return elfcore_grok_pstatus (abfd, note);
8335#endif
8336
8337#if defined (HAVE_LWPSTATUS_T)
8338 case NT_LWPSTATUS:
8339 return elfcore_grok_lwpstatus (abfd, note);
8340#endif
8341
8342 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8343 return elfcore_grok_prfpreg (abfd, note);
8344
8345 case NT_WIN32PSTATUS:
8346 return elfcore_grok_win32pstatus (abfd, note);
8347
8348 case NT_PRXFPREG: /* Linux SSE extension */
8349 if (note->namesz == 6
8350 && strcmp (note->namedata, "LINUX") == 0)
8351 return elfcore_grok_prxfpreg (abfd, note);
8352 else
8353 return TRUE;
8354
8355 case NT_X86_XSTATE: /* Linux XSAVE extension */
8356 if (note->namesz == 6
8357 && strcmp (note->namedata, "LINUX") == 0)
8358 return elfcore_grok_xstatereg (abfd, note);
8359 else
8360 return TRUE;
8361
8362 case NT_PPC_VMX:
8363 if (note->namesz == 6
8364 && strcmp (note->namedata, "LINUX") == 0)
8365 return elfcore_grok_ppc_vmx (abfd, note);
8366 else
8367 return TRUE;
8368
8369 case NT_PPC_VSX:
8370 if (note->namesz == 6
8371 && strcmp (note->namedata, "LINUX") == 0)
8372 return elfcore_grok_ppc_vsx (abfd, note);
8373 else
8374 return TRUE;
8375
8376 case NT_S390_HIGH_GPRS:
8377 if (note->namesz == 6
8378 && strcmp (note->namedata, "LINUX") == 0)
8379 return elfcore_grok_s390_high_gprs (abfd, note);
8380 else
8381 return TRUE;
8382
8383 case NT_S390_TIMER:
8384 if (note->namesz == 6
8385 && strcmp (note->namedata, "LINUX") == 0)
8386 return elfcore_grok_s390_timer (abfd, note);
8387 else
8388 return TRUE;
8389
8390 case NT_S390_TODCMP:
8391 if (note->namesz == 6
8392 && strcmp (note->namedata, "LINUX") == 0)
8393 return elfcore_grok_s390_todcmp (abfd, note);
8394 else
8395 return TRUE;
8396
8397 case NT_S390_TODPREG:
8398 if (note->namesz == 6
8399 && strcmp (note->namedata, "LINUX") == 0)
8400 return elfcore_grok_s390_todpreg (abfd, note);
8401 else
8402 return TRUE;
8403
8404 case NT_S390_CTRS:
8405 if (note->namesz == 6
8406 && strcmp (note->namedata, "LINUX") == 0)
8407 return elfcore_grok_s390_ctrs (abfd, note);
8408 else
8409 return TRUE;
8410
8411 case NT_S390_PREFIX:
8412 if (note->namesz == 6
8413 && strcmp (note->namedata, "LINUX") == 0)
8414 return elfcore_grok_s390_prefix (abfd, note);
8415 else
8416 return TRUE;
8417
8418 case NT_S390_LAST_BREAK:
8419 if (note->namesz == 6
8420 && strcmp (note->namedata, "LINUX") == 0)
8421 return elfcore_grok_s390_last_break (abfd, note);
8422 else
8423 return TRUE;
8424
8425 case NT_S390_SYSTEM_CALL:
8426 if (note->namesz == 6
8427 && strcmp (note->namedata, "LINUX") == 0)
8428 return elfcore_grok_s390_system_call (abfd, note);
8429 else
8430 return TRUE;
8431
8432 case NT_ARM_VFP:
8433 if (note->namesz == 6
8434 && strcmp (note->namedata, "LINUX") == 0)
8435 return elfcore_grok_arm_vfp (abfd, note);
8436 else
8437 return TRUE;
8438
8439 case NT_PRPSINFO:
8440 case NT_PSINFO:
8441 if (bed->elf_backend_grok_psinfo)
8442 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8443 return TRUE;
8444#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8445 return elfcore_grok_psinfo (abfd, note);
8446#else
8447 return TRUE;
8448#endif
8449
8450 case NT_AUXV:
8451 {
8452 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8453 SEC_HAS_CONTENTS);
8454
8455 if (sect == NULL)
8456 return FALSE;
8457 sect->size = note->descsz;
8458 sect->filepos = note->descpos;
8459 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8460
8461 return TRUE;
8462 }
8463 }
8464}
8465
8466static bfd_boolean
8467elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8468{
8469 elf_tdata (abfd)->build_id_size = note->descsz;
8470 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8471 if (elf_tdata (abfd)->build_id == NULL)
8472 return FALSE;
8473
8474 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8475
8476 return TRUE;
8477}
8478
8479static bfd_boolean
8480elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8481{
8482 switch (note->type)
8483 {
8484 default:
8485 return TRUE;
8486
8487 case NT_GNU_BUILD_ID:
8488 return elfobj_grok_gnu_build_id (abfd, note);
8489 }
8490}
8491
8492static bfd_boolean
8493elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8494{
8495 struct sdt_note *cur =
8496 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8497 + note->descsz);
8498
8499 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8500 cur->size = (bfd_size_type) note->descsz;
8501 memcpy (cur->data, note->descdata, note->descsz);
8502
8503 elf_tdata (abfd)->sdt_note_head = cur;
8504
8505 return TRUE;
8506}
8507
8508static bfd_boolean
