-Wimplicit-fallthrough noreturn fixes
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
... / ...
CommitLineData
1/* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include <limits.h>
23
24#include "bfd.h"
25#include "bfd_stdint.h"
26#include "libiberty.h"
27#include "libbfd.h"
28#include "elf-bfd.h"
29#include "elf-nacl.h"
30#include "elf-vxworks.h"
31#include "elf/arm.h"
32
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77static reloc_howto_type elf32_arm_howto_table_1[] =
78{
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746};
1747
1748/* 160 onwards: */
1749static reloc_howto_type elf32_arm_howto_table_2[1] =
1750{
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764};
1765
1766/* 249-255 extended, currently unused, relocations: */
1767static reloc_howto_type elf32_arm_howto_table_3[4] =
1768{
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824};
1825
1826static reloc_howto_type *
1827elf32_arm_howto_from_type (unsigned int r_type)
1828{
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840}
1841
1842static void
1843elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845{
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850}
1851
1852struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858/* All entries in this list must also be present in elf32_arm_howto_table. */
1859static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953static reloc_howto_type *
1954elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956{
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964}
1965
1966static reloc_howto_type *
1967elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969{
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988}
1989
1990/* Support for core dump NOTE sections. */
1991
1992static bfd_boolean
1993elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994{
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020}
2021
2022static bfd_boolean
2023elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024{
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051}
2052
2053static char *
2054elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056{
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099}
2100
2101#define TARGET_LITTLE_SYM arm_elf32_le_vec
2102#define TARGET_LITTLE_NAME "elf32-littlearm"
2103#define TARGET_BIG_SYM arm_elf32_be_vec
2104#define TARGET_BIG_NAME "elf32-bigarm"
2105
2106#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110typedef unsigned long int insn32;
2111typedef unsigned short int insn16;
2112
2113/* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115#define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120/* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139#define STUB_ENTRY_NAME "__%s_veneer"
2140
2141#define CMSE_PREFIX "__acle_se_"
2142
2143/* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147static const unsigned long tls_trampoline [] =
2148{
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152};
2153
2154static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155{
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165};
2166
2167#ifdef FOUR_WORD_PLT
2168
2169/* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173static const bfd_vma elf32_arm_plt0_entry [] =
2174{
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179};
2180
2181/* Subsequent entries in a procedure linkage table look like
2182 this. */
2183static const bfd_vma elf32_arm_plt_entry [] =
2184{
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189};
2190
2191#else /* not FOUR_WORD_PLT */
2192
2193/* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197static const bfd_vma elf32_arm_plt0_entry [] =
2198{
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204};
2205
2206/* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208static const bfd_vma elf32_arm_plt_entry_short [] =
2209{
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213};
2214
2215/* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217static const bfd_vma elf32_arm_plt_entry_long [] =
2218{
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223};
2224
2225static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227#endif /* not FOUR_WORD_PLT */
2228
2229/* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232static const bfd_vma elf32_thumb2_plt0_entry [] =
2233{
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241};
2242
2243/* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245static const bfd_vma elf32_thumb2_plt_entry [] =
2246{
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254};
2255
2256/* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259{
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264};
2265
2266/* The format of subsequent entries in a VxWorks executable. */
2267static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268{
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275};
2276
2277/* The format of entries in a VxWorks shared library. */
2278static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279{
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286};
2287
2288/* An initial stub used if the PLT entry is referenced from Thumb code. */
2289#define PLT_THUMB_STUB_SIZE 4
2290static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291{
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294};
2295
2296/* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299{
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302};
2303
2304/* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309{
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331};
2332#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334/* Subsequent entries in a procedure linkage table look like this. */
2335static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336{
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341};
2342
2343#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352enum stub_insn_type
2353{
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358};
2359
2360#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372typedef struct
2373{
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378} insn_sequence;
2379
2380/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383{
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386};
2387
2388/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391{
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395};
2396
2397/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399{
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407};
2408
2409/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411{
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414};
2415
2416/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419{
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423};
2424
2425/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428{
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434};
2435
2436/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439{
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444};
2445
2446/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449{
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453};
2454
2455/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458{
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462};
2463
2464/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469{
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474};
2475
2476/* V4T ARM -> ARM long branch stub, PIC. */
2477static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478{
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483};
2484
2485/* V4T Thumb -> ARM long branch stub, PIC. */
2486static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487{
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493};
2494
2495/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498{
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506};
2507
2508/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511{
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518};
2519
2520/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523{
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527};
2528
2529/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532{
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538};
2539
2540/* NaCl ARM -> ARM long branch stub. */
2541static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542{
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551};
2552
2553/* NaCl ARM -> ARM long branch stub, PIC. */
2554static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555{
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564};
2565
2566/* Stub used for transition to secure state (aka SG veneer). */
2567static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568{
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571};
2572
2573
2574/* Cortex-A8 erratum-workaround stubs. */
2575
2576/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580{
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584};
2585
2586/* Stub used for b.w and bl.w instructions. */
2587
2588static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589{
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591};
2592
2593static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594{
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596};
2597
2598/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603{
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605};
2606
2607/* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632#define STUB_SUFFIX ".__stub"
2633
2634/* One entry per long/short branch stub defined above. */
2635#define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660#define DEF_STUB(x) arm_stub_##x,
2661enum elf32_arm_stub_type
2662{
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666};
2667#undef DEF_STUB
2668
2669/* Note the first a8_veneer type. */
2670const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672typedef struct
2673{
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676} stub_def;
2677
2678#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679static const stub_def stub_definitions[] =
2680{
2681 {NULL, 0},
2682 DEF_STUBS
2683};
2684
2685struct elf32_arm_stub_hash_entry
2686{
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735};
2736
2737/* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740typedef struct elf32_elf_section_map
2741{
2742 bfd_vma vma;
2743 char type;
2744}
2745elf32_arm_section_map;
2746
2747/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749typedef enum
2750{
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755}
2756elf32_vfp11_erratum_type;
2757
2758typedef struct elf32_vfp11_erratum_list
2759{
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776}
2777elf32_vfp11_erratum_list;
2778
2779/* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781typedef enum
2782{
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785}
2786elf32_stm32l4xx_erratum_type;
2787
2788typedef struct elf32_stm32l4xx_erratum_list
2789{
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806}
2807elf32_stm32l4xx_erratum_list;
2808
2809typedef enum
2810{
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813}
2814arm_unwind_edit_type;
2815
2816/* A (sorted) list of edits to apply to an unwind table. */
2817typedef struct arm_unwind_table_edit
2818{
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826}
2827arm_unwind_table_edit;
2828
2829typedef struct _arm_elf_section_data
2830{
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858}
2859_arm_elf_section_data;
2860
2861#define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870struct a8_erratum_fix
2871{
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880};
2881
2882/* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885struct a8_erratum_reloc
2886{
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894};
2895
2896/* The size of the thread control block. */
2897#define TCB_SIZE 8
2898
2899/* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901struct arm_plt_info
2902{
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922};
2923
2924/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925struct arm_local_iplt_info
2926{
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937};
2938
2939struct elf_arm_obj_tdata
2940{
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957};
2958
2959#define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962#define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965#define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968#define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971#define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976static bfd_boolean
2977elf32_arm_mkobject (bfd *abfd)
2978{
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981}
2982
2983#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985/* Arm ELF linker hash entry. */
2986struct elf32_arm_link_hash_entry
2987{
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996#define GOT_UNKNOWN 0
2997#define GOT_NORMAL 1
2998#define GOT_TLS_GD 2
2999#define GOT_TLS_IE 4
3000#define GOT_TLS_GDESC 8
3001#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020};
3021
3022/* Traverse an arm ELF linker hash table. */
3023#define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029/* Get the ARM elf linker hash table from a link_info structure. */
3030#define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034#define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038/* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040struct map_stub
3041{
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047};
3048
3049#define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052/* ARM ELF linker hash table. */
3053struct elf32_arm_link_hash_table
3054{
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* Short-cuts to get to dynamic linker sections. */
3162 asection *sdynbss;
3163 asection *srelbss;
3164
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3166 asection *srelplt2;
3167
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3171 yet. */
3172 bfd_vma dt_tlsdesc_plt;
3173
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3175 above. */
3176 bfd_vma dt_tlsdesc_got;
3177
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3180
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3182 union
3183 {
3184 bfd_signed_vma refcount;
3185 bfd_vma offset;
3186 } tls_ldm_got;
3187
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
3190
3191 /* For convenience in allocate_dynrelocs. */
3192 bfd * obfd;
3193
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3197
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3200
3201 /* Linker stub bfd. */
3202 bfd *stub_bfd;
3203
3204 /* Linker call-backs. */
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3206 unsigned int);
3207 void (*layout_sections_again) (void);
3208
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
3211 struct map_stub *stub_group;
3212
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3215
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3219
3220 /* Number of elements in stub_group. */
3221 unsigned int top_id;
3222
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
3225 unsigned int top_index;
3226 asection **input_list;
3227};
3228
3229static inline int
3230ctz (unsigned int mask)
3231{
3232#if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3234#else
3235 unsigned int i;
3236
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3238 {
3239 if (mask & 0x1)
3240 break;
3241 mask = (mask >> 1);
3242 }
3243 return i;
3244#endif
3245}
3246
3247static inline int
3248popcount (unsigned int mask)
3249{
3250#if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3252#else
3253 unsigned int i, sum = 0;
3254
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3256 {
3257 if (mask & 0x1)
3258 sum++;
3259 mask = (mask >> 1);
3260 }
3261 return sum;
3262#endif
3263}
3264
3265/* Create an entry in an ARM ELF linker hash table. */
3266
3267static struct bfd_hash_entry *
3268elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3269 struct bfd_hash_table * table,
3270 const char * string)
3271{
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3274
3275 /* Allocate the structure if it has not already been allocated by a
3276 subclass. */
3277 if (ret == NULL)
3278 ret = (struct elf32_arm_link_hash_entry *)
3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3280 if (ret == NULL)
3281 return (struct bfd_hash_entry *) ret;
3282
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3286 table, string));
3287 if (ret != NULL)
3288 {
3289 ret->dyn_relocs = NULL;
3290 ret->tls_type = GOT_UNKNOWN;
3291 ret->tlsdesc_got = (bfd_vma) -1;
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
3297 ret->export_glue = NULL;
3298
3299 ret->stub_cache = NULL;
3300 }
3301
3302 return (struct bfd_hash_entry *) ret;
3303}
3304
3305/* Ensure that we have allocated bookkeeping structures for ABFD's local
3306 symbols. */
3307
3308static bfd_boolean
3309elf32_arm_allocate_local_sym_info (bfd *abfd)
3310{
3311 if (elf_local_got_refcounts (abfd) == NULL)
3312 {
3313 bfd_size_type num_syms;
3314 bfd_size_type size;
3315 char *data;
3316
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3320 + sizeof (bfd_vma)
3321 + sizeof (char));
3322 data = bfd_zalloc (abfd, size);
3323 if (data == NULL)
3324 return FALSE;
3325
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3328
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3331
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3334
3335 elf32_arm_local_got_tls_type (abfd) = data;
3336 }
3337 return TRUE;
3338}
3339
3340/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3343
3344static struct arm_local_iplt_info *
3345elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3346{
3347 struct arm_local_iplt_info **ptr;
3348
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3350 return NULL;
3351
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3354 if (*ptr == NULL)
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3356 return *ptr;
3357}
3358
3359/* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3362
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3366
3367static bfd_boolean
3368elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3372{
3373 struct arm_local_iplt_info *local_iplt;
3374
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3376 return FALSE;
3377
3378 if (h != NULL)
3379 {
3380 *root_plt = &h->root.plt;
3381 *arm_plt = &h->plt;
3382 return TRUE;
3383 }
3384
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3386 return FALSE;
3387
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3390 return FALSE;
3391
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3394 return TRUE;
3395}
3396
3397/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3398 before it. */
3399
3400static bfd_boolean
3401elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3403{
3404 struct elf32_arm_link_hash_table *htab;
3405
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3409}
3410
3411/* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3414
3415static struct elf_dyn_relocs **
3416elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3418{
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3420 {
3421 struct arm_local_iplt_info *local_iplt;
3422
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3425 return NULL;
3426 return &local_iplt->dyn_relocs;
3427 }
3428 else
3429 {
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3432 easily. Oh well. */
3433 asection *s;
3434 void *vpp;
3435
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3437 if (s == NULL)
3438 abort ();
3439
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3442 }
3443}
3444
3445/* Initialize an entry in the stub hash table. */
3446
3447static struct bfd_hash_entry *
3448stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3450 const char *string)
3451{
3452 /* Allocate the structure if it has not already been allocated by a
3453 subclass. */
3454 if (entry == NULL)
3455 {
3456 entry = (struct bfd_hash_entry *)
3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3458 if (entry == NULL)
3459 return entry;
3460 }
3461
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3464 if (entry != NULL)
3465 {
3466 struct elf32_arm_stub_hash_entry *eh;
3467
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
3471 eh->stub_offset = (bfd_vma) -1;
3472 eh->source_value = 0;
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
3475 eh->orig_insn = 0;
3476 eh->stub_type = arm_stub_none;
3477 eh->stub_size = 0;
3478 eh->stub_template = NULL;
3479 eh->stub_template_size = -1;
3480 eh->h = NULL;
3481 eh->id_sec = NULL;
3482 eh->output_name = NULL;
3483 }
3484
3485 return entry;
3486}
3487
3488/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3489 shortcuts to them in our hash table. */
3490
3491static bfd_boolean
3492create_got_section (bfd *dynobj, struct bfd_link_info *info)
3493{
3494 struct elf32_arm_link_hash_table *htab;
3495
3496 htab = elf32_arm_hash_table (info);
3497 if (htab == NULL)
3498 return FALSE;
3499
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3502 return TRUE;
3503
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3505 return FALSE;
3506
3507 return TRUE;
3508}
3509
3510/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3511
3512static bfd_boolean
3513create_ifunc_sections (struct bfd_link_info *info)
3514{
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3517 bfd *dynobj;
3518 asection *s;
3519 flagword flags;
3520
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3525
3526 if (htab->root.iplt == NULL)
3527 {
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
3530 if (s == NULL
3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3532 return FALSE;
3533 htab->root.iplt = s;
3534 }
3535
3536 if (htab->root.irelplt == NULL)
3537 {
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
3541 if (s == NULL
3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3543 return FALSE;
3544 htab->root.irelplt = s;
3545 }
3546
3547 if (htab->root.igotplt == NULL)
3548 {
3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3550 if (s == NULL
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3552 return FALSE;
3553 htab->root.igotplt = s;
3554 }
3555 return TRUE;
3556}
3557
3558/* Determine if we're dealing with a Thumb only architecture. */
3559
3560static bfd_boolean
3561using_thumb_only (struct elf32_arm_link_hash_table *globals)
3562{
3563 int arch;
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
3566
3567 if (profile)
3568 return profile == 'M';
3569
3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3571
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3576
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3582 return TRUE;
3583
3584 return FALSE;
3585}
3586
3587/* Determine if we're dealing with a Thumb-2 object. */
3588
3589static bfd_boolean
3590using_thumb2 (struct elf32_arm_link_hash_table *globals)
3591{
3592 int arch;
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3594 Tag_THUMB_ISA_use);
3595
3596 if (thumb_isa)
3597 return thumb_isa == 2;
3598
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3600
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3605
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
3611}
3612
3613/* Determine whether Thumb-2 BL instruction is available. */
3614
3615static bfd_boolean
3616using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3617{
3618 int arch =
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3620
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3625
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3629}
3630
3631/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3633 hash table. */
3634
3635static bfd_boolean
3636elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3637{
3638 struct elf32_arm_link_hash_table *htab;
3639
3640 htab = elf32_arm_hash_table (info);
3641 if (htab == NULL)
3642 return FALSE;
3643
3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
3645 return FALSE;
3646
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3648 return FALSE;
3649
3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3651 if (!bfd_link_pic (info))
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
3654
3655 if (htab->vxworks_p)
3656 {
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3658 return FALSE;
3659
3660 if (bfd_link_pic (info))
3661 {
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3665 }
3666 else
3667 {
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3672 }
3673
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3676 }
3677 else
3678 {
3679 /* PR ld/16017
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3684
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3687 {
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3690 }
3691 htab->obfd = saved_obfd;
3692 }
3693
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
3696 || !htab->sdynbss
3697 || (!bfd_link_pic (info) && !htab->srelbss))
3698 abort ();
3699
3700 return TRUE;
3701}
3702
3703/* Copy the extra info we tack onto an elf_link_hash_entry. */
3704
3705static void
3706elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3709{
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3711
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3714
3715 if (eind->dyn_relocs != NULL)
3716 {
3717 if (edir->dyn_relocs != NULL)
3718 {
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
3721
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3725 {
3726 struct elf_dyn_relocs *q;
3727
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
3730 {
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3733 *pp = p->next;
3734 break;
3735 }
3736 if (q == NULL)
3737 pp = &p->next;
3738 }
3739 *pp = edir->dyn_relocs;
3740 }
3741
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
3744 }
3745
3746 if (ind->root.type == bfd_link_hash_indirect)
3747 {
3748 /* Copy over PLT info. */
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3755
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
3759
3760 if (dir->got.refcount <= 0)
3761 {
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3764 }
3765 }
3766
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3768}
3769
3770/* Destroy an ARM elf linker hash table. */
3771
3772static void
3773elf32_arm_link_hash_table_free (bfd *obfd)
3774{
3775 struct elf32_arm_link_hash_table *ret
3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3777
3778 bfd_hash_table_free (&ret->stub_hash_table);
3779 _bfd_elf_link_hash_table_free (obfd);
3780}
3781
3782/* Create an ARM elf linker hash table. */
3783
3784static struct bfd_link_hash_table *
3785elf32_arm_link_hash_table_create (bfd *abfd)
3786{
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3789
3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3791 if (ret == NULL)
3792 return NULL;
3793
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
3796 sizeof (struct elf32_arm_link_hash_entry),
3797 ARM_ELF_DATA))
3798 {
3799 free (ret);
3800 return NULL;
3801 }
3802
3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3805#ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3808#else
3809 ret->plt_header_size = 20;
3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3811#endif
3812 ret->use_rel = 1;
3813 ret->obfd = abfd;
3814
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3817 {
3818 _bfd_elf_link_hash_table_free (abfd);
3819 return NULL;
3820 }
3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3822
3823 return &ret->root.root;
3824}
3825
3826/* Determine what kind of NOPs are available. */
3827
3828static bfd_boolean
3829arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3830{
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3832 Tag_CPU_arch);
3833
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3838
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
3843}
3844
3845static bfd_boolean
3846arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3847{
3848 switch (stub_type)
3849 {
3850 case arm_stub_long_branch_thumb_only:
3851 case arm_stub_long_branch_thumb2_only:
3852 case arm_stub_long_branch_thumb2_only_pure:
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
3857 case arm_stub_long_branch_thumb_only_pic:
3858 case arm_stub_cmse_branch_thumb_only:
3859 return TRUE;
3860 case arm_stub_none:
3861 BFD_FAIL ();
3862 return FALSE;
3863 break;
3864 default:
3865 return FALSE;
3866 }
3867}
3868
3869/* Determine the type of stub needed, if any, for a call. */
3870
3871static enum elf32_arm_stub_type
3872arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
3875 unsigned char st_type,
3876 enum arm_st_branch_type *actual_branch_type,
3877 struct elf32_arm_link_hash_entry *hash,
3878 bfd_vma destination,
3879 asection *sym_sec,
3880 bfd *input_bfd,
3881 const char *name)
3882{
3883 bfd_vma location;
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
3889 int use_plt = 0;
3890 enum arm_st_branch_type branch_type = *actual_branch_type;
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
3893 int arch;
3894 int thumb2_movw;
3895
3896 if (branch_type == ST_BRANCH_LONG)
3897 return stub_type;
3898
3899 globals = elf32_arm_hash_table (info);
3900 if (globals == NULL)
3901 return stub_type;
3902
3903 thumb_only = using_thumb_only (globals);
3904 thumb2 = using_thumb2 (globals);
3905 thumb2_bl = using_thumb2_bl (globals);
3906
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3908
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3911
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3915 + rel->r_offset);
3916
3917 r_type = ELF32_R_TYPE (rel->r_info);
3918
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3925
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3932 &arm_plt)
3933 && root_plt->offset != (bfd_vma) -1)
3934 {
3935 asection *splt;
3936
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3939 else
3940 splt = globals->root.splt;
3941 if (splt != NULL)
3942 {
3943 use_plt = 1;
3944
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
3948 PLT stub. If a long branch stub is needed, we'll add a
3949 Thumb->Arm one and branch directly to the ARM PLT entry.
3950 Here, we have to check if a pre-PLT Thumb->ARM stub
3951 is needed and if it will be close enough. */
3952
3953 destination = (splt->output_section->vma
3954 + splt->output_offset
3955 + root_plt->offset);
3956 st_type = STT_FUNC;
3957
3958 /* Thumb branch/call to PLT: it can become a branch to ARM
3959 or to Thumb. We must perform the same checks and
3960 corrections as in elf32_arm_final_link_relocate. */
3961 if ((r_type == R_ARM_THM_CALL)
3962 || (r_type == R_ARM_THM_JUMP24))
3963 {
3964 if (globals->use_blx
3965 && r_type == R_ARM_THM_CALL
3966 && !thumb_only)
3967 {
3968 /* If the Thumb BLX instruction is available, convert
3969 the BL to a BLX instruction to call the ARM-mode
3970 PLT entry. */
3971 branch_type = ST_BRANCH_TO_ARM;
3972 }
3973 else
3974 {
3975 if (!thumb_only)
3976 /* Target the Thumb stub before the ARM PLT entry. */
3977 destination -= PLT_THUMB_STUB_SIZE;
3978 branch_type = ST_BRANCH_TO_THUMB;
3979 }
3980 }
3981 else
3982 {
3983 branch_type = ST_BRANCH_TO_ARM;
3984 }
3985 }
3986 }
3987 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3988 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3989
3990 branch_offset = (bfd_signed_vma)(destination - location);
3991
3992 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3993 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3994 {
3995 /* Handle cases where:
3996 - this call goes too far (different Thumb/Thumb2 max
3997 distance)
3998 - it's a Thumb->Arm call and blx is not available, or it's a
3999 Thumb->Arm branch (not bl). A stub is needed in this case,
4000 but only if this call is not through a PLT entry. Indeed,
4001 PLT stubs handle mode switching already.
4002 */
4003 if ((!thumb2_bl
4004 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4005 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4006 || (thumb2_bl
4007 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4008 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4009 || (thumb2
4010 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4011 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4012 && (r_type == R_ARM_THM_JUMP19))
4013 || (branch_type == ST_BRANCH_TO_ARM
4014 && (((r_type == R_ARM_THM_CALL
4015 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4016 || (r_type == R_ARM_THM_JUMP24)
4017 || (r_type == R_ARM_THM_JUMP19))
4018 && !use_plt))
4019 {
4020 /* If we need to insert a Thumb-Thumb long branch stub to a
4021 PLT, use one that branches directly to the ARM PLT
4022 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4023 stub, undo this now. */
4024 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only) {
4025 branch_type = ST_BRANCH_TO_ARM;
4026 branch_offset += PLT_THUMB_STUB_SIZE;
4027 }
4028
4029 if (branch_type == ST_BRANCH_TO_THUMB)
4030 {
4031 /* Thumb to thumb. */
4032 if (!thumb_only)
4033 {
4034 if (input_sec->flags & SEC_ELF_PURECODE)
4035 _bfd_error_handler (_("%B(%s): warning: long branch "
4036 " veneers used in section with "
4037 "SHF_ARM_PURECODE section "
4038 "attribute is only supported"
4039 " for M-profile targets that "
4040 "implement the movw "
4041 "instruction."));
4042
4043 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4044 /* PIC stubs. */
4045 ? ((globals->use_blx
4046 && (r_type == R_ARM_THM_CALL))
4047 /* V5T and above. Stub starts with ARM code, so
4048 we must be able to switch mode before
4049 reaching it, which is only possible for 'bl'
4050 (ie R_ARM_THM_CALL relocation). */
4051 ? arm_stub_long_branch_any_thumb_pic
4052 /* On V4T, use Thumb code only. */
4053 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4054
4055 /* non-PIC stubs. */
4056 : ((globals->use_blx
4057 && (r_type == R_ARM_THM_CALL))
4058 /* V5T and above. */
4059 ? arm_stub_long_branch_any_any
4060 /* V4T. */
4061 : arm_stub_long_branch_v4t_thumb_thumb);
4062 }
4063 else
4064 {
4065 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4066 stub_type = arm_stub_long_branch_thumb2_only_pure;
4067 else
4068 {
4069 if (input_sec->flags & SEC_ELF_PURECODE)
4070 _bfd_error_handler (_("%B(%s): warning: long branch "
4071 " veneers used in section with "
4072 "SHF_ARM_PURECODE section "
4073 "attribute is only supported"
4074 " for M-profile targets that "
4075 "implement the movw "
4076 "instruction."));
4077
4078 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4079 /* PIC stub. */
4080 ? arm_stub_long_branch_thumb_only_pic
4081 /* non-PIC stub. */
4082 : (thumb2 ? arm_stub_long_branch_thumb2_only
4083 : arm_stub_long_branch_thumb_only);
4084 }
4085 }
4086 }
4087 else
4088 {
4089 if (input_sec->flags & SEC_ELF_PURECODE)
4090 _bfd_error_handler (_("%B(%s): warning: long branch "
4091 " veneers used in section with "
4092 "SHF_ARM_PURECODE section "
4093 "attribute is only supported"
4094 " for M-profile targets that "
4095 "implement the movw "
4096 "instruction."));
4097
4098 /* Thumb to arm. */
4099 if (sym_sec != NULL
4100 && sym_sec->owner != NULL
4101 && !INTERWORK_FLAG (sym_sec->owner))
4102 {
4103 _bfd_error_handler
4104 (_("%B(%s): warning: interworking not enabled.\n"
4105 " first occurrence: %B: Thumb call to ARM"),
4106 sym_sec->owner, input_bfd, name);
4107 }
4108
4109 stub_type =
4110 (bfd_link_pic (info) | globals->pic_veneer)
4111 /* PIC stubs. */
4112 ? (r_type == R_ARM_THM_TLS_CALL
4113 /* TLS PIC stubs. */
4114 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4115 : arm_stub_long_branch_v4t_thumb_tls_pic)
4116 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4117 /* V5T PIC and above. */
4118 ? arm_stub_long_branch_any_arm_pic
4119 /* V4T PIC stub. */
4120 : arm_stub_long_branch_v4t_thumb_arm_pic))
4121
4122 /* non-PIC stubs. */
4123 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4124 /* V5T and above. */
4125 ? arm_stub_long_branch_any_any
4126 /* V4T. */
4127 : arm_stub_long_branch_v4t_thumb_arm);
4128
4129 /* Handle v4t short branches. */
4130 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4131 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4132 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4133 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4134 }
4135 }
4136 }
4137 else if (r_type == R_ARM_CALL
4138 || r_type == R_ARM_JUMP24
4139 || r_type == R_ARM_PLT32
4140 || r_type == R_ARM_TLS_CALL)
4141 {
4142 if (input_sec->flags & SEC_ELF_PURECODE)
4143 _bfd_error_handler (_("%B(%s): warning: long branch "
4144 " veneers used in section with "
4145 "SHF_ARM_PURECODE section "
4146 "attribute is only supported"
4147 " for M-profile targets that "
4148 "implement the movw "
4149 "instruction."));
4150 if (branch_type == ST_BRANCH_TO_THUMB)
4151 {
4152 /* Arm to thumb. */
4153
4154 if (sym_sec != NULL
4155 && sym_sec->owner != NULL
4156 && !INTERWORK_FLAG (sym_sec->owner))
4157 {
4158 _bfd_error_handler
4159 (_("%B(%s): warning: interworking not enabled.\n"
4160 " first occurrence: %B: ARM call to Thumb"),
4161 sym_sec->owner, input_bfd, name);
4162 }
4163
4164 /* We have an extra 2-bytes reach because of
4165 the mode change (bit 24 (H) of BLX encoding). */
4166 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4167 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4168 || (r_type == R_ARM_CALL && !globals->use_blx)
4169 || (r_type == R_ARM_JUMP24)
4170 || (r_type == R_ARM_PLT32))
4171 {
4172 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4173 /* PIC stubs. */
4174 ? ((globals->use_blx)
4175 /* V5T and above. */
4176 ? arm_stub_long_branch_any_thumb_pic
4177 /* V4T stub. */
4178 : arm_stub_long_branch_v4t_arm_thumb_pic)
4179
4180 /* non-PIC stubs. */
4181 : ((globals->use_blx)
4182 /* V5T and above. */
4183 ? arm_stub_long_branch_any_any
4184 /* V4T. */
4185 : arm_stub_long_branch_v4t_arm_thumb);
4186 }
4187 }
4188 else
4189 {
4190 /* Arm to arm. */
4191 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4192 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4193 {
4194 stub_type =
4195 (bfd_link_pic (info) | globals->pic_veneer)
4196 /* PIC stubs. */
4197 ? (r_type == R_ARM_TLS_CALL
4198 /* TLS PIC Stub. */
4199 ? arm_stub_long_branch_any_tls_pic
4200 : (globals->nacl_p
4201 ? arm_stub_long_branch_arm_nacl_pic
4202 : arm_stub_long_branch_any_arm_pic))
4203 /* non-PIC stubs. */
4204 : (globals->nacl_p
4205 ? arm_stub_long_branch_arm_nacl
4206 : arm_stub_long_branch_any_any);
4207 }
4208 }
4209 }
4210
4211 /* If a stub is needed, record the actual destination type. */
4212 if (stub_type != arm_stub_none)
4213 *actual_branch_type = branch_type;
4214
4215 return stub_type;
4216}
4217
4218/* Build a name for an entry in the stub hash table. */
4219
4220static char *
4221elf32_arm_stub_name (const asection *input_section,
4222 const asection *sym_sec,
4223 const struct elf32_arm_link_hash_entry *hash,
4224 const Elf_Internal_Rela *rel,
4225 enum elf32_arm_stub_type stub_type)
4226{
4227 char *stub_name;
4228 bfd_size_type len;
4229
4230 if (hash)
4231 {
4232 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4233 stub_name = (char *) bfd_malloc (len);
4234 if (stub_name != NULL)
4235 sprintf (stub_name, "%08x_%s+%x_%d",
4236 input_section->id & 0xffffffff,
4237 hash->root.root.root.string,
4238 (int) rel->r_addend & 0xffffffff,
4239 (int) stub_type);
4240 }
4241 else
4242 {
4243 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4244 stub_name = (char *) bfd_malloc (len);
4245 if (stub_name != NULL)
4246 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4247 input_section->id & 0xffffffff,
4248 sym_sec->id & 0xffffffff,
4249 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4250 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4251 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4252 (int) rel->r_addend & 0xffffffff,
4253 (int) stub_type);
4254 }
4255
4256 return stub_name;
4257}
4258
4259/* Look up an entry in the stub hash. Stub entries are cached because
4260 creating the stub name takes a bit of time. */
4261
4262static struct elf32_arm_stub_hash_entry *
4263elf32_arm_get_stub_entry (const asection *input_section,
4264 const asection *sym_sec,
4265 struct elf_link_hash_entry *hash,
4266 const Elf_Internal_Rela *rel,
4267 struct elf32_arm_link_hash_table *htab,
4268 enum elf32_arm_stub_type stub_type)
4269{
4270 struct elf32_arm_stub_hash_entry *stub_entry;
4271 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4272 const asection *id_sec;
4273
4274 if ((input_section->flags & SEC_CODE) == 0)
4275 return NULL;
4276
4277 /* If this input section is part of a group of sections sharing one
4278 stub section, then use the id of the first section in the group.
4279 Stub names need to include a section id, as there may well be
4280 more than one stub used to reach say, printf, and we need to
4281 distinguish between them. */
4282 BFD_ASSERT (input_section->id <= htab->top_id);
4283 id_sec = htab->stub_group[input_section->id].link_sec;
4284
4285 if (h != NULL && h->stub_cache != NULL
4286 && h->stub_cache->h == h
4287 && h->stub_cache->id_sec == id_sec
4288 && h->stub_cache->stub_type == stub_type)
4289 {
4290 stub_entry = h->stub_cache;
4291 }
4292 else
4293 {
4294 char *stub_name;
4295
4296 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4297 if (stub_name == NULL)
4298 return NULL;
4299
4300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4301 stub_name, FALSE, FALSE);
4302 if (h != NULL)
4303 h->stub_cache = stub_entry;
4304
4305 free (stub_name);
4306 }
4307
4308 return stub_entry;
4309}
4310
4311/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4312 section. */
4313
4314static bfd_boolean
4315arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4316{
4317 if (stub_type >= max_stub_type)
4318 abort (); /* Should be unreachable. */
4319
4320 switch (stub_type)
4321 {
4322 case arm_stub_cmse_branch_thumb_only:
4323 return TRUE;
4324
4325 default:
4326 return FALSE;
4327 }
4328
4329 abort (); /* Should be unreachable. */
4330}
4331
4332/* Required alignment (as a power of 2) for the dedicated section holding
4333 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4334 with input sections. */
4335
4336static int
4337arm_dedicated_stub_output_section_required_alignment
4338 (enum elf32_arm_stub_type stub_type)
4339{
4340 if (stub_type >= max_stub_type)
4341 abort (); /* Should be unreachable. */
4342
4343 switch (stub_type)
4344 {
4345 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4346 boundary. */
4347 case arm_stub_cmse_branch_thumb_only:
4348 return 5;
4349
4350 default:
4351 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4352 return 0;
4353 }
4354
4355 abort (); /* Should be unreachable. */
4356}
4357
4358/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4359 NULL if veneers of this type are interspersed with input sections. */
4360
4361static const char *
4362arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4363{
4364 if (stub_type >= max_stub_type)
4365 abort (); /* Should be unreachable. */
4366
4367 switch (stub_type)
4368 {
4369 case arm_stub_cmse_branch_thumb_only:
4370 return ".gnu.sgstubs";
4371
4372 default:
4373 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4374 return NULL;
4375 }
4376
4377 abort (); /* Should be unreachable. */
4378}
4379
4380/* If veneers of type STUB_TYPE should go in a dedicated output section,
4381 returns the address of the hash table field in HTAB holding a pointer to the
4382 corresponding input section. Otherwise, returns NULL. */
4383
4384static asection **
4385arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4386 enum elf32_arm_stub_type stub_type)
4387{
4388 if (stub_type >= max_stub_type)
4389 abort (); /* Should be unreachable. */
4390
4391 switch (stub_type)
4392 {
4393 case arm_stub_cmse_branch_thumb_only:
4394 return &htab->cmse_stub_sec;
4395
4396 default:
4397 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4398 return NULL;
4399 }
4400
4401 abort (); /* Should be unreachable. */
4402}
4403
4404/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4405 is the section that branch into veneer and can be NULL if stub should go in
4406 a dedicated output section. Returns a pointer to the stub section, and the
4407 section to which the stub section will be attached (in *LINK_SEC_P).
4408 LINK_SEC_P may be NULL. */
4409
4410static asection *
4411elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4412 struct elf32_arm_link_hash_table *htab,
4413 enum elf32_arm_stub_type stub_type)
4414{
4415 asection *link_sec, *out_sec, **stub_sec_p;
4416 const char *stub_sec_prefix;
4417 bfd_boolean dedicated_output_section =
4418 arm_dedicated_stub_output_section_required (stub_type);
4419 int align;
4420
4421 if (dedicated_output_section)
4422 {
4423 bfd *output_bfd = htab->obfd;
4424 const char *out_sec_name =
4425 arm_dedicated_stub_output_section_name (stub_type);
4426 link_sec = NULL;
4427 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4428 stub_sec_prefix = out_sec_name;
4429 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4430 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4431 if (out_sec == NULL)
4432 {
4433 _bfd_error_handler (_("No address assigned to the veneers output "
4434 "section %s"), out_sec_name);
4435 return NULL;
4436 }
4437 }
4438 else
4439 {
4440 BFD_ASSERT (section->id <= htab->top_id);
4441 link_sec = htab->stub_group[section->id].link_sec;
4442 BFD_ASSERT (link_sec != NULL);
4443 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4444 if (*stub_sec_p == NULL)
4445 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4446 stub_sec_prefix = link_sec->name;
4447 out_sec = link_sec->output_section;
4448 align = htab->nacl_p ? 4 : 3;
4449 }
4450
4451 if (*stub_sec_p == NULL)
4452 {
4453 size_t namelen;
4454 bfd_size_type len;
4455 char *s_name;
4456
4457 namelen = strlen (stub_sec_prefix);
4458 len = namelen + sizeof (STUB_SUFFIX);
4459 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4460 if (s_name == NULL)
4461 return NULL;
4462
4463 memcpy (s_name, stub_sec_prefix, namelen);
4464 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4465 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4466 align);
4467 if (*stub_sec_p == NULL)
4468 return NULL;
4469
4470 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4471 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4472 | SEC_KEEP;
4473 }
4474
4475 if (!dedicated_output_section)
4476 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4477
4478 if (link_sec_p)
4479 *link_sec_p = link_sec;
4480
4481 return *stub_sec_p;
4482}
4483
4484/* Add a new stub entry to the stub hash. Not all fields of the new
4485 stub entry are initialised. */
4486
4487static struct elf32_arm_stub_hash_entry *
4488elf32_arm_add_stub (const char *stub_name, asection *section,
4489 struct elf32_arm_link_hash_table *htab,
4490 enum elf32_arm_stub_type stub_type)
4491{
4492 asection *link_sec;
4493 asection *stub_sec;
4494 struct elf32_arm_stub_hash_entry *stub_entry;
4495
4496 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4497 stub_type);
4498 if (stub_sec == NULL)
4499 return NULL;
4500
4501 /* Enter this entry into the linker stub hash table. */
4502 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4503 TRUE, FALSE);
4504 if (stub_entry == NULL)
4505 {
4506 if (section == NULL)
4507 section = stub_sec;
4508 _bfd_error_handler (_("%s: cannot create stub entry %s"),
4509 section->owner, stub_name);
4510 return NULL;
4511 }
4512
4513 stub_entry->stub_sec = stub_sec;
4514 stub_entry->stub_offset = (bfd_vma) -1;
4515 stub_entry->id_sec = link_sec;
4516
4517 return stub_entry;
4518}
4519
4520/* Store an Arm insn into an output section not processed by
4521 elf32_arm_write_section. */
4522
4523static void
4524put_arm_insn (struct elf32_arm_link_hash_table * htab,
4525 bfd * output_bfd, bfd_vma val, void * ptr)
4526{
4527 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4528 bfd_putl32 (val, ptr);
4529 else
4530 bfd_putb32 (val, ptr);
4531}
4532
4533/* Store a 16-bit Thumb insn into an output section not processed by
4534 elf32_arm_write_section. */
4535
4536static void
4537put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4538 bfd * output_bfd, bfd_vma val, void * ptr)
4539{
4540 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4541 bfd_putl16 (val, ptr);
4542 else
4543 bfd_putb16 (val, ptr);
4544}
4545
4546/* Store a Thumb2 insn into an output section not processed by
4547 elf32_arm_write_section. */
4548
4549static void
4550put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4551 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4552{
4553 /* T2 instructions are 16-bit streamed. */
4554 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4555 {
4556 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4557 bfd_putl16 ((val & 0xffff), ptr + 2);
4558 }
4559 else
4560 {
4561 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4562 bfd_putb16 ((val & 0xffff), ptr + 2);
4563 }
4564}
4565
4566/* If it's possible to change R_TYPE to a more efficient access
4567 model, return the new reloc type. */
4568
4569static unsigned
4570elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4571 struct elf_link_hash_entry *h)
4572{
4573 int is_local = (h == NULL);
4574
4575 if (bfd_link_pic (info)
4576 || (h && h->root.type == bfd_link_hash_undefweak))
4577 return r_type;
4578
4579 /* We do not support relaxations for Old TLS models. */
4580 switch (r_type)
4581 {
4582 case R_ARM_TLS_GOTDESC:
4583 case R_ARM_TLS_CALL:
4584 case R_ARM_THM_TLS_CALL:
4585 case R_ARM_TLS_DESCSEQ:
4586 case R_ARM_THM_TLS_DESCSEQ:
4587 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4588 }
4589
4590 return r_type;
4591}
4592
4593static bfd_reloc_status_type elf32_arm_final_link_relocate
4594 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4595 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4596 const char *, unsigned char, enum arm_st_branch_type,
4597 struct elf_link_hash_entry *, bfd_boolean *, char **);
4598
4599static unsigned int
4600arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4601{
4602 switch (stub_type)
4603 {
4604 case arm_stub_a8_veneer_b_cond:
4605 case arm_stub_a8_veneer_b:
4606 case arm_stub_a8_veneer_bl:
4607 return 2;
4608
4609 case arm_stub_long_branch_any_any:
4610 case arm_stub_long_branch_v4t_arm_thumb:
4611 case arm_stub_long_branch_thumb_only:
4612 case arm_stub_long_branch_thumb2_only:
4613 case arm_stub_long_branch_thumb2_only_pure:
4614 case arm_stub_long_branch_v4t_thumb_thumb:
4615 case arm_stub_long_branch_v4t_thumb_arm:
4616 case arm_stub_short_branch_v4t_thumb_arm:
4617 case arm_stub_long_branch_any_arm_pic:
4618 case arm_stub_long_branch_any_thumb_pic:
4619 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4620 case arm_stub_long_branch_v4t_arm_thumb_pic:
4621 case arm_stub_long_branch_v4t_thumb_arm_pic:
4622 case arm_stub_long_branch_thumb_only_pic:
4623 case arm_stub_long_branch_any_tls_pic:
4624 case arm_stub_long_branch_v4t_thumb_tls_pic:
4625 case arm_stub_cmse_branch_thumb_only:
4626 case arm_stub_a8_veneer_blx:
4627 return 4;
4628
4629 case arm_stub_long_branch_arm_nacl:
4630 case arm_stub_long_branch_arm_nacl_pic:
4631 return 16;
4632
4633 default:
4634 abort (); /* Should be unreachable. */
4635 }
4636}
4637
4638/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4639 veneering (TRUE) or have their own symbol (FALSE). */
4640
4641static bfd_boolean
4642arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
4650 return TRUE;
4651
4652 default:
4653 return FALSE;
4654 }
4655
4656 abort (); /* Should be unreachable. */
4657}
4658
4659/* Returns the padding needed for the dedicated section used stubs of type
4660 STUB_TYPE. */
4661
4662static int
4663arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4664{
4665 if (stub_type >= max_stub_type)
4666 abort (); /* Should be unreachable. */
4667
4668 switch (stub_type)
4669 {
4670 case arm_stub_cmse_branch_thumb_only:
4671 return 32;
4672
4673 default:
4674 return 0;
4675 }
4676
4677 abort (); /* Should be unreachable. */
4678}
4679
4680/* If veneers of type STUB_TYPE should go in a dedicated output section,
4681 returns the address of the hash table field in HTAB holding the offset at
4682 which new veneers should be layed out in the stub section. */
4683
4684static bfd_vma*
4685arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4686 enum elf32_arm_stub_type stub_type)
4687{
4688 switch (stub_type)
4689 {
4690 case arm_stub_cmse_branch_thumb_only:
4691 return &htab->new_cmse_stub_offset;
4692
4693 default:
4694 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4695 return NULL;
4696 }
4697}
4698
4699static bfd_boolean
4700arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4701 void * in_arg)
4702{
4703#define MAXRELOCS 3
4704 bfd_boolean removed_sg_veneer;
4705 struct elf32_arm_stub_hash_entry *stub_entry;
4706 struct elf32_arm_link_hash_table *globals;
4707 struct bfd_link_info *info;
4708 asection *stub_sec;
4709 bfd *stub_bfd;
4710 bfd_byte *loc;
4711 bfd_vma sym_value;
4712 int template_size;
4713 int size;
4714 const insn_sequence *template_sequence;
4715 int i;
4716 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4717 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4718 int nrelocs = 0;
4719 int just_allocated = 0;
4720
4721 /* Massage our args to the form they really have. */
4722 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4723 info = (struct bfd_link_info *) in_arg;
4724
4725 globals = elf32_arm_hash_table (info);
4726 if (globals == NULL)
4727 return FALSE;
4728
4729 stub_sec = stub_entry->stub_sec;
4730
4731 if ((globals->fix_cortex_a8 < 0)
4732 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4733 /* We have to do less-strictly-aligned fixes last. */
4734 return TRUE;
4735
4736 /* Assign a slot at the end of section if none assigned yet. */
4737 if (stub_entry->stub_offset == (bfd_vma) -1)
4738 {
4739 stub_entry->stub_offset = stub_sec->size;
4740 just_allocated = 1;
4741 }
4742 loc = stub_sec->contents + stub_entry->stub_offset;
4743
4744 stub_bfd = stub_sec->owner;
4745
4746 /* This is the address of the stub destination. */
4747 sym_value = (stub_entry->target_value
4748 + stub_entry->target_section->output_offset
4749 + stub_entry->target_section->output_section->vma);
4750
4751 template_sequence = stub_entry->stub_template;
4752 template_size = stub_entry->stub_template_size;
4753
4754 size = 0;
4755 for (i = 0; i < template_size; i++)
4756 {
4757 switch (template_sequence[i].type)
4758 {
4759 case THUMB16_TYPE:
4760 {
4761 bfd_vma data = (bfd_vma) template_sequence[i].data;
4762 if (template_sequence[i].reloc_addend != 0)
4763 {
4764 /* We've borrowed the reloc_addend field to mean we should
4765 insert a condition code into this (Thumb-1 branch)
4766 instruction. See THUMB16_BCOND_INSN. */
4767 BFD_ASSERT ((data & 0xff00) == 0xd000);
4768 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4769 }
4770 bfd_put_16 (stub_bfd, data, loc + size);
4771 size += 2;
4772 }
4773 break;
4774
4775 case THUMB32_TYPE:
4776 bfd_put_16 (stub_bfd,
4777 (template_sequence[i].data >> 16) & 0xffff,
4778 loc + size);
4779 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4780 loc + size + 2);
4781 if (template_sequence[i].r_type != R_ARM_NONE)
4782 {
4783 stub_reloc_idx[nrelocs] = i;
4784 stub_reloc_offset[nrelocs++] = size;
4785 }
4786 size += 4;
4787 break;
4788
4789 case ARM_TYPE:
4790 bfd_put_32 (stub_bfd, template_sequence[i].data,
4791 loc + size);
4792 /* Handle cases where the target is encoded within the
4793 instruction. */
4794 if (template_sequence[i].r_type == R_ARM_JUMP24)
4795 {
4796 stub_reloc_idx[nrelocs] = i;
4797 stub_reloc_offset[nrelocs++] = size;
4798 }
4799 size += 4;
4800 break;
4801
4802 case DATA_TYPE:
4803 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4804 stub_reloc_idx[nrelocs] = i;
4805 stub_reloc_offset[nrelocs++] = size;
4806 size += 4;
4807 break;
4808
4809 default:
4810 BFD_FAIL ();
4811 return FALSE;
4812 }
4813 }
4814
4815 if (just_allocated)
4816 stub_sec->size += size;
4817
4818 /* Stub size has already been computed in arm_size_one_stub. Check
4819 consistency. */
4820 BFD_ASSERT (size == stub_entry->stub_size);
4821
4822 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4823 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4824 sym_value |= 1;
4825
4826 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4827 to relocate in each stub. */
4828 removed_sg_veneer =
4829 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4830 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4831
4832 for (i = 0; i < nrelocs; i++)
4833 {
4834 Elf_Internal_Rela rel;
4835 bfd_boolean unresolved_reloc;
4836 char *error_message;
4837 bfd_vma points_to =
4838 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4839
4840 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4841 rel.r_info = ELF32_R_INFO (0,
4842 template_sequence[stub_reloc_idx[i]].r_type);
4843 rel.r_addend = 0;
4844
4845 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4846 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4847 template should refer back to the instruction after the original
4848 branch. We use target_section as Cortex-A8 erratum workaround stubs
4849 are only generated when both source and target are in the same
4850 section. */
4851 points_to = stub_entry->target_section->output_section->vma
4852 + stub_entry->target_section->output_offset
4853 + stub_entry->source_value;
4854
4855 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4856 (template_sequence[stub_reloc_idx[i]].r_type),
4857 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4858 points_to, info, stub_entry->target_section, "", STT_FUNC,
4859 stub_entry->branch_type,
4860 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4861 &error_message);
4862 }
4863
4864 return TRUE;
4865#undef MAXRELOCS
4866}
4867
4868/* Calculate the template, template size and instruction size for a stub.
4869 Return value is the instruction size. */
4870
4871static unsigned int
4872find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4873 const insn_sequence **stub_template,
4874 int *stub_template_size)
4875{
4876 const insn_sequence *template_sequence = NULL;
4877 int template_size = 0, i;
4878 unsigned int size;
4879
4880 template_sequence = stub_definitions[stub_type].template_sequence;
4881 if (stub_template)
4882 *stub_template = template_sequence;
4883
4884 template_size = stub_definitions[stub_type].template_size;
4885 if (stub_template_size)
4886 *stub_template_size = template_size;
4887
4888 size = 0;
4889 for (i = 0; i < template_size; i++)
4890 {
4891 switch (template_sequence[i].type)
4892 {
4893 case THUMB16_TYPE:
4894 size += 2;
4895 break;
4896
4897 case ARM_TYPE:
4898 case THUMB32_TYPE:
4899 case DATA_TYPE:
4900 size += 4;
4901 break;
4902
4903 default:
4904 BFD_FAIL ();
4905 return 0;
4906 }
4907 }
4908
4909 return size;
4910}
4911
4912/* As above, but don't actually build the stub. Just bump offset so
4913 we know stub section sizes. */
4914
4915static bfd_boolean
4916arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4917 void *in_arg ATTRIBUTE_UNUSED)
4918{
4919 struct elf32_arm_stub_hash_entry *stub_entry;
4920 const insn_sequence *template_sequence;
4921 int template_size, size;
4922
4923 /* Massage our args to the form they really have. */
4924 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4925
4926 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4927 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4928
4929 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4930 &template_size);
4931
4932 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4933 if (stub_entry->stub_template_size)
4934 {
4935 stub_entry->stub_size = size;
4936 stub_entry->stub_template = template_sequence;
4937 stub_entry->stub_template_size = template_size;
4938 }
4939
4940 /* Already accounted for. */
4941 if (stub_entry->stub_offset != (bfd_vma) -1)
4942 return TRUE;
4943
4944 size = (size + 7) & ~7;
4945 stub_entry->stub_sec->size += size;
4946
4947 return TRUE;
4948}
4949
4950/* External entry points for sizing and building linker stubs. */
4951
4952/* Set up various things so that we can make a list of input sections
4953 for each output section included in the link. Returns -1 on error,
4954 0 when no stubs will be needed, and 1 on success. */
4955
4956int
4957elf32_arm_setup_section_lists (bfd *output_bfd,
4958 struct bfd_link_info *info)
4959{
4960 bfd *input_bfd;
4961 unsigned int bfd_count;
4962 unsigned int top_id, top_index;
4963 asection *section;
4964 asection **input_list, **list;
4965 bfd_size_type amt;
4966 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4967
4968 if (htab == NULL)
4969 return 0;
4970 if (! is_elf_hash_table (htab))
4971 return 0;
4972
4973 /* Count the number of input BFDs and find the top input section id. */
4974 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4975 input_bfd != NULL;
4976 input_bfd = input_bfd->link.next)
4977 {
4978 bfd_count += 1;
4979 for (section = input_bfd->sections;
4980 section != NULL;
4981 section = section->next)
4982 {
4983 if (top_id < section->id)
4984 top_id = section->id;
4985 }
4986 }
4987 htab->bfd_count = bfd_count;
4988
4989 amt = sizeof (struct map_stub) * (top_id + 1);
4990 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4991 if (htab->stub_group == NULL)
4992 return -1;
4993 htab->top_id = top_id;
4994
4995 /* We can't use output_bfd->section_count here to find the top output
4996 section index as some sections may have been removed, and
4997 _bfd_strip_section_from_output doesn't renumber the indices. */
4998 for (section = output_bfd->sections, top_index = 0;
4999 section != NULL;
5000 section = section->next)
5001 {
5002 if (top_index < section->index)
5003 top_index = section->index;
5004 }
5005
5006 htab->top_index = top_index;
5007 amt = sizeof (asection *) * (top_index + 1);
5008 input_list = (asection **) bfd_malloc (amt);
5009 htab->input_list = input_list;
5010 if (input_list == NULL)
5011 return -1;
5012
5013 /* For sections we aren't interested in, mark their entries with a
5014 value we can check later. */
5015 list = input_list + top_index;
5016 do
5017 *list = bfd_abs_section_ptr;
5018 while (list-- != input_list);
5019
5020 for (section = output_bfd->sections;
5021 section != NULL;
5022 section = section->next)
5023 {
5024 if ((section->flags & SEC_CODE) != 0)
5025 input_list[section->index] = NULL;
5026 }
5027
5028 return 1;
5029}
5030
5031/* The linker repeatedly calls this function for each input section,
5032 in the order that input sections are linked into output sections.
5033 Build lists of input sections to determine groupings between which
5034 we may insert linker stubs. */
5035
5036void
5037elf32_arm_next_input_section (struct bfd_link_info *info,
5038 asection *isec)
5039{
5040 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5041
5042 if (htab == NULL)
5043 return;
5044
5045 if (isec->output_section->index <= htab->top_index)
5046 {
5047 asection **list = htab->input_list + isec->output_section->index;
5048
5049 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5050 {
5051 /* Steal the link_sec pointer for our list. */
5052#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5053 /* This happens to make the list in reverse order,
5054 which we reverse later. */
5055 PREV_SEC (isec) = *list;
5056 *list = isec;
5057 }
5058 }
5059}
5060
5061/* See whether we can group stub sections together. Grouping stub
5062 sections may result in fewer stubs. More importantly, we need to
5063 put all .init* and .fini* stubs at the end of the .init or
5064 .fini output sections respectively, because glibc splits the
5065 _init and _fini functions into multiple parts. Putting a stub in
5066 the middle of a function is not a good idea. */
5067
5068static void
5069group_sections (struct elf32_arm_link_hash_table *htab,
5070 bfd_size_type stub_group_size,
5071 bfd_boolean stubs_always_after_branch)
5072{
5073 asection **list = htab->input_list;
5074
5075 do
5076 {
5077 asection *tail = *list;
5078 asection *head;
5079
5080 if (tail == bfd_abs_section_ptr)
5081 continue;
5082
5083 /* Reverse the list: we must avoid placing stubs at the
5084 beginning of the section because the beginning of the text
5085 section may be required for an interrupt vector in bare metal
5086 code. */
5087#define NEXT_SEC PREV_SEC
5088 head = NULL;
5089 while (tail != NULL)
5090 {
5091 /* Pop from tail. */
5092 asection *item = tail;
5093 tail = PREV_SEC (item);
5094
5095 /* Push on head. */
5096 NEXT_SEC (item) = head;
5097 head = item;
5098 }
5099
5100 while (head != NULL)
5101 {
5102 asection *curr;
5103 asection *next;
5104 bfd_vma stub_group_start = head->output_offset;
5105 bfd_vma end_of_next;
5106
5107 curr = head;
5108 while (NEXT_SEC (curr) != NULL)
5109 {
5110 next = NEXT_SEC (curr);
5111 end_of_next = next->output_offset + next->size;
5112 if (end_of_next - stub_group_start >= stub_group_size)
5113 /* End of NEXT is too far from start, so stop. */
5114 break;
5115 /* Add NEXT to the group. */
5116 curr = next;
5117 }
5118
5119 /* OK, the size from the start to the start of CURR is less
5120 than stub_group_size and thus can be handled by one stub
5121 section. (Or the head section is itself larger than
5122 stub_group_size, in which case we may be toast.)
5123 We should really be keeping track of the total size of
5124 stubs added here, as stubs contribute to the final output
5125 section size. */
5126 do
5127 {
5128 next = NEXT_SEC (head);
5129 /* Set up this stub group. */
5130 htab->stub_group[head->id].link_sec = curr;
5131 }
5132 while (head != curr && (head = next) != NULL);
5133
5134 /* But wait, there's more! Input sections up to stub_group_size
5135 bytes after the stub section can be handled by it too. */
5136 if (!stubs_always_after_branch)
5137 {
5138 stub_group_start = curr->output_offset + curr->size;
5139
5140 while (next != NULL)
5141 {
5142 end_of_next = next->output_offset + next->size;
5143 if (end_of_next - stub_group_start >= stub_group_size)
5144 /* End of NEXT is too far from stubs, so stop. */
5145 break;
5146 /* Add NEXT to the stub group. */
5147 head = next;
5148 next = NEXT_SEC (head);
5149 htab->stub_group[head->id].link_sec = curr;
5150 }
5151 }
5152 head = next;
5153 }
5154 }
5155 while (list++ != htab->input_list + htab->top_index);
5156
5157 free (htab->input_list);
5158#undef PREV_SEC
5159#undef NEXT_SEC
5160}
5161
5162/* Comparison function for sorting/searching relocations relating to Cortex-A8
5163 erratum fix. */
5164
5165static int
5166a8_reloc_compare (const void *a, const void *b)
5167{
5168 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5169 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5170
5171 if (ra->from < rb->from)
5172 return -1;
5173 else if (ra->from > rb->from)
5174 return 1;
5175 else
5176 return 0;
5177}
5178
5179static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5180 const char *, char **);
5181
5182/* Helper function to scan code for sequences which might trigger the Cortex-A8
5183 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5184 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5185 otherwise. */
5186
5187static bfd_boolean
5188cortex_a8_erratum_scan (bfd *input_bfd,
5189 struct bfd_link_info *info,
5190 struct a8_erratum_fix **a8_fixes_p,
5191 unsigned int *num_a8_fixes_p,
5192 unsigned int *a8_fix_table_size_p,
5193 struct a8_erratum_reloc *a8_relocs,
5194 unsigned int num_a8_relocs,
5195 unsigned prev_num_a8_fixes,
5196 bfd_boolean *stub_changed_p)
5197{
5198 asection *section;
5199 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5200 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5201 unsigned int num_a8_fixes = *num_a8_fixes_p;
5202 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5203
5204 if (htab == NULL)
5205 return FALSE;
5206
5207 for (section = input_bfd->sections;
5208 section != NULL;
5209 section = section->next)
5210 {
5211 bfd_byte *contents = NULL;
5212 struct _arm_elf_section_data *sec_data;
5213 unsigned int span;
5214 bfd_vma base_vma;
5215
5216 if (elf_section_type (section) != SHT_PROGBITS
5217 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5218 || (section->flags & SEC_EXCLUDE) != 0
5219 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5220 || (section->output_section == bfd_abs_section_ptr))
5221 continue;
5222
5223 base_vma = section->output_section->vma + section->output_offset;
5224
5225 if (elf_section_data (section)->this_hdr.contents != NULL)
5226 contents = elf_section_data (section)->this_hdr.contents;
5227 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5228 return TRUE;
5229
5230 sec_data = elf32_arm_section_data (section);
5231
5232 for (span = 0; span < sec_data->mapcount; span++)
5233 {
5234 unsigned int span_start = sec_data->map[span].vma;
5235 unsigned int span_end = (span == sec_data->mapcount - 1)
5236 ? section->size : sec_data->map[span + 1].vma;
5237 unsigned int i;
5238 char span_type = sec_data->map[span].type;
5239 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5240
5241 if (span_type != 't')
5242 continue;
5243
5244 /* Span is entirely within a single 4KB region: skip scanning. */
5245 if (((base_vma + span_start) & ~0xfff)
5246 == ((base_vma + span_end) & ~0xfff))
5247 continue;
5248
5249 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5250
5251 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5252 * The branch target is in the same 4KB region as the
5253 first half of the branch.
5254 * The instruction before the branch is a 32-bit
5255 length non-branch instruction. */
5256 for (i = span_start; i < span_end;)
5257 {
5258 unsigned int insn = bfd_getl16 (&contents[i]);
5259 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5260 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5261
5262 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5263 insn_32bit = TRUE;
5264
5265 if (insn_32bit)
5266 {
5267 /* Load the rest of the insn (in manual-friendly order). */
5268 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5269
5270 /* Encoding T4: B<c>.W. */
5271 is_b = (insn & 0xf800d000) == 0xf0009000;
5272 /* Encoding T1: BL<c>.W. */
5273 is_bl = (insn & 0xf800d000) == 0xf000d000;
5274 /* Encoding T2: BLX<c>.W. */
5275 is_blx = (insn & 0xf800d000) == 0xf000c000;
5276 /* Encoding T3: B<c>.W (not permitted in IT block). */
5277 is_bcc = (insn & 0xf800d000) == 0xf0008000
5278 && (insn & 0x07f00000) != 0x03800000;
5279 }
5280
5281 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5282
5283 if (((base_vma + i) & 0xfff) == 0xffe
5284 && insn_32bit
5285 && is_32bit_branch
5286 && last_was_32bit
5287 && ! last_was_branch)
5288 {
5289 bfd_signed_vma offset = 0;
5290 bfd_boolean force_target_arm = FALSE;
5291 bfd_boolean force_target_thumb = FALSE;
5292 bfd_vma target;
5293 enum elf32_arm_stub_type stub_type = arm_stub_none;
5294 struct a8_erratum_reloc key, *found;
5295 bfd_boolean use_plt = FALSE;
5296
5297 key.from = base_vma + i;
5298 found = (struct a8_erratum_reloc *)
5299 bsearch (&key, a8_relocs, num_a8_relocs,
5300 sizeof (struct a8_erratum_reloc),
5301 &a8_reloc_compare);
5302
5303 if (found)
5304 {
5305 char *error_message = NULL;
5306 struct elf_link_hash_entry *entry;
5307
5308 /* We don't care about the error returned from this
5309 function, only if there is glue or not. */
5310 entry = find_thumb_glue (info, found->sym_name,
5311 &error_message);
5312
5313 if (entry)
5314 found->non_a8_stub = TRUE;
5315
5316 /* Keep a simpler condition, for the sake of clarity. */
5317 if (htab->root.splt != NULL && found->hash != NULL
5318 && found->hash->root.plt.offset != (bfd_vma) -1)
5319 use_plt = TRUE;
5320
5321 if (found->r_type == R_ARM_THM_CALL)
5322 {
5323 if (found->branch_type == ST_BRANCH_TO_ARM
5324 || use_plt)
5325 force_target_arm = TRUE;
5326 else
5327 force_target_thumb = TRUE;
5328 }
5329 }
5330
5331 /* Check if we have an offending branch instruction. */
5332
5333 if (found && found->non_a8_stub)
5334 /* We've already made a stub for this instruction, e.g.
