Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
... / ...
CommitLineData
1/* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include <limits.h>
23
24#include "bfd.h"
25#include "libiberty.h"
26#include "libbfd.h"
27#include "elf-bfd.h"
28#include "elf-nacl.h"
29#include "elf-vxworks.h"
30#include "elf/arm.h"
31
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58#define elf_info_to_howto NULL
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64/* The Adjusted Place, as defined by AAELF. */
65#define Pa(X) ((X) & 0xfffffffc)
66
67static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
69 asection *sec,
70 bfd_byte *contents);
71
72/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
74 in that slot. */
75
76static reloc_howto_type elf32_arm_howto_table_1[] =
77{
78 /* No relocation. */
79 HOWTO (R_ARM_NONE, /* type */
80 0, /* rightshift */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
82 0, /* bitsize */
83 FALSE, /* pc_relative */
84 0, /* bitpos */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
89 0, /* src_mask */
90 0, /* dst_mask */
91 FALSE), /* pcrel_offset */
92
93 HOWTO (R_ARM_PC24, /* type */
94 2, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 24, /* bitsize */
97 TRUE, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
106
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 32, /* bitsize */
112 FALSE, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
121
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
124 0, /* rightshift */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
126 32, /* bitsize */
127 TRUE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
136
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* rightshift */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
141 32, /* bitsize */
142 TRUE, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
151
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
154 0, /* rightshift */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
156 16, /* bitsize */
157 FALSE, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
166
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
169 0, /* rightshift */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
171 12, /* bitsize */
172 FALSE, /* pc_relative */
173 0, /* bitpos */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
181
182 HOWTO (R_ARM_THM_ABS5, /* type */
183 6, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 5, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* 8 bit absolute */
197 HOWTO (R_ARM_ABS8, /* type */
198 0, /* rightshift */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
200 8, /* bitsize */
201 FALSE, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210
211 HOWTO (R_ARM_SBREL32, /* type */
212 0, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 32, /* bitsize */
215 FALSE, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
224
225 HOWTO (R_ARM_THM_CALL, /* type */
226 1, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 24, /* bitsize */
229 TRUE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
238
239 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* rightshift */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
242 8, /* bitsize */
243 TRUE, /* pc_relative */
244 0, /* bitpos */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
252
253 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* rightshift */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 HOWTO (R_ARM_TLS_DESC, /* type */
268 0, /* rightshift */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
270 32, /* bitsize */
271 FALSE, /* pc_relative */
272 0, /* bitpos */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
280
281 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* rightshift */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
284 0, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
297 2, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 24, /* bitsize */
300 TRUE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
309
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* rightshift */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
314 24, /* bitsize */
315 TRUE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
324
325 /* Dynamic TLS relocations. */
326
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* Relocs used in ARM Linux */
370
371 HOWTO (R_ARM_COPY, /* type */
372 0, /* rightshift */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
374 32, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 HOWTO (R_ARM_GLOB_DAT, /* type */
386 0, /* rightshift */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
388 32, /* bitsize */
389 FALSE, /* pc_relative */
390 0, /* bitpos */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
398
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 0, /* rightshift */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
402 32, /* bitsize */
403 FALSE, /* pc_relative */
404 0, /* bitpos */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
412
413 HOWTO (R_ARM_RELATIVE, /* type */
414 0, /* rightshift */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
416 32, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 HOWTO (R_ARM_GOTOFF32, /* type */
428 0, /* rightshift */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
430 32, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 HOWTO (R_ARM_GOTPC, /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 HOWTO (R_ARM_GOT32, /* type */
456 0, /* rightshift */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
458 32, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 HOWTO (R_ARM_PLT32, /* type */
470 2, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 24, /* bitsize */
473 TRUE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
482
483 HOWTO (R_ARM_CALL, /* type */
484 2, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 24, /* bitsize */
487 TRUE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
496
497 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 24, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 HOWTO (R_ARM_THM_JUMP24, /* type */
512 1, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 24, /* bitsize */
515 TRUE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
524
525 HOWTO (R_ARM_BASE_ABS, /* type */
526 0, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 32, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 0, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 12, /* bitsize */
543 TRUE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
552
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 0, /* rightshift */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
556 12, /* bitsize */
557 TRUE, /* pc_relative */
558 8, /* bitpos */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
566
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 0, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 12, /* bitsize */
571 TRUE, /* pc_relative */
572 16, /* bitpos */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 12, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 8, /* bitsize */
599 FALSE, /* pc_relative */
600 12, /* bitpos */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
608
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 0, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 8, /* bitsize */
613 FALSE, /* pc_relative */
614 20, /* bitpos */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 HOWTO (R_ARM_TARGET1, /* type */
624 0, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 32, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 HOWTO (R_ARM_ROSEGREL32, /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 32, /* bitsize */
641 FALSE, /* pc_relative */
642 0, /* bitpos */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 HOWTO (R_ARM_V4BX, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 32, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 HOWTO (R_ARM_TARGET2, /* type */
666 0, /* rightshift */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
668 32, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
678
679 HOWTO (R_ARM_PREL31, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 31, /* bitsize */
683 TRUE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
692
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 0, /* rightshift */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 HOWTO (R_ARM_MOVT_ABS, /* type */
708 0, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 HOWTO (R_ARM_MOVT_PREL, /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 0, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 16, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 0, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
804
805 HOWTO (R_ARM_THM_JUMP19, /* type */
806 1, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 19, /* bitsize */
809 TRUE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
818
819 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 6, /* bitsize */
823 TRUE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
832
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 versa. */
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 0, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 13, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
850 HOWTO (R_ARM_THM_PC12, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 13, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 HOWTO (R_ARM_ABS32_NOI, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 FALSE, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
877
878 HOWTO (R_ARM_REL32_NOI, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 32, /* bitsize */
882 TRUE, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
891
892 /* Group relocations. */
893
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 0, /* rightshift */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
897 32, /* bitsize */
898 TRUE, /* pc_relative */
899 0, /* bitpos */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
907
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 0, /* rightshift */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
911 32, /* bitsize */
912 TRUE, /* pc_relative */
913 0, /* bitpos */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
921
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 0, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 32, /* bitsize */
926 TRUE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
935
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 0, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 32, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 32, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 0, /* rightshift */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
967 32, /* bitsize */
968 TRUE, /* pc_relative */
969 0, /* bitpos */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
977
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 32, /* bitsize */
982 TRUE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
991
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 0, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 32, /* bitsize */
996 TRUE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1005
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 32, /* bitsize */
1010 TRUE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1019
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 32, /* bitsize */
1024 TRUE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1033
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 0, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 32, /* bitsize */
1038 TRUE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1047
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 TRUE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1061
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 0, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 32, /* bitsize */
1066 TRUE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1075
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 32, /* bitsize */
1080 TRUE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1089
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 0, /* rightshift */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 32, /* bitsize */
1094 TRUE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1103
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 32, /* bitsize */
1108 TRUE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1117
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 0, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 32, /* bitsize */
1122 TRUE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1131
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 0, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 32, /* bitsize */
1136 TRUE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1145
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 32, /* bitsize */
1150 TRUE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1159
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 0, /* rightshift */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 32, /* bitsize */
1164 TRUE, /* pc_relative */
1165 0, /* bitpos */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1173
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 0, /* rightshift */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 32, /* bitsize */
1178 TRUE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1187
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 0, /* rightshift */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 32, /* bitsize */
1192 TRUE, /* pc_relative */
1193 0, /* bitpos */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1201
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 0, /* rightshift */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 32, /* bitsize */
1206 TRUE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1215
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 0, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 32, /* bitsize */
1220 TRUE, /* pc_relative */
1221 0, /* bitpos */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1229
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 0, /* rightshift */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 32, /* bitsize */
1234 TRUE, /* pc_relative */
1235 0, /* bitpos */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1243
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 32, /* bitsize */
1248 TRUE, /* pc_relative */
1249 0, /* bitpos */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1257
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 0, /* rightshift */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 32, /* bitsize */
1262 TRUE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1271
1272 /* End of group relocations. */
1273
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 0, /* rightshift */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 0, /* rightshift */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 16, /* bitsize */
1320 FALSE, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1329
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 0, /* rightshift */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 24, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 0, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 24, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 32, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 32, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1443 0, /* rightshift */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1445 32, /* bitsize */
1446 TRUE, /* pc_relative */
1447 0, /* bitpos */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1455
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1457 0, /* rightshift */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1459 12, /* bitsize */
1460 FALSE, /* pc_relative */
1461 0, /* bitpos */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1469
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1471 0, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 12, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1485
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1488 0, /* rightshift */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 0, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1497 0, /* src_mask */
1498 0, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 0, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1512 0, /* src_mask */
1513 0, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1517 1, /* rightshift */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1519 11, /* bitsize */
1520 TRUE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1529
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1531 1, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 8, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 32, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 32, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 32, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1602 0, /* rightshift */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1604 32, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1616 0, /* rightshift */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1618 12, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1630 0, /* rightshift */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1632 12, /* bitsize */
1633 FALSE, /* pc_relative */
1634 0, /* bitpos */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1642
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1644 0, /* rightshift */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1646 12, /* bitsize */
1647 FALSE, /* pc_relative */
1648 0, /* bitpos */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1656
1657 /* 112-127 private relocations. */
1658 EMPTY_HOWTO (112),
1659 EMPTY_HOWTO (113),
1660 EMPTY_HOWTO (114),
1661 EMPTY_HOWTO (115),
1662 EMPTY_HOWTO (116),
1663 EMPTY_HOWTO (117),
1664 EMPTY_HOWTO (118),
1665 EMPTY_HOWTO (119),
1666 EMPTY_HOWTO (120),
1667 EMPTY_HOWTO (121),
1668 EMPTY_HOWTO (122),
1669 EMPTY_HOWTO (123),
1670 EMPTY_HOWTO (124),
1671 EMPTY_HOWTO (125),
1672 EMPTY_HOWTO (126),
1673 EMPTY_HOWTO (127),
1674
1675 /* R_ARM_ME_TOO, obsolete. */
1676 EMPTY_HOWTO (128),
1677
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1679 0, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 0, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691 EMPTY_HOWTO (130),
1692 EMPTY_HOWTO (131),
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1696 16, /* bitsize. */
1697 FALSE, /* pc_relative. */
1698 0, /* bitpos. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1709 16, /* bitsize. */
1710 FALSE, /* pc_relative. */
1711 0, /* bitpos. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1722 16, /* bitsize. */
1723 FALSE, /* pc_relative. */
1724 0, /* bitpos. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1735 16, /* bitsize. */
1736 FALSE, /* pc_relative. */
1737 0, /* bitpos. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1749 16, /* bitsize. */
1750 TRUE, /* pc_relative. */
1751 0, /* bitpos. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1762 12, /* bitsize. */
1763 TRUE, /* pc_relative. */
1764 0, /* bitpos. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1775 18, /* bitsize. */
1776 TRUE, /* pc_relative. */
1777 0, /* bitpos. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1785};
1786
1787/* 160 onwards: */
1788static reloc_howto_type elf32_arm_howto_table_2[8] =
1789{
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 32, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 64, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1856 0, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 32, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 32, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1878 0, /* src_mask */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1882 0, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 32, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1891 0, /* src_mask */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894};
1895
1896/* 249-255 extended, currently unused, relocations: */
1897static reloc_howto_type elf32_arm_howto_table_3[4] =
1898{
1899 HOWTO (R_ARM_RREL32, /* type */
1900 0, /* rightshift */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1902 0, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1909 0, /* src_mask */
1910 0, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 HOWTO (R_ARM_RABS32, /* type */
1914 0, /* rightshift */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1916 0, /* bitsize */
1917 FALSE, /* pc_relative */
1918 0, /* bitpos */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1923 0, /* src_mask */
1924 0, /* dst_mask */
1925 FALSE), /* pcrel_offset */
1926
1927 HOWTO (R_ARM_RPC24, /* type */
1928 0, /* rightshift */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1930 0, /* bitsize */
1931 FALSE, /* pc_relative */
1932 0, /* bitpos */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1937 0, /* src_mask */
1938 0, /* dst_mask */
1939 FALSE), /* pcrel_offset */
1940
1941 HOWTO (R_ARM_RBASE, /* type */
1942 0, /* rightshift */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1944 0, /* bitsize */
1945 FALSE, /* pc_relative */
1946 0, /* bitpos */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1951 0, /* src_mask */
1952 0, /* dst_mask */
1953 FALSE) /* pcrel_offset */
1954};
1955
1956static reloc_howto_type *
1957elf32_arm_howto_from_type (unsigned int r_type)
1958{
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1961
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1965
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1969
1970 return NULL;
1971}
1972
1973static bfd_boolean
1974elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1976{
1977 unsigned int r_type;
1978
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1981 {
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1984 abfd, r_type);
1985 bfd_set_error (bfd_error_bad_value);
1986 return FALSE;
1987 }
1988 return TRUE;
1989}
1990
1991struct elf32_arm_reloc_map
1992 {
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1995 };
1996
1997/* All entries in this list must also be present in elf32_arm_howto_table. */
1998static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1999 {
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2100 };
2101
2102static reloc_howto_type *
2103elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2105{
2106 unsigned int i;
2107
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2111
2112 return NULL;
2113}
2114
2115static reloc_howto_type *
2116elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2117 const char *r_name)
2118{
2119 unsigned int i;
2120
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2125
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2130
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2135
2136 return NULL;
2137}
2138
2139/* Support for core dump NOTE sections. */
2140
2141static bfd_boolean
2142elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2143{
2144 int offset;
2145 size_t size;
2146
2147 switch (note->descsz)
2148 {
2149 default:
2150 return FALSE;
2151
2152 case 148: /* Linux/ARM 32-bit. */
2153 /* pr_cursig */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2155
2156 /* pr_pid */
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2158
2159 /* pr_reg */
2160 offset = 72;
2161 size = 72;
2162
2163 break;
2164 }
2165
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2169}
2170
2171static bfd_boolean
2172elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2173{
2174 switch (note->descsz)
2175 {
2176 default:
2177 return FALSE;
2178
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2186 }
2187
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2191 {
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2194
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2197 }
2198
2199 return TRUE;
2200}
2201
2202static char *
2203elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2204 int note_type, ...)