8509elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8510{
8511 switch (note->type)
8512 {
8513 case NT_STAPSDT:
8514 return elfobj_grok_stapsdt_note_1 (abfd, note);
8515
8516 default:
8517 return TRUE;
8518 }
8519}
8520
8521static bfd_boolean
8522elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8523{
8524 char *cp;
8525
8526 cp = strchr (note->namedata, '@');
8527 if (cp != NULL)
8528 {
8529 *lwpidp = atoi(cp + 1);
8530 return TRUE;
8531 }
8532 return FALSE;
8533}
8534
8535static bfd_boolean
8536elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8537{
8538 /* Signal number at offset 0x08. */
8539 elf_tdata (abfd)->core_signal
8540 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8541
8542 /* Process ID at offset 0x50. */
8543 elf_tdata (abfd)->core_pid
8544 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8545
8546 /* Command name at 0x7c (max 32 bytes, including nul). */
8547 elf_tdata (abfd)->core_command
8548 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8549
8550 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8551 note);
8552}
8553
8554static bfd_boolean
8555elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8556{
8557 int lwp;
8558
8559 if (elfcore_netbsd_get_lwpid (note, &lwp))
8560 elf_tdata (abfd)->core_lwpid = lwp;
8561
8562 if (note->type == NT_NETBSDCORE_PROCINFO)
8563 {
8564 /* NetBSD-specific core "procinfo". Note that we expect to
8565 find this note before any of the others, which is fine,
8566 since the kernel writes this note out first when it
8567 creates a core file. */
8568
8569 return elfcore_grok_netbsd_procinfo (abfd, note);
8570 }
8571
8572 /* As of Jan 2002 there are no other machine-independent notes
8573 defined for NetBSD core files. If the note type is less
8574 than the start of the machine-dependent note types, we don't
8575 understand it. */
8576
8577 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8578 return TRUE;
8579
8580
8581 switch (bfd_get_arch (abfd))
8582 {
8583 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8584 PT_GETFPREGS == mach+2. */
8585
8586 case bfd_arch_alpha:
8587 case bfd_arch_sparc:
8588 switch (note->type)
8589 {
8590 case NT_NETBSDCORE_FIRSTMACH+0:
8591 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8592
8593 case NT_NETBSDCORE_FIRSTMACH+2:
8594 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8595
8596 default:
8597 return TRUE;
8598 }
8599
8600 /* On all other arch's, PT_GETREGS == mach+1 and
8601 PT_GETFPREGS == mach+3. */
8602
8603 default:
8604 switch (note->type)
8605 {
8606 case NT_NETBSDCORE_FIRSTMACH+1:
8607 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8608
8609 case NT_NETBSDCORE_FIRSTMACH+3:
8610 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8611
8612 default:
8613 return TRUE;
8614 }
8615 }
8616 /* NOTREACHED */
8617}
8618
8619static bfd_boolean
8620elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8621{
8622 /* Signal number at offset 0x08. */
8623 elf_tdata (abfd)->core_signal
8624 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8625
8626 /* Process ID at offset 0x20. */
8627 elf_tdata (abfd)->core_pid
8628 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8629
8630 /* Command name at 0x48 (max 32 bytes, including nul). */
8631 elf_tdata (abfd)->core_command
8632 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8633
8634 return TRUE;
8635}
8636
8637static bfd_boolean
8638elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8639{
8640 if (note->type == NT_OPENBSD_PROCINFO)
8641 return elfcore_grok_openbsd_procinfo (abfd, note);
8642
8643 if (note->type == NT_OPENBSD_REGS)
8644 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8645
8646 if (note->type == NT_OPENBSD_FPREGS)
8647 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8648
8649 if (note->type == NT_OPENBSD_XFPREGS)
8650 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8651
8652 if (note->type == NT_OPENBSD_AUXV)
8653 {
8654 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8655 SEC_HAS_CONTENTS);
8656
8657 if (sect == NULL)
8658 return FALSE;
8659 sect->size = note->descsz;
8660 sect->filepos = note->descpos;
8661 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8662
8663 return TRUE;
8664 }
8665
8666 if (note->type == NT_OPENBSD_WCOOKIE)
8667 {
8668 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8669 SEC_HAS_CONTENTS);
8670
8671 if (sect == NULL)
8672 return FALSE;
8673 sect->size = note->descsz;
8674 sect->filepos = note->descpos;
8675 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8676