5335 it's a long branch or a Thumb->ARM stub. Assume that
5336 stub will suffice to work around the A8 erratum (see
5337 setting of always_after_branch above). */
5338 ;
5339 else if (is_bcc)
5340 {
5341 offset = (insn & 0x7ff) << 1;
5342 offset |= (insn & 0x3f0000) >> 4;
5343 offset |= (insn & 0x2000) ? 0x40000 : 0;
5344 offset |= (insn & 0x800) ? 0x80000 : 0;
5345 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5346 if (offset & 0x100000)
5347 offset |= ~ ((bfd_signed_vma) 0xfffff);
5348 stub_type = arm_stub_a8_veneer_b_cond;
5349 }
5350 else if (is_b || is_bl || is_blx)
5351 {
5352 int s = (insn & 0x4000000) != 0;
5353 int j1 = (insn & 0x2000) != 0;
5354 int j2 = (insn & 0x800) != 0;
5355 int i1 = !(j1 ^ s);
5356 int i2 = !(j2 ^ s);
5357
5358 offset = (insn & 0x7ff) << 1;
5359 offset |= (insn & 0x3ff0000) >> 4;
5360 offset |= i2 << 22;
5361 offset |= i1 << 23;
5362 offset |= s << 24;
5363 if (offset & 0x1000000)
5364 offset |= ~ ((bfd_signed_vma) 0xffffff);
5365
5366 if (is_blx)
5367 offset &= ~ ((bfd_signed_vma) 3);
5368
5369 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5370 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5371 }
5372
5373 if (stub_type != arm_stub_none)
5374 {
5375 bfd_vma pc_for_insn = base_vma + i + 4;
5376
5377 /* The original instruction is a BL, but the target is
5378 an ARM instruction. If we were not making a stub,
5379 the BL would have been converted to a BLX. Use the
5380 BLX stub instead in that case. */
5381 if (htab->use_blx && force_target_arm
5382 && stub_type == arm_stub_a8_veneer_bl)
5383 {
5384 stub_type = arm_stub_a8_veneer_blx;
5385 is_blx = TRUE;
5386 is_bl = FALSE;
5387 }
5388 /* Conversely, if the original instruction was
5389 BLX but the target is Thumb mode, use the BL
5390 stub. */
5391 else if (force_target_thumb
5392 && stub_type == arm_stub_a8_veneer_blx)
5393 {
5394 stub_type = arm_stub_a8_veneer_bl;
5395 is_blx = FALSE;
5396 is_bl = TRUE;
5397 }
5398
5399 if (is_blx)
5400 pc_for_insn &= ~ ((bfd_vma) 3);
5401
5402 /* If we found a relocation, use the proper destination,
5403 not the offset in the (unrelocated) instruction.
5404 Note this is always done if we switched the stub type
5405 above. */
5406 if (found)
5407 offset =
5408 (bfd_signed_vma) (found->destination - pc_for_insn);
5409
5410 /* If the stub will use a Thumb-mode branch to a
5411 PLT target, redirect it to the preceding Thumb
5412 entry point. */
5413 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5414 offset -= PLT_THUMB_STUB_SIZE;
5415
5416 target = pc_for_insn + offset;
5417
5418 /* The BLX stub is ARM-mode code. Adjust the offset to
5419 take the different PC value (+8 instead of +4) into
5420 account. */
5421 if (stub_type == arm_stub_a8_veneer_blx)
5422 offset += 4;
5423
5424 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5425 {
5426 char *stub_name = NULL;
5427
5428 if (num_a8_fixes == a8_fix_table_size)
5429 {
5430 a8_fix_table_size *= 2;
5431 a8_fixes = (struct a8_erratum_fix *)
5432 bfd_realloc (a8_fixes,
5433 sizeof (struct a8_erratum_fix)
5434 * a8_fix_table_size);
5435 }
5436
5437 if (num_a8_fixes < prev_num_a8_fixes)
5438 {
5439 /* If we're doing a subsequent scan,
5440 check if we've found the same fix as
5441 before, and try and reuse the stub
5442 name. */
5443 stub_name = a8_fixes[num_a8_fixes].stub_name;
5444 if ((a8_fixes[num_a8_fixes].section != section)
5445 || (a8_fixes[num_a8_fixes].offset != i))
5446 {
5447 free (stub_name);
5448 stub_name = NULL;
5449 *stub_changed_p = TRUE;
5450 }
5451 }
5452
5453 if (!stub_name)
5454 {
5455 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5456 if (stub_name != NULL)
5457 sprintf (stub_name, "%x:%x", section->id, i);
5458 }
5459
5460 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5461 a8_fixes[num_a8_fixes].section = section;
5462 a8_fixes[num_a8_fixes].offset = i;
5463 a8_fixes[num_a8_fixes].target_offset =
5464 target - base_vma;
5465 a8_fixes[num_a8_fixes].orig_insn = insn;
5466 a8_fixes[num_a8_fixes].stub_name = stub_name;
5467 a8_fixes[num_a8_fixes].stub_type = stub_type;
5468 a8_fixes[num_a8_fixes].branch_type =
5469 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5470
5471 num_a8_fixes++;
5472 }
5473 }
5474 }
5475
5476 i += insn_32bit ? 4 : 2;
5477 last_was_32bit = insn_32bit;
5478 last_was_branch = is_32bit_branch;
5479 }
5480 }
5481
5482 if (elf_section_data (section)->this_hdr.contents == NULL)
5483 free (contents);
5484 }
5485
5486 *a8_fixes_p = a8_fixes;
5487 *num_a8_fixes_p = num_a8_fixes;
5488 *a8_fix_table_size_p = a8_fix_table_size;
5489
5490 return FALSE;
5491}
5492
5493/* Create or update a stub entry depending on whether the stub can already be
5494 found in HTAB. The stub is identified by:
5495 - its type STUB_TYPE
5496 - its source branch (note that several can share the same stub) whose
5497 section and relocation (if any) are given by SECTION and IRELA
5498 respectively
5499 - its target symbol whose input section, hash, name, value and branch type
5500 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5501 respectively
5502
5503 If found, the value of the stub's target symbol is updated from SYM_VALUE
5504 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5505 TRUE and the stub entry is initialized.
5506
5507 Returns the stub that was created or updated, or NULL if an error
5508 occurred. */
5509
5510static struct elf32_arm_stub_hash_entry *
5511elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5512 enum elf32_arm_stub_type stub_type, asection *section,
5513 Elf_Internal_Rela *irela, asection *sym_sec,
5514 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5515 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5516 bfd_boolean *new_stub)
5517{
5518 const asection *id_sec;
5519 char *stub_name;
5520 struct elf32_arm_stub_hash_entry *stub_entry;
5521 unsigned int r_type;
5522 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5523
5524 BFD_ASSERT (stub_type != arm_stub_none);
5525 *new_stub = FALSE;
5526
5527 if (sym_claimed)
5528 stub_name = sym_name;
5529 else
5530 {
5531 BFD_ASSERT (irela);
5532 BFD_ASSERT (section);
5533 BFD_ASSERT (section->id <= htab->top_id);
5534
5535 /* Support for grouping stub sections. */
5536 id_sec = htab->stub_group[section->id].link_sec;
5537
5538 /* Get the name of this stub. */
5539 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5540 stub_type);
5541 if (!stub_name)
5542 return NULL;
5543 }
5544
5545 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5546 FALSE);
5547 /* The proper stub has already been created, just update its value. */
5548 if (stub_entry != NULL)
5549 {
5550 if (!sym_claimed)
5551 free (stub_name);
5552 stub_entry->target_value = sym_value;
5553 return stub_entry;
5554 }
5555
5556 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5557 if (stub_entry == NULL)
5558 {
5559 if (!sym_claimed)
5560 free (stub_name);
5561 return NULL;
5562 }
5563
5564 stub_entry->target_value = sym_value;
5565 stub_entry->target_section = sym_sec;
5566 stub_entry->stub_type = stub_type;
5567 stub_entry->h = hash;
5568 stub_entry->branch_type = branch_type;
5569
5570 if (sym_claimed)
5571 stub_entry->output_name = sym_name;
5572 else
5573 {
5574 if (sym_name == NULL)
5575 sym_name = "unnamed";
5576 stub_entry->output_name = (char *)
5577 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5578 + strlen (sym_name));
5579 if (stub_entry->output_name == NULL)
5580 {
5581 free (stub_name);
5582 return NULL;
5583 }
5584
5585 /* For historical reasons, use the existing names for ARM-to-Thumb and
5586 Thumb-to-ARM stubs. */
5587 r_type = ELF32_R_TYPE (irela->r_info);
5588 if ((r_type == (unsigned int) R_ARM_THM_CALL
5589 || r_type == (unsigned int) R_ARM_THM_JUMP24
5590 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5591 && branch_type == ST_BRANCH_TO_ARM)
5592 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5593 else if ((r_type == (unsigned int) R_ARM_CALL
5594 || r_type == (unsigned int) R_ARM_JUMP24)
5595 && branch_type == ST_BRANCH_TO_THUMB)
5596 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5597 else
5598 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5599 }
5600
5601 *new_stub = TRUE;
5602 return stub_entry;
5603}
5604
5605/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5606 gateway veneer to transition from non secure to secure state and create them
5607 accordingly.
5608
5609 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5610 defines the conditions that govern Secure Gateway veneer creation for a
5611 given symbol <SYM> as follows:
5612 - it has function type
5613 - it has non local binding
5614 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5615 same type, binding and value as <SYM> (called normal symbol).
5616 An entry function can handle secure state transition itself in which case
5617 its special symbol would have a different value from the normal symbol.
5618
5619 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5620 entry mapping while HTAB gives the name to hash entry mapping.
5621 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5622 created.
5623
5624 The return value gives whether a stub failed to be allocated. */
5625
5626static bfd_boolean
5627cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5628 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5629 int *cmse_stub_created)
5630{
5631 const struct elf_backend_data *bed;
5632 Elf_Internal_Shdr *symtab_hdr;
5633 unsigned i, j, sym_count, ext_start;
5634 Elf_Internal_Sym *cmse_sym, *local_syms;
5635 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5636 enum arm_st_branch_type branch_type;
5637 char *sym_name, *lsym_name;
5638 bfd_vma sym_value;
5639 asection *section;
5640 struct elf32_arm_stub_hash_entry *stub_entry;
5641 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5642
5643 bed = get_elf_backend_data (input_bfd);
5644 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5645 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5646 ext_start = symtab_hdr->sh_info;
5647 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5648 && out_attr[Tag_CPU_arch_profile].i == 'M');
5649
5650 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5651 if (local_syms == NULL)
5652 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5653 symtab_hdr->sh_info, 0, NULL, NULL,
5654 NULL);
5655 if (symtab_hdr->sh_info && local_syms == NULL)
5656 return FALSE;
5657
5658 /* Scan symbols. */
5659 for (i = 0; i < sym_count; i++)
5660 {
5661 cmse_invalid = FALSE;
5662
5663 if (i < ext_start)
5664 {
5665 cmse_sym = &local_syms[i];
5666 /* Not a special symbol. */
5667 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5668 continue;
5669 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5670 symtab_hdr->sh_link,
5671 cmse_sym->st_name);
5672 /* Special symbol with local binding. */
5673 cmse_invalid = TRUE;
5674 }
5675 else
5676 {
5677 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5678 sym_name = (char *) cmse_hash->root.root.root.string;
5679
5680 /* Not a special symbol. */
5681 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5682 continue;
5683
5684 /* Special symbol has incorrect binding or type. */
5685 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5686 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5687 || cmse_hash->root.type != STT_FUNC)
5688 cmse_invalid = TRUE;
5689 }
5690
5691 if (!is_v8m)
5692 {
5693 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5694 "ARMv8-M architecture or later."),
5695 input_bfd, sym_name);
5696 is_v8m = TRUE; /* Avoid multiple warning. */
5697 ret = FALSE;
5698 }
5699
5700 if (cmse_invalid)
5701 {
5702 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5703 input_bfd, sym_name);
5704 _bfd_error_handler (_("It must be a global or weak function "
5705 "symbol."));
5706 ret = FALSE;
5707 if (i < ext_start)
5708 continue;
5709 }
5710
5711 sym_name += strlen (CMSE_PREFIX);
5712 hash = (struct elf32_arm_link_hash_entry *)
5713 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5714
5715 /* No associated normal symbol or it is neither global nor weak. */
5716 if (!hash
5717 || (hash->root.root.type != bfd_link_hash_defined
5718 && hash->root.root.type != bfd_link_hash_defweak)
5719 || hash->root.type != STT_FUNC)
5720 {
5721 /* Initialize here to avoid warning about use of possibly
5722 uninitialized variable. */
5723 j = 0;
5724
5725 if (!hash)
5726 {
5727 /* Searching for a normal symbol with local binding. */
5728 for (; j < ext_start; j++)
5729 {
5730 lsym_name =
5731 bfd_elf_string_from_elf_section (input_bfd,
5732 symtab_hdr->sh_link,
5733 local_syms[j].st_name);
5734 if (!strcmp (sym_name, lsym_name))
5735 break;
5736 }
5737 }
5738
5739 if (hash || j < ext_start)
5740 {
5741 _bfd_error_handler
5742 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5743 _bfd_error_handler
5744 (_("It must be a global or weak function symbol."));
5745 }
5746 else
5747 _bfd_error_handler
5748 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5749 ret = FALSE;
5750 if (!hash)
5751 continue;
5752 }
5753
5754 sym_value = hash->root.root.u.def.value;
5755 section = hash->root.root.u.def.section;
5756
5757 if (cmse_hash->root.root.u.def.section != section)
5758 {
5759 _bfd_error_handler
5760 (_("%B: `%s' and its special symbol are in different sections."),
5761 input_bfd, sym_name);
5762 ret = FALSE;
5763 }
5764 if (cmse_hash->root.root.u.def.value != sym_value)
5765 continue; /* Ignore: could be an entry function starting with SG. */
5766
5767 /* If this section is a link-once section that will be discarded, then
5768 don't create any stubs. */
5769 if (section->output_section == NULL)
5770 {
5771 _bfd_error_handler
5772 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5773 continue;
5774 }
5775
5776 if (hash->root.size == 0)
5777 {
5778 _bfd_error_handler
5779 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5780 ret = FALSE;
5781 }
5782
5783 if (!ret)
5784 continue;
5785 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5786 stub_entry
5787 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5788 NULL, NULL, section, hash, sym_name,
5789 sym_value, branch_type, &new_stub);
5790
5791 if (stub_entry == NULL)
5792 ret = FALSE;
5793 else
5794 {
5795 BFD_ASSERT (new_stub);
5796 (*cmse_stub_created)++;
5797 }
5798 }
5799
5800 if (!symtab_hdr->contents)
5801 free (local_syms);
5802 return ret;
5803}
5804
5805/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5806 code entry function, ie can be called from non secure code without using a
5807 veneer. */
5808
5809static bfd_boolean
5810cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5811{
5812 bfd_byte contents[4];
5813 uint32_t first_insn;
5814 asection *section;
5815 file_ptr offset;
5816 bfd *abfd;
5817
5818 /* Defined symbol of function type. */
5819 if (hash->root.root.type != bfd_link_hash_defined
5820 && hash->root.root.type != bfd_link_hash_defweak)
5821 return FALSE;
5822 if (hash->root.type != STT_FUNC)
5823 return FALSE;
5824
5825 /* Read first instruction. */
5826 section = hash->root.root.u.def.section;
5827 abfd = section->owner;
5828 offset = hash->root.root.u.def.value - section->vma;
5829 if (!bfd_get_section_contents (abfd, section, contents, offset,
5830 sizeof (contents)))
5831 return FALSE;
5832
5833 first_insn = bfd_get_32 (abfd, contents);
5834
5835 /* Starts by SG instruction. */
5836 return first_insn == 0xe97fe97f;
5837}
5838
5839/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5840 secure gateway veneers (ie. the veneers was not in the input import library)
5841 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5842
5843static bfd_boolean
5844arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5845{
5846 struct elf32_arm_stub_hash_entry *stub_entry;
5847 struct bfd_link_info *info;
5848
5849 /* Massage our args to the form they really have. */
5850 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5851 info = (struct bfd_link_info *) gen_info;
5852
5853 if (info->out_implib_bfd)
5854 return TRUE;
5855
5856 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5857 return TRUE;
5858
5859 if (stub_entry->stub_offset == (bfd_vma) -1)
5860 _bfd_error_handler (" %s", stub_entry->output_name);
5861
5862 return TRUE;
5863}
5864
5865/* Set offset of each secure gateway veneers so that its address remain
5866 identical to the one in the input import library referred by
5867 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5868 (present in input import library but absent from the executable being
5869 linked) or if new veneers appeared and there is no output import library
5870 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5871 number of secure gateway veneers found in the input import library.
5872
5873 The function returns whether an error occurred. If no error occurred,
5874 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5875 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5876 veneer observed set for new veneers to be layed out after. */
5877
5878static bfd_boolean
5879set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5880 struct elf32_arm_link_hash_table *htab,
5881 int *cmse_stub_created)
5882{
5883 long symsize;
5884 char *sym_name;
5885 flagword flags;
5886 long i, symcount;
5887 bfd *in_implib_bfd;
5888 asection *stub_out_sec;
5889 bfd_boolean ret = TRUE;
5890 Elf_Internal_Sym *intsym;
5891 const char *out_sec_name;
5892 bfd_size_type cmse_stub_size;
5893 asymbol **sympp = NULL, *sym;
5894 struct elf32_arm_link_hash_entry *hash;
5895 const insn_sequence *cmse_stub_template;
5896 struct elf32_arm_stub_hash_entry *stub_entry;
5897 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5898 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5899 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5900
5901 /* No input secure gateway import library. */
5902 if (!htab->in_implib_bfd)
5903 return TRUE;
5904
5905 in_implib_bfd = htab->in_implib_bfd;
5906 if (!htab->cmse_implib)
5907 {
5908 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5909 "Gateway import libraries."), in_implib_bfd);
5910 return FALSE;
5911 }
5912
5913 /* Get symbol table size. */
5914 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5915 if (symsize < 0)
5916 return FALSE;
5917
5918 /* Read in the input secure gateway import library's symbol table. */
5919 sympp = (asymbol **) xmalloc (symsize);
5920 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5921 if (symcount < 0)
5922 {
5923 ret = FALSE;
5924 goto free_sym_buf;
5925 }
5926
5927 htab->new_cmse_stub_offset = 0;
5928 cmse_stub_size =
5929 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5930 &cmse_stub_template,
5931 &cmse_stub_template_size);
5932 out_sec_name =
5933 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5934 stub_out_sec =
5935 bfd_get_section_by_name (htab->obfd, out_sec_name);
5936 if (stub_out_sec != NULL)
5937 cmse_stub_sec_vma = stub_out_sec->vma;
5938
5939 /* Set addresses of veneers mentionned in input secure gateway import
5940 library's symbol table. */
5941 for (i = 0; i < symcount; i++)
5942 {
5943 sym = sympp[i];
5944 flags = sym->flags;
5945 sym_name = (char *) bfd_asymbol_name (sym);
5946 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5947
5948 if (sym->section != bfd_abs_section_ptr
5949 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5950 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5951 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5952 != ST_BRANCH_TO_THUMB))
5953 {
5954 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5955 in_implib_bfd, sym_name);
5956 _bfd_error_handler (_("Symbol should be absolute, global and "
5957 "refer to Thumb functions."));
5958 ret = FALSE;
5959 continue;
5960 }
5961
5962 veneer_value = bfd_asymbol_value (sym);
5963 stub_offset = veneer_value - cmse_stub_sec_vma;
5964 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5965 FALSE, FALSE);
5966 hash = (struct elf32_arm_link_hash_entry *)
5967 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5968
5969 /* Stub entry should have been created by cmse_scan or the symbol be of
5970 a secure function callable from non secure code. */
5971 if (!stub_entry && !hash)
5972 {
5973 bfd_boolean new_stub;
5974
5975 _bfd_error_handler
5976 (_("Entry function `%s' disappeared from secure code."), sym_name);
5977 hash = (struct elf32_arm_link_hash_entry *)
5978 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5979 stub_entry
5980 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5981 NULL, NULL, bfd_abs_section_ptr, hash,
5982 sym_name, veneer_value,
5983 ST_BRANCH_TO_THUMB, &new_stub);
5984 if (stub_entry == NULL)
5985 ret = FALSE;
5986 else
5987 {
5988 BFD_ASSERT (new_stub);
5989 new_cmse_stubs_created++;
5990 (*cmse_stub_created)++;
5991 }
5992 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5993 stub_entry->stub_offset = stub_offset;
5994 }
5995 /* Symbol found is not callable from non secure code. */
5996 else if (!stub_entry)
5997 {
5998 if (!cmse_entry_fct_p (hash))
5999 {
6000 _bfd_error_handler (_("`%s' refers to a non entry function."),
6001 sym_name);
6002 ret = FALSE;
6003 }
6004 continue;
6005 }
6006 else
6007 {
6008 /* Only stubs for SG veneers should have been created. */
6009 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6010
6011 /* Check visibility hasn't changed. */
6012 if (!!(flags & BSF_GLOBAL)
6013 != (hash->root.root.type == bfd_link_hash_defined))
6014 _bfd_error_handler
6015 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6016 sym_name);
6017
6018 stub_entry->stub_offset = stub_offset;
6019 }
6020
6021 /* Size should match that of a SG veneer. */
6022 if (intsym->st_size != cmse_stub_size)
6023 {
6024 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6025 in_implib_bfd, sym_name);
6026 ret = FALSE;
6027 }
6028
6029 /* Previous veneer address is before current SG veneer section. */
6030 if (veneer_value < cmse_stub_sec_vma)
6031 {
6032 /* Avoid offset underflow. */
6033 if (stub_entry)
6034 stub_entry->stub_offset = 0;
6035 stub_offset = 0;
6036 ret = FALSE;
6037 }
6038
6039 /* Complain if stub offset not a multiple of stub size. */
6040 if (stub_offset % cmse_stub_size)
6041 {
6042 _bfd_error_handler
6043 (_("Offset of veneer for entry function `%s' not a multiple of "
6044 "its size."), sym_name);
6045 ret = FALSE;
6046 }
6047
6048 if (!ret)
6049 continue;
6050
6051 new_cmse_stubs_created--;
6052 if (veneer_value < cmse_stub_array_start)
6053 cmse_stub_array_start = veneer_value;
6054 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6055 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6056 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6057 }
6058
6059 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6060 {
6061 BFD_ASSERT (new_cmse_stubs_created > 0);
6062 _bfd_error_handler
6063 (_("new entry function(s) introduced but no output import library "
6064 "specified:"));
6065 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6066 }
6067
6068 if (cmse_stub_array_start != cmse_stub_sec_vma)
6069 {
6070 _bfd_error_handler
6071 (_("Start address of `%s' is different from previous link."),
6072 out_sec_name);
6073 ret = FALSE;
6074 }
6075
6076free_sym_buf:
6077 free (sympp);
6078 return ret;
6079}
6080
6081/* Determine and set the size of the stub section for a final link.
6082
6083 The basic idea here is to examine all the relocations looking for
6084 PC-relative calls to a target that is unreachable with a "bl"
6085 instruction. */
6086
6087bfd_boolean
6088elf32_arm_size_stubs (bfd *output_bfd,
6089 bfd *stub_bfd,
6090 struct bfd_link_info *info,
6091 bfd_signed_vma group_size,
6092 asection * (*add_stub_section) (const char *, asection *,
6093 asection *,
6094 unsigned int),
6095 void (*layout_sections_again) (void))
6096{
6097 bfd_boolean ret = TRUE;
6098 obj_attribute *out_attr;
6099 int cmse_stub_created = 0;
6100 bfd_size_type stub_group_size;
6101 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6102 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6103 struct a8_erratum_fix *a8_fixes = NULL;
6104 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6105 struct a8_erratum_reloc *a8_relocs = NULL;
6106 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6107
6108 if (htab == NULL)
6109 return FALSE;
6110
6111 if (htab->fix_cortex_a8)
6112 {
6113 a8_fixes = (struct a8_erratum_fix *)
6114 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6115 a8_relocs = (struct a8_erratum_reloc *)
6116 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6117 }
6118
6119 /* Propagate mach to stub bfd, because it may not have been
6120 finalized when we created stub_bfd. */
6121 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6122 bfd_get_mach (output_bfd));
6123
6124 /* Stash our params away. */
6125 htab->stub_bfd = stub_bfd;
6126 htab->add_stub_section = add_stub_section;
6127 htab->layout_sections_again = layout_sections_again;
6128 stubs_always_after_branch = group_size < 0;
6129
6130 out_attr = elf_known_obj_attributes_proc (output_bfd);
6131 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6132
6133 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6134 as the first half of a 32-bit branch straddling two 4K pages. This is a
6135 crude way of enforcing that. */
6136 if (htab->fix_cortex_a8)
6137 stubs_always_after_branch = 1;
6138
6139 if (group_size < 0)
6140 stub_group_size = -group_size;
6141 else
6142 stub_group_size = group_size;
6143
6144 if (stub_group_size == 1)
6145 {
6146 /* Default values. */
6147 /* Thumb branch range is +-4MB has to be used as the default
6148 maximum size (a given section can contain both ARM and Thumb
6149 code, so the worst case has to be taken into account).
6150
6151 This value is 24K less than that, which allows for 2025
6152 12-byte stubs. If we exceed that, then we will fail to link.
6153 The user will have to relink with an explicit group size
6154 option. */
6155 stub_group_size = 4170000;
6156 }
6157
6158 group_sections (htab, stub_group_size, stubs_always_after_branch);
6159
6160 /* If we're applying the cortex A8 fix, we need to determine the
6161 program header size now, because we cannot change it later --
6162 that could alter section placements. Notice the A8 erratum fix
6163 ends up requiring the section addresses to remain unchanged
6164 modulo the page size. That's something we cannot represent
6165 inside BFD, and we don't want to force the section alignment to
6166 be the page size. */
6167 if (htab->fix_cortex_a8)
6168 (*htab->layout_sections_again) ();
6169
6170 while (1)
6171 {
6172 bfd *input_bfd;
6173 unsigned int bfd_indx;
6174 asection *stub_sec;
6175 enum elf32_arm_stub_type stub_type;
6176 bfd_boolean stub_changed = FALSE;
6177 unsigned prev_num_a8_fixes = num_a8_fixes;
6178
6179 num_a8_fixes = 0;
6180 for (input_bfd = info->input_bfds, bfd_indx = 0;
6181 input_bfd != NULL;
6182 input_bfd = input_bfd->link.next, bfd_indx++)
6183 {
6184 Elf_Internal_Shdr *symtab_hdr;
6185 asection *section;
6186 Elf_Internal_Sym *local_syms = NULL;
6187
6188 if (!is_arm_elf (input_bfd))
6189 continue;
6190
6191 num_a8_relocs = 0;
6192
6193 /* We'll need the symbol table in a second. */
6194 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6195 if (symtab_hdr->sh_info == 0)
6196 continue;
6197
6198 /* Limit scan of symbols to object file whose profile is
6199 Microcontroller to not hinder performance in the general case. */
6200 if (m_profile && first_veneer_scan)
6201 {
6202 struct elf_link_hash_entry **sym_hashes;
6203
6204 sym_hashes = elf_sym_hashes (input_bfd);
6205 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6206 &cmse_stub_created))
6207 goto error_ret_free_local;
6208
6209 if (cmse_stub_created != 0)
6210 stub_changed = TRUE;
6211 }
6212
6213 /* Walk over each section attached to the input bfd. */
6214 for (section = input_bfd->sections;
6215 section != NULL;
6216 section = section->next)
6217 {
6218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6219
6220 /* If there aren't any relocs, then there's nothing more
6221 to do. */
6222 if ((section->flags & SEC_RELOC) == 0
6223 || section->reloc_count == 0
6224 || (section->flags & SEC_CODE) == 0)
6225 continue;
6226
6227 /* If this section is a link-once section that will be
6228 discarded, then don't create any stubs. */
6229 if (section->output_section == NULL
6230 || section->output_section->owner != output_bfd)
6231 continue;
6232
6233 /* Get the relocs. */
6234 internal_relocs
6235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6236 NULL, info->keep_memory);
6237 if (internal_relocs == NULL)
6238 goto error_ret_free_local;
6239
6240 /* Now examine each relocation. */
6241 irela = internal_relocs;
6242 irelaend = irela + section->reloc_count;
6243 for (; irela < irelaend; irela++)
6244 {
6245 unsigned int r_type, r_indx;
6246 asection *sym_sec;
6247 bfd_vma sym_value;
6248 bfd_vma destination;
6249 struct elf32_arm_link_hash_entry *hash;
6250 const char *sym_name;
6251 unsigned char st_type;
6252 enum arm_st_branch_type branch_type;
6253 bfd_boolean created_stub = FALSE;
6254
6255 r_type = ELF32_R_TYPE (irela->r_info);
6256 r_indx = ELF32_R_SYM (irela->r_info);
6257
6258 if (r_type >= (unsigned int) R_ARM_max)
6259 {
6260 bfd_set_error (bfd_error_bad_value);
6261 error_ret_free_internal:
6262 if (elf_section_data (section)->relocs == NULL)
6263 free (internal_relocs);
6264 /* Fall through. */
6265 error_ret_free_local:
6266 if (local_syms != NULL
6267 && (symtab_hdr->contents
6268 != (unsigned char *) local_syms))
6269 free (local_syms);
6270 return FALSE;
6271 }
6272
6273 hash = NULL;
6274 if (r_indx >= symtab_hdr->sh_info)
6275 hash = elf32_arm_hash_entry
6276 (elf_sym_hashes (input_bfd)
6277 [r_indx - symtab_hdr->sh_info]);
6278
6279 /* Only look for stubs on branch instructions, or
6280 non-relaxed TLSCALL */
6281 if ((r_type != (unsigned int) R_ARM_CALL)
6282 && (r_type != (unsigned int) R_ARM_THM_CALL)
6283 && (r_type != (unsigned int) R_ARM_JUMP24)
6284 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6285 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6286 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6287 && (r_type != (unsigned int) R_ARM_PLT32)
6288 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6289 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6290 && r_type == elf32_arm_tls_transition
6291 (info, r_type, &hash->root)
6292 && ((hash ? hash->tls_type
6293 : (elf32_arm_local_got_tls_type
6294 (input_bfd)[r_indx]))
6295 & GOT_TLS_GDESC) != 0))
6296 continue;
6297
6298 /* Now determine the call target, its name, value,
6299 section. */
6300 sym_sec = NULL;
6301 sym_value = 0;
6302 destination = 0;
6303 sym_name = NULL;
6304
6305 if (r_type == (unsigned int) R_ARM_TLS_CALL
6306 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6307 {
6308 /* A non-relaxed TLS call. The target is the
6309 plt-resident trampoline and nothing to do
6310 with the symbol. */
6311 BFD_ASSERT (htab->tls_trampoline > 0);
6312 sym_sec = htab->root.splt;
6313 sym_value = htab->tls_trampoline;
6314 hash = 0;
6315 st_type = STT_FUNC;
6316 branch_type = ST_BRANCH_TO_ARM;
6317 }
6318 else if (!hash)
6319 {
6320 /* It's a local symbol. */
6321 Elf_Internal_Sym *sym;
6322
6323 if (local_syms == NULL)
6324 {
6325 local_syms
6326 = (Elf_Internal_Sym *) symtab_hdr->contents;
6327 if (local_syms == NULL)
6328 local_syms
6329 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6330 symtab_hdr->sh_info, 0,
6331 NULL, NULL, NULL);
6332 if (local_syms == NULL)
6333 goto error_ret_free_internal;
6334 }
6335
6336 sym = local_syms + r_indx;
6337 if (sym->st_shndx == SHN_UNDEF)
6338 sym_sec = bfd_und_section_ptr;
6339 else if (sym->st_shndx == SHN_ABS)
6340 sym_sec = bfd_abs_section_ptr;
6341 else if (sym->st_shndx == SHN_COMMON)
6342 sym_sec = bfd_com_section_ptr;
6343 else
6344 sym_sec =
6345 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6346
6347 if (!sym_sec)
6348 /* This is an undefined symbol. It can never
6349 be resolved. */
6350 continue;
6351
6352 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6353 sym_value = sym->st_value;
6354 destination = (sym_value + irela->r_addend
6355 + sym_sec->output_offset
6356 + sym_sec->output_section->vma);
6357 st_type = ELF_ST_TYPE (sym->st_info);
6358 branch_type =
6359 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6360 sym_name
6361 = bfd_elf_string_from_elf_section (input_bfd,
6362 symtab_hdr->sh_link,
6363 sym->st_name);
6364 }
6365 else
6366 {
6367 /* It's an external symbol. */
6368 while (hash->root.root.type == bfd_link_hash_indirect
6369 || hash->root.root.type == bfd_link_hash_warning)
6370 hash = ((struct elf32_arm_link_hash_entry *)
6371 hash->root.root.u.i.link);
6372
6373 if (hash->root.root.type == bfd_link_hash_defined
6374 || hash->root.root.type == bfd_link_hash_defweak)
6375 {
6376 sym_sec = hash->root.root.u.def.section;
6377 sym_value = hash->root.root.u.def.value;
6378
6379 struct elf32_arm_link_hash_table *globals =
6380 elf32_arm_hash_table (info);
6381
6382 /* For a destination in a shared library,
6383 use the PLT stub as target address to
6384 decide whether a branch stub is
6385 needed. */
6386 if (globals != NULL
6387 && globals->root.splt != NULL
6388 && hash != NULL
6389 && hash->root.plt.offset != (bfd_vma) -1)
6390 {
6391 sym_sec = globals->root.splt;
6392 sym_value = hash->root.plt.offset;
6393 if (sym_sec->output_section != NULL)
6394 destination = (sym_value
6395 + sym_sec->output_offset
6396 + sym_sec->output_section->vma);
6397 }
6398 else if (sym_sec->output_section != NULL)
6399 destination = (sym_value + irela->r_addend
6400 + sym_sec->output_offset
6401 + sym_sec->output_section->vma);
6402 }
6403 else if ((hash->root.root.type == bfd_link_hash_undefined)
6404 || (hash->root.root.type == bfd_link_hash_undefweak))
6405 {
6406 /* For a shared library, use the PLT stub as
6407 target address to decide whether a long
6408 branch stub is needed.
6409 For absolute code, they cannot be handled. */
6410 struct elf32_arm_link_hash_table *globals =
6411 elf32_arm_hash_table (info);
6412
6413 if (globals != NULL
6414 && globals->root.splt != NULL
6415 && hash != NULL
6416 && hash->root.plt.offset != (bfd_vma) -1)
6417 {
6418 sym_sec = globals->root.splt;
6419 sym_value = hash->root.plt.offset;
6420 if (sym_sec->output_section != NULL)
6421 destination = (sym_value
6422 + sym_sec->output_offset
6423 + sym_sec->output_section->vma);
6424 }
6425 else
6426 continue;
6427 }
6428 else
6429 {
6430 bfd_set_error (bfd_error_bad_value);
6431 goto error_ret_free_internal;
6432 }
6433 st_type = hash->root.type;
6434 branch_type =
6435 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6436 sym_name = hash->root.root.root.string;
6437 }
6438
6439 do
6440 {
6441 bfd_boolean new_stub;
6442 struct elf32_arm_stub_hash_entry *stub_entry;
6443
6444 /* Determine what (if any) linker stub is needed. */
6445 stub_type = arm_type_of_stub (info, section, irela,
6446 st_type, &branch_type,
6447 hash, destination, sym_sec,
6448 input_bfd, sym_name);
6449 if (stub_type == arm_stub_none)
6450 break;
6451
6452 /* We've either created a stub for this reloc already,
6453 or we are about to. */
6454 stub_entry =
6455 elf32_arm_create_stub (htab, stub_type, section, irela,
6456 sym_sec, hash,
6457 (char *) sym_name, sym_value,
6458 branch_type, &new_stub);
6459
6460 created_stub = stub_entry != NULL;
6461 if (!created_stub)
6462 goto error_ret_free_internal;
6463 else if (!new_stub)
6464 break;
6465 else
6466 stub_changed = TRUE;
6467 }
6468 while (0);
6469
6470 /* Look for relocations which might trigger Cortex-A8
6471 erratum. */
6472 if (htab->fix_cortex_a8
6473 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6474 || r_type == (unsigned int) R_ARM_THM_JUMP19
6475 || r_type == (unsigned int) R_ARM_THM_CALL
6476 || r_type == (unsigned int) R_ARM_THM_XPC22))
6477 {
6478 bfd_vma from = section->output_section->vma
6479 + section->output_offset
6480 + irela->r_offset;
6481
6482 if ((from & 0xfff) == 0xffe)
6483 {
6484 /* Found a candidate. Note we haven't checked the
6485 destination is within 4K here: if we do so (and
6486 don't create an entry in a8_relocs) we can't tell
6487 that a branch should have been relocated when
6488 scanning later. */
6489 if (num_a8_relocs == a8_reloc_table_size)
6490 {
6491 a8_reloc_table_size *= 2;
6492 a8_relocs = (struct a8_erratum_reloc *)
6493 bfd_realloc (a8_relocs,
6494 sizeof (struct a8_erratum_reloc)
6495 * a8_reloc_table_size);
6496 }
6497
6498 a8_relocs[num_a8_relocs].from = from;
6499 a8_relocs[num_a8_relocs].destination = destination;
6500 a8_relocs[num_a8_relocs].r_type = r_type;
6501 a8_relocs[num_a8_relocs].branch_type = branch_type;
6502 a8_relocs[num_a8_relocs].sym_name = sym_name;
6503 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6504 a8_relocs[num_a8_relocs].hash = hash;
6505
6506 num_a8_relocs++;
6507 }
6508 }
6509 }
6510
6511 /* We're done with the internal relocs, free them. */
6512 if (elf_section_data (section)->relocs == NULL)
6513 free (internal_relocs);
6514 }
6515
6516 if (htab->fix_cortex_a8)
6517 {
6518 /* Sort relocs which might apply to Cortex-A8 erratum. */
6519 qsort (a8_relocs, num_a8_relocs,
6520 sizeof (struct a8_erratum_reloc),
6521 &a8_reloc_compare);
6522
6523 /* Scan for branches which might trigger Cortex-A8 erratum. */
6524 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6525 &num_a8_fixes, &a8_fix_table_size,
6526 a8_relocs, num_a8_relocs,
6527 prev_num_a8_fixes, &stub_changed)
6528 != 0)
6529 goto error_ret_free_local;
6530 }
6531
6532 if (local_syms != NULL
6533 && symtab_hdr->contents != (unsigned char *) local_syms)
6534 {
6535 if (!info->keep_memory)
6536 free (local_syms);
6537 else
6538 symtab_hdr->contents = (unsigned char *) local_syms;
6539 }
6540 }
6541
6542 if (first_veneer_scan
6543 && !set_cmse_veneer_addr_from_implib (info, htab,
6544 &cmse_stub_created))
6545 ret = FALSE;
6546
6547 if (prev_num_a8_fixes != num_a8_fixes)
6548 stub_changed = TRUE;
6549
6550 if (!stub_changed)
6551 break;
6552
6553 /* OK, we've added some stubs. Find out the new size of the
6554 stub sections. */
6555 for (stub_sec = htab->stub_bfd->sections;
6556 stub_sec != NULL;
6557 stub_sec = stub_sec->next)
6558 {
6559 /* Ignore non-stub sections. */
6560 if (!strstr (stub_sec->name, STUB_SUFFIX))
6561 continue;
6562
6563 stub_sec->size = 0;
6564 }
6565
6566 /* Add new SG veneers after those already in the input import
6567 library. */
6568 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6569 stub_type++)
6570 {
6571 bfd_vma *start_offset_p;
6572 asection **stub_sec_p;
6573
6574 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6575 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6576 if (start_offset_p == NULL)
6577 continue;
6578
6579 BFD_ASSERT (stub_sec_p != NULL);
6580 if (*stub_sec_p != NULL)
6581 (*stub_sec_p)->size = *start_offset_p;
6582 }
6583
6584 /* Compute stub section size, considering padding. */
6585 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6586 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6587 stub_type++)
6588 {
6589 int size, padding;
6590 asection **stub_sec_p;
6591
6592 padding = arm_dedicated_stub_section_padding (stub_type);
6593 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6594 /* Skip if no stub input section or no stub section padding
6595 required. */
6596 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6597 continue;
6598 /* Stub section padding required but no dedicated section. */
6599 BFD_ASSERT (stub_sec_p);
6600
6601 size = (*stub_sec_p)->size;
6602 size = (size + padding - 1) & ~(padding - 1);
6603 (*stub_sec_p)->size = size;
6604 }
6605
6606 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6607 if (htab->fix_cortex_a8)
6608 for (i = 0; i < num_a8_fixes; i++)
6609 {
6610 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6611 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6612
6613 if (stub_sec == NULL)
6614 return FALSE;
6615
6616 stub_sec->size
6617 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6618 NULL);
6619 }
6620
6621
6622 /* Ask the linker to do its stuff. */
6623 (*htab->layout_sections_again) ();
6624 first_veneer_scan = FALSE;
6625 }
6626
6627 /* Add stubs for Cortex-A8 erratum fixes now. */
6628 if (htab->fix_cortex_a8)
6629 {
6630 for (i = 0; i < num_a8_fixes; i++)
6631 {
6632 struct elf32_arm_stub_hash_entry *stub_entry;
6633 char *stub_name = a8_fixes[i].stub_name;
6634 asection *section = a8_fixes[i].section;
6635 unsigned int section_id = a8_fixes[i].section->id;
6636 asection *link_sec = htab->stub_group[section_id].link_sec;
6637 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6638 const insn_sequence *template_sequence;
6639 int template_size, size = 0;
6640
6641 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6642 TRUE, FALSE);
6643 if (stub_entry == NULL)
6644 {
6645 _bfd_error_handler (_("%s: cannot create stub entry %s"),
6646 section->owner, stub_name);
6647 return FALSE;
6648 }
6649
6650 stub_entry->stub_sec = stub_sec;
6651 stub_entry->stub_offset = (bfd_vma) -1;
6652 stub_entry->id_sec = link_sec;
6653 stub_entry->stub_type = a8_fixes[i].stub_type;
6654 stub_entry->source_value = a8_fixes[i].offset;
6655 stub_entry->target_section = a8_fixes[i].section;
6656 stub_entry->target_value = a8_fixes[i].target_offset;
6657 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6658 stub_entry->branch_type = a8_fixes[i].branch_type;
6659
6660 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6661 &template_sequence,
6662 &template_size);
6663
6664 stub_entry->stub_size = size;
6665 stub_entry->stub_template = template_sequence;
6666 stub_entry->stub_template_size = template_size;
6667 }
6668
6669 /* Stash the Cortex-A8 erratum fix array for use later in
6670 elf32_arm_write_section(). */
6671 htab->a8_erratum_fixes = a8_fixes;
6672 htab->num_a8_erratum_fixes = num_a8_fixes;
6673 }
6674 else
6675 {
6676 htab->a8_erratum_fixes = NULL;
6677 htab->num_a8_erratum_fixes = 0;
6678 }
6679 return ret;
6680}
6681
6682/* Build all the stubs associated with the current output file. The
6683 stubs are kept in a hash table attached to the main linker hash
6684 table. We also set up the .plt entries for statically linked PIC
6685 functions here. This function is called via arm_elf_finish in the
6686 linker. */
6687
6688bfd_boolean
6689elf32_arm_build_stubs (struct bfd_link_info *info)
6690{
6691 asection *stub_sec;
6692 struct bfd_hash_table *table;
6693 enum elf32_arm_stub_type stub_type;
6694 struct elf32_arm_link_hash_table *htab;
6695
6696 htab = elf32_arm_hash_table (info);
6697 if (htab == NULL)
6698 return FALSE;
6699
6700 for (stub_sec = htab->stub_bfd->sections;
6701 stub_sec != NULL;
6702 stub_sec = stub_sec->next)
6703 {
6704 bfd_size_type size;
6705
6706 /* Ignore non-stub sections. */
6707 if (!strstr (stub_sec->name, STUB_SUFFIX))
6708 continue;
6709
6710 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6711 must at least be done for stub section requiring padding and for SG
6712 veneers to ensure that a non secure code branching to a removed SG
6713 veneer causes an error. */
6714 size = stub_sec->size;
6715 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6716 if (stub_sec->contents == NULL && size != 0)
6717 return FALSE;
6718
6719 stub_sec->size = 0;
6720 }
6721
6722 /* Add new SG veneers after those already in the input import library. */
6723 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6724 {
6725 bfd_vma *start_offset_p;
6726 asection **stub_sec_p;
6727
6728 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6729 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6730 if (start_offset_p == NULL)
6731 continue;
6732
6733 BFD_ASSERT (stub_sec_p != NULL);
6734 if (*stub_sec_p != NULL)
6735 (*stub_sec_p)->size = *start_offset_p;
6736 }
6737
6738 /* Build the stubs as directed by the stub hash table. */
6739 table = &htab->stub_hash_table;
6740 bfd_hash_traverse (table, arm_build_one_stub, info);
6741 if (htab->fix_cortex_a8)
6742 {
6743 /* Place the cortex a8 stubs last. */
6744 htab->fix_cortex_a8 = -1;
6745 bfd_hash_traverse (table, arm_build_one_stub, info);
6746 }
6747
6748 return TRUE;
6749}
6750
6751/* Locate the Thumb encoded calling stub for NAME. */
6752
6753static struct elf_link_hash_entry *
6754find_thumb_glue (struct bfd_link_info *link_info,
6755 const char *name,
6756 char **error_message)
6757{
6758 char *tmp_name;
6759 struct elf_link_hash_entry *hash;
6760 struct elf32_arm_link_hash_table *hash_table;
6761
6762 /* We need a pointer to the armelf specific hash table. */
6763 hash_table = elf32_arm_hash_table (link_info);
6764 if (hash_table == NULL)
6765 return NULL;
6766
6767 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6768 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6769
6770 BFD_ASSERT (tmp_name);
6771
6772 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6773
6774 hash = elf_link_hash_lookup
6775 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6776
6777 if (hash == NULL
6778 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6779 tmp_name, name) == -1)
6780 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6781
6782 free (tmp_name);
6783
6784 return hash;
6785}
6786
6787/* Locate the ARM encoded calling stub for NAME. */
6788
6789static struct elf_link_hash_entry *
6790find_arm_glue (struct bfd_link_info *link_info,
6791 const char *name,
6792 char **error_message)
6793{
6794 char *tmp_name;
6795 struct elf_link_hash_entry *myh;
6796 struct elf32_arm_link_hash_table *hash_table;
6797
6798 /* We need a pointer to the elfarm specific hash table. */
6799 hash_table = elf32_arm_hash_table (link_info);
6800 if (hash_table == NULL)
6801 return NULL;
6802
6803 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6804 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6805
6806 BFD_ASSERT (tmp_name);
6807
6808 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6809
6810 myh = elf_link_hash_lookup
6811 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6812
6813 if (myh == NULL
6814 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6815 tmp_name, name) == -1)
6816 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6817
6818 free (tmp_name);
6819
6820 return myh;
6821}
6822
6823/* ARM->Thumb glue (static images):
6824
6825 .arm
6826 __func_from_arm:
6827 ldr r12, __func_addr
6828 bx r12
6829 __func_addr:
6830 .word func @ behave as if you saw a ARM_32 reloc.
6831
6832 (v5t static images)
6833 .arm
6834 __func_from_arm:
6835 ldr pc, __func_addr
6836 __func_addr:
6837 .word func @ behave as if you saw a ARM_32 reloc.
6838
6839 (relocatable images)
6840 .arm
6841 __func_from_arm:
6842 ldr r12, __func_offset
6843 add r12, r12, pc
6844 bx r12
6845 __func_offset:
6846 .word func - . */
6847
6848#define ARM2THUMB_STATIC_GLUE_SIZE 12
6849static const insn32 a2t1_ldr_insn = 0xe59fc000;
6850static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6851static const insn32 a2t3_func_addr_insn = 0x00000001;
6852
6853#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6854static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6855static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6856
6857#define ARM2THUMB_PIC_GLUE_SIZE 16
6858static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6859static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6860static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6861
6862/* Thumb->ARM: Thumb->(non-interworking aware) ARM
6863
6864 .thumb .thumb
6865 .align 2 .align 2
6866 __func_from_thumb: __func_from_thumb:
6867 bx pc push {r6, lr}
6868 nop ldr r6, __func_addr
6869 .arm mov lr, pc
6870 b func bx r6
6871 .arm
6872 ;; back_to_thumb
6873 ldmia r13! {r6, lr}
6874 bx lr
6875 __func_addr:
6876 .word func */
6877
6878#define THUMB2ARM_GLUE_SIZE 8
6879static const insn16 t2a1_bx_pc_insn = 0x4778;
6880static const insn16 t2a2_noop_insn = 0x46c0;
6881static const insn32 t2a3_b_insn = 0xea000000;
6882
6883#define VFP11_ERRATUM_VENEER_SIZE 8
6884#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6885#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6886
6887#define ARM_BX_VENEER_SIZE 12
6888static const insn32 armbx1_tst_insn = 0xe3100001;
6889static const insn32 armbx2_moveq_insn = 0x01a0f000;
6890static const insn32 armbx3_bx_insn = 0xe12fff10;
6891
6892#ifndef ELFARM_NABI_C_INCLUDED
6893static void
6894arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6895{
6896 asection * s;
6897 bfd_byte * contents;
6898
6899 if (size == 0)
6900 {
6901 /* Do not include empty glue sections in the output. */
6902 if (abfd != NULL)
6903 {
6904 s = bfd_get_linker_section (abfd, name);
6905 if (s != NULL)
6906 s->flags |= SEC_EXCLUDE;
6907 }
6908 return;
6909 }
6910
6911 BFD_ASSERT (abfd != NULL);
6912
6913 s = bfd_get_linker_section (abfd, name);
6914 BFD_ASSERT (s != NULL);
6915
6916 contents = (bfd_byte *) bfd_alloc (abfd, size);
6917
6918 BFD_ASSERT (s->size == size);
6919 s->contents = contents;
6920}
6921
6922bfd_boolean
6923bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6924{
6925 struct elf32_arm_link_hash_table * globals;
6926
6927 globals = elf32_arm_hash_table (info);
6928 BFD_ASSERT (globals != NULL);
6929
6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 globals->arm_glue_size,
6932 ARM2THUMB_GLUE_SECTION_NAME);
6933
6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 globals->thumb_glue_size,
6936 THUMB2ARM_GLUE_SECTION_NAME);
6937
6938 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6939 globals->vfp11_erratum_glue_size,
6940 VFP11_ERRATUM_VENEER_SECTION_NAME);
6941
6942 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6943 globals->stm32l4xx_erratum_glue_size,
6944 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6945
6946 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6947 globals->bx_glue_size,
6948 ARM_BX_GLUE_SECTION_NAME);
6949
6950 return TRUE;
6951}
6952
6953/* Allocate space and symbols for calling a Thumb function from Arm mode.
6954 returns the symbol identifying the stub. */
6955
6956static struct elf_link_hash_entry *
6957record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6958 struct elf_link_hash_entry * h)
6959{
6960 const char * name = h->root.root.string;
6961 asection * s;
6962 char * tmp_name;
6963 struct elf_link_hash_entry * myh;
6964 struct bfd_link_hash_entry * bh;
6965 struct elf32_arm_link_hash_table * globals;
6966 bfd_vma val;
6967 bfd_size_type size;
6968
6969 globals = elf32_arm_hash_table (link_info);
6970 BFD_ASSERT (globals != NULL);
6971 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6972
6973 s = bfd_get_linker_section
6974 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6975
6976 BFD_ASSERT (s != NULL);
6977
6978 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6979 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6980
6981 BFD_ASSERT (tmp_name);
6982
6983 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6984
6985 myh = elf_link_hash_lookup
6986 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6987
6988 if (myh != NULL)
6989 {
6990 /* We've already seen this guy. */
6991 free (tmp_name);
6992 return myh;
6993 }
6994
6995 /* The only trick here is using hash_table->arm_glue_size as the value.
6996 Even though the section isn't allocated yet, this is where we will be
6997 putting it. The +1 on the value marks that the stub has not been
6998 output yet - not that it is a Thumb function. */
6999 bh = NULL;
7000 val = globals->arm_glue_size + 1;
7001 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7002 tmp_name, BSF_GLOBAL, s, val,
7003 NULL, TRUE, FALSE, &bh);
7004
7005 myh = (struct elf_link_hash_entry *) bh;
7006 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7007 myh->forced_local = 1;
7008
7009 free (tmp_name);
7010
7011 if (bfd_link_pic (link_info)
7012 || globals->root.is_relocatable_executable
7013 || globals->pic_veneer)
7014 size = ARM2THUMB_PIC_GLUE_SIZE;
7015 else if (globals->use_blx)
7016 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7017 else
7018 size = ARM2THUMB_STATIC_GLUE_SIZE;
7019
7020 s->size += size;
7021 globals->arm_glue_size += size;
7022
7023 return myh;
7024}
7025
7026/* Allocate space for ARMv4 BX veneers. */
7027
7028static void
7029record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7030{
7031 asection * s;
7032 struct elf32_arm_link_hash_table *globals;
7033 char *tmp_name;
7034 struct elf_link_hash_entry *myh;
7035 struct bfd_link_hash_entry *bh;
7036 bfd_vma val;
7037
7038 /* BX PC does not need a veneer. */
7039 if (reg == 15)
7040 return;
7041
7042 globals = elf32_arm_hash_table (link_info);
7043 BFD_ASSERT (globals != NULL);
7044 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7045
7046 /* Check if this veneer has already been allocated. */
7047 if (globals->bx_glue_offset[reg])
7048 return;
7049
7050 s = bfd_get_linker_section
7051 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7052
7053 BFD_ASSERT (s != NULL);
7054
7055 /* Add symbol for veneer. */
7056 tmp_name = (char *)
7057 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7058
7059 BFD_ASSERT (tmp_name);
7060
7061 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7062
7063 myh = elf_link_hash_lookup
7064 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7065
7066 BFD_ASSERT (myh == NULL);
7067
7068 bh = NULL;
7069 val = globals->bx_glue_size;
7070 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7071 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7072 NULL, TRUE, FALSE, &bh);
7073
7074 myh = (struct elf_link_hash_entry *) bh;
7075 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7076 myh->forced_local = 1;
7077
7078 s->size += ARM_BX_VENEER_SIZE;
7079 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7080 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7081}
7082
7083
7084/* Add an entry to the code/data map for section SEC. */
7085
7086static void
7087elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7088{
7089 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7090 unsigned int newidx;
7091
7092 if (sec_data->map == NULL)
7093 {
7094 sec_data->map = (elf32_arm_section_map *)
7095 bfd_malloc (sizeof (elf32_arm_section_map));
7096 sec_data->mapcount = 0;
7097 sec_data->mapsize = 1;
7098 }
7099
7100 newidx = sec_data->mapcount++;
7101
7102 if (sec_data->mapcount > sec_data->mapsize)
7103 {
7104 sec_data->mapsize *= 2;
7105 sec_data->map = (elf32_arm_section_map *)
7106 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7107 * sizeof (elf32_arm_section_map));
7108 }
7109
7110 if (sec_data->map)
7111 {
7112 sec_data->map[newidx].vma = vma;
7113 sec_data->map[newidx].type = type;
7114 }
7115}
7116
7117
7118/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7119 veneers are handled for now. */
7120
7121static bfd_vma
7122record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7123 elf32_vfp11_erratum_list *branch,
7124 bfd *branch_bfd,
7125 asection *branch_sec,
7126 unsigned int offset)
7127{
7128 asection *s;
7129 struct elf32_arm_link_hash_table *hash_table;
7130 char *tmp_name;
7131 struct elf_link_hash_entry *myh;
7132 struct bfd_link_hash_entry *bh;
7133 bfd_vma val;
7134 struct _arm_elf_section_data *sec_data;
7135 elf32_vfp11_erratum_list *newerr;
7136
7137 hash_table = elf32_arm_hash_table (link_info);
7138 BFD_ASSERT (hash_table != NULL);
7139 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7140
7141 s = bfd_get_linker_section
7142 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7143
7144 sec_data = elf32_arm_section_data (s);
7145
7146 BFD_ASSERT (s != NULL);
7147
7148 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7149 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7150
7151 BFD_ASSERT (tmp_name);
7152
7153 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7154 hash_table->num_vfp11_fixes);
7155
7156 myh = elf_link_hash_lookup
7157 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7158
7159 BFD_ASSERT (myh == NULL);
7160
7161 bh = NULL;
7162 val = hash_table->vfp11_erratum_glue_size;
7163 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7164 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7165 NULL, TRUE, FALSE, &bh);
7166
7167 myh = (struct elf_link_hash_entry *) bh;
7168 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7169 myh->forced_local = 1;
7170
7171 /* Link veneer back to calling location. */
7172 sec_data->erratumcount += 1;
7173 newerr = (elf32_vfp11_erratum_list *)
7174 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7175
7176 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7177 newerr->vma = -1;
7178 newerr->u.v.branch = branch;
7179 newerr->u.v.id = hash_table->num_vfp11_fixes;
7180 branch->u.b.veneer = newerr;
7181
7182 newerr->next = sec_data->erratumlist;
7183 sec_data->erratumlist = newerr;
7184
7185 /* A symbol for the return from the veneer. */
7186 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7187 hash_table->num_vfp11_fixes);
7188
7189 myh = elf_link_hash_lookup
7190 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7191
7192 if (myh != NULL)
7193 abort ();
7194
7195 bh = NULL;
7196 val = offset + 4;
7197 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7198 branch_sec, val, NULL, TRUE, FALSE, &bh);
7199
7200 myh = (struct elf_link_hash_entry *) bh;
7201 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7202 myh->forced_local = 1;
7203
7204 free (tmp_name);
7205
7206 /* Generate a mapping symbol for the veneer section, and explicitly add an
7207 entry for that symbol to the code/data map for the section. */
7208 if (hash_table->vfp11_erratum_glue_size == 0)
7209 {
7210 bh = NULL;
7211 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7212 ever requires this erratum fix. */
7213 _bfd_generic_link_add_one_symbol (link_info,
7214 hash_table->bfd_of_glue_owner, "$a",
7215 BSF_LOCAL, s, 0, NULL,
7216 TRUE, FALSE, &bh);
7217
7218 myh = (struct elf_link_hash_entry *) bh;
7219 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7220 myh->forced_local = 1;
7221
7222 /* The elf32_arm_init_maps function only cares about symbols from input
7223 BFDs. We must make a note of this generated mapping symbol
7224 ourselves so that code byteswapping works properly in
7225 elf32_arm_write_section. */
7226 elf32_arm_section_map_add (s, 'a', 0);
7227 }
7228
7229 s->size += VFP11_ERRATUM_VENEER_SIZE;
7230 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7231 hash_table->num_vfp11_fixes++;
7232
7233 /* The offset of the veneer. */
7234 return val;
7235}
7236
7237/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7238 veneers need to be handled because used only in Cortex-M. */
7239
7240static bfd_vma
7241record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7242 elf32_stm32l4xx_erratum_list *branch,
7243 bfd *branch_bfd,
7244 asection *branch_sec,
7245 unsigned int offset,
7246 bfd_size_type veneer_size)
7247{
7248 asection *s;
7249 struct elf32_arm_link_hash_table *hash_table;
7250 char *tmp_name;
7251 struct elf_link_hash_entry *myh;
7252 struct bfd_link_hash_entry *bh;
7253 bfd_vma val;
7254 struct _arm_elf_section_data *sec_data;
7255 elf32_stm32l4xx_erratum_list *newerr;
7256
7257 hash_table = elf32_arm_hash_table (link_info);
7258 BFD_ASSERT (hash_table != NULL);
7259 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7260
7261 s = bfd_get_linker_section
7262 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7263
7264 BFD_ASSERT (s != NULL);
7265
7266 sec_data = elf32_arm_section_data (s);
7267
7268 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7269 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7270
7271 BFD_ASSERT (tmp_name);
7272
7273 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7274 hash_table->num_stm32l4xx_fixes);
7275
7276 myh = elf_link_hash_lookup
7277 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7278
7279 BFD_ASSERT (myh == NULL);
7280
7281 bh = NULL;
7282 val = hash_table->stm32l4xx_erratum_glue_size;
7283 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7284 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7285 NULL, TRUE, FALSE, &bh);
7286
7287 myh = (struct elf_link_hash_entry *) bh;
7288 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7289 myh->forced_local = 1;
7290
7291 /* Link veneer back to calling location. */
7292 sec_data->stm32l4xx_erratumcount += 1;
7293 newerr = (elf32_stm32l4xx_erratum_list *)
7294 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7295
7296 newerr->type = STM32L4XX_ERRATUM_VENEER;
7297 newerr->vma = -1;
7298 newerr->u.v.branch = branch;
7299 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7300 branch->u.b.veneer = newerr;
7301
7302 newerr->next = sec_data->stm32l4xx_erratumlist;
7303 sec_data->stm32l4xx_erratumlist = newerr;
7304
7305 /* A symbol for the return from the veneer. */
7306 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7307 hash_table->num_stm32l4xx_fixes);
7308
7309 myh = elf_link_hash_lookup
7310 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7311
7312 if (myh != NULL)
7313 abort ();
7314
7315 bh = NULL;
7316 val = offset + 4;
7317 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7318 branch_sec, val, NULL, TRUE, FALSE, &bh);
7319
7320 myh = (struct elf_link_hash_entry *) bh;
7321 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7322 myh->forced_local = 1;
7323
7324 free (tmp_name);
7325
7326 /* Generate a mapping symbol for the veneer section, and explicitly add an
7327 entry for that symbol to the code/data map for the section. */
7328 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7329 {
7330 bh = NULL;
7331 /* Creates a THUMB symbol since there is no other choice. */
7332 _bfd_generic_link_add_one_symbol (link_info,
7333 hash_table->bfd_of_glue_owner, "$t",
7334 BSF_LOCAL, s, 0, NULL,
7335 TRUE, FALSE, &bh);
7336
7337 myh = (struct elf_link_hash_entry *) bh;
7338 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7339 myh->forced_local = 1;
7340
7341 /* The elf32_arm_init_maps function only cares about symbols from input
7342 BFDs. We must make a note of this generated mapping symbol
7343 ourselves so that code byteswapping works properly in
7344 elf32_arm_write_section. */
7345 elf32_arm_section_map_add (s, 't', 0);
7346 }
7347
7348 s->size += veneer_size;
7349 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7350 hash_table->num_stm32l4xx_fixes++;
7351
7352 /* The offset of the veneer. */
7353 return val;
7354}
7355
7356#define ARM_GLUE_SECTION_FLAGS \
7357 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7358 | SEC_READONLY | SEC_LINKER_CREATED)
7359
7360/* Create a fake section for use by the ARM backend of the linker. */
7361
7362static bfd_boolean
7363arm_make_glue_section (bfd * abfd, const char * name)
7364{
7365 asection * sec;
7366
7367 sec = bfd_get_linker_section (abfd, name);
7368 if (sec != NULL)
7369 /* Already made. */
7370 return TRUE;
7371
7372 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7373
7374 if (sec == NULL
7375 || !bfd_set_section_alignment (abfd, sec, 2))
7376 return FALSE;
7377
7378 /* Set the gc mark to prevent the section from being removed by garbage
7379 collection, despite the fact that no relocs refer to this section. */
7380 sec->gc_mark = 1;
7381
7382 return TRUE;
7383}
7384
7385/* Set size of .plt entries. This function is called from the
7386 linker scripts in ld/emultempl/{armelf}.em. */
7387
7388void
7389bfd_elf32_arm_use_long_plt (void)
7390{
7391 elf32_arm_use_long_plt_entry = TRUE;
7392}
7393
7394/* Add the glue sections to ABFD. This function is called from the
7395 linker scripts in ld/emultempl/{armelf}.em. */
7396
7397bfd_boolean
7398bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7399 struct bfd_link_info *info)
7400{
7401 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7402 bfd_boolean dostm32l4xx = globals
7403 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7404 bfd_boolean addglue;
7405
7406 /* If we are only performing a partial
7407 link do not bother adding the glue. */
7408 if (bfd_link_relocatable (info))
7409 return TRUE;
7410
7411 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7412 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7413 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7414 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7415
7416 if (!dostm32l4xx)
7417 return addglue;
7418
7419 return addglue
7420 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7421}
7422
7423/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7424 ensures they are not marked for deletion by
7425 strip_excluded_output_sections () when veneers are going to be created
7426 later. Not doing so would trigger assert on empty section size in
7427 lang_size_sections_1 (). */
7428
7429void
7430bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7431{
7432 enum elf32_arm_stub_type stub_type;
7433
7434 /* If we are only performing a partial
7435 link do not bother adding the glue. */
7436 if (bfd_link_relocatable (info))
7437 return;
7438
7439 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7440 {
7441 asection *out_sec;
7442 const char *out_sec_name;
7443
7444 if (!arm_dedicated_stub_output_section_required (stub_type))
7445 continue;
7446
7447 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7448 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7449 if (out_sec != NULL)
7450 out_sec->flags |= SEC_KEEP;
7451 }
7452}
7453
7454/* Select a BFD to be used to hold the sections used by the glue code.