2205{
2206 switch (note_type)
2207 {
2208 default:
2209 return NULL;
2210
2211 case NT_PRPSINFO:
2212 {
2213 char data[124] ATTRIBUTE_NONSTRING;
2214 va_list ap;
2215
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219#if GCC_VERSION == 8000 || GCC_VERSION == 8001
2220 DIAGNOSTIC_PUSH;
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2224 */
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2226#endif
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228#if GCC_VERSION == 8000 || GCC_VERSION == 8001
2229 DIAGNOSTIC_POP;
2230#endif
2231 va_end (ap);
2232
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2235 }
2236
2237 case NT_PRSTATUS:
2238 {
2239 char data[148];
2240 va_list ap;
2241 long pid;
2242 int cursig;
2243 const void *greg;
2244
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2253 va_end (ap);
2254
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2257 }
2258 }
2259}
2260
2261#define TARGET_LITTLE_SYM arm_elf32_le_vec
2262#define TARGET_LITTLE_NAME "elf32-littlearm"
2263#define TARGET_BIG_SYM arm_elf32_be_vec
2264#define TARGET_BIG_NAME "elf32-bigarm"
2265
2266#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2269
2270typedef unsigned long int insn32;
2271typedef unsigned short int insn16;
2272
2273/* In lieu of proper flags, assume all EABIv4 or later objects are
2274 interworkable. */
2275#define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2279
2280/* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2286
2287#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2289
2290#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2292
2293#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2295
2296#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2298
2299#define STUB_ENTRY_NAME "__%s_veneer"
2300
2301#define CMSE_PREFIX "__acle_se_"
2302
2303#define CMSE_STUB_NAME ".gnu.sgstubs"
2304
2305/* The name of the dynamic interpreter. This is put in the .interp
2306 section. */
2307#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2308
2309/* FDPIC default stack size. */
2310#define DEFAULT_STACK_SIZE 0x8000
2311
2312static const unsigned long tls_trampoline [] =
2313{
2314 0xe08e0000, /* add r0, lr, r0 */
2315 0xe5901004, /* ldr r1, [r0,#4] */
2316 0xe12fff11, /* bx r1 */
2317};
2318
2319static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2320{
2321 0xe52d2004, /* push {r2} */
2322 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2323 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2324 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2325 0xe081100f, /* 2: add r1, pc */
2326 0xe12fff12, /* bx r2 */
2327 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2328 + dl_tlsdesc_lazy_resolver(GOT) */
2329 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2330};
2331
2332/* NOTE: [Thumb nop sequence]
2333 When adding code that transitions from Thumb to Arm the instruction that
2334 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2335 a nop for performance reasons. */
2336
2337/* ARM FDPIC PLT entry. */
2338/* The last 5 words contain PLT lazy fragment code and data. */
2339static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2340 {
2341 0xe59fc008, /* ldr r12, .L1 */
2342 0xe08cc009, /* add r12, r12, r9 */
2343 0xe59c9004, /* ldr r9, [r12, #4] */
2344 0xe59cf000, /* ldr pc, [r12] */
2345 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2346 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2347 0xe51fc00c, /* ldr r12, [pc, #-12] */
2348 0xe92d1000, /* push {r12} */
2349 0xe599c004, /* ldr r12, [r9, #4] */
2350 0xe599f000, /* ldr pc, [r9] */
2351 };
2352
2353/* Thumb FDPIC PLT entry. */
2354/* The last 5 words contain PLT lazy fragment code and data. */
2355static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2356 {
2357 0xc00cf8df, /* ldr.w r12, .L1 */
2358 0x0c09eb0c, /* add.w r12, r12, r9 */
2359 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2360 0xf000f8dc, /* ldr.w pc, [r12] */
2361 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2362 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2363 0xc008f85f, /* ldr.w r12, .L2 */
2364 0xcd04f84d, /* push {r12} */
2365 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2366 0xf000f8d9, /* ldr.w pc, [r9] */
2367 };
2368
2369#ifdef FOUR_WORD_PLT
2370
2371/* The first entry in a procedure linkage table looks like
2372 this. It is set up so that any shared library function that is
2373 called before the relocation has been set up calls the dynamic
2374 linker first. */
2375static const bfd_vma elf32_arm_plt0_entry [] =
2376{
2377 0xe52de004, /* str lr, [sp, #-4]! */
2378 0xe59fe010, /* ldr lr, [pc, #16] */
2379 0xe08fe00e, /* add lr, pc, lr */
2380 0xe5bef008, /* ldr pc, [lr, #8]! */
2381};
2382
2383/* Subsequent entries in a procedure linkage table look like
2384 this. */
2385static const bfd_vma elf32_arm_plt_entry [] =
2386{
2387 0xe28fc600, /* add ip, pc, #NN */
2388 0xe28cca00, /* add ip, ip, #NN */
2389 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2390 0x00000000, /* unused */
2391};
2392
2393#else /* not FOUR_WORD_PLT */
2394
2395/* The first entry in a procedure linkage table looks like
2396 this. It is set up so that any shared library function that is
2397 called before the relocation has been set up calls the dynamic
2398 linker first. */
2399static const bfd_vma elf32_arm_plt0_entry [] =
2400{
2401 0xe52de004, /* str lr, [sp, #-4]! */
2402 0xe59fe004, /* ldr lr, [pc, #4] */
2403 0xe08fe00e, /* add lr, pc, lr */
2404 0xe5bef008, /* ldr pc, [lr, #8]! */
2405 0x00000000, /* &GOT[0] - . */
2406};
2407
2408/* By default subsequent entries in a procedure linkage table look like
2409 this. Offsets that don't fit into 28 bits will cause link error. */
2410static const bfd_vma elf32_arm_plt_entry_short [] =
2411{
2412 0xe28fc600, /* add ip, pc, #0xNN00000 */
2413 0xe28cca00, /* add ip, ip, #0xNN000 */
2414 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2415};
2416
2417/* When explicitly asked, we'll use this "long" entry format
2418 which can cope with arbitrary displacements. */
2419static const bfd_vma elf32_arm_plt_entry_long [] =
2420{
2421 0xe28fc200, /* add ip, pc, #0xN0000000 */
2422 0xe28cc600, /* add ip, ip, #0xNN00000 */
2423 0xe28cca00, /* add ip, ip, #0xNN000 */
2424 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2425};
2426
2427static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2428
2429#endif /* not FOUR_WORD_PLT */
2430
2431/* The first entry in a procedure linkage table looks like this.