8677 return TRUE;
8678 }
8679
8680 return TRUE;
8681}
8682
8683static bfd_boolean
8684elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8685{
8686 void *ddata = note->descdata;
8687 char buf[100];
8688 char *name;
8689 asection *sect;
8690 short sig;
8691 unsigned flags;
8692
8693 /* nto_procfs_status 'pid' field is at offset 0. */
8694 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8695
8696 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8697 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8698
8699 /* nto_procfs_status 'flags' field is at offset 8. */
8700 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8701
8702 /* nto_procfs_status 'what' field is at offset 14. */
8703 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8704 {
8705 elf_tdata (abfd)->core_signal = sig;
8706 elf_tdata (abfd)->core_lwpid = *tid;
8707 }
8708
8709 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8710 do not come from signals so we make sure we set the current
8711 thread just in case. */
8712 if (flags & 0x00000080)
8713 elf_tdata (abfd)->core_lwpid = *tid;
8714
8715 /* Make a ".qnx_core_status/%d" section. */
8716 sprintf (buf, ".qnx_core_status/%ld", *tid);
8717
8718 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8719 if (name == NULL)
8720 return FALSE;
8721 strcpy (name, buf);
8722
8723 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8724 if (sect == NULL)
8725 return FALSE;
8726
8727 sect->size = note->descsz;
8728 sect->filepos = note->descpos;
8729 sect->alignment_power = 2;
8730
8731 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8732}
8733
8734static bfd_boolean
8735elfcore_grok_nto_regs (bfd *abfd,
8736 Elf_Internal_Note *note,
8737 long tid,
8738 char *base)
8739{
8740 char buf[100];
8741 char *name;
8742 asection *sect;
8743
8744 /* Make a "(base)/%d" section. */
8745 sprintf (buf, "%s/%ld", base, tid);
8746
8747 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8748 if (name == NULL)
8749 return FALSE;
8750 strcpy (name, buf);
8751
8752 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8753 if (sect == NULL)
8754 return FALSE;
8755
8756 sect->size = note->descsz;
8757 sect->filepos = note->descpos;
8758 sect->alignment_power = 2;
8759
8760 /* This is the current thread. */
8761 if (elf_tdata (abfd)->core_lwpid == tid)
8762 return elfcore_maybe_make_sect (abfd, base, sect);
8763
8764 return TRUE;
8765}
8766
8767#define BFD_QNT_CORE_INFO 7
8768#define BFD_QNT_CORE_STATUS 8
8769#define BFD_QNT_CORE_GREG 9
8770#define BFD_QNT_CORE_FPREG 10
8771
8772static bfd_boolean
8773elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8774{
8775 /* Every GREG section has a STATUS section before it. Store the
8776 tid from the previous call to pass down to the next gregs
8777 function. */
8778 static long tid = 1;
8779
8780 switch (note->type)
8781 {
8782 case BFD_QNT_CORE_INFO:
8783 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8784 case BFD_QNT_CORE_STATUS:
8785 return elfcore_grok_nto_status (abfd, note, &tid);
8786 case BFD_QNT_CORE_GREG:
8787 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8788 case BFD_QNT_CORE_FPREG:
8789 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8790 default:
8791 return TRUE;
8792 }
8793}
8794
8795static bfd_boolean
8796elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8797{
8798 char *name;
8799 asection *sect;
8800 size_t len;
8801
8802 /* Use note name as section name. */
8803 len = note->namesz;
8804 name = (char *) bfd_alloc (abfd, len);
8805 if (name == NULL)
8806 return FALSE;
8807 memcpy (name, note->namedata, len);
8808 name[len - 1] = '\0';
8809
8810 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8811 if (sect == NULL)
8812 return FALSE;
8813
8814 sect->size = note->descsz;
8815 sect->filepos = note->descpos;
8816 sect->alignment_power = 1;
8817
8818 return TRUE;
8819}
8820
8821/* Function: elfcore_write_note
8822
8823 Inputs:
8824 buffer to hold note, and current size of buffer
8825 name of note
8826 type of note
8827 data for note
8828 size of data for note
8829
8830 Writes note to end of buffer. ELF64 notes are written exactly as
8831 for ELF32, despite the current (as of 2006) ELF gabi specifying
8832 that they ought to have 8-byte namesz and descsz field, and have
8833 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8834
8835 Return:
8836 Pointer to realloc'd buffer, *BUFSIZ updated. */
8837
8838char *
8839elfcore_write_note (bfd *abfd,
8840 char *buf,
8841 int *bufsiz,
8842 const char *name,
8843 int type,
8844 const void *input,