7455 This function is called from the linker scripts in ld/emultempl/
7456 {armelf/pe}.em. */
7457
7458bfd_boolean
7459bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7460{
7461 struct elf32_arm_link_hash_table *globals;
7462
7463 /* If we are only performing a partial link
7464 do not bother getting a bfd to hold the glue. */
7465 if (bfd_link_relocatable (info))
7466 return TRUE;
7467
7468 /* Make sure we don't attach the glue sections to a dynamic object. */
7469 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7470
7471 globals = elf32_arm_hash_table (info);
7472 BFD_ASSERT (globals != NULL);
7473
7474 if (globals->bfd_of_glue_owner != NULL)
7475 return TRUE;
7476
7477 /* Save the bfd for later use. */
7478 globals->bfd_of_glue_owner = abfd;
7479
7480 return TRUE;
7481}
7482
7483static void
7484check_use_blx (struct elf32_arm_link_hash_table *globals)
7485{
7486 int cpu_arch;
7487
7488 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7489 Tag_CPU_arch);
7490
7491 if (globals->fix_arm1176)
7492 {
7493 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7494 globals->use_blx = 1;
7495 }
7496 else
7497 {
7498 if (cpu_arch > TAG_CPU_ARCH_V4T)
7499 globals->use_blx = 1;
7500 }
7501}
7502
7503bfd_boolean
7504bfd_elf32_arm_process_before_allocation (bfd *abfd,
7505 struct bfd_link_info *link_info)
7506{
7507 Elf_Internal_Shdr *symtab_hdr;
7508 Elf_Internal_Rela *internal_relocs = NULL;
7509 Elf_Internal_Rela *irel, *irelend;
7510 bfd_byte *contents = NULL;
7511
7512 asection *sec;
7513 struct elf32_arm_link_hash_table *globals;
7514
7515 /* If we are only performing a partial link do not bother
7516 to construct any glue. */
7517 if (bfd_link_relocatable (link_info))
7518 return TRUE;
7519
7520 /* Here we have a bfd that is to be included on the link. We have a
7521 hook to do reloc rummaging, before section sizes are nailed down. */
7522 globals = elf32_arm_hash_table (link_info);
7523 BFD_ASSERT (globals != NULL);
7524
7525 check_use_blx (globals);
7526
7527 if (globals->byteswap_code && !bfd_big_endian (abfd))
7528 {
7529 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7530 abfd);
7531 return FALSE;
7532 }
7533
7534 /* PR 5398: If we have not decided to include any loadable sections in
7535 the output then we will not have a glue owner bfd. This is OK, it
7536 just means that there is nothing else for us to do here. */
7537 if (globals->bfd_of_glue_owner == NULL)
7538 return TRUE;
7539
7540 /* Rummage around all the relocs and map the glue vectors. */
7541 sec = abfd->sections;
7542
7543 if (sec == NULL)
7544 return TRUE;
7545
7546 for (; sec != NULL; sec = sec->next)
7547 {
7548 if (sec->reloc_count == 0)
7549 continue;
7550
7551 if ((sec->flags & SEC_EXCLUDE) != 0)
7552 continue;
7553
7554 symtab_hdr = & elf_symtab_hdr (abfd);
7555
7556 /* Load the relocs. */
7557 internal_relocs
7558 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7559
7560 if (internal_relocs == NULL)
7561 goto error_return;
7562
7563 irelend = internal_relocs + sec->reloc_count;
7564 for (irel = internal_relocs; irel < irelend; irel++)
7565 {
7566 long r_type;
7567 unsigned long r_index;
7568
7569 struct elf_link_hash_entry *h;
7570
7571 r_type = ELF32_R_TYPE (irel->r_info);
7572 r_index = ELF32_R_SYM (irel->r_info);
7573
7574 /* These are the only relocation types we care about. */
7575 if ( r_type != R_ARM_PC24
7576 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7577 continue;
7578
7579 /* Get the section contents if we haven't done so already. */
7580 if (contents == NULL)
7581 {
7582 /* Get cached copy if it exists. */
7583 if (elf_section_data (sec)->this_hdr.contents != NULL)
7584 contents = elf_section_data (sec)->this_hdr.contents;
7585 else
7586 {
7587 /* Go get them off disk. */
7588 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7589 goto error_return;
7590 }
7591 }
7592
7593 if (r_type == R_ARM_V4BX)
7594 {
7595 int reg;
7596
7597 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7598 record_arm_bx_glue (link_info, reg);
7599 continue;
7600 }
7601
7602 /* If the relocation is not against a symbol it cannot concern us. */
7603 h = NULL;
7604
7605 /* We don't care about local symbols. */
7606 if (r_index < symtab_hdr->sh_info)
7607 continue;
7608
7609 /* This is an external symbol. */
7610 r_index -= symtab_hdr->sh_info;
7611 h = (struct elf_link_hash_entry *)
7612 elf_sym_hashes (abfd)[r_index];
7613
7614 /* If the relocation is against a static symbol it must be within
7615 the current section and so cannot be a cross ARM/Thumb relocation. */
7616 if (h == NULL)
7617 continue;
7618
7619 /* If the call will go through a PLT entry then we do not need
7620 glue. */
7621 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7622 continue;
7623
7624 switch (r_type)
7625 {
7626 case R_ARM_PC24:
7627 /* This one is a call from arm code. We need to look up
7628 the target of the call. If it is a thumb target, we
7629 insert glue. */
7630 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7631 == ST_BRANCH_TO_THUMB)
7632 record_arm_to_thumb_glue (link_info, h);
7633 break;
7634
7635 default:
7636 abort ();
7637 }
7638 }
7639
7640 if (contents != NULL
7641 && elf_section_data (sec)->this_hdr.contents != contents)
7642 free (contents);
7643 contents = NULL;
7644
7645 if (internal_relocs != NULL
7646 && elf_section_data (sec)->relocs != internal_relocs)
7647 free (internal_relocs);
7648 internal_relocs = NULL;
7649 }
7650
7651 return TRUE;
7652
7653error_return:
7654 if (contents != NULL
7655 && elf_section_data (sec)->this_hdr.contents != contents)
7656 free (contents);
7657 if (internal_relocs != NULL
7658 && elf_section_data (sec)->relocs != internal_relocs)
7659 free (internal_relocs);
7660
7661 return FALSE;
7662}
7663#endif
7664
7665
7666/* Initialise maps of ARM/Thumb/data for input BFDs. */
7667
7668void
7669bfd_elf32_arm_init_maps (bfd *abfd)
7670{
7671 Elf_Internal_Sym *isymbuf;
7672 Elf_Internal_Shdr *hdr;
7673 unsigned int i, localsyms;
7674
7675 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7676 if (! is_arm_elf (abfd))
7677 return;
7678
7679 if ((abfd->flags & DYNAMIC) != 0)
7680 return;
7681
7682 hdr = & elf_symtab_hdr (abfd);
7683 localsyms = hdr->sh_info;
7684
7685 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7686 should contain the number of local symbols, which should come before any
7687 global symbols. Mapping symbols are always local. */
7688 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7689 NULL);
7690
7691 /* No internal symbols read? Skip this BFD. */
7692 if (isymbuf == NULL)
7693 return;
7694
7695 for (i = 0; i < localsyms; i++)
7696 {
7697 Elf_Internal_Sym *isym = &isymbuf[i];
7698 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7699 const char *name;
7700
7701 if (sec != NULL
7702 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7703 {
7704 name = bfd_elf_string_from_elf_section (abfd,
7705 hdr->sh_link, isym->st_name);
7706
7707 if (bfd_is_arm_special_symbol_name (name,
7708 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7709 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7710 }
7711 }
7712}
7713
7714
7715/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7716 say what they wanted. */
7717
7718void
7719bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7720{
7721 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7722 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7723
7724 if (globals == NULL)
7725 return;
7726
7727 if (globals->fix_cortex_a8 == -1)
7728 {
7729 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7730 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7731 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7732 || out_attr[Tag_CPU_arch_profile].i == 0))
7733 globals->fix_cortex_a8 = 1;
7734 else
7735 globals->fix_cortex_a8 = 0;
7736 }
7737}
7738
7739
7740void
7741bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7742{
7743 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7744 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7745
7746 if (globals == NULL)
7747 return;
7748 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7749 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7750 {
7751 switch (globals->vfp11_fix)
7752 {
7753 case BFD_ARM_VFP11_FIX_DEFAULT:
7754 case BFD_ARM_VFP11_FIX_NONE:
7755 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7756 break;
7757
7758 default:
7759 /* Give a warning, but do as the user requests anyway. */
7760 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7761 "workaround is not necessary for target architecture"), obfd);
7762 }
7763 }
7764 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7765 /* For earlier architectures, we might need the workaround, but do not
7766 enable it by default. If users is running with broken hardware, they
7767 must enable the erratum fix explicitly. */
7768 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7769}
7770
7771void
7772bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7773{
7774 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7775 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7776
7777 if (globals == NULL)
7778 return;
7779
7780 /* We assume only Cortex-M4 may require the fix. */
7781 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7782 || out_attr[Tag_CPU_arch_profile].i != 'M')
7783 {
7784 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7785 /* Give a warning, but do as the user requests anyway. */
7786 _bfd_error_handler
7787 (_("%B: warning: selected STM32L4XX erratum "
7788 "workaround is not necessary for target architecture"), obfd);
7789 }
7790}
7791
7792enum bfd_arm_vfp11_pipe
7793{
7794 VFP11_FMAC,
7795 VFP11_LS,
7796 VFP11_DS,
7797 VFP11_BAD
7798};
7799
7800/* Return a VFP register number. This is encoded as RX:X for single-precision
7801 registers, or X:RX for double-precision registers, where RX is the group of
7802 four bits in the instruction encoding and X is the single extension bit.
7803 RX and X fields are specified using their lowest (starting) bit. The return
7804 value is:
7805
7806 0...31: single-precision registers s0...s31
7807 32...63: double-precision registers d0...d31.
7808
7809 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7810 encounter VFP3 instructions, so we allow the full range for DP registers. */
7811
7812static unsigned int
7813bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7814 unsigned int x)
7815{
7816 if (is_double)
7817 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7818 else
7819 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7820}
7821
7822/* Set bits in *WMASK according to a register number REG as encoded by
7823 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7824
7825static void
7826bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7827{
7828 if (reg < 32)
7829 *wmask |= 1 << reg;
7830 else if (reg < 48)
7831 *wmask |= 3 << ((reg - 32) * 2);
7832}
7833
7834/* Return TRUE if WMASK overwrites anything in REGS. */
7835
7836static bfd_boolean
7837bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7838{
7839 int i;
7840
7841 for (i = 0; i < numregs; i++)
7842 {
7843 unsigned int reg = regs[i];
7844
7845 if (reg < 32 && (wmask & (1 << reg)) != 0)
7846 return TRUE;
7847
7848 reg -= 32;
7849
7850 if (reg >= 16)
7851 continue;
7852
7853 if ((wmask & (3 << (reg * 2))) != 0)
7854 return TRUE;
7855 }
7856
7857 return FALSE;
7858}
7859
7860/* In this function, we're interested in two things: finding input registers
7861 for VFP data-processing instructions, and finding the set of registers which
7862 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7863 hold the written set, so FLDM etc. are easy to deal with (we're only
7864 interested in 32 SP registers or 16 dp registers, due to the VFP version
7865 implemented by the chip in question). DP registers are marked by setting
7866 both SP registers in the write mask). */
7867
7868static enum bfd_arm_vfp11_pipe
7869bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7870 int *numregs)
7871{
7872 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7873 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7874
7875 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7876 {
7877 unsigned int pqrs;
7878 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7879 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7880
7881 pqrs = ((insn & 0x00800000) >> 20)
7882 | ((insn & 0x00300000) >> 19)
7883 | ((insn & 0x00000040) >> 6);
7884
7885 switch (pqrs)
7886 {
7887 case 0: /* fmac[sd]. */
7888 case 1: /* fnmac[sd]. */
7889 case 2: /* fmsc[sd]. */
7890 case 3: /* fnmsc[sd]. */
7891 vpipe = VFP11_FMAC;
7892 bfd_arm_vfp11_write_mask (destmask, fd);
7893 regs[0] = fd;
7894 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7895 regs[2] = fm;
7896 *numregs = 3;
7897 break;
7898
7899 case 4: /* fmul[sd]. */
7900 case 5: /* fnmul[sd]. */
7901 case 6: /* fadd[sd]. */
7902 case 7: /* fsub[sd]. */
7903 vpipe = VFP11_FMAC;
7904 goto vfp_binop;
7905
7906 case 8: /* fdiv[sd]. */
7907 vpipe = VFP11_DS;
7908 vfp_binop:
7909 bfd_arm_vfp11_write_mask (destmask, fd);
7910 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7911 regs[1] = fm;
7912 *numregs = 2;
7913 break;
7914
7915 case 15: /* extended opcode. */
7916 {
7917 unsigned int extn = ((insn >> 15) & 0x1e)
7918 | ((insn >> 7) & 1);
7919
7920 switch (extn)
7921 {
7922 case 0: /* fcpy[sd]. */
7923 case 1: /* fabs[sd]. */
7924 case 2: /* fneg[sd]. */
7925 case 8: /* fcmp[sd]. */
7926 case 9: /* fcmpe[sd]. */
7927 case 10: /* fcmpz[sd]. */
7928 case 11: /* fcmpez[sd]. */
7929 case 16: /* fuito[sd]. */
7930 case 17: /* fsito[sd]. */
7931 case 24: /* ftoui[sd]. */
7932 case 25: /* ftouiz[sd]. */
7933 case 26: /* ftosi[sd]. */
7934 case 27: /* ftosiz[sd]. */
7935 /* These instructions will not bounce due to underflow. */
7936 *numregs = 0;
7937 vpipe = VFP11_FMAC;
7938 break;
7939
7940 case 3: /* fsqrt[sd]. */
7941 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7942 registers to cause the erratum in previous instructions. */
7943 bfd_arm_vfp11_write_mask (destmask, fd);
7944 vpipe = VFP11_DS;
7945 break;
7946
7947 case 15: /* fcvt{ds,sd}. */
7948 {
7949 int rnum = 0;
7950
7951 bfd_arm_vfp11_write_mask (destmask, fd);
7952
7953 /* Only FCVTSD can underflow. */
7954 if ((insn & 0x100) != 0)
7955 regs[rnum++] = fm;
7956
7957 *numregs = rnum;
7958
7959 vpipe = VFP11_FMAC;
7960 }
7961 break;
7962
7963 default:
7964 return VFP11_BAD;
7965 }
7966 }
7967 break;
7968
7969 default:
7970 return VFP11_BAD;
7971 }
7972 }
7973 /* Two-register transfer. */
7974 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7975 {
7976 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7977
7978 if ((insn & 0x100000) == 0)
7979 {
7980 if (is_double)
7981 bfd_arm_vfp11_write_mask (destmask, fm);
7982 else
7983 {
7984 bfd_arm_vfp11_write_mask (destmask, fm);
7985 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7986 }
7987 }
7988
7989 vpipe = VFP11_LS;
7990 }
7991 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7992 {
7993 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7994 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7995
7996 switch (puw)
7997 {
7998 case 0: /* Two-reg transfer. We should catch these above. */
7999 abort ();
8000
8001 case 2: /* fldm[sdx]. */
8002 case 3:
8003 case 5:
8004 {
8005 unsigned int i, offset = insn & 0xff;
8006
8007 if (is_double)
8008 offset >>= 1;
8009
8010 for (i = fd; i < fd + offset; i++)
8011 bfd_arm_vfp11_write_mask (destmask, i);
8012 }
8013 break;
8014
8015 case 4: /* fld[sd]. */
8016 case 6:
8017 bfd_arm_vfp11_write_mask (destmask, fd);
8018 break;
8019
8020 default:
8021 return VFP11_BAD;
8022 }
8023
8024 vpipe = VFP11_LS;
8025 }
8026 /* Single-register transfer. Note L==0. */
8027 else if ((insn & 0x0f100e10) == 0x0e000a10)
8028 {
8029 unsigned int opcode = (insn >> 21) & 7;
8030 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8031
8032 switch (opcode)
8033 {
8034 case 0: /* fmsr/fmdlr. */
8035 case 1: /* fmdhr. */
8036 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8037 destination register. I don't know if this is exactly right,
8038 but it is the conservative choice. */
8039 bfd_arm_vfp11_write_mask (destmask, fn);
8040 break;
8041
8042 case 7: /* fmxr. */
8043 break;
8044 }
8045
8046 vpipe = VFP11_LS;
8047 }
8048
8049 return vpipe;
8050}
8051
8052
8053static int elf32_arm_compare_mapping (const void * a, const void * b);
8054
8055
8056/* Look for potentially-troublesome code sequences which might trigger the
8057 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8058 (available from ARM) for details of the erratum. A short version is
8059 described in ld.texinfo. */
8060
8061bfd_boolean
8062bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8063{
8064 asection *sec;
8065 bfd_byte *contents = NULL;
8066 int state = 0;
8067 int regs[3], numregs = 0;
8068 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8069 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8070
8071 if (globals == NULL)
8072 return FALSE;
8073
8074 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8075 The states transition as follows:
8076
8077 0 -> 1 (vector) or 0 -> 2 (scalar)
8078 A VFP FMAC-pipeline instruction has been seen. Fill
8079 regs[0]..regs[numregs-1] with its input operands. Remember this
8080 instruction in 'first_fmac'.
8081
8082 1 -> 2
8083 Any instruction, except for a VFP instruction which overwrites
8084 regs[*].
8085
8086 1 -> 3 [ -> 0 ] or
8087 2 -> 3 [ -> 0 ]
8088 A VFP instruction has been seen which overwrites any of regs[*].
8089 We must make a veneer! Reset state to 0 before examining next
8090 instruction.
8091
8092 2 -> 0
8093 If we fail to match anything in state 2, reset to state 0 and reset
8094 the instruction pointer to the instruction after 'first_fmac'.
8095
8096 If the VFP11 vector mode is in use, there must be at least two unrelated
8097 instructions between anti-dependent VFP11 instructions to properly avoid
8098 triggering the erratum, hence the use of the extra state 1. */
8099
8100 /* If we are only performing a partial link do not bother
8101 to construct any glue. */
8102 if (bfd_link_relocatable (link_info))
8103 return TRUE;
8104
8105 /* Skip if this bfd does not correspond to an ELF image. */
8106 if (! is_arm_elf (abfd))
8107 return TRUE;
8108
8109 /* We should have chosen a fix type by the time we get here. */
8110 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8111
8112 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8113 return TRUE;
8114
8115 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8116 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8117 return TRUE;
8118
8119 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8120 {
8121 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8122 struct _arm_elf_section_data *sec_data;
8123
8124 /* If we don't have executable progbits, we're not interested in this
8125 section. Also skip if section is to be excluded. */
8126 if (elf_section_type (sec) != SHT_PROGBITS
8127 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8128 || (sec->flags & SEC_EXCLUDE) != 0
8129 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8130 || sec->output_section == bfd_abs_section_ptr
8131 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8132 continue;
8133
8134 sec_data = elf32_arm_section_data (sec);
8135
8136 if (sec_data->mapcount == 0)
8137 continue;
8138
8139 if (elf_section_data (sec)->this_hdr.contents != NULL)
8140 contents = elf_section_data (sec)->this_hdr.contents;
8141 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8142 goto error_return;
8143
8144 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8145 elf32_arm_compare_mapping);
8146
8147 for (span = 0; span < sec_data->mapcount; span++)
8148 {
8149 unsigned int span_start = sec_data->map[span].vma;
8150 unsigned int span_end = (span == sec_data->mapcount - 1)
8151 ? sec->size : sec_data->map[span + 1].vma;
8152 char span_type = sec_data->map[span].type;
8153
8154 /* FIXME: Only ARM mode is supported at present. We may need to
8155 support Thumb-2 mode also at some point. */
8156 if (span_type != 'a')
8157 continue;
8158
8159 for (i = span_start; i < span_end;)
8160 {
8161 unsigned int next_i = i + 4;
8162 unsigned int insn = bfd_big_endian (abfd)
8163 ? (contents[i] << 24)
8164 | (contents[i + 1] << 16)
8165 | (contents[i + 2] << 8)
8166 | contents[i + 3]
8167 : (contents[i + 3] << 24)
8168 | (contents[i + 2] << 16)
8169 | (contents[i + 1] << 8)
8170 | contents[i];
8171 unsigned int writemask = 0;
8172 enum bfd_arm_vfp11_pipe vpipe;
8173
8174 switch (state)
8175 {
8176 case 0:
8177 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8178 &numregs);
8179 /* I'm assuming the VFP11 erratum can trigger with denorm
8180 operands on either the FMAC or the DS pipeline. This might
8181 lead to slightly overenthusiastic veneer insertion. */
8182 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8183 {
8184 state = use_vector ? 1 : 2;
8185 first_fmac = i;
8186 veneer_of_insn = insn;
8187 }
8188 break;
8189
8190 case 1:
8191 {
8192 int other_regs[3], other_numregs;
8193 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8194 other_regs,
8195 &other_numregs);
8196 if (vpipe != VFP11_BAD
8197 && bfd_arm_vfp11_antidependency (writemask, regs,
8198 numregs))
8199 state = 3;
8200 else
8201 state = 2;
8202 }
8203 break;
8204
8205 case 2:
8206 {
8207 int other_regs[3], other_numregs;
8208 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8209 other_regs,
8210 &other_numregs);
8211 if (vpipe != VFP11_BAD
8212 && bfd_arm_vfp11_antidependency (writemask, regs,
8213 numregs))
8214 state = 3;
8215 else
8216 {
8217 state = 0;
8218 next_i = first_fmac + 4;
8219 }
8220 }
8221 break;
8222
8223 case 3:
8224 abort (); /* Should be unreachable. */
8225 }
8226
8227 if (state == 3)
8228 {
8229 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8230 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8231
8232 elf32_arm_section_data (sec)->erratumcount += 1;
8233
8234 newerr->u.b.vfp_insn = veneer_of_insn;
8235
8236 switch (span_type)
8237 {
8238 case 'a':
8239 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8240 break;
8241
8242 default:
8243 abort ();
8244 }
8245
8246 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8247 first_fmac);
8248
8249 newerr->vma = -1;
8250
8251 newerr->next = sec_data->erratumlist;
8252 sec_data->erratumlist = newerr;
8253
8254 state = 0;
8255 }
8256
8257 i = next_i;
8258 }
8259 }
8260
8261 if (contents != NULL
8262 && elf_section_data (sec)->this_hdr.contents != contents)
8263 free (contents);
8264 contents = NULL;
8265 }
8266
8267 return TRUE;
8268
8269error_return:
8270 if (contents != NULL
8271 && elf_section_data (sec)->this_hdr.contents != contents)
8272 free (contents);
8273
8274 return FALSE;
8275}
8276
8277/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8278 after sections have been laid out, using specially-named symbols. */
8279
8280void
8281bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8282 struct bfd_link_info *link_info)
8283{
8284 asection *sec;
8285 struct elf32_arm_link_hash_table *globals;
8286 char *tmp_name;
8287
8288 if (bfd_link_relocatable (link_info))
8289 return;
8290
8291 /* Skip if this bfd does not correspond to an ELF image. */
8292 if (! is_arm_elf (abfd))
8293 return;
8294
8295 globals = elf32_arm_hash_table (link_info);
8296 if (globals == NULL)
8297 return;
8298
8299 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8300 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8301
8302 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8303 {
8304 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8305 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8306
8307 for (; errnode != NULL; errnode = errnode->next)
8308 {
8309 struct elf_link_hash_entry *myh;
8310 bfd_vma vma;
8311
8312 switch (errnode->type)
8313 {
8314 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8315 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8316 /* Find veneer symbol. */
8317 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8318 errnode->u.b.veneer->u.v.id);
8319
8320 myh = elf_link_hash_lookup
8321 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8322
8323 if (myh == NULL)
8324 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8325 "`%s'"), abfd, tmp_name);
8326
8327 vma = myh->root.u.def.section->output_section->vma
8328 + myh->root.u.def.section->output_offset
8329 + myh->root.u.def.value;
8330
8331 errnode->u.b.veneer->vma = vma;
8332 break;
8333
8334 case VFP11_ERRATUM_ARM_VENEER:
8335 case VFP11_ERRATUM_THUMB_VENEER:
8336 /* Find return location. */
8337 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8338 errnode->u.v.id);
8339
8340 myh = elf_link_hash_lookup
8341 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8342
8343 if (myh == NULL)
8344 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8345 "`%s'"), abfd, tmp_name);
8346
8347 vma = myh->root.u.def.section->output_section->vma
8348 + myh->root.u.def.section->output_offset
8349 + myh->root.u.def.value;
8350
8351 errnode->u.v.branch->vma = vma;
8352 break;
8353
8354 default:
8355 abort ();
8356 }
8357 }
8358 }
8359
8360 free (tmp_name);
8361}
8362
8363/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8364 return locations after sections have been laid out, using
8365 specially-named symbols. */
8366
8367void
8368bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8369 struct bfd_link_info *link_info)
8370{
8371 asection *sec;
8372 struct elf32_arm_link_hash_table *globals;
8373 char *tmp_name;
8374
8375 if (bfd_link_relocatable (link_info))
8376 return;
8377
8378 /* Skip if this bfd does not correspond to an ELF image. */
8379 if (! is_arm_elf (abfd))
8380 return;
8381
8382 globals = elf32_arm_hash_table (link_info);
8383 if (globals == NULL)
8384 return;
8385
8386 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8387 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8388
8389 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8390 {
8391 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8392 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8393
8394 for (; errnode != NULL; errnode = errnode->next)
8395 {
8396 struct elf_link_hash_entry *myh;
8397 bfd_vma vma;
8398
8399 switch (errnode->type)
8400 {
8401 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8402 /* Find veneer symbol. */
8403 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8404 errnode->u.b.veneer->u.v.id);
8405
8406 myh = elf_link_hash_lookup
8407 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8408
8409 if (myh == NULL)
8410 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8411 "`%s'"), abfd, tmp_name);
8412
8413 vma = myh->root.u.def.section->output_section->vma
8414 + myh->root.u.def.section->output_offset
8415 + myh->root.u.def.value;
8416
8417 errnode->u.b.veneer->vma = vma;
8418 break;
8419
8420 case STM32L4XX_ERRATUM_VENEER:
8421 /* Find return location. */
8422 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8423 errnode->u.v.id);
8424
8425 myh = elf_link_hash_lookup
8426 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8427
8428 if (myh == NULL)
8429 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8430 "`%s'"), abfd, tmp_name);
8431
8432 vma = myh->root.u.def.section->output_section->vma
8433 + myh->root.u.def.section->output_offset
8434 + myh->root.u.def.value;
8435
8436 errnode->u.v.branch->vma = vma;
8437 break;
8438
8439 default:
8440 abort ();
8441 }
8442 }
8443 }
8444
8445 free (tmp_name);
8446}
8447
8448static inline bfd_boolean
8449is_thumb2_ldmia (const insn32 insn)
8450{
8451 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8452 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8453 return (insn & 0xffd02000) == 0xe8900000;
8454}
8455
8456static inline bfd_boolean
8457is_thumb2_ldmdb (const insn32 insn)
8458{
8459 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8460 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8461 return (insn & 0xffd02000) == 0xe9100000;
8462}
8463
8464static inline bfd_boolean
8465is_thumb2_vldm (const insn32 insn)
8466{
8467 /* A6.5 Extension register load or store instruction
8468 A7.7.229
8469 We look for SP 32-bit and DP 64-bit registers.
8470 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8471 <list> is consecutive 64-bit registers
8472 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8473 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8474 <list> is consecutive 32-bit registers
8475 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8476 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8477 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8478 return
8479 (((insn & 0xfe100f00) == 0xec100b00) ||
8480 ((insn & 0xfe100f00) == 0xec100a00))
8481 && /* (IA without !). */
8482 (((((insn << 7) >> 28) & 0xd) == 0x4)
8483 /* (IA with !), includes VPOP (when reg number is SP). */
8484 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8485 /* (DB with !). */
8486 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8487}
8488
8489/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8490 VLDM opcode and:
8491 - computes the number and the mode of memory accesses
8492 - decides if the replacement should be done:
8493 . replaces only if > 8-word accesses
8494 . or (testing purposes only) replaces all accesses. */
8495
8496static bfd_boolean
8497stm32l4xx_need_create_replacing_stub (const insn32 insn,
8498 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8499{
8500 int nb_words = 0;
8501
8502 /* The field encoding the register list is the same for both LDMIA
8503 and LDMDB encodings. */
8504 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8505 nb_words = popcount (insn & 0x0000ffff);
8506 else if (is_thumb2_vldm (insn))
8507 nb_words = (insn & 0xff);
8508
8509 /* DEFAULT mode accounts for the real bug condition situation,
8510 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8511 return
8512 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8513 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8514}
8515
8516/* Look for potentially-troublesome code sequences which might trigger
8517 the STM STM32L4XX erratum. */
8518
8519bfd_boolean
8520bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8521 struct bfd_link_info *link_info)
8522{
8523 asection *sec;
8524 bfd_byte *contents = NULL;
8525 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8526
8527 if (globals == NULL)
8528 return FALSE;
8529
8530 /* If we are only performing a partial link do not bother
8531 to construct any glue. */
8532 if (bfd_link_relocatable (link_info))
8533 return TRUE;
8534
8535 /* Skip if this bfd does not correspond to an ELF image. */
8536 if (! is_arm_elf (abfd))
8537 return TRUE;
8538
8539 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8540 return TRUE;
8541
8542 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8543 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8544 return TRUE;
8545
8546 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8547 {
8548 unsigned int i, span;
8549 struct _arm_elf_section_data *sec_data;
8550
8551 /* If we don't have executable progbits, we're not interested in this
8552 section. Also skip if section is to be excluded. */
8553 if (elf_section_type (sec) != SHT_PROGBITS
8554 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8555 || (sec->flags & SEC_EXCLUDE) != 0
8556 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8557 || sec->output_section == bfd_abs_section_ptr
8558 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8559 continue;
8560
8561 sec_data = elf32_arm_section_data (sec);
8562
8563 if (sec_data->mapcount == 0)
8564 continue;
8565
8566 if (elf_section_data (sec)->this_hdr.contents != NULL)
8567 contents = elf_section_data (sec)->this_hdr.contents;
8568 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8569 goto error_return;
8570
8571 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8572 elf32_arm_compare_mapping);
8573
8574 for (span = 0; span < sec_data->mapcount; span++)
8575 {
8576 unsigned int span_start = sec_data->map[span].vma;
8577 unsigned int span_end = (span == sec_data->mapcount - 1)
8578 ? sec->size : sec_data->map[span + 1].vma;
8579 char span_type = sec_data->map[span].type;
8580 int itblock_current_pos = 0;
8581
8582 /* Only Thumb2 mode need be supported with this CM4 specific
8583 code, we should not encounter any arm mode eg span_type
8584 != 'a'. */
8585 if (span_type != 't')
8586 continue;
8587
8588 for (i = span_start; i < span_end;)
8589 {
8590 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8591 bfd_boolean insn_32bit = FALSE;
8592 bfd_boolean is_ldm = FALSE;
8593 bfd_boolean is_vldm = FALSE;
8594 bfd_boolean is_not_last_in_it_block = FALSE;
8595
8596 /* The first 16-bits of all 32-bit thumb2 instructions start
8597 with opcode[15..13]=0b111 and the encoded op1 can be anything
8598 except opcode[12..11]!=0b00.
8599 See 32-bit Thumb instruction encoding. */
8600 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8601 insn_32bit = TRUE;
8602
8603 /* Compute the predicate that tells if the instruction
8604 is concerned by the IT block
8605 - Creates an error if there is a ldm that is not
8606 last in the IT block thus cannot be replaced
8607 - Otherwise we can create a branch at the end of the
8608 IT block, it will be controlled naturally by IT
8609 with the proper pseudo-predicate
8610 - So the only interesting predicate is the one that
8611 tells that we are not on the last item of an IT
8612 block. */
8613 if (itblock_current_pos != 0)
8614 is_not_last_in_it_block = !!--itblock_current_pos;
8615
8616 if (insn_32bit)
8617 {
8618 /* Load the rest of the insn (in manual-friendly order). */
8619 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8620 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8621 is_vldm = is_thumb2_vldm (insn);
8622
8623 /* Veneers are created for (v)ldm depending on
8624 option flags and memory accesses conditions; but
8625 if the instruction is not the last instruction of
8626 an IT block, we cannot create a jump there, so we
8627 bail out. */
8628 if ((is_ldm || is_vldm)
8629 && stm32l4xx_need_create_replacing_stub
8630 (insn, globals->stm32l4xx_fix))
8631 {
8632 if (is_not_last_in_it_block)
8633 {
8634 _bfd_error_handler
8635 /* Note - overlong line used here to allow for translation. */
8636 (_("\
8637%B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8638 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8639 abfd, sec, (long)i);
8640 }
8641 else
8642 {
8643 elf32_stm32l4xx_erratum_list *newerr =
8644 (elf32_stm32l4xx_erratum_list *)
8645 bfd_zmalloc
8646 (sizeof (elf32_stm32l4xx_erratum_list));
8647
8648 elf32_arm_section_data (sec)
8649 ->stm32l4xx_erratumcount += 1;
8650 newerr->u.b.insn = insn;
8651 /* We create only thumb branches. */
8652 newerr->type =
8653 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8654 record_stm32l4xx_erratum_veneer
8655 (link_info, newerr, abfd, sec,
8656 i,
8657 is_ldm ?
8658 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8659 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8660 newerr->vma = -1;
8661 newerr->next = sec_data->stm32l4xx_erratumlist;
8662 sec_data->stm32l4xx_erratumlist = newerr;
8663 }
8664 }
8665 }
8666 else
8667 {
8668 /* A7.7.37 IT p208
8669 IT blocks are only encoded in T1
8670 Encoding T1: IT{x{y{z}}} <firstcond>
8671 1 0 1 1 - 1 1 1 1 - firstcond - mask
8672 if mask = '0000' then see 'related encodings'
8673 We don't deal with UNPREDICTABLE, just ignore these.
8674 There can be no nested IT blocks so an IT block
8675 is naturally a new one for which it is worth
8676 computing its size. */
8677 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8678 && ((insn & 0x000f) != 0x0000);
8679 /* If we have a new IT block we compute its size. */
8680 if (is_newitblock)
8681 {
8682 /* Compute the number of instructions controlled
8683 by the IT block, it will be used to decide
8684 whether we are inside an IT block or not. */
8685 unsigned int mask = insn & 0x000f;
8686 itblock_current_pos = 4 - ctz (mask);
8687 }
8688 }
8689
8690 i += insn_32bit ? 4 : 2;
8691 }
8692 }
8693
8694 if (contents != NULL
8695 && elf_section_data (sec)->this_hdr.contents != contents)
8696 free (contents);
8697 contents = NULL;
8698 }
8699
8700 return TRUE;
8701
8702error_return:
8703 if (contents != NULL
8704 && elf_section_data (sec)->this_hdr.contents != contents)
8705 free (contents);
8706
8707 return FALSE;
8708}
8709
8710/* Set target relocation values needed during linking. */
8711
8712void
8713bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8714 struct bfd_link_info *link_info,
8715 struct elf32_arm_params *params)
8716{
8717 struct elf32_arm_link_hash_table *globals;
8718
8719 globals = elf32_arm_hash_table (link_info);
8720 if (globals == NULL)
8721 return;
8722
8723 globals->target1_is_rel = params->target1_is_rel;
8724 if (strcmp (params->target2_type, "rel") == 0)
8725 globals->target2_reloc = R_ARM_REL32;
8726 else if (strcmp (params->target2_type, "abs") == 0)
8727 globals->target2_reloc = R_ARM_ABS32;
8728 else if (strcmp (params->target2_type, "got-rel") == 0)
8729 globals->target2_reloc = R_ARM_GOT_PREL;
8730 else
8731 {
8732 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8733 params->target2_type);
8734 }
8735 globals->fix_v4bx = params->fix_v4bx;
8736 globals->use_blx |= params->use_blx;
8737 globals->vfp11_fix = params->vfp11_denorm_fix;
8738 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8739 globals->pic_veneer = params->pic_veneer;
8740 globals->fix_cortex_a8 = params->fix_cortex_a8;
8741 globals->fix_arm1176 = params->fix_arm1176;
8742 globals->cmse_implib = params->cmse_implib;
8743 globals->in_implib_bfd = params->in_implib_bfd;
8744
8745 BFD_ASSERT (is_arm_elf (output_bfd));
8746 elf_arm_tdata (output_bfd)->no_enum_size_warning
8747 = params->no_enum_size_warning;
8748 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8749 = params->no_wchar_size_warning;
8750}
8751
8752/* Replace the target offset of a Thumb bl or b.w instruction. */
8753
8754static void
8755insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8756{
8757 bfd_vma upper;
8758 bfd_vma lower;
8759 int reloc_sign;
8760
8761 BFD_ASSERT ((offset & 1) == 0);
8762
8763 upper = bfd_get_16 (abfd, insn);
8764 lower = bfd_get_16 (abfd, insn + 2);
8765 reloc_sign = (offset < 0) ? 1 : 0;
8766 upper = (upper & ~(bfd_vma) 0x7ff)
8767 | ((offset >> 12) & 0x3ff)
8768 | (reloc_sign << 10);
8769 lower = (lower & ~(bfd_vma) 0x2fff)
8770 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8771 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8772 | ((offset >> 1) & 0x7ff);
8773 bfd_put_16 (abfd, upper, insn);
8774 bfd_put_16 (abfd, lower, insn + 2);
8775}
8776
8777/* Thumb code calling an ARM function. */
8778
8779static int
8780elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8781 const char * name,
8782 bfd * input_bfd,
8783 bfd * output_bfd,
8784 asection * input_section,
8785 bfd_byte * hit_data,
8786 asection * sym_sec,
8787 bfd_vma offset,
8788 bfd_signed_vma addend,
8789 bfd_vma val,
8790 char **error_message)
8791{
8792 asection * s = 0;
8793 bfd_vma my_offset;
8794 long int ret_offset;
8795 struct elf_link_hash_entry * myh;
8796 struct elf32_arm_link_hash_table * globals;
8797
8798 myh = find_thumb_glue (info, name, error_message);
8799 if (myh == NULL)
8800 return FALSE;
8801
8802 globals = elf32_arm_hash_table (info);
8803 BFD_ASSERT (globals != NULL);
8804 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8805
8806 my_offset = myh->root.u.def.value;
8807
8808 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8809 THUMB2ARM_GLUE_SECTION_NAME);
8810
8811 BFD_ASSERT (s != NULL);
8812 BFD_ASSERT (s->contents != NULL);
8813 BFD_ASSERT (s->output_section != NULL);
8814
8815 if ((my_offset & 0x01) == 0x01)
8816 {
8817 if (sym_sec != NULL
8818 && sym_sec->owner != NULL
8819 && !INTERWORK_FLAG (sym_sec->owner))
8820 {
8821 _bfd_error_handler
8822 (_("%B(%s): warning: interworking not enabled.\n"
8823 " first occurrence: %B: Thumb call to ARM"),
8824 sym_sec->owner, input_bfd, name);
8825
8826 return FALSE;
8827 }
8828
8829 --my_offset;
8830 myh->root.u.def.value = my_offset;
8831
8832 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8833 s->contents + my_offset);
8834
8835 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8836 s->contents + my_offset + 2);
8837
8838 ret_offset =
8839 /* Address of destination of the stub. */
8840 ((bfd_signed_vma) val)
8841 - ((bfd_signed_vma)
8842 /* Offset from the start of the current section
8843 to the start of the stubs. */
8844 (s->output_offset
8845 /* Offset of the start of this stub from the start of the stubs. */
8846 + my_offset
8847 /* Address of the start of the current section. */
8848 + s->output_section->vma)
8849 /* The branch instruction is 4 bytes into the stub. */
8850 + 4
8851 /* ARM branches work from the pc of the instruction + 8. */
8852 + 8);
8853
8854 put_arm_insn (globals, output_bfd,
8855 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8856 s->contents + my_offset + 4);
8857 }
8858
8859 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8860
8861 /* Now go back and fix up the original BL insn to point to here. */
8862 ret_offset =
8863 /* Address of where the stub is located. */
8864 (s->output_section->vma + s->output_offset + my_offset)
8865 /* Address of where the BL is located. */
8866 - (input_section->output_section->vma + input_section->output_offset
8867 + offset)
8868 /* Addend in the relocation. */
8869 - addend
8870 /* Biassing for PC-relative addressing. */
8871 - 8;
8872
8873 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8874
8875 return TRUE;
8876}
8877
8878/* Populate an Arm to Thumb stub. Returns the stub symbol. */
8879
8880static struct elf_link_hash_entry *
8881elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8882 const char * name,
8883 bfd * input_bfd,
8884 bfd * output_bfd,
8885 asection * sym_sec,
8886 bfd_vma val,
8887 asection * s,
8888 char ** error_message)
8889{
8890 bfd_vma my_offset;
8891 long int ret_offset;
8892 struct elf_link_hash_entry * myh;
8893 struct elf32_arm_link_hash_table * globals;
8894
8895 myh = find_arm_glue (info, name, error_message);
8896 if (myh == NULL)
8897 return NULL;
8898
8899 globals = elf32_arm_hash_table (info);
8900 BFD_ASSERT (globals != NULL);
8901 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8902
8903 my_offset = myh->root.u.def.value;
8904
8905 if ((my_offset & 0x01) == 0x01)
8906 {
8907 if (sym_sec != NULL
8908 && sym_sec->owner != NULL
8909 && !INTERWORK_FLAG (sym_sec->owner))
8910 {
8911 _bfd_error_handler
8912 (_("%B(%s): warning: interworking not enabled.\n"
8913 " first occurrence: %B: arm call to thumb"),
8914 sym_sec->owner, input_bfd, name);
8915 }
8916
8917 --my_offset;
8918 myh->root.u.def.value = my_offset;
8919
8920 if (bfd_link_pic (info)
8921 || globals->root.is_relocatable_executable
8922 || globals->pic_veneer)
8923 {
8924 /* For relocatable objects we can't use absolute addresses,
8925 so construct the address from a relative offset. */
8926 /* TODO: If the offset is small it's probably worth
8927 constructing the address with adds. */
8928 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8929 s->contents + my_offset);
8930 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8931 s->contents + my_offset + 4);
8932 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8933 s->contents + my_offset + 8);
8934 /* Adjust the offset by 4 for the position of the add,
8935 and 8 for the pipeline offset. */
8936 ret_offset = (val - (s->output_offset
8937 + s->output_section->vma
8938 + my_offset + 12))
8939 | 1;
8940 bfd_put_32 (output_bfd, ret_offset,
8941 s->contents + my_offset + 12);
8942 }
8943 else if (globals->use_blx)
8944 {
8945 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8946 s->contents + my_offset);
8947
8948 /* It's a thumb address. Add the low order bit. */
8949 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8950 s->contents + my_offset + 4);
8951 }
8952 else
8953 {
8954 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8955 s->contents + my_offset);
8956
8957 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8958 s->contents + my_offset + 4);
8959
8960 /* It's a thumb address. Add the low order bit. */
8961 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8962 s->contents + my_offset + 8);
8963
8964 my_offset += 12;
8965 }
8966 }
8967
8968 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8969
8970 return myh;
8971}
8972
8973/* Arm code calling a Thumb function. */
8974
8975static int
8976elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8977 const char * name,
8978 bfd * input_bfd,
8979 bfd * output_bfd,
8980 asection * input_section,
8981 bfd_byte * hit_data,
8982 asection * sym_sec,
8983 bfd_vma offset,
8984 bfd_signed_vma addend,
8985 bfd_vma val,
8986 char **error_message)
8987{
8988 unsigned long int tmp;
8989 bfd_vma my_offset;
8990 asection * s;
8991 long int ret_offset;
8992 struct elf_link_hash_entry * myh;
8993 struct elf32_arm_link_hash_table * globals;
8994
8995 globals = elf32_arm_hash_table (info);
8996 BFD_ASSERT (globals != NULL);
8997 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8998
8999 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9000 ARM2THUMB_GLUE_SECTION_NAME);
9001 BFD_ASSERT (s != NULL);
9002 BFD_ASSERT (s->contents != NULL);
9003 BFD_ASSERT (s->output_section != NULL);
9004
9005 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9006 sym_sec, val, s, error_message);
9007 if (!myh)
9008 return FALSE;
9009
9010 my_offset = myh->root.u.def.value;
9011 tmp = bfd_get_32 (input_bfd, hit_data);
9012 tmp = tmp & 0xFF000000;
9013
9014 /* Somehow these are both 4 too far, so subtract 8. */
9015 ret_offset = (s->output_offset
9016 + my_offset
9017 + s->output_section->vma
9018 - (input_section->output_offset
9019 + input_section->output_section->vma
9020 + offset + addend)
9021 - 8);
9022
9023 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9024
9025 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9026
9027 return TRUE;
9028}
9029
9030/* Populate Arm stub for an exported Thumb function. */
9031
9032static bfd_boolean
9033elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9034{
9035 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9036 asection * s;
9037 struct elf_link_hash_entry * myh;
9038 struct elf32_arm_link_hash_entry *eh;
9039 struct elf32_arm_link_hash_table * globals;
9040 asection *sec;
9041 bfd_vma val;
9042 char *error_message;
9043
9044 eh = elf32_arm_hash_entry (h);
9045 /* Allocate stubs for exported Thumb functions on v4t. */
9046 if (eh->export_glue == NULL)
9047 return TRUE;
9048
9049 globals = elf32_arm_hash_table (info);
9050 BFD_ASSERT (globals != NULL);
9051 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9052
9053 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9054 ARM2THUMB_GLUE_SECTION_NAME);
9055 BFD_ASSERT (s != NULL);
9056 BFD_ASSERT (s->contents != NULL);
9057 BFD_ASSERT (s->output_section != NULL);
9058
9059 sec = eh->export_glue->root.u.def.section;
9060
9061 BFD_ASSERT (sec->output_section != NULL);
9062
9063 val = eh->export_glue->root.u.def.value + sec->output_offset
9064 + sec->output_section->vma;
9065
9066 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9067 h->root.u.def.section->owner,
9068 globals->obfd, sec, val, s,
9069 &error_message);
9070 BFD_ASSERT (myh);
9071 return TRUE;
9072}
9073
9074/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9075
9076static bfd_vma
9077elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9078{
9079 bfd_byte *p;
9080 bfd_vma glue_addr;
9081 asection *s;
9082 struct elf32_arm_link_hash_table *globals;
9083
9084 globals = elf32_arm_hash_table (info);
9085 BFD_ASSERT (globals != NULL);
9086 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9087
9088 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9089 ARM_BX_GLUE_SECTION_NAME);
9090 BFD_ASSERT (s != NULL);
9091 BFD_ASSERT (s->contents != NULL);
9092 BFD_ASSERT (s->output_section != NULL);
9093
9094 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9095
9096 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9097
9098 if ((globals->bx_glue_offset[reg] & 1) == 0)
9099 {
9100 p = s->contents + glue_addr;
9101 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9102 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9103 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9104 globals->bx_glue_offset[reg] |= 1;
9105 }
9106
9107 return glue_addr + s->output_section->vma + s->output_offset;
9108}
9109
9110/* Generate Arm stubs for exported Thumb symbols. */
9111static void
9112elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9113 struct bfd_link_info *link_info)
9114{
9115 struct elf32_arm_link_hash_table * globals;
9116
9117 if (link_info == NULL)
9118 /* Ignore this if we are not called by the ELF backend linker. */
9119 return;
9120
9121 globals = elf32_arm_hash_table (link_info);
9122 if (globals == NULL)
9123 return;
9124
9125 /* If blx is available then exported Thumb symbols are OK and there is
9126 nothing to do. */
9127 if (globals->use_blx)
9128 return;
9129
9130 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9131 link_info);
9132}
9133
9134/* Reserve space for COUNT dynamic relocations in relocation selection
9135 SRELOC. */
9136
9137static void
9138elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9139 bfd_size_type count)
9140{
9141 struct elf32_arm_link_hash_table *htab;
9142
9143 htab = elf32_arm_hash_table (info);
9144 BFD_ASSERT (htab->root.dynamic_sections_created);
9145 if (sreloc == NULL)
9146 abort ();
9147 sreloc->size += RELOC_SIZE (htab) * count;
9148}
9149
9150/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9151 dynamic, the relocations should go in SRELOC, otherwise they should
9152 go in the special .rel.iplt section. */
9153
9154static void
9155elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9156 bfd_size_type count)
9157{
9158 struct elf32_arm_link_hash_table *htab;
9159
9160 htab = elf32_arm_hash_table (info);
9161 if (!htab->root.dynamic_sections_created)
9162 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9163 else
9164 {
9165 BFD_ASSERT (sreloc != NULL);
9166 sreloc->size += RELOC_SIZE (htab) * count;
9167 }
9168}
9169
9170/* Add relocation REL to the end of relocation section SRELOC. */
9171
9172static void
9173elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9174 asection *sreloc, Elf_Internal_Rela *rel)
9175{
9176 bfd_byte *loc;
9177 struct elf32_arm_link_hash_table *htab;
9178
9179 htab = elf32_arm_hash_table (info);
9180 if (!htab->root.dynamic_sections_created
9181 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9182 sreloc = htab->root.irelplt;
9183 if (sreloc == NULL)
9184 abort ();
9185 loc = sreloc->contents;
9186 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9187 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9188 abort ();
9189 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9190}
9191
9192/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9193 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9194 to .plt. */
9195
9196static void
9197elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9198 bfd_boolean is_iplt_entry,
9199 union gotplt_union *root_plt,
9200 struct arm_plt_info *arm_plt)
9201{
9202 struct elf32_arm_link_hash_table *htab;
9203 asection *splt;
9204 asection *sgotplt;
9205
9206 htab = elf32_arm_hash_table (info);
9207
9208 if (is_iplt_entry)
9209 {
9210 splt = htab->root.iplt;
9211 sgotplt = htab->root.igotplt;
9212
9213 /* NaCl uses a special first entry in .iplt too. */
9214 if (htab->nacl_p && splt->size == 0)
9215 splt->size += htab->plt_header_size;
9216
9217 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9218 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9219 }
9220 else
9221 {
9222 splt = htab->root.splt;
9223 sgotplt = htab->root.sgotplt;
9224
9225 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9226 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9227
9228 /* If this is the first .plt entry, make room for the special
9229 first entry. */
9230 if (splt->size == 0)
9231 splt->size += htab->plt_header_size;
9232
9233 htab->next_tls_desc_index++;
9234 }
9235
9236 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9237 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9238 splt->size += PLT_THUMB_STUB_SIZE;
9239 root_plt->offset = splt->size;
9240 splt->size += htab->plt_entry_size;
9241
9242 if (!htab->symbian_p)
9243 {
9244 /* We also need to make an entry in the .got.plt section, which
9245 will be placed in the .got section by the linker script. */
9246 if (is_iplt_entry)
9247 arm_plt->got_offset = sgotplt->size;
9248 else
9249 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9250 sgotplt->size += 4;
9251 }
9252}
9253
9254static bfd_vma
9255arm_movw_immediate (bfd_vma value)
9256{
9257 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9258}
9259
9260static bfd_vma
9261arm_movt_immediate (bfd_vma value)
9262{
9263 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9264}
9265
9266/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9267 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9268 Otherwise, DYNINDX is the index of the symbol in the dynamic
9269 symbol table and SYM_VALUE is undefined.
9270
9271 ROOT_PLT points to the offset of the PLT entry from the start of its
9272 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9273 bookkeeping information.
9274
9275 Returns FALSE if there was a problem. */
9276
9277static bfd_boolean
9278elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9279 union gotplt_union *root_plt,
9280 struct arm_plt_info *arm_plt,
9281 int dynindx, bfd_vma sym_value)
9282{
9283 struct elf32_arm_link_hash_table *htab;
9284 asection *sgot;
9285 asection *splt;
9286 asection *srel;
9287 bfd_byte *loc;
9288 bfd_vma plt_index;
9289 Elf_Internal_Rela rel;
9290 bfd_vma plt_header_size;
9291 bfd_vma got_header_size;
9292
9293 htab = elf32_arm_hash_table (info);
9294
9295 /* Pick the appropriate sections and sizes. */
9296 if (dynindx == -1)
9297 {
9298 splt = htab->root.iplt;
9299 sgot = htab->root.igotplt;
9300 srel = htab->root.irelplt;
9301
9302 /* There are no reserved entries in .igot.plt, and no special
9303 first entry in .iplt. */
9304 got_header_size = 0;
9305 plt_header_size = 0;
9306 }
9307 else
9308 {
9309 splt = htab->root.splt;
9310 sgot = htab->root.sgotplt;
9311 srel = htab->root.srelplt;
9312
9313 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9314 plt_header_size = htab->plt_header_size;
9315 }
9316 BFD_ASSERT (splt != NULL && srel != NULL);
9317
9318 /* Fill in the entry in the procedure linkage table. */
9319 if (htab->symbian_p)
9320 {
9321 BFD_ASSERT (dynindx >= 0);
9322 put_arm_insn (htab, output_bfd,
9323 elf32_arm_symbian_plt_entry[0],
9324 splt->contents + root_plt->offset);
9325 bfd_put_32 (output_bfd,
9326 elf32_arm_symbian_plt_entry[1],
9327 splt->contents + root_plt->offset + 4);
9328
9329 /* Fill in the entry in the .rel.plt section. */
9330 rel.r_offset = (splt->output_section->vma
9331 + splt->output_offset
9332 + root_plt->offset + 4);
9333 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9334
9335 /* Get the index in the procedure linkage table which
9336 corresponds to this symbol. This is the index of this symbol
9337 in all the symbols for which we are making plt entries. The
9338 first entry in the procedure linkage table is reserved. */
9339 plt_index = ((root_plt->offset - plt_header_size)
9340 / htab->plt_entry_size);
9341 }
9342 else
9343 {
9344 bfd_vma got_offset, got_address, plt_address;
9345 bfd_vma got_displacement, initial_got_entry;
9346 bfd_byte * ptr;
9347
9348 BFD_ASSERT (sgot != NULL);
9349
9350 /* Get the offset into the .(i)got.plt table of the entry that
9351 corresponds to this function. */
9352 got_offset = (arm_plt->got_offset & -2);
9353
9354 /* Get the index in the procedure linkage table which
9355 corresponds to this symbol. This is the index of this symbol
9356 in all the symbols for which we are making plt entries.
9357 After the reserved .got.plt entries, all symbols appear in
9358 the same order as in .plt. */
9359 plt_index = (got_offset - got_header_size) / 4;
9360
9361 /* Calculate the address of the GOT entry. */
9362 got_address = (sgot->output_section->vma
9363 + sgot->output_offset
9364 + got_offset);
9365
9366 /* ...and the address of the PLT entry. */
9367 plt_address = (splt->output_section->vma
9368 + splt->output_offset
9369 + root_plt->offset);
9370
9371 ptr = splt->contents + root_plt->offset;
9372 if (htab->vxworks_p && bfd_link_pic (info))
9373 {
9374 unsigned int i;
9375 bfd_vma val;
9376
9377 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9378 {
9379 val = elf32_arm_vxworks_shared_plt_entry[i];
9380 if (i == 2)
9381 val |= got_address - sgot->output_section->vma;
9382 if (i == 5)
9383 val |= plt_index * RELOC_SIZE (htab);
9384 if (i == 2 || i == 5)
9385 bfd_put_32 (output_bfd, val, ptr);
9386 else
9387 put_arm_insn (htab, output_bfd, val, ptr);
9388 }
9389 }
9390 else if (htab->vxworks_p)
9391 {
9392 unsigned int i;
9393 bfd_vma val;
9394
9395 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9396 {
9397 val = elf32_arm_vxworks_exec_plt_entry[i];
9398 if (i == 2)
9399 val |= got_address;
9400 if (i == 4)
9401 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9402 if (i == 5)
9403 val |= plt_index * RELOC_SIZE (htab);
9404 if (i == 2 || i == 5)
9405 bfd_put_32 (output_bfd, val, ptr);
9406 else
9407 put_arm_insn (htab, output_bfd, val, ptr);
9408 }
9409
9410 loc = (htab->srelplt2->contents
9411 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9412
9413 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9414 referencing the GOT for this PLT entry. */
9415 rel.r_offset = plt_address + 8;
9416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9417 rel.r_addend = got_offset;
9418 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9419 loc += RELOC_SIZE (htab);
9420
9421 /* Create the R_ARM_ABS32 relocation referencing the
9422 beginning of the PLT for this GOT entry. */
9423 rel.r_offset = got_address;
9424 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9425 rel.r_addend = 0;
9426 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9427 }
9428 else if (htab->nacl_p)
9429 {
9430 /* Calculate the displacement between the PLT slot and the
9431 common tail that's part of the special initial PLT slot. */
9432 int32_t tail_displacement
9433 = ((splt->output_section->vma + splt->output_offset
9434 + ARM_NACL_PLT_TAIL_OFFSET)
9435 - (plt_address + htab->plt_entry_size + 4));
9436 BFD_ASSERT ((tail_displacement & 3) == 0);
9437 tail_displacement >>= 2;
9438
9439 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9440 || (-tail_displacement & 0xff000000) == 0);
9441
9442 /* Calculate the displacement between the PLT slot and the entry
9443 in the GOT. The offset accounts for the value produced by
9444 adding to pc in the penultimate instruction of the PLT stub. */
9445 got_displacement = (got_address
9446 - (plt_address + htab->plt_entry_size));
9447
9448 /* NaCl does not support interworking at all. */
9449 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9450
9451 put_arm_insn (htab, output_bfd,
9452 elf32_arm_nacl_plt_entry[0]
9453 | arm_movw_immediate (got_displacement),
9454 ptr + 0);
9455 put_arm_insn (htab, output_bfd,
9456 elf32_arm_nacl_plt_entry[1]
9457 | arm_movt_immediate (got_displacement),
9458 ptr + 4);
9459 put_arm_insn (htab, output_bfd,
9460 elf32_arm_nacl_plt_entry[2],
9461 ptr + 8);
9462 put_arm_insn (htab, output_bfd,
9463 elf32_arm_nacl_plt_entry[3]
9464 | (tail_displacement & 0x00ffffff),
9465 ptr + 12);
9466 }
9467 else if (using_thumb_only (htab))
9468 {
9469 /* PR ld/16017: Generate thumb only PLT entries. */
9470 if (!using_thumb2 (htab))
9471 {
9472 /* FIXME: We ought to be able to generate thumb-1 PLT
9473 instructions... */
9474 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9475 output_bfd);
9476 return FALSE;
9477 }
9478
9479 /* Calculate the displacement between the PLT slot and the entry in
9480 the GOT. The 12-byte offset accounts for the value produced by
9481 adding to pc in the 3rd instruction of the PLT stub. */
9482 got_displacement = got_address - (plt_address + 12);
9483
9484 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9485 instead of 'put_thumb_insn'. */
9486 put_arm_insn (htab, output_bfd,
9487 elf32_thumb2_plt_entry[0]
9488 | ((got_displacement & 0x000000ff) << 16)
9489 | ((got_displacement & 0x00000700) << 20)
9490 | ((got_displacement & 0x00000800) >> 1)
9491 | ((got_displacement & 0x0000f000) >> 12),
9492 ptr + 0);
9493 put_arm_insn (htab, output_bfd,
9494 elf32_thumb2_plt_entry[1]
9495 | ((got_displacement & 0x00ff0000) )
9496 | ((got_displacement & 0x07000000) << 4)
9497 | ((got_displacement & 0x08000000) >> 17)
9498 | ((got_displacement & 0xf0000000) >> 28),
9499 ptr + 4);
9500 put_arm_insn (htab, output_bfd,
9501 elf32_thumb2_plt_entry[2],
9502 ptr + 8);
9503 put_arm_insn (htab, output_bfd,
9504 elf32_thumb2_plt_entry[3],
9505 ptr + 12);
9506 }
9507 else
9508 {
9509 /* Calculate the displacement between the PLT slot and the
9510 entry in the GOT. The eight-byte offset accounts for the
9511 value produced by adding to pc in the first instruction
9512 of the PLT stub. */
9513 got_displacement = got_address - (plt_address + 8);
9514
9515 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9516 {
9517 put_thumb_insn (htab, output_bfd,
9518 elf32_arm_plt_thumb_stub[0], ptr - 4);
9519 put_thumb_insn (htab, output_bfd,
9520 elf32_arm_plt_thumb_stub[1], ptr - 2);
9521 }
9522
9523 if (!elf32_arm_use_long_plt_entry)
9524 {
9525 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9526
9527 put_arm_insn (htab, output_bfd,
9528 elf32_arm_plt_entry_short[0]
9529 | ((got_displacement & 0x0ff00000) >> 20),
9530 ptr + 0);
9531 put_arm_insn (htab, output_bfd,
9532 elf32_arm_plt_entry_short[1]
9533 | ((got_displacement & 0x000ff000) >> 12),
9534 ptr+ 4);
9535 put_arm_insn (htab, output_bfd,
9536 elf32_arm_plt_entry_short[2]
9537 | (got_displacement & 0x00000fff),
9538 ptr + 8);
9539#ifdef FOUR_WORD_PLT
9540 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9541#endif
9542 }
9543 else
9544 {
9545 put_arm_insn (htab, output_bfd,
9546 elf32_arm_plt_entry_long[0]
9547 | ((got_displacement & 0xf0000000) >> 28),
9548 ptr + 0);
9549 put_arm_insn (htab, output_bfd,
9550 elf32_arm_plt_entry_long[1]
9551 | ((got_displacement & 0x0ff00000) >> 20),
9552 ptr + 4);
9553 put_arm_insn (htab, output_bfd,
9554 elf32_arm_plt_entry_long[2]
9555 | ((got_displacement & 0x000ff000) >> 12),
9556 ptr+ 8);
9557 put_arm_insn (htab, output_bfd,
9558 elf32_arm_plt_entry_long[3]
9559 | (got_displacement & 0x00000fff),
9560 ptr + 12);
9561 }
9562 }
9563
9564 /* Fill in the entry in the .rel(a).(i)plt section. */
9565 rel.r_offset = got_address;
9566 rel.r_addend = 0;
9567 if (dynindx == -1)
9568 {
9569 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9570 The dynamic linker or static executable then calls SYM_VALUE
9571 to determine the correct run-time value of the .igot.plt entry. */
9572 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9573 initial_got_entry = sym_value;
9574 }
9575 else
9576 {
9577 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9578 initial_got_entry = (splt->output_section->vma
9579 + splt->output_offset);
9580 }
9581
9582 /* Fill in the entry in the global offset table. */
9583 bfd_put_32 (output_bfd, initial_got_entry,
9584 sgot->contents + got_offset);
9585 }
9586
9587 if (dynindx == -1)
9588 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9589 else
9590 {
9591 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9592 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9593 }
9594
9595 return TRUE;
9596}
9597
9598/* Some relocations map to different relocations depending on the
9599 target. Return the real relocation. */
9600
9601static int
9602arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9603 int r_type)
9604{
9605 switch (r_type)
9606 {
9607 case R_ARM_TARGET1:
9608 if (globals->target1_is_rel)
9609 return R_ARM_REL32;
9610 else
9611 return R_ARM_ABS32;
9612
9613 case R_ARM_TARGET2:
9614 return globals->target2_reloc;
9615
9616 default:
9617 return r_type;
9618 }
9619}
9620
9621/* Return the base VMA address which should be subtracted from real addresses
9622 when resolving @dtpoff relocation.