2432 It is set up so that any shared library function that is called before the
2433 relocation has been set up calls the dynamic linker first. */
2434static const bfd_vma elf32_thumb2_plt0_entry [] =
2435{
2436 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2437 an instruction maybe encoded to one or two array elements. */
2438 0xf8dfb500, /* push {lr} */
2439 0x44fee008, /* ldr.w lr, [pc, #8] */
2440 /* add lr, pc */
2441 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2442 0x00000000, /* &GOT[0] - . */
2443};
2444
2445/* Subsequent entries in a procedure linkage table for thumb only target
2446 look like this. */
2447static const bfd_vma elf32_thumb2_plt_entry [] =
2448{
2449 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2450 an instruction maybe encoded to one or two array elements. */
2451 0x0c00f240, /* movw ip, #0xNNNN */
2452 0x0c00f2c0, /* movt ip, #0xNNNN */
2453 0xf8dc44fc, /* add ip, pc */
2454 0xe7fdf000 /* ldr.w pc, [ip] */
2455 /* b .-2 */
2456};
2457
2458/* The format of the first entry in the procedure linkage table
2459 for a VxWorks executable. */
2460static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2461{
2462 0xe52dc008, /* str ip,[sp,#-8]! */
2463 0xe59fc000, /* ldr ip,[pc] */
2464 0xe59cf008, /* ldr pc,[ip,#8] */
2465 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2466};
2467
2468/* The format of subsequent entries in a VxWorks executable. */
2469static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2470{
2471 0xe59fc000, /* ldr ip,[pc] */
2472 0xe59cf000, /* ldr pc,[ip] */
2473 0x00000000, /* .long @got */
2474 0xe59fc000, /* ldr ip,[pc] */
2475 0xea000000, /* b _PLT */
2476 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2477};
2478
2479/* The format of entries in a VxWorks shared library. */
2480static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2481{
2482 0xe59fc000, /* ldr ip,[pc] */
2483 0xe79cf009, /* ldr pc,[ip,r9] */
2484 0x00000000, /* .long @got */
2485 0xe59fc000, /* ldr ip,[pc] */
2486 0xe599f008, /* ldr pc,[r9,#8] */
2487 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2488};
2489
2490/* An initial stub used if the PLT entry is referenced from Thumb code. */
2491#define PLT_THUMB_STUB_SIZE 4
2492static const bfd_vma elf32_arm_plt_thumb_stub [] =
2493{
2494 0x4778, /* bx pc */
2495 0xe7fd /* b .-2 */
2496};
2497
2498/* The entries in a PLT when using a DLL-based target with multiple
2499 address spaces. */
2500static const bfd_vma elf32_arm_symbian_plt_entry [] =
2501{
2502 0xe51ff004, /* ldr pc, [pc, #-4] */
2503 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2504};
2505
2506/* The first entry in a procedure linkage table looks like
2507 this. It is set up so that any shared library function that is
2508 called before the relocation has been set up calls the dynamic
2509 linker first. */
2510static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2511{
2512 /* First bundle: */
2513 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2514 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2515 0xe08cc00f, /* add ip, ip, pc */
2516 0xe52dc008, /* str ip, [sp, #-8]! */
2517 /* Second bundle: */
2518 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2519 0xe59cc000, /* ldr ip, [ip] */
2520 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2521 0xe12fff1c, /* bx ip */
2522 /* Third bundle: */
2523 0xe320f000, /* nop */
2524 0xe320f000, /* nop */
2525 0xe320f000, /* nop */
2526 /* .Lplt_tail: */
2527 0xe50dc004, /* str ip, [sp, #-4] */
2528 /* Fourth bundle: */
2529 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2530 0xe59cc000, /* ldr ip, [ip] */
2531 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2532 0xe12fff1c, /* bx ip */
2533};
2534#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2535
2536/* Subsequent entries in a procedure linkage table look like this. */
2537static const bfd_vma elf32_arm_nacl_plt_entry [] =
2538{
2539 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2540 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2541 0xe08cc00f, /* add ip, ip, pc */
2542 0xea000000, /* b .Lplt_tail */
2543};
2544
2545#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2546#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2547#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2548#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2549#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2550#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2551#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2552#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2553
2554enum stub_insn_type
2555{
2556 THUMB16_TYPE = 1,
2557 THUMB32_TYPE,
2558 ARM_TYPE,
2559 DATA_TYPE
2560};
2561
2562#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2563/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2564 is inserted in arm_build_one_stub(). */
2565#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2566#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2567#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2568#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2569#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2570#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2571#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2572#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2573
2574typedef struct
2575{
2576 bfd_vma data;
2577 enum stub_insn_type type;
2578 unsigned int r_type;
2579 int reloc_addend;
2580} insn_sequence;
2581
2582/* See note [Thumb nop sequence] when adding a veneer. */
2583
2584/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2585 to reach the stub if necessary. */
2586static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2587{
2588 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2589 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2590};
2591
2592/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2593 available. */
2594static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2595{
2596 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2597 ARM_INSN (0xe12fff1c), /* bx ip */
2598 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2599};
2600
2601/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2602static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2603{
2604 THUMB16_INSN (0xb401), /* push {r0} */
2605 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2606 THUMB16_INSN (0x4684), /* mov ip, r0 */
2607 THUMB16_INSN (0xbc01), /* pop {r0} */
2608 THUMB16_INSN (0x4760), /* bx ip */
2609 THUMB16_INSN (0xbf00), /* nop */
2610 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2611};
2612
2613/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2614static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2615{
2616 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2617 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2618};
2619
2620/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2621 M-profile architectures. */
2622static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2623{
2624 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2625 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2626 THUMB16_INSN (0x4760), /* bx ip */
2627};
2628
2629/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2630 allowed. */
2631static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2632{
2633 THUMB16_INSN (0x4778), /* bx pc */
2634 THUMB16_INSN (0xe7fd), /* b .-2 */
2635 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2636 ARM_INSN (0xe12fff1c), /* bx ip */
2637 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2638};
2639
2640/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2641 available. */
2642static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2643{
2644 THUMB16_INSN (0x4778), /* bx pc */
2645 THUMB16_INSN (0xe7fd), /* b .-2 */
2646 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2647 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2648};
2649
2650/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2651 one, when the destination is close enough. */
2652static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2653{
2654 THUMB16_INSN (0x4778), /* bx pc */
2655 THUMB16_INSN (0xe7fd), /* b .-2 */
2656 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2657};
2658
2659/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2660 blx to reach the stub if necessary. */
2661static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2662{
2663 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2664 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2665 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2666};
2667
2668/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2669 blx to reach the stub if necessary. We can not add into pc;
2670 it is not guaranteed to mode switch (different in ARMv6 and
2671 ARMv7). */
2672static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2673{
2674 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2675 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2676 ARM_INSN (0xe12fff1c), /* bx ip */
2677 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2678};
2679
2680/* V4T ARM -> ARM long branch stub, PIC. */
2681static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2682{
2683 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2684 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2685 ARM_INSN (0xe12fff1c), /* bx ip */
2686 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2687};
2688
2689/* V4T Thumb -> ARM long branch stub, PIC. */
2690static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2691{
2692 THUMB16_INSN (0x4778), /* bx pc */
2693 THUMB16_INSN (0xe7fd), /* b .-2 */
2694 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2695 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2696 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2697};
2698
2699/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2700 architectures. */
2701static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2702{
2703 THUMB16_INSN (0xb401), /* push {r0} */
2704 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2705 THUMB16_INSN (0x46fc), /* mov ip, pc */
2706 THUMB16_INSN (0x4484), /* add ip, r0 */
2707 THUMB16_INSN (0xbc01), /* pop {r0} */
2708 THUMB16_INSN (0x4760), /* bx ip */
2709 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2710};
2711
2712/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2713 allowed. */
2714static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2715{
2716 THUMB16_INSN (0x4778), /* bx pc */
2717 THUMB16_INSN (0xe7fd), /* b .-2 */
2718 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2719 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2720 ARM_INSN (0xe12fff1c), /* bx ip */
2721 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2722};
2723
2724/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2725 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2726static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2727{
2728 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2729 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2730 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2731};
2732
2733/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2734 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2735static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2736{
2737 THUMB16_INSN (0x4778), /* bx pc */
2738 THUMB16_INSN (0xe7fd), /* b .-2 */
2739 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2740 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2741 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2742};
2743
2744/* NaCl ARM -> ARM long branch stub. */
2745static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2746{
2747 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2748 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2749 ARM_INSN (0xe12fff1c), /* bx ip */
2750 ARM_INSN (0xe320f000), /* nop */
2751 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2752 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2753 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2754 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2755};
2756
2757/* NaCl ARM -> ARM long branch stub, PIC. */
2758static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2759{
2760 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2761 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2762 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2763 ARM_INSN (0xe12fff1c), /* bx ip */
2764 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2765 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2766 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2767 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2768};
2769
2770/* Stub used for transition to secure state (aka SG veneer). */
2771static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2772{
2773 THUMB32_INSN (0xe97fe97f), /* sg. */
2774 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2775};
2776
2777
2778/* Cortex-A8 erratum-workaround stubs. */
2779
2780/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2781 can't use a conditional branch to reach this stub). */
2782
2783static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2784{
2785 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2786 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2787 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2788};
2789
2790/* Stub used for b.w and bl.w instructions. */
2791
2792static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2793{
2794 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2795};
2796
2797static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2798{
2799 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2800};
2801
2802/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2803 instruction (which switches to ARM mode) to point to this stub. Jump to the
2804 real destination using an ARM-mode branch. */
2805
2806static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2807{
2808 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2809};
2810
2811/* For each section group there can be a specially created linker section
2812 to hold the stubs for that group. The name of the stub section is based
2813 upon the name of another section within that group with the suffix below
2814 applied.
2815
2816 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2817 create what appeared to be a linker stub section when it actually
2818 contained user code/data. For example, consider this fragment:
2819
2820 const char * stubborn_problems[] = { "np" };
2821
2822 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2823 section called:
2824
2825 .data.rel.local.stubborn_problems
2826
2827 This then causes problems in arm32_arm_build_stubs() as it triggers:
2828
2829 // Ignore non-stub sections.
2830 if (!strstr (stub_sec->name, STUB_SUFFIX))
2831 continue;
2832
2833 And so the section would be ignored instead of being processed. Hence
2834 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2835 C identifier. */
2836#define STUB_SUFFIX ".__stub"