8845 int size)
8846{
8847 Elf_External_Note *xnp;
8848 size_t namesz;
8849 size_t newspace;
8850 char *dest;
8851
8852 namesz = 0;
8853 if (name != NULL)
8854 namesz = strlen (name) + 1;
8855
8856 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8857
8858 buf = (char *) realloc (buf, *bufsiz + newspace);
8859 if (buf == NULL)
8860 return buf;
8861 dest = buf + *bufsiz;
8862 *bufsiz += newspace;
8863 xnp = (Elf_External_Note *) dest;
8864 H_PUT_32 (abfd, namesz, xnp->namesz);
8865 H_PUT_32 (abfd, size, xnp->descsz);
8866 H_PUT_32 (abfd, type, xnp->type);
8867 dest = xnp->name;
8868 if (name != NULL)
8869 {
8870 memcpy (dest, name, namesz);
8871 dest += namesz;
8872 while (namesz & 3)
8873 {
8874 *dest++ = '\0';
8875 ++namesz;
8876 }
8877 }
8878 memcpy (dest, input, size);
8879 dest += size;
8880 while (size & 3)
8881 {
8882 *dest++ = '\0';
8883 ++size;
8884 }
8885 return buf;
8886}
8887
8888char *
8889elfcore_write_prpsinfo (bfd *abfd,
8890 char *buf,
8891 int *bufsiz,
8892 const char *fname,
8893 const char *psargs)
8894{
8895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8896
8897 if (bed->elf_backend_write_core_note != NULL)
8898 {
8899 char *ret;
8900 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8901 NT_PRPSINFO, fname, psargs);
8902 if (ret != NULL)
8903 return ret;
8904 }
8905
8906#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8907#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8908 if (bed->s->elfclass == ELFCLASS32)
8909 {
8910#if defined (HAVE_PSINFO32_T)
8911 psinfo32_t data;
8912 int note_type = NT_PSINFO;
8913#else
8914 prpsinfo32_t data;
8915 int note_type = NT_PRPSINFO;
8916#endif
8917
8918 memset (&data, 0, sizeof (data));
8919 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8920 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8921 return elfcore_write_note (abfd, buf, bufsiz,
8922 "CORE", note_type, &data, sizeof (data));
8923 }
8924 else
8925#endif
8926 {
8927#if defined (HAVE_PSINFO_T)
8928 psinfo_t data;
8929 int note_type = NT_PSINFO;
8930#else
8931 prpsinfo_t data;
8932 int note_type = NT_PRPSINFO;
8933#endif
8934
8935 memset (&data, 0, sizeof (data));
8936 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8937 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8938 return elfcore_write_note (abfd, buf, bufsiz,
8939 "CORE", note_type, &data, sizeof (data));
8940 }
8941#endif /* PSINFO_T or PRPSINFO_T */
8942
8943 free (buf);
8944 return NULL;
8945}
8946
8947char *
8948elfcore_write_prstatus (bfd *abfd,
8949 char *buf,
8950 int *bufsiz,
8951 long pid,
8952 int cursig,
8953 const void *gregs)
8954{
8955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8956
8957 if (bed->elf_backend_write_core_note != NULL)
8958 {
8959 char *ret;
8960 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8961 NT_PRSTATUS,
8962 pid, cursig, gregs);
8963 if (ret != NULL)
8964 return ret;
8965 }
8966
8967#if defined (HAVE_PRSTATUS_T)
8968#if defined (HAVE_PRSTATUS32_T)
8969 if (bed->s->elfclass == ELFCLASS32)
8970 {
8971 prstatus32_t prstat;
8972
8973 memset (&prstat, 0, sizeof (prstat));
8974 prstat.pr_pid = pid;
8975 prstat.pr_cursig = cursig;
8976 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8977 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
8978 NT_PRSTATUS, &prstat, sizeof (prstat));
8979 }
8980 else
8981#endif
8982 {
8983 prstatus_t prstat;
8984
8985 memset (&prstat, 0, sizeof (prstat));
8986 prstat.pr_pid = pid;
8987 prstat.pr_cursig = cursig;
8988 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8989 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
8990 NT_PRSTATUS, &prstat, sizeof (prstat));
8991 }
8992#endif /* HAVE_PRSTATUS_T */
8993
8994 free (buf);
8995 return NULL;
8996}
8997
8998#if defined (HAVE_LWPSTATUS_T)
8999char *
9000elfcore_write_lwpstatus (bfd *abfd,
9001 char *buf,
9002 int *bufsiz,
9003 long pid,
9004 int cursig,
9005 const void *gregs)
9006{
9007 lwpstatus_t lwpstat;
9008 const char *note_name = "CORE";
9009
9010 memset (&lwpstat, 0, sizeof (lwpstat));
9011 lwpstat.pr_lwpid = pid >> 16;
9012 lwpstat.pr_cursig = cursig;
9013#if defined (HAVE_LWPSTATUS_T_PR_REG)
9014 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9015#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9016#if !defined(gregs)
9017 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9018 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9019#else
9020 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9021 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9022#endif