9623 This is PT_TLS segment p_vaddr. */
9624
9625static bfd_vma
9626dtpoff_base (struct bfd_link_info *info)
9627{
9628 /* If tls_sec is NULL, we should have signalled an error already. */
9629 if (elf_hash_table (info)->tls_sec == NULL)
9630 return 0;
9631 return elf_hash_table (info)->tls_sec->vma;
9632}
9633
9634/* Return the relocation value for @tpoff relocation
9635 if STT_TLS virtual address is ADDRESS. */
9636
9637static bfd_vma
9638tpoff (struct bfd_link_info *info, bfd_vma address)
9639{
9640 struct elf_link_hash_table *htab = elf_hash_table (info);
9641 bfd_vma base;
9642
9643 /* If tls_sec is NULL, we should have signalled an error already. */
9644 if (htab->tls_sec == NULL)
9645 return 0;
9646 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9647 return address - htab->tls_sec->vma + base;
9648}
9649
9650/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9651 VALUE is the relocation value. */
9652
9653static bfd_reloc_status_type
9654elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9655{
9656 if (value > 0xfff)
9657 return bfd_reloc_overflow;
9658
9659 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9660 bfd_put_32 (abfd, value, data);
9661 return bfd_reloc_ok;
9662}
9663
9664/* Handle TLS relaxations. Relaxing is possible for symbols that use
9665 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9666 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9667
9668 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9669 is to then call final_link_relocate. Return other values in the
9670 case of error.
9671
9672 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9673 the pre-relaxed code. It would be nice if the relocs were updated
9674 to match the optimization. */
9675
9676static bfd_reloc_status_type
9677elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9678 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9679 Elf_Internal_Rela *rel, unsigned long is_local)
9680{
9681 unsigned long insn;
9682
9683 switch (ELF32_R_TYPE (rel->r_info))
9684 {
9685 default:
9686 return bfd_reloc_notsupported;
9687
9688 case R_ARM_TLS_GOTDESC:
9689 if (is_local)
9690 insn = 0;
9691 else
9692 {
9693 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9694 if (insn & 1)
9695 insn -= 5; /* THUMB */
9696 else
9697 insn -= 8; /* ARM */
9698 }
9699 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9700 return bfd_reloc_continue;
9701
9702 case R_ARM_THM_TLS_DESCSEQ:
9703 /* Thumb insn. */
9704 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9705 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9706 {
9707 if (is_local)
9708 /* nop */
9709 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9710 }
9711 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9712 {
9713 if (is_local)
9714 /* nop */
9715 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9716 else
9717 /* ldr rx,[ry] */
9718 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9719 }
9720 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9721 {
9722 if (is_local)
9723 /* nop */
9724 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9725 else
9726 /* mov r0, rx */
9727 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9728 contents + rel->r_offset);
9729 }
9730 else
9731 {
9732 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9733 /* It's a 32 bit instruction, fetch the rest of it for
9734 error generation. */
9735 insn = (insn << 16)
9736 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9737 _bfd_error_handler
9738 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
9739 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9740 return bfd_reloc_notsupported;
9741 }
9742 break;
9743
9744 case R_ARM_TLS_DESCSEQ:
9745 /* arm insn. */
9746 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9747 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9748 {
9749 if (is_local)
9750 /* mov rx, ry */
9751 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9752 contents + rel->r_offset);
9753 }
9754 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9755 {
9756 if (is_local)
9757 /* nop */
9758 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9759 else
9760 /* ldr rx,[ry] */
9761 bfd_put_32 (input_bfd, insn & 0xfffff000,
9762 contents + rel->r_offset);
9763 }
9764 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9765 {
9766 if (is_local)
9767 /* nop */
9768 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9769 else
9770 /* mov r0, rx */
9771 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9772 contents + rel->r_offset);
9773 }
9774 else
9775 {
9776 _bfd_error_handler
9777 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
9778 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9779 return bfd_reloc_notsupported;
9780 }
9781 break;
9782
9783 case R_ARM_TLS_CALL:
9784 /* GD->IE relaxation, turn the instruction into 'nop' or
9785 'ldr r0, [pc,r0]' */
9786 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9787 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9788 break;
9789
9790 case R_ARM_THM_TLS_CALL:
9791 /* GD->IE relaxation. */
9792 if (!is_local)
9793 /* add r0,pc; ldr r0, [r0] */
9794 insn = 0x44786800;
9795 else if (using_thumb2 (globals))
9796 /* nop.w */
9797 insn = 0xf3af8000;
9798 else
9799 /* nop; nop */
9800 insn = 0xbf00bf00;
9801
9802 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9803 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9804 break;
9805 }
9806 return bfd_reloc_ok;
9807}
9808
9809/* For a given value of n, calculate the value of G_n as required to
9810 deal with group relocations. We return it in the form of an
9811 encoded constant-and-rotation, together with the final residual. If n is
9812 specified as less than zero, then final_residual is filled with the
9813 input value and no further action is performed. */
9814
9815static bfd_vma
9816calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9817{
9818 int current_n;
9819 bfd_vma g_n;
9820 bfd_vma encoded_g_n = 0;
9821 bfd_vma residual = value; /* Also known as Y_n. */
9822
9823 for (current_n = 0; current_n <= n; current_n++)
9824 {
9825 int shift;
9826
9827 /* Calculate which part of the value to mask. */
9828 if (residual == 0)
9829 shift = 0;
9830 else
9831 {
9832 int msb;
9833
9834 /* Determine the most significant bit in the residual and
9835 align the resulting value to a 2-bit boundary. */
9836 for (msb = 30; msb >= 0; msb -= 2)
9837 if (residual & (3 << msb))
9838 break;
9839
9840 /* The desired shift is now (msb - 6), or zero, whichever
9841 is the greater. */
9842 shift = msb - 6;
9843 if (shift < 0)
9844 shift = 0;
9845 }
9846
9847 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9848 g_n = residual & (0xff << shift);
9849 encoded_g_n = (g_n >> shift)
9850 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9851
9852 /* Calculate the residual for the next time around. */
9853 residual &= ~g_n;
9854 }
9855
9856 *final_residual = residual;
9857
9858 return encoded_g_n;
9859}
9860
9861/* Given an ARM instruction, determine whether it is an ADD or a SUB.
9862 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9863
9864static int
9865identify_add_or_sub (bfd_vma insn)
9866{
9867 int opcode = insn & 0x1e00000;
9868
9869 if (opcode == 1 << 23) /* ADD */
9870 return 1;
9871
9872 if (opcode == 1 << 22) /* SUB */
9873 return -1;
9874
9875 return 0;
9876}
9877
9878/* Perform a relocation as part of a final link. */
9879
9880static bfd_reloc_status_type
9881elf32_arm_final_link_relocate (reloc_howto_type * howto,
9882 bfd * input_bfd,
9883 bfd * output_bfd,
9884 asection * input_section,
9885 bfd_byte * contents,
9886 Elf_Internal_Rela * rel,
9887 bfd_vma value,
9888 struct bfd_link_info * info,
9889 asection * sym_sec,
9890 const char * sym_name,
9891 unsigned char st_type,
9892 enum arm_st_branch_type branch_type,
9893 struct elf_link_hash_entry * h,
9894 bfd_boolean * unresolved_reloc_p,
9895 char ** error_message)
9896{
9897 unsigned long r_type = howto->type;
9898 unsigned long r_symndx;
9899 bfd_byte * hit_data = contents + rel->r_offset;
9900 bfd_vma * local_got_offsets;
9901 bfd_vma * local_tlsdesc_gotents;
9902 asection * sgot;
9903 asection * splt;
9904 asection * sreloc = NULL;
9905 asection * srelgot;
9906 bfd_vma addend;
9907 bfd_signed_vma signed_addend;
9908 unsigned char dynreloc_st_type;
9909 bfd_vma dynreloc_value;
9910 struct elf32_arm_link_hash_table * globals;
9911 struct elf32_arm_link_hash_entry *eh;
9912 union gotplt_union *root_plt;
9913 struct arm_plt_info *arm_plt;
9914 bfd_vma plt_offset;
9915 bfd_vma gotplt_offset;
9916 bfd_boolean has_iplt_entry;
9917
9918 globals = elf32_arm_hash_table (info);
9919 if (globals == NULL)
9920 return bfd_reloc_notsupported;
9921
9922 BFD_ASSERT (is_arm_elf (input_bfd));
9923
9924 /* Some relocation types map to different relocations depending on the
9925 target. We pick the right one here. */
9926 r_type = arm_real_reloc_type (globals, r_type);
9927
9928 /* It is possible to have linker relaxations on some TLS access
9929 models. Update our information here. */
9930 r_type = elf32_arm_tls_transition (info, r_type, h);
9931
9932 if (r_type != howto->type)
9933 howto = elf32_arm_howto_from_type (r_type);
9934
9935 eh = (struct elf32_arm_link_hash_entry *) h;
9936 sgot = globals->root.sgot;
9937 local_got_offsets = elf_local_got_offsets (input_bfd);
9938 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9939
9940 if (globals->root.dynamic_sections_created)
9941 srelgot = globals->root.srelgot;
9942 else
9943 srelgot = NULL;
9944
9945 r_symndx = ELF32_R_SYM (rel->r_info);
9946
9947 if (globals->use_rel)
9948 {
9949 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9950
9951 if (addend & ((howto->src_mask + 1) >> 1))
9952 {
9953 signed_addend = -1;
9954 signed_addend &= ~ howto->src_mask;
9955 signed_addend |= addend;
9956 }
9957 else
9958 signed_addend = addend;
9959 }
9960 else
9961 addend = signed_addend = rel->r_addend;
9962
9963 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9964 are resolving a function call relocation. */
9965 if (using_thumb_only (globals)
9966 && (r_type == R_ARM_THM_CALL
9967 || r_type == R_ARM_THM_JUMP24)
9968 && branch_type == ST_BRANCH_TO_ARM)
9969 branch_type = ST_BRANCH_TO_THUMB;
9970
9971 /* Record the symbol information that should be used in dynamic
9972 relocations. */
9973 dynreloc_st_type = st_type;
9974 dynreloc_value = value;
9975 if (branch_type == ST_BRANCH_TO_THUMB)
9976 dynreloc_value |= 1;
9977
9978 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9979 VALUE appropriately for relocations that we resolve at link time. */
9980 has_iplt_entry = FALSE;
9981 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9982 &arm_plt)
9983 && root_plt->offset != (bfd_vma) -1)
9984 {
9985 plt_offset = root_plt->offset;
9986 gotplt_offset = arm_plt->got_offset;
9987
9988 if (h == NULL || eh->is_iplt)
9989 {
9990 has_iplt_entry = TRUE;
9991 splt = globals->root.iplt;
9992
9993 /* Populate .iplt entries here, because not all of them will
9994 be seen by finish_dynamic_symbol. The lower bit is set if
9995 we have already populated the entry. */
9996 if (plt_offset & 1)
9997 plt_offset--;
9998 else
9999 {
10000 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10001 -1, dynreloc_value))
10002 root_plt->offset |= 1;
10003 else
10004 return bfd_reloc_notsupported;
10005 }
10006
10007 /* Static relocations always resolve to the .iplt entry. */
10008 st_type = STT_FUNC;
10009 value = (splt->output_section->vma
10010 + splt->output_offset
10011 + plt_offset);
10012 branch_type = ST_BRANCH_TO_ARM;
10013
10014 /* If there are non-call relocations that resolve to the .iplt
10015 entry, then all dynamic ones must too. */
10016 if (arm_plt->noncall_refcount != 0)
10017 {
10018 dynreloc_st_type = st_type;
10019 dynreloc_value = value;
10020 }
10021 }
10022 else
10023 /* We populate the .plt entry in finish_dynamic_symbol. */
10024 splt = globals->root.splt;
10025 }
10026 else
10027 {
10028 splt = NULL;
10029 plt_offset = (bfd_vma) -1;
10030 gotplt_offset = (bfd_vma) -1;
10031 }
10032
10033 switch (r_type)
10034 {
10035 case R_ARM_NONE:
10036 /* We don't need to find a value for this symbol. It's just a
10037 marker. */
10038 *unresolved_reloc_p = FALSE;
10039 return bfd_reloc_ok;
10040
10041 case R_ARM_ABS12:
10042 if (!globals->vxworks_p)
10043 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10044
10045 case R_ARM_PC24:
10046 case R_ARM_ABS32:
10047 case R_ARM_ABS32_NOI:
10048 case R_ARM_REL32:
10049 case R_ARM_REL32_NOI:
10050 case R_ARM_CALL:
10051 case R_ARM_JUMP24:
10052 case R_ARM_XPC25:
10053 case R_ARM_PREL31:
10054 case R_ARM_PLT32:
10055 /* Handle relocations which should use the PLT entry. ABS32/REL32
10056 will use the symbol's value, which may point to a PLT entry, but we
10057 don't need to handle that here. If we created a PLT entry, all
10058 branches in this object should go to it, except if the PLT is too
10059 far away, in which case a long branch stub should be inserted. */
10060 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10061 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10062 && r_type != R_ARM_CALL
10063 && r_type != R_ARM_JUMP24
10064 && r_type != R_ARM_PLT32)
10065 && plt_offset != (bfd_vma) -1)
10066 {
10067 /* If we've created a .plt section, and assigned a PLT entry
10068 to this function, it must either be a STT_GNU_IFUNC reference
10069 or not be known to bind locally. In other cases, we should
10070 have cleared the PLT entry by now. */
10071 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10072
10073 value = (splt->output_section->vma
10074 + splt->output_offset
10075 + plt_offset);
10076 *unresolved_reloc_p = FALSE;
10077 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10078 contents, rel->r_offset, value,
10079 rel->r_addend);
10080 }
10081
10082 /* When generating a shared object or relocatable executable, these
10083 relocations are copied into the output file to be resolved at
10084 run time. */
10085 if ((bfd_link_pic (info)
10086 || globals->root.is_relocatable_executable)
10087 && (input_section->flags & SEC_ALLOC)
10088 && !(globals->vxworks_p
10089 && strcmp (input_section->output_section->name,
10090 ".tls_vars") == 0)
10091 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10092 || !SYMBOL_CALLS_LOCAL (info, h))
10093 && !(input_bfd == globals->stub_bfd
10094 && strstr (input_section->name, STUB_SUFFIX))
10095 && (h == NULL
10096 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10097 || h->root.type != bfd_link_hash_undefweak)
10098 && r_type != R_ARM_PC24
10099 && r_type != R_ARM_CALL
10100 && r_type != R_ARM_JUMP24
10101 && r_type != R_ARM_PREL31
10102 && r_type != R_ARM_PLT32)
10103 {
10104 Elf_Internal_Rela outrel;
10105 bfd_boolean skip, relocate;
10106
10107 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10108 && !h->def_regular)
10109 {
10110 char *v = _("shared object");
10111
10112 if (bfd_link_executable (info))
10113 v = _("PIE executable");
10114
10115 _bfd_error_handler
10116 (_("%B: relocation %s against external or undefined symbol `%s'"
10117 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10118 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10119 return bfd_reloc_notsupported;
10120 }
10121
10122 *unresolved_reloc_p = FALSE;
10123
10124 if (sreloc == NULL && globals->root.dynamic_sections_created)
10125 {
10126 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10127 ! globals->use_rel);
10128
10129 if (sreloc == NULL)
10130 return bfd_reloc_notsupported;
10131 }
10132
10133 skip = FALSE;
10134 relocate = FALSE;
10135
10136 outrel.r_addend = addend;
10137 outrel.r_offset =
10138 _bfd_elf_section_offset (output_bfd, info, input_section,
10139 rel->r_offset);
10140 if (outrel.r_offset == (bfd_vma) -1)
10141 skip = TRUE;
10142 else if (outrel.r_offset == (bfd_vma) -2)
10143 skip = TRUE, relocate = TRUE;
10144 outrel.r_offset += (input_section->output_section->vma
10145 + input_section->output_offset);
10146
10147 if (skip)
10148 memset (&outrel, 0, sizeof outrel);
10149 else if (h != NULL
10150 && h->dynindx != -1
10151 && (!bfd_link_pic (info)
10152 || !SYMBOLIC_BIND (info, h)
10153 || !h->def_regular))
10154 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10155 else
10156 {
10157 int symbol;
10158
10159 /* This symbol is local, or marked to become local. */
10160 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10161 if (globals->symbian_p)
10162 {
10163 asection *osec;
10164
10165 /* On Symbian OS, the data segment and text segement
10166 can be relocated independently. Therefore, we
10167 must indicate the segment to which this
10168 relocation is relative. The BPABI allows us to
10169 use any symbol in the right segment; we just use
10170 the section symbol as it is convenient. (We
10171 cannot use the symbol given by "h" directly as it
10172 will not appear in the dynamic symbol table.)
10173
10174 Note that the dynamic linker ignores the section
10175 symbol value, so we don't subtract osec->vma
10176 from the emitted reloc addend. */
10177 if (sym_sec)
10178 osec = sym_sec->output_section;
10179 else
10180 osec = input_section->output_section;
10181 symbol = elf_section_data (osec)->dynindx;
10182 if (symbol == 0)
10183 {
10184 struct elf_link_hash_table *htab = elf_hash_table (info);
10185
10186 if ((osec->flags & SEC_READONLY) == 0
10187 && htab->data_index_section != NULL)
10188 osec = htab->data_index_section;
10189 else
10190 osec = htab->text_index_section;
10191 symbol = elf_section_data (osec)->dynindx;
10192 }
10193 BFD_ASSERT (symbol != 0);
10194 }
10195 else
10196 /* On SVR4-ish systems, the dynamic loader cannot
10197 relocate the text and data segments independently,
10198 so the symbol does not matter. */
10199 symbol = 0;
10200 if (dynreloc_st_type == STT_GNU_IFUNC)
10201 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10202 to the .iplt entry. Instead, every non-call reference
10203 must use an R_ARM_IRELATIVE relocation to obtain the
10204 correct run-time address. */
10205 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10206 else
10207 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10208 if (globals->use_rel)
10209 relocate = TRUE;
10210 else
10211 outrel.r_addend += dynreloc_value;
10212 }
10213
10214 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10215
10216 /* If this reloc is against an external symbol, we do not want to
10217 fiddle with the addend. Otherwise, we need to include the symbol
10218 value so that it becomes an addend for the dynamic reloc. */
10219 if (! relocate)
10220 return bfd_reloc_ok;
10221
10222 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10223 contents, rel->r_offset,
10224 dynreloc_value, (bfd_vma) 0);
10225 }
10226 else switch (r_type)
10227 {
10228 case R_ARM_ABS12:
10229 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10230
10231 case R_ARM_XPC25: /* Arm BLX instruction. */
10232 case R_ARM_CALL:
10233 case R_ARM_JUMP24:
10234 case R_ARM_PC24: /* Arm B/BL instruction. */
10235 case R_ARM_PLT32:
10236 {
10237 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10238
10239 if (r_type == R_ARM_XPC25)
10240 {
10241 /* Check for Arm calling Arm function. */
10242 /* FIXME: Should we translate the instruction into a BL
10243 instruction instead ? */
10244 if (branch_type != ST_BRANCH_TO_THUMB)
10245 _bfd_error_handler
10246 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10247 input_bfd,
10248 h ? h->root.root.string : "(local)");
10249 }
10250 else if (r_type == R_ARM_PC24)
10251 {
10252 /* Check for Arm calling Thumb function. */
10253 if (branch_type == ST_BRANCH_TO_THUMB)
10254 {
10255 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10256 output_bfd, input_section,
10257 hit_data, sym_sec, rel->r_offset,
10258 signed_addend, value,
10259 error_message))
10260 return bfd_reloc_ok;
10261 else
10262 return bfd_reloc_dangerous;
10263 }
10264 }
10265
10266 /* Check if a stub has to be inserted because the
10267 destination is too far or we are changing mode. */
10268 if ( r_type == R_ARM_CALL
10269 || r_type == R_ARM_JUMP24
10270 || r_type == R_ARM_PLT32)
10271 {
10272 enum elf32_arm_stub_type stub_type = arm_stub_none;
10273 struct elf32_arm_link_hash_entry *hash;
10274
10275 hash = (struct elf32_arm_link_hash_entry *) h;
10276 stub_type = arm_type_of_stub (info, input_section, rel,
10277 st_type, &branch_type,
10278 hash, value, sym_sec,
10279 input_bfd, sym_name);
10280
10281 if (stub_type != arm_stub_none)
10282 {
10283 /* The target is out of reach, so redirect the
10284 branch to the local stub for this function. */
10285 stub_entry = elf32_arm_get_stub_entry (input_section,
10286 sym_sec, h,
10287 rel, globals,
10288 stub_type);
10289 {
10290 if (stub_entry != NULL)
10291 value = (stub_entry->stub_offset
10292 + stub_entry->stub_sec->output_offset
10293 + stub_entry->stub_sec->output_section->vma);
10294
10295 if (plt_offset != (bfd_vma) -1)
10296 *unresolved_reloc_p = FALSE;
10297 }
10298 }
10299 else
10300 {
10301 /* If the call goes through a PLT entry, make sure to
10302 check distance to the right destination address. */
10303 if (plt_offset != (bfd_vma) -1)
10304 {
10305 value = (splt->output_section->vma
10306 + splt->output_offset
10307 + plt_offset);
10308 *unresolved_reloc_p = FALSE;
10309 /* The PLT entry is in ARM mode, regardless of the
10310 target function. */
10311 branch_type = ST_BRANCH_TO_ARM;
10312 }
10313 }
10314 }
10315
10316 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10317 where:
10318 S is the address of the symbol in the relocation.
10319 P is address of the instruction being relocated.
10320 A is the addend (extracted from the instruction) in bytes.
10321
10322 S is held in 'value'.
10323 P is the base address of the section containing the
10324 instruction plus the offset of the reloc into that
10325 section, ie:
10326 (input_section->output_section->vma +
10327 input_section->output_offset +
10328 rel->r_offset).
10329 A is the addend, converted into bytes, ie:
10330 (signed_addend * 4)
10331
10332 Note: None of these operations have knowledge of the pipeline
10333 size of the processor, thus it is up to the assembler to
10334 encode this information into the addend. */
10335 value -= (input_section->output_section->vma
10336 + input_section->output_offset);
10337 value -= rel->r_offset;
10338 if (globals->use_rel)
10339 value += (signed_addend << howto->size);
10340 else
10341 /* RELA addends do not have to be adjusted by howto->size. */
10342 value += signed_addend;
10343
10344 signed_addend = value;
10345 signed_addend >>= howto->rightshift;
10346
10347 /* A branch to an undefined weak symbol is turned into a jump to
10348 the next instruction unless a PLT entry will be created.
10349 Do the same for local undefined symbols (but not for STN_UNDEF).
10350 The jump to the next instruction is optimized as a NOP depending
10351 on the architecture. */
10352 if (h ? (h->root.type == bfd_link_hash_undefweak
10353 && plt_offset == (bfd_vma) -1)
10354 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10355 {
10356 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10357
10358 if (arch_has_arm_nop (globals))
10359 value |= 0x0320f000;
10360 else
10361 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10362 }
10363 else
10364 {
10365 /* Perform a signed range check. */
10366 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10367 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10368 return bfd_reloc_overflow;
10369
10370 addend = (value & 2);
10371
10372 value = (signed_addend & howto->dst_mask)
10373 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10374
10375 if (r_type == R_ARM_CALL)
10376 {
10377 /* Set the H bit in the BLX instruction. */
10378 if (branch_type == ST_BRANCH_TO_THUMB)
10379 {
10380 if (addend)
10381 value |= (1 << 24);
10382 else
10383 value &= ~(bfd_vma)(1 << 24);
10384 }
10385
10386 /* Select the correct instruction (BL or BLX). */
10387 /* Only if we are not handling a BL to a stub. In this
10388 case, mode switching is performed by the stub. */
10389 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10390 value |= (1 << 28);
10391 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10392 {
10393 value &= ~(bfd_vma)(1 << 28);
10394 value |= (1 << 24);
10395 }
10396 }
10397 }
10398 }
10399 break;
10400
10401 case R_ARM_ABS32:
10402 value += addend;
10403 if (branch_type == ST_BRANCH_TO_THUMB)
10404 value |= 1;
10405 break;
10406
10407 case R_ARM_ABS32_NOI:
10408 value += addend;
10409 break;
10410
10411 case R_ARM_REL32:
10412 value += addend;
10413 if (branch_type == ST_BRANCH_TO_THUMB)
10414 value |= 1;
10415 value -= (input_section->output_section->vma
10416 + input_section->output_offset + rel->r_offset);
10417 break;
10418
10419 case R_ARM_REL32_NOI:
10420 value += addend;
10421 value -= (input_section->output_section->vma
10422 + input_section->output_offset + rel->r_offset);
10423 break;
10424
10425 case R_ARM_PREL31:
10426 value -= (input_section->output_section->vma
10427 + input_section->output_offset + rel->r_offset);
10428 value += signed_addend;
10429 if (! h || h->root.type != bfd_link_hash_undefweak)
10430 {
10431 /* Check for overflow. */
10432 if ((value ^ (value >> 1)) & (1 << 30))
10433 return bfd_reloc_overflow;
10434 }
10435 value &= 0x7fffffff;
10436 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10437 if (branch_type == ST_BRANCH_TO_THUMB)
10438 value |= 1;
10439 break;
10440 }
10441
10442 bfd_put_32 (input_bfd, value, hit_data);
10443 return bfd_reloc_ok;
10444
10445 case R_ARM_ABS8:
10446 /* PR 16202: Refectch the addend using the correct size. */
10447 if (globals->use_rel)
10448 addend = bfd_get_8 (input_bfd, hit_data);
10449 value += addend;
10450
10451 /* There is no way to tell whether the user intended to use a signed or
10452 unsigned addend. When checking for overflow we accept either,
10453 as specified by the AAELF. */
10454 if ((long) value > 0xff || (long) value < -0x80)
10455 return bfd_reloc_overflow;
10456
10457 bfd_put_8 (input_bfd, value, hit_data);
10458 return bfd_reloc_ok;
10459
10460 case R_ARM_ABS16:
10461 /* PR 16202: Refectch the addend using the correct size. */
10462 if (globals->use_rel)
10463 addend = bfd_get_16 (input_bfd, hit_data);
10464 value += addend;
10465
10466 /* See comment for R_ARM_ABS8. */
10467 if ((long) value > 0xffff || (long) value < -0x8000)
10468 return bfd_reloc_overflow;
10469
10470 bfd_put_16 (input_bfd, value, hit_data);
10471 return bfd_reloc_ok;
10472
10473 case R_ARM_THM_ABS5:
10474 /* Support ldr and str instructions for the thumb. */
10475 if (globals->use_rel)
10476 {
10477 /* Need to refetch addend. */
10478 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10479 /* ??? Need to determine shift amount from operand size. */
10480 addend >>= howto->rightshift;
10481 }
10482 value += addend;
10483
10484 /* ??? Isn't value unsigned? */
10485 if ((long) value > 0x1f || (long) value < -0x10)
10486 return bfd_reloc_overflow;
10487
10488 /* ??? Value needs to be properly shifted into place first. */
10489 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10490 bfd_put_16 (input_bfd, value, hit_data);
10491 return bfd_reloc_ok;
10492
10493 case R_ARM_THM_ALU_PREL_11_0:
10494 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10495 {
10496 bfd_vma insn;
10497 bfd_signed_vma relocation;
10498
10499 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10500 | bfd_get_16 (input_bfd, hit_data + 2);
10501
10502 if (globals->use_rel)
10503 {
10504 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10505 | ((insn & (1 << 26)) >> 15);
10506 if (insn & 0xf00000)
10507 signed_addend = -signed_addend;
10508 }
10509
10510 relocation = value + signed_addend;
10511 relocation -= Pa (input_section->output_section->vma
10512 + input_section->output_offset
10513 + rel->r_offset);
10514
10515 value = relocation;
10516
10517 if (value >= 0x1000)
10518 return bfd_reloc_overflow;
10519
10520 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10521 | ((value & 0x700) << 4)
10522 | ((value & 0x800) << 15);
10523 if (relocation < 0)
10524 insn |= 0xa00000;
10525
10526 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10527 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10528
10529 return bfd_reloc_ok;
10530 }
10531
10532 case R_ARM_THM_PC8:
10533 /* PR 10073: This reloc is not generated by the GNU toolchain,
10534 but it is supported for compatibility with third party libraries
10535 generated by other compilers, specifically the ARM/IAR. */
10536 {
10537 bfd_vma insn;
10538 bfd_signed_vma relocation;
10539
10540 insn = bfd_get_16 (input_bfd, hit_data);
10541
10542 if (globals->use_rel)
10543 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10544
10545 relocation = value + addend;
10546 relocation -= Pa (input_section->output_section->vma
10547 + input_section->output_offset
10548 + rel->r_offset);
10549
10550 value = relocation;
10551
10552 /* We do not check for overflow of this reloc. Although strictly
10553 speaking this is incorrect, it appears to be necessary in order
10554 to work with IAR generated relocs. Since GCC and GAS do not
10555 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10556 a problem for them. */
10557 value &= 0x3fc;
10558
10559 insn = (insn & 0xff00) | (value >> 2);
10560
10561 bfd_put_16 (input_bfd, insn, hit_data);
10562
10563 return bfd_reloc_ok;
10564 }
10565
10566 case R_ARM_THM_PC12:
10567 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10568 {
10569 bfd_vma insn;
10570 bfd_signed_vma relocation;
10571
10572 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10573 | bfd_get_16 (input_bfd, hit_data + 2);
10574
10575 if (globals->use_rel)
10576 {
10577 signed_addend = insn & 0xfff;
10578 if (!(insn & (1 << 23)))
10579 signed_addend = -signed_addend;
10580 }
10581
10582 relocation = value + signed_addend;
10583 relocation -= Pa (input_section->output_section->vma
10584 + input_section->output_offset
10585 + rel->r_offset);
10586
10587 value = relocation;
10588
10589 if (value >= 0x1000)
10590 return bfd_reloc_overflow;
10591
10592 insn = (insn & 0xff7ff000) | value;
10593 if (relocation >= 0)
10594 insn |= (1 << 23);
10595
10596 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10597 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10598
10599 return bfd_reloc_ok;
10600 }
10601
10602 case R_ARM_THM_XPC22:
10603 case R_ARM_THM_CALL:
10604 case R_ARM_THM_JUMP24:
10605 /* Thumb BL (branch long instruction). */
10606 {
10607 bfd_vma relocation;
10608 bfd_vma reloc_sign;
10609 bfd_boolean overflow = FALSE;
10610 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10611 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10612 bfd_signed_vma reloc_signed_max;
10613 bfd_signed_vma reloc_signed_min;
10614 bfd_vma check;
10615 bfd_signed_vma signed_check;
10616 int bitsize;
10617 const int thumb2 = using_thumb2 (globals);
10618 const int thumb2_bl = using_thumb2_bl (globals);
10619
10620 /* A branch to an undefined weak symbol is turned into a jump to
10621 the next instruction unless a PLT entry will be created.
10622 The jump to the next instruction is optimized as a NOP.W for
10623 Thumb-2 enabled architectures. */
10624 if (h && h->root.type == bfd_link_hash_undefweak
10625 && plt_offset == (bfd_vma) -1)
10626 {
10627 if (thumb2)
10628 {
10629 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10630 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10631 }
10632 else
10633 {
10634 bfd_put_16 (input_bfd, 0xe000, hit_data);
10635 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10636 }
10637 return bfd_reloc_ok;
10638 }
10639
10640 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10641 with Thumb-1) involving the J1 and J2 bits. */
10642 if (globals->use_rel)
10643 {
10644 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10645 bfd_vma upper = upper_insn & 0x3ff;
10646 bfd_vma lower = lower_insn & 0x7ff;
10647 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10648 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10649 bfd_vma i1 = j1 ^ s ? 0 : 1;
10650 bfd_vma i2 = j2 ^ s ? 0 : 1;
10651
10652 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10653 /* Sign extend. */
10654 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10655
10656 signed_addend = addend;
10657 }
10658
10659 if (r_type == R_ARM_THM_XPC22)
10660 {
10661 /* Check for Thumb to Thumb call. */
10662 /* FIXME: Should we translate the instruction into a BL
10663 instruction instead ? */
10664 if (branch_type == ST_BRANCH_TO_THUMB)
10665 _bfd_error_handler
10666 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10667 input_bfd,
10668 h ? h->root.root.string : "(local)");
10669 }
10670 else
10671 {
10672 /* If it is not a call to Thumb, assume call to Arm.
10673 If it is a call relative to a section name, then it is not a
10674 function call at all, but rather a long jump. Calls through
10675 the PLT do not require stubs. */
10676 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10677 {
10678 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10679 {
10680 /* Convert BL to BLX. */
10681 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10682 }
10683 else if (( r_type != R_ARM_THM_CALL)
10684 && (r_type != R_ARM_THM_JUMP24))
10685 {
10686 if (elf32_thumb_to_arm_stub
10687 (info, sym_name, input_bfd, output_bfd, input_section,
10688 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10689 error_message))
10690 return bfd_reloc_ok;
10691 else
10692 return bfd_reloc_dangerous;
10693 }
10694 }
10695 else if (branch_type == ST_BRANCH_TO_THUMB
10696 && globals->use_blx
10697 && r_type == R_ARM_THM_CALL)
10698 {
10699 /* Make sure this is a BL. */
10700 lower_insn |= 0x1800;
10701 }
10702 }
10703
10704 enum elf32_arm_stub_type stub_type = arm_stub_none;
10705 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10706 {
10707 /* Check if a stub has to be inserted because the destination
10708 is too far. */
10709 struct elf32_arm_stub_hash_entry *stub_entry;
10710 struct elf32_arm_link_hash_entry *hash;
10711
10712 hash = (struct elf32_arm_link_hash_entry *) h;
10713
10714 stub_type = arm_type_of_stub (info, input_section, rel,
10715 st_type, &branch_type,
10716 hash, value, sym_sec,
10717 input_bfd, sym_name);
10718
10719 if (stub_type != arm_stub_none)
10720 {
10721 /* The target is out of reach or we are changing modes, so
10722 redirect the branch to the local stub for this
10723 function. */
10724 stub_entry = elf32_arm_get_stub_entry (input_section,
10725 sym_sec, h,
10726 rel, globals,
10727 stub_type);
10728 if (stub_entry != NULL)
10729 {
10730 value = (stub_entry->stub_offset
10731 + stub_entry->stub_sec->output_offset
10732 + stub_entry->stub_sec->output_section->vma);
10733
10734 if (plt_offset != (bfd_vma) -1)
10735 *unresolved_reloc_p = FALSE;
10736 }
10737
10738 /* If this call becomes a call to Arm, force BLX. */
10739 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10740 {
10741 if ((stub_entry
10742 && !arm_stub_is_thumb (stub_entry->stub_type))
10743 || branch_type != ST_BRANCH_TO_THUMB)
10744 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10745 }
10746 }
10747 }
10748
10749 /* Handle calls via the PLT. */
10750 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10751 {
10752 value = (splt->output_section->vma
10753 + splt->output_offset
10754 + plt_offset);
10755
10756 if (globals->use_blx
10757 && r_type == R_ARM_THM_CALL
10758 && ! using_thumb_only (globals))
10759 {
10760 /* If the Thumb BLX instruction is available, convert
10761 the BL to a BLX instruction to call the ARM-mode
10762 PLT entry. */
10763 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10764 branch_type = ST_BRANCH_TO_ARM;
10765 }
10766 else
10767 {
10768 if (! using_thumb_only (globals))
10769 /* Target the Thumb stub before the ARM PLT entry. */
10770 value -= PLT_THUMB_STUB_SIZE;
10771 branch_type = ST_BRANCH_TO_THUMB;
10772 }
10773 *unresolved_reloc_p = FALSE;
10774 }
10775
10776 relocation = value + signed_addend;
10777
10778 relocation -= (input_section->output_section->vma
10779 + input_section->output_offset
10780 + rel->r_offset);
10781
10782 check = relocation >> howto->rightshift;
10783
10784 /* If this is a signed value, the rightshift just dropped
10785 leading 1 bits (assuming twos complement). */
10786 if ((bfd_signed_vma) relocation >= 0)
10787 signed_check = check;
10788 else
10789 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10790
10791 /* Calculate the permissable maximum and minimum values for
10792 this relocation according to whether we're relocating for
10793 Thumb-2 or not. */
10794 bitsize = howto->bitsize;
10795 if (!thumb2_bl)
10796 bitsize -= 2;
10797 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10798 reloc_signed_min = ~reloc_signed_max;
10799
10800 /* Assumes two's complement. */
10801 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10802 overflow = TRUE;
10803
10804 if ((lower_insn & 0x5000) == 0x4000)
10805 /* For a BLX instruction, make sure that the relocation is rounded up
10806 to a word boundary. This follows the semantics of the instruction
10807 which specifies that bit 1 of the target address will come from bit
10808 1 of the base address. */
10809 relocation = (relocation + 2) & ~ 3;
10810
10811 /* Put RELOCATION back into the insn. Assumes two's complement.
10812 We use the Thumb-2 encoding, which is safe even if dealing with
10813 a Thumb-1 instruction by virtue of our overflow check above. */
10814 reloc_sign = (signed_check < 0) ? 1 : 0;
10815 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10816 | ((relocation >> 12) & 0x3ff)
10817 | (reloc_sign << 10);
10818 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10819 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10820 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10821 | ((relocation >> 1) & 0x7ff);
10822
10823 /* Put the relocated value back in the object file: */
10824 bfd_put_16 (input_bfd, upper_insn, hit_data);
10825 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10826
10827 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10828 }
10829 break;
10830
10831 case R_ARM_THM_JUMP19:
10832 /* Thumb32 conditional branch instruction. */
10833 {
10834 bfd_vma relocation;
10835 bfd_boolean overflow = FALSE;
10836 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10837 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10838 bfd_signed_vma reloc_signed_max = 0xffffe;
10839 bfd_signed_vma reloc_signed_min = -0x100000;
10840 bfd_signed_vma signed_check;
10841 enum elf32_arm_stub_type stub_type = arm_stub_none;
10842 struct elf32_arm_stub_hash_entry *stub_entry;
10843 struct elf32_arm_link_hash_entry *hash;
10844
10845 /* Need to refetch the addend, reconstruct the top three bits,
10846 and squish the two 11 bit pieces together. */
10847 if (globals->use_rel)
10848 {
10849 bfd_vma S = (upper_insn & 0x0400) >> 10;
10850 bfd_vma upper = (upper_insn & 0x003f);
10851 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10852 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10853 bfd_vma lower = (lower_insn & 0x07ff);
10854
10855 upper |= J1 << 6;
10856 upper |= J2 << 7;
10857 upper |= (!S) << 8;
10858 upper -= 0x0100; /* Sign extend. */
10859
10860 addend = (upper << 12) | (lower << 1);
10861 signed_addend = addend;
10862 }
10863
10864 /* Handle calls via the PLT. */
10865 if (plt_offset != (bfd_vma) -1)
10866 {
10867 value = (splt->output_section->vma
10868 + splt->output_offset
10869 + plt_offset);
10870 /* Target the Thumb stub before the ARM PLT entry. */
10871 value -= PLT_THUMB_STUB_SIZE;
10872 *unresolved_reloc_p = FALSE;
10873 }
10874
10875 hash = (struct elf32_arm_link_hash_entry *)h;
10876
10877 stub_type = arm_type_of_stub (info, input_section, rel,
10878 st_type, &branch_type,
10879 hash, value, sym_sec,
10880 input_bfd, sym_name);
10881 if (stub_type != arm_stub_none)
10882 {
10883 stub_entry = elf32_arm_get_stub_entry (input_section,
10884 sym_sec, h,
10885 rel, globals,
10886 stub_type);
10887 if (stub_entry != NULL)
10888 {
10889 value = (stub_entry->stub_offset
10890 + stub_entry->stub_sec->output_offset
10891 + stub_entry->stub_sec->output_section->vma);
10892 }
10893 }
10894
10895 relocation = value + signed_addend;
10896 relocation -= (input_section->output_section->vma
10897 + input_section->output_offset
10898 + rel->r_offset);
10899 signed_check = (bfd_signed_vma) relocation;
10900
10901 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10902 overflow = TRUE;
10903
10904 /* Put RELOCATION back into the insn. */
10905 {
10906 bfd_vma S = (relocation & 0x00100000) >> 20;
10907 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10908 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10909 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10910 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10911
10912 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10913 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10914 }
10915
10916 /* Put the relocated value back in the object file: */
10917 bfd_put_16 (input_bfd, upper_insn, hit_data);
10918 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10919
10920 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10921 }
10922
10923 case R_ARM_THM_JUMP11:
10924 case R_ARM_THM_JUMP8:
10925 case R_ARM_THM_JUMP6:
10926 /* Thumb B (branch) instruction). */
10927 {
10928 bfd_signed_vma relocation;
10929 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10930 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10931 bfd_signed_vma signed_check;
10932
10933 /* CZB cannot jump backward. */
10934 if (r_type == R_ARM_THM_JUMP6)
10935 reloc_signed_min = 0;
10936
10937 if (globals->use_rel)
10938 {
10939 /* Need to refetch addend. */
10940 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10941 if (addend & ((howto->src_mask + 1) >> 1))
10942 {
10943 signed_addend = -1;
10944 signed_addend &= ~ howto->src_mask;
10945 signed_addend |= addend;
10946 }
10947 else
10948 signed_addend = addend;
10949 /* The value in the insn has been right shifted. We need to
10950 undo this, so that we can perform the address calculation
10951 in terms of bytes. */
10952 signed_addend <<= howto->rightshift;
10953 }
10954 relocation = value + signed_addend;
10955
10956 relocation -= (input_section->output_section->vma
10957 + input_section->output_offset
10958 + rel->r_offset);
10959
10960 relocation >>= howto->rightshift;
10961 signed_check = relocation;
10962
10963 if (r_type == R_ARM_THM_JUMP6)
10964 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10965 else
10966 relocation &= howto->dst_mask;
10967 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10968
10969 bfd_put_16 (input_bfd, relocation, hit_data);
10970
10971 /* Assumes two's complement. */
10972 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10973 return bfd_reloc_overflow;
10974
10975 return bfd_reloc_ok;
10976 }
10977
10978 case R_ARM_ALU_PCREL7_0:
10979 case R_ARM_ALU_PCREL15_8:
10980 case R_ARM_ALU_PCREL23_15:
10981 {
10982 bfd_vma insn;
10983 bfd_vma relocation;
10984
10985 insn = bfd_get_32 (input_bfd, hit_data);
10986 if (globals->use_rel)
10987 {
10988 /* Extract the addend. */
10989 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10990 signed_addend = addend;
10991 }
10992 relocation = value + signed_addend;
10993
10994 relocation -= (input_section->output_section->vma
10995 + input_section->output_offset
10996 + rel->r_offset);
10997 insn = (insn & ~0xfff)
10998 | ((howto->bitpos << 7) & 0xf00)
10999 | ((relocation >> howto->bitpos) & 0xff);
11000 bfd_put_32 (input_bfd, value, hit_data);
11001 }
11002 return bfd_reloc_ok;
11003
11004 case R_ARM_GNU_VTINHERIT:
11005 case R_ARM_GNU_VTENTRY:
11006 return bfd_reloc_ok;
11007
11008 case R_ARM_GOTOFF32:
11009 /* Relocation is relative to the start of the
11010 global offset table. */
11011
11012 BFD_ASSERT (sgot != NULL);
11013 if (sgot == NULL)
11014 return bfd_reloc_notsupported;
11015
11016 /* If we are addressing a Thumb function, we need to adjust the
11017 address by one, so that attempts to call the function pointer will
11018 correctly interpret it as Thumb code. */
11019 if (branch_type == ST_BRANCH_TO_THUMB)
11020 value += 1;
11021
11022 /* Note that sgot->output_offset is not involved in this
11023 calculation. We always want the start of .got. If we
11024 define _GLOBAL_OFFSET_TABLE in a different way, as is
11025 permitted by the ABI, we might have to change this
11026 calculation. */
11027 value -= sgot->output_section->vma;
11028 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11029 contents, rel->r_offset, value,
11030 rel->r_addend);
11031
11032 case R_ARM_GOTPC:
11033 /* Use global offset table as symbol value. */
11034 BFD_ASSERT (sgot != NULL);
11035
11036 if (sgot == NULL)
11037 return bfd_reloc_notsupported;
11038
11039 *unresolved_reloc_p = FALSE;
11040 value = sgot->output_section->vma;
11041 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11042 contents, rel->r_offset, value,
11043 rel->r_addend);
11044
11045 case R_ARM_GOT32:
11046 case R_ARM_GOT_PREL:
11047 /* Relocation is to the entry for this symbol in the
11048 global offset table. */
11049 if (sgot == NULL)
11050 return bfd_reloc_notsupported;
11051
11052 if (dynreloc_st_type == STT_GNU_IFUNC
11053 && plt_offset != (bfd_vma) -1
11054 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11055 {
11056 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11057 symbol, and the relocation resolves directly to the runtime
11058 target rather than to the .iplt entry. This means that any
11059 .got entry would be the same value as the .igot.plt entry,
11060 so there's no point creating both. */
11061 sgot = globals->root.igotplt;
11062 value = sgot->output_offset + gotplt_offset;
11063 }
11064 else if (h != NULL)
11065 {
11066 bfd_vma off;
11067
11068 off = h->got.offset;
11069 BFD_ASSERT (off != (bfd_vma) -1);
11070 if ((off & 1) != 0)
11071 {
11072 /* We have already processsed one GOT relocation against
11073 this symbol. */
11074 off &= ~1;
11075 if (globals->root.dynamic_sections_created
11076 && !SYMBOL_REFERENCES_LOCAL (info, h))
11077 *unresolved_reloc_p = FALSE;
11078 }
11079 else
11080 {
11081 Elf_Internal_Rela outrel;
11082
11083 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11084 {
11085 /* If the symbol doesn't resolve locally in a static
11086 object, we have an undefined reference. If the
11087 symbol doesn't resolve locally in a dynamic object,
11088 it should be resolved by the dynamic linker. */
11089 if (globals->root.dynamic_sections_created)
11090 {
11091 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11092 *unresolved_reloc_p = FALSE;
11093 }
11094 else
11095 outrel.r_info = 0;
11096 outrel.r_addend = 0;
11097 }
11098 else
11099 {
11100 if (dynreloc_st_type == STT_GNU_IFUNC)
11101 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11102 else if (bfd_link_pic (info)
11103 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11104 || h->root.type != bfd_link_hash_undefweak))
11105 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11106 else
11107 outrel.r_info = 0;
11108 outrel.r_addend = dynreloc_value;
11109 }
11110
11111 /* The GOT entry is initialized to zero by default.
11112 See if we should install a different value. */
11113 if (outrel.r_addend != 0
11114 && (outrel.r_info == 0 || globals->use_rel))
11115 {
11116 bfd_put_32 (output_bfd, outrel.r_addend,
11117 sgot->contents + off);
11118 outrel.r_addend = 0;
11119 }
11120
11121 if (outrel.r_info != 0)
11122 {
11123 outrel.r_offset = (sgot->output_section->vma
11124 + sgot->output_offset
11125 + off);
11126 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11127 }
11128 h->got.offset |= 1;
11129 }
11130 value = sgot->output_offset + off;
11131 }
11132 else
11133 {
11134 bfd_vma off;
11135
11136 BFD_ASSERT (local_got_offsets != NULL
11137 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11138
11139 off = local_got_offsets[r_symndx];
11140
11141 /* The offset must always be a multiple of 4. We use the
11142 least significant bit to record whether we have already
11143 generated the necessary reloc. */
11144 if ((off & 1) != 0)
11145 off &= ~1;
11146 else
11147 {
11148 if (globals->use_rel)
11149 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11150
11151 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11152 {
11153 Elf_Internal_Rela outrel;
11154
11155 outrel.r_addend = addend + dynreloc_value;
11156 outrel.r_offset = (sgot->output_section->vma
11157 + sgot->output_offset
11158 + off);
11159 if (dynreloc_st_type == STT_GNU_IFUNC)
11160 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11161 else
11162 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11163 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11164 }
11165
11166 local_got_offsets[r_symndx] |= 1;
11167 }
11168
11169 value = sgot->output_offset + off;
11170 }
11171 if (r_type != R_ARM_GOT32)
11172 value += sgot->output_section->vma;
11173
11174 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11175 contents, rel->r_offset, value,
11176 rel->r_addend);
11177
11178 case R_ARM_TLS_LDO32:
11179 value = value - dtpoff_base (info);
11180
11181 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11182 contents, rel->r_offset, value,
11183 rel->r_addend);
11184
11185 case R_ARM_TLS_LDM32:
11186 {
11187 bfd_vma off;
11188
11189 if (sgot == NULL)
11190 abort ();
11191
11192 off = globals->tls_ldm_got.offset;
11193
11194 if ((off & 1) != 0)
11195 off &= ~1;
11196 else
11197 {
11198 /* If we don't know the module number, create a relocation
11199 for it. */
11200 if (bfd_link_pic (info))
11201 {
11202 Elf_Internal_Rela outrel;
11203
11204 if (srelgot == NULL)
11205 abort ();
11206
11207 outrel.r_addend = 0;
11208 outrel.r_offset = (sgot->output_section->vma
11209 + sgot->output_offset + off);
11210 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11211
11212 if (globals->use_rel)
11213 bfd_put_32 (output_bfd, outrel.r_addend,
11214 sgot->contents + off);
11215
11216 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11217 }
11218 else
11219 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11220
11221 globals->tls_ldm_got.offset |= 1;
11222 }
11223
11224 value = sgot->output_section->vma + sgot->output_offset + off
11225 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11226
11227 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11228 contents, rel->r_offset, value,
11229 rel->r_addend);
11230 }
11231
11232 case R_ARM_TLS_CALL:
11233 case R_ARM_THM_TLS_CALL:
11234 case R_ARM_TLS_GD32:
11235 case R_ARM_TLS_IE32:
11236 case R_ARM_TLS_GOTDESC:
11237 case R_ARM_TLS_DESCSEQ:
11238 case R_ARM_THM_TLS_DESCSEQ:
11239 {
11240 bfd_vma off, offplt;
11241 int indx = 0;
11242 char tls_type;
11243
11244 BFD_ASSERT (sgot != NULL);
11245
11246 if (h != NULL)
11247 {
11248 bfd_boolean dyn;
11249 dyn = globals->root.dynamic_sections_created;
11250 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11251 bfd_link_pic (info),
11252 h)
11253 && (!bfd_link_pic (info)
11254 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11255 {
11256 *unresolved_reloc_p = FALSE;
11257 indx = h->dynindx;
11258 }
11259 off = h->got.offset;
11260 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11261 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11262 }
11263 else
11264 {
11265 BFD_ASSERT (local_got_offsets != NULL);
11266 off = local_got_offsets[r_symndx];
11267 offplt = local_tlsdesc_gotents[r_symndx];
11268 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11269 }
11270
11271 /* Linker relaxations happens from one of the
11272 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11273 if (ELF32_R_TYPE(rel->r_info) != r_type)
11274 tls_type = GOT_TLS_IE;
11275
11276 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11277
11278 if ((off & 1) != 0)
11279 off &= ~1;
11280 else
11281 {
11282 bfd_boolean need_relocs = FALSE;
11283 Elf_Internal_Rela outrel;
11284 int cur_off = off;
11285
11286 /* The GOT entries have not been initialized yet. Do it
11287 now, and emit any relocations. If both an IE GOT and a
11288 GD GOT are necessary, we emit the GD first. */
11289
11290 if ((bfd_link_pic (info) || indx != 0)
11291 && (h == NULL
11292 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11293 || h->root.type != bfd_link_hash_undefweak))
11294 {
11295 need_relocs = TRUE;
11296 BFD_ASSERT (srelgot != NULL);
11297 }
11298
11299 if (tls_type & GOT_TLS_GDESC)
11300 {
11301 bfd_byte *loc;
11302
11303 /* We should have relaxed, unless this is an undefined
11304 weak symbol. */
11305 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11306 || bfd_link_pic (info));
11307 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11308 <= globals->root.sgotplt->size);
11309
11310 outrel.r_addend = 0;
11311 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11312 + globals->root.sgotplt->output_offset
11313 + offplt
11314 + globals->sgotplt_jump_table_size);
11315
11316 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11317 sreloc = globals->root.srelplt;
11318 loc = sreloc->contents;
11319 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11320 BFD_ASSERT (loc + RELOC_SIZE (globals)
11321 <= sreloc->contents + sreloc->size);
11322
11323 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11324
11325 /* For globals, the first word in the relocation gets
11326 the relocation index and the top bit set, or zero,
11327 if we're binding now. For locals, it gets the
11328 symbol's offset in the tls section. */
11329 bfd_put_32 (output_bfd,
11330 !h ? value - elf_hash_table (info)->tls_sec->vma
11331 : info->flags & DF_BIND_NOW ? 0
11332 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11333 globals->root.sgotplt->contents + offplt
11334 + globals->sgotplt_jump_table_size);
11335
11336 /* Second word in the relocation is always zero. */
11337 bfd_put_32 (output_bfd, 0,
11338 globals->root.sgotplt->contents + offplt
11339 + globals->sgotplt_jump_table_size + 4);
11340 }
11341 if (tls_type & GOT_TLS_GD)
11342 {
11343 if (need_relocs)
11344 {
11345 outrel.r_addend = 0;
11346 outrel.r_offset = (sgot->output_section->vma
11347 + sgot->output_offset
11348 + cur_off);
11349 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11350
11351 if (globals->use_rel)
11352 bfd_put_32 (output_bfd, outrel.r_addend,
11353 sgot->contents + cur_off);
11354
11355 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11356
11357 if (indx == 0)
11358 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11359 sgot->contents + cur_off + 4);
11360 else
11361 {
11362 outrel.r_addend = 0;
11363 outrel.r_info = ELF32_R_INFO (indx,
11364 R_ARM_TLS_DTPOFF32);
11365 outrel.r_offset += 4;
11366
11367 if (globals->use_rel)
11368 bfd_put_32 (output_bfd, outrel.r_addend,
11369 sgot->contents + cur_off + 4);
11370
11371 elf32_arm_add_dynreloc (output_bfd, info,
11372 srelgot, &outrel);
11373 }
11374 }
11375 else
11376 {
11377 /* If we are not emitting relocations for a
11378 general dynamic reference, then we must be in a
11379 static link or an executable link with the
11380 symbol binding locally. Mark it as belonging
11381 to module 1, the executable. */
11382 bfd_put_32 (output_bfd, 1,
11383 sgot->contents + cur_off);
11384 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11385 sgot->contents + cur_off + 4);
11386 }
11387
11388 cur_off += 8;
11389 }
11390
11391 if (tls_type & GOT_TLS_IE)
11392 {
11393 if (need_relocs)
11394 {
11395 if (indx == 0)
11396 outrel.r_addend = value - dtpoff_base (info);
11397 else
11398 outrel.r_addend = 0;
11399 outrel.r_offset = (sgot->output_section->vma
11400 + sgot->output_offset
11401 + cur_off);
11402 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11403
11404 if (globals->use_rel)
11405 bfd_put_32 (output_bfd, outrel.r_addend,
11406 sgot->contents + cur_off);
11407
11408 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11409 }
11410 else
11411 bfd_put_32 (output_bfd, tpoff (info, value),
11412 sgot->contents + cur_off);
11413 cur_off += 4;
11414 }
11415
11416 if (h != NULL)
11417 h->got.offset |= 1;
11418 else
11419 local_got_offsets[r_symndx] |= 1;
11420 }
11421
11422 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11423 off += 8;
11424 else if (tls_type & GOT_TLS_GDESC)
11425 off = offplt;
11426
11427 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11428 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11429 {
11430 bfd_signed_vma offset;
11431 /* TLS stubs are arm mode. The original symbol is a
11432 data object, so branch_type is bogus. */
11433 branch_type = ST_BRANCH_TO_ARM;
11434 enum elf32_arm_stub_type stub_type
11435 = arm_type_of_stub (info, input_section, rel,
11436 st_type, &branch_type,
11437 (struct elf32_arm_link_hash_entry *)h,
11438 globals->tls_trampoline, globals->root.splt,
11439 input_bfd, sym_name);
11440
11441 if (stub_type != arm_stub_none)
11442 {
11443 struct elf32_arm_stub_hash_entry *stub_entry
11444 = elf32_arm_get_stub_entry
11445 (input_section, globals->root.splt, 0, rel,
11446 globals, stub_type);
11447 offset = (stub_entry->stub_offset
11448 + stub_entry->stub_sec->output_offset
11449 + stub_entry->stub_sec->output_section->vma);
11450 }
11451 else
11452 offset = (globals->root.splt->output_section->vma
11453 + globals->root.splt->output_offset
11454 + globals->tls_trampoline);
11455
11456 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11457 {
11458 unsigned long inst;
11459
11460 offset -= (input_section->output_section->vma
11461 + input_section->output_offset
11462 + rel->r_offset + 8);
11463
11464 inst = offset >> 2;
11465 inst &= 0x00ffffff;
11466 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11467 }
11468 else
11469 {
11470 /* Thumb blx encodes the offset in a complicated
11471 fashion. */
11472 unsigned upper_insn, lower_insn;
11473 unsigned neg;
11474
11475 offset -= (input_section->output_section->vma
11476 + input_section->output_offset
11477 + rel->r_offset + 4);
11478
11479 if (stub_type != arm_stub_none
11480 && arm_stub_is_thumb (stub_type))
11481 {
11482 lower_insn = 0xd000;
11483 }
11484 else
11485 {
11486 lower_insn = 0xc000;
11487 /* Round up the offset to a word boundary. */
11488 offset = (offset + 2) & ~2;
11489 }
11490
11491 neg = offset < 0;
11492 upper_insn = (0xf000
11493 | ((offset >> 12) & 0x3ff)
11494 | (neg << 10));
11495 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11496 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11497 | ((offset >> 1) & 0x7ff);
11498 bfd_put_16 (input_bfd, upper_insn, hit_data);
11499 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11500 return bfd_reloc_ok;
11501 }
11502 }
11503 /* These relocations needs special care, as besides the fact
11504 they point somewhere in .gotplt, the addend must be
11505 adjusted accordingly depending on the type of instruction
11506 we refer to. */
11507 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11508 {
11509 unsigned long data, insn;
11510 unsigned thumb;
11511
11512 data = bfd_get_32 (input_bfd, hit_data);
11513 thumb = data & 1;
11514 data &= ~1u;
11515
11516 if (thumb)
11517 {
11518 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11519 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11520 insn = (insn << 16)
11521 | bfd_get_16 (input_bfd,
11522 contents + rel->r_offset - data + 2);
11523 if ((insn & 0xf800c000) == 0xf000c000)
11524 /* bl/blx */
11525 value = -6;
11526 else if ((insn & 0xffffff00) == 0x4400)
11527 /* add */
11528 value = -5;
11529 else
11530 {
11531 _bfd_error_handler
11532 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11533 input_bfd, input_section,
11534 (unsigned long)rel->r_offset, insn);
11535 return bfd_reloc_notsupported;
11536 }
11537 }
11538 else
11539 {
11540 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11541
11542 switch (insn >> 24)
11543 {
11544 case 0xeb: /* bl */
11545 case 0xfa: /* blx */
11546 value = -4;
11547 break;
11548
11549 case 0xe0: /* add */
11550 value = -8;
11551 break;
11552
11553 default:
11554 _bfd_error_handler
11555 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11556 input_bfd, input_section,
11557 (unsigned long)rel->r_offset, insn);
11558 return bfd_reloc_notsupported;
11559 }
11560 }
11561
11562 value += ((globals->root.sgotplt->output_section->vma
11563 + globals->root.sgotplt->output_offset + off)
11564 - (input_section->output_section->vma
11565 + input_section->output_offset
11566 + rel->r_offset)
11567 + globals->sgotplt_jump_table_size);
11568 }
11569 else
11570 value = ((globals->root.sgot->output_section->vma
11571 + globals->root.sgot->output_offset + off)
11572 - (input_section->output_section->vma
11573 + input_section->output_offset + rel->r_offset));
11574
11575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11576 contents, rel->r_offset, value,
11577 rel->r_addend);
11578 }
11579
11580 case R_ARM_TLS_LE32:
11581 if (bfd_link_dll (info))
11582 {
11583 _bfd_error_handler
11584 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11585 input_bfd, input_section,
11586 (long) rel->r_offset, howto->name);
11587 return bfd_reloc_notsupported;
11588 }
11589 else
11590 value = tpoff (info, value);
11591
11592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11593 contents, rel->r_offset, value,
11594 rel->r_addend);
11595
11596 case R_ARM_V4BX:
11597 if (globals->fix_v4bx)
11598 {
11599 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11600
11601 /* Ensure that we have a BX instruction. */
11602 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11603
11604 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11605 {
11606 /* Branch to veneer. */
11607 bfd_vma glue_addr;
11608 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11609 glue_addr -= input_section->output_section->vma
11610 + input_section->output_offset
11611 + rel->r_offset + 8;
11612 insn = (insn & 0xf0000000) | 0x0a000000
11613 | ((glue_addr >> 2) & 0x00ffffff);
11614 }
11615 else
11616 {
11617 /* Preserve Rm (lowest four bits) and the condition code
11618 (highest four bits). Other bits encode MOV PC,Rm. */
11619 insn = (insn & 0xf000000f) | 0x01a0f000;
11620 }
11621
11622 bfd_put_32 (input_bfd, insn, hit_data);
11623 }
11624 return bfd_reloc_ok;
11625
11626 case R_ARM_MOVW_ABS_NC:
11627 case R_ARM_MOVT_ABS:
11628 case R_ARM_MOVW_PREL_NC:
11629 case R_ARM_MOVT_PREL:
11630 /* Until we properly support segment-base-relative addressing then
11631 we assume the segment base to be zero, as for the group relocations.