2837
2838/* One entry per long/short branch stub defined above. */
2839#define DEF_STUBS \
2840 DEF_STUB(long_branch_any_any) \
2841 DEF_STUB(long_branch_v4t_arm_thumb) \
2842 DEF_STUB(long_branch_thumb_only) \
2843 DEF_STUB(long_branch_v4t_thumb_thumb) \
2844 DEF_STUB(long_branch_v4t_thumb_arm) \
2845 DEF_STUB(short_branch_v4t_thumb_arm) \
2846 DEF_STUB(long_branch_any_arm_pic) \
2847 DEF_STUB(long_branch_any_thumb_pic) \
2848 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2849 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2851 DEF_STUB(long_branch_thumb_only_pic) \
2852 DEF_STUB(long_branch_any_tls_pic) \
2853 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2854 DEF_STUB(long_branch_arm_nacl) \
2855 DEF_STUB(long_branch_arm_nacl_pic) \
2856 DEF_STUB(cmse_branch_thumb_only) \
2857 DEF_STUB(a8_veneer_b_cond) \
2858 DEF_STUB(a8_veneer_b) \
2859 DEF_STUB(a8_veneer_bl) \
2860 DEF_STUB(a8_veneer_blx) \
2861 DEF_STUB(long_branch_thumb2_only) \
2862 DEF_STUB(long_branch_thumb2_only_pure)
2863
2864#define DEF_STUB(x) arm_stub_##x,
2865enum elf32_arm_stub_type
2866{
2867 arm_stub_none,
2868 DEF_STUBS
2869 max_stub_type
2870};
2871#undef DEF_STUB
2872
2873/* Note the first a8_veneer type. */
2874const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2875
2876typedef struct
2877{
2878 const insn_sequence* template_sequence;
2879 int template_size;
2880} stub_def;
2881
2882#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2883static const stub_def stub_definitions[] =
2884{
2885 {NULL, 0},
2886 DEF_STUBS
2887};
2888
2889struct elf32_arm_stub_hash_entry
2890{
2891 /* Base hash table entry structure. */
2892 struct bfd_hash_entry root;
2893
2894 /* The stub section. */
2895 asection *stub_sec;
2896
2897 /* Offset within stub_sec of the beginning of this stub. */
2898 bfd_vma stub_offset;
2899
2900 /* Given the symbol's value and its section we can determine its final
2901 value when building the stubs (so the stub knows where to jump). */
2902 bfd_vma target_value;
2903 asection *target_section;
2904
2905 /* Same as above but for the source of the branch to the stub. Used for
2906 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2907 such, source section does not need to be recorded since Cortex-A8 erratum
2908 workaround stubs are only generated when both source and target are in the
2909 same section. */
2910 bfd_vma source_value;
2911
2912 /* The instruction which caused this stub to be generated (only valid for
2913 Cortex-A8 erratum workaround stubs at present). */
2914 unsigned long orig_insn;
2915
2916 /* The stub type. */
2917 enum elf32_arm_stub_type stub_type;
2918 /* Its encoding size in bytes. */
2919 int stub_size;
2920 /* Its template. */
2921 const insn_sequence *stub_template;
2922 /* The size of the template (number of entries). */
2923 int stub_template_size;
2924
2925 /* The symbol table entry, if any, that this was derived from. */
2926 struct elf32_arm_link_hash_entry *h;
2927
2928 /* Type of branch. */
2929 enum arm_st_branch_type branch_type;
2930
2931 /* Where this stub is being called from, or, in the case of combined
2932 stub sections, the first input section in the group. */
2933 asection *id_sec;
2934
2935 /* The name for the local symbol at the start of this stub. The
2936 stub name in the hash table has to be unique; this does not, so
2937 it can be friendlier. */
2938 char *output_name;
2939};
2940
2941/* Used to build a map of a section. This is required for mixed-endian
2942 code/data. */
2943
2944typedef struct elf32_elf_section_map
2945{
2946 bfd_vma vma;
2947 char type;
2948}
2949elf32_arm_section_map;
2950
2951/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2952
2953typedef enum
2954{
2955 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2956 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2957 VFP11_ERRATUM_ARM_VENEER,
2958 VFP11_ERRATUM_THUMB_VENEER
2959}
2960elf32_vfp11_erratum_type;
2961
2962typedef struct elf32_vfp11_erratum_list
2963{
2964 struct elf32_vfp11_erratum_list *next;
2965 bfd_vma vma;
2966 union
2967 {
2968 struct
2969 {
2970 struct elf32_vfp11_erratum_list *veneer;
2971 unsigned int vfp_insn;
2972 } b;
2973 struct
2974 {
2975 struct elf32_vfp11_erratum_list *branch;
2976 unsigned int id;
2977 } v;
2978 } u;
2979 elf32_vfp11_erratum_type type;
2980}
2981elf32_vfp11_erratum_list;
2982
2983/* Information about a STM32L4XX erratum veneer, or a branch to such a
2984 veneer. */
2985typedef enum
2986{
2987 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2988 STM32L4XX_ERRATUM_VENEER
2989}
2990elf32_stm32l4xx_erratum_type;
2991
2992typedef struct elf32_stm32l4xx_erratum_list
2993{
2994 struct elf32_stm32l4xx_erratum_list *next;
2995 bfd_vma vma;
2996 union
2997 {
2998 struct
2999 {
3000 struct elf32_stm32l4xx_erratum_list *veneer;
3001 unsigned int insn;
3002 } b;
3003 struct
3004 {
3005 struct elf32_stm32l4xx_erratum_list *branch;
3006 unsigned int id;
3007 } v;
3008 } u;
3009 elf32_stm32l4xx_erratum_type type;
3010}
3011elf32_stm32l4xx_erratum_list;
3012
3013typedef enum
3014{
3015 DELETE_EXIDX_ENTRY,
3016 INSERT_EXIDX_CANTUNWIND_AT_END
3017}
3018arm_unwind_edit_type;
3019
3020/* A (sorted) list of edits to apply to an unwind table. */
3021typedef struct arm_unwind_table_edit
3022{
3023 arm_unwind_edit_type type;
3024 /* Note: we sometimes want to insert an unwind entry corresponding to a
3025 section different from the one we're currently writing out, so record the
3026 (text) section this edit relates to here. */
3027 asection *linked_section;
3028 unsigned int index;
3029 struct arm_unwind_table_edit *next;
3030}
3031arm_unwind_table_edit;
3032
3033typedef struct _arm_elf_section_data
3034{
3035 /* Information about mapping symbols. */
3036 struct bfd_elf_section_data elf;
3037 unsigned int mapcount;
3038 unsigned int mapsize;
3039 elf32_arm_section_map *map;
3040 /* Information about CPU errata. */
3041 unsigned int erratumcount;
3042 elf32_vfp11_erratum_list *erratumlist;
3043 unsigned int stm32l4xx_erratumcount;
3044 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3045 unsigned int additional_reloc_count;
3046 /* Information about unwind tables. */
3047 union
3048 {
3049 /* Unwind info attached to a text section. */
3050 struct
3051 {
3052 asection *arm_exidx_sec;
3053 } text;
3054
3055 /* Unwind info attached to an .ARM.exidx section. */
3056 struct
3057 {
3058 arm_unwind_table_edit *unwind_edit_list;
3059 arm_unwind_table_edit *unwind_edit_tail;
3060 } exidx;
3061 } u;
3062}
3063_arm_elf_section_data;
3064
3065#define elf32_arm_section_data(sec) \
3066 ((_arm_elf_section_data *) elf_section_data (sec))
3067
3068/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3069 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3070 so may be created multiple times: we use an array of these entries whilst
3071 relaxing which we can refresh easily, then create stubs for each potentially
3072 erratum-triggering instruction once we've settled on a solution. */
3073
3074struct a8_erratum_fix
3075{
3076 bfd *input_bfd;
3077 asection *section;
3078 bfd_vma offset;
3079 bfd_vma target_offset;
3080 unsigned long orig_insn;
3081 char *stub_name;
3082 enum elf32_arm_stub_type stub_type;
3083 enum arm_st_branch_type branch_type;
3084};
3085
3086/* A table of relocs applied to branches which might trigger Cortex-A8
3087 erratum. */
3088
3089struct a8_erratum_reloc
3090{
3091 bfd_vma from;
3092 bfd_vma destination;
3093 struct elf32_arm_link_hash_entry *hash;
3094 const char *sym_name;
3095 unsigned int r_type;
3096 enum arm_st_branch_type branch_type;
3097 bfd_boolean non_a8_stub;
3098};
3099
3100/* The size of the thread control block. */
3101#define TCB_SIZE 8
3102
3103/* ARM-specific information about a PLT entry, over and above the usual
3104 gotplt_union. */
3105struct arm_plt_info
3106{
3107 /* We reference count Thumb references to a PLT entry separately,
3108 so that we can emit the Thumb trampoline only if needed. */
3109 bfd_signed_vma thumb_refcount;
3110
3111 /* Some references from Thumb code may be eliminated by BL->BLX
3112 conversion, so record them separately. */
3113 bfd_signed_vma maybe_thumb_refcount;
3114
3115 /* How many of the recorded PLT accesses were from non-call relocations.
3116 This information is useful when deciding whether anything takes the
3117 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3118 non-call references to the function should resolve directly to the
3119 real runtime target. */
3120 unsigned int noncall_refcount;
3121
3122 /* Since PLT entries have variable size if the Thumb prologue is
3123 used, we need to record the index into .got.plt instead of
3124 recomputing it from the PLT offset. */
3125 bfd_signed_vma got_offset;
3126};
3127
3128/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3129struct arm_local_iplt_info
3130{
3131 /* The information that is usually found in the generic ELF part of
3132 the hash table entry. */
3133 union gotplt_union root;
3134
3135 /* The information that is usually found in the ARM-specific part of
3136 the hash table entry. */
3137 struct arm_plt_info arm;
3138
3139 /* A list of all potential dynamic relocations against this symbol. */
3140 struct elf_dyn_relocs *dyn_relocs;
3141};
3142
3143/* Structure to handle FDPIC support for local functions. */
3144struct fdpic_local {
3145 unsigned int funcdesc_cnt;
3146 unsigned int gotofffuncdesc_cnt;
3147 int funcdesc_offset;
3148};
3149
3150struct elf_arm_obj_tdata
3151{
3152 struct elf_obj_tdata root;
3153
3154 /* tls_type for each local got entry. */
3155 char *local_got_tls_type;
3156
3157 /* GOTPLT entries for TLS descriptors. */
3158 bfd_vma *local_tlsdesc_gotent;
3159
3160 /* Information for local symbols that need entries in .iplt. */
3161 struct arm_local_iplt_info **local_iplt;
3162
3163 /* Zero to warn when linking objects with incompatible enum sizes. */
3164 int no_enum_size_warning;
3165
3166 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3167 int no_wchar_size_warning;
3168
3169 /* Maintains FDPIC counters and funcdesc info. */
3170 struct fdpic_local *local_fdpic_cnts;
3171};
3172
3173#define elf_arm_tdata(bfd) \
3174 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3175
3176#define elf32_arm_local_got_tls_type(bfd) \
3177 (elf_arm_tdata (bfd)->local_got_tls_type)
3178
3179#define elf32_arm_local_tlsdesc_gotent(bfd) \
3180 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3181
3182#define elf32_arm_local_iplt(bfd) \
3183 (elf_arm_tdata (bfd)->local_iplt)
3184
3185#define elf32_arm_local_fdpic_cnts(bfd) \
3186 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3187
3188#define is_arm_elf(bfd) \
3189 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3190 && elf_tdata (bfd) != NULL \
3191 && elf_object_id (bfd) == ARM_ELF_DATA)
3192
3193static bfd_boolean
3194elf32_arm_mkobject (bfd *abfd)
3195{
3196 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3197 ARM_ELF_DATA);
3198}
3199
3200#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3201
3202/* Structure to handle FDPIC support for extern functions. */
3203struct fdpic_global {
3204 unsigned int gotofffuncdesc_cnt;
3205 unsigned int gotfuncdesc_cnt;
3206 unsigned int funcdesc_cnt;
3207 int funcdesc_offset;
3208 int gotfuncdesc_offset;
3209};
3210
3211/* Arm ELF linker hash entry. */
3212struct elf32_arm_link_hash_entry
3213{
3214 struct elf_link_hash_entry root;
3215
3216 /* Track dynamic relocs copied for this symbol. */
3217 struct elf_dyn_relocs *dyn_relocs;
3218
3219 /* ARM-specific PLT information. */
3220 struct arm_plt_info plt;
3221
3222#define GOT_UNKNOWN 0
3223#define GOT_NORMAL 1
3224#define GOT_TLS_GD 2
3225#define GOT_TLS_IE 4
3226#define GOT_TLS_GDESC 8
3227#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3228 unsigned int tls_type : 8;
3229
3230 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3231 unsigned int is_iplt : 1;
3232
3233 unsigned int unused : 23;
3234
3235 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3236 starting at the end of the jump table. */
3237 bfd_vma tlsdesc_got;
3238
3239 /* The symbol marking the real symbol location for exported thumb
3240 symbols with Arm stubs. */
3241 struct elf_link_hash_entry *export_glue;
3242
3243 /* A pointer to the most recently used stub hash entry against this
3244 symbol. */
3245 struct elf32_arm_stub_hash_entry *stub_cache;
3246
3247 /* Counter for FDPIC relocations against this symbol. */
3248 struct fdpic_global fdpic_cnts;
3249};
3250
3251/* Traverse an arm ELF linker hash table. */
3252#define elf32_arm_link_hash_traverse(table, func, info) \
3253 (elf_link_hash_traverse \
3254 (&(table)->root, \
3255 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3256 (info)))
3257
3258/* Get the ARM elf linker hash table from a link_info structure. */
3259#define elf32_arm_hash_table(info) \
3260 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3261 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3262
3263#define arm_stub_hash_lookup(table, string, create, copy) \
3264 ((struct elf32_arm_stub_hash_entry *) \
3265 bfd_hash_lookup ((table), (string), (create), (copy)))
3266
3267/* Array to keep track of which stub sections have been created, and
3268 information on stub grouping. */
3269struct map_stub
3270{
3271 /* This is the section to which stubs in the group will be
3272 attached. */
3273 asection *link_sec;
3274 /* The stub section. */
3275 asection *stub_sec;
3276};
3277
3278#define elf32_arm_compute_jump_table_size(htab) \
3279 ((htab)->next_tls_desc_index * 4)
3280
3281/* ARM ELF linker hash table. */
3282struct elf32_arm_link_hash_table
3283{
3284 /* The main hash table. */
3285 struct elf_link_hash_table root;
3286
3287 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3288 bfd_size_type thumb_glue_size;
3289
3290 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3291 bfd_size_type arm_glue_size;
3292
3293 /* The size in bytes of section containing the ARMv4 BX veneers. */
3294 bfd_size_type bx_glue_size;
3295
3296 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3297 veneer has been populated. */
3298 bfd_vma bx_glue_offset[15];
3299
3300 /* The size in bytes of the section containing glue for VFP11 erratum
3301 veneers. */
3302 bfd_size_type vfp11_erratum_glue_size;
3303
3304 /* The size in bytes of the section containing glue for STM32L4XX erratum
3305 veneers. */
3306 bfd_size_type stm32l4xx_erratum_glue_size;
3307
3308 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3309 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3310 elf32_arm_write_section(). */
3311 struct a8_erratum_fix *a8_erratum_fixes;
3312 unsigned int num_a8_erratum_fixes;
3313
3314 /* An arbitrary input BFD chosen to hold the glue sections. */
3315 bfd * bfd_of_glue_owner;
3316
3317 /* Nonzero to output a BE8 image. */
3318 int byteswap_code;
3319
3320 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3321 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3322 int target1_is_rel;
3323
3324 /* The relocation to use for R_ARM_TARGET2 relocations. */
3325 int target2_reloc;
3326
3327 /* 0 = Ignore R_ARM_V4BX.