9023#endif
9024 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9025 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9026}
9027#endif /* HAVE_LWPSTATUS_T */
9028
9029#if defined (HAVE_PSTATUS_T)
9030char *
9031elfcore_write_pstatus (bfd *abfd,
9032 char *buf,
9033 int *bufsiz,
9034 long pid,
9035 int cursig ATTRIBUTE_UNUSED,
9036 const void *gregs ATTRIBUTE_UNUSED)
9037{
9038 const char *note_name = "CORE";
9039#if defined (HAVE_PSTATUS32_T)
9040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9041
9042 if (bed->s->elfclass == ELFCLASS32)
9043 {
9044 pstatus32_t pstat;
9045
9046 memset (&pstat, 0, sizeof (pstat));
9047 pstat.pr_pid = pid & 0xffff;
9048 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9049 NT_PSTATUS, &pstat, sizeof (pstat));
9050 return buf;
9051 }
9052 else
9053#endif
9054 {
9055 pstatus_t pstat;
9056
9057 memset (&pstat, 0, sizeof (pstat));
9058 pstat.pr_pid = pid & 0xffff;
9059 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9060 NT_PSTATUS, &pstat, sizeof (pstat));
9061 return buf;
9062 }
9063}
9064#endif /* HAVE_PSTATUS_T */
9065
9066char *
9067elfcore_write_prfpreg (bfd *abfd,
9068 char *buf,
9069 int *bufsiz,
9070 const void *fpregs,
9071 int size)
9072{
9073 const char *note_name = "CORE";
9074 return elfcore_write_note (abfd, buf, bufsiz,
9075 note_name, NT_FPREGSET, fpregs, size);
9076}
9077
9078char *
9079elfcore_write_prxfpreg (bfd *abfd,
9080 char *buf,
9081 int *bufsiz,
9082 const void *xfpregs,
9083 int size)
9084{
9085 char *note_name = "LINUX";
9086 return elfcore_write_note (abfd, buf, bufsiz,
9087 note_name, NT_PRXFPREG, xfpregs, size);
9088}
9089
9090char *
9091elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9092 const void *xfpregs, int size)
9093{
9094 char *note_name = "LINUX";
9095 return elfcore_write_note (abfd, buf, bufsiz,
9096 note_name, NT_X86_XSTATE, xfpregs, size);
9097}
9098
9099char *
9100elfcore_write_ppc_vmx (bfd *abfd,
9101 char *buf,
9102 int *bufsiz,
9103 const void *ppc_vmx,
9104 int size)
9105{
9106 char *note_name = "LINUX";
9107 return elfcore_write_note (abfd, buf, bufsiz,
9108 note_name, NT_PPC_VMX, ppc_vmx, size);
9109}
9110
9111char *
9112elfcore_write_ppc_vsx (bfd *abfd,
9113 char *buf,
9114 int *bufsiz,
9115 const void *ppc_vsx,
9116 int size)
9117{
9118 char *note_name = "LINUX";
9119 return elfcore_write_note (abfd, buf, bufsiz,
9120 note_name, NT_PPC_VSX, ppc_vsx, size);
9121}
9122
9123static char *
9124elfcore_write_s390_high_gprs (bfd *abfd,
9125 char *buf,
9126 int *bufsiz,
9127 const void *s390_high_gprs,
9128 int size)
9129{
9130 char *note_name = "LINUX";
9131 return elfcore_write_note (abfd, buf, bufsiz,
9132 note_name, NT_S390_HIGH_GPRS,
9133 s390_high_gprs, size);
9134}
9135
9136char *
9137elfcore_write_s390_timer (bfd *abfd,
9138 char *buf,
9139 int *bufsiz,
9140 const void *s390_timer,
9141 int size)
9142{
9143 char *note_name = "LINUX";
9144 return elfcore_write_note (abfd, buf, bufsiz,
9145 note_name, NT_S390_TIMER, s390_timer, size);
9146}
9147
9148char *
9149elfcore_write_s390_todcmp (bfd *abfd,
9150 char *buf,
9151 int *bufsiz,
9152 const void *s390_todcmp,
9153 int size)
9154{
9155 char *note_name = "LINUX";
9156 return elfcore_write_note (abfd, buf, bufsiz,
9157 note_name, NT_S390_TODCMP, s390_todcmp, size);
9158}
9159
9160char *
9161elfcore_write_s390_todpreg (bfd *abfd,
9162 char *buf,
9163 int *bufsiz,
9164 const void *s390_todpreg,
9165 int size)
9166{
9167 char *note_name = "LINUX";
9168 return elfcore_write_note (abfd, buf, bufsiz,
9169 note_name, NT_S390_TODPREG, s390_todpreg, size);
9170}
9171
9172char *
9173elfcore_write_s390_ctrs (bfd *abfd,
9174 char *buf,
9175 int *bufsiz,
9176 const void *s390_ctrs,
9177 int size)
9178{
9179 char *note_name = "LINUX";
9180 return elfcore_write_note (abfd, buf, bufsiz,
9181 note_name, NT_S390_CTRS, s390_ctrs, size);
9182}
9183
9184char *
9185elfcore_write_s390_prefix (bfd *abfd,
9186 char *buf,
9187 int *bufsiz,
9188 const void *s390_prefix,
9189 int size)
9190{
9191 char *note_name = "LINUX";
9192 return elfcore_write_note (abfd, buf, bufsiz,
9193 note_name, NT_S390_PREFIX, s390_prefix, size);
9194}
9195
9196char *
9197elfcore_write_s390_last_break (bfd *abfd,
9198 char *buf,
9199 int *bufsiz,
9200 const void *s390_last_break,
9201 int size)
9202{
9203 char *note_name = "LINUX";
9204 return elfcore_write_note (abfd, buf, bufsiz,
9205 note_name, NT_S390_LAST_BREAK,
9206 s390_last_break, size);
9207}
9208
9209char *
9210elfcore_write_s390_system_call (bfd *abfd,
9211 char *buf,