11632 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11633 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11634 case R_ARM_MOVW_BREL_NC:
11635 case R_ARM_MOVW_BREL:
11636 case R_ARM_MOVT_BREL:
11637 {
11638 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11639
11640 if (globals->use_rel)
11641 {
11642 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11643 signed_addend = (addend ^ 0x8000) - 0x8000;
11644 }
11645
11646 value += signed_addend;
11647
11648 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11649 value -= (input_section->output_section->vma
11650 + input_section->output_offset + rel->r_offset);
11651
11652 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11653 return bfd_reloc_overflow;
11654
11655 if (branch_type == ST_BRANCH_TO_THUMB)
11656 value |= 1;
11657
11658 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11659 || r_type == R_ARM_MOVT_BREL)
11660 value >>= 16;
11661
11662 insn &= 0xfff0f000;
11663 insn |= value & 0xfff;
11664 insn |= (value & 0xf000) << 4;
11665 bfd_put_32 (input_bfd, insn, hit_data);
11666 }
11667 return bfd_reloc_ok;
11668
11669 case R_ARM_THM_MOVW_ABS_NC:
11670 case R_ARM_THM_MOVT_ABS:
11671 case R_ARM_THM_MOVW_PREL_NC:
11672 case R_ARM_THM_MOVT_PREL:
11673 /* Until we properly support segment-base-relative addressing then
11674 we assume the segment base to be zero, as for the above relocations.
11675 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11676 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11677 as R_ARM_THM_MOVT_ABS. */
11678 case R_ARM_THM_MOVW_BREL_NC:
11679 case R_ARM_THM_MOVW_BREL:
11680 case R_ARM_THM_MOVT_BREL:
11681 {
11682 bfd_vma insn;
11683
11684 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11685 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11686
11687 if (globals->use_rel)
11688 {
11689 addend = ((insn >> 4) & 0xf000)
11690 | ((insn >> 15) & 0x0800)
11691 | ((insn >> 4) & 0x0700)
11692 | (insn & 0x00ff);
11693 signed_addend = (addend ^ 0x8000) - 0x8000;
11694 }
11695
11696 value += signed_addend;
11697
11698 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11699 value -= (input_section->output_section->vma
11700 + input_section->output_offset + rel->r_offset);
11701
11702 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11703 return bfd_reloc_overflow;
11704
11705 if (branch_type == ST_BRANCH_TO_THUMB)
11706 value |= 1;
11707
11708 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11709 || r_type == R_ARM_THM_MOVT_BREL)
11710 value >>= 16;
11711
11712 insn &= 0xfbf08f00;
11713 insn |= (value & 0xf000) << 4;
11714 insn |= (value & 0x0800) << 15;
11715 insn |= (value & 0x0700) << 4;
11716 insn |= (value & 0x00ff);
11717
11718 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11719 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11720 }
11721 return bfd_reloc_ok;
11722
11723 case R_ARM_ALU_PC_G0_NC:
11724 case R_ARM_ALU_PC_G1_NC:
11725 case R_ARM_ALU_PC_G0:
11726 case R_ARM_ALU_PC_G1:
11727 case R_ARM_ALU_PC_G2:
11728 case R_ARM_ALU_SB_G0_NC:
11729 case R_ARM_ALU_SB_G1_NC:
11730 case R_ARM_ALU_SB_G0:
11731 case R_ARM_ALU_SB_G1:
11732 case R_ARM_ALU_SB_G2:
11733 {
11734 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11735 bfd_vma pc = input_section->output_section->vma
11736 + input_section->output_offset + rel->r_offset;
11737 /* sb is the origin of the *segment* containing the symbol. */
11738 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11739 bfd_vma residual;
11740 bfd_vma g_n;
11741 bfd_signed_vma signed_value;
11742 int group = 0;
11743
11744 /* Determine which group of bits to select. */
11745 switch (r_type)
11746 {
11747 case R_ARM_ALU_PC_G0_NC:
11748 case R_ARM_ALU_PC_G0:
11749 case R_ARM_ALU_SB_G0_NC:
11750 case R_ARM_ALU_SB_G0:
11751 group = 0;
11752 break;
11753
11754 case R_ARM_ALU_PC_G1_NC:
11755 case R_ARM_ALU_PC_G1:
11756 case R_ARM_ALU_SB_G1_NC:
11757 case R_ARM_ALU_SB_G1:
11758 group = 1;
11759 break;
11760
11761 case R_ARM_ALU_PC_G2:
11762 case R_ARM_ALU_SB_G2:
11763 group = 2;
11764 break;
11765
11766 default:
11767 abort ();
11768 }
11769
11770 /* If REL, extract the addend from the insn. If RELA, it will
11771 have already been fetched for us. */
11772 if (globals->use_rel)
11773 {
11774 int negative;
11775 bfd_vma constant = insn & 0xff;
11776 bfd_vma rotation = (insn & 0xf00) >> 8;
11777
11778 if (rotation == 0)
11779 signed_addend = constant;
11780 else
11781 {
11782 /* Compensate for the fact that in the instruction, the
11783 rotation is stored in multiples of 2 bits. */
11784 rotation *= 2;
11785
11786 /* Rotate "constant" right by "rotation" bits. */
11787 signed_addend = (constant >> rotation) |
11788 (constant << (8 * sizeof (bfd_vma) - rotation));
11789 }
11790
11791 /* Determine if the instruction is an ADD or a SUB.
11792 (For REL, this determines the sign of the addend.) */
11793 negative = identify_add_or_sub (insn);
11794 if (negative == 0)
11795 {
11796 _bfd_error_handler
11797 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11798 input_bfd, input_section,
11799 (long) rel->r_offset, howto->name);
11800 return bfd_reloc_overflow;
11801 }
11802
11803 signed_addend *= negative;
11804 }
11805
11806 /* Compute the value (X) to go in the place. */
11807 if (r_type == R_ARM_ALU_PC_G0_NC
11808 || r_type == R_ARM_ALU_PC_G1_NC
11809 || r_type == R_ARM_ALU_PC_G0
11810 || r_type == R_ARM_ALU_PC_G1
11811 || r_type == R_ARM_ALU_PC_G2)
11812 /* PC relative. */
11813 signed_value = value - pc + signed_addend;
11814 else
11815 /* Section base relative. */
11816 signed_value = value - sb + signed_addend;
11817
11818 /* If the target symbol is a Thumb function, then set the
11819 Thumb bit in the address. */
11820 if (branch_type == ST_BRANCH_TO_THUMB)
11821 signed_value |= 1;
11822
11823 /* Calculate the value of the relevant G_n, in encoded
11824 constant-with-rotation format. */
11825 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11826 group, &residual);
11827
11828 /* Check for overflow if required. */
11829 if ((r_type == R_ARM_ALU_PC_G0
11830 || r_type == R_ARM_ALU_PC_G1
11831 || r_type == R_ARM_ALU_PC_G2
11832 || r_type == R_ARM_ALU_SB_G0
11833 || r_type == R_ARM_ALU_SB_G1
11834 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11835 {
11836 _bfd_error_handler
11837 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11838 input_bfd, input_section,
11839 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11840 howto->name);
11841 return bfd_reloc_overflow;
11842 }
11843
11844 /* Mask out the value and the ADD/SUB part of the opcode; take care
11845 not to destroy the S bit. */
11846 insn &= 0xff1ff000;
11847
11848 /* Set the opcode according to whether the value to go in the
11849 place is negative. */
11850 if (signed_value < 0)
11851 insn |= 1 << 22;
11852 else
11853 insn |= 1 << 23;
11854
11855 /* Encode the offset. */
11856 insn |= g_n;
11857
11858 bfd_put_32 (input_bfd, insn, hit_data);
11859 }
11860 return bfd_reloc_ok;
11861
11862 case R_ARM_LDR_PC_G0:
11863 case R_ARM_LDR_PC_G1:
11864 case R_ARM_LDR_PC_G2:
11865 case R_ARM_LDR_SB_G0:
11866 case R_ARM_LDR_SB_G1:
11867 case R_ARM_LDR_SB_G2:
11868 {
11869 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11870 bfd_vma pc = input_section->output_section->vma
11871 + input_section->output_offset + rel->r_offset;
11872 /* sb is the origin of the *segment* containing the symbol. */
11873 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11874 bfd_vma residual;
11875 bfd_signed_vma signed_value;
11876 int group = 0;
11877
11878 /* Determine which groups of bits to calculate. */
11879 switch (r_type)
11880 {
11881 case R_ARM_LDR_PC_G0:
11882 case R_ARM_LDR_SB_G0:
11883 group = 0;
11884 break;
11885
11886 case R_ARM_LDR_PC_G1:
11887 case R_ARM_LDR_SB_G1:
11888 group = 1;
11889 break;
11890
11891 case R_ARM_LDR_PC_G2:
11892 case R_ARM_LDR_SB_G2:
11893 group = 2;
11894 break;
11895
11896 default:
11897 abort ();
11898 }
11899
11900 /* If REL, extract the addend from the insn. If RELA, it will
11901 have already been fetched for us. */
11902 if (globals->use_rel)
11903 {
11904 int negative = (insn & (1 << 23)) ? 1 : -1;
11905 signed_addend = negative * (insn & 0xfff);
11906 }
11907
11908 /* Compute the value (X) to go in the place. */
11909 if (r_type == R_ARM_LDR_PC_G0
11910 || r_type == R_ARM_LDR_PC_G1
11911 || r_type == R_ARM_LDR_PC_G2)
11912 /* PC relative. */
11913 signed_value = value - pc + signed_addend;
11914 else
11915 /* Section base relative. */
11916 signed_value = value - sb + signed_addend;
11917
11918 /* Calculate the value of the relevant G_{n-1} to obtain
11919 the residual at that stage. */
11920 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11921 group - 1, &residual);
11922
11923 /* Check for overflow. */
11924 if (residual >= 0x1000)
11925 {
11926 _bfd_error_handler
11927 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11928 input_bfd, input_section,
11929 (long) rel->r_offset, labs (signed_value), howto->name);
11930 return bfd_reloc_overflow;
11931 }
11932
11933 /* Mask out the value and U bit. */
11934 insn &= 0xff7ff000;
11935
11936 /* Set the U bit if the value to go in the place is non-negative. */
11937 if (signed_value >= 0)
11938 insn |= 1 << 23;
11939
11940 /* Encode the offset. */
11941 insn |= residual;
11942
11943 bfd_put_32 (input_bfd, insn, hit_data);
11944 }
11945 return bfd_reloc_ok;
11946
11947 case R_ARM_LDRS_PC_G0:
11948 case R_ARM_LDRS_PC_G1:
11949 case R_ARM_LDRS_PC_G2:
11950 case R_ARM_LDRS_SB_G0:
11951 case R_ARM_LDRS_SB_G1:
11952 case R_ARM_LDRS_SB_G2:
11953 {
11954 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11955 bfd_vma pc = input_section->output_section->vma
11956 + input_section->output_offset + rel->r_offset;
11957 /* sb is the origin of the *segment* containing the symbol. */
11958 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11959 bfd_vma residual;
11960 bfd_signed_vma signed_value;
11961 int group = 0;
11962
11963 /* Determine which groups of bits to calculate. */
11964 switch (r_type)
11965 {
11966 case R_ARM_LDRS_PC_G0:
11967 case R_ARM_LDRS_SB_G0:
11968 group = 0;
11969 break;
11970
11971 case R_ARM_LDRS_PC_G1:
11972 case R_ARM_LDRS_SB_G1:
11973 group = 1;
11974 break;
11975
11976 case R_ARM_LDRS_PC_G2:
11977 case R_ARM_LDRS_SB_G2:
11978 group = 2;
11979 break;
11980
11981 default:
11982 abort ();
11983 }
11984
11985 /* If REL, extract the addend from the insn. If RELA, it will
11986 have already been fetched for us. */
11987 if (globals->use_rel)
11988 {
11989 int negative = (insn & (1 << 23)) ? 1 : -1;
11990 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11991 }
11992
11993 /* Compute the value (X) to go in the place. */
11994 if (r_type == R_ARM_LDRS_PC_G0
11995 || r_type == R_ARM_LDRS_PC_G1
11996 || r_type == R_ARM_LDRS_PC_G2)
11997 /* PC relative. */
11998 signed_value = value - pc + signed_addend;
11999 else
12000 /* Section base relative. */
12001 signed_value = value - sb + signed_addend;
12002
12003 /* Calculate the value of the relevant G_{n-1} to obtain
12004 the residual at that stage. */
12005 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12006 group - 1, &residual);
12007
12008 /* Check for overflow. */
12009 if (residual >= 0x100)
12010 {
12011 _bfd_error_handler
12012 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12013 input_bfd, input_section,
12014 (long) rel->r_offset, labs (signed_value), howto->name);
12015 return bfd_reloc_overflow;
12016 }
12017
12018 /* Mask out the value and U bit. */
12019 insn &= 0xff7ff0f0;
12020
12021 /* Set the U bit if the value to go in the place is non-negative. */
12022 if (signed_value >= 0)
12023 insn |= 1 << 23;
12024
12025 /* Encode the offset. */
12026 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12027
12028 bfd_put_32 (input_bfd, insn, hit_data);
12029 }
12030 return bfd_reloc_ok;
12031
12032 case R_ARM_LDC_PC_G0:
12033 case R_ARM_LDC_PC_G1:
12034 case R_ARM_LDC_PC_G2:
12035 case R_ARM_LDC_SB_G0:
12036 case R_ARM_LDC_SB_G1:
12037 case R_ARM_LDC_SB_G2:
12038 {
12039 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12040 bfd_vma pc = input_section->output_section->vma
12041 + input_section->output_offset + rel->r_offset;
12042 /* sb is the origin of the *segment* containing the symbol. */
12043 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12044 bfd_vma residual;
12045 bfd_signed_vma signed_value;
12046 int group = 0;
12047
12048 /* Determine which groups of bits to calculate. */
12049 switch (r_type)
12050 {
12051 case R_ARM_LDC_PC_G0:
12052 case R_ARM_LDC_SB_G0:
12053 group = 0;
12054 break;
12055
12056 case R_ARM_LDC_PC_G1:
12057 case R_ARM_LDC_SB_G1:
12058 group = 1;
12059 break;
12060
12061 case R_ARM_LDC_PC_G2:
12062 case R_ARM_LDC_SB_G2:
12063 group = 2;
12064 break;
12065
12066 default:
12067 abort ();
12068 }
12069
12070 /* If REL, extract the addend from the insn. If RELA, it will
12071 have already been fetched for us. */
12072 if (globals->use_rel)
12073 {
12074 int negative = (insn & (1 << 23)) ? 1 : -1;
12075 signed_addend = negative * ((insn & 0xff) << 2);
12076 }
12077
12078 /* Compute the value (X) to go in the place. */
12079 if (r_type == R_ARM_LDC_PC_G0
12080 || r_type == R_ARM_LDC_PC_G1
12081 || r_type == R_ARM_LDC_PC_G2)
12082 /* PC relative. */
12083 signed_value = value - pc + signed_addend;
12084 else
12085 /* Section base relative. */
12086 signed_value = value - sb + signed_addend;
12087
12088 /* Calculate the value of the relevant G_{n-1} to obtain
12089 the residual at that stage. */
12090 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12091 group - 1, &residual);
12092
12093 /* Check for overflow. (The absolute value to go in the place must be
12094 divisible by four and, after having been divided by four, must
12095 fit in eight bits.) */
12096 if ((residual & 0x3) != 0 || residual >= 0x400)
12097 {
12098 _bfd_error_handler
12099 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12100 input_bfd, input_section,
12101 (long) rel->r_offset, labs (signed_value), howto->name);
12102 return bfd_reloc_overflow;
12103 }
12104
12105 /* Mask out the value and U bit. */
12106 insn &= 0xff7fff00;
12107
12108 /* Set the U bit if the value to go in the place is non-negative. */
12109 if (signed_value >= 0)
12110 insn |= 1 << 23;
12111
12112 /* Encode the offset. */
12113 insn |= residual >> 2;
12114
12115 bfd_put_32 (input_bfd, insn, hit_data);
12116 }
12117 return bfd_reloc_ok;
12118
12119 case R_ARM_THM_ALU_ABS_G0_NC:
12120 case R_ARM_THM_ALU_ABS_G1_NC:
12121 case R_ARM_THM_ALU_ABS_G2_NC:
12122 case R_ARM_THM_ALU_ABS_G3_NC:
12123 {
12124 const int shift_array[4] = {0, 8, 16, 24};
12125 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12126 bfd_vma addr = value;
12127 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12128
12129 /* Compute address. */
12130 if (globals->use_rel)
12131 signed_addend = insn & 0xff;
12132 addr += signed_addend;
12133 if (branch_type == ST_BRANCH_TO_THUMB)
12134 addr |= 1;
12135 /* Clean imm8 insn. */
12136 insn &= 0xff00;
12137 /* And update with correct part of address. */
12138 insn |= (addr >> shift) & 0xff;
12139 /* Update insn. */
12140 bfd_put_16 (input_bfd, insn, hit_data);
12141 }
12142
12143 *unresolved_reloc_p = FALSE;
12144 return bfd_reloc_ok;
12145
12146 default:
12147 return bfd_reloc_notsupported;
12148 }
12149}
12150
12151/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12152static void
12153arm_add_to_rel (bfd * abfd,
12154 bfd_byte * address,
12155 reloc_howto_type * howto,
12156 bfd_signed_vma increment)
12157{
12158 bfd_signed_vma addend;
12159
12160 if (howto->type == R_ARM_THM_CALL
12161 || howto->type == R_ARM_THM_JUMP24)
12162 {
12163 int upper_insn, lower_insn;
12164 int upper, lower;
12165
12166 upper_insn = bfd_get_16 (abfd, address);
12167 lower_insn = bfd_get_16 (abfd, address + 2);
12168 upper = upper_insn & 0x7ff;
12169 lower = lower_insn & 0x7ff;
12170
12171 addend = (upper << 12) | (lower << 1);
12172 addend += increment;
12173 addend >>= 1;
12174
12175 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12176 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12177
12178 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12179 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12180 }
12181 else
12182 {
12183 bfd_vma contents;
12184
12185 contents = bfd_get_32 (abfd, address);
12186
12187 /* Get the (signed) value from the instruction. */
12188 addend = contents & howto->src_mask;
12189 if (addend & ((howto->src_mask + 1) >> 1))
12190 {
12191 bfd_signed_vma mask;
12192
12193 mask = -1;
12194 mask &= ~ howto->src_mask;
12195 addend |= mask;
12196 }
12197
12198 /* Add in the increment, (which is a byte value). */
12199 switch (howto->type)
12200 {
12201 default:
12202 addend += increment;
12203 break;
12204
12205 case R_ARM_PC24:
12206 case R_ARM_PLT32:
12207 case R_ARM_CALL:
12208 case R_ARM_JUMP24:
12209 addend <<= howto->size;
12210 addend += increment;
12211
12212 /* Should we check for overflow here ? */
12213
12214 /* Drop any undesired bits. */
12215 addend >>= howto->rightshift;
12216 break;
12217 }
12218
12219 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12220
12221 bfd_put_32 (abfd, contents, address);
12222 }
12223}
12224
12225#define IS_ARM_TLS_RELOC(R_TYPE) \
12226 ((R_TYPE) == R_ARM_TLS_GD32 \
12227 || (R_TYPE) == R_ARM_TLS_LDO32 \
12228 || (R_TYPE) == R_ARM_TLS_LDM32 \
12229 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12230 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12231 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12232 || (R_TYPE) == R_ARM_TLS_LE32 \
12233 || (R_TYPE) == R_ARM_TLS_IE32 \
12234 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12235
12236/* Specific set of relocations for the gnu tls dialect. */
12237#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12238 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12239 || (R_TYPE) == R_ARM_TLS_CALL \
12240 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12241 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12242 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12243
12244/* Relocate an ARM ELF section. */
12245
12246static bfd_boolean
12247elf32_arm_relocate_section (bfd * output_bfd,
12248 struct bfd_link_info * info,
12249 bfd * input_bfd,
12250 asection * input_section,
12251 bfd_byte * contents,
12252 Elf_Internal_Rela * relocs,
12253 Elf_Internal_Sym * local_syms,
12254 asection ** local_sections)
12255{
12256 Elf_Internal_Shdr *symtab_hdr;
12257 struct elf_link_hash_entry **sym_hashes;
12258 Elf_Internal_Rela *rel;
12259 Elf_Internal_Rela *relend;
12260 const char *name;
12261 struct elf32_arm_link_hash_table * globals;
12262
12263 globals = elf32_arm_hash_table (info);
12264 if (globals == NULL)
12265 return FALSE;
12266
12267 symtab_hdr = & elf_symtab_hdr (input_bfd);
12268 sym_hashes = elf_sym_hashes (input_bfd);
12269
12270 rel = relocs;
12271 relend = relocs + input_section->reloc_count;
12272 for (; rel < relend; rel++)
12273 {
12274 int r_type;
12275 reloc_howto_type * howto;
12276 unsigned long r_symndx;
12277 Elf_Internal_Sym * sym;
12278 asection * sec;
12279 struct elf_link_hash_entry * h;
12280 bfd_vma relocation;
12281 bfd_reloc_status_type r;
12282 arelent bfd_reloc;
12283 char sym_type;
12284 bfd_boolean unresolved_reloc = FALSE;
12285 char *error_message = NULL;
12286
12287 r_symndx = ELF32_R_SYM (rel->r_info);
12288 r_type = ELF32_R_TYPE (rel->r_info);
12289 r_type = arm_real_reloc_type (globals, r_type);
12290
12291 if ( r_type == R_ARM_GNU_VTENTRY
12292 || r_type == R_ARM_GNU_VTINHERIT)
12293 continue;
12294
12295 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12296 howto = bfd_reloc.howto;
12297
12298 h = NULL;
12299 sym = NULL;
12300 sec = NULL;
12301
12302 if (r_symndx < symtab_hdr->sh_info)
12303 {
12304 sym = local_syms + r_symndx;
12305 sym_type = ELF32_ST_TYPE (sym->st_info);
12306 sec = local_sections[r_symndx];
12307
12308 /* An object file might have a reference to a local
12309 undefined symbol. This is a daft object file, but we
12310 should at least do something about it. V4BX & NONE
12311 relocations do not use the symbol and are explicitly
12312 allowed to use the undefined symbol, so allow those.
12313 Likewise for relocations against STN_UNDEF. */
12314 if (r_type != R_ARM_V4BX
12315 && r_type != R_ARM_NONE
12316 && r_symndx != STN_UNDEF
12317 && bfd_is_und_section (sec)
12318 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12319 (*info->callbacks->undefined_symbol)
12320 (info, bfd_elf_string_from_elf_section
12321 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12322 input_bfd, input_section,
12323 rel->r_offset, TRUE);
12324
12325 if (globals->use_rel)
12326 {
12327 relocation = (sec->output_section->vma
12328 + sec->output_offset
12329 + sym->st_value);
12330 if (!bfd_link_relocatable (info)
12331 && (sec->flags & SEC_MERGE)
12332 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12333 {
12334 asection *msec;
12335 bfd_vma addend, value;
12336
12337 switch (r_type)
12338 {
12339 case R_ARM_MOVW_ABS_NC:
12340 case R_ARM_MOVT_ABS:
12341 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12342 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12343 addend = (addend ^ 0x8000) - 0x8000;
12344 break;
12345
12346 case R_ARM_THM_MOVW_ABS_NC:
12347 case R_ARM_THM_MOVT_ABS:
12348 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12349 << 16;
12350 value |= bfd_get_16 (input_bfd,
12351 contents + rel->r_offset + 2);
12352 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12353 | ((value & 0x04000000) >> 15);
12354 addend = (addend ^ 0x8000) - 0x8000;
12355 break;
12356
12357 default:
12358 if (howto->rightshift
12359 || (howto->src_mask & (howto->src_mask + 1)))
12360 {
12361 _bfd_error_handler
12362 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12363 input_bfd, input_section,
12364 (long) rel->r_offset, howto->name);
12365 return FALSE;
12366 }
12367
12368 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12369
12370 /* Get the (signed) value from the instruction. */
12371 addend = value & howto->src_mask;
12372 if (addend & ((howto->src_mask + 1) >> 1))
12373 {
12374 bfd_signed_vma mask;
12375
12376 mask = -1;
12377 mask &= ~ howto->src_mask;
12378 addend |= mask;
12379 }
12380 break;
12381 }
12382
12383 msec = sec;
12384 addend =
12385 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12386 - relocation;
12387 addend += msec->output_section->vma + msec->output_offset;
12388
12389 /* Cases here must match those in the preceding
12390 switch statement. */
12391 switch (r_type)
12392 {
12393 case R_ARM_MOVW_ABS_NC:
12394 case R_ARM_MOVT_ABS:
12395 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12396 | (addend & 0xfff);
12397 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12398 break;
12399
12400 case R_ARM_THM_MOVW_ABS_NC:
12401 case R_ARM_THM_MOVT_ABS:
12402 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12403 | (addend & 0xff) | ((addend & 0x0800) << 15);
12404 bfd_put_16 (input_bfd, value >> 16,
12405 contents + rel->r_offset);
12406 bfd_put_16 (input_bfd, value,
12407 contents + rel->r_offset + 2);
12408 break;
12409
12410 default:
12411 value = (value & ~ howto->dst_mask)
12412 | (addend & howto->dst_mask);
12413 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12414 break;
12415 }
12416 }
12417 }
12418 else
12419 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12420 }
12421 else
12422 {
12423 bfd_boolean warned, ignored;
12424
12425 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12426 r_symndx, symtab_hdr, sym_hashes,
12427 h, sec, relocation,
12428 unresolved_reloc, warned, ignored);
12429
12430 sym_type = h->type;
12431 }
12432
12433 if (sec != NULL && discarded_section (sec))
12434 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12435 rel, 1, relend, howto, 0, contents);
12436
12437 if (bfd_link_relocatable (info))
12438 {
12439 /* This is a relocatable link. We don't have to change
12440 anything, unless the reloc is against a section symbol,
12441 in which case we have to adjust according to where the
12442 section symbol winds up in the output section. */
12443 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12444 {
12445 if (globals->use_rel)
12446 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12447 howto, (bfd_signed_vma) sec->output_offset);
12448 else
12449 rel->r_addend += sec->output_offset;
12450 }
12451 continue;
12452 }
12453
12454 if (h != NULL)
12455 name = h->root.root.string;
12456 else
12457 {
12458 name = (bfd_elf_string_from_elf_section
12459 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12460 if (name == NULL || *name == '\0')
12461 name = bfd_section_name (input_bfd, sec);
12462 }
12463
12464 if (r_symndx != STN_UNDEF
12465 && r_type != R_ARM_NONE
12466 && (h == NULL
12467 || h->root.type == bfd_link_hash_defined
12468 || h->root.type == bfd_link_hash_defweak)
12469 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12470 {
12471 _bfd_error_handler
12472 ((sym_type == STT_TLS
12473 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12474 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12475 input_bfd,
12476 input_section,
12477 (long) rel->r_offset,
12478 howto->name,
12479 name);
12480 }
12481
12482 /* We call elf32_arm_final_link_relocate unless we're completely
12483 done, i.e., the relaxation produced the final output we want,
12484 and we won't let anybody mess with it. Also, we have to do
12485 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12486 both in relaxed and non-relaxed cases. */
12487 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12488 || (IS_ARM_TLS_GNU_RELOC (r_type)
12489 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12490 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12491 & GOT_TLS_GDESC)))
12492 {
12493 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12494 contents, rel, h == NULL);
12495 /* This may have been marked unresolved because it came from
12496 a shared library. But we've just dealt with that. */
12497 unresolved_reloc = 0;
12498 }
12499 else
12500 r = bfd_reloc_continue;
12501
12502 if (r == bfd_reloc_continue)
12503 {
12504 unsigned char branch_type =
12505 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12506 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12507
12508 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12509 input_section, contents, rel,
12510 relocation, info, sec, name,
12511 sym_type, branch_type, h,
12512 &unresolved_reloc,
12513 &error_message);
12514 }
12515
12516 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12517 because such sections are not SEC_ALLOC and thus ld.so will
12518 not process them. */
12519 if (unresolved_reloc
12520 && !((input_section->flags & SEC_DEBUGGING) != 0
12521 && h->def_dynamic)
12522 && _bfd_elf_section_offset (output_bfd, info, input_section,
12523 rel->r_offset) != (bfd_vma) -1)
12524 {
12525 _bfd_error_handler
12526 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12527 input_bfd,
12528 input_section,
12529 (long) rel->r_offset,
12530 howto->name,
12531 h->root.root.string);
12532 return FALSE;
12533 }
12534
12535 if (r != bfd_reloc_ok)
12536 {
12537 switch (r)
12538 {
12539 case bfd_reloc_overflow:
12540 /* If the overflowing reloc was to an undefined symbol,
12541 we have already printed one error message and there
12542 is no point complaining again. */
12543 if (!h || h->root.type != bfd_link_hash_undefined)
12544 (*info->callbacks->reloc_overflow)
12545 (info, (h ? &h->root : NULL), name, howto->name,
12546 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12547 break;
12548
12549 case bfd_reloc_undefined:
12550 (*info->callbacks->undefined_symbol)
12551 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12552 break;
12553
12554 case bfd_reloc_outofrange:
12555 error_message = _("out of range");
12556 goto common_error;
12557
12558 case bfd_reloc_notsupported:
12559 error_message = _("unsupported relocation");
12560 goto common_error;
12561
12562 case bfd_reloc_dangerous:
12563 /* error_message should already be set. */
12564 goto common_error;
12565
12566 default:
12567 error_message = _("unknown error");
12568 /* Fall through. */
12569
12570 common_error:
12571 BFD_ASSERT (error_message != NULL);
12572 (*info->callbacks->reloc_dangerous)
12573 (info, error_message, input_bfd, input_section, rel->r_offset);
12574 break;
12575 }
12576 }
12577 }
12578
12579 return TRUE;
12580}
12581
12582/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12583 adds the edit to the start of the list. (The list must be built in order of
12584 ascending TINDEX: the function's callers are primarily responsible for
12585 maintaining that condition). */
12586
12587static void
12588add_unwind_table_edit (arm_unwind_table_edit **head,
12589 arm_unwind_table_edit **tail,
12590 arm_unwind_edit_type type,
12591 asection *linked_section,
12592 unsigned int tindex)
12593{
12594 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12595 xmalloc (sizeof (arm_unwind_table_edit));
12596
12597 new_edit->type = type;
12598 new_edit->linked_section = linked_section;
12599 new_edit->index = tindex;
12600
12601 if (tindex > 0)
12602 {
12603 new_edit->next = NULL;
12604
12605 if (*tail)
12606 (*tail)->next = new_edit;
12607
12608 (*tail) = new_edit;
12609
12610 if (!*head)
12611 (*head) = new_edit;
12612 }
12613 else
12614 {
12615 new_edit->next = *head;
12616
12617 if (!*tail)
12618 *tail = new_edit;
12619
12620 *head = new_edit;
12621 }
12622}
12623
12624static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12625
12626/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12627static void
12628adjust_exidx_size(asection *exidx_sec, int adjust)
12629{
12630 asection *out_sec;
12631
12632 if (!exidx_sec->rawsize)
12633 exidx_sec->rawsize = exidx_sec->size;
12634
12635 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12636 out_sec = exidx_sec->output_section;
12637 /* Adjust size of output section. */
12638 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12639}
12640
12641/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12642static void
12643insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12644{
12645 struct _arm_elf_section_data *exidx_arm_data;
12646
12647 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12648 add_unwind_table_edit (
12649 &exidx_arm_data->u.exidx.unwind_edit_list,
12650 &exidx_arm_data->u.exidx.unwind_edit_tail,
12651 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12652
12653 exidx_arm_data->additional_reloc_count++;
12654
12655 adjust_exidx_size(exidx_sec, 8);
12656}
12657
12658/* Scan .ARM.exidx tables, and create a list describing edits which should be
12659 made to those tables, such that:
12660
12661 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12662 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12663 codes which have been inlined into the index).
12664
12665 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12666
12667 The edits are applied when the tables are written
12668 (in elf32_arm_write_section). */
12669
12670bfd_boolean
12671elf32_arm_fix_exidx_coverage (asection **text_section_order,
12672 unsigned int num_text_sections,
12673 struct bfd_link_info *info,
12674 bfd_boolean merge_exidx_entries)
12675{
12676 bfd *inp;
12677 unsigned int last_second_word = 0, i;
12678 asection *last_exidx_sec = NULL;
12679 asection *last_text_sec = NULL;
12680 int last_unwind_type = -1;
12681
12682 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12683 text sections. */
12684 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12685 {
12686 asection *sec;
12687
12688 for (sec = inp->sections; sec != NULL; sec = sec->next)
12689 {
12690 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12691 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12692
12693 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12694 continue;
12695
12696 if (elf_sec->linked_to)
12697 {
12698 Elf_Internal_Shdr *linked_hdr
12699 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12700 struct _arm_elf_section_data *linked_sec_arm_data
12701 = get_arm_elf_section_data (linked_hdr->bfd_section);
12702
12703 if (linked_sec_arm_data == NULL)
12704 continue;
12705
12706 /* Link this .ARM.exidx section back from the text section it
12707 describes. */
12708 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12709 }
12710 }
12711 }
12712
12713 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12714 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12715 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12716
12717 for (i = 0; i < num_text_sections; i++)
12718 {
12719 asection *sec = text_section_order[i];
12720 asection *exidx_sec;
12721 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12722 struct _arm_elf_section_data *exidx_arm_data;
12723 bfd_byte *contents = NULL;
12724 int deleted_exidx_bytes = 0;
12725 bfd_vma j;
12726 arm_unwind_table_edit *unwind_edit_head = NULL;
12727 arm_unwind_table_edit *unwind_edit_tail = NULL;
12728 Elf_Internal_Shdr *hdr;
12729 bfd *ibfd;
12730
12731 if (arm_data == NULL)
12732 continue;
12733
12734 exidx_sec = arm_data->u.text.arm_exidx_sec;
12735 if (exidx_sec == NULL)
12736 {
12737 /* Section has no unwind data. */
12738 if (last_unwind_type == 0 || !last_exidx_sec)
12739 continue;
12740
12741 /* Ignore zero sized sections. */
12742 if (sec->size == 0)
12743 continue;
12744
12745 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12746 last_unwind_type = 0;
12747 continue;
12748 }
12749
12750 /* Skip /DISCARD/ sections. */
12751 if (bfd_is_abs_section (exidx_sec->output_section))
12752 continue;
12753
12754 hdr = &elf_section_data (exidx_sec)->this_hdr;
12755 if (hdr->sh_type != SHT_ARM_EXIDX)
12756 continue;
12757
12758 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12759 if (exidx_arm_data == NULL)
12760 continue;
12761
12762 ibfd = exidx_sec->owner;
12763
12764 if (hdr->contents != NULL)
12765 contents = hdr->contents;
12766 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12767 /* An error? */
12768 continue;
12769
12770 if (last_unwind_type > 0)
12771 {
12772 unsigned int first_word = bfd_get_32 (ibfd, contents);
12773 /* Add cantunwind if first unwind item does not match section
12774 start. */
12775 if (first_word != sec->vma)
12776 {
12777 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12778 last_unwind_type = 0;
12779 }
12780 }
12781
12782 for (j = 0; j < hdr->sh_size; j += 8)
12783 {
12784 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12785 int unwind_type;
12786 int elide = 0;
12787
12788 /* An EXIDX_CANTUNWIND entry. */
12789 if (second_word == 1)
12790 {
12791 if (last_unwind_type == 0)
12792 elide = 1;
12793 unwind_type = 0;
12794 }
12795 /* Inlined unwinding data. Merge if equal to previous. */
12796 else if ((second_word & 0x80000000) != 0)
12797 {
12798 if (merge_exidx_entries
12799 && last_second_word == second_word && last_unwind_type == 1)
12800 elide = 1;
12801 unwind_type = 1;
12802 last_second_word = second_word;
12803 }
12804 /* Normal table entry. In theory we could merge these too,
12805 but duplicate entries are likely to be much less common. */
12806 else
12807 unwind_type = 2;
12808
12809 if (elide && !bfd_link_relocatable (info))
12810 {
12811 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12812 DELETE_EXIDX_ENTRY, NULL, j / 8);
12813
12814 deleted_exidx_bytes += 8;
12815 }
12816
12817 last_unwind_type = unwind_type;
12818 }
12819
12820 /* Free contents if we allocated it ourselves. */
12821 if (contents != hdr->contents)
12822 free (contents);
12823
12824 /* Record edits to be applied later (in elf32_arm_write_section). */
12825 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12826 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12827
12828 if (deleted_exidx_bytes > 0)
12829 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12830
12831 last_exidx_sec = exidx_sec;
12832 last_text_sec = sec;
12833 }
12834
12835 /* Add terminating CANTUNWIND entry. */
12836 if (!bfd_link_relocatable (info) && last_exidx_sec
12837 && last_unwind_type != 0)
12838 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12839
12840 return TRUE;
12841}
12842
12843static bfd_boolean
12844elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12845 bfd *ibfd, const char *name)
12846{
12847 asection *sec, *osec;
12848
12849 sec = bfd_get_linker_section (ibfd, name);
12850 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12851 return TRUE;
12852
12853 osec = sec->output_section;
12854 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12855 return TRUE;
12856
12857 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12858 sec->output_offset, sec->size))
12859 return FALSE;
12860
12861 return TRUE;
12862}
12863
12864static bfd_boolean
12865elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12866{
12867 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12868 asection *sec, *osec;
12869
12870 if (globals == NULL)
12871 return FALSE;
12872
12873 /* Invoke the regular ELF backend linker to do all the work. */
12874 if (!bfd_elf_final_link (abfd, info))
12875 return FALSE;
12876
12877 /* Process stub sections (eg BE8 encoding, ...). */
12878 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12879 unsigned int i;
12880 for (i=0; i<htab->top_id; i++)
12881 {
12882 sec = htab->stub_group[i].stub_sec;
12883 /* Only process it once, in its link_sec slot. */
12884 if (sec && i == htab->stub_group[i].link_sec->id)
12885 {
12886 osec = sec->output_section;
12887 elf32_arm_write_section (abfd, info, sec, sec->contents);
12888 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12889 sec->output_offset, sec->size))
12890 return FALSE;
12891 }
12892 }
12893
12894 /* Write out any glue sections now that we have created all the
12895 stubs. */
12896 if (globals->bfd_of_glue_owner != NULL)
12897 {
12898 if (! elf32_arm_output_glue_section (info, abfd,
12899 globals->bfd_of_glue_owner,
12900 ARM2THUMB_GLUE_SECTION_NAME))
12901 return FALSE;
12902
12903 if (! elf32_arm_output_glue_section (info, abfd,
12904 globals->bfd_of_glue_owner,
12905 THUMB2ARM_GLUE_SECTION_NAME))
12906 return FALSE;
12907
12908 if (! elf32_arm_output_glue_section (info, abfd,
12909 globals->bfd_of_glue_owner,
12910 VFP11_ERRATUM_VENEER_SECTION_NAME))
12911 return FALSE;
12912
12913 if (! elf32_arm_output_glue_section (info, abfd,
12914 globals->bfd_of_glue_owner,
12915 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12916 return FALSE;
12917
12918 if (! elf32_arm_output_glue_section (info, abfd,
12919 globals->bfd_of_glue_owner,
12920 ARM_BX_GLUE_SECTION_NAME))
12921 return FALSE;
12922 }
12923
12924 return TRUE;
12925}
12926
12927/* Return a best guess for the machine number based on the attributes. */
12928
12929static unsigned int
12930bfd_arm_get_mach_from_attributes (bfd * abfd)
12931{
12932 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12933
12934 switch (arch)
12935 {
12936 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12937 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12938 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12939
12940 case TAG_CPU_ARCH_V5TE:
12941 {
12942 char * name;
12943
12944 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12945 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12946
12947 if (name)
12948 {
12949 if (strcmp (name, "IWMMXT2") == 0)
12950 return bfd_mach_arm_iWMMXt2;
12951
12952 if (strcmp (name, "IWMMXT") == 0)
12953 return bfd_mach_arm_iWMMXt;
12954
12955 if (strcmp (name, "XSCALE") == 0)
12956 {
12957 int wmmx;
12958
12959 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12960 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12961 switch (wmmx)
12962 {
12963 case 1: return bfd_mach_arm_iWMMXt;
12964 case 2: return bfd_mach_arm_iWMMXt2;
12965 default: return bfd_mach_arm_XScale;
12966 }
12967 }
12968 }
12969
12970 return bfd_mach_arm_5TE;
12971 }
12972
12973 default:
12974 return bfd_mach_arm_unknown;
12975 }
12976}
12977
12978/* Set the right machine number. */
12979
12980static bfd_boolean
12981elf32_arm_object_p (bfd *abfd)
12982{
12983 unsigned int mach;
12984
12985 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12986
12987 if (mach == bfd_mach_arm_unknown)
12988 {
12989 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12990 mach = bfd_mach_arm_ep9312;
12991 else
12992 mach = bfd_arm_get_mach_from_attributes (abfd);
12993 }
12994
12995 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
12996 return TRUE;
12997}
12998
12999/* Function to keep ARM specific flags in the ELF header. */
13000
13001static bfd_boolean
13002elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13003{
13004 if (elf_flags_init (abfd)
13005 && elf_elfheader (abfd)->e_flags != flags)
13006 {
13007 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13008 {
13009 if (flags & EF_ARM_INTERWORK)
13010 _bfd_error_handler
13011 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13012 abfd);
13013 else
13014 _bfd_error_handler
13015 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13016 abfd);
13017 }
13018 }
13019 else
13020 {
13021 elf_elfheader (abfd)->e_flags = flags;
13022 elf_flags_init (abfd) = TRUE;
13023 }
13024
13025 return TRUE;
13026}
13027
13028/* Copy backend specific data from one object module to another. */
13029
13030static bfd_boolean
13031elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13032{
13033 flagword in_flags;
13034 flagword out_flags;
13035
13036 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13037 return TRUE;
13038
13039 in_flags = elf_elfheader (ibfd)->e_flags;
13040 out_flags = elf_elfheader (obfd)->e_flags;
13041
13042 if (elf_flags_init (obfd)
13043 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13044 && in_flags != out_flags)
13045 {
13046 /* Cannot mix APCS26 and APCS32 code. */
13047 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13048 return FALSE;
13049
13050 /* Cannot mix float APCS and non-float APCS code. */
13051 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13052 return FALSE;
13053
13054 /* If the src and dest have different interworking flags
13055 then turn off the interworking bit. */
13056 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13057 {
13058 if (out_flags & EF_ARM_INTERWORK)
13059 _bfd_error_handler
13060 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13061 obfd, ibfd);
13062
13063 in_flags &= ~EF_ARM_INTERWORK;
13064 }
13065
13066 /* Likewise for PIC, though don't warn for this case. */
13067 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13068 in_flags &= ~EF_ARM_PIC;
13069 }
13070
13071 elf_elfheader (obfd)->e_flags = in_flags;
13072 elf_flags_init (obfd) = TRUE;
13073
13074 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13075}
13076
13077/* Values for Tag_ABI_PCS_R9_use. */
13078enum
13079{
13080 AEABI_R9_V6,
13081 AEABI_R9_SB,
13082 AEABI_R9_TLS,
13083 AEABI_R9_unused
13084};
13085
13086/* Values for Tag_ABI_PCS_RW_data. */
13087enum
13088{
13089 AEABI_PCS_RW_data_absolute,
13090 AEABI_PCS_RW_data_PCrel,
13091 AEABI_PCS_RW_data_SBrel,
13092 AEABI_PCS_RW_data_unused
13093};
13094
13095/* Values for Tag_ABI_enum_size. */
13096enum
13097{
13098 AEABI_enum_unused,
13099 AEABI_enum_short,
13100 AEABI_enum_wide,
13101 AEABI_enum_forced_wide
13102};
13103
13104/* Determine whether an object attribute tag takes an integer, a
13105 string or both. */
13106
13107static int
13108elf32_arm_obj_attrs_arg_type (int tag)
13109{
13110 if (tag == Tag_compatibility)
13111 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13112 else if (tag == Tag_nodefaults)
13113 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13114 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13115 return ATTR_TYPE_FLAG_STR_VAL;
13116 else if (tag < 32)
13117 return ATTR_TYPE_FLAG_INT_VAL;
13118 else
13119 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13120}
13121
13122/* The ABI defines that Tag_conformance should be emitted first, and that
13123 Tag_nodefaults should be second (if either is defined). This sets those
13124 two positions, and bumps up the position of all the remaining tags to
13125 compensate. */
13126static int
13127elf32_arm_obj_attrs_order (int num)
13128{
13129 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13130 return Tag_conformance;
13131 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13132 return Tag_nodefaults;
13133 if ((num - 2) < Tag_nodefaults)
13134 return num - 2;
13135 if ((num - 1) < Tag_conformance)
13136 return num - 1;
13137 return num;
13138}
13139
13140/* Attribute numbers >=64 (mod 128) can be safely ignored. */
13141static bfd_boolean
13142elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13143{
13144 if ((tag & 127) < 64)
13145 {
13146 _bfd_error_handler
13147 (_("%B: Unknown mandatory EABI object attribute %d"),
13148 abfd, tag);
13149 bfd_set_error (bfd_error_bad_value);
13150 return FALSE;
13151 }
13152 else
13153 {
13154 _bfd_error_handler
13155 (_("Warning: %B: Unknown EABI object attribute %d"),
13156 abfd, tag);
13157 return TRUE;
13158 }
13159}
13160
13161/* Read the architecture from the Tag_also_compatible_with attribute, if any.
13162 Returns -1 if no architecture could be read. */
13163
13164static int
13165get_secondary_compatible_arch (bfd *abfd)
13166{
13167 obj_attribute *attr =
13168 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13169
13170 /* Note: the tag and its argument below are uleb128 values, though
13171 currently-defined values fit in one byte for each. */
13172 if (attr->s
13173 && attr->s[0] == Tag_CPU_arch
13174 && (attr->s[1] & 128) != 128
13175 && attr->s[2] == 0)
13176 return attr->s[1];
13177
13178 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13179 return -1;
13180}
13181
13182/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13183 The tag is removed if ARCH is -1. */
13184
13185static void
13186set_secondary_compatible_arch (bfd *abfd, int arch)
13187{
13188 obj_attribute *attr =
13189 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13190
13191 if (arch == -1)
13192 {
13193 attr->s = NULL;
13194 return;
13195 }
13196
13197 /* Note: the tag and its argument below are uleb128 values, though
13198 currently-defined values fit in one byte for each. */
13199 if (!attr->s)
13200 attr->s = (char *) bfd_alloc (abfd, 3);
13201 attr->s[0] = Tag_CPU_arch;
13202 attr->s[1] = arch;
13203 attr->s[2] = '\0';
13204}
13205
13206/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13207 into account. */
13208
13209static int
13210tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13211 int newtag, int secondary_compat)
13212{
13213#define T(X) TAG_CPU_ARCH_##X
13214 int tagl, tagh, result;
13215 const int v6t2[] =
13216 {
13217 T(V6T2), /* PRE_V4. */
13218 T(V6T2), /* V4. */
13219 T(V6T2), /* V4T. */
13220 T(V6T2), /* V5T. */
13221 T(V6T2), /* V5TE. */
13222 T(V6T2), /* V5TEJ. */
13223 T(V6T2), /* V6. */
13224 T(V7), /* V6KZ. */
13225 T(V6T2) /* V6T2. */
13226 };
13227 const int v6k[] =
13228 {
13229 T(V6K), /* PRE_V4. */
13230 T(V6K), /* V4. */
13231 T(V6K), /* V4T. */
13232 T(V6K), /* V5T. */
13233 T(V6K), /* V5TE. */
13234 T(V6K), /* V5TEJ. */
13235 T(V6K), /* V6. */
13236 T(V6KZ), /* V6KZ. */
13237 T(V7), /* V6T2. */
13238 T(V6K) /* V6K. */
13239 };
13240 const int v7[] =
13241 {
13242 T(V7), /* PRE_V4. */
13243 T(V7), /* V4. */
13244 T(V7), /* V4T. */
13245 T(V7), /* V5T. */
13246 T(V7), /* V5TE. */
13247 T(V7), /* V5TEJ. */
13248 T(V7), /* V6. */
13249 T(V7), /* V6KZ. */
13250 T(V7), /* V6T2. */
13251 T(V7), /* V6K. */
13252 T(V7) /* V7. */
13253 };
13254 const int v6_m[] =
13255 {
13256 -1, /* PRE_V4. */
13257 -1, /* V4. */
13258 T(V6K), /* V4T. */
13259 T(V6K), /* V5T. */
13260 T(V6K), /* V5TE. */
13261 T(V6K), /* V5TEJ. */
13262 T(V6K), /* V6. */
13263 T(V6KZ), /* V6KZ. */
13264 T(V7), /* V6T2. */
13265 T(V6K), /* V6K. */
13266 T(V7), /* V7. */
13267 T(V6_M) /* V6_M. */
13268 };
13269 const int v6s_m[] =
13270 {
13271 -1, /* PRE_V4. */
13272 -1, /* V4. */
13273 T(V6K), /* V4T. */
13274 T(V6K), /* V5T. */
13275 T(V6K), /* V5TE. */
13276 T(V6K), /* V5TEJ. */
13277 T(V6K), /* V6. */
13278 T(V6KZ), /* V6KZ. */
13279 T(V7), /* V6T2. */
13280 T(V6K), /* V6K. */
13281 T(V7), /* V7. */
13282 T(V6S_M), /* V6_M. */
13283 T(V6S_M) /* V6S_M. */
13284 };
13285 const int v7e_m[] =
13286 {
13287 -1, /* PRE_V4. */
13288 -1, /* V4. */
13289 T(V7E_M), /* V4T. */
13290 T(V7E_M), /* V5T. */
13291 T(V7E_M), /* V5TE. */
13292 T(V7E_M), /* V5TEJ. */
13293 T(V7E_M), /* V6. */
13294 T(V7E_M), /* V6KZ. */
13295 T(V7E_M), /* V6T2. */
13296 T(V7E_M), /* V6K. */
13297 T(V7E_M), /* V7. */
13298 T(V7E_M), /* V6_M. */
13299 T(V7E_M), /* V6S_M. */
13300 T(V7E_M) /* V7E_M. */
13301 };
13302 const int v8[] =
13303 {
13304 T(V8), /* PRE_V4. */
13305 T(V8), /* V4. */
13306 T(V8), /* V4T. */
13307 T(V8), /* V5T. */
13308 T(V8), /* V5TE. */
13309 T(V8), /* V5TEJ. */
13310 T(V8), /* V6. */
13311 T(V8), /* V6KZ. */
13312 T(V8), /* V6T2. */
13313 T(V8), /* V6K. */
13314 T(V8), /* V7. */
13315 T(V8), /* V6_M. */
13316 T(V8), /* V6S_M. */
13317 T(V8), /* V7E_M. */
13318 T(V8) /* V8. */
13319 };
13320 const int v8m_baseline[] =
13321 {
13322 -1, /* PRE_V4. */
13323 -1, /* V4. */
13324 -1, /* V4T. */
13325 -1, /* V5T. */
13326 -1, /* V5TE. */
13327 -1, /* V5TEJ. */
13328 -1, /* V6. */
13329 -1, /* V6KZ. */
13330 -1, /* V6T2. */
13331 -1, /* V6K. */
13332 -1, /* V7. */
13333 T(V8M_BASE), /* V6_M. */
13334 T(V8M_BASE), /* V6S_M. */
13335 -1, /* V7E_M. */
13336 -1, /* V8. */
13337 -1,
13338 T(V8M_BASE) /* V8-M BASELINE. */
13339 };
13340 const int v8m_mainline[] =
13341 {
13342 -1, /* PRE_V4. */
13343 -1, /* V4. */
13344 -1, /* V4T. */
13345 -1, /* V5T. */
13346 -1, /* V5TE. */
13347 -1, /* V5TEJ. */
13348 -1, /* V6. */
13349 -1, /* V6KZ. */
13350 -1, /* V6T2. */
13351 -1, /* V6K. */
13352 T(V8M_MAIN), /* V7. */
13353 T(V8M_MAIN), /* V6_M. */
13354 T(V8M_MAIN), /* V6S_M. */
13355 T(V8M_MAIN), /* V7E_M. */
13356 -1, /* V8. */
13357 -1,
13358 T(V8M_MAIN), /* V8-M BASELINE. */
13359 T(V8M_MAIN) /* V8-M MAINLINE. */
13360 };
13361 const int v4t_plus_v6_m[] =
13362 {
13363 -1, /* PRE_V4. */
13364 -1, /* V4. */
13365 T(V4T), /* V4T. */
13366 T(V5T), /* V5T. */
13367 T(V5TE), /* V5TE. */
13368 T(V5TEJ), /* V5TEJ. */
13369 T(V6), /* V6. */
13370 T(V6KZ), /* V6KZ. */
13371 T(V6T2), /* V6T2. */
13372 T(V6K), /* V6K. */
13373 T(V7), /* V7. */
13374 T(V6_M), /* V6_M. */
13375 T(V6S_M), /* V6S_M. */
13376 T(V7E_M), /* V7E_M. */
13377 T(V8), /* V8. */
13378 -1, /* Unused. */
13379 T(V8M_BASE), /* V8-M BASELINE. */
13380 T(V8M_MAIN), /* V8-M MAINLINE. */
13381 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13382 };
13383 const int *comb[] =
13384 {
13385 v6t2,
13386 v6k,
13387 v7,
13388 v6_m,
13389 v6s_m,
13390 v7e_m,
13391 v8,
13392 NULL,
13393 v8m_baseline,
13394 v8m_mainline,
13395 /* Pseudo-architecture. */
13396 v4t_plus_v6_m
13397 };
13398
13399 /* Check we've not got a higher architecture than we know about. */
13400
13401 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13402 {
13403 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13404 return -1;
13405 }
13406
13407 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13408
13409 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13410 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13411 oldtag = T(V4T_PLUS_V6_M);
13412
13413 /* And override the new tag if we have a Tag_also_compatible_with on the
13414 input. */
13415
13416 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13417 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13418 newtag = T(V4T_PLUS_V6_M);
13419
13420 tagl = (oldtag < newtag) ? oldtag : newtag;
13421 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13422
13423 /* Architectures before V6KZ add features monotonically. */
13424 if (tagh <= TAG_CPU_ARCH_V6KZ)
13425 return result;
13426
13427 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13428
13429 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13430 as the canonical version. */
13431 if (result == T(V4T_PLUS_V6_M))
13432 {
13433 result = T(V4T);
13434 *secondary_compat_out = T(V6_M);
13435 }
13436 else
13437 *secondary_compat_out = -1;
13438
13439 if (result == -1)
13440 {
13441 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13442 ibfd, oldtag, newtag);
13443 return -1;
13444 }
13445
13446 return result;
13447#undef T
13448}
13449
13450/* Query attributes object to see if integer divide instructions may be
13451 present in an object. */
13452static bfd_boolean
13453elf32_arm_attributes_accept_div (const obj_attribute *attr)
13454{
13455 int arch = attr[Tag_CPU_arch].i;
13456 int profile = attr[Tag_CPU_arch_profile].i;
13457
13458 switch (attr[Tag_DIV_use].i)
13459 {
13460 case 0:
13461 /* Integer divide allowed if instruction contained in archetecture. */
13462 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13463 return TRUE;
13464 else if (arch >= TAG_CPU_ARCH_V7E_M)
13465 return TRUE;
13466 else
13467 return FALSE;
13468
13469 case 1:
13470 /* Integer divide explicitly prohibited. */
13471 return FALSE;
13472
13473 default:
13474 /* Unrecognised case - treat as allowing divide everywhere. */
13475 case 2:
13476 /* Integer divide allowed in ARM state. */
13477 return TRUE;
13478 }
13479}
13480
13481/* Query attributes object to see if integer divide instructions are
13482 forbidden to be in the object. This is not the inverse of
13483 elf32_arm_attributes_accept_div. */
13484static bfd_boolean
13485elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13486{
13487 return attr[Tag_DIV_use].i == 1;
13488}
13489
13490/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13491 are conflicting attributes. */
13492
13493static bfd_boolean
13494elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
13495{
13496 obj_attribute *in_attr;
13497 obj_attribute *out_attr;
13498 /* Some tags have 0 = don't care, 1 = strong requirement,
13499 2 = weak requirement. */
13500 static const int order_021[3] = {0, 2, 1};
13501 int i;
13502 bfd_boolean result = TRUE;
13503 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13504
13505 /* Skip the linker stubs file. This preserves previous behavior
13506 of accepting unknown attributes in the first input file - but
13507 is that a bug? */
13508 if (ibfd->flags & BFD_LINKER_CREATED)
13509 return TRUE;
13510
13511 /* Skip any input that hasn't attribute section.
13512 This enables to link object files without attribute section with
13513 any others. */
13514 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13515 return TRUE;
13516
13517 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13518 {
13519 /* This is the first object. Copy the attributes. */
13520 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13521
13522 out_attr = elf_known_obj_attributes_proc (obfd);
13523
13524 /* Use the Tag_null value to indicate the attributes have been
13525 initialized. */
13526 out_attr[0].i = 1;
13527
13528 /* We do not output objects with Tag_MPextension_use_legacy - we move
13529 the attribute's value to Tag_MPextension_use. */
13530 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13531 {
13532 if (out_attr[Tag_MPextension_use].i != 0
13533 && out_attr[Tag_MPextension_use_legacy].i
13534 != out_attr[Tag_MPextension_use].i)
13535 {
13536 _bfd_error_handler
13537 (_("Error: %B has both the current and legacy "
13538 "Tag_MPextension_use attributes"), ibfd);
13539 result = FALSE;
13540 }
13541
13542 out_attr[Tag_MPextension_use] =
13543 out_attr[Tag_MPextension_use_legacy];
13544 out_attr[Tag_MPextension_use_legacy].type = 0;
13545 out_attr[Tag_MPextension_use_legacy].i = 0;
13546 }
13547
13548 return result;
13549 }
13550
13551 in_attr = elf_known_obj_attributes_proc (ibfd);
13552 out_attr = elf_known_obj_attributes_proc (obfd);
13553 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13554 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13555 {
13556 /* Ignore mismatches if the object doesn't use floating point or is
13557 floating point ABI independent. */
13558 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13559 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13560 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13561 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13562 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13563 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13564 {
13565 _bfd_error_handler
13566 (_("error: %B uses VFP register arguments, %B does not"),
13567 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13568 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13569 result = FALSE;
13570 }
13571 }
13572
13573 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13574 {
13575 /* Merge this attribute with existing attributes. */
13576 switch (i)
13577 {
13578 case Tag_CPU_raw_name:
13579 case Tag_CPU_name:
13580 /* These are merged after Tag_CPU_arch. */
13581 break;
13582
13583 case Tag_ABI_optimization_goals:
13584 case Tag_ABI_FP_optimization_goals:
13585 /* Use the first value seen. */
13586 break;
13587
13588 case Tag_CPU_arch:
13589 {
13590 int secondary_compat = -1, secondary_compat_out = -1;
13591 unsigned int saved_out_attr = out_attr[i].i;
13592 int arch_attr;
13593 static const char *name_table[] =
13594 {
13595 /* These aren't real CPU names, but we can't guess
13596 that from the architecture version alone. */
13597 "Pre v4",
13598 "ARM v4",
13599 "ARM v4T",
13600 "ARM v5T",
13601 "ARM v5TE",
13602 "ARM v5TEJ",
13603 "ARM v6",
13604 "ARM v6KZ",
13605 "ARM v6T2",
13606 "ARM v6K",
13607 "ARM v7",
13608 "ARM v6-M",
13609 "ARM v6S-M",
13610 "ARM v8",
13611 "",
13612 "ARM v8-M.baseline",
13613 "ARM v8-M.mainline",
13614 };
13615
13616 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13617 secondary_compat = get_secondary_compatible_arch (ibfd);
13618 secondary_compat_out = get_secondary_compatible_arch (obfd);
13619 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13620 &secondary_compat_out,
13621 in_attr[i].i,
13622 secondary_compat);
13623
13624 /* Return with error if failed to merge. */
13625 if (arch_attr == -1)
13626 return FALSE;
13627
13628 out_attr[i].i = arch_attr;
13629
13630 set_secondary_compatible_arch (obfd, secondary_compat_out);
13631
13632 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13633 if (out_attr[i].i == saved_out_attr)
13634 ; /* Leave the names alone. */
13635 else if (out_attr[i].i == in_attr[i].i)
13636 {
13637 /* The output architecture has been changed to match the
13638 input architecture. Use the input names. */
13639 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13640 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13641 : NULL;
13642 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13643 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13644 : NULL;
13645 }
13646 else
13647 {
13648 out_attr[Tag_CPU_name].s = NULL;
13649 out_attr[Tag_CPU_raw_name].s = NULL;
13650 }
13651
13652 /* If we still don't have a value for Tag_CPU_name,
13653 make one up now. Tag_CPU_raw_name remains blank. */
13654 if (out_attr[Tag_CPU_name].s == NULL
13655 && out_attr[i].i < ARRAY_SIZE (name_table))
13656 out_attr[Tag_CPU_name].s =
13657 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13658 }
13659 break;
13660
13661 case Tag_ARM_ISA_use:
13662 case Tag_THUMB_ISA_use:
13663 case Tag_WMMX_arch:
13664 case Tag_Advanced_SIMD_arch:
13665 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13666 case Tag_ABI_FP_rounding:
13667 case Tag_ABI_FP_exceptions:
13668 case Tag_ABI_FP_user_exceptions:
13669 case Tag_ABI_FP_number_model:
13670 case Tag_FP_HP_extension:
13671 case Tag_CPU_unaligned_access:
13672 case Tag_T2EE_use:
13673 case Tag_MPextension_use:
13674 /* Use the largest value specified. */
13675 if (in_attr[i].i > out_attr[i].i)
13676 out_attr[i].i = in_attr[i].i;
13677 break;
13678
13679 case Tag_ABI_align_preserved:
13680 case Tag_ABI_PCS_RO_data:
13681 /* Use the smallest value specified. */
13682 if (in_attr[i].i < out_attr[i].i)
13683 out_attr[i].i = in_attr[i].i;
13684 break;
13685
13686 case Tag_ABI_align_needed:
13687 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13688 && (in_attr[Tag_ABI_align_preserved].i == 0
13689 || out_attr[Tag_ABI_align_preserved].i == 0))
13690 {
13691 /* This error message should be enabled once all non-conformant
13692 binaries in the toolchain have had the attributes set
13693 properly.