3328 1 = Convert BX to MOV PC.
3329 2 = Generate v4 interworing stubs. */
3330 int fix_v4bx;
3331
3332 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3333 int fix_cortex_a8;
3334
3335 /* Whether we should fix the ARM1176 BLX immediate issue. */
3336 int fix_arm1176;
3337
3338 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3339 int use_blx;
3340
3341 /* What sort of code sequences we should look for which may trigger the
3342 VFP11 denorm erratum. */
3343 bfd_arm_vfp11_fix vfp11_fix;
3344
3345 /* Global counter for the number of fixes we have emitted. */
3346 int num_vfp11_fixes;
3347
3348 /* What sort of code sequences we should look for which may trigger the
3349 STM32L4XX erratum. */
3350 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3351
3352 /* Global counter for the number of fixes we have emitted. */
3353 int num_stm32l4xx_fixes;
3354
3355 /* Nonzero to force PIC branch veneers. */
3356 int pic_veneer;
3357
3358 /* The number of bytes in the initial entry in the PLT. */
3359 bfd_size_type plt_header_size;
3360
3361 /* The number of bytes in the subsequent PLT etries. */
3362 bfd_size_type plt_entry_size;
3363
3364 /* True if the target system is VxWorks. */
3365 int vxworks_p;
3366
3367 /* True if the target system is Symbian OS. */
3368 int symbian_p;
3369
3370 /* True if the target system is Native Client. */
3371 int nacl_p;
3372
3373 /* True if the target uses REL relocations. */
3374 bfd_boolean use_rel;
3375
3376 /* Nonzero if import library must be a secure gateway import library
3377 as per ARMv8-M Security Extensions. */
3378 int cmse_implib;
3379
3380 /* The import library whose symbols' address must remain stable in
3381 the import library generated. */
3382 bfd *in_implib_bfd;
3383
3384 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3385 bfd_vma next_tls_desc_index;
3386
3387 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3388 bfd_vma num_tls_desc;
3389
3390 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3391 asection *srelplt2;
3392
3393 /* The offset into splt of the PLT entry for the TLS descriptor
3394 resolver. Special values are 0, if not necessary (or not found
3395 to be necessary yet), and -1 if needed but not determined
3396 yet. */
3397 bfd_vma dt_tlsdesc_plt;
3398
3399 /* The offset into sgot of the GOT entry used by the PLT entry
3400 above. */
3401 bfd_vma dt_tlsdesc_got;
3402
3403 /* Offset in .plt section of tls_arm_trampoline. */
3404 bfd_vma tls_trampoline;
3405
3406 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3407 union
3408 {
3409 bfd_signed_vma refcount;
3410 bfd_vma offset;
3411 } tls_ldm_got;
3412
3413 /* Small local sym cache. */
3414 struct sym_cache sym_cache;
3415
3416 /* For convenience in allocate_dynrelocs. */
3417 bfd * obfd;
3418
3419 /* The amount of space used by the reserved portion of the sgotplt
3420 section, plus whatever space is used by the jump slots. */
3421 bfd_vma sgotplt_jump_table_size;
3422
3423 /* The stub hash table. */
3424 struct bfd_hash_table stub_hash_table;
3425
3426 /* Linker stub bfd. */
3427 bfd *stub_bfd;
3428
3429 /* Linker call-backs. */
3430 asection * (*add_stub_section) (const char *, asection *, asection *,
3431 unsigned int);
3432 void (*layout_sections_again) (void);
3433
3434 /* Array to keep track of which stub sections have been created, and
3435 information on stub grouping. */
3436 struct map_stub *stub_group;
3437
3438 /* Input stub section holding secure gateway veneers. */
3439 asection *cmse_stub_sec;
3440
3441 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3442 start to be allocated. */
3443 bfd_vma new_cmse_stub_offset;
3444
3445 /* Number of elements in stub_group. */
3446 unsigned int top_id;
3447
3448 /* Assorted information used by elf32_arm_size_stubs. */
3449 unsigned int bfd_count;
3450 unsigned int top_index;
3451 asection **input_list;
3452
3453 /* True if the target system uses FDPIC. */
3454 int fdpic_p;
3455
3456 /* Fixup section. Used for FDPIC. */
3457 asection *srofixup;
3458};
3459
3460/* Add an FDPIC read-only fixup. */
3461static void
3462arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3463{
3464 bfd_vma fixup_offset;
3465
3466 fixup_offset = srofixup->reloc_count++ * 4;
3467 BFD_ASSERT (fixup_offset < srofixup->size);
3468 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3469}
3470
3471static inline int
3472ctz (unsigned int mask)
3473{
3474#if GCC_VERSION >= 3004
3475 return __builtin_ctz (mask);
3476#else
3477 unsigned int i;
3478
3479 for (i = 0; i < 8 * sizeof (mask); i++)
3480 {
3481 if (mask & 0x1)
3482 break;
3483 mask = (mask >> 1);
3484 }
3485 return i;
3486#endif
3487}
3488
3489static inline int
3490elf32_arm_popcount (unsigned int mask)
3491{
3492#if GCC_VERSION >= 3004
3493 return __builtin_popcount (mask);
3494#else
3495 unsigned int i;
3496 int sum = 0;
3497
3498 for (i = 0; i < 8 * sizeof (mask); i++)
3499 {
3500 if (mask & 0x1)
3501 sum++;
3502 mask = (mask >> 1);
3503 }
3504 return sum;
3505#endif
3506}
3507
3508static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3509 asection *sreloc, Elf_Internal_Rela *rel);
3510
3511static void
3512arm_elf_fill_funcdesc(bfd *output_bfd,
3513 struct bfd_link_info *info,
3514 int *funcdesc_offset,
3515 int dynindx,
3516 int offset,
3517 bfd_vma addr,
3518 bfd_vma dynreloc_value,
3519 bfd_vma seg)
3520{
3521 if ((*funcdesc_offset & 1) == 0)
3522 {
3523 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3524 asection *sgot = globals->root.sgot;
3525
3526 if (bfd_link_pic(info))
3527 {
3528 asection *srelgot = globals->root.srelgot;
3529 Elf_Internal_Rela outrel;
3530
3531 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3532 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3533 outrel.r_addend = 0;
3534
3535 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3536 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3537 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3538 }
3539 else
3540 {
3541 struct elf_link_hash_entry *hgot = globals->root.hgot;
3542 bfd_vma got_value = hgot->root.u.def.value
3543 + hgot->root.u.def.section->output_section->vma
3544 + hgot->root.u.def.section->output_offset;
3545
3546 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3547 sgot->output_section->vma + sgot->output_offset
3548 + offset);
3549 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3550 sgot->output_section->vma + sgot->output_offset
3551 + offset + 4);
3552 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3553 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3554 }
3555 *funcdesc_offset |= 1;
3556 }
3557}
3558
3559/* Create an entry in an ARM ELF linker hash table. */
3560
3561static struct bfd_hash_entry *
3562elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3563 struct bfd_hash_table * table,
3564 const char * string)
3565{
3566 struct elf32_arm_link_hash_entry * ret =
3567 (struct elf32_arm_link_hash_entry *) entry;
3568
3569 /* Allocate the structure if it has not already been allocated by a
3570 subclass. */
3571 if (ret == NULL)
3572 ret = (struct elf32_arm_link_hash_entry *)
3573 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3574 if (ret == NULL)
3575 return (struct bfd_hash_entry *) ret;
3576
3577 /* Call the allocation method of the superclass. */
3578 ret = ((struct elf32_arm_link_hash_entry *)
3579 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3580 table, string));
3581 if (ret != NULL)
3582 {
3583 ret->dyn_relocs = NULL;
3584 ret->tls_type = GOT_UNKNOWN;
3585 ret->tlsdesc_got = (bfd_vma) -1;
3586 ret->plt.thumb_refcount = 0;
3587 ret->plt.maybe_thumb_refcount = 0;
3588 ret->plt.noncall_refcount = 0;
3589 ret->plt.got_offset = -1;
3590 ret->is_iplt = FALSE;
3591 ret->export_glue = NULL;
3592
3593 ret->stub_cache = NULL;
3594
3595 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3596 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3597 ret->fdpic_cnts.funcdesc_cnt = 0;
3598 ret->fdpic_cnts.funcdesc_offset = -1;
3599 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3600 }
3601
3602 return (struct bfd_hash_entry *) ret;
3603}
3604
3605/* Ensure that we have allocated bookkeeping structures for ABFD's local
3606 symbols. */
3607
3608static bfd_boolean
3609elf32_arm_allocate_local_sym_info (bfd *abfd)
3610{
3611 if (elf_local_got_refcounts (abfd) == NULL)
3612 {
3613 bfd_size_type num_syms;
3614 bfd_size_type size;
3615 char *data;
3616
3617 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3618 size = num_syms * (sizeof (bfd_signed_vma)
3619 + sizeof (struct arm_local_iplt_info *)
3620 + sizeof (bfd_vma)
3621 + sizeof (char)
3622 + sizeof (struct fdpic_local));
3623 data = bfd_zalloc (abfd, size);
3624 if (data == NULL)
3625 return FALSE;
3626
3627 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3628 data += num_syms * sizeof (struct fdpic_local);
3629
3630 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3631 data += num_syms * sizeof (bfd_signed_vma);
3632
3633 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3634 data += num_syms * sizeof (struct arm_local_iplt_info *);
3635
3636 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3637 data += num_syms * sizeof (bfd_vma);
3638
3639 elf32_arm_local_got_tls_type (abfd) = data;
3640 }
3641 return TRUE;
3642}
3643
3644/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3645 to input bfd ABFD. Create the information if it doesn't already exist.
3646 Return null if an allocation fails. */
3647
3648static struct arm_local_iplt_info *
3649elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3650{
3651 struct arm_local_iplt_info **ptr;
3652
3653 if (!elf32_arm_allocate_local_sym_info (abfd))
3654 return NULL;
3655
3656 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3657 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3658 if (*ptr == NULL)
3659 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3660 return *ptr;
3661}
3662
3663/* Try to obtain PLT information for the symbol with index R_SYMNDX
3664 in ABFD's symbol table. If the symbol is global, H points to its
3665 hash table entry, otherwise H is null.