9212 int *bufsiz,
9213 const void *s390_system_call,
9214 int size)
9215{
9216 char *note_name = "LINUX";
9217 return elfcore_write_note (abfd, buf, bufsiz,
9218 note_name, NT_S390_SYSTEM_CALL,
9219 s390_system_call, size);
9220}
9221
9222char *
9223elfcore_write_arm_vfp (bfd *abfd,
9224 char *buf,
9225 int *bufsiz,
9226 const void *arm_vfp,
9227 int size)
9228{
9229 char *note_name = "LINUX";
9230 return elfcore_write_note (abfd, buf, bufsiz,
9231 note_name, NT_ARM_VFP, arm_vfp, size);
9232}
9233
9234char *
9235elfcore_write_register_note (bfd *abfd,
9236 char *buf,
9237 int *bufsiz,
9238 const char *section,
9239 const void *data,
9240 int size)
9241{
9242 if (strcmp (section, ".reg2") == 0)
9243 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9244 if (strcmp (section, ".reg-xfp") == 0)
9245 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9246 if (strcmp (section, ".reg-xstate") == 0)
9247 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9248 if (strcmp (section, ".reg-ppc-vmx") == 0)
9249 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9250 if (strcmp (section, ".reg-ppc-vsx") == 0)
9251 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9252 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9253 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9254 if (strcmp (section, ".reg-s390-timer") == 0)
9255 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9256 if (strcmp (section, ".reg-s390-todcmp") == 0)
9257 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9258 if (strcmp (section, ".reg-s390-todpreg") == 0)
9259 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9260 if (strcmp (section, ".reg-s390-ctrs") == 0)
9261 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9262 if (strcmp (section, ".reg-s390-prefix") == 0)
9263 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9264 if (strcmp (section, ".reg-s390-last-break") == 0)
9265 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9266 if (strcmp (section, ".reg-s390-system-call") == 0)
9267 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9268 if (strcmp (section, ".reg-arm-vfp") == 0)
9269 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9270 return NULL;
9271}
9272
9273static bfd_boolean
9274elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9275{
9276 char *p;
9277
9278 p = buf;
9279 while (p < buf + size)
9280 {
9281 /* FIXME: bad alignment assumption. */
9282 Elf_External_Note *xnp = (Elf_External_Note *) p;
9283 Elf_Internal_Note in;
9284
9285 if (offsetof (Elf_External_Note, name) > buf - p + size)
9286 return FALSE;
9287
9288 in.type = H_GET_32 (abfd, xnp->type);
9289
9290 in.namesz = H_GET_32 (abfd, xnp->namesz);
9291 in.namedata = xnp->name;
9292 if (in.namesz > buf - in.namedata + size)
9293 return FALSE;
9294
9295 in.descsz = H_GET_32 (abfd, xnp->descsz);
9296 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9297 in.descpos = offset + (in.descdata - buf);
9298 if (in.descsz != 0
9299 && (in.descdata >= buf + size
9300 || in.descsz > buf - in.descdata + size))
9301 return FALSE;
9302
9303 switch (bfd_get_format (abfd))
9304 {
9305 default:
9306 return TRUE;
9307
9308 case bfd_core:
9309 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9310 {
9311 if (! elfcore_grok_netbsd_note (abfd, &in))
9312 return FALSE;
9313 }
9314 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9315 {
9316 if (! elfcore_grok_openbsd_note (abfd, &in))
9317 return FALSE;
9318 }
9319 else if (CONST_STRNEQ (in.namedata, "QNX"))
9320 {
9321 if (! elfcore_grok_nto_note (abfd, &in))
9322 return FALSE;
9323 }
9324 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9325 {
9326 if (! elfcore_grok_spu_note (abfd, &in))
9327 return FALSE;
9328 }
9329 else
9330 {
9331 if (! elfcore_grok_note (abfd, &in))
9332 return FALSE;
9333 }
9334 break;
9335
9336 case bfd_object:
9337 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9338 {
9339 if (! elfobj_grok_gnu_note (abfd, &in))
9340 return FALSE;
9341 }
9342 else if (in.namesz == sizeof "stapsdt"
9343 && strcmp (in.namedata, "stapsdt") == 0)
9344 {
9345 if (! elfobj_grok_stapsdt_note (abfd, &in))
9346 return FALSE;
9347 }
9348 break;
9349 }
9350
9351 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9352 }
9353
9354 return TRUE;
9355}
9356
9357static bfd_boolean
9358elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9359{
9360 char *buf;
9361
9362 if (size <= 0)
9363 return TRUE;
9364
9365 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9366 return FALSE;
9367
9368 buf = (char *) bfd_malloc (size);