13694 _bfd_error_handler
13695 (_("error: %B: 8-byte data alignment conflicts with %B"),
13696 obfd, ibfd);
13697 result = FALSE; */
13698 }
13699 /* Fall through. */
13700 case Tag_ABI_FP_denormal:
13701 case Tag_ABI_PCS_GOT_use:
13702 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13703 value if greater than 2 (for future-proofing). */
13704 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13705 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13706 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13707 out_attr[i].i = in_attr[i].i;
13708 break;
13709
13710 case Tag_Virtualization_use:
13711 /* The virtualization tag effectively stores two bits of
13712 information: the intended use of TrustZone (in bit 0), and the
13713 intended use of Virtualization (in bit 1). */
13714 if (out_attr[i].i == 0)
13715 out_attr[i].i = in_attr[i].i;
13716 else if (in_attr[i].i != 0
13717 && in_attr[i].i != out_attr[i].i)
13718 {
13719 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13720 out_attr[i].i = 3;
13721 else
13722 {
13723 _bfd_error_handler
13724 (_("error: %B: unable to merge virtualization attributes "
13725 "with %B"),
13726 obfd, ibfd);
13727 result = FALSE;
13728 }
13729 }
13730 break;
13731
13732 case Tag_CPU_arch_profile:
13733 if (out_attr[i].i != in_attr[i].i)
13734 {
13735 /* 0 will merge with anything.
13736 'A' and 'S' merge to 'A'.
13737 'R' and 'S' merge to 'R'.
13738 'M' and 'A|R|S' is an error. */
13739 if (out_attr[i].i == 0
13740 || (out_attr[i].i == 'S'
13741 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13742 out_attr[i].i = in_attr[i].i;
13743 else if (in_attr[i].i == 0
13744 || (in_attr[i].i == 'S'
13745 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13746 ; /* Do nothing. */
13747 else
13748 {
13749 _bfd_error_handler
13750 (_("error: %B: Conflicting architecture profiles %c/%c"),
13751 ibfd,
13752 in_attr[i].i ? in_attr[i].i : '0',
13753 out_attr[i].i ? out_attr[i].i : '0');
13754 result = FALSE;
13755 }
13756 }
13757 break;
13758
13759 case Tag_DSP_extension:
13760 /* No need to change output value if any of:
13761 - pre (<=) ARMv5T input architecture (do not have DSP)
13762 - M input profile not ARMv7E-M and do not have DSP. */
13763 if (in_attr[Tag_CPU_arch].i <= 3
13764 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13765 && in_attr[Tag_CPU_arch].i != 13
13766 && in_attr[i].i == 0))
13767 ; /* Do nothing. */
13768 /* Output value should be 0 if DSP part of architecture, ie.
13769 - post (>=) ARMv5te architecture output
13770 - A, R or S profile output or ARMv7E-M output architecture. */
13771 else if (out_attr[Tag_CPU_arch].i >= 4
13772 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13773 || out_attr[Tag_CPU_arch_profile].i == 'R'
13774 || out_attr[Tag_CPU_arch_profile].i == 'S'
13775 || out_attr[Tag_CPU_arch].i == 13))
13776 out_attr[i].i = 0;
13777 /* Otherwise, DSP instructions are added and not part of output
13778 architecture. */
13779 else
13780 out_attr[i].i = 1;
13781 break;
13782
13783 case Tag_FP_arch:
13784 {
13785 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13786 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13787 when it's 0. It might mean absence of FP hardware if
13788 Tag_FP_arch is zero. */
13789
13790#define VFP_VERSION_COUNT 9
13791 static const struct
13792 {
13793 int ver;
13794 int regs;
13795 } vfp_versions[VFP_VERSION_COUNT] =
13796 {
13797 {0, 0},
13798 {1, 16},
13799 {2, 16},
13800 {3, 32},
13801 {3, 16},
13802 {4, 32},
13803 {4, 16},
13804 {8, 32},
13805 {8, 16}
13806 };
13807 int ver;
13808 int regs;
13809 int newval;
13810
13811 /* If the output has no requirement about FP hardware,
13812 follow the requirement of the input. */
13813 if (out_attr[i].i == 0)
13814 {
13815 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13816 out_attr[i].i = in_attr[i].i;
13817 out_attr[Tag_ABI_HardFP_use].i
13818 = in_attr[Tag_ABI_HardFP_use].i;
13819 break;
13820 }
13821 /* If the input has no requirement about FP hardware, do
13822 nothing. */
13823 else if (in_attr[i].i == 0)
13824 {
13825 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13826 break;
13827 }
13828
13829 /* Both the input and the output have nonzero Tag_FP_arch.
13830 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13831
13832 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13833 do nothing. */
13834 if (in_attr[Tag_ABI_HardFP_use].i == 0
13835 && out_attr[Tag_ABI_HardFP_use].i == 0)
13836 ;
13837 /* If the input and the output have different Tag_ABI_HardFP_use,
13838 the combination of them is 0 (implied by Tag_FP_arch). */
13839 else if (in_attr[Tag_ABI_HardFP_use].i
13840 != out_attr[Tag_ABI_HardFP_use].i)
13841 out_attr[Tag_ABI_HardFP_use].i = 0;
13842
13843 /* Now we can handle Tag_FP_arch. */
13844
13845 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13846 pick the biggest. */
13847 if (in_attr[i].i >= VFP_VERSION_COUNT
13848 && in_attr[i].i > out_attr[i].i)
13849 {
13850 out_attr[i] = in_attr[i];
13851 break;
13852 }
13853 /* The output uses the superset of input features
13854 (ISA version) and registers. */
13855 ver = vfp_versions[in_attr[i].i].ver;
13856 if (ver < vfp_versions[out_attr[i].i].ver)
13857 ver = vfp_versions[out_attr[i].i].ver;
13858 regs = vfp_versions[in_attr[i].i].regs;
13859 if (regs < vfp_versions[out_attr[i].i].regs)
13860 regs = vfp_versions[out_attr[i].i].regs;
13861 /* This assumes all possible supersets are also a valid
13862 options. */
13863 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13864 {
13865 if (regs == vfp_versions[newval].regs
13866 && ver == vfp_versions[newval].ver)
13867 break;
13868 }
13869 out_attr[i].i = newval;
13870 }
13871 break;
13872 case Tag_PCS_config:
13873 if (out_attr[i].i == 0)
13874 out_attr[i].i = in_attr[i].i;
13875 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13876 {
13877 /* It's sometimes ok to mix different configs, so this is only
13878 a warning. */
13879 _bfd_error_handler
13880 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13881 }
13882 break;
13883 case Tag_ABI_PCS_R9_use:
13884 if (in_attr[i].i != out_attr[i].i
13885 && out_attr[i].i != AEABI_R9_unused
13886 && in_attr[i].i != AEABI_R9_unused)
13887 {
13888 _bfd_error_handler
13889 (_("error: %B: Conflicting use of R9"), ibfd);
13890 result = FALSE;
13891 }
13892 if (out_attr[i].i == AEABI_R9_unused)
13893 out_attr[i].i = in_attr[i].i;
13894 break;
13895 case Tag_ABI_PCS_RW_data:
13896 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13897 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13898 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13899 {
13900 _bfd_error_handler
13901 (_("error: %B: SB relative addressing conflicts with use of R9"),
13902 ibfd);
13903 result = FALSE;
13904 }
13905 /* Use the smallest value specified. */
13906 if (in_attr[i].i < out_attr[i].i)
13907 out_attr[i].i = in_attr[i].i;
13908 break;
13909 case Tag_ABI_PCS_wchar_t:
13910 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13911 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13912 {
13913 _bfd_error_handler
13914 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13915 ibfd, in_attr[i].i, out_attr[i].i);
13916 }
13917 else if (in_attr[i].i && !out_attr[i].i)
13918 out_attr[i].i = in_attr[i].i;
13919 break;
13920 case Tag_ABI_enum_size:
13921 if (in_attr[i].i != AEABI_enum_unused)
13922 {
13923 if (out_attr[i].i == AEABI_enum_unused
13924 || out_attr[i].i == AEABI_enum_forced_wide)
13925 {
13926 /* The existing object is compatible with anything.
13927 Use whatever requirements the new object has. */
13928 out_attr[i].i = in_attr[i].i;
13929 }
13930 else if (in_attr[i].i != AEABI_enum_forced_wide
13931 && out_attr[i].i != in_attr[i].i
13932 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13933 {
13934 static const char *aeabi_enum_names[] =
13935 { "", "variable-size", "32-bit", "" };
13936 const char *in_name =
13937 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13938 ? aeabi_enum_names[in_attr[i].i]
13939 : "<unknown>";
13940 const char *out_name =
13941 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13942 ? aeabi_enum_names[out_attr[i].i]
13943 : "<unknown>";
13944 _bfd_error_handler
13945 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13946 ibfd, in_name, out_name);
13947 }
13948 }
13949 break;
13950 case Tag_ABI_VFP_args:
13951 /* Aready done. */
13952 break;
13953 case Tag_ABI_WMMX_args:
13954 if (in_attr[i].i != out_attr[i].i)
13955 {
13956 _bfd_error_handler
13957 (_("error: %B uses iWMMXt register arguments, %B does not"),
13958 ibfd, obfd);
13959 result = FALSE;
13960 }
13961 break;
13962 case Tag_compatibility:
13963 /* Merged in target-independent code. */
13964 break;
13965 case Tag_ABI_HardFP_use:
13966 /* This is handled along with Tag_FP_arch. */
13967 break;
13968 case Tag_ABI_FP_16bit_format:
13969 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13970 {
13971 if (in_attr[i].i != out_attr[i].i)
13972 {
13973 _bfd_error_handler
13974 (_("error: fp16 format mismatch between %B and %B"),
13975 ibfd, obfd);
13976 result = FALSE;
13977 }
13978 }
13979 if (in_attr[i].i != 0)
13980 out_attr[i].i = in_attr[i].i;
13981 break;
13982
13983 case Tag_DIV_use:
13984 /* A value of zero on input means that the divide instruction may
13985 be used if available in the base architecture as specified via
13986 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13987 the user did not want divide instructions. A value of 2
13988 explicitly means that divide instructions were allowed in ARM
13989 and Thumb state. */
13990 if (in_attr[i].i == out_attr[i].i)
13991 /* Do nothing. */ ;
13992 else if (elf32_arm_attributes_forbid_div (in_attr)
13993 && !elf32_arm_attributes_accept_div (out_attr))
13994 out_attr[i].i = 1;
13995 else if (elf32_arm_attributes_forbid_div (out_attr)
13996 && elf32_arm_attributes_accept_div (in_attr))
13997 out_attr[i].i = in_attr[i].i;
13998 else if (in_attr[i].i == 2)
13999 out_attr[i].i = in_attr[i].i;
14000 break;
14001
14002 case Tag_MPextension_use_legacy:
14003 /* We don't output objects with Tag_MPextension_use_legacy - we
14004 move the value to Tag_MPextension_use. */
14005 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14006 {
14007 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14008 {
14009 _bfd_error_handler
14010 (_("%B has has both the current and legacy "
14011 "Tag_MPextension_use attributes"),
14012 ibfd);
14013 result = FALSE;
14014 }
14015 }
14016
14017 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14018 out_attr[Tag_MPextension_use] = in_attr[i];
14019
14020 break;
14021
14022 case Tag_nodefaults:
14023 /* This tag is set if it exists, but the value is unused (and is
14024 typically zero). We don't actually need to do anything here -
14025 the merge happens automatically when the type flags are merged
14026 below. */
14027 break;
14028 case Tag_also_compatible_with:
14029 /* Already done in Tag_CPU_arch. */
14030 break;
14031 case Tag_conformance:
14032 /* Keep the attribute if it matches. Throw it away otherwise.
14033 No attribute means no claim to conform. */
14034 if (!in_attr[i].s || !out_attr[i].s
14035 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14036 out_attr[i].s = NULL;
14037 break;
14038
14039 default:
14040 result
14041 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14042 }
14043
14044 /* If out_attr was copied from in_attr then it won't have a type yet. */
14045 if (in_attr[i].type && !out_attr[i].type)
14046 out_attr[i].type = in_attr[i].type;
14047 }
14048
14049 /* Merge Tag_compatibility attributes and any common GNU ones. */
14050 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
14051 return FALSE;
14052
14053 /* Check for any attributes not known on ARM. */
14054 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14055
14056 return result;
14057}
14058
14059
14060/* Return TRUE if the two EABI versions are incompatible. */
14061
14062static bfd_boolean
14063elf32_arm_versions_compatible (unsigned iver, unsigned over)
14064{
14065 /* v4 and v5 are the same spec before and after it was released,
14066 so allow mixing them. */
14067 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14068 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14069 return TRUE;
14070
14071 return (iver == over);
14072}
14073
14074/* Merge backend specific data from an object file to the output
14075 object file when linking. */
14076
14077static bfd_boolean
14078elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
14079
14080/* Display the flags field. */
14081
14082static bfd_boolean
14083elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14084{
14085 FILE * file = (FILE *) ptr;
14086 unsigned long flags;
14087
14088 BFD_ASSERT (abfd != NULL && ptr != NULL);
14089
14090 /* Print normal ELF private data. */
14091 _bfd_elf_print_private_bfd_data (abfd, ptr);
14092
14093 flags = elf_elfheader (abfd)->e_flags;
14094 /* Ignore init flag - it may not be set, despite the flags field
14095 containing valid data. */
14096
14097 /* xgettext:c-format */
14098 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14099
14100 switch (EF_ARM_EABI_VERSION (flags))
14101 {
14102 case EF_ARM_EABI_UNKNOWN:
14103 /* The following flag bits are GNU extensions and not part of the
14104 official ARM ELF extended ABI. Hence they are only decoded if
14105 the EABI version is not set. */
14106 if (flags & EF_ARM_INTERWORK)
14107 fprintf (file, _(" [interworking enabled]"));
14108
14109 if (flags & EF_ARM_APCS_26)
14110 fprintf (file, " [APCS-26]");
14111 else
14112 fprintf (file, " [APCS-32]");
14113
14114 if (flags & EF_ARM_VFP_FLOAT)
14115 fprintf (file, _(" [VFP float format]"));
14116 else if (flags & EF_ARM_MAVERICK_FLOAT)
14117 fprintf (file, _(" [Maverick float format]"));
14118 else
14119 fprintf (file, _(" [FPA float format]"));
14120
14121 if (flags & EF_ARM_APCS_FLOAT)
14122 fprintf (file, _(" [floats passed in float registers]"));
14123
14124 if (flags & EF_ARM_PIC)
14125 fprintf (file, _(" [position independent]"));
14126
14127 if (flags & EF_ARM_NEW_ABI)
14128 fprintf (file, _(" [new ABI]"));
14129
14130 if (flags & EF_ARM_OLD_ABI)
14131 fprintf (file, _(" [old ABI]"));
14132
14133 if (flags & EF_ARM_SOFT_FLOAT)
14134 fprintf (file, _(" [software FP]"));
14135
14136 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14137 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14138 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14139 | EF_ARM_MAVERICK_FLOAT);
14140 break;
14141
14142 case EF_ARM_EABI_VER1:
14143 fprintf (file, _(" [Version1 EABI]"));
14144
14145 if (flags & EF_ARM_SYMSARESORTED)
14146 fprintf (file, _(" [sorted symbol table]"));
14147 else
14148 fprintf (file, _(" [unsorted symbol table]"));
14149
14150 flags &= ~ EF_ARM_SYMSARESORTED;
14151 break;
14152
14153 case EF_ARM_EABI_VER2:
14154 fprintf (file, _(" [Version2 EABI]"));
14155
14156 if (flags & EF_ARM_SYMSARESORTED)
14157 fprintf (file, _(" [sorted symbol table]"));
14158 else
14159 fprintf (file, _(" [unsorted symbol table]"));
14160
14161 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14162 fprintf (file, _(" [dynamic symbols use segment index]"));
14163
14164 if (flags & EF_ARM_MAPSYMSFIRST)
14165 fprintf (file, _(" [mapping symbols precede others]"));
14166
14167 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14168 | EF_ARM_MAPSYMSFIRST);
14169 break;
14170
14171 case EF_ARM_EABI_VER3:
14172 fprintf (file, _(" [Version3 EABI]"));
14173 break;
14174
14175 case EF_ARM_EABI_VER4:
14176 fprintf (file, _(" [Version4 EABI]"));
14177 goto eabi;
14178
14179 case EF_ARM_EABI_VER5:
14180 fprintf (file, _(" [Version5 EABI]"));
14181
14182 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14183 fprintf (file, _(" [soft-float ABI]"));
14184
14185 if (flags & EF_ARM_ABI_FLOAT_HARD)
14186 fprintf (file, _(" [hard-float ABI]"));
14187
14188 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14189
14190 eabi:
14191 if (flags & EF_ARM_BE8)
14192 fprintf (file, _(" [BE8]"));
14193
14194 if (flags & EF_ARM_LE8)
14195 fprintf (file, _(" [LE8]"));
14196
14197 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14198 break;
14199
14200 default:
14201 fprintf (file, _(" <EABI version unrecognised>"));
14202 break;
14203 }
14204
14205 flags &= ~ EF_ARM_EABIMASK;
14206
14207 if (flags & EF_ARM_RELEXEC)
14208 fprintf (file, _(" [relocatable executable]"));
14209
14210 flags &= ~EF_ARM_RELEXEC;
14211
14212 if (flags)
14213 fprintf (file, _("<Unrecognised flag bits set>"));
14214
14215 fputc ('\n', file);
14216
14217 return TRUE;
14218}
14219
14220static int
14221elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14222{
14223 switch (ELF_ST_TYPE (elf_sym->st_info))
14224 {
14225 case STT_ARM_TFUNC:
14226 return ELF_ST_TYPE (elf_sym->st_info);
14227
14228 case STT_ARM_16BIT:
14229 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14230 This allows us to distinguish between data used by Thumb instructions
14231 and non-data (which is probably code) inside Thumb regions of an
14232 executable. */
14233 if (type != STT_OBJECT && type != STT_TLS)
14234 return ELF_ST_TYPE (elf_sym->st_info);
14235 break;
14236
14237 default:
14238 break;
14239 }
14240
14241 return type;
14242}
14243
14244static asection *
14245elf32_arm_gc_mark_hook (asection *sec,
14246 struct bfd_link_info *info,
14247 Elf_Internal_Rela *rel,
14248 struct elf_link_hash_entry *h,
14249 Elf_Internal_Sym *sym)
14250{
14251 if (h != NULL)
14252 switch (ELF32_R_TYPE (rel->r_info))
14253 {
14254 case R_ARM_GNU_VTINHERIT:
14255 case R_ARM_GNU_VTENTRY:
14256 return NULL;
14257 }
14258
14259 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14260}
14261
14262/* Update the got entry reference counts for the section being removed. */
14263
14264static bfd_boolean
14265elf32_arm_gc_sweep_hook (bfd * abfd,
14266 struct bfd_link_info * info,
14267 asection * sec,
14268 const Elf_Internal_Rela * relocs)
14269{
14270 Elf_Internal_Shdr *symtab_hdr;
14271 struct elf_link_hash_entry **sym_hashes;
14272 bfd_signed_vma *local_got_refcounts;
14273 const Elf_Internal_Rela *rel, *relend;
14274 struct elf32_arm_link_hash_table * globals;
14275
14276 if (bfd_link_relocatable (info))
14277 return TRUE;
14278
14279 globals = elf32_arm_hash_table (info);
14280 if (globals == NULL)
14281 return FALSE;
14282
14283 elf_section_data (sec)->local_dynrel = NULL;
14284
14285 symtab_hdr = & elf_symtab_hdr (abfd);
14286 sym_hashes = elf_sym_hashes (abfd);
14287 local_got_refcounts = elf_local_got_refcounts (abfd);
14288
14289 check_use_blx (globals);
14290
14291 relend = relocs + sec->reloc_count;
14292 for (rel = relocs; rel < relend; rel++)
14293 {
14294 unsigned long r_symndx;
14295 struct elf_link_hash_entry *h = NULL;
14296 struct elf32_arm_link_hash_entry *eh;
14297 int r_type;
14298 bfd_boolean call_reloc_p;
14299 bfd_boolean may_become_dynamic_p;
14300 bfd_boolean may_need_local_target_p;
14301 union gotplt_union *root_plt;
14302 struct arm_plt_info *arm_plt;
14303
14304 r_symndx = ELF32_R_SYM (rel->r_info);
14305 if (r_symndx >= symtab_hdr->sh_info)
14306 {
14307 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14308 while (h->root.type == bfd_link_hash_indirect
14309 || h->root.type == bfd_link_hash_warning)
14310 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14311 }
14312 eh = (struct elf32_arm_link_hash_entry *) h;
14313
14314 call_reloc_p = FALSE;
14315 may_become_dynamic_p = FALSE;
14316 may_need_local_target_p = FALSE;
14317
14318 r_type = ELF32_R_TYPE (rel->r_info);
14319 r_type = arm_real_reloc_type (globals, r_type);
14320 switch (r_type)
14321 {
14322 case R_ARM_GOT32:
14323 case R_ARM_GOT_PREL:
14324 case R_ARM_TLS_GD32:
14325 case R_ARM_TLS_IE32:
14326 if (h != NULL)
14327 {
14328 if (h->got.refcount > 0)
14329 h->got.refcount -= 1;
14330 }
14331 else if (local_got_refcounts != NULL)
14332 {
14333 if (local_got_refcounts[r_symndx] > 0)
14334 local_got_refcounts[r_symndx] -= 1;
14335 }
14336 break;
14337
14338 case R_ARM_TLS_LDM32:
14339 globals->tls_ldm_got.refcount -= 1;
14340 break;
14341
14342 case R_ARM_PC24:
14343 case R_ARM_PLT32:
14344 case R_ARM_CALL:
14345 case R_ARM_JUMP24:
14346 case R_ARM_PREL31:
14347 case R_ARM_THM_CALL:
14348 case R_ARM_THM_JUMP24:
14349 case R_ARM_THM_JUMP19:
14350 call_reloc_p = TRUE;
14351 may_need_local_target_p = TRUE;
14352 break;
14353
14354 case R_ARM_ABS12:
14355 if (!globals->vxworks_p)
14356 {
14357 may_need_local_target_p = TRUE;
14358 break;
14359 }
14360 /* Fall through. */
14361 case R_ARM_ABS32:
14362 case R_ARM_ABS32_NOI:
14363 case R_ARM_REL32:
14364 case R_ARM_REL32_NOI:
14365 case R_ARM_MOVW_ABS_NC:
14366 case R_ARM_MOVT_ABS:
14367 case R_ARM_MOVW_PREL_NC:
14368 case R_ARM_MOVT_PREL:
14369 case R_ARM_THM_MOVW_ABS_NC:
14370 case R_ARM_THM_MOVT_ABS:
14371 case R_ARM_THM_MOVW_PREL_NC:
14372 case R_ARM_THM_MOVT_PREL:
14373 /* Should the interworking branches be here also? */
14374 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14375 && (sec->flags & SEC_ALLOC) != 0)
14376 {
14377 if (h == NULL
14378 && elf32_arm_howto_from_type (r_type)->pc_relative)
14379 {
14380 call_reloc_p = TRUE;
14381 may_need_local_target_p = TRUE;
14382 }
14383 else
14384 may_become_dynamic_p = TRUE;
14385 }
14386 else
14387 may_need_local_target_p = TRUE;
14388 break;
14389
14390 default:
14391 break;
14392 }
14393
14394 if (may_need_local_target_p
14395 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14396 &arm_plt))
14397 {
14398 /* If PLT refcount book-keeping is wrong and too low, we'll
14399 see a zero value (going to -1) for the root PLT reference
14400 count. */
14401 if (root_plt->refcount >= 0)
14402 {
14403 BFD_ASSERT (root_plt->refcount != 0);
14404 root_plt->refcount -= 1;
14405 }
14406 else
14407 /* A value of -1 means the symbol has become local, forced
14408 or seeing a hidden definition. Any other negative value
14409 is an error. */
14410 BFD_ASSERT (root_plt->refcount == -1);
14411
14412 if (!call_reloc_p)
14413 arm_plt->noncall_refcount--;
14414
14415 if (r_type == R_ARM_THM_CALL)
14416 arm_plt->maybe_thumb_refcount--;
14417
14418 if (r_type == R_ARM_THM_JUMP24
14419 || r_type == R_ARM_THM_JUMP19)
14420 arm_plt->thumb_refcount--;
14421 }
14422
14423 if (may_become_dynamic_p)
14424 {
14425 struct elf_dyn_relocs **pp;
14426 struct elf_dyn_relocs *p;
14427
14428 if (h != NULL)
14429 pp = &(eh->dyn_relocs);
14430 else
14431 {
14432 Elf_Internal_Sym *isym;
14433
14434 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14435 abfd, r_symndx);
14436 if (isym == NULL)
14437 return FALSE;
14438 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14439 if (pp == NULL)
14440 return FALSE;
14441 }
14442 for (; (p = *pp) != NULL; pp = &p->next)
14443 if (p->sec == sec)
14444 {
14445 /* Everything must go for SEC. */
14446 *pp = p->next;
14447 break;
14448 }
14449 }
14450 }
14451
14452 return TRUE;
14453}
14454
14455/* Look through the relocs for a section during the first phase. */
14456
14457static bfd_boolean
14458elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14459 asection *sec, const Elf_Internal_Rela *relocs)
14460{
14461 Elf_Internal_Shdr *symtab_hdr;
14462 struct elf_link_hash_entry **sym_hashes;
14463 const Elf_Internal_Rela *rel;
14464 const Elf_Internal_Rela *rel_end;
14465 bfd *dynobj;
14466 asection *sreloc;
14467 struct elf32_arm_link_hash_table *htab;
14468 bfd_boolean call_reloc_p;
14469 bfd_boolean may_become_dynamic_p;
14470 bfd_boolean may_need_local_target_p;
14471 unsigned long nsyms;
14472
14473 if (bfd_link_relocatable (info))
14474 return TRUE;
14475
14476 BFD_ASSERT (is_arm_elf (abfd));
14477
14478 htab = elf32_arm_hash_table (info);
14479 if (htab == NULL)
14480 return FALSE;
14481
14482 sreloc = NULL;
14483
14484 /* Create dynamic sections for relocatable executables so that we can
14485 copy relocations. */
14486 if (htab->root.is_relocatable_executable
14487 && ! htab->root.dynamic_sections_created)
14488 {
14489 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14490 return FALSE;
14491 }
14492
14493 if (htab->root.dynobj == NULL)
14494 htab->root.dynobj = abfd;
14495 if (!create_ifunc_sections (info))
14496 return FALSE;
14497
14498 dynobj = htab->root.dynobj;
14499
14500 symtab_hdr = & elf_symtab_hdr (abfd);
14501 sym_hashes = elf_sym_hashes (abfd);
14502 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14503
14504 rel_end = relocs + sec->reloc_count;
14505 for (rel = relocs; rel < rel_end; rel++)
14506 {
14507 Elf_Internal_Sym *isym;
14508 struct elf_link_hash_entry *h;
14509 struct elf32_arm_link_hash_entry *eh;
14510 unsigned long r_symndx;
14511 int r_type;
14512
14513 r_symndx = ELF32_R_SYM (rel->r_info);
14514 r_type = ELF32_R_TYPE (rel->r_info);
14515 r_type = arm_real_reloc_type (htab, r_type);
14516
14517 if (r_symndx >= nsyms
14518 /* PR 9934: It is possible to have relocations that do not
14519 refer to symbols, thus it is also possible to have an
14520 object file containing relocations but no symbol table. */
14521 && (r_symndx > STN_UNDEF || nsyms > 0))
14522 {
14523 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14524 r_symndx);
14525 return FALSE;
14526 }
14527
14528 h = NULL;
14529 isym = NULL;
14530 if (nsyms > 0)
14531 {
14532 if (r_symndx < symtab_hdr->sh_info)
14533 {
14534 /* A local symbol. */
14535 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14536 abfd, r_symndx);
14537 if (isym == NULL)
14538 return FALSE;
14539 }
14540 else
14541 {
14542 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14543 while (h->root.type == bfd_link_hash_indirect
14544 || h->root.type == bfd_link_hash_warning)
14545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14546
14547 /* PR15323, ref flags aren't set for references in the
14548 same object. */
14549 h->root.non_ir_ref = 1;
14550 }
14551 }
14552
14553 eh = (struct elf32_arm_link_hash_entry *) h;
14554
14555 call_reloc_p = FALSE;
14556 may_become_dynamic_p = FALSE;
14557 may_need_local_target_p = FALSE;
14558
14559 /* Could be done earlier, if h were already available. */
14560 r_type = elf32_arm_tls_transition (info, r_type, h);
14561 switch (r_type)
14562 {
14563 case R_ARM_GOT32:
14564 case R_ARM_GOT_PREL:
14565 case R_ARM_TLS_GD32:
14566 case R_ARM_TLS_IE32:
14567 case R_ARM_TLS_GOTDESC:
14568 case R_ARM_TLS_DESCSEQ:
14569 case R_ARM_THM_TLS_DESCSEQ:
14570 case R_ARM_TLS_CALL:
14571 case R_ARM_THM_TLS_CALL:
14572 /* This symbol requires a global offset table entry. */
14573 {
14574 int tls_type, old_tls_type;
14575
14576 switch (r_type)
14577 {
14578 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14579
14580 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14581
14582 case R_ARM_TLS_GOTDESC:
14583 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14584 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14585 tls_type = GOT_TLS_GDESC; break;
14586
14587 default: tls_type = GOT_NORMAL; break;
14588 }
14589
14590 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14591 info->flags |= DF_STATIC_TLS;
14592
14593 if (h != NULL)
14594 {
14595 h->got.refcount++;
14596 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14597 }
14598 else
14599 {
14600 /* This is a global offset table entry for a local symbol. */
14601 if (!elf32_arm_allocate_local_sym_info (abfd))
14602 return FALSE;
14603 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14604 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14605 }
14606
14607 /* If a variable is accessed with both tls methods, two
14608 slots may be created. */
14609 if (GOT_TLS_GD_ANY_P (old_tls_type)
14610 && GOT_TLS_GD_ANY_P (tls_type))
14611 tls_type |= old_tls_type;
14612
14613 /* We will already have issued an error message if there
14614 is a TLS/non-TLS mismatch, based on the symbol
14615 type. So just combine any TLS types needed. */
14616 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14617 && tls_type != GOT_NORMAL)
14618 tls_type |= old_tls_type;
14619
14620 /* If the symbol is accessed in both IE and GDESC
14621 method, we're able to relax. Turn off the GDESC flag,
14622 without messing up with any other kind of tls types
14623 that may be involved. */
14624 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14625 tls_type &= ~GOT_TLS_GDESC;
14626
14627 if (old_tls_type != tls_type)
14628 {
14629 if (h != NULL)
14630 elf32_arm_hash_entry (h)->tls_type = tls_type;
14631 else
14632 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14633 }
14634 }
14635 /* Fall through. */
14636
14637 case R_ARM_TLS_LDM32:
14638 if (r_type == R_ARM_TLS_LDM32)
14639 htab->tls_ldm_got.refcount++;
14640 /* Fall through. */
14641
14642 case R_ARM_GOTOFF32:
14643 case R_ARM_GOTPC:
14644 if (htab->root.sgot == NULL
14645 && !create_got_section (htab->root.dynobj, info))
14646 return FALSE;
14647 break;
14648
14649 case R_ARM_PC24:
14650 case R_ARM_PLT32:
14651 case R_ARM_CALL:
14652 case R_ARM_JUMP24:
14653 case R_ARM_PREL31:
14654 case R_ARM_THM_CALL:
14655 case R_ARM_THM_JUMP24:
14656 case R_ARM_THM_JUMP19:
14657 call_reloc_p = TRUE;
14658 may_need_local_target_p = TRUE;
14659 break;
14660
14661 case R_ARM_ABS12:
14662 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14663 ldr __GOTT_INDEX__ offsets. */
14664 if (!htab->vxworks_p)
14665 {
14666 may_need_local_target_p = TRUE;
14667 break;
14668 }
14669 else goto jump_over;
14670
14671 /* Fall through. */
14672
14673 case R_ARM_MOVW_ABS_NC:
14674 case R_ARM_MOVT_ABS:
14675 case R_ARM_THM_MOVW_ABS_NC:
14676 case R_ARM_THM_MOVT_ABS:
14677 if (bfd_link_pic (info))
14678 {
14679 _bfd_error_handler
14680 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14681 abfd, elf32_arm_howto_table_1[r_type].name,
14682 (h) ? h->root.root.string : "a local symbol");
14683 bfd_set_error (bfd_error_bad_value);
14684 return FALSE;
14685 }
14686
14687 /* Fall through. */
14688 case R_ARM_ABS32:
14689 case R_ARM_ABS32_NOI:
14690 jump_over:
14691 if (h != NULL && bfd_link_executable (info))
14692 {
14693 h->pointer_equality_needed = 1;
14694 }
14695 /* Fall through. */
14696 case R_ARM_REL32:
14697 case R_ARM_REL32_NOI:
14698 case R_ARM_MOVW_PREL_NC:
14699 case R_ARM_MOVT_PREL:
14700 case R_ARM_THM_MOVW_PREL_NC:
14701 case R_ARM_THM_MOVT_PREL:
14702
14703 /* Should the interworking branches be listed here? */
14704 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14705 && (sec->flags & SEC_ALLOC) != 0)
14706 {
14707 if (h == NULL
14708 && elf32_arm_howto_from_type (r_type)->pc_relative)
14709 {
14710 /* In shared libraries and relocatable executables,
14711 we treat local relative references as calls;
14712 see the related SYMBOL_CALLS_LOCAL code in
14713 allocate_dynrelocs. */
14714 call_reloc_p = TRUE;
14715 may_need_local_target_p = TRUE;
14716 }
14717 else
14718 /* We are creating a shared library or relocatable
14719 executable, and this is a reloc against a global symbol,
14720 or a non-PC-relative reloc against a local symbol.
14721 We may need to copy the reloc into the output. */
14722 may_become_dynamic_p = TRUE;
14723 }
14724 else
14725 may_need_local_target_p = TRUE;
14726 break;
14727
14728 /* This relocation describes the C++ object vtable hierarchy.
14729 Reconstruct it for later use during GC. */
14730 case R_ARM_GNU_VTINHERIT:
14731 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14732 return FALSE;
14733 break;
14734
14735 /* This relocation describes which C++ vtable entries are actually
14736 used. Record for later use during GC. */
14737 case R_ARM_GNU_VTENTRY:
14738 BFD_ASSERT (h != NULL);
14739 if (h != NULL
14740 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14741 return FALSE;
14742 break;
14743 }
14744
14745 if (h != NULL)
14746 {
14747 if (call_reloc_p)
14748 /* We may need a .plt entry if the function this reloc
14749 refers to is in a different object, regardless of the
14750 symbol's type. We can't tell for sure yet, because
14751 something later might force the symbol local. */
14752 h->needs_plt = 1;
14753 else if (may_need_local_target_p)
14754 /* If this reloc is in a read-only section, we might
14755 need a copy reloc. We can't check reliably at this
14756 stage whether the section is read-only, as input
14757 sections have not yet been mapped to output sections.
14758 Tentatively set the flag for now, and correct in
14759 adjust_dynamic_symbol. */
14760 h->non_got_ref = 1;
14761 }
14762
14763 if (may_need_local_target_p
14764 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14765 {
14766 union gotplt_union *root_plt;
14767 struct arm_plt_info *arm_plt;
14768 struct arm_local_iplt_info *local_iplt;
14769
14770 if (h != NULL)
14771 {
14772 root_plt = &h->plt;
14773 arm_plt = &eh->plt;
14774 }
14775 else
14776 {
14777 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14778 if (local_iplt == NULL)
14779 return FALSE;
14780 root_plt = &local_iplt->root;
14781 arm_plt = &local_iplt->arm;
14782 }
14783
14784 /* If the symbol is a function that doesn't bind locally,
14785 this relocation will need a PLT entry. */
14786 if (root_plt->refcount != -1)
14787 root_plt->refcount += 1;
14788
14789 if (!call_reloc_p)
14790 arm_plt->noncall_refcount++;
14791
14792 /* It's too early to use htab->use_blx here, so we have to
14793 record possible blx references separately from
14794 relocs that definitely need a thumb stub. */
14795
14796 if (r_type == R_ARM_THM_CALL)
14797 arm_plt->maybe_thumb_refcount += 1;
14798
14799 if (r_type == R_ARM_THM_JUMP24
14800 || r_type == R_ARM_THM_JUMP19)
14801 arm_plt->thumb_refcount += 1;
14802 }
14803
14804 if (may_become_dynamic_p)
14805 {
14806 struct elf_dyn_relocs *p, **head;
14807
14808 /* Create a reloc section in dynobj. */
14809 if (sreloc == NULL)
14810 {
14811 sreloc = _bfd_elf_make_dynamic_reloc_section
14812 (sec, dynobj, 2, abfd, ! htab->use_rel);
14813
14814 if (sreloc == NULL)
14815 return FALSE;
14816
14817 /* BPABI objects never have dynamic relocations mapped. */
14818 if (htab->symbian_p)
14819 {
14820 flagword flags;
14821
14822 flags = bfd_get_section_flags (dynobj, sreloc);
14823 flags &= ~(SEC_LOAD | SEC_ALLOC);
14824 bfd_set_section_flags (dynobj, sreloc, flags);
14825 }
14826 }
14827
14828 /* If this is a global symbol, count the number of
14829 relocations we need for this symbol. */
14830 if (h != NULL)
14831 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14832 else
14833 {
14834 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14835 if (head == NULL)
14836 return FALSE;
14837 }
14838
14839 p = *head;
14840 if (p == NULL || p->sec != sec)
14841 {
14842 bfd_size_type amt = sizeof *p;
14843
14844 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14845 if (p == NULL)
14846 return FALSE;
14847 p->next = *head;
14848 *head = p;
14849 p->sec = sec;
14850 p->count = 0;
14851 p->pc_count = 0;
14852 }
14853
14854 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14855 p->pc_count += 1;
14856 p->count += 1;
14857 }
14858 }
14859
14860 return TRUE;
14861}
14862
14863static void
14864elf32_arm_update_relocs (asection *o,
14865 struct bfd_elf_section_reloc_data *reldata)
14866{
14867 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14868 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14869 const struct elf_backend_data *bed;
14870 _arm_elf_section_data *eado;
14871 struct bfd_link_order *p;
14872 bfd_byte *erela_head, *erela;
14873 Elf_Internal_Rela *irela_head, *irela;
14874 Elf_Internal_Shdr *rel_hdr;
14875 bfd *abfd;
14876 unsigned int count;
14877
14878 eado = get_arm_elf_section_data (o);
14879
14880 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14881 return;
14882
14883 abfd = o->owner;
14884 bed = get_elf_backend_data (abfd);
14885 rel_hdr = reldata->hdr;
14886
14887 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14888 {
14889 swap_in = bed->s->swap_reloc_in;
14890 swap_out = bed->s->swap_reloc_out;
14891 }
14892 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14893 {
14894 swap_in = bed->s->swap_reloca_in;
14895 swap_out = bed->s->swap_reloca_out;
14896 }
14897 else
14898 abort ();
14899
14900 erela_head = rel_hdr->contents;
14901 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14902 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14903
14904 erela = erela_head;
14905 irela = irela_head;
14906 count = 0;
14907
14908 for (p = o->map_head.link_order; p; p = p->next)
14909 {
14910 if (p->type == bfd_section_reloc_link_order
14911 || p->type == bfd_symbol_reloc_link_order)
14912 {
14913 (*swap_in) (abfd, erela, irela);
14914 erela += rel_hdr->sh_entsize;
14915 irela++;
14916 count++;
14917 }
14918 else if (p->type == bfd_indirect_link_order)
14919 {
14920 struct bfd_elf_section_reloc_data *input_reldata;
14921 arm_unwind_table_edit *edit_list, *edit_tail;
14922 _arm_elf_section_data *eadi;
14923 bfd_size_type j;
14924 bfd_vma offset;
14925 asection *i;
14926
14927 i = p->u.indirect.section;
14928
14929 eadi = get_arm_elf_section_data (i);
14930 edit_list = eadi->u.exidx.unwind_edit_list;
14931 edit_tail = eadi->u.exidx.unwind_edit_tail;
14932 offset = o->vma + i->output_offset;
14933
14934 if (eadi->elf.rel.hdr &&
14935 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14936 input_reldata = &eadi->elf.rel;
14937 else if (eadi->elf.rela.hdr &&
14938 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14939 input_reldata = &eadi->elf.rela;
14940 else
14941 abort ();
14942
14943 if (edit_list)
14944 {
14945 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14946 {
14947 arm_unwind_table_edit *edit_node, *edit_next;
14948 bfd_vma bias;
14949 bfd_vma index;
14950
14951 (*swap_in) (abfd, erela, irela);
14952 index = (irela->r_offset - offset) / 8;
14953
14954 bias = 0;
14955 edit_node = edit_list;
14956 for (edit_next = edit_list;
14957 edit_next && edit_next->index <= index;
14958 edit_next = edit_node->next)
14959 {
14960 bias++;
14961 edit_node = edit_next;
14962 }
14963
14964 if (edit_node->type != DELETE_EXIDX_ENTRY
14965 || edit_node->index != index)
14966 {
14967 irela->r_offset -= bias * 8;
14968 irela++;
14969 count++;
14970 }
14971
14972 erela += rel_hdr->sh_entsize;
14973 }
14974
14975 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14976 {
14977 /* New relocation entity. */
14978 asection *text_sec = edit_tail->linked_section;
14979 asection *text_out = text_sec->output_section;
14980 bfd_vma exidx_offset = offset + i->size - 8;
14981
14982 irela->r_addend = 0;
14983 irela->r_offset = exidx_offset;
14984 irela->r_info = ELF32_R_INFO
14985 (text_out->target_index, R_ARM_PREL31);
14986 irela++;
14987 count++;
14988 }
14989 }
14990 else
14991 {
14992 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14993 {
14994 (*swap_in) (abfd, erela, irela);
14995 erela += rel_hdr->sh_entsize;
14996 irela++;
14997 }
14998
14999 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15000 }
15001 }
15002 }
15003
15004 reldata->count = count;
15005 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15006
15007 erela = erela_head;
15008 irela = irela_head;
15009 while (count > 0)
15010 {
15011 (*swap_out) (abfd, irela, erela);
15012 erela += rel_hdr->sh_entsize;
15013 irela++;
15014 count--;
15015 }
15016
15017 free (irela_head);
15018
15019 /* Hashes are no longer valid. */
15020 free (reldata->hashes);
15021 reldata->hashes = NULL;
15022}
15023
15024/* Unwinding tables are not referenced directly. This pass marks them as
15025 required if the corresponding code section is marked. Similarly, ARMv8-M
15026 secure entry functions can only be referenced by SG veneers which are
15027 created after the GC process. They need to be marked in case they reside in
15028 their own section (as would be the case if code was compiled with
15029 -ffunction-sections). */
15030
15031static bfd_boolean
15032elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15033 elf_gc_mark_hook_fn gc_mark_hook)
15034{
15035 bfd *sub;
15036 Elf_Internal_Shdr **elf_shdrp;
15037 asection *cmse_sec;
15038 obj_attribute *out_attr;
15039 Elf_Internal_Shdr *symtab_hdr;
15040 unsigned i, sym_count, ext_start;
15041 const struct elf_backend_data *bed;
15042 struct elf_link_hash_entry **sym_hashes;
15043 struct elf32_arm_link_hash_entry *cmse_hash;
15044 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15045
15046 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15047
15048 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15049 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15050 && out_attr[Tag_CPU_arch_profile].i == 'M';
15051
15052 /* Marking EH data may cause additional code sections to be marked,
15053 requiring multiple passes. */
15054 again = TRUE;
15055 while (again)
15056 {
15057 again = FALSE;
15058 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15059 {
15060 asection *o;
15061
15062 if (! is_arm_elf (sub))
15063 continue;
15064
15065 elf_shdrp = elf_elfsections (sub);
15066 for (o = sub->sections; o != NULL; o = o->next)
15067 {
15068 Elf_Internal_Shdr *hdr;
15069
15070 hdr = &elf_section_data (o)->this_hdr;
15071 if (hdr->sh_type == SHT_ARM_EXIDX
15072 && hdr->sh_link
15073 && hdr->sh_link < elf_numsections (sub)
15074 && !o->gc_mark
15075 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15076 {
15077 again = TRUE;
15078 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15079 return FALSE;
15080 }
15081 }
15082
15083 /* Mark section holding ARMv8-M secure entry functions. We mark all
15084 of them so no need for a second browsing. */
15085 if (is_v8m && first_bfd_browse)
15086 {
15087 sym_hashes = elf_sym_hashes (sub);
15088 bed = get_elf_backend_data (sub);
15089 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15090 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15091 ext_start = symtab_hdr->sh_info;
15092
15093 /* Scan symbols. */
15094 for (i = ext_start; i < sym_count; i++)
15095 {
15096 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15097
15098 /* Assume it is a special symbol. If not, cmse_scan will
15099 warn about it and user can do something about it. */
15100 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15101 {
15102 cmse_sec = cmse_hash->root.root.u.def.section;
15103 if (!cmse_sec->gc_mark
15104 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15105 return FALSE;
15106 }
15107 }
15108 }
15109 }
15110 first_bfd_browse = FALSE;
15111 }
15112
15113 return TRUE;
15114}
15115
15116/* Treat mapping symbols as special target symbols. */
15117
15118static bfd_boolean
15119elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15120{
15121 return bfd_is_arm_special_symbol_name (sym->name,
15122 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15123}
15124
15125/* This is a copy of elf_find_function() from elf.c except that
15126 ARM mapping symbols are ignored when looking for function names
15127 and STT_ARM_TFUNC is considered to a function type. */
15128
15129static bfd_boolean
15130arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15131 asymbol ** symbols,
15132 asection * section,
15133 bfd_vma offset,
15134 const char ** filename_ptr,
15135 const char ** functionname_ptr)
15136{
15137 const char * filename = NULL;
15138 asymbol * func = NULL;
15139 bfd_vma low_func = 0;
15140 asymbol ** p;
15141
15142 for (p = symbols; *p != NULL; p++)
15143 {
15144 elf_symbol_type *q;
15145
15146 q = (elf_symbol_type *) *p;
15147
15148 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15149 {
15150 default:
15151 break;
15152 case STT_FILE:
15153 filename = bfd_asymbol_name (&q->symbol);
15154 break;
15155 case STT_FUNC:
15156 case STT_ARM_TFUNC:
15157 case STT_NOTYPE:
15158 /* Skip mapping symbols. */
15159 if ((q->symbol.flags & BSF_LOCAL)
15160 && bfd_is_arm_special_symbol_name (q->symbol.name,
15161 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15162 continue;
15163 /* Fall through. */
15164 if (bfd_get_section (&q->symbol) == section
15165 && q->symbol.value >= low_func
15166 && q->symbol.value <= offset)
15167 {
15168 func = (asymbol *) q;
15169 low_func = q->symbol.value;
15170 }
15171 break;
15172 }
15173 }
15174
15175 if (func == NULL)
15176 return FALSE;
15177
15178 if (filename_ptr)
15179 *filename_ptr = filename;
15180 if (functionname_ptr)
15181 *functionname_ptr = bfd_asymbol_name (func);
15182
15183 return TRUE;
15184}
15185
15186
15187/* Find the nearest line to a particular section and offset, for error
15188 reporting. This code is a duplicate of the code in elf.c, except
15189 that it uses arm_elf_find_function. */
15190
15191static bfd_boolean
15192elf32_arm_find_nearest_line (bfd * abfd,
15193 asymbol ** symbols,
15194 asection * section,
15195 bfd_vma offset,
15196 const char ** filename_ptr,
15197 const char ** functionname_ptr,
15198 unsigned int * line_ptr,
15199 unsigned int * discriminator_ptr)
15200{
15201 bfd_boolean found = FALSE;
15202
15203 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15204 filename_ptr, functionname_ptr,
15205 line_ptr, discriminator_ptr,
15206 dwarf_debug_sections, 0,
15207 & elf_tdata (abfd)->dwarf2_find_line_info))
15208 {
15209 if (!*functionname_ptr)
15210 arm_elf_find_function (abfd, symbols, section, offset,
15211 *filename_ptr ? NULL : filename_ptr,
15212 functionname_ptr);
15213
15214 return TRUE;
15215 }
15216
15217 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15218 uses DWARF1. */
15219
15220 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15221 & found, filename_ptr,
15222 functionname_ptr, line_ptr,
15223 & elf_tdata (abfd)->line_info))
15224 return FALSE;
15225
15226 if (found && (*functionname_ptr || *line_ptr))
15227 return TRUE;
15228
15229 if (symbols == NULL)
15230 return FALSE;
15231
15232 if (! arm_elf_find_function (abfd, symbols, section, offset,
15233 filename_ptr, functionname_ptr))
15234 return FALSE;
15235
15236 *line_ptr = 0;
15237 return TRUE;
15238}
15239
15240static bfd_boolean
15241elf32_arm_find_inliner_info (bfd * abfd,
15242 const char ** filename_ptr,
15243 const char ** functionname_ptr,
15244 unsigned int * line_ptr)
15245{
15246 bfd_boolean found;
15247 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15248 functionname_ptr, line_ptr,
15249 & elf_tdata (abfd)->dwarf2_find_line_info);
15250 return found;
15251}
15252
15253/* Adjust a symbol defined by a dynamic object and referenced by a
15254 regular object. The current definition is in some section of the
15255 dynamic object, but we're not including those sections. We have to
15256 change the definition to something the rest of the link can
15257 understand. */
15258
15259static bfd_boolean
15260elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15261 struct elf_link_hash_entry * h)
15262{
15263 bfd * dynobj;
15264 asection * s;
15265 struct elf32_arm_link_hash_entry * eh;
15266 struct elf32_arm_link_hash_table *globals;
15267
15268 globals = elf32_arm_hash_table (info);
15269 if (globals == NULL)
15270 return FALSE;
15271
15272 dynobj = elf_hash_table (info)->dynobj;
15273
15274 /* Make sure we know what is going on here. */
15275 BFD_ASSERT (dynobj != NULL
15276 && (h->needs_plt
15277 || h->type == STT_GNU_IFUNC
15278 || h->u.weakdef != NULL
15279 || (h->def_dynamic
15280 && h->ref_regular
15281 && !h->def_regular)));
15282
15283 eh = (struct elf32_arm_link_hash_entry *) h;
15284
15285 /* If this is a function, put it in the procedure linkage table. We
15286 will fill in the contents of the procedure linkage table later,
15287 when we know the address of the .got section. */
15288 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15289 {
15290 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15291 symbol binds locally. */
15292 if (h->plt.refcount <= 0
15293 || (h->type != STT_GNU_IFUNC
15294 && (SYMBOL_CALLS_LOCAL (info, h)
15295 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15296 && h->root.type == bfd_link_hash_undefweak))))
15297 {
15298 /* This case can occur if we saw a PLT32 reloc in an input
15299 file, but the symbol was never referred to by a dynamic
15300 object, or if all references were garbage collected. In
15301 such a case, we don't actually need to build a procedure
15302 linkage table, and we can just do a PC24 reloc instead. */
15303 h->plt.offset = (bfd_vma) -1;
15304 eh->plt.thumb_refcount = 0;
15305 eh->plt.maybe_thumb_refcount = 0;
15306 eh->plt.noncall_refcount = 0;
15307 h->needs_plt = 0;
15308 }
15309
15310 return TRUE;
15311 }
15312 else
15313 {
15314 /* It's possible that we incorrectly decided a .plt reloc was
15315 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15316 in check_relocs. We can't decide accurately between function
15317 and non-function syms in check-relocs; Objects loaded later in
15318 the link may change h->type. So fix it now. */
15319 h->plt.offset = (bfd_vma) -1;
15320 eh->plt.thumb_refcount = 0;
15321 eh->plt.maybe_thumb_refcount = 0;
15322 eh->plt.noncall_refcount = 0;
15323 }
15324
15325 /* If this is a weak symbol, and there is a real definition, the
15326 processor independent code will have arranged for us to see the
15327 real definition first, and we can just use the same value. */
15328 if (h->u.weakdef != NULL)
15329 {
15330 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15331 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15332 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15333 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15334 return TRUE;
15335 }
15336
15337 /* If there are no non-GOT references, we do not need a copy
15338 relocation. */
15339 if (!h->non_got_ref)
15340 return TRUE;
15341
15342 /* This is a reference to a symbol defined by a dynamic object which
15343 is not a function. */
15344
15345 /* If we are creating a shared library, we must presume that the
15346 only references to the symbol are via the global offset table.
15347 For such cases we need not do anything here; the relocations will
15348 be handled correctly by relocate_section. Relocatable executables
15349 can reference data in shared objects directly, so we don't need to
15350 do anything here. */
15351 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15352 return TRUE;
15353
15354 /* We must allocate the symbol in our .dynbss section, which will
15355 become part of the .bss section of the executable. There will be
15356 an entry for this symbol in the .dynsym section. The dynamic
15357 object will contain position independent code, so all references
15358 from the dynamic object to this symbol will go through the global
15359 offset table. The dynamic linker will use the .dynsym entry to
15360 determine the address it must put in the global offset table, so
15361 both the dynamic object and the regular object will refer to the
15362 same memory location for the variable. */
15363 s = bfd_get_linker_section (dynobj, ".dynbss");
15364 BFD_ASSERT (s != NULL);
15365
15366 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15367 linker to copy the initial value out of the dynamic object and into
15368 the runtime process image. We need to remember the offset into the
15369 .rel(a).bss section we are going to use. */
15370 if (info->nocopyreloc == 0
15371 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15372 && h->size != 0)
15373 {
15374 asection *srel;
15375
15376 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
15377 elf32_arm_allocate_dynrelocs (info, srel, 1);
15378 h->needs_copy = 1;
15379 }
15380
15381 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15382}
15383
15384/* Allocate space in .plt, .got and associated reloc sections for
15385 dynamic relocs. */
15386
15387static bfd_boolean
15388allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15389{
15390 struct bfd_link_info *info;
15391 struct elf32_arm_link_hash_table *htab;
15392 struct elf32_arm_link_hash_entry *eh;
15393 struct elf_dyn_relocs *p;
15394
15395 if (h->root.type == bfd_link_hash_indirect)
15396 return TRUE;
15397
15398 eh = (struct elf32_arm_link_hash_entry *) h;
15399
15400 info = (struct bfd_link_info *) inf;
15401 htab = elf32_arm_hash_table (info);
15402 if (htab == NULL)
15403 return FALSE;
15404
15405 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15406 && h->plt.refcount > 0)
15407 {
15408 /* Make sure this symbol is output as a dynamic symbol.
15409 Undefined weak syms won't yet be marked as dynamic. */
15410 if (h->dynindx == -1
15411 && !h->forced_local)
15412 {
15413 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15414 return FALSE;
15415 }
15416
15417 /* If the call in the PLT entry binds locally, the associated
15418 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15419 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15420 than the .plt section. */
15421 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15422 {
15423 eh->is_iplt = 1;
15424 if (eh->plt.noncall_refcount == 0
15425 && SYMBOL_REFERENCES_LOCAL (info, h))
15426 /* All non-call references can be resolved directly.
15427 This means that they can (and in some cases, must)
15428 resolve directly to the run-time target, rather than
15429 to the PLT. That in turns means that any .got entry
15430 would be equal to the .igot.plt entry, so there's
15431 no point having both. */
15432 h->got.refcount = 0;
15433 }
15434
15435 if (bfd_link_pic (info)
15436 || eh->is_iplt
15437 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15438 {
15439 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15440
15441 /* If this symbol is not defined in a regular file, and we are
15442 not generating a shared library, then set the symbol to this
15443 location in the .plt. This is required to make function
15444 pointers compare as equal between the normal executable and
15445 the shared library. */
15446 if (! bfd_link_pic (info)
15447 && !h->def_regular)
15448 {
15449 h->root.u.def.section = htab->root.splt;
15450 h->root.u.def.value = h->plt.offset;
15451
15452 /* Make sure the function is not marked as Thumb, in case
15453 it is the target of an ABS32 relocation, which will
15454 point to the PLT entry. */
15455 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15456 }
15457
15458 /* VxWorks executables have a second set of relocations for
15459 each PLT entry. They go in a separate relocation section,
15460 which is processed by the kernel loader. */
15461 if (htab->vxworks_p && !bfd_link_pic (info))
15462 {
15463 /* There is a relocation for the initial PLT entry:
15464 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15465 if (h->plt.offset == htab->plt_header_size)
15466 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15467
15468 /* There are two extra relocations for each subsequent
15469 PLT entry: an R_ARM_32 relocation for the GOT entry,
15470 and an R_ARM_32 relocation for the PLT entry. */
15471 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15472 }
15473 }
15474 else
15475 {
15476 h->plt.offset = (bfd_vma) -1;
15477 h->needs_plt = 0;
15478 }
15479 }
15480 else
15481 {
15482 h->plt.offset = (bfd_vma) -1;
15483 h->needs_plt = 0;
15484 }
15485
15486 eh = (struct elf32_arm_link_hash_entry *) h;
15487 eh->tlsdesc_got = (bfd_vma) -1;
15488
15489 if (h->got.refcount > 0)
15490 {
15491 asection *s;
15492 bfd_boolean dyn;
15493 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15494 int indx;
15495
15496 /* Make sure this symbol is output as a dynamic symbol.
15497 Undefined weak syms won't yet be marked as dynamic. */
15498 if (h->dynindx == -1
15499 && !h->forced_local)
15500 {
15501 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15502 return FALSE;
15503 }
15504
15505 if (!htab->symbian_p)
15506 {
15507 s = htab->root.sgot;
15508 h->got.offset = s->size;
15509
15510 if (tls_type == GOT_UNKNOWN)
15511 abort ();
15512
15513 if (tls_type == GOT_NORMAL)
15514 /* Non-TLS symbols need one GOT slot. */
15515 s->size += 4;
15516 else
15517 {
15518 if (tls_type & GOT_TLS_GDESC)
15519 {
15520 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15521 eh->tlsdesc_got
15522 = (htab->root.sgotplt->size
15523 - elf32_arm_compute_jump_table_size (htab));
15524 htab->root.sgotplt->size += 8;
15525 h->got.offset = (bfd_vma) -2;
15526 /* plt.got_offset needs to know there's a TLS_DESC
15527 reloc in the middle of .got.plt. */
15528 htab->num_tls_desc++;
15529 }
15530
15531 if (tls_type & GOT_TLS_GD)
15532 {
15533 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15534 the symbol is both GD and GDESC, got.offset may
15535 have been overwritten. */
15536 h->got.offset = s->size;
15537 s->size += 8;
15538 }
15539
15540 if (tls_type & GOT_TLS_IE)
15541 /* R_ARM_TLS_IE32 needs one GOT slot. */
15542 s->size += 4;
15543 }
15544
15545 dyn = htab->root.dynamic_sections_created;
15546
15547 indx = 0;
15548 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15549 bfd_link_pic (info),
15550 h)
15551 && (!bfd_link_pic (info)
15552 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15553 indx = h->dynindx;
15554
15555 if (tls_type != GOT_NORMAL
15556 && (bfd_link_pic (info) || indx != 0)
15557 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15558 || h->root.type != bfd_link_hash_undefweak))
15559 {
15560 if (tls_type & GOT_TLS_IE)
15561 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15562
15563 if (tls_type & GOT_TLS_GD)
15564 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15565
15566 if (tls_type & GOT_TLS_GDESC)
15567 {
15568 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15569 /* GDESC needs a trampoline to jump to. */
15570 htab->tls_trampoline = -1;
15571 }
15572
15573 /* Only GD needs it. GDESC just emits one relocation per
15574 2 entries. */
15575 if ((tls_type & GOT_TLS_GD) && indx != 0)
15576 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15577 }
15578 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15579 {
15580 if (htab->root.dynamic_sections_created)
15581 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15582 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15583 }
15584 else if (h->type == STT_GNU_IFUNC
15585 && eh->plt.noncall_refcount == 0)
15586 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15587 they all resolve dynamically instead. Reserve room for the
15588 GOT entry's R_ARM_IRELATIVE relocation. */
15589 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15590 else if (bfd_link_pic (info)
15591 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15592 || h->root.type != bfd_link_hash_undefweak))
15593 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15594 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15595 }
15596 }
15597 else
15598 h->got.offset = (bfd_vma) -1;
15599
15600 /* Allocate stubs for exported Thumb functions on v4t. */
15601 if (!htab->use_blx && h->dynindx != -1
15602 && h->def_regular
15603 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15604 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15605 {
15606 struct elf_link_hash_entry * th;
15607 struct bfd_link_hash_entry * bh;
15608 struct elf_link_hash_entry * myh;
15609 char name[1024];
15610 asection *s;
15611 bh = NULL;
15612 /* Create a new symbol to regist the real location of the function. */
15613 s = h->root.u.def.section;
15614 sprintf (name, "__real_%s", h->root.root.string);
15615 _bfd_generic_link_add_one_symbol (info, s->owner,
15616 name, BSF_GLOBAL, s,
15617 h->root.u.def.value,
15618 NULL, TRUE, FALSE, &bh);
15619
15620 myh = (struct elf_link_hash_entry *) bh;
15621 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15622 myh->forced_local = 1;
15623 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15624 eh->export_glue = myh;
15625 th = record_arm_to_thumb_glue (info, h);
15626 /* Point the symbol at the stub. */
15627 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15628 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15629 h->root.u.def.section = th->root.u.def.section;
15630 h->root.u.def.value = th->root.u.def.value & ~1;
15631 }
15632
15633 if (eh->dyn_relocs == NULL)
15634 return TRUE;
15635
15636 /* In the shared -Bsymbolic case, discard space allocated for
15637 dynamic pc-relative relocs against symbols which turn out to be
15638 defined in regular objects. For the normal shared case, discard
15639 space for pc-relative relocs that have become local due to symbol
15640 visibility changes. */
15641
15642 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15643 {
15644 /* Relocs that use pc_count are PC-relative forms, which will appear
15645 on something like ".long foo - ." or "movw REG, foo - .". We want
15646 calls to protected symbols to resolve directly to the function
15647 rather than going via the plt. If people want function pointer
15648 comparisons to work as expected then they should avoid writing
15649 assembly like ".long foo - .". */
15650 if (SYMBOL_CALLS_LOCAL (info, h))
15651 {
15652 struct elf_dyn_relocs **pp;
15653
15654 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15655 {
15656 p->count -= p->pc_count;
15657 p->pc_count = 0;
15658 if (p->count == 0)
15659 *pp = p->next;
15660 else
15661 pp = &p->next;
15662 }
15663 }
15664
15665 if (htab->vxworks_p)
15666 {
15667 struct elf_dyn_relocs **pp;
15668
15669 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15670 {
15671 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15672 *pp = p->next;
15673 else
15674 pp = &p->next;
15675 }
15676 }
15677
15678 /* Also discard relocs on undefined weak syms with non-default
15679 visibility. */
15680 if (eh->dyn_relocs != NULL
15681 && h->root.type == bfd_link_hash_undefweak)
15682 {
15683 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15684 eh->dyn_relocs = NULL;
15685
15686 /* Make sure undefined weak symbols are output as a dynamic
15687 symbol in PIEs. */
15688 else if (h->dynindx == -1
15689 && !h->forced_local)
15690 {
15691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15692 return FALSE;
15693 }
15694 }
15695
15696 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15697 && h->root.type == bfd_link_hash_new)
15698 {
15699 /* Output absolute symbols so that we can create relocations
15700 against them. For normal symbols we output a relocation
15701 against the section that contains them. */
15702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15703 return FALSE;
15704 }
15705
15706 }
15707 else
15708 {
15709 /* For the non-shared case, discard space for relocs against
15710 symbols which turn out to need copy relocs or are not
15711 dynamic. */
15712
15713 if (!h->non_got_ref
15714 && ((h->def_dynamic
15715 && !h->def_regular)
15716 || (htab->root.dynamic_sections_created
15717 && (h->root.type == bfd_link_hash_undefweak
15718 || h->root.type == bfd_link_hash_undefined))))
15719 {
15720 /* Make sure this symbol is output as a dynamic symbol.