3666
3667 Return true if the symbol does have PLT information. When returning
3668 true, point *ROOT_PLT at the target-independent reference count/offset
3669 union and *ARM_PLT at the ARM-specific information. */
3670
3671static bfd_boolean
3672elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3673 struct elf32_arm_link_hash_entry *h,
3674 unsigned long r_symndx, union gotplt_union **root_plt,
3675 struct arm_plt_info **arm_plt)
3676{
3677 struct arm_local_iplt_info *local_iplt;
3678
3679 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3680 return FALSE;
3681
3682 if (h != NULL)
3683 {
3684 *root_plt = &h->root.plt;
3685 *arm_plt = &h->plt;
3686 return TRUE;
3687 }
3688
3689 if (elf32_arm_local_iplt (abfd) == NULL)
3690 return FALSE;
3691
3692 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3693 if (local_iplt == NULL)
3694 return FALSE;
3695
3696 *root_plt = &local_iplt->root;
3697 *arm_plt = &local_iplt->arm;
3698 return TRUE;
3699}
3700
3701static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3702
3703/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3704 before it. */
3705
3706static bfd_boolean
3707elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3708 struct arm_plt_info *arm_plt)
3709{
3710 struct elf32_arm_link_hash_table *htab;
3711
3712 htab = elf32_arm_hash_table (info);
3713
3714 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3715 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3716}
3717
3718/* Return a pointer to the head of the dynamic reloc list that should
3719 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3720 ABFD's symbol table. Return null if an error occurs. */
3721
3722static struct elf_dyn_relocs **
3723elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3724 Elf_Internal_Sym *isym)
3725{
3726 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3727 {
3728 struct arm_local_iplt_info *local_iplt;
3729
3730 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3731 if (local_iplt == NULL)
3732 return NULL;
3733 return &local_iplt->dyn_relocs;
3734 }
3735 else
3736 {
3737 /* Track dynamic relocs needed for local syms too.
3738 We really need local syms available to do this
3739 easily. Oh well. */
3740 asection *s;
3741 void *vpp;
3742
3743 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3744 if (s == NULL)
3745 abort ();
3746
3747 vpp = &elf_section_data (s)->local_dynrel;
3748 return (struct elf_dyn_relocs **) vpp;
3749 }
3750}
3751
3752/* Initialize an entry in the stub hash table. */
3753
3754static struct bfd_hash_entry *
3755stub_hash_newfunc (struct bfd_hash_entry *entry,
3756 struct bfd_hash_table *table,
3757 const char *string)
3758{
3759 /* Allocate the structure if it has not already been allocated by a
3760 subclass. */
3761 if (entry == NULL)
3762 {
3763 entry = (struct bfd_hash_entry *)
3764 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3765 if (entry == NULL)
3766 return entry;
3767 }
3768
3769 /* Call the allocation method of the superclass. */
3770 entry = bfd_hash_newfunc (entry, table, string);
3771 if (entry != NULL)
3772 {
3773 struct elf32_arm_stub_hash_entry *eh;
3774
3775 /* Initialize the local fields. */
3776 eh = (struct elf32_arm_stub_hash_entry *) entry;
3777 eh->stub_sec = NULL;
3778 eh->stub_offset = (bfd_vma) -1;
3779 eh->source_value = 0;
3780 eh->target_value = 0;
3781 eh->target_section = NULL;
3782 eh->orig_insn = 0;
3783 eh->stub_type = arm_stub_none;
3784 eh->stub_size = 0;
3785 eh->stub_template = NULL;
3786 eh->stub_template_size = -1;
3787 eh->h = NULL;
3788 eh->id_sec = NULL;
3789 eh->output_name = NULL;
3790 }
3791
3792 return entry;
3793}
3794
3795/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3796 shortcuts to them in our hash table. */
3797
3798static bfd_boolean
3799create_got_section (bfd *dynobj, struct bfd_link_info *info)
3800{
3801 struct elf32_arm_link_hash_table *htab;
3802
3803 htab = elf32_arm_hash_table (info);
3804 if (htab == NULL)
3805 return FALSE;
3806
3807 /* BPABI objects never have a GOT, or associated sections. */
3808 if (htab->symbian_p)
3809 return TRUE;
3810
3811 if (! _bfd_elf_create_got_section (dynobj, info))
3812 return FALSE;
3813
3814 /* Also create .rofixup. */
3815 if (htab->fdpic_p)
3816 {
3817 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3818 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3819 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3820 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3821 return FALSE;
3822 }
3823
3824 return TRUE;
3825}
3826
3827/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3828
3829static bfd_boolean
3830create_ifunc_sections (struct bfd_link_info *info)
3831{
3832 struct elf32_arm_link_hash_table *htab;
3833 const struct elf_backend_data *bed;
3834 bfd *dynobj;
3835 asection *s;
3836 flagword flags;
3837
3838 htab = elf32_arm_hash_table (info);
3839 dynobj = htab->root.dynobj;
3840 bed = get_elf_backend_data (dynobj);
3841 flags = bed->dynamic_sec_flags;
3842
3843 if (htab->root.iplt == NULL)
3844 {
3845 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3846 flags | SEC_READONLY | SEC_CODE);
3847 if (s == NULL
3848 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3849 return FALSE;
3850 htab->root.iplt = s;
3851 }
3852
3853 if (htab->root.irelplt == NULL)
3854 {
3855 s = bfd_make_section_anyway_with_flags (dynobj,
3856 RELOC_SECTION (htab, ".iplt"),
3857 flags | SEC_READONLY);
3858 if (s == NULL
3859 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3860 return FALSE;
3861 htab->root.irelplt = s;
3862 }
3863
3864 if (htab->root.igotplt == NULL)
3865 {
3866 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3867 if (s == NULL
3868 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3869 return FALSE;
3870 htab->root.igotplt = s;
3871 }
3872 return TRUE;
3873}
3874
3875/* Determine if we're dealing with a Thumb only architecture. */
3876
3877static bfd_boolean
3878using_thumb_only (struct elf32_arm_link_hash_table *globals)
3879{
3880 int arch;
3881 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3882 Tag_CPU_arch_profile);
3883
3884 if (profile)
3885 return profile == 'M';
3886
3887 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3888
3889 /* Force return logic to be reviewed for each new architecture. */
3890 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3891
3892 if (arch == TAG_CPU_ARCH_V6_M
3893 || arch == TAG_CPU_ARCH_V6S_M
3894 || arch == TAG_CPU_ARCH_V7E_M
3895 || arch == TAG_CPU_ARCH_V8M_BASE
3896 || arch == TAG_CPU_ARCH_V8M_MAIN
3897 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3898 return TRUE;
3899
3900 return FALSE;
3901}
3902
3903/* Determine if we're dealing with a Thumb-2 object. */
3904
3905static bfd_boolean
3906using_thumb2 (struct elf32_arm_link_hash_table *globals)
3907{
3908 int arch;
3909 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3910 Tag_THUMB_ISA_use);
3911
3912 if (thumb_isa)
3913 return thumb_isa == 2;
3914
3915 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3916
3917 /* Force return logic to be reviewed for each new architecture. */
3918 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3919
3920 return (arch == TAG_CPU_ARCH_V6T2
3921 || arch == TAG_CPU_ARCH_V7
3922 || arch == TAG_CPU_ARCH_V7E_M
3923 || arch == TAG_CPU_ARCH_V8
3924 || arch == TAG_CPU_ARCH_V8R
3925 || arch == TAG_CPU_ARCH_V8M_MAIN
3926 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3927}
3928
3929/* Determine whether Thumb-2 BL instruction is available. */
3930
3931static bfd_boolean
3932using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3933{
3934 int arch =
3935 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3936
3937 /* Force return logic to be reviewed for each new architecture. */
3938 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3939
3940 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3941 return (arch == TAG_CPU_ARCH_V6T2
3942 || arch >= TAG_CPU_ARCH_V7);
3943}
3944
3945/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3946 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3947 hash table. */
3948
3949static bfd_boolean
3950elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3951{
3952 struct elf32_arm_link_hash_table *htab;
3953
3954 htab = elf32_arm_hash_table (info);
3955 if (htab == NULL)
3956 return FALSE;
3957
3958 if (!htab->root.sgot && !create_got_section (dynobj, info))
3959 return FALSE;
3960
3961 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3962 return FALSE;
3963
3964 if (htab->vxworks_p)
3965 {
3966 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3967 return FALSE;
3968
3969 if (bfd_link_pic (info))
3970 {
3971 htab->plt_header_size = 0;
3972 htab->plt_entry_size
3973 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3974 }
3975 else
3976 {
3977 htab->plt_header_size
3978 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3979 htab->plt_entry_size
3980 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3981 }
3982
3983 if (elf_elfheader (dynobj))
3984 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3985 }
3986 else
3987 {
3988 /* PR ld/16017
3989 Test for thumb only architectures. Note - we cannot just call
3990 using_thumb_only() as the attributes in the output bfd have not been
3991 initialised at this point, so instead we use the input bfd. */
3992 bfd * saved_obfd = htab->obfd;
3993
3994 htab->obfd = dynobj;
3995 if (using_thumb_only (htab))
3996 {
3997 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3998 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3999 }
4000 htab->obfd = saved_obfd;
4001 }
4002
4003 if (htab->fdpic_p) {
4004 htab->plt_header_size = 0;
4005 if (info->flags & DF_BIND_NOW)
4006 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
4007 else
4008 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4009 }
4010
4011 if (!htab->root.splt
4012 || !htab->root.srelplt
4013 || !htab->root.sdynbss
4014 || (!bfd_link_pic (info) && !htab->root.srelbss))
4015 abort ();
4016
4017 return TRUE;
4018}
4019
4020/* Copy the extra info we tack onto an elf_link_hash_entry. */
4021
4022static void
4023elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4024 struct elf_link_hash_entry *dir,
4025 struct elf_link_hash_entry *ind)
4026{
4027 struct elf32_arm_link_hash_entry *edir, *eind;
4028
4029 edir = (struct elf32_arm_link_hash_entry *) dir;
4030 eind = (struct elf32_arm_link_hash_entry *) ind;
4031
4032 if (eind->dyn_relocs != NULL)
4033 {
4034 if (edir->dyn_relocs != NULL)
4035 {
4036 struct elf_dyn_relocs **pp;
4037 struct elf_dyn_relocs *p;
4038
4039 /* Add reloc counts against the indirect sym to the direct sym
4040 list. Merge any entries against the same section. */
4041 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4042 {
4043 struct elf_dyn_relocs *q;
4044
4045 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4046 if (q->sec == p->sec)
4047 {
4048 q->pc_count += p->pc_count;
4049 q->count += p->count;
4050 *pp = p->next;
4051 break;
4052 }
4053 if (q == NULL)
4054 pp = &p->next;
4055 }
4056 *pp = edir->dyn_relocs;
4057 }
4058
4059 edir->dyn_relocs = eind->dyn_relocs;
4060 eind->dyn_relocs = NULL;
4061 }
4062
4063 if (ind->root.type == bfd_link_hash_indirect)
4064 {
4065 /* Copy over PLT info. */
4066 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4067 eind->plt.thumb_refcount = 0;
4068 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4069 eind->plt.maybe_thumb_refcount = 0;