9369 if (buf == NULL)
9370 return FALSE;
9371
9372 if (bfd_bread (buf, size, abfd) != size
9373 || !elf_parse_notes (abfd, buf, size, offset))
9374 {
9375 free (buf);
9376 return FALSE;
9377 }
9378
9379 free (buf);
9380 return TRUE;
9381}
9382\f
9383/* Providing external access to the ELF program header table. */
9384
9385/* Return an upper bound on the number of bytes required to store a
9386 copy of ABFD's program header table entries. Return -1 if an error
9387 occurs; bfd_get_error will return an appropriate code. */
9388
9389long
9390bfd_get_elf_phdr_upper_bound (bfd *abfd)
9391{
9392 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9393 {
9394 bfd_set_error (bfd_error_wrong_format);
9395 return -1;
9396 }
9397
9398 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9399}
9400
9401/* Copy ABFD's program header table entries to *PHDRS. The entries
9402 will be stored as an array of Elf_Internal_Phdr structures, as
9403 defined in include/elf/internal.h. To find out how large the
9404 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9405
9406 Return the number of program header table entries read, or -1 if an
9407 error occurs; bfd_get_error will return an appropriate code. */
9408
9409int
9410bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9411{
9412 int num_phdrs;
9413
9414 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9415 {
9416 bfd_set_error (bfd_error_wrong_format);
9417 return -1;
9418 }
9419
9420 num_phdrs = elf_elfheader (abfd)->e_phnum;
9421 memcpy (phdrs, elf_tdata (abfd)->phdr,
9422 num_phdrs * sizeof (Elf_Internal_Phdr));
9423
9424 return num_phdrs;
9425}
9426
9427enum elf_reloc_type_class
9428_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9429{
9430 return reloc_class_normal;
9431}
9432
9433/* For RELA architectures, return the relocation value for a
9434 relocation against a local symbol. */
9435
9436bfd_vma
9437_bfd_elf_rela_local_sym (bfd *abfd,
9438 Elf_Internal_Sym *sym,
9439 asection **psec,
9440 Elf_Internal_Rela *rel)
9441{
9442 asection *sec = *psec;
9443 bfd_vma relocation;
9444
9445 relocation = (sec->output_section->vma
9446 + sec->output_offset
9447 + sym->st_value);
9448 if ((sec->flags & SEC_MERGE)
9449 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9450 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9451 {
9452 rel->r_addend =
9453 _bfd_merged_section_offset (abfd, psec,
9454 elf_section_data (sec)->sec_info,
9455 sym->st_value + rel->r_addend);
9456 if (sec != *psec)
9457 {
9458 /* If we have changed the section, and our original section is
9459 marked with SEC_EXCLUDE, it means that the original
9460 SEC_MERGE section has been completely subsumed in some
9461 other SEC_MERGE section. In this case, we need to leave
9462 some info around for --emit-relocs. */
9463 if ((sec->flags & SEC_EXCLUDE) != 0)
9464 sec->kept_section = *psec;
9465 sec = *psec;
9466 }
9467 rel->r_addend -= relocation;
9468 rel->r_addend += sec->output_section->vma + sec->output_offset;
9469 }
9470 return relocation;
9471}
9472
9473bfd_vma
9474_bfd_elf_rel_local_sym (bfd *abfd,
9475 Elf_Internal_Sym *sym,
9476 asection **psec,
9477 bfd_vma addend)
9478{
9479 asection *sec = *psec;
9480
9481 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9482 return sym->st_value + addend;
9483
9484 return _bfd_merged_section_offset (abfd, psec,
9485 elf_section_data (sec)->sec_info,
9486 sym->st_value + addend);
9487}
9488
9489bfd_vma
9490_bfd_elf_section_offset (bfd *abfd,
9491 struct bfd_link_info *info,
9492 asection *sec,
9493 bfd_vma offset)
9494{
9495 switch (sec->sec_info_type)
9496 {
9497 case ELF_INFO_TYPE_STABS:
9498 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9499 offset);
9500 case ELF_INFO_TYPE_EH_FRAME:
9501 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9502 default:
9503 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9504 {
9505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9506 bfd_size_type address_size = bed->s->arch_size / 8;
9507 offset = sec->size - offset - address_size;
9508 }
9509 return offset;
9510 }
9511}
9512\f
9513/* Create a new BFD as if by bfd_openr. Rather than opening a file,
9514 reconstruct an ELF file by reading the segments out of remote memory
9515 based on the ELF file header at EHDR_VMA and the ELF program headers it
9516 points to. If not null, *LOADBASEP is filled in with the difference
9517 between the VMAs from which the segments were read, and the VMAs the
9518 file headers (and hence BFD's idea of each section's VMA) put them at.