15721 Undefined weak syms won't yet be marked as dynamic. */
15722 if (h->dynindx == -1
15723 && !h->forced_local)
15724 {
15725 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15726 return FALSE;
15727 }
15728
15729 /* If that succeeded, we know we'll be keeping all the
15730 relocs. */
15731 if (h->dynindx != -1)
15732 goto keep;
15733 }
15734
15735 eh->dyn_relocs = NULL;
15736
15737 keep: ;
15738 }
15739
15740 /* Finally, allocate space. */
15741 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15742 {
15743 asection *sreloc = elf_section_data (p->sec)->sreloc;
15744 if (h->type == STT_GNU_IFUNC
15745 && eh->plt.noncall_refcount == 0
15746 && SYMBOL_REFERENCES_LOCAL (info, h))
15747 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15748 else
15749 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15750 }
15751
15752 return TRUE;
15753}
15754
15755/* Find any dynamic relocs that apply to read-only sections. */
15756
15757static bfd_boolean
15758elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15759{
15760 struct elf32_arm_link_hash_entry * eh;
15761 struct elf_dyn_relocs * p;
15762
15763 eh = (struct elf32_arm_link_hash_entry *) h;
15764 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15765 {
15766 asection *s = p->sec;
15767
15768 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15769 {
15770 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15771
15772 info->flags |= DF_TEXTREL;
15773
15774 /* Not an error, just cut short the traversal. */
15775 return FALSE;
15776 }
15777 }
15778 return TRUE;
15779}
15780
15781void
15782bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15783 int byteswap_code)
15784{
15785 struct elf32_arm_link_hash_table *globals;
15786
15787 globals = elf32_arm_hash_table (info);
15788 if (globals == NULL)
15789 return;
15790
15791 globals->byteswap_code = byteswap_code;
15792}
15793
15794/* Set the sizes of the dynamic sections. */
15795
15796static bfd_boolean
15797elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15798 struct bfd_link_info * info)
15799{
15800 bfd * dynobj;
15801 asection * s;
15802 bfd_boolean plt;
15803 bfd_boolean relocs;
15804 bfd *ibfd;
15805 struct elf32_arm_link_hash_table *htab;
15806
15807 htab = elf32_arm_hash_table (info);
15808 if (htab == NULL)
15809 return FALSE;
15810
15811 dynobj = elf_hash_table (info)->dynobj;
15812 BFD_ASSERT (dynobj != NULL);
15813 check_use_blx (htab);
15814
15815 if (elf_hash_table (info)->dynamic_sections_created)
15816 {
15817 /* Set the contents of the .interp section to the interpreter. */
15818 if (bfd_link_executable (info) && !info->nointerp)
15819 {
15820 s = bfd_get_linker_section (dynobj, ".interp");
15821 BFD_ASSERT (s != NULL);
15822 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15823 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15824 }
15825 }
15826
15827 /* Set up .got offsets for local syms, and space for local dynamic
15828 relocs. */
15829 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15830 {
15831 bfd_signed_vma *local_got;
15832 bfd_signed_vma *end_local_got;
15833 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15834 char *local_tls_type;
15835 bfd_vma *local_tlsdesc_gotent;
15836 bfd_size_type locsymcount;
15837 Elf_Internal_Shdr *symtab_hdr;
15838 asection *srel;
15839 bfd_boolean is_vxworks = htab->vxworks_p;
15840 unsigned int symndx;
15841
15842 if (! is_arm_elf (ibfd))
15843 continue;
15844
15845 for (s = ibfd->sections; s != NULL; s = s->next)
15846 {
15847 struct elf_dyn_relocs *p;
15848
15849 for (p = (struct elf_dyn_relocs *)
15850 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15851 {
15852 if (!bfd_is_abs_section (p->sec)
15853 && bfd_is_abs_section (p->sec->output_section))
15854 {
15855 /* Input section has been discarded, either because
15856 it is a copy of a linkonce section or due to
15857 linker script /DISCARD/, so we'll be discarding
15858 the relocs too. */
15859 }
15860 else if (is_vxworks
15861 && strcmp (p->sec->output_section->name,
15862 ".tls_vars") == 0)
15863 {
15864 /* Relocations in vxworks .tls_vars sections are
15865 handled specially by the loader. */
15866 }
15867 else if (p->count != 0)
15868 {
15869 srel = elf_section_data (p->sec)->sreloc;
15870 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15871 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15872 info->flags |= DF_TEXTREL;
15873 }
15874 }
15875 }
15876
15877 local_got = elf_local_got_refcounts (ibfd);
15878 if (!local_got)
15879 continue;
15880
15881 symtab_hdr = & elf_symtab_hdr (ibfd);
15882 locsymcount = symtab_hdr->sh_info;
15883 end_local_got = local_got + locsymcount;
15884 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15885 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15886 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15887 symndx = 0;
15888 s = htab->root.sgot;
15889 srel = htab->root.srelgot;
15890 for (; local_got < end_local_got;
15891 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15892 ++local_tlsdesc_gotent, ++symndx)
15893 {
15894 *local_tlsdesc_gotent = (bfd_vma) -1;
15895 local_iplt = *local_iplt_ptr;
15896 if (local_iplt != NULL)
15897 {
15898 struct elf_dyn_relocs *p;
15899
15900 if (local_iplt->root.refcount > 0)
15901 {
15902 elf32_arm_allocate_plt_entry (info, TRUE,
15903 &local_iplt->root,
15904 &local_iplt->arm);
15905 if (local_iplt->arm.noncall_refcount == 0)
15906 /* All references to the PLT are calls, so all
15907 non-call references can resolve directly to the
15908 run-time target. This means that the .got entry
15909 would be the same as the .igot.plt entry, so there's
15910 no point creating both. */
15911 *local_got = 0;
15912 }
15913 else
15914 {
15915 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15916 local_iplt->root.offset = (bfd_vma) -1;
15917 }
15918
15919 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15920 {
15921 asection *psrel;
15922
15923 psrel = elf_section_data (p->sec)->sreloc;
15924 if (local_iplt->arm.noncall_refcount == 0)
15925 elf32_arm_allocate_irelocs (info, psrel, p->count);
15926 else
15927 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15928 }
15929 }
15930 if (*local_got > 0)
15931 {
15932 Elf_Internal_Sym *isym;
15933
15934 *local_got = s->size;
15935 if (*local_tls_type & GOT_TLS_GD)
15936 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15937 s->size += 8;
15938 if (*local_tls_type & GOT_TLS_GDESC)
15939 {
15940 *local_tlsdesc_gotent = htab->root.sgotplt->size
15941 - elf32_arm_compute_jump_table_size (htab);
15942 htab->root.sgotplt->size += 8;
15943 *local_got = (bfd_vma) -2;
15944 /* plt.got_offset needs to know there's a TLS_DESC
15945 reloc in the middle of .got.plt. */
15946 htab->num_tls_desc++;
15947 }
15948 if (*local_tls_type & GOT_TLS_IE)
15949 s->size += 4;
15950
15951 if (*local_tls_type & GOT_NORMAL)
15952 {
15953 /* If the symbol is both GD and GDESC, *local_got
15954 may have been overwritten. */
15955 *local_got = s->size;
15956 s->size += 4;
15957 }
15958
15959 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15960 if (isym == NULL)
15961 return FALSE;
15962
15963 /* If all references to an STT_GNU_IFUNC PLT are calls,
15964 then all non-call references, including this GOT entry,
15965 resolve directly to the run-time target. */
15966 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15967 && (local_iplt == NULL
15968 || local_iplt->arm.noncall_refcount == 0))
15969 elf32_arm_allocate_irelocs (info, srel, 1);
15970 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15971 {
15972 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15973 || *local_tls_type & GOT_TLS_GD)
15974 elf32_arm_allocate_dynrelocs (info, srel, 1);
15975
15976 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15977 {
15978 elf32_arm_allocate_dynrelocs (info,
15979 htab->root.srelplt, 1);
15980 htab->tls_trampoline = -1;
15981 }
15982 }
15983 }
15984 else
15985 *local_got = (bfd_vma) -1;
15986 }
15987 }
15988
15989 if (htab->tls_ldm_got.refcount > 0)
15990 {
15991 /* Allocate two GOT entries and one dynamic relocation (if necessary)
15992 for R_ARM_TLS_LDM32 relocations. */
15993 htab->tls_ldm_got.offset = htab->root.sgot->size;
15994 htab->root.sgot->size += 8;
15995 if (bfd_link_pic (info))
15996 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15997 }
15998 else
15999 htab->tls_ldm_got.offset = -1;
16000
16001 /* Allocate global sym .plt and .got entries, and space for global
16002 sym dynamic relocs. */
16003 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16004
16005 /* Here we rummage through the found bfds to collect glue information. */
16006 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16007 {
16008 if (! is_arm_elf (ibfd))
16009 continue;
16010
16011 /* Initialise mapping tables for code/data. */
16012 bfd_elf32_arm_init_maps (ibfd);
16013
16014 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16015 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16016 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16017 /* xgettext:c-format */
16018 _bfd_error_handler (_("Errors encountered processing file %s"),
16019 ibfd->filename);
16020 }
16021
16022 /* Allocate space for the glue sections now that we've sized them. */
16023 bfd_elf32_arm_allocate_interworking_sections (info);
16024
16025 /* For every jump slot reserved in the sgotplt, reloc_count is
16026 incremented. However, when we reserve space for TLS descriptors,
16027 it's not incremented, so in order to compute the space reserved
16028 for them, it suffices to multiply the reloc count by the jump
16029 slot size. */
16030 if (htab->root.srelplt)
16031 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16032
16033 if (htab->tls_trampoline)
16034 {
16035 if (htab->root.splt->size == 0)
16036 htab->root.splt->size += htab->plt_header_size;
16037
16038 htab->tls_trampoline = htab->root.splt->size;
16039 htab->root.splt->size += htab->plt_entry_size;
16040
16041 /* If we're not using lazy TLS relocations, don't generate the
16042 PLT and GOT entries they require. */
16043 if (!(info->flags & DF_BIND_NOW))
16044 {
16045 htab->dt_tlsdesc_got = htab->root.sgot->size;
16046 htab->root.sgot->size += 4;
16047
16048 htab->dt_tlsdesc_plt = htab->root.splt->size;
16049 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16050 }
16051 }
16052
16053 /* The check_relocs and adjust_dynamic_symbol entry points have
16054 determined the sizes of the various dynamic sections. Allocate
16055 memory for them. */
16056 plt = FALSE;
16057 relocs = FALSE;
16058 for (s = dynobj->sections; s != NULL; s = s->next)
16059 {
16060 const char * name;
16061
16062 if ((s->flags & SEC_LINKER_CREATED) == 0)
16063 continue;
16064
16065 /* It's OK to base decisions on the section name, because none
16066 of the dynobj section names depend upon the input files. */
16067 name = bfd_get_section_name (dynobj, s);
16068
16069 if (s == htab->root.splt)
16070 {
16071 /* Remember whether there is a PLT. */
16072 plt = s->size != 0;
16073 }
16074 else if (CONST_STRNEQ (name, ".rel"))
16075 {
16076 if (s->size != 0)
16077 {
16078 /* Remember whether there are any reloc sections other
16079 than .rel(a).plt and .rela.plt.unloaded. */
16080 if (s != htab->root.srelplt && s != htab->srelplt2)
16081 relocs = TRUE;
16082
16083 /* We use the reloc_count field as a counter if we need
16084 to copy relocs into the output file. */
16085 s->reloc_count = 0;
16086 }
16087 }
16088 else if (s != htab->root.sgot
16089 && s != htab->root.sgotplt
16090 && s != htab->root.iplt
16091 && s != htab->root.igotplt
16092 && s != htab->sdynbss)
16093 {
16094 /* It's not one of our sections, so don't allocate space. */
16095 continue;
16096 }
16097
16098 if (s->size == 0)
16099 {
16100 /* If we don't need this section, strip it from the
16101 output file. This is mostly to handle .rel(a).bss and
16102 .rel(a).plt. We must create both sections in
16103 create_dynamic_sections, because they must be created
16104 before the linker maps input sections to output
16105 sections. The linker does that before
16106 adjust_dynamic_symbol is called, and it is that
16107 function which decides whether anything needs to go
16108 into these sections. */
16109 s->flags |= SEC_EXCLUDE;
16110 continue;
16111 }
16112
16113 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16114 continue;
16115
16116 /* Allocate memory for the section contents. */
16117 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16118 if (s->contents == NULL)
16119 return FALSE;
16120 }
16121
16122 if (elf_hash_table (info)->dynamic_sections_created)
16123 {
16124 /* Add some entries to the .dynamic section. We fill in the
16125 values later, in elf32_arm_finish_dynamic_sections, but we
16126 must add the entries now so that we get the correct size for
16127 the .dynamic section. The DT_DEBUG entry is filled in by the
16128 dynamic linker and used by the debugger. */
16129#define add_dynamic_entry(TAG, VAL) \
16130 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16131
16132 if (bfd_link_executable (info))
16133 {
16134 if (!add_dynamic_entry (DT_DEBUG, 0))
16135 return FALSE;
16136 }
16137
16138 if (plt)
16139 {
16140 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16141 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16142 || !add_dynamic_entry (DT_PLTREL,
16143 htab->use_rel ? DT_REL : DT_RELA)
16144 || !add_dynamic_entry (DT_JMPREL, 0))
16145 return FALSE;
16146
16147 if (htab->dt_tlsdesc_plt
16148 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16149 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16150 return FALSE;
16151 }
16152
16153 if (relocs)
16154 {
16155 if (htab->use_rel)
16156 {
16157 if (!add_dynamic_entry (DT_REL, 0)
16158 || !add_dynamic_entry (DT_RELSZ, 0)
16159 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16160 return FALSE;
16161 }
16162 else
16163 {
16164 if (!add_dynamic_entry (DT_RELA, 0)
16165 || !add_dynamic_entry (DT_RELASZ, 0)
16166 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16167 return FALSE;
16168 }
16169 }
16170
16171 /* If any dynamic relocs apply to a read-only section,
16172 then we need a DT_TEXTREL entry. */
16173 if ((info->flags & DF_TEXTREL) == 0)
16174 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16175 info);
16176
16177 if ((info->flags & DF_TEXTREL) != 0)
16178 {
16179 if (!add_dynamic_entry (DT_TEXTREL, 0))
16180 return FALSE;
16181 }
16182 if (htab->vxworks_p
16183 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16184 return FALSE;
16185 }
16186#undef add_dynamic_entry
16187
16188 return TRUE;
16189}
16190
16191/* Size sections even though they're not dynamic. We use it to setup
16192 _TLS_MODULE_BASE_, if needed. */
16193
16194static bfd_boolean
16195elf32_arm_always_size_sections (bfd *output_bfd,
16196 struct bfd_link_info *info)
16197{
16198 asection *tls_sec;
16199
16200 if (bfd_link_relocatable (info))
16201 return TRUE;
16202
16203 tls_sec = elf_hash_table (info)->tls_sec;
16204
16205 if (tls_sec)
16206 {
16207 struct elf_link_hash_entry *tlsbase;
16208
16209 tlsbase = elf_link_hash_lookup
16210 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16211
16212 if (tlsbase)
16213 {
16214 struct bfd_link_hash_entry *bh = NULL;
16215 const struct elf_backend_data *bed
16216 = get_elf_backend_data (output_bfd);
16217
16218 if (!(_bfd_generic_link_add_one_symbol
16219 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16220 tls_sec, 0, NULL, FALSE,
16221 bed->collect, &bh)))
16222 return FALSE;
16223
16224 tlsbase->type = STT_TLS;
16225 tlsbase = (struct elf_link_hash_entry *)bh;
16226 tlsbase->def_regular = 1;
16227 tlsbase->other = STV_HIDDEN;
16228 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16229 }
16230 }
16231 return TRUE;
16232}
16233
16234/* Finish up dynamic symbol handling. We set the contents of various
16235 dynamic sections here. */
16236
16237static bfd_boolean
16238elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16239 struct bfd_link_info * info,
16240 struct elf_link_hash_entry * h,
16241 Elf_Internal_Sym * sym)
16242{
16243 struct elf32_arm_link_hash_table *htab;
16244 struct elf32_arm_link_hash_entry *eh;
16245
16246 htab = elf32_arm_hash_table (info);
16247 if (htab == NULL)
16248 return FALSE;
16249
16250 eh = (struct elf32_arm_link_hash_entry *) h;
16251
16252 if (h->plt.offset != (bfd_vma) -1)
16253 {
16254 if (!eh->is_iplt)
16255 {
16256 BFD_ASSERT (h->dynindx != -1);
16257 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16258 h->dynindx, 0))
16259 return FALSE;
16260 }
16261
16262 if (!h->def_regular)
16263 {
16264 /* Mark the symbol as undefined, rather than as defined in
16265 the .plt section. */
16266 sym->st_shndx = SHN_UNDEF;
16267 /* If the symbol is weak we need to clear the value.
16268 Otherwise, the PLT entry would provide a definition for
16269 the symbol even if the symbol wasn't defined anywhere,
16270 and so the symbol would never be NULL. Leave the value if
16271 there were any relocations where pointer equality matters
16272 (this is a clue for the dynamic linker, to make function
16273 pointer comparisons work between an application and shared
16274 library). */
16275 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16276 sym->st_value = 0;
16277 }
16278 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16279 {
16280 /* At least one non-call relocation references this .iplt entry,
16281 so the .iplt entry is the function's canonical address. */
16282 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16283 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16284 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16285 (output_bfd, htab->root.iplt->output_section));
16286 sym->st_value = (h->plt.offset
16287 + htab->root.iplt->output_section->vma
16288 + htab->root.iplt->output_offset);
16289 }
16290 }
16291
16292 if (h->needs_copy)
16293 {
16294 asection * s;
16295 Elf_Internal_Rela rel;
16296
16297 /* This symbol needs a copy reloc. Set it up. */
16298 BFD_ASSERT (h->dynindx != -1
16299 && (h->root.type == bfd_link_hash_defined
16300 || h->root.type == bfd_link_hash_defweak));
16301
16302 s = htab->srelbss;
16303 BFD_ASSERT (s != NULL);
16304
16305 rel.r_addend = 0;
16306 rel.r_offset = (h->root.u.def.value
16307 + h->root.u.def.section->output_section->vma
16308 + h->root.u.def.section->output_offset);
16309 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16310 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16311 }
16312
16313 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16314 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16315 to the ".got" section. */
16316 if (h == htab->root.hdynamic
16317 || (!htab->vxworks_p && h == htab->root.hgot))
16318 sym->st_shndx = SHN_ABS;
16319
16320 return TRUE;
16321}
16322
16323static void
16324arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16325 void *contents,
16326 const unsigned long *template, unsigned count)
16327{
16328 unsigned ix;
16329
16330 for (ix = 0; ix != count; ix++)
16331 {
16332 unsigned long insn = template[ix];
16333
16334 /* Emit mov pc,rx if bx is not permitted. */
16335 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16336 insn = (insn & 0xf000000f) | 0x01a0f000;
16337 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16338 }
16339}
16340
16341/* Install the special first PLT entry for elf32-arm-nacl. Unlike
16342 other variants, NaCl needs this entry in a static executable's
16343 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16344 zero. For .iplt really only the last bundle is useful, and .iplt
16345 could have a shorter first entry, with each individual PLT entry's
16346 relative branch calculated differently so it targets the last
16347 bundle instead of the instruction before it (labelled .Lplt_tail
16348 above). But it's simpler to keep the size and layout of PLT0
16349 consistent with the dynamic case, at the cost of some dead code at
16350 the start of .iplt and the one dead store to the stack at the start
16351 of .Lplt_tail. */
16352static void
16353arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16354 asection *plt, bfd_vma got_displacement)
16355{
16356 unsigned int i;
16357
16358 put_arm_insn (htab, output_bfd,
16359 elf32_arm_nacl_plt0_entry[0]
16360 | arm_movw_immediate (got_displacement),
16361 plt->contents + 0);
16362 put_arm_insn (htab, output_bfd,
16363 elf32_arm_nacl_plt0_entry[1]
16364 | arm_movt_immediate (got_displacement),
16365 plt->contents + 4);
16366
16367 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16368 put_arm_insn (htab, output_bfd,
16369 elf32_arm_nacl_plt0_entry[i],
16370 plt->contents + (i * 4));
16371}
16372
16373/* Finish up the dynamic sections. */
16374
16375static bfd_boolean
16376elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16377{
16378 bfd * dynobj;
16379 asection * sgot;
16380 asection * sdyn;
16381 struct elf32_arm_link_hash_table *htab;
16382
16383 htab = elf32_arm_hash_table (info);
16384 if (htab == NULL)
16385 return FALSE;
16386
16387 dynobj = elf_hash_table (info)->dynobj;
16388
16389 sgot = htab->root.sgotplt;
16390 /* A broken linker script might have discarded the dynamic sections.
16391 Catch this here so that we do not seg-fault later on. */
16392 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16393 return FALSE;
16394 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16395
16396 if (elf_hash_table (info)->dynamic_sections_created)
16397 {
16398 asection *splt;
16399 Elf32_External_Dyn *dyncon, *dynconend;
16400
16401 splt = htab->root.splt;
16402 BFD_ASSERT (splt != NULL && sdyn != NULL);
16403 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16404
16405 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16407
16408 for (; dyncon < dynconend; dyncon++)
16409 {
16410 Elf_Internal_Dyn dyn;
16411 const char * name;
16412 asection * s;
16413
16414 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16415
16416 switch (dyn.d_tag)
16417 {
16418 unsigned int type;
16419
16420 default:
16421 if (htab->vxworks_p
16422 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16423 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16424 break;
16425
16426 case DT_HASH:
16427 name = ".hash";
16428 goto get_vma_if_bpabi;
16429 case DT_STRTAB:
16430 name = ".dynstr";
16431 goto get_vma_if_bpabi;
16432 case DT_SYMTAB:
16433 name = ".dynsym";
16434 goto get_vma_if_bpabi;
16435 case DT_VERSYM:
16436 name = ".gnu.version";
16437 goto get_vma_if_bpabi;
16438 case DT_VERDEF:
16439 name = ".gnu.version_d";
16440 goto get_vma_if_bpabi;
16441 case DT_VERNEED:
16442 name = ".gnu.version_r";
16443 goto get_vma_if_bpabi;
16444
16445 case DT_PLTGOT:
16446 name = htab->symbian_p ? ".got" : ".got.plt";
16447 goto get_vma;
16448 case DT_JMPREL:
16449 name = RELOC_SECTION (htab, ".plt");
16450 get_vma:
16451 s = bfd_get_linker_section (dynobj, name);
16452 if (s == NULL)
16453 {
16454 _bfd_error_handler
16455 (_("could not find section %s"), name);
16456 bfd_set_error (bfd_error_invalid_operation);
16457 return FALSE;
16458 }
16459 if (!htab->symbian_p)
16460 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16461 else
16462 /* In the BPABI, tags in the PT_DYNAMIC section point
16463 at the file offset, not the memory address, for the
16464 convenience of the post linker. */
16465 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16466 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16467 break;
16468
16469 get_vma_if_bpabi:
16470 if (htab->symbian_p)
16471 goto get_vma;
16472 break;
16473
16474 case DT_PLTRELSZ:
16475 s = htab->root.srelplt;
16476 BFD_ASSERT (s != NULL);
16477 dyn.d_un.d_val = s->size;
16478 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16479 break;
16480
16481 case DT_RELSZ:
16482 case DT_RELASZ:
16483 if (!htab->symbian_p)
16484 {
16485 /* My reading of the SVR4 ABI indicates that the
16486 procedure linkage table relocs (DT_JMPREL) should be
16487 included in the overall relocs (DT_REL). This is
16488 what Solaris does. However, UnixWare can not handle
16489 that case. Therefore, we override the DT_RELSZ entry
16490 here to make it not include the JMPREL relocs. Since
16491 the linker script arranges for .rel(a).plt to follow all
16492 other relocation sections, we don't have to worry
16493 about changing the DT_REL entry. */
16494 s = htab->root.srelplt;
16495 if (s != NULL)
16496 dyn.d_un.d_val -= s->size;
16497 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16498 break;
16499 }
16500 /* Fall through. */
16501
16502 case DT_REL:
16503 case DT_RELA:
16504 /* In the BPABI, the DT_REL tag must point at the file
16505 offset, not the VMA, of the first relocation
16506 section. So, we use code similar to that in
16507 elflink.c, but do not check for SHF_ALLOC on the
16508 relcoation section, since relocations sections are
16509 never allocated under the BPABI. The comments above
16510 about Unixware notwithstanding, we include all of the
16511 relocations here. */
16512 if (htab->symbian_p)
16513 {
16514 unsigned int i;
16515 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16516 ? SHT_REL : SHT_RELA);
16517 dyn.d_un.d_val = 0;
16518 for (i = 1; i < elf_numsections (output_bfd); i++)
16519 {
16520 Elf_Internal_Shdr *hdr
16521 = elf_elfsections (output_bfd)[i];
16522 if (hdr->sh_type == type)
16523 {
16524 if (dyn.d_tag == DT_RELSZ
16525 || dyn.d_tag == DT_RELASZ)
16526 dyn.d_un.d_val += hdr->sh_size;
16527 else if ((ufile_ptr) hdr->sh_offset
16528 <= dyn.d_un.d_val - 1)
16529 dyn.d_un.d_val = hdr->sh_offset;
16530 }
16531 }
16532 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16533 }
16534 break;
16535
16536 case DT_TLSDESC_PLT:
16537 s = htab->root.splt;
16538 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16539 + htab->dt_tlsdesc_plt);
16540 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16541 break;
16542
16543 case DT_TLSDESC_GOT:
16544 s = htab->root.sgot;
16545 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16546 + htab->dt_tlsdesc_got);
16547 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16548 break;
16549
16550 /* Set the bottom bit of DT_INIT/FINI if the
16551 corresponding function is Thumb. */
16552 case DT_INIT:
16553 name = info->init_function;
16554 goto get_sym;
16555 case DT_FINI:
16556 name = info->fini_function;
16557 get_sym:
16558 /* If it wasn't set by elf_bfd_final_link
16559 then there is nothing to adjust. */
16560 if (dyn.d_un.d_val != 0)
16561 {
16562 struct elf_link_hash_entry * eh;
16563
16564 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16565 FALSE, FALSE, TRUE);
16566 if (eh != NULL
16567 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16568 == ST_BRANCH_TO_THUMB)
16569 {
16570 dyn.d_un.d_val |= 1;
16571 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16572 }
16573 }
16574 break;
16575 }
16576 }
16577
16578 /* Fill in the first entry in the procedure linkage table. */
16579 if (splt->size > 0 && htab->plt_header_size)
16580 {
16581 const bfd_vma *plt0_entry;
16582 bfd_vma got_address, plt_address, got_displacement;
16583
16584 /* Calculate the addresses of the GOT and PLT. */
16585 got_address = sgot->output_section->vma + sgot->output_offset;
16586 plt_address = splt->output_section->vma + splt->output_offset;
16587
16588 if (htab->vxworks_p)
16589 {
16590 /* The VxWorks GOT is relocated by the dynamic linker.
16591 Therefore, we must emit relocations rather than simply
16592 computing the values now. */
16593 Elf_Internal_Rela rel;
16594
16595 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16596 put_arm_insn (htab, output_bfd, plt0_entry[0],
16597 splt->contents + 0);
16598 put_arm_insn (htab, output_bfd, plt0_entry[1],
16599 splt->contents + 4);
16600 put_arm_insn (htab, output_bfd, plt0_entry[2],
16601 splt->contents + 8);
16602 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16603
16604 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16605 rel.r_offset = plt_address + 12;
16606 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16607 rel.r_addend = 0;
16608 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16609 htab->srelplt2->contents);
16610 }
16611 else if (htab->nacl_p)
16612 arm_nacl_put_plt0 (htab, output_bfd, splt,
16613 got_address + 8 - (plt_address + 16));
16614 else if (using_thumb_only (htab))
16615 {
16616 got_displacement = got_address - (plt_address + 12);
16617
16618 plt0_entry = elf32_thumb2_plt0_entry;
16619 put_arm_insn (htab, output_bfd, plt0_entry[0],
16620 splt->contents + 0);
16621 put_arm_insn (htab, output_bfd, plt0_entry[1],
16622 splt->contents + 4);
16623 put_arm_insn (htab, output_bfd, plt0_entry[2],
16624 splt->contents + 8);
16625
16626 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16627 }
16628 else
16629 {
16630 got_displacement = got_address - (plt_address + 16);
16631
16632 plt0_entry = elf32_arm_plt0_entry;
16633 put_arm_insn (htab, output_bfd, plt0_entry[0],
16634 splt->contents + 0);
16635 put_arm_insn (htab, output_bfd, plt0_entry[1],
16636 splt->contents + 4);
16637 put_arm_insn (htab, output_bfd, plt0_entry[2],
16638 splt->contents + 8);
16639 put_arm_insn (htab, output_bfd, plt0_entry[3],
16640 splt->contents + 12);
16641
16642#ifdef FOUR_WORD_PLT
16643 /* The displacement value goes in the otherwise-unused
16644 last word of the second entry. */
16645 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16646#else
16647 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16648#endif
16649 }
16650 }
16651
16652 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16653 really seem like the right value. */
16654 if (splt->output_section->owner == output_bfd)
16655 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16656
16657 if (htab->dt_tlsdesc_plt)
16658 {
16659 bfd_vma got_address
16660 = sgot->output_section->vma + sgot->output_offset;
16661 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16662 + htab->root.sgot->output_offset);
16663 bfd_vma plt_address
16664 = splt->output_section->vma + splt->output_offset;
16665
16666 arm_put_trampoline (htab, output_bfd,
16667 splt->contents + htab->dt_tlsdesc_plt,
16668 dl_tlsdesc_lazy_trampoline, 6);
16669
16670 bfd_put_32 (output_bfd,
16671 gotplt_address + htab->dt_tlsdesc_got
16672 - (plt_address + htab->dt_tlsdesc_plt)
16673 - dl_tlsdesc_lazy_trampoline[6],
16674 splt->contents + htab->dt_tlsdesc_plt + 24);
16675 bfd_put_32 (output_bfd,
16676 got_address - (plt_address + htab->dt_tlsdesc_plt)
16677 - dl_tlsdesc_lazy_trampoline[7],
16678 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16679 }
16680
16681 if (htab->tls_trampoline)
16682 {
16683 arm_put_trampoline (htab, output_bfd,
16684 splt->contents + htab->tls_trampoline,
16685 tls_trampoline, 3);
16686#ifdef FOUR_WORD_PLT
16687 bfd_put_32 (output_bfd, 0x00000000,
16688 splt->contents + htab->tls_trampoline + 12);
16689#endif
16690 }
16691
16692 if (htab->vxworks_p
16693 && !bfd_link_pic (info)
16694 && htab->root.splt->size > 0)
16695 {
16696 /* Correct the .rel(a).plt.unloaded relocations. They will have
16697 incorrect symbol indexes. */
16698 int num_plts;
16699 unsigned char *p;
16700
16701 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16702 / htab->plt_entry_size);
16703 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16704
16705 for (; num_plts; num_plts--)
16706 {
16707 Elf_Internal_Rela rel;
16708
16709 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16710 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16711 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16712 p += RELOC_SIZE (htab);
16713
16714 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16715 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16716 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16717 p += RELOC_SIZE (htab);
16718 }
16719 }
16720 }
16721
16722 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16723 /* NaCl uses a special first entry in .iplt too. */
16724 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16725
16726 /* Fill in the first three entries in the global offset table. */
16727 if (sgot)
16728 {
16729 if (sgot->size > 0)
16730 {
16731 if (sdyn == NULL)
16732 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16733 else
16734 bfd_put_32 (output_bfd,
16735 sdyn->output_section->vma + sdyn->output_offset,
16736 sgot->contents);
16737 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16738 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16739 }
16740
16741 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16742 }
16743
16744 return TRUE;
16745}
16746
16747static void
16748elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16749{
16750 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16751 struct elf32_arm_link_hash_table *globals;
16752 struct elf_segment_map *m;
16753
16754 i_ehdrp = elf_elfheader (abfd);
16755
16756 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16757 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16758 else
16759 _bfd_elf_post_process_headers (abfd, link_info);
16760 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16761
16762 if (link_info)
16763 {
16764 globals = elf32_arm_hash_table (link_info);
16765 if (globals != NULL && globals->byteswap_code)
16766 i_ehdrp->e_flags |= EF_ARM_BE8;
16767 }
16768
16769 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16770 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16771 {
16772 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16773 if (abi == AEABI_VFP_args_vfp)
16774 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16775 else
16776 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16777 }
16778
16779 /* Scan segment to set p_flags attribute if it contains only sections with
16780 SHF_ARM_PURECODE flag. */
16781 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16782 {
16783 unsigned int j;
16784
16785 if (m->count == 0)
16786 continue;
16787 for (j = 0; j < m->count; j++)
16788 {
16789 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16790 break;
16791 }
16792 if (j == m->count)
16793 {
16794 m->p_flags = PF_X;
16795 m->p_flags_valid = 1;
16796 }
16797 }
16798}
16799
16800static enum elf_reloc_type_class
16801elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16802 const asection *rel_sec ATTRIBUTE_UNUSED,
16803 const Elf_Internal_Rela *rela)
16804{
16805 switch ((int) ELF32_R_TYPE (rela->r_info))
16806 {
16807 case R_ARM_RELATIVE:
16808 return reloc_class_relative;
16809 case R_ARM_JUMP_SLOT:
16810 return reloc_class_plt;
16811 case R_ARM_COPY:
16812 return reloc_class_copy;
16813 case R_ARM_IRELATIVE:
16814 return reloc_class_ifunc;
16815 default:
16816 return reloc_class_normal;
16817 }
16818}
16819
16820static void
16821elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16822{
16823 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16824}
16825
16826/* Return TRUE if this is an unwinding table entry. */
16827
16828static bfd_boolean
16829is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16830{
16831 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16832 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16833}
16834
16835
16836/* Set the type and flags for an ARM section. We do this by
16837 the section name, which is a hack, but ought to work. */
16838
16839static bfd_boolean
16840elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16841{
16842 const char * name;
16843
16844 name = bfd_get_section_name (abfd, sec);
16845
16846 if (is_arm_elf_unwind_section_name (abfd, name))
16847 {
16848 hdr->sh_type = SHT_ARM_EXIDX;
16849 hdr->sh_flags |= SHF_LINK_ORDER;
16850 }
16851
16852 if (sec->flags & SEC_ELF_PURECODE)
16853 hdr->sh_flags |= SHF_ARM_PURECODE;
16854
16855 return TRUE;
16856}
16857
16858/* Handle an ARM specific section when reading an object file. This is
16859 called when bfd_section_from_shdr finds a section with an unknown
16860 type. */
16861
16862static bfd_boolean
16863elf32_arm_section_from_shdr (bfd *abfd,
16864 Elf_Internal_Shdr * hdr,
16865 const char *name,
16866 int shindex)
16867{
16868 /* There ought to be a place to keep ELF backend specific flags, but
16869 at the moment there isn't one. We just keep track of the
16870 sections by their name, instead. Fortunately, the ABI gives
16871 names for all the ARM specific sections, so we will probably get
16872 away with this. */
16873 switch (hdr->sh_type)
16874 {
16875 case SHT_ARM_EXIDX:
16876 case SHT_ARM_PREEMPTMAP:
16877 case SHT_ARM_ATTRIBUTES:
16878 break;
16879
16880 default:
16881 return FALSE;
16882 }
16883
16884 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16885 return FALSE;
16886
16887 return TRUE;
16888}
16889
16890static _arm_elf_section_data *
16891get_arm_elf_section_data (asection * sec)
16892{
16893 if (sec && sec->owner && is_arm_elf (sec->owner))
16894 return elf32_arm_section_data (sec);
16895 else
16896 return NULL;
16897}
16898
16899typedef struct
16900{
16901 void *flaginfo;
16902 struct bfd_link_info *info;
16903 asection *sec;
16904 int sec_shndx;
16905 int (*func) (void *, const char *, Elf_Internal_Sym *,
16906 asection *, struct elf_link_hash_entry *);
16907} output_arch_syminfo;
16908
16909enum map_symbol_type
16910{
16911 ARM_MAP_ARM,
16912 ARM_MAP_THUMB,
16913 ARM_MAP_DATA
16914};
16915
16916
16917/* Output a single mapping symbol. */
16918
16919static bfd_boolean
16920elf32_arm_output_map_sym (output_arch_syminfo *osi,
16921 enum map_symbol_type type,
16922 bfd_vma offset)
16923{
16924 static const char *names[3] = {"$a", "$t", "$d"};
16925 Elf_Internal_Sym sym;
16926
16927 sym.st_value = osi->sec->output_section->vma
16928 + osi->sec->output_offset
16929 + offset;
16930 sym.st_size = 0;
16931 sym.st_other = 0;
16932 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16933 sym.st_shndx = osi->sec_shndx;
16934 sym.st_target_internal = 0;
16935 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16936 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16937}
16938
16939/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16940 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16941
16942static bfd_boolean
16943elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16944 bfd_boolean is_iplt_entry_p,
16945 union gotplt_union *root_plt,
16946 struct arm_plt_info *arm_plt)
16947{
16948 struct elf32_arm_link_hash_table *htab;
16949 bfd_vma addr, plt_header_size;
16950
16951 if (root_plt->offset == (bfd_vma) -1)
16952 return TRUE;
16953
16954 htab = elf32_arm_hash_table (osi->info);
16955 if (htab == NULL)
16956 return FALSE;
16957
16958 if (is_iplt_entry_p)
16959 {
16960 osi->sec = htab->root.iplt;
16961 plt_header_size = 0;
16962 }
16963 else
16964 {
16965 osi->sec = htab->root.splt;
16966 plt_header_size = htab->plt_header_size;
16967 }
16968 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16969 (osi->info->output_bfd, osi->sec->output_section));
16970
16971 addr = root_plt->offset & -2;
16972 if (htab->symbian_p)
16973 {
16974 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16975 return FALSE;
16976 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16977 return FALSE;
16978 }
16979 else if (htab->vxworks_p)
16980 {
16981 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16982 return FALSE;
16983 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16984 return FALSE;
16985 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16986 return FALSE;
16987 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16988 return FALSE;
16989 }
16990 else if (htab->nacl_p)
16991 {
16992 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16993 return FALSE;
16994 }
16995 else if (using_thumb_only (htab))
16996 {
16997 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16998 return FALSE;
16999 }
17000 else
17001 {
17002 bfd_boolean thumb_stub_p;
17003
17004 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17005 if (thumb_stub_p)
17006 {
17007 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17008 return FALSE;
17009 }
17010#ifdef FOUR_WORD_PLT
17011 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17012 return FALSE;
17013 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17014 return FALSE;
17015#else
17016 /* A three-word PLT with no Thumb thunk contains only Arm code,
17017 so only need to output a mapping symbol for the first PLT entry and
17018 entries with thumb thunks. */
17019 if (thumb_stub_p || addr == plt_header_size)
17020 {
17021 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17022 return FALSE;
17023 }
17024#endif
17025 }
17026
17027 return TRUE;
17028}
17029
17030/* Output mapping symbols for PLT entries associated with H. */
17031
17032static bfd_boolean
17033elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17034{
17035 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17036 struct elf32_arm_link_hash_entry *eh;
17037
17038 if (h->root.type == bfd_link_hash_indirect)
17039 return TRUE;
17040
17041 if (h->root.type == bfd_link_hash_warning)
17042 /* When warning symbols are created, they **replace** the "real"
17043 entry in the hash table, thus we never get to see the real
17044 symbol in a hash traversal. So look at it now. */
17045 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17046
17047 eh = (struct elf32_arm_link_hash_entry *) h;
17048 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17049 &h->plt, &eh->plt);
17050}
17051
17052/* Bind a veneered symbol to its veneer identified by its hash entry
17053 STUB_ENTRY. The veneered location thus loose its symbol. */
17054
17055static void
17056arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17057{
17058 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17059
17060 BFD_ASSERT (hash);
17061 hash->root.root.u.def.section = stub_entry->stub_sec;
17062 hash->root.root.u.def.value = stub_entry->stub_offset;
17063 hash->root.size = stub_entry->stub_size;
17064}
17065
17066/* Output a single local symbol for a generated stub. */
17067
17068static bfd_boolean
17069elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17070 bfd_vma offset, bfd_vma size)
17071{
17072 Elf_Internal_Sym sym;
17073
17074 sym.st_value = osi->sec->output_section->vma
17075 + osi->sec->output_offset
17076 + offset;
17077 sym.st_size = size;
17078 sym.st_other = 0;
17079 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17080 sym.st_shndx = osi->sec_shndx;
17081 sym.st_target_internal = 0;
17082 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17083}
17084
17085static bfd_boolean
17086arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17087 void * in_arg)
17088{
17089 struct elf32_arm_stub_hash_entry *stub_entry;
17090 asection *stub_sec;
17091 bfd_vma addr;
17092 char *stub_name;
17093 output_arch_syminfo *osi;
17094 const insn_sequence *template_sequence;
17095 enum stub_insn_type prev_type;
17096 int size;
17097 int i;
17098 enum map_symbol_type sym_type;
17099
17100 /* Massage our args to the form they really have. */
17101 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17102 osi = (output_arch_syminfo *) in_arg;
17103
17104 stub_sec = stub_entry->stub_sec;
17105
17106 /* Ensure this stub is attached to the current section being
17107 processed. */
17108 if (stub_sec != osi->sec)
17109 return TRUE;
17110
17111 addr = (bfd_vma) stub_entry->stub_offset;
17112 template_sequence = stub_entry->stub_template;
17113
17114 if (arm_stub_sym_claimed (stub_entry->stub_type))
17115 arm_stub_claim_sym (stub_entry);
17116 else
17117 {
17118 stub_name = stub_entry->output_name;
17119 switch (template_sequence[0].type)
17120 {
17121 case ARM_TYPE:
17122 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17123 stub_entry->stub_size))
17124 return FALSE;
17125 break;
17126 case THUMB16_TYPE:
17127 case THUMB32_TYPE:
17128 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17129 stub_entry->stub_size))
17130 return FALSE;
17131 break;
17132 default:
17133 BFD_FAIL ();
17134 return 0;
17135 }
17136 }
17137
17138 prev_type = DATA_TYPE;
17139 size = 0;
17140 for (i = 0; i < stub_entry->stub_template_size; i++)
17141 {
17142 switch (template_sequence[i].type)
17143 {
17144 case ARM_TYPE:
17145 sym_type = ARM_MAP_ARM;
17146 break;
17147
17148 case THUMB16_TYPE:
17149 case THUMB32_TYPE:
17150 sym_type = ARM_MAP_THUMB;
17151 break;
17152
17153 case DATA_TYPE:
17154 sym_type = ARM_MAP_DATA;
17155 break;
17156
17157 default:
17158 BFD_FAIL ();
17159 return FALSE;
17160 }
17161
17162 if (template_sequence[i].type != prev_type)
17163 {
17164 prev_type = template_sequence[i].type;
17165 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17166 return FALSE;
17167 }
17168
17169 switch (template_sequence[i].type)
17170 {
17171 case ARM_TYPE:
17172 case THUMB32_TYPE:
17173 size += 4;
17174 break;
17175
17176 case THUMB16_TYPE:
17177 size += 2;
17178 break;
17179
17180 case DATA_TYPE:
17181 size += 4;
17182 break;
17183
17184 default:
17185 BFD_FAIL ();
17186 return FALSE;
17187 }
17188 }
17189
17190 return TRUE;
17191}
17192
17193/* Output mapping symbols for linker generated sections,
17194 and for those data-only sections that do not have a
17195 $d. */
17196
17197static bfd_boolean
17198elf32_arm_output_arch_local_syms (bfd *output_bfd,
17199 struct bfd_link_info *info,
17200 void *flaginfo,
17201 int (*func) (void *, const char *,
17202 Elf_Internal_Sym *,
17203 asection *,
17204 struct elf_link_hash_entry *))
17205{
17206 output_arch_syminfo osi;
17207 struct elf32_arm_link_hash_table *htab;
17208 bfd_vma offset;
17209 bfd_size_type size;
17210 bfd *input_bfd;
17211
17212 htab = elf32_arm_hash_table (info);
17213 if (htab == NULL)
17214 return FALSE;
17215
17216 check_use_blx (htab);
17217
17218 osi.flaginfo = flaginfo;
17219 osi.info = info;
17220 osi.func = func;
17221
17222 /* Add a $d mapping symbol to data-only sections that
17223 don't have any mapping symbol. This may result in (harmless) redundant
17224 mapping symbols. */
17225 for (input_bfd = info->input_bfds;
17226 input_bfd != NULL;
17227 input_bfd = input_bfd->link.next)
17228 {
17229 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17230 for (osi.sec = input_bfd->sections;
17231 osi.sec != NULL;
17232 osi.sec = osi.sec->next)
17233 {
17234 if (osi.sec->output_section != NULL
17235 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17236 != 0)
17237 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17238 == SEC_HAS_CONTENTS
17239 && get_arm_elf_section_data (osi.sec) != NULL
17240 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17241 && osi.sec->size > 0
17242 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17243 {
17244 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17245 (output_bfd, osi.sec->output_section);
17246 if (osi.sec_shndx != (int)SHN_BAD)
17247 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17248 }
17249 }
17250 }
17251
17252 /* ARM->Thumb glue. */
17253 if (htab->arm_glue_size > 0)
17254 {
17255 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17256 ARM2THUMB_GLUE_SECTION_NAME);
17257
17258 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17259 (output_bfd, osi.sec->output_section);
17260 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17261 || htab->pic_veneer)
17262 size = ARM2THUMB_PIC_GLUE_SIZE;
17263 else if (htab->use_blx)
17264 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17265 else
17266 size = ARM2THUMB_STATIC_GLUE_SIZE;
17267
17268 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17269 {
17270 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17271 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17272 }
17273 }
17274
17275 /* Thumb->ARM glue. */
17276 if (htab->thumb_glue_size > 0)
17277 {
17278 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17279 THUMB2ARM_GLUE_SECTION_NAME);
17280
17281 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17282 (output_bfd, osi.sec->output_section);
17283 size = THUMB2ARM_GLUE_SIZE;
17284
17285 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17286 {
17287 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17288 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17289 }
17290 }
17291
17292 /* ARMv4 BX veneers. */
17293 if (htab->bx_glue_size > 0)
17294 {
17295 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17296 ARM_BX_GLUE_SECTION_NAME);
17297
17298 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17299 (output_bfd, osi.sec->output_section);
17300
17301 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17302 }
17303
17304 /* Long calls stubs. */
17305 if (htab->stub_bfd && htab->stub_bfd->sections)
17306 {
17307 asection* stub_sec;
17308
17309 for (stub_sec = htab->stub_bfd->sections;
17310 stub_sec != NULL;
17311 stub_sec = stub_sec->next)
17312 {
17313 /* Ignore non-stub sections. */
17314 if (!strstr (stub_sec->name, STUB_SUFFIX))
17315 continue;
17316
17317 osi.sec = stub_sec;
17318
17319 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17320 (output_bfd, osi.sec->output_section);
17321
17322 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17323 }
17324 }
17325
17326 /* Finally, output mapping symbols for the PLT. */
17327 if (htab->root.splt && htab->root.splt->size > 0)
17328 {
17329 osi.sec = htab->root.splt;
17330 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17331 (output_bfd, osi.sec->output_section));
17332
17333 /* Output mapping symbols for the plt header. SymbianOS does not have a
17334 plt header. */
17335 if (htab->vxworks_p)
17336 {
17337 /* VxWorks shared libraries have no PLT header. */
17338 if (!bfd_link_pic (info))
17339 {
17340 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17341 return FALSE;
17342 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17343 return FALSE;
17344 }
17345 }
17346 else if (htab->nacl_p)
17347 {
17348 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17349 return FALSE;
17350 }
17351 else if (using_thumb_only (htab))
17352 {
17353 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17354 return FALSE;
17355 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17356 return FALSE;
17357 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17358 return FALSE;
17359 }
17360 else if (!htab->symbian_p)
17361 {
17362 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17363 return FALSE;
17364#ifndef FOUR_WORD_PLT
17365 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17366 return FALSE;
17367#endif
17368 }
17369 }
17370 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17371 {
17372 /* NaCl uses a special first entry in .iplt too. */
17373 osi.sec = htab->root.iplt;
17374 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17375 (output_bfd, osi.sec->output_section));
17376 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17377 return FALSE;
17378 }
17379 if ((htab->root.splt && htab->root.splt->size > 0)
17380 || (htab->root.iplt && htab->root.iplt->size > 0))
17381 {
17382 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17383 for (input_bfd = info->input_bfds;
17384 input_bfd != NULL;
17385 input_bfd = input_bfd->link.next)
17386 {
17387 struct arm_local_iplt_info **local_iplt;
17388 unsigned int i, num_syms;
17389
17390 local_iplt = elf32_arm_local_iplt (input_bfd);
17391 if (local_iplt != NULL)
17392 {
17393 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17394 for (i = 0; i < num_syms; i++)
17395 if (local_iplt[i] != NULL
17396 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17397 &local_iplt[i]->root,
17398 &local_iplt[i]->arm))
17399 return FALSE;
17400 }
17401 }
17402 }
17403 if (htab->dt_tlsdesc_plt != 0)
17404 {
17405 /* Mapping symbols for the lazy tls trampoline. */
17406 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17407 return FALSE;
17408
17409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17410 htab->dt_tlsdesc_plt + 24))
17411 return FALSE;
17412 }
17413 if (htab->tls_trampoline != 0)
17414 {
17415 /* Mapping symbols for the tls trampoline. */
17416 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17417 return FALSE;
17418#ifdef FOUR_WORD_PLT
17419 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17420 htab->tls_trampoline + 12))
17421 return FALSE;
17422#endif
17423 }
17424
17425 return TRUE;
17426}
17427
17428/* Filter normal symbols of CMSE entry functions of ABFD to include in
17429 the import library. All SYMCOUNT symbols of ABFD can be examined
17430 from their pointers in SYMS. Pointers of symbols to keep should be
17431 stored continuously at the beginning of that array.
17432
17433 Returns the number of symbols to keep. */
17434
17435static unsigned int
17436elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17437 struct bfd_link_info *info,
17438 asymbol **syms, long symcount)
17439{
17440 size_t maxnamelen;
17441 char *cmse_name;
17442 long src_count, dst_count = 0;
17443 struct elf32_arm_link_hash_table *htab;
17444
17445 htab = elf32_arm_hash_table (info);
17446 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17447 symcount = 0;
17448
17449 maxnamelen = 128;
17450 cmse_name = (char *) bfd_malloc (maxnamelen);
17451 for (src_count = 0; src_count < symcount; src_count++)
17452 {
17453 struct elf32_arm_link_hash_entry *cmse_hash;
17454 asymbol *sym;
17455 flagword flags;
17456 char *name;
17457 size_t namelen;
17458
17459 sym = syms[src_count];
17460 flags = sym->flags;
17461 name = (char *) bfd_asymbol_name (sym);
17462
17463 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17464 continue;
17465 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17466 continue;
17467
17468 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17469 if (namelen > maxnamelen)
17470 {
17471 cmse_name = (char *)
17472 bfd_realloc (cmse_name, namelen);
17473 maxnamelen = namelen;
17474 }
17475 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17476 cmse_hash = (struct elf32_arm_link_hash_entry *)
17477 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17478
17479 if (!cmse_hash
17480 || (cmse_hash->root.root.type != bfd_link_hash_defined
17481 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17482 || cmse_hash->root.type != STT_FUNC)
17483 continue;
17484
17485 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17486 continue;
17487
17488 syms[dst_count++] = sym;
17489 }
17490 free (cmse_name);
17491
17492 syms[dst_count] = NULL;
17493
17494 return dst_count;
17495}
17496
17497/* Filter symbols of ABFD to include in the import library. All
17498 SYMCOUNT symbols of ABFD can be examined from their pointers in
17499 SYMS. Pointers of symbols to keep should be stored continuously at
17500 the beginning of that array.
17501
17502 Returns the number of symbols to keep. */
17503
17504static unsigned int
17505elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17506 struct bfd_link_info *info,
17507 asymbol **syms, long symcount)
17508{
17509 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17510
17511 if (globals->cmse_implib)
17512 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17513 else
17514 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17515}
17516
17517/* Allocate target specific section data. */
17518
17519static bfd_boolean
17520elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17521{
17522 if (!sec->used_by_bfd)
17523 {
17524 _arm_elf_section_data *sdata;
17525 bfd_size_type amt = sizeof (*sdata);
17526
17527 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17528 if (sdata == NULL)
17529 return FALSE;
17530 sec->used_by_bfd = sdata;
17531 }
17532
17533 return _bfd_elf_new_section_hook (abfd, sec);
17534}
17535
17536
17537/* Used to order a list of mapping symbols by address. */
17538
17539static int
17540elf32_arm_compare_mapping (const void * a, const void * b)
17541{
17542 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17543 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17544
17545 if (amap->vma > bmap->vma)
17546 return 1;
17547 else if (amap->vma < bmap->vma)
17548 return -1;
17549 else if (amap->type > bmap->type)
17550 /* Ensure results do not depend on the host qsort for objects with
17551 multiple mapping symbols at the same address by sorting on type
17552 after vma. */
17553 return 1;
17554 else if (amap->type < bmap->type)
17555 return -1;
17556 else
17557 return 0;
17558}
17559
17560/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17561
17562static unsigned long
17563offset_prel31 (unsigned long addr, bfd_vma offset)
17564{
17565 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17566}
17567
17568/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17569 relocations. */
17570
17571static void
17572copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17573{
17574 unsigned long first_word = bfd_get_32 (output_bfd, from);
17575 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17576
17577 /* High bit of first word is supposed to be zero. */
17578 if ((first_word & 0x80000000ul) == 0)
17579 first_word = offset_prel31 (first_word, offset);
17580
17581 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17582 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17583 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17584 second_word = offset_prel31 (second_word, offset);
17585
17586 bfd_put_32 (output_bfd, first_word, to);
17587 bfd_put_32 (output_bfd, second_word, to + 4);
17588}
17589
17590/* Data for make_branch_to_a8_stub(). */
17591
17592struct a8_branch_to_stub_data
17593{
17594 asection *writing_section;
17595 bfd_byte *contents;
17596};
17597
17598
17599/* Helper to insert branches to Cortex-A8 erratum stubs in the right
17600 places for a particular section. */
17601
17602static bfd_boolean
17603make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17604 void *in_arg)
17605{
17606 struct elf32_arm_stub_hash_entry *stub_entry;
17607 struct a8_branch_to_stub_data *data;
17608 bfd_byte *contents;
17609 unsigned long branch_insn;
17610 bfd_vma veneered_insn_loc, veneer_entry_loc;
17611 bfd_signed_vma branch_offset;
17612 bfd *abfd;
17613 unsigned int loc;
17614
17615 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17616 data = (struct a8_branch_to_stub_data *) in_arg;
17617
17618 if (stub_entry->target_section != data->writing_section
17619 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17620 return TRUE;
17621
17622 contents = data->contents;
17623
17624 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17625 generated when both source and target are in the same section. */
17626 veneered_insn_loc = stub_entry->target_section->output_section->vma
17627 + stub_entry->target_section->output_offset
17628 + stub_entry->source_value;
17629
17630 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17631 + stub_entry->stub_sec->output_offset
17632 + stub_entry->stub_offset;
17633
17634 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17635 veneered_insn_loc &= ~3u;
17636
17637 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17638
17639 abfd = stub_entry->target_section->owner;
17640 loc = stub_entry->source_value;
17641
17642 /* We attempt to avoid this condition by setting stubs_always_after_branch
17643 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17644 This check is just to be on the safe side... */
17645 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17646 {
17647 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17648 "allocated in unsafe location"), abfd);
17649 return FALSE;
17650 }
17651
17652 switch (stub_entry->stub_type)
17653 {
17654 case arm_stub_a8_veneer_b:
17655 case arm_stub_a8_veneer_b_cond:
17656 branch_insn = 0xf0009000;
17657 goto jump24;
17658
17659 case arm_stub_a8_veneer_blx:
17660 branch_insn = 0xf000e800;
17661 goto jump24;
17662
17663 case arm_stub_a8_veneer_bl:
17664 {
17665 unsigned int i1, j1, i2, j2, s;
17666
17667 branch_insn = 0xf000d000;
17668
17669 jump24:
17670 if (branch_offset < -16777216 || branch_offset > 16777214)
17671 {
17672 /* There's not much we can do apart from complain if this
17673 happens. */
17674 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17675 "of range (input file too large)"), abfd);
17676 return FALSE;
17677 }
17678
17679 /* i1 = not(j1 eor s), so:
17680 not i1 = j1 eor s
17681 j1 = (not i1) eor s. */
17682
17683 branch_insn |= (branch_offset >> 1) & 0x7ff;
17684 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17685 i2 = (branch_offset >> 22) & 1;
17686 i1 = (branch_offset >> 23) & 1;
17687 s = (branch_offset >> 24) & 1;
17688 j1 = (!i1) ^ s;
17689 j2 = (!i2) ^ s;
17690 branch_insn |= j2 << 11;
17691 branch_insn |= j1 << 13;
17692 branch_insn |= s << 26;
17693 }
17694 break;
17695
17696 default:
17697 BFD_FAIL ();
17698 return FALSE;
17699 }
17700
17701 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17702 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17703
17704 return TRUE;
17705}
17706
17707/* Beginning of stm32l4xx work-around. */
17708
17709/* Functions encoding instructions necessary for the emission of the
17710 fix-stm32l4xx-629360.
17711 Encoding is extracted from the
17712 ARM (C) Architecture Reference Manual
17713 ARMv7-A and ARMv7-R edition
17714 ARM DDI 0406C.b (ID072512). */
17715
17716static inline bfd_vma
17717create_instruction_branch_absolute (int branch_offset)
17718{
17719 /* A8.8.18 B (A8-334)
17720 B target_address (Encoding T4). */
17721 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17722 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17723 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17724
17725 int s = ((branch_offset & 0x1000000) >> 24);
17726 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17727 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17728
17729 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17730 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17731
17732 bfd_vma patched_inst = 0xf0009000
17733 | s << 26 /* S. */
17734 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17735 | j1 << 13 /* J1. */
17736 | j2 << 11 /* J2. */
17737 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17738
17739 return patched_inst;
17740}
17741
17742static inline bfd_vma
17743create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17744{
17745 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17746 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17747 bfd_vma patched_inst = 0xe8900000
17748 | (/*W=*/wback << 21)
17749 | (base_reg << 16)
17750 | (reg_mask & 0x0000ffff);
17751
17752 return patched_inst;
17753}
17754
17755static inline bfd_vma
17756create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17757{
17758 /* A8.8.60 LDMDB/LDMEA (A8-402)
17759 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17760 bfd_vma patched_inst = 0xe9100000
17761 | (/*W=*/wback << 21)
17762 | (base_reg << 16)
17763 | (reg_mask & 0x0000ffff);
17764
17765 return patched_inst;
17766}
17767
17768static inline bfd_vma
17769create_instruction_mov (int target_reg, int source_reg)
17770{
17771 /* A8.8.103 MOV (register) (A8-486)
17772 MOV Rd, Rm (Encoding T1). */
17773 bfd_vma patched_inst = 0x4600
17774 | (target_reg & 0x7)
17775 | ((target_reg & 0x8) >> 3) << 7
17776 | (source_reg << 3);
17777
17778 return patched_inst;
17779}
17780
17781static inline bfd_vma
17782create_instruction_sub (int target_reg, int source_reg, int value)
17783{
17784 /* A8.8.221 SUB (immediate) (A8-708)
17785 SUB Rd, Rn, #value (Encoding T3). */
17786 bfd_vma patched_inst = 0xf1a00000
17787 | (target_reg << 8)
17788 | (source_reg << 16)
17789 | (/*S=*/0 << 20)
17790 | ((value & 0x800) >> 11) << 26
17791 | ((value & 0x700) >> 8) << 12
17792 | (value & 0x0ff);
17793
17794 return patched_inst;
17795}
17796
17797static inline bfd_vma
17798create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17799 int first_reg)
17800{
17801 /* A8.8.332 VLDM (A8-922)
17802 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17803 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17804 | (/*W=*/wback << 21)
17805 | (base_reg << 16)
17806 | (num_words & 0x000000ff)
17807 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17808 | (first_reg & 0x00000001) << 22;
17809
17810 return patched_inst;
17811}
17812
17813static inline bfd_vma
17814create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17815 int first_reg)
17816{
17817 /* A8.8.332 VLDM (A8-922)
17818 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17819 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17820 | (base_reg << 16)
17821 | (num_words & 0x000000ff)
17822 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17823 | (first_reg & 0x00000001) << 22;
17824
17825 return patched_inst;
17826}
17827
17828static inline bfd_vma
17829create_instruction_udf_w (int value)
17830{
17831 /* A8.8.247 UDF (A8-758)
17832 Undefined (Encoding T2). */
17833 bfd_vma patched_inst = 0xf7f0a000
17834 | (value & 0x00000fff)
17835 | (value & 0x000f0000) << 16;
17836
17837 return patched_inst;
17838}
17839
17840static inline bfd_vma
17841create_instruction_udf (int value)
17842{
17843 /* A8.8.247 UDF (A8-758)
17844 Undefined (Encoding T1). */
17845 bfd_vma patched_inst = 0xde00
17846 | (value & 0xff);
17847
17848 return patched_inst;
17849}
17850
17851/* Functions writing an instruction in memory, returning the next
17852 memory position to write to. */
17853
17854static inline bfd_byte *
17855push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17856 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17857{
17858 put_thumb2_insn (htab, output_bfd, insn, pt);
17859 return pt + 4;
17860}
17861
17862static inline bfd_byte *
17863push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17864 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17865{
17866 put_thumb_insn (htab, output_bfd, insn, pt);
17867 return pt + 2;
17868}
17869
17870/* Function filling up a region in memory with T1 and T2 UDFs taking
17871 care of alignment. */
17872
17873static bfd_byte *
17874stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17875 bfd * output_bfd,
17876 const bfd_byte * const base_stub_contents,
17877 bfd_byte * const from_stub_contents,
17878 const bfd_byte * const end_stub_contents)
17879{
17880 bfd_byte *current_stub_contents = from_stub_contents;
17881
17882 /* Fill the remaining of the stub with deterministic contents : UDF
17883 instructions.