4070 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4071 eind->plt.noncall_refcount = 0;
4072
4073 /* Copy FDPIC counters. */
4074 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4075 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4076 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4077
4078 /* We should only allocate a function to .iplt once the final
4079 symbol information is known. */
4080 BFD_ASSERT (!eind->is_iplt);
4081
4082 if (dir->got.refcount <= 0)
4083 {
4084 edir->tls_type = eind->tls_type;
4085 eind->tls_type = GOT_UNKNOWN;
4086 }
4087 }
4088
4089 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4090}
4091
4092/* Destroy an ARM elf linker hash table. */
4093
4094static void
4095elf32_arm_link_hash_table_free (bfd *obfd)
4096{
4097 struct elf32_arm_link_hash_table *ret
4098 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4099
4100 bfd_hash_table_free (&ret->stub_hash_table);
4101 _bfd_elf_link_hash_table_free (obfd);
4102}
4103
4104/* Create an ARM elf linker hash table. */
4105
4106static struct bfd_link_hash_table *
4107elf32_arm_link_hash_table_create (bfd *abfd)
4108{
4109 struct elf32_arm_link_hash_table *ret;
4110 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4111
4112 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4113 if (ret == NULL)
4114 return NULL;
4115
4116 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4117 elf32_arm_link_hash_newfunc,
4118 sizeof (struct elf32_arm_link_hash_entry),
4119 ARM_ELF_DATA))
4120 {
4121 free (ret);
4122 return NULL;
4123 }
4124
4125 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4126 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4127#ifdef FOUR_WORD_PLT
4128 ret->plt_header_size = 16;
4129 ret->plt_entry_size = 16;
4130#else
4131 ret->plt_header_size = 20;
4132 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4133#endif
4134 ret->use_rel = TRUE;
4135 ret->obfd = abfd;
4136 ret->fdpic_p = 0;
4137
4138 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4139 sizeof (struct elf32_arm_stub_hash_entry)))
4140 {
4141 _bfd_elf_link_hash_table_free (abfd);
4142 return NULL;
4143 }
4144 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4145
4146 return &ret->root.root;
4147}
4148
4149/* Determine what kind of NOPs are available. */
4150
4151static bfd_boolean
4152arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4153{
4154 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4155 Tag_CPU_arch);
4156
4157 /* Force return logic to be reviewed for each new architecture. */
4158 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4159
4160 return (arch == TAG_CPU_ARCH_V6T2
4161 || arch == TAG_CPU_ARCH_V6K
4162 || arch == TAG_CPU_ARCH_V7
4163 || arch == TAG_CPU_ARCH_V8
4164 || arch == TAG_CPU_ARCH_V8R);
4165}
4166
4167static bfd_boolean
4168arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4169{
4170 switch (stub_type)
4171 {
4172 case arm_stub_long_branch_thumb_only:
4173 case arm_stub_long_branch_thumb2_only:
4174 case arm_stub_long_branch_thumb2_only_pure:
4175 case arm_stub_long_branch_v4t_thumb_arm:
4176 case arm_stub_short_branch_v4t_thumb_arm:
4177 case arm_stub_long_branch_v4t_thumb_arm_pic:
4178 case arm_stub_long_branch_v4t_thumb_tls_pic:
4179 case arm_stub_long_branch_thumb_only_pic:
4180 case arm_stub_cmse_branch_thumb_only:
4181 return TRUE;
4182 case arm_stub_none:
4183 BFD_FAIL ();
4184 return FALSE;
4185 break;
4186 default:
4187 return FALSE;
4188 }
4189}
4190
4191/* Determine the type of stub needed, if any, for a call. */
4192
4193static enum elf32_arm_stub_type
4194arm_type_of_stub (struct bfd_link_info *info,
4195 asection *input_sec,
4196 const Elf_Internal_Rela *rel,
4197 unsigned char st_type,
4198 enum arm_st_branch_type *actual_branch_type,
4199 struct elf32_arm_link_hash_entry *hash,
4200 bfd_vma destination,
4201 asection *sym_sec,
4202 bfd *input_bfd,
4203 const char *name)
4204{
4205 bfd_vma location;
4206 bfd_signed_vma branch_offset;
4207 unsigned int r_type;
4208 struct elf32_arm_link_hash_table * globals;
4209 bfd_boolean thumb2, thumb2_bl, thumb_only;
4210 enum elf32_arm_stub_type stub_type = arm_stub_none;
4211 int use_plt = 0;
4212 enum arm_st_branch_type branch_type = *actual_branch_type;
4213 union gotplt_union *root_plt;
4214 struct arm_plt_info *arm_plt;
4215 int arch;
4216 int thumb2_movw;
4217
4218 if (branch_type == ST_BRANCH_LONG)
4219 return stub_type;
4220
4221 globals = elf32_arm_hash_table (info);
4222 if (globals == NULL)
4223 return stub_type;
4224
4225 thumb_only = using_thumb_only (globals);
4226 thumb2 = using_thumb2 (globals);
4227 thumb2_bl = using_thumb2_bl (globals);
4228
4229 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4230
4231 /* True for architectures that implement the thumb2 movw instruction. */
4232 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4233
4234 /* Determine where the call point is. */
4235 location = (input_sec->output_offset
4236 + input_sec->output_section->vma
4237 + rel->r_offset);
4238
4239 r_type = ELF32_R_TYPE (rel->r_info);
4240
4241 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4242 are considering a function call relocation. */
4243 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4244 || r_type == R_ARM_THM_JUMP19)
4245 && branch_type == ST_BRANCH_TO_ARM)
4246 branch_type = ST_BRANCH_TO_THUMB;
4247
4248 /* For TLS call relocs, it is the caller's responsibility to provide
4249 the address of the appropriate trampoline. */
4250 if (r_type != R_ARM_TLS_CALL
4251 && r_type != R_ARM_THM_TLS_CALL
4252 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4253 ELF32_R_SYM (rel->r_info), &root_plt,
4254 &arm_plt)
4255 && root_plt->offset != (bfd_vma) -1)
4256 {
4257 asection *splt;
4258
4259 if (hash == NULL || hash->is_iplt)
4260 splt = globals->root.iplt;
4261 else
4262 splt = globals->root.splt;
4263 if (splt != NULL)
4264 {
4265 use_plt = 1;
4266
4267 /* Note when dealing with PLT entries: the main PLT stub is in
4268 ARM mode, so if the branch is in Thumb mode, another
4269 Thumb->ARM stub will be inserted later just before the ARM
4270 PLT stub. If a long branch stub is needed, we'll add a
4271 Thumb->Arm one and branch directly to the ARM PLT entry.
4272 Here, we have to check if a pre-PLT Thumb->ARM stub
4273 is needed and if it will be close enough. */
4274
4275 destination = (splt->output_section->vma
4276 + splt->output_offset
4277 + root_plt->offset);
4278 st_type = STT_FUNC;
4279
4280 /* Thumb branch/call to PLT: it can become a branch to ARM
4281 or to Thumb. We must perform the same checks and
4282 corrections as in elf32_arm_final_link_relocate. */
4283 if ((r_type == R_ARM_THM_CALL)
4284 || (r_type == R_ARM_THM_JUMP24))
4285 {
4286 if (globals->use_blx
4287 && r_type == R_ARM_THM_CALL
4288 && !thumb_only)
4289 {
4290 /* If the Thumb BLX instruction is available, convert
4291 the BL to a BLX instruction to call the ARM-mode
4292 PLT entry. */
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
4295 else
4296 {
4297 if (!thumb_only)
4298 /* Target the Thumb stub before the ARM PLT entry. */
4299 destination -= PLT_THUMB_STUB_SIZE;
4300 branch_type = ST_BRANCH_TO_THUMB;
4301 }
4302 }
4303 else
4304 {
4305 branch_type = ST_BRANCH_TO_ARM;
4306 }
4307 }
4308 }
4309 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4310 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4311
4312 branch_offset = (bfd_signed_vma)(destination - location);
4313
4314 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4315 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4316 {
4317 /* Handle cases where:
4318 - this call goes too far (different Thumb/Thumb2 max
4319 distance)
4320 - it's a Thumb->Arm call and blx is not available, or it's a
4321 Thumb->Arm branch (not bl). A stub is needed in this case,
4322 but only if this call is not through a PLT entry. Indeed,
4323 PLT stubs handle mode switching already. */
4324 if ((!thumb2_bl
4325 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4326 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4327 || (thumb2_bl
4328 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4329 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4330 || (thumb2
4331 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4332 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4333 && (r_type == R_ARM_THM_JUMP19))
4334 || (branch_type == ST_BRANCH_TO_ARM
4335 && (((r_type == R_ARM_THM_CALL
4336 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4337 || (r_type == R_ARM_THM_JUMP24)
4338 || (r_type == R_ARM_THM_JUMP19))
4339 && !use_plt))
4340 {
4341 /* If we need to insert a Thumb-Thumb long branch stub to a
4342 PLT, use one that branches directly to the ARM PLT
4343 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4344 stub, undo this now. */
4345 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4346 {
4347 branch_type = ST_BRANCH_TO_ARM;
4348 branch_offset += PLT_THUMB_STUB_SIZE;
4349 }
4350
4351 if (branch_type == ST_BRANCH_TO_THUMB)
4352 {
4353 /* Thumb to thumb. */
4354 if (!thumb_only)
4355 {
4356 if (input_sec->flags & SEC_ELF_PURECODE)
4357 _bfd_error_handler
4358 (_("%pB(%pA): warning: long branch veneers used in"
4359 " section with SHF_ARM_PURECODE section"
4360 " attribute is only supported for M-profile"
4361 " targets that implement the movw instruction"),
4362 input_bfd, input_sec);
4363
4364 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4365 /* PIC stubs. */
4366 ? ((globals->use_blx
4367 && (r_type == R_ARM_THM_CALL))
4368 /* V5T and above. Stub starts with ARM code, so
4369 we must be able to switch mode before
4370 reaching it, which is only possible for 'bl'
4371 (ie R_ARM_THM_CALL relocation). */
4372 ? arm_stub_long_branch_any_thumb_pic
4373 /* On V4T, use Thumb code only. */
4374 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4375
4376 /* non-PIC stubs. */
4377 : ((globals->use_blx
4378 && (r_type == R_ARM_THM_CALL))
4379 /* V5T and above. */
4380 ? arm_stub_long_branch_any_any
4381 /* V4T. */
4382 : arm_stub_long_branch_v4t_thumb_thumb);
4383 }
4384 else
4385 {
4386 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4387 stub_type = arm_stub_long_branch_thumb2_only_pure;
4388 else
4389 {
4390 if (input_sec->flags & SEC_ELF_PURECODE)
4391 _bfd_error_handler
4392 (_("%pB(%pA): warning: long branch veneers used in"
4393 " section with SHF_ARM_PURECODE section"
4394 " attribute is only supported for M-profile"
4395 " targets that implement the movw instruction"),
4396 input_bfd, input_sec);
4397
4398 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4399 /* PIC stub. */
4400 ? arm_stub_long_branch_thumb_only_pic
4401 /* non-PIC stub. */
4402 : (thumb2 ? arm_stub_long_branch_thumb2_only
4403 : arm_stub_long_branch_thumb_only);
4404 }
4405 }
4406 }
4407 else
4408 {
4409 if (input_sec->flags & SEC_ELF_PURECODE)
4410 _bfd_error_handler
4411 (_("%pB(%pA): warning: long branch veneers used in"
4412 " section with SHF_ARM_PURECODE section"
4413 " attribute is only supported" " for M-profile"
4414 " targets that implement the movw instruction"),
4415 input_bfd, input_sec);
4416
4417 /* Thumb to arm. */
4418 if (sym_sec != NULL
4419 && sym_sec->owner != NULL
4420 && !INTERWORK_FLAG (sym_sec->owner))
4421 {
4422 _bfd_error_handler
4423 (_("%pB(%s): warning: interworking not enabled;"
4424 " first occurrence: %pB: %s call to %s"),