9519
9520 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9521 remote memory at target address VMA into the local buffer at MYADDR; it
9522 should return zero on success or an `errno' code on failure. TEMPL must
9523 be a BFD for an ELF target with the word size and byte order found in
9524 the remote memory. */
9525
9526bfd *
9527bfd_elf_bfd_from_remote_memory
9528 (bfd *templ,
9529 bfd_vma ehdr_vma,
9530 bfd_vma *loadbasep,
9531 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9532{
9533 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9534 (templ, ehdr_vma, loadbasep, target_read_memory);
9535}
9536\f
9537long
9538_bfd_elf_get_synthetic_symtab (bfd *abfd,
9539 long symcount ATTRIBUTE_UNUSED,
9540 asymbol **syms ATTRIBUTE_UNUSED,
9541 long dynsymcount,
9542 asymbol **dynsyms,
9543 asymbol **ret)
9544{
9545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9546 asection *relplt;
9547 asymbol *s;
9548 const char *relplt_name;
9549 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9550 arelent *p;
9551 long count, i, n;
9552 size_t size;
9553 Elf_Internal_Shdr *hdr;
9554 char *names;
9555 asection *plt;
9556
9557 *ret = NULL;
9558
9559 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9560 return 0;
9561
9562 if (dynsymcount <= 0)
9563 return 0;
9564
9565 if (!bed->plt_sym_val)
9566 return 0;
9567
9568 relplt_name = bed->relplt_name;
9569 if (relplt_name == NULL)
9570 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9571 relplt = bfd_get_section_by_name (abfd, relplt_name);
9572 if (relplt == NULL)
9573 return 0;
9574
9575 hdr = &elf_section_data (relplt)->this_hdr;
9576 if (hdr->sh_link != elf_dynsymtab (abfd)
9577 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9578 return 0;
9579
9580 plt = bfd_get_section_by_name (abfd, ".plt");
9581 if (plt == NULL)
9582 return 0;
9583
9584 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9585 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9586 return -1;
9587
9588 count = relplt->size / hdr->sh_entsize;
9589 size = count * sizeof (asymbol);
9590 p = relplt->relocation;
9591 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9592 {
9593 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9594 if (p->addend != 0)
9595 {
9596#ifdef BFD64
9597 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9598#else
9599 size += sizeof ("+0x") - 1 + 8;
9600#endif
9601 }
9602 }
9603
9604 s = *ret = (asymbol *) bfd_malloc (size);
9605 if (s == NULL)
9606 return -1;
9607
9608 names = (char *) (s + count);
9609 p = relplt->relocation;
9610 n = 0;
9611 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9612 {
9613 size_t len;
9614 bfd_vma addr;
9615
9616 addr = bed->plt_sym_val (i, plt, p);
9617 if (addr == (bfd_vma) -1)
9618 continue;
9619
9620 *s = **p->sym_ptr_ptr;
9621 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9622 we are defining a symbol, ensure one of them is set. */
9623 if ((s->flags & BSF_LOCAL) == 0)
9624 s->flags |= BSF_GLOBAL;
9625 s->flags |= BSF_SYNTHETIC;
9626 s->section = plt;
9627 s->value = addr - plt->vma;
9628 s->name = names;
9629 s->udata.p = NULL;
9630 len = strlen ((*p->sym_ptr_ptr)->name);
9631 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9632 names += len;
9633 if (p->addend != 0)
9634 {
9635 char buf[30], *a;
9636
9637 memcpy (names, "+0x", sizeof ("+0x") - 1);
9638 names += sizeof ("+0x") - 1;
9639 bfd_sprintf_vma (abfd, buf, p->addend);
9640 for (a = buf; *a == '0'; ++a)
9641 ;
9642 len = strlen (a);
9643 memcpy (names, a, len);
9644 names += len;
9645 }
9646 memcpy (names, "@plt", sizeof ("@plt"));
9647 names += sizeof ("@plt");
9648 ++s, ++n;
9649 }
9650
9651 return n;
9652}
9653
9654/* It is only used by x86-64 so far. */
9655asection _bfd_elf_large_com_section
9656 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9657 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9658
9659void
9660_bfd_elf_set_osabi (bfd * abfd,
9661 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9662{
9663 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9664
9665 i_ehdrp = elf_elfheader (abfd);
9666
9667 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9668
9669 /* To make things simpler for the loader on Linux systems we set the
9670 osabi field to ELFOSABI_GNU if the binary contains symbols of
9671 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9672 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9673 && elf_tdata (abfd)->has_gnu_symbols)
9674 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9675}
9676
9677
9678/* Return TRUE for ELF symbol types that represent functions.
9679 This is the default version of this function, which is sufficient for
9680 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9681
9682bfd_boolean
9683_bfd_elf_is_function_type (unsigned int type)
9684{
9685 return (type == STT_FUNC
9686 || type == STT_GNU_IFUNC);
9687}
9688
9689/* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
9690 and *CODE_OFF to the function's entry point. */
9691
9692bfd_boolean
9693_bfd_elf_maybe_function_sym (const asymbol *sym,
9694 asection **code_sec, bfd_vma *code_off)
9695{
9696 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9697 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
9698 return FALSE;
9699
9700 *code_sec = sym->section;
9701 *code_off = sym->value;
9702 return TRUE;
9703}
This page took 0.05418 seconds and 4 git commands to generate.