17884 Check if realignment is needed on modulo 4 frontier using T1, to
17885 further use T2. */
17886 if ((current_stub_contents < end_stub_contents)
17887 && !((current_stub_contents - base_stub_contents) % 2)
17888 && ((current_stub_contents - base_stub_contents) % 4))
17889 current_stub_contents =
17890 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17891 create_instruction_udf (0));
17892
17893 for (; current_stub_contents < end_stub_contents;)
17894 current_stub_contents =
17895 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17896 create_instruction_udf_w (0));
17897
17898 return current_stub_contents;
17899}
17900
17901/* Functions writing the stream of instructions equivalent to the
17902 derived sequence for ldmia, ldmdb, vldm respectively. */
17903
17904static void
17905stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17906 bfd * output_bfd,
17907 const insn32 initial_insn,
17908 const bfd_byte *const initial_insn_addr,
17909 bfd_byte *const base_stub_contents)
17910{
17911 int wback = (initial_insn & 0x00200000) >> 21;
17912 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17913 int insn_all_registers = initial_insn & 0x0000ffff;
17914 int insn_low_registers, insn_high_registers;
17915 int usable_register_mask;
17916 int nb_registers = popcount (insn_all_registers);
17917 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17918 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17919 bfd_byte *current_stub_contents = base_stub_contents;
17920
17921 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17922
17923 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17924 smaller than 8 registers load sequences that do not cause the
17925 hardware issue. */
17926 if (nb_registers <= 8)
17927 {
17928 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17929 current_stub_contents =
17930 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17931 initial_insn);
17932
17933 /* B initial_insn_addr+4. */
17934 if (!restore_pc)
17935 current_stub_contents =
17936 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17937 create_instruction_branch_absolute
17938 (initial_insn_addr - current_stub_contents));
17939
17940 /* Fill the remaining of the stub with deterministic contents. */
17941 current_stub_contents =
17942 stm32l4xx_fill_stub_udf (htab, output_bfd,
17943 base_stub_contents, current_stub_contents,
17944 base_stub_contents +
17945 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17946
17947 return;
17948 }
17949
17950 /* - reg_list[13] == 0. */
17951 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17952
17953 /* - reg_list[14] & reg_list[15] != 1. */
17954 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17955
17956 /* - if (wback==1) reg_list[rn] == 0. */
17957 BFD_ASSERT (!wback || !restore_rn);
17958
17959 /* - nb_registers > 8. */
17960 BFD_ASSERT (popcount (insn_all_registers) > 8);
17961
17962 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17963
17964 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17965 - One with the 7 lowest registers (register mask 0x007F)
17966 This LDM will finally contain between 2 and 7 registers
17967 - One with the 7 highest registers (register mask 0xDF80)
17968 This ldm will finally contain between 2 and 7 registers. */
17969 insn_low_registers = insn_all_registers & 0x007F;
17970 insn_high_registers = insn_all_registers & 0xDF80;
17971
17972 /* A spare register may be needed during this veneer to temporarily
17973 handle the base register. This register will be restored with the
17974 last LDM operation.
17975 The usable register may be any general purpose register (that
17976 excludes PC, SP, LR : register mask is 0x1FFF). */
17977 usable_register_mask = 0x1FFF;
17978
17979 /* Generate the stub function. */
17980 if (wback)
17981 {
17982 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17983 current_stub_contents =
17984 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17985 create_instruction_ldmia
17986 (rn, /*wback=*/1, insn_low_registers));
17987
17988 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17989 current_stub_contents =
17990 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17991 create_instruction_ldmia
17992 (rn, /*wback=*/1, insn_high_registers));
17993 if (!restore_pc)
17994 {
17995 /* B initial_insn_addr+4. */
17996 current_stub_contents =
17997 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17998 create_instruction_branch_absolute
17999 (initial_insn_addr - current_stub_contents));
18000 }
18001 }
18002 else /* if (!wback). */
18003 {
18004 ri = rn;
18005
18006 /* If Rn is not part of the high-register-list, move it there. */
18007 if (!(insn_high_registers & (1 << rn)))
18008 {
18009 /* Choose a Ri in the high-register-list that will be restored. */
18010 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18011
18012 /* MOV Ri, Rn. */
18013 current_stub_contents =
18014 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18015 create_instruction_mov (ri, rn));
18016 }
18017
18018 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18019 current_stub_contents =
18020 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18021 create_instruction_ldmia
18022 (ri, /*wback=*/1, insn_low_registers));
18023
18024 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18025 current_stub_contents =
18026 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18027 create_instruction_ldmia
18028 (ri, /*wback=*/0, insn_high_registers));
18029
18030 if (!restore_pc)
18031 {
18032 /* B initial_insn_addr+4. */
18033 current_stub_contents =
18034 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18035 create_instruction_branch_absolute
18036 (initial_insn_addr - current_stub_contents));
18037 }
18038 }
18039
18040 /* Fill the remaining of the stub with deterministic contents. */
18041 current_stub_contents =
18042 stm32l4xx_fill_stub_udf (htab, output_bfd,
18043 base_stub_contents, current_stub_contents,
18044 base_stub_contents +
18045 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18046}
18047
18048static void
18049stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18050 bfd * output_bfd,
18051 const insn32 initial_insn,
18052 const bfd_byte *const initial_insn_addr,
18053 bfd_byte *const base_stub_contents)
18054{
18055 int wback = (initial_insn & 0x00200000) >> 21;
18056 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18057 int insn_all_registers = initial_insn & 0x0000ffff;
18058 int insn_low_registers, insn_high_registers;
18059 int usable_register_mask;
18060 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18061 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18062 int nb_registers = popcount (insn_all_registers);
18063 bfd_byte *current_stub_contents = base_stub_contents;
18064
18065 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18066
18067 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18068 smaller than 8 registers load sequences that do not cause the
18069 hardware issue. */
18070 if (nb_registers <= 8)
18071 {
18072 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18073 current_stub_contents =
18074 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18075 initial_insn);
18076
18077 /* B initial_insn_addr+4. */
18078 current_stub_contents =
18079 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18080 create_instruction_branch_absolute
18081 (initial_insn_addr - current_stub_contents));
18082
18083 /* Fill the remaining of the stub with deterministic contents. */
18084 current_stub_contents =
18085 stm32l4xx_fill_stub_udf (htab, output_bfd,
18086 base_stub_contents, current_stub_contents,
18087 base_stub_contents +
18088 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18089
18090 return;
18091 }
18092
18093 /* - reg_list[13] == 0. */
18094 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18095
18096 /* - reg_list[14] & reg_list[15] != 1. */
18097 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18098
18099 /* - if (wback==1) reg_list[rn] == 0. */
18100 BFD_ASSERT (!wback || !restore_rn);
18101
18102 /* - nb_registers > 8. */
18103 BFD_ASSERT (popcount (insn_all_registers) > 8);
18104
18105 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18106
18107 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18108 - One with the 7 lowest registers (register mask 0x007F)
18109 This LDM will finally contain between 2 and 7 registers
18110 - One with the 7 highest registers (register mask 0xDF80)
18111 This ldm will finally contain between 2 and 7 registers. */
18112 insn_low_registers = insn_all_registers & 0x007F;
18113 insn_high_registers = insn_all_registers & 0xDF80;
18114
18115 /* A spare register may be needed during this veneer to temporarily
18116 handle the base register. This register will be restored with
18117 the last LDM operation.
18118 The usable register may be any general purpose register (that excludes
18119 PC, SP, LR : register mask is 0x1FFF). */
18120 usable_register_mask = 0x1FFF;
18121
18122 /* Generate the stub function. */
18123 if (!wback && !restore_pc && !restore_rn)
18124 {
18125 /* Choose a Ri in the low-register-list that will be restored. */
18126 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18127
18128 /* MOV Ri, Rn. */
18129 current_stub_contents =
18130 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18131 create_instruction_mov (ri, rn));
18132
18133 /* LDMDB Ri!, {R-high-register-list}. */
18134 current_stub_contents =
18135 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18136 create_instruction_ldmdb
18137 (ri, /*wback=*/1, insn_high_registers));
18138
18139 /* LDMDB Ri, {R-low-register-list}. */
18140 current_stub_contents =
18141 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18142 create_instruction_ldmdb
18143 (ri, /*wback=*/0, insn_low_registers));
18144
18145 /* B initial_insn_addr+4. */
18146 current_stub_contents =
18147 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18148 create_instruction_branch_absolute
18149 (initial_insn_addr - current_stub_contents));
18150 }
18151 else if (wback && !restore_pc && !restore_rn)
18152 {
18153 /* LDMDB Rn!, {R-high-register-list}. */
18154 current_stub_contents =
18155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18156 create_instruction_ldmdb
18157 (rn, /*wback=*/1, insn_high_registers));
18158
18159 /* LDMDB Rn!, {R-low-register-list}. */
18160 current_stub_contents =
18161 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18162 create_instruction_ldmdb
18163 (rn, /*wback=*/1, insn_low_registers));
18164
18165 /* B initial_insn_addr+4. */
18166 current_stub_contents =
18167 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18168 create_instruction_branch_absolute
18169 (initial_insn_addr - current_stub_contents));
18170 }
18171 else if (!wback && restore_pc && !restore_rn)
18172 {
18173 /* Choose a Ri in the high-register-list that will be restored. */
18174 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18175
18176 /* SUB Ri, Rn, #(4*nb_registers). */
18177 current_stub_contents =
18178 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18179 create_instruction_sub (ri, rn, (4 * nb_registers)));
18180
18181 /* LDMIA Ri!, {R-low-register-list}. */
18182 current_stub_contents =
18183 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18184 create_instruction_ldmia
18185 (ri, /*wback=*/1, insn_low_registers));
18186
18187 /* LDMIA Ri, {R-high-register-list}. */
18188 current_stub_contents =
18189 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18190 create_instruction_ldmia
18191 (ri, /*wback=*/0, insn_high_registers));
18192 }
18193 else if (wback && restore_pc && !restore_rn)
18194 {
18195 /* Choose a Ri in the high-register-list that will be restored. */
18196 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18197
18198 /* SUB Rn, Rn, #(4*nb_registers) */
18199 current_stub_contents =
18200 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18201 create_instruction_sub (rn, rn, (4 * nb_registers)));
18202
18203 /* MOV Ri, Rn. */
18204 current_stub_contents =
18205 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18206 create_instruction_mov (ri, rn));
18207
18208 /* LDMIA Ri!, {R-low-register-list}. */
18209 current_stub_contents =
18210 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18211 create_instruction_ldmia
18212 (ri, /*wback=*/1, insn_low_registers));
18213
18214 /* LDMIA Ri, {R-high-register-list}. */
18215 current_stub_contents =
18216 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18217 create_instruction_ldmia
18218 (ri, /*wback=*/0, insn_high_registers));
18219 }
18220 else if (!wback && !restore_pc && restore_rn)
18221 {
18222 ri = rn;
18223 if (!(insn_low_registers & (1 << rn)))
18224 {
18225 /* Choose a Ri in the low-register-list that will be restored. */
18226 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18227
18228 /* MOV Ri, Rn. */
18229 current_stub_contents =
18230 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18231 create_instruction_mov (ri, rn));
18232 }
18233
18234 /* LDMDB Ri!, {R-high-register-list}. */
18235 current_stub_contents =
18236 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18237 create_instruction_ldmdb
18238 (ri, /*wback=*/1, insn_high_registers));
18239
18240 /* LDMDB Ri, {R-low-register-list}. */
18241 current_stub_contents =
18242 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18243 create_instruction_ldmdb
18244 (ri, /*wback=*/0, insn_low_registers));
18245
18246 /* B initial_insn_addr+4. */
18247 current_stub_contents =
18248 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18249 create_instruction_branch_absolute
18250 (initial_insn_addr - current_stub_contents));
18251 }
18252 else if (!wback && restore_pc && restore_rn)
18253 {
18254 ri = rn;
18255 if (!(insn_high_registers & (1 << rn)))
18256 {
18257 /* Choose a Ri in the high-register-list that will be restored. */
18258 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18259 }
18260
18261 /* SUB Ri, Rn, #(4*nb_registers). */
18262 current_stub_contents =
18263 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18264 create_instruction_sub (ri, rn, (4 * nb_registers)));
18265
18266 /* LDMIA Ri!, {R-low-register-list}. */
18267 current_stub_contents =
18268 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18269 create_instruction_ldmia
18270 (ri, /*wback=*/1, insn_low_registers));
18271
18272 /* LDMIA Ri, {R-high-register-list}. */
18273 current_stub_contents =
18274 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18275 create_instruction_ldmia
18276 (ri, /*wback=*/0, insn_high_registers));
18277 }
18278 else if (wback && restore_rn)
18279 {
18280 /* The assembler should not have accepted to encode this. */
18281 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18282 "undefined behavior.\n");
18283 }
18284
18285 /* Fill the remaining of the stub with deterministic contents. */
18286 current_stub_contents =
18287 stm32l4xx_fill_stub_udf (htab, output_bfd,
18288 base_stub_contents, current_stub_contents,
18289 base_stub_contents +
18290 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18291
18292}
18293
18294static void
18295stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18296 bfd * output_bfd,
18297 const insn32 initial_insn,
18298 const bfd_byte *const initial_insn_addr,
18299 bfd_byte *const base_stub_contents)
18300{
18301 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18302 bfd_byte *current_stub_contents = base_stub_contents;
18303
18304 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18305
18306 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18307 smaller than 8 words load sequences that do not cause the
18308 hardware issue. */
18309 if (num_words <= 8)
18310 {
18311 /* Untouched instruction. */
18312 current_stub_contents =
18313 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18314 initial_insn);
18315
18316 /* B initial_insn_addr+4. */
18317 current_stub_contents =
18318 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18319 create_instruction_branch_absolute
18320 (initial_insn_addr - current_stub_contents));
18321 }
18322 else
18323 {
18324 bfd_boolean is_dp = /* DP encoding. */
18325 (initial_insn & 0xfe100f00) == 0xec100b00;
18326 bfd_boolean is_ia_nobang = /* (IA without !). */
18327 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18328 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18329 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18330 bfd_boolean is_db_bang = /* (DB with !). */
18331 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18332 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18333 /* d = UInt (Vd:D);. */
18334 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18335 | (((unsigned int)initial_insn << 9) >> 31);
18336
18337 /* Compute the number of 8-words chunks needed to split. */
18338 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18339 int chunk;
18340
18341 /* The test coverage has been done assuming the following
18342 hypothesis that exactly one of the previous is_ predicates is
18343 true. */
18344 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18345 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18346
18347 /* We treat the cutting of the words in one pass for all
18348 cases, then we emit the adjustments:
18349
18350 vldm rx, {...}
18351 -> vldm rx!, {8_words_or_less} for each needed 8_word
18352 -> sub rx, rx, #size (list)
18353
18354 vldm rx!, {...}
18355 -> vldm rx!, {8_words_or_less} for each needed 8_word
18356 This also handles vpop instruction (when rx is sp)
18357
18358 vldmd rx!, {...}
18359 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18360 for (chunk = 0; chunk < chunks; ++chunk)
18361 {
18362 bfd_vma new_insn = 0;
18363
18364 if (is_ia_nobang || is_ia_bang)
18365 {
18366 new_insn = create_instruction_vldmia
18367 (base_reg,
18368 is_dp,
18369 /*wback= . */1,
18370 chunks - (chunk + 1) ?
18371 8 : num_words - chunk * 8,
18372 first_reg + chunk * 8);
18373 }
18374 else if (is_db_bang)
18375 {
18376 new_insn = create_instruction_vldmdb
18377 (base_reg,
18378 is_dp,
18379 chunks - (chunk + 1) ?
18380 8 : num_words - chunk * 8,
18381 first_reg + chunk * 8);
18382 }
18383
18384 if (new_insn)
18385 current_stub_contents =
18386 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18387 new_insn);
18388 }
18389
18390 /* Only this case requires the base register compensation
18391 subtract. */
18392 if (is_ia_nobang)
18393 {
18394 current_stub_contents =
18395 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18396 create_instruction_sub
18397 (base_reg, base_reg, 4*num_words));
18398 }
18399
18400 /* B initial_insn_addr+4. */
18401 current_stub_contents =
18402 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18403 create_instruction_branch_absolute
18404 (initial_insn_addr - current_stub_contents));
18405 }
18406
18407 /* Fill the remaining of the stub with deterministic contents. */
18408 current_stub_contents =
18409 stm32l4xx_fill_stub_udf (htab, output_bfd,
18410 base_stub_contents, current_stub_contents,
18411 base_stub_contents +
18412 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18413}
18414
18415static void
18416stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18417 bfd * output_bfd,
18418 const insn32 wrong_insn,
18419 const bfd_byte *const wrong_insn_addr,
18420 bfd_byte *const stub_contents)
18421{
18422 if (is_thumb2_ldmia (wrong_insn))
18423 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18424 wrong_insn, wrong_insn_addr,
18425 stub_contents);
18426 else if (is_thumb2_ldmdb (wrong_insn))
18427 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18428 wrong_insn, wrong_insn_addr,
18429 stub_contents);
18430 else if (is_thumb2_vldm (wrong_insn))
18431 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18432 wrong_insn, wrong_insn_addr,
18433 stub_contents);
18434}
18435
18436/* End of stm32l4xx work-around. */
18437
18438
18439/* Do code byteswapping. Return FALSE afterwards so that the section is
18440 written out as normal. */
18441
18442static bfd_boolean
18443elf32_arm_write_section (bfd *output_bfd,
18444 struct bfd_link_info *link_info,
18445 asection *sec,
18446 bfd_byte *contents)
18447{
18448 unsigned int mapcount, errcount;
18449 _arm_elf_section_data *arm_data;
18450 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18451 elf32_arm_section_map *map;
18452 elf32_vfp11_erratum_list *errnode;
18453 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18454 bfd_vma ptr;
18455 bfd_vma end;
18456 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18457 bfd_byte tmp;
18458 unsigned int i;
18459
18460 if (globals == NULL)
18461 return FALSE;
18462
18463 /* If this section has not been allocated an _arm_elf_section_data
18464 structure then we cannot record anything. */
18465 arm_data = get_arm_elf_section_data (sec);
18466 if (arm_data == NULL)
18467 return FALSE;
18468
18469 mapcount = arm_data->mapcount;
18470 map = arm_data->map;
18471 errcount = arm_data->erratumcount;
18472
18473 if (errcount != 0)
18474 {
18475 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18476
18477 for (errnode = arm_data->erratumlist; errnode != 0;
18478 errnode = errnode->next)
18479 {
18480 bfd_vma target = errnode->vma - offset;
18481
18482 switch (errnode->type)
18483 {
18484 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18485 {
18486 bfd_vma branch_to_veneer;
18487 /* Original condition code of instruction, plus bit mask for
18488 ARM B instruction. */
18489 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18490 | 0x0a000000;
18491
18492 /* The instruction is before the label. */
18493 target -= 4;
18494
18495 /* Above offset included in -4 below. */
18496 branch_to_veneer = errnode->u.b.veneer->vma
18497 - errnode->vma - 4;
18498
18499 if ((signed) branch_to_veneer < -(1 << 25)
18500 || (signed) branch_to_veneer >= (1 << 25))
18501 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18502 "range"), output_bfd);
18503
18504 insn |= (branch_to_veneer >> 2) & 0xffffff;
18505 contents[endianflip ^ target] = insn & 0xff;
18506 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18507 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18508 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18509 }
18510 break;
18511
18512 case VFP11_ERRATUM_ARM_VENEER:
18513 {
18514 bfd_vma branch_from_veneer;
18515 unsigned int insn;
18516
18517 /* Take size of veneer into account. */
18518 branch_from_veneer = errnode->u.v.branch->vma
18519 - errnode->vma - 12;
18520
18521 if ((signed) branch_from_veneer < -(1 << 25)
18522 || (signed) branch_from_veneer >= (1 << 25))
18523 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18524 "range"), output_bfd);
18525
18526 /* Original instruction. */
18527 insn = errnode->u.v.branch->u.b.vfp_insn;
18528 contents[endianflip ^ target] = insn & 0xff;
18529 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18530 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18531 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18532
18533 /* Branch back to insn after original insn. */
18534 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18535 contents[endianflip ^ (target + 4)] = insn & 0xff;
18536 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18537 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18538 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18539 }
18540 break;
18541
18542 default:
18543 abort ();
18544 }
18545 }
18546 }
18547
18548 if (arm_data->stm32l4xx_erratumcount != 0)
18549 {
18550 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18551 stm32l4xx_errnode != 0;
18552 stm32l4xx_errnode = stm32l4xx_errnode->next)
18553 {
18554 bfd_vma target = stm32l4xx_errnode->vma - offset;
18555
18556 switch (stm32l4xx_errnode->type)
18557 {
18558 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18559 {
18560 unsigned int insn;
18561 bfd_vma branch_to_veneer =
18562 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18563
18564 if ((signed) branch_to_veneer < -(1 << 24)
18565 || (signed) branch_to_veneer >= (1 << 24))
18566 {
18567 bfd_vma out_of_range =
18568 ((signed) branch_to_veneer < -(1 << 24)) ?
18569 - branch_to_veneer - (1 << 24) :
18570 ((signed) branch_to_veneer >= (1 << 24)) ?
18571 branch_to_veneer - (1 << 24) : 0;
18572
18573 _bfd_error_handler
18574 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18575 "Jump out of range by %ld bytes. "
18576 "Cannot encode branch instruction. "),
18577 output_bfd,
18578 (long) (stm32l4xx_errnode->vma - 4),
18579 out_of_range);
18580 continue;
18581 }
18582
18583 insn = create_instruction_branch_absolute
18584 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18585
18586 /* The instruction is before the label. */
18587 target -= 4;
18588
18589 put_thumb2_insn (globals, output_bfd,
18590 (bfd_vma) insn, contents + target);
18591 }
18592 break;
18593
18594 case STM32L4XX_ERRATUM_VENEER:
18595 {
18596 bfd_byte * veneer;
18597 bfd_byte * veneer_r;
18598 unsigned int insn;
18599
18600 veneer = contents + target;
18601 veneer_r = veneer
18602 + stm32l4xx_errnode->u.b.veneer->vma
18603 - stm32l4xx_errnode->vma - 4;
18604
18605 if ((signed) (veneer_r - veneer -
18606 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18607 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18608 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18609 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18610 || (signed) (veneer_r - veneer) >= (1 << 24))
18611 {
18612 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18613 "veneer."), output_bfd);
18614 continue;
18615 }
18616
18617 /* Original instruction. */
18618 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18619
18620 stm32l4xx_create_replacing_stub
18621 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18622 }
18623 break;
18624
18625 default:
18626 abort ();
18627 }
18628 }
18629 }
18630
18631 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18632 {
18633 arm_unwind_table_edit *edit_node
18634 = arm_data->u.exidx.unwind_edit_list;
18635 /* Now, sec->size is the size of the section we will write. The original
18636 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18637 markers) was sec->rawsize. (This isn't the case if we perform no
18638 edits, then rawsize will be zero and we should use size). */
18639 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18640 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18641 unsigned int in_index, out_index;
18642 bfd_vma add_to_offsets = 0;
18643
18644 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18645 {
18646 if (edit_node)
18647 {
18648 unsigned int edit_index = edit_node->index;
18649
18650 if (in_index < edit_index && in_index * 8 < input_size)
18651 {
18652 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18653 contents + in_index * 8, add_to_offsets);
18654 out_index++;
18655 in_index++;
18656 }
18657 else if (in_index == edit_index
18658 || (in_index * 8 >= input_size
18659 && edit_index == UINT_MAX))
18660 {
18661 switch (edit_node->type)
18662 {
18663 case DELETE_EXIDX_ENTRY:
18664 in_index++;
18665 add_to_offsets += 8;
18666 break;
18667
18668 case INSERT_EXIDX_CANTUNWIND_AT_END:
18669 {
18670 asection *text_sec = edit_node->linked_section;
18671 bfd_vma text_offset = text_sec->output_section->vma
18672 + text_sec->output_offset
18673 + text_sec->size;
18674 bfd_vma exidx_offset = offset + out_index * 8;
18675 unsigned long prel31_offset;
18676
18677 /* Note: this is meant to be equivalent to an
18678 R_ARM_PREL31 relocation. These synthetic
18679 EXIDX_CANTUNWIND markers are not relocated by the
18680 usual BFD method. */
18681 prel31_offset = (text_offset - exidx_offset)
18682 & 0x7ffffffful;
18683 if (bfd_link_relocatable (link_info))
18684 {
18685 /* Here relocation for new EXIDX_CANTUNWIND is
18686 created, so there is no need to
18687 adjust offset by hand. */
18688 prel31_offset = text_sec->output_offset
18689 + text_sec->size;
18690 }
18691
18692 /* First address we can't unwind. */
18693 bfd_put_32 (output_bfd, prel31_offset,
18694 &edited_contents[out_index * 8]);
18695
18696 /* Code for EXIDX_CANTUNWIND. */
18697 bfd_put_32 (output_bfd, 0x1,
18698 &edited_contents[out_index * 8 + 4]);
18699
18700 out_index++;
18701 add_to_offsets -= 8;
18702 }
18703 break;
18704 }
18705
18706 edit_node = edit_node->next;
18707 }
18708 }
18709 else
18710 {
18711 /* No more edits, copy remaining entries verbatim. */
18712 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18713 contents + in_index * 8, add_to_offsets);
18714 out_index++;
18715 in_index++;
18716 }
18717 }
18718
18719 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18720 bfd_set_section_contents (output_bfd, sec->output_section,
18721 edited_contents,
18722 (file_ptr) sec->output_offset, sec->size);
18723
18724 return TRUE;
18725 }
18726
18727 /* Fix code to point to Cortex-A8 erratum stubs. */
18728 if (globals->fix_cortex_a8)
18729 {
18730 struct a8_branch_to_stub_data data;
18731
18732 data.writing_section = sec;
18733 data.contents = contents;
18734
18735 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18736 & data);
18737 }
18738
18739 if (mapcount == 0)
18740 return FALSE;
18741
18742 if (globals->byteswap_code)
18743 {
18744 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18745
18746 ptr = map[0].vma;
18747 for (i = 0; i < mapcount; i++)
18748 {
18749 if (i == mapcount - 1)
18750 end = sec->size;
18751 else
18752 end = map[i + 1].vma;
18753
18754 switch (map[i].type)
18755 {
18756 case 'a':
18757 /* Byte swap code words. */
18758 while (ptr + 3 < end)
18759 {
18760 tmp = contents[ptr];
18761 contents[ptr] = contents[ptr + 3];
18762 contents[ptr + 3] = tmp;
18763 tmp = contents[ptr + 1];
18764 contents[ptr + 1] = contents[ptr + 2];
18765 contents[ptr + 2] = tmp;
18766 ptr += 4;
18767 }
18768 break;
18769
18770 case 't':
18771 /* Byte swap code halfwords. */
18772 while (ptr + 1 < end)
18773 {
18774 tmp = contents[ptr];
18775 contents[ptr] = contents[ptr + 1];
18776 contents[ptr + 1] = tmp;
18777 ptr += 2;
18778 }
18779 break;
18780
18781 case 'd':
18782 /* Leave data alone. */
18783 break;
18784 }
18785 ptr = end;
18786 }
18787 }
18788
18789 free (map);
18790 arm_data->mapcount = -1;
18791 arm_data->mapsize = 0;
18792 arm_data->map = NULL;
18793
18794 return FALSE;
18795}
18796
18797/* Mangle thumb function symbols as we read them in. */
18798
18799static bfd_boolean
18800elf32_arm_swap_symbol_in (bfd * abfd,
18801 const void *psrc,
18802 const void *pshn,
18803 Elf_Internal_Sym *dst)
18804{
18805 Elf_Internal_Shdr *symtab_hdr;
18806 const char *name = NULL;
18807
18808 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18809 return FALSE;
18810 dst->st_target_internal = 0;
18811
18812 /* New EABI objects mark thumb function symbols by setting the low bit of
18813 the address. */
18814 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18815 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18816 {
18817 if (dst->st_value & 1)
18818 {
18819 dst->st_value &= ~(bfd_vma) 1;
18820 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18821 ST_BRANCH_TO_THUMB);
18822 }
18823 else
18824 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18825 }
18826 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18827 {
18828 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18829 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18830 }
18831 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18832 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18833 else
18834 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18835
18836 /* Mark CMSE special symbols. */
18837 symtab_hdr = & elf_symtab_hdr (abfd);
18838 if (symtab_hdr->sh_size)
18839 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18840 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18841 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18842
18843 return TRUE;
18844}
18845
18846
18847/* Mangle thumb function symbols as we write them out. */
18848
18849static void
18850elf32_arm_swap_symbol_out (bfd *abfd,
18851 const Elf_Internal_Sym *src,
18852 void *cdst,
18853 void *shndx)
18854{
18855 Elf_Internal_Sym newsym;
18856
18857 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18858 of the address set, as per the new EABI. We do this unconditionally
18859 because objcopy does not set the elf header flags until after
18860 it writes out the symbol table. */
18861 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18862 {
18863 newsym = *src;
18864 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18865 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18866 if (newsym.st_shndx != SHN_UNDEF)
18867 {
18868 /* Do this only for defined symbols. At link type, the static
18869 linker will simulate the work of dynamic linker of resolving
18870 symbols and will carry over the thumbness of found symbols to
18871 the output symbol table. It's not clear how it happens, but
18872 the thumbness of undefined symbols can well be different at
18873 runtime, and writing '1' for them will be confusing for users
18874 and possibly for dynamic linker itself.
18875 */
18876 newsym.st_value |= 1;
18877 }
18878
18879 src = &newsym;
18880 }
18881 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18882}
18883
18884/* Add the PT_ARM_EXIDX program header. */
18885
18886static bfd_boolean
18887elf32_arm_modify_segment_map (bfd *abfd,
18888 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18889{
18890 struct elf_segment_map *m;
18891 asection *sec;
18892
18893 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18894 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18895 {
18896 /* If there is already a PT_ARM_EXIDX header, then we do not
18897 want to add another one. This situation arises when running
18898 "strip"; the input binary already has the header. */
18899 m = elf_seg_map (abfd);
18900 while (m && m->p_type != PT_ARM_EXIDX)
18901 m = m->next;
18902 if (!m)
18903 {
18904 m = (struct elf_segment_map *)
18905 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18906 if (m == NULL)
18907 return FALSE;
18908 m->p_type = PT_ARM_EXIDX;
18909 m->count = 1;
18910 m->sections[0] = sec;
18911
18912 m->next = elf_seg_map (abfd);
18913 elf_seg_map (abfd) = m;
18914 }
18915 }
18916
18917 return TRUE;
18918}
18919
18920/* We may add a PT_ARM_EXIDX program header. */
18921
18922static int
18923elf32_arm_additional_program_headers (bfd *abfd,
18924 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18925{
18926 asection *sec;
18927
18928 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18929 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18930 return 1;
18931 else
18932 return 0;
18933}
18934
18935/* Hook called by the linker routine which adds symbols from an object
18936 file. */
18937
18938static bfd_boolean
18939elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18940 Elf_Internal_Sym *sym, const char **namep,
18941 flagword *flagsp, asection **secp, bfd_vma *valp)
18942{
18943 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18944 && (abfd->flags & DYNAMIC) == 0
18945 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18946 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18947
18948 if (elf32_arm_hash_table (info) == NULL)
18949 return FALSE;
18950
18951 if (elf32_arm_hash_table (info)->vxworks_p
18952 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18953 flagsp, secp, valp))
18954 return FALSE;
18955
18956 return TRUE;
18957}
18958
18959/* We use this to override swap_symbol_in and swap_symbol_out. */
18960const struct elf_size_info elf32_arm_size_info =
18961{
18962 sizeof (Elf32_External_Ehdr),
18963 sizeof (Elf32_External_Phdr),
18964 sizeof (Elf32_External_Shdr),
18965 sizeof (Elf32_External_Rel),
18966 sizeof (Elf32_External_Rela),
18967 sizeof (Elf32_External_Sym),
18968 sizeof (Elf32_External_Dyn),
18969 sizeof (Elf_External_Note),
18970 4,
18971 1,
18972 32, 2,
18973 ELFCLASS32, EV_CURRENT,
18974 bfd_elf32_write_out_phdrs,
18975 bfd_elf32_write_shdrs_and_ehdr,
18976 bfd_elf32_checksum_contents,
18977 bfd_elf32_write_relocs,
18978 elf32_arm_swap_symbol_in,
18979 elf32_arm_swap_symbol_out,
18980 bfd_elf32_slurp_reloc_table,
18981 bfd_elf32_slurp_symbol_table,
18982 bfd_elf32_swap_dyn_in,
18983 bfd_elf32_swap_dyn_out,
18984 bfd_elf32_swap_reloc_in,
18985 bfd_elf32_swap_reloc_out,
18986 bfd_elf32_swap_reloca_in,
18987 bfd_elf32_swap_reloca_out
18988};
18989
18990static bfd_vma
18991read_code32 (const bfd *abfd, const bfd_byte *addr)
18992{
18993 /* V7 BE8 code is always little endian. */
18994 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18995 return bfd_getl32 (addr);
18996
18997 return bfd_get_32 (abfd, addr);
18998}
18999
19000static bfd_vma
19001read_code16 (const bfd *abfd, const bfd_byte *addr)
19002{
19003 /* V7 BE8 code is always little endian. */
19004 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19005 return bfd_getl16 (addr);
19006
19007 return bfd_get_16 (abfd, addr);
19008}
19009
19010/* Return size of plt0 entry starting at ADDR
19011 or (bfd_vma) -1 if size can not be determined. */
19012
19013static bfd_vma
19014elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19015{
19016 bfd_vma first_word;
19017 bfd_vma plt0_size;
19018
19019 first_word = read_code32 (abfd, addr);
19020
19021 if (first_word == elf32_arm_plt0_entry[0])
19022 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19023 else if (first_word == elf32_thumb2_plt0_entry[0])
19024 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19025 else
19026 /* We don't yet handle this PLT format. */
19027 return (bfd_vma) -1;
19028
19029 return plt0_size;
19030}
19031
19032/* Return size of plt entry starting at offset OFFSET
19033 of plt section located at address START
19034 or (bfd_vma) -1 if size can not be determined. */
19035
19036static bfd_vma
19037elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19038{
19039 bfd_vma first_insn;
19040 bfd_vma plt_size = 0;
19041 const bfd_byte *addr = start + offset;
19042
19043 /* PLT entry size if fixed on Thumb-only platforms. */
19044 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19045 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19046
19047 /* Respect Thumb stub if necessary. */
19048 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19049 {
19050 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19051 }
19052
19053 /* Strip immediate from first add. */
19054 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19055
19056#ifdef FOUR_WORD_PLT
19057 if (first_insn == elf32_arm_plt_entry[0])
19058 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19059#else
19060 if (first_insn == elf32_arm_plt_entry_long[0])
19061 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19062 else if (first_insn == elf32_arm_plt_entry_short[0])
19063 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19064#endif
19065 else
19066 /* We don't yet handle this PLT format. */
19067 return (bfd_vma) -1;
19068
19069 return plt_size;
19070}
19071
19072/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19073
19074static long
19075elf32_arm_get_synthetic_symtab (bfd *abfd,
19076 long symcount ATTRIBUTE_UNUSED,
19077 asymbol **syms ATTRIBUTE_UNUSED,
19078 long dynsymcount,
19079 asymbol **dynsyms,
19080 asymbol **ret)
19081{
19082 asection *relplt;
19083 asymbol *s;
19084 arelent *p;
19085 long count, i, n;
19086 size_t size;
19087 Elf_Internal_Shdr *hdr;
19088 char *names;
19089 asection *plt;
19090 bfd_vma offset;
19091 bfd_byte *data;
19092
19093 *ret = NULL;
19094
19095 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19096 return 0;
19097
19098 if (dynsymcount <= 0)
19099 return 0;
19100
19101 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19102 if (relplt == NULL)
19103 return 0;
19104
19105 hdr = &elf_section_data (relplt)->this_hdr;
19106 if (hdr->sh_link != elf_dynsymtab (abfd)
19107 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19108 return 0;
19109
19110 plt = bfd_get_section_by_name (abfd, ".plt");
19111 if (plt == NULL)
19112 return 0;
19113
19114 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19115 return -1;
19116
19117 data = plt->contents;
19118 if (data == NULL)
19119 {
19120 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19121 return -1;
19122 bfd_cache_section_contents((asection *) plt, data);
19123 }
19124
19125 count = relplt->size / hdr->sh_entsize;
19126 size = count * sizeof (asymbol);
19127 p = relplt->relocation;
19128 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19129 {
19130 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19131 if (p->addend != 0)
19132 size += sizeof ("+0x") - 1 + 8;
19133 }
19134
19135 s = *ret = (asymbol *) bfd_malloc (size);
19136 if (s == NULL)
19137 return -1;
19138
19139 offset = elf32_arm_plt0_size (abfd, data);
19140 if (offset == (bfd_vma) -1)
19141 return -1;
19142
19143 names = (char *) (s + count);
19144 p = relplt->relocation;
19145 n = 0;
19146 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19147 {
19148 size_t len;
19149
19150 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19151 if (plt_size == (bfd_vma) -1)
19152 break;
19153
19154 *s = **p->sym_ptr_ptr;
19155 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19156 we are defining a symbol, ensure one of them is set. */
19157 if ((s->flags & BSF_LOCAL) == 0)
19158 s->flags |= BSF_GLOBAL;
19159 s->flags |= BSF_SYNTHETIC;
19160 s->section = plt;
19161 s->value = offset;
19162 s->name = names;
19163 s->udata.p = NULL;
19164 len = strlen ((*p->sym_ptr_ptr)->name);
19165 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19166 names += len;
19167 if (p->addend != 0)
19168 {
19169 char buf[30], *a;
19170
19171 memcpy (names, "+0x", sizeof ("+0x") - 1);
19172 names += sizeof ("+0x") - 1;
19173 bfd_sprintf_vma (abfd, buf, p->addend);
19174 for (a = buf; *a == '0'; ++a)
19175 ;
19176 len = strlen (a);
19177 memcpy (names, a, len);
19178 names += len;
19179 }
19180 memcpy (names, "@plt", sizeof ("@plt"));
19181 names += sizeof ("@plt");
19182 ++s, ++n;
19183 offset += plt_size;
19184 }
19185
19186 return n;
19187}
19188
19189static bfd_boolean
19190elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19191{
19192 if (hdr->sh_flags & SHF_ARM_PURECODE)
19193 *flags |= SEC_ELF_PURECODE;
19194 return TRUE;
19195}
19196
19197static flagword
19198elf32_arm_lookup_section_flags (char *flag_name)
19199{
19200 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19201 return SHF_ARM_PURECODE;
19202
19203 return SEC_NO_FLAGS;
19204}
19205
19206static unsigned int
19207elf32_arm_count_additional_relocs (asection *sec)
19208{
19209 struct _arm_elf_section_data *arm_data;
19210 arm_data = get_arm_elf_section_data (sec);
19211
19212 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19213}
19214
19215/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19216 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19217 FALSE otherwise. ISECTION is the best guess matching section from the
19218 input bfd IBFD, but it might be NULL. */
19219
19220static bfd_boolean
19221elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19222 bfd *obfd ATTRIBUTE_UNUSED,
19223 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19224 Elf_Internal_Shdr *osection)
19225{
19226 switch (osection->sh_type)
19227 {
19228 case SHT_ARM_EXIDX:
19229 {
19230 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19231 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19232 unsigned i = 0;
19233
19234 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19235 osection->sh_info = 0;
19236
19237 /* The sh_link field must be set to the text section associated with
19238 this index section. Unfortunately the ARM EHABI does not specify
19239 exactly how to determine this association. Our caller does try
19240 to match up OSECTION with its corresponding input section however
19241 so that is a good first guess. */
19242 if (isection != NULL
19243 && osection->bfd_section != NULL
19244 && isection->bfd_section != NULL
19245 && isection->bfd_section->output_section != NULL
19246 && isection->bfd_section->output_section == osection->bfd_section
19247 && iheaders != NULL
19248 && isection->sh_link > 0
19249 && isection->sh_link < elf_numsections (ibfd)
19250 && iheaders[isection->sh_link]->bfd_section != NULL
19251 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19252 )
19253 {
19254 for (i = elf_numsections (obfd); i-- > 0;)
19255 if (oheaders[i]->bfd_section
19256 == iheaders[isection->sh_link]->bfd_section->output_section)
19257 break;
19258 }
19259
19260 if (i == 0)
19261 {
19262 /* Failing that we have to find a matching section ourselves. If
19263 we had the output section name available we could compare that
19264 with input section names. Unfortunately we don't. So instead
19265 we use a simple heuristic and look for the nearest executable
19266 section before this one. */
19267 for (i = elf_numsections (obfd); i-- > 0;)
19268 if (oheaders[i] == osection)
19269 break;
19270 if (i == 0)
19271 break;
19272
19273 while (i-- > 0)
19274 if (oheaders[i]->sh_type == SHT_PROGBITS
19275 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19276 == (SHF_ALLOC | SHF_EXECINSTR))
19277 break;
19278 }
19279
19280 if (i)
19281 {
19282 osection->sh_link = i;
19283 /* If the text section was part of a group
19284 then the index section should be too. */
19285 if (oheaders[i]->sh_flags & SHF_GROUP)
19286 osection->sh_flags |= SHF_GROUP;
19287 return TRUE;
19288 }
19289 }
19290 break;
19291
19292 case SHT_ARM_PREEMPTMAP:
19293 osection->sh_flags = SHF_ALLOC;
19294 break;
19295
19296 case SHT_ARM_ATTRIBUTES:
19297 case SHT_ARM_DEBUGOVERLAY:
19298 case SHT_ARM_OVERLAYSECTION:
19299 default:
19300 break;
19301 }
19302
19303 return FALSE;
19304}
19305
19306/* Returns TRUE if NAME is an ARM mapping symbol.
19307 Traditionally the symbols $a, $d and $t have been used.
19308 The ARM ELF standard also defines $x (for A64 code). It also allows a
19309 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19310 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19311 not support them here. $t.x indicates the start of ThumbEE instructions. */
19312
19313static bfd_boolean
19314is_arm_mapping_symbol (const char * name)
19315{
19316 return name != NULL /* Paranoia. */
19317 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19318 the mapping symbols could have acquired a prefix.
19319 We do not support this here, since such symbols no
19320 longer conform to the ARM ELF ABI. */
19321 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19322 && (name[2] == 0 || name[2] == '.');
19323 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19324 any characters that follow the period are legal characters for the body
19325 of a symbol's name. For now we just assume that this is the case. */
19326}
19327
19328/* Make sure that mapping symbols in object files are not removed via the
19329 "strip --strip-unneeded" tool. These symbols are needed in order to
19330 correctly generate interworking veneers, and for byte swapping code
19331 regions. Once an object file has been linked, it is safe to remove the
19332 symbols as they will no longer be needed. */
19333
19334static void
19335elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19336{
19337 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19338 && sym->section != bfd_abs_section_ptr
19339 && is_arm_mapping_symbol (sym->name))
19340 sym->flags |= BSF_KEEP;
19341}
19342
19343#undef elf_backend_copy_special_section_fields
19344#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19345
19346#define ELF_ARCH bfd_arch_arm
19347#define ELF_TARGET_ID ARM_ELF_DATA
19348#define ELF_MACHINE_CODE EM_ARM
19349#ifdef __QNXTARGET__
19350#define ELF_MAXPAGESIZE 0x1000
19351#else
19352#define ELF_MAXPAGESIZE 0x10000
19353#endif
19354#define ELF_MINPAGESIZE 0x1000
19355#define ELF_COMMONPAGESIZE 0x1000
19356
19357#define bfd_elf32_mkobject elf32_arm_mkobject
19358
19359#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19360#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19361#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19362#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19363#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19364#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19365#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19366#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19367#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19368#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19369#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19370#define bfd_elf32_bfd_final_link elf32_arm_final_link
19371#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19372
19373#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19374#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19375#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19376#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19377#define elf_backend_check_relocs elf32_arm_check_relocs
19378#define elf_backend_update_relocs elf32_arm_update_relocs
19379#define elf_backend_relocate_section elf32_arm_relocate_section
19380#define elf_backend_write_section elf32_arm_write_section
19381#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19382#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19383#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19384#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19385#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19386#define elf_backend_always_size_sections elf32_arm_always_size_sections
19387#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19388#define elf_backend_post_process_headers elf32_arm_post_process_headers
19389#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19390#define elf_backend_object_p elf32_arm_object_p
19391#define elf_backend_fake_sections elf32_arm_fake_sections
19392#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19393#define elf_backend_final_write_processing elf32_arm_final_write_processing
19394#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19395#define elf_backend_size_info elf32_arm_size_info
19396#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19397#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19398#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19399#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19400#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19401#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19402#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19403#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19404
19405#define elf_backend_can_refcount 1
19406#define elf_backend_can_gc_sections 1
19407#define elf_backend_plt_readonly 1
19408#define elf_backend_want_got_plt 1
19409#define elf_backend_want_plt_sym 0
19410#define elf_backend_may_use_rel_p 1
19411#define elf_backend_may_use_rela_p 0
19412#define elf_backend_default_use_rela_p 0
19413
19414#define elf_backend_got_header_size 12
19415#define elf_backend_extern_protected_data 1
19416
19417#undef elf_backend_obj_attrs_vendor
19418#define elf_backend_obj_attrs_vendor "aeabi"
19419#undef elf_backend_obj_attrs_section
19420#define elf_backend_obj_attrs_section ".ARM.attributes"
19421#undef elf_backend_obj_attrs_arg_type
19422#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19423#undef elf_backend_obj_attrs_section_type
19424#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19425#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19426#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19427
19428#undef elf_backend_section_flags
19429#define elf_backend_section_flags elf32_arm_section_flags
19430#undef elf_backend_lookup_section_flags_hook
19431#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19432
19433#include "elf32-target.h"
19434
19435/* Native Client targets. */
19436
19437#undef TARGET_LITTLE_SYM
19438#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19439#undef TARGET_LITTLE_NAME
19440#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19441#undef TARGET_BIG_SYM
19442#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19443#undef TARGET_BIG_NAME
19444#define TARGET_BIG_NAME "elf32-bigarm-nacl"
19445
19446/* Like elf32_arm_link_hash_table_create -- but overrides
19447 appropriately for NaCl. */
19448
19449static struct bfd_link_hash_table *
19450elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19451{
19452 struct bfd_link_hash_table *ret;
19453
19454 ret = elf32_arm_link_hash_table_create (abfd);
19455 if (ret)
19456 {
19457 struct elf32_arm_link_hash_table *htab
19458 = (struct elf32_arm_link_hash_table *) ret;
19459
19460 htab->nacl_p = 1;
19461
19462 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19463 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19464 }
19465 return ret;
19466}
19467
19468/* Since NaCl doesn't use the ARM-specific unwind format, we don't
19469 really need to use elf32_arm_modify_segment_map. But we do it
19470 anyway just to reduce gratuitous differences with the stock ARM backend. */
19471
19472static bfd_boolean
19473elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19474{
19475 return (elf32_arm_modify_segment_map (abfd, info)
19476 && nacl_modify_segment_map (abfd, info));
19477}
19478
19479static void
19480elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19481{
19482 elf32_arm_final_write_processing (abfd, linker);
19483 nacl_final_write_processing (abfd, linker);
19484}
19485
19486static bfd_vma
19487elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19488 const arelent *rel ATTRIBUTE_UNUSED)
19489{
19490 return plt->vma
19491 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19492 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19493}
19494
19495#undef elf32_bed
19496#define elf32_bed elf32_arm_nacl_bed
19497#undef bfd_elf32_bfd_link_hash_table_create
19498#define bfd_elf32_bfd_link_hash_table_create \
19499 elf32_arm_nacl_link_hash_table_create
19500#undef elf_backend_plt_alignment
19501#define elf_backend_plt_alignment 4
19502#undef elf_backend_modify_segment_map
19503#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19504#undef elf_backend_modify_program_headers
19505#define elf_backend_modify_program_headers nacl_modify_program_headers
19506#undef elf_backend_final_write_processing
19507#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19508#undef bfd_elf32_get_synthetic_symtab
19509#undef elf_backend_plt_sym_val
19510#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19511#undef elf_backend_copy_special_section_fields
19512
19513#undef ELF_MINPAGESIZE
19514#undef ELF_COMMONPAGESIZE
19515
19516
19517#include "elf32-target.h"
19518
19519/* Reset to defaults. */
19520#undef elf_backend_plt_alignment
19521#undef elf_backend_modify_segment_map
19522#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19523#undef elf_backend_modify_program_headers
19524#undef elf_backend_final_write_processing
19525#define elf_backend_final_write_processing elf32_arm_final_write_processing
19526#undef ELF_MINPAGESIZE
19527#define ELF_MINPAGESIZE 0x1000
19528#undef ELF_COMMONPAGESIZE
19529#define ELF_COMMONPAGESIZE 0x1000
19530
19531
19532/* VxWorks Targets. */
19533
19534#undef TARGET_LITTLE_SYM
19535#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19536#undef TARGET_LITTLE_NAME
19537#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19538#undef TARGET_BIG_SYM
19539#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19540#undef TARGET_BIG_NAME
19541#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19542
19543/* Like elf32_arm_link_hash_table_create -- but overrides
19544 appropriately for VxWorks. */
19545
19546static struct bfd_link_hash_table *
19547elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19548{
19549 struct bfd_link_hash_table *ret;
19550
19551 ret = elf32_arm_link_hash_table_create (abfd);
19552 if (ret)
19553 {
19554 struct elf32_arm_link_hash_table *htab
19555 = (struct elf32_arm_link_hash_table *) ret;
19556 htab->use_rel = 0;
19557 htab->vxworks_p = 1;
19558 }
19559 return ret;
19560}
19561
19562static void
19563elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19564{
19565 elf32_arm_final_write_processing (abfd, linker);
19566 elf_vxworks_final_write_processing (abfd, linker);
19567}
19568
19569#undef elf32_bed
19570#define elf32_bed elf32_arm_vxworks_bed
19571
19572#undef bfd_elf32_bfd_link_hash_table_create
19573#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19574#undef elf_backend_final_write_processing
19575#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19576#undef elf_backend_emit_relocs
19577#define elf_backend_emit_relocs elf_vxworks_emit_relocs
19578
19579#undef elf_backend_may_use_rel_p
19580#define elf_backend_may_use_rel_p 0
19581#undef elf_backend_may_use_rela_p
19582#define elf_backend_may_use_rela_p 1
19583#undef elf_backend_default_use_rela_p
19584#define elf_backend_default_use_rela_p 1
19585#undef elf_backend_want_plt_sym
19586#define elf_backend_want_plt_sym 1
19587#undef ELF_MAXPAGESIZE
19588#define ELF_MAXPAGESIZE 0x1000
19589
19590#include "elf32-target.h"
19591
19592
19593/* Merge backend specific data from an object file to the output
19594 object file when linking. */
19595
19596static bfd_boolean
19597elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
19598{
19599 flagword out_flags;
19600 flagword in_flags;
19601 bfd_boolean flags_compatible = TRUE;
19602 asection *sec;
19603
19604 /* Check if we have the same endianness. */
19605 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
19606 return FALSE;
19607
19608 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19609 return TRUE;
19610
19611 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
19612 return FALSE;
19613
19614 /* The input BFD must have had its flags initialised. */
19615 /* The following seems bogus to me -- The flags are initialized in
19616 the assembler but I don't think an elf_flags_init field is
19617 written into the object. */
19618 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19619
19620 in_flags = elf_elfheader (ibfd)->e_flags;
19621 out_flags = elf_elfheader (obfd)->e_flags;
19622
19623 /* In theory there is no reason why we couldn't handle this. However
19624 in practice it isn't even close to working and there is no real
19625 reason to want it. */
19626 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19627 && !(ibfd->flags & DYNAMIC)
19628 && (in_flags & EF_ARM_BE8))
19629 {
19630 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19631 ibfd);
19632 return FALSE;
19633 }
19634
19635 if (!elf_flags_init (obfd))
19636 {
19637 /* If the input is the default architecture and had the default
19638 flags then do not bother setting the flags for the output
19639 architecture, instead allow future merges to do this. If no
19640 future merges ever set these flags then they will retain their
19641 uninitialised values, which surprise surprise, correspond
19642 to the default values. */
19643 if (bfd_get_arch_info (ibfd)->the_default
19644 && elf_elfheader (ibfd)->e_flags == 0)
19645 return TRUE;
19646
19647 elf_flags_init (obfd) = TRUE;
19648 elf_elfheader (obfd)->e_flags = in_flags;
19649
19650 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19651 && bfd_get_arch_info (obfd)->the_default)
19652 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19653
19654 return TRUE;
19655 }
19656
19657 /* Determine what should happen if the input ARM architecture
19658 does not match the output ARM architecture. */
19659 if (! bfd_arm_merge_machines (ibfd, obfd))
19660 return FALSE;
19661
19662 /* Identical flags must be compatible. */
19663 if (in_flags == out_flags)
19664 return TRUE;
19665
19666 /* Check to see if the input BFD actually contains any sections. If
19667 not, its flags may not have been initialised either, but it
19668 cannot actually cause any incompatiblity. Do not short-circuit
19669 dynamic objects; their section list may be emptied by
19670 elf_link_add_object_symbols.
19671
19672 Also check to see if there are no code sections in the input.
19673 In this case there is no need to check for code specific flags.
19674 XXX - do we need to worry about floating-point format compatability
19675 in data sections ? */
19676 if (!(ibfd->flags & DYNAMIC))
19677 {
19678 bfd_boolean null_input_bfd = TRUE;
19679 bfd_boolean only_data_sections = TRUE;
19680
19681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19682 {
19683 /* Ignore synthetic glue sections. */
19684 if (strcmp (sec->name, ".glue_7")
19685 && strcmp (sec->name, ".glue_7t"))
19686 {
19687 if ((bfd_get_section_flags (ibfd, sec)
19688 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19689 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19690 only_data_sections = FALSE;
19691
19692 null_input_bfd = FALSE;
19693 break;
19694 }
19695 }
19696
19697 if (null_input_bfd || only_data_sections)
19698 return TRUE;
19699 }
19700
19701 /* Complain about various flag mismatches. */
19702 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19703 EF_ARM_EABI_VERSION (out_flags)))
19704 {
19705 _bfd_error_handler
19706 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19707 ibfd, obfd,
19708 (in_flags & EF_ARM_EABIMASK) >> 24,
19709 (out_flags & EF_ARM_EABIMASK) >> 24);
19710 return FALSE;
19711 }
19712
19713 /* Not sure what needs to be checked for EABI versions >= 1. */
19714 /* VxWorks libraries do not use these flags. */
19715 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19716 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19717 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19718 {
19719 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19720 {
19721 _bfd_error_handler
19722 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19723 ibfd, obfd,
19724 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19725 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19726 flags_compatible = FALSE;
19727 }
19728
19729 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19730 {
19731 if (in_flags & EF_ARM_APCS_FLOAT)
19732 _bfd_error_handler
19733 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19734 ibfd, obfd);
19735 else
19736 _bfd_error_handler
19737 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19738 ibfd, obfd);
19739
19740 flags_compatible = FALSE;
19741 }
19742
19743 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19744 {
19745 if (in_flags & EF_ARM_VFP_FLOAT)
19746 _bfd_error_handler
19747 (_("error: %B uses VFP instructions, whereas %B does not"),
19748 ibfd, obfd);
19749 else
19750 _bfd_error_handler
19751 (_("error: %B uses FPA instructions, whereas %B does not"),
19752 ibfd, obfd);
19753
19754 flags_compatible = FALSE;
19755 }
19756
19757 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19758 {
19759 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19760 _bfd_error_handler
19761 (_("error: %B uses Maverick instructions, whereas %B does not"),
19762 ibfd, obfd);
19763 else
19764 _bfd_error_handler
19765 (_("error: %B does not use Maverick instructions, whereas %B does"),
19766 ibfd, obfd);
19767
19768 flags_compatible = FALSE;
19769 }
19770
19771#ifdef EF_ARM_SOFT_FLOAT
19772 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19773 {
19774 /* We can allow interworking between code that is VFP format
19775 layout, and uses either soft float or integer regs for
19776 passing floating point arguments and results. We already
19777 know that the APCS_FLOAT flags match; similarly for VFP
19778 flags. */
19779 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19780 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19781 {
19782 if (in_flags & EF_ARM_SOFT_FLOAT)
19783 _bfd_error_handler
19784 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19785 ibfd, obfd);
19786 else
19787 _bfd_error_handler
19788 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19789 ibfd, obfd);
19790
19791 flags_compatible = FALSE;
19792 }
19793 }
19794#endif
19795
19796 /* Interworking mismatch is only a warning. */
19797 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19798 {
19799 if (in_flags & EF_ARM_INTERWORK)
19800 {
19801 _bfd_error_handler
19802 (_("Warning: %B supports interworking, whereas %B does not"),
19803 ibfd, obfd);
19804 }
19805 else
19806 {
19807 _bfd_error_handler
19808 (_("Warning: %B does not support interworking, whereas %B does"),
19809 ibfd, obfd);
19810 }
19811 }
19812 }
19813
19814 return flags_compatible;
19815}
19816
19817
19818/* Symbian OS Targets. */
19819
19820#undef TARGET_LITTLE_SYM
19821#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19822#undef TARGET_LITTLE_NAME
19823#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19824#undef TARGET_BIG_SYM
19825#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19826#undef TARGET_BIG_NAME
19827#define TARGET_BIG_NAME "elf32-bigarm-symbian"
19828
19829/* Like elf32_arm_link_hash_table_create -- but overrides
19830 appropriately for Symbian OS. */
19831
19832static struct bfd_link_hash_table *
19833elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19834{
19835 struct bfd_link_hash_table *ret;
19836
19837 ret = elf32_arm_link_hash_table_create (abfd);
19838 if (ret)
19839 {
19840 struct elf32_arm_link_hash_table *htab
19841 = (struct elf32_arm_link_hash_table *)ret;
19842 /* There is no PLT header for Symbian OS. */
19843 htab->plt_header_size = 0;
19844 /* The PLT entries are each one instruction and one word. */
19845 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19846 htab->symbian_p = 1;
19847 /* Symbian uses armv5t or above, so use_blx is always true. */
19848 htab->use_blx = 1;
19849 htab->root.is_relocatable_executable = 1;
19850 }
19851 return ret;
19852}
19853
19854static const struct bfd_elf_special_section
19855elf32_arm_symbian_special_sections[] =
19856{
19857 /* In a BPABI executable, the dynamic linking sections do not go in
19858 the loadable read-only segment. The post-linker may wish to
19859 refer to these sections, but they are not part of the final
19860 program image. */
19861 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19862 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19863 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19864 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19865 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19866 /* These sections do not need to be writable as the SymbianOS
19867 postlinker will arrange things so that no dynamic relocation is
19868 required. */
19869 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19870 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19871 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19872 { NULL, 0, 0, 0, 0 }
19873};
19874
19875static void
19876elf32_arm_symbian_begin_write_processing (bfd *abfd,
19877 struct bfd_link_info *link_info)
19878{
19879 /* BPABI objects are never loaded directly by an OS kernel; they are
19880 processed by a postlinker first, into an OS-specific format. If
19881 the D_PAGED bit is set on the file, BFD will align segments on
19882 page boundaries, so that an OS can directly map the file. With
19883 BPABI objects, that just results in wasted space. In addition,
19884 because we clear the D_PAGED bit, map_sections_to_segments will
19885 recognize that the program headers should not be mapped into any
19886 loadable segment. */
19887 abfd->flags &= ~D_PAGED;
19888 elf32_arm_begin_write_processing (abfd, link_info);
19889}
19890
19891static bfd_boolean
19892elf32_arm_symbian_modify_segment_map (bfd *abfd,
19893 struct bfd_link_info *info)
19894{
19895 struct elf_segment_map *m;
19896 asection *dynsec;
19897
19898 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19899 segment. However, because the .dynamic section is not marked
19900 with SEC_LOAD, the generic ELF code will not create such a
19901 segment. */
19902 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19903 if (dynsec)
19904 {
19905 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19906 if (m->p_type == PT_DYNAMIC)
19907 break;
19908
19909 if (m == NULL)
19910 {
19911 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19912 m->next = elf_seg_map (abfd);
19913 elf_seg_map (abfd) = m;
19914 }
19915 }
19916
19917 /* Also call the generic arm routine. */
19918 return elf32_arm_modify_segment_map (abfd, info);
19919}
19920
19921/* Return address for Ith PLT stub in section PLT, for relocation REL
19922 or (bfd_vma) -1 if it should not be included. */
19923
19924static bfd_vma
19925elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19926 const arelent *rel ATTRIBUTE_UNUSED)
19927{
19928 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19929}
19930
19931#undef elf32_bed
19932#define elf32_bed elf32_arm_symbian_bed
19933
19934/* The dynamic sections are not allocated on SymbianOS; the postlinker
19935 will process them and then discard them. */
19936#undef ELF_DYNAMIC_SEC_FLAGS
19937#define ELF_DYNAMIC_SEC_FLAGS \
19938 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19939
19940#undef elf_backend_emit_relocs
19941
19942#undef bfd_elf32_bfd_link_hash_table_create
19943#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19944#undef elf_backend_special_sections
19945#define elf_backend_special_sections elf32_arm_symbian_special_sections
19946#undef elf_backend_begin_write_processing
19947#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19948#undef elf_backend_final_write_processing
19949#define elf_backend_final_write_processing elf32_arm_final_write_processing
19950
19951#undef elf_backend_modify_segment_map
19952#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19953
19954/* There is no .got section for BPABI objects, and hence no header. */
19955#undef elf_backend_got_header_size
19956#define elf_backend_got_header_size 0
19957
19958/* Similarly, there is no .got.plt section. */
19959#undef elf_backend_want_got_plt
19960#define elf_backend_want_got_plt 0
19961
19962#undef elf_backend_plt_sym_val
19963#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19964
19965#undef elf_backend_may_use_rel_p
19966#define elf_backend_may_use_rel_p 1
19967#undef elf_backend_may_use_rela_p
19968#define elf_backend_may_use_rela_p 0
19969#undef elf_backend_default_use_rela_p
19970#define elf_backend_default_use_rela_p 0
19971#undef elf_backend_want_plt_sym
19972#define elf_backend_want_plt_sym 0
19973#undef ELF_MAXPAGESIZE
19974#define ELF_MAXPAGESIZE 0x8000
19975
19976#include "elf32-target.h"
This page took 0.103036 seconds and 4 git commands to generate.