4425 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4426 }
4427
4428 stub_type =
4429 (bfd_link_pic (info) | globals->pic_veneer)
4430 /* PIC stubs. */
4431 ? (r_type == R_ARM_THM_TLS_CALL
4432 /* TLS PIC stubs. */
4433 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4434 : arm_stub_long_branch_v4t_thumb_tls_pic)
4435 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4436 /* V5T PIC and above. */
4437 ? arm_stub_long_branch_any_arm_pic
4438 /* V4T PIC stub. */
4439 : arm_stub_long_branch_v4t_thumb_arm_pic))
4440
4441 /* non-PIC stubs. */
4442 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4443 /* V5T and above. */
4444 ? arm_stub_long_branch_any_any
4445 /* V4T. */
4446 : arm_stub_long_branch_v4t_thumb_arm);
4447
4448 /* Handle v4t short branches. */
4449 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4450 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4451 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4452 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4453 }
4454 }
4455 }
4456 else if (r_type == R_ARM_CALL
4457 || r_type == R_ARM_JUMP24
4458 || r_type == R_ARM_PLT32
4459 || r_type == R_ARM_TLS_CALL)
4460 {
4461 if (input_sec->flags & SEC_ELF_PURECODE)
4462 _bfd_error_handler
4463 (_("%pB(%pA): warning: long branch veneers used in"
4464 " section with SHF_ARM_PURECODE section"
4465 " attribute is only supported for M-profile"
4466 " targets that implement the movw instruction"),
4467 input_bfd, input_sec);
4468 if (branch_type == ST_BRANCH_TO_THUMB)
4469 {
4470 /* Arm to thumb. */
4471
4472 if (sym_sec != NULL
4473 && sym_sec->owner != NULL
4474 && !INTERWORK_FLAG (sym_sec->owner))
4475 {
4476 _bfd_error_handler
4477 (_("%pB(%s): warning: interworking not enabled;"
4478 " first occurrence: %pB: %s call to %s"),
4479 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4480 }
4481
4482 /* We have an extra 2-bytes reach because of
4483 the mode change (bit 24 (H) of BLX encoding). */
4484 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4485 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4486 || (r_type == R_ARM_CALL && !globals->use_blx)
4487 || (r_type == R_ARM_JUMP24)
4488 || (r_type == R_ARM_PLT32))
4489 {
4490 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4491 /* PIC stubs. */
4492 ? ((globals->use_blx)
4493 /* V5T and above. */
4494 ? arm_stub_long_branch_any_thumb_pic
4495 /* V4T stub. */
4496 : arm_stub_long_branch_v4t_arm_thumb_pic)
4497
4498 /* non-PIC stubs. */
4499 : ((globals->use_blx)
4500 /* V5T and above. */
4501 ? arm_stub_long_branch_any_any
4502 /* V4T. */
4503 : arm_stub_long_branch_v4t_arm_thumb);
4504 }
4505 }
4506 else
4507 {
4508 /* Arm to arm. */
4509 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4510 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4511 {
4512 stub_type =
4513 (bfd_link_pic (info) | globals->pic_veneer)
4514 /* PIC stubs. */
4515 ? (r_type == R_ARM_TLS_CALL
4516 /* TLS PIC Stub. */
4517 ? arm_stub_long_branch_any_tls_pic
4518 : (globals->nacl_p
4519 ? arm_stub_long_branch_arm_nacl_pic
4520 : arm_stub_long_branch_any_arm_pic))
4521 /* non-PIC stubs. */
4522 : (globals->nacl_p
4523 ? arm_stub_long_branch_arm_nacl
4524 : arm_stub_long_branch_any_any);
4525 }
4526 }
4527 }
4528
4529 /* If a stub is needed, record the actual destination type. */
4530 if (stub_type != arm_stub_none)
4531 *actual_branch_type = branch_type;
4532
4533 return stub_type;
4534}
4535
4536/* Build a name for an entry in the stub hash table. */
4537
4538static char *
4539elf32_arm_stub_name (const asection *input_section,
4540 const asection *sym_sec,
4541 const struct elf32_arm_link_hash_entry *hash,
4542 const Elf_Internal_Rela *rel,
4543 enum elf32_arm_stub_type stub_type)
4544{
4545 char *stub_name;
4546 bfd_size_type len;
4547
4548 if (hash)
4549 {
4550 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4551 stub_name = (char *) bfd_malloc (len);
4552 if (stub_name != NULL)
4553 sprintf (stub_name, "%08x_%s+%x_%d",
4554 input_section->id & 0xffffffff,
4555 hash->root.root.root.string,
4556 (int) rel->r_addend & 0xffffffff,
4557 (int) stub_type);
4558 }
4559 else
4560 {
4561 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4562 stub_name = (char *) bfd_malloc (len);
4563 if (stub_name != NULL)
4564 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4565 input_section->id & 0xffffffff,
4566 sym_sec->id & 0xffffffff,
4567 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4568 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4569 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4570 (int) rel->r_addend & 0xffffffff,
4571 (int) stub_type);
4572 }
4573
4574 return stub_name;
4575}
4576
4577/* Look up an entry in the stub hash. Stub entries are cached because
4578 creating the stub name takes a bit of time. */
4579
4580static struct elf32_arm_stub_hash_entry *
4581elf32_arm_get_stub_entry (const asection *input_section,
4582 const asection *sym_sec,
4583 struct elf_link_hash_entry *hash,
4584 const Elf_Internal_Rela *rel,
4585 struct elf32_arm_link_hash_table *htab,
4586 enum elf32_arm_stub_type stub_type)
4587{
4588 struct elf32_arm_stub_hash_entry *stub_entry;
4589 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4590 const asection *id_sec;
4591
4592 if ((input_section->flags & SEC_CODE) == 0)
4593 return NULL;
4594
4595 /* If the input section is the CMSE stubs one and it needs a long
4596 branch stub to reach it's final destination, give up with an
4597 error message: this is not supported. See PR ld/24709. */
4598 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4599 {
4600 bfd *output_bfd = htab->obfd;
4601 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4602
4603 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4604 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4605 CMSE_STUB_NAME,
4606 (uint64_t)out_sec->output_section->vma
4607 + out_sec->output_offset,
4608 (uint64_t)sym_sec->output_section->vma
4609 + sym_sec->output_offset
4610 + h->root.root.u.def.value);
4611 /* Exit, rather than leave incompletely processed
4612 relocations. */
4613 xexit(1);
4614 }
4615
4616 /* If this input section is part of a group of sections sharing one
4617 stub section, then use the id of the first section in the group.
4618 Stub names need to include a section id, as there may well be
4619 more than one stub used to reach say, printf, and we need to
4620 distinguish between them. */
4621 BFD_ASSERT (input_section->id <= htab->top_id);
4622 id_sec = htab->stub_group[input_section->id].link_sec;
4623
4624 if (h != NULL && h->stub_cache != NULL
4625 && h->stub_cache->h == h
4626 && h->stub_cache->id_sec == id_sec
4627 && h->stub_cache->stub_type == stub_type)
4628 {
4629 stub_entry = h->stub_cache;
4630 }
4631 else
4632 {
4633 char *stub_name;
4634
4635 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4636 if (stub_name == NULL)
4637 return NULL;
4638
4639 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4640 stub_name, FALSE, FALSE);
4641 if (h != NULL)
4642 h->stub_cache = stub_entry;
4643
4644 free (stub_name);
4645 }
4646
4647 return stub_entry;
4648}
4649
4650/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4651 section. */
4652
4653static bfd_boolean
4654arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4655{
4656 if (stub_type >= max_stub_type)
4657 abort (); /* Should be unreachable. */
4658
4659 switch (stub_type)
4660 {
4661 case arm_stub_cmse_branch_thumb_only:
4662 return TRUE;
4663
4664 default:
4665 return FALSE;
4666 }
4667
4668 abort (); /* Should be unreachable. */
4669}
4670
4671/* Required alignment (as a power of 2) for the dedicated section holding
4672 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4673 with input sections. */
4674
4675static int
4676arm_dedicated_stub_output_section_required_alignment
4677 (enum elf32_arm_stub_type stub_type)
4678{
4679 if (stub_type >= max_stub_type)
4680 abort (); /* Should be unreachable. */
4681
4682 switch (stub_type)
4683 {
4684 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4685 boundary. */
4686 case arm_stub_cmse_branch_thumb_only:
4687 return 5;
4688
4689 default:
4690 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4691 return 0;
4692 }
4693
4694 abort (); /* Should be unreachable. */
4695}
4696
4697/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4698 NULL if veneers of this type are interspersed with input sections. */
4699
4700static const char *
4701arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4702{
4703 if (stub_type >= max_stub_type)
4704 abort (); /* Should be unreachable. */
4705
4706 switch (stub_type)
4707 {
4708 case arm_stub_cmse_branch_thumb_only:
4709 return CMSE_STUB_NAME;
4710
4711 default:
4712 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4713 return NULL;
4714 }
4715
4716 abort (); /* Should be unreachable. */
4717}
4718
4719/* If veneers of type STUB_TYPE should go in a dedicated output section,
4720 returns the address of the hash table field in HTAB holding a pointer to the
4721 corresponding input section. Otherwise, returns NULL. */
4722
4723static asection **
4724arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4725 enum elf32_arm_stub_type stub_type)
4726{
4727 if (stub_type >= max_stub_type)
4728 abort (); /* Should be unreachable. */
4729
4730 switch (stub_type)
4731 {
4732 case arm_stub_cmse_branch_thumb_only:
4733 return &htab->cmse_stub_sec;
4734
4735 default:
4736 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4737 return NULL;
4738 }
4739
4740 abort (); /* Should be unreachable. */
4741}
4742
4743/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4744 is the section that branch into veneer and can be NULL if stub should go in
4745 a dedicated output section. Returns a pointer to the stub section, and the
4746 section to which the stub section will be attached (in *LINK_SEC_P).
4747 LINK_SEC_P may be NULL. */
4748
4749static asection *
4750elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4751 struct elf32_arm_link_hash_table *htab,
4752 enum elf32_arm_stub_type stub_type)
4753{
4754 asection *link_sec, *out_sec, **stub_sec_p;
4755 const char *stub_sec_prefix;
4756 bfd_boolean dedicated_output_section =
4757 arm_dedicated_stub_output_section_required (stub_type);
4758 int align;
4759
4760 if (dedicated_output_section)
4761 {
4762 bfd *output_bfd = htab->obfd;
4763 const char *out_sec_name =
4764 arm_dedicated_stub_output_section_name (stub_type);
4765 link_sec = NULL;
4766 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4767 stub_sec_prefix = out_sec_name;
4768 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4769 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4770 if (out_sec == NULL)
4771 {
4772 _bfd_error_handler (_("no address assigned to the veneers output "
4773 "section %s"), out_sec_name);
4774 return NULL;
4775 }
4776 }
4777 else
4778 {
4779 BFD_ASSERT (section->id <= htab->top_id);
4780 link_sec = htab->stub_group[section->id].link_sec;
4781 BFD_ASSERT (link_sec != NULL);
4782 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4783 if (*stub_sec_p == NULL)
4784 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4785 stub_sec_prefix = link_sec->name;
4786 out_sec = link_sec->output_section;
4787 align = htab->nacl_p ? 4 : 3;
4788 }
4789
4790 if (*stub_sec_p == NULL)
4791 {
4792 size_t namelen;
4793 bfd_size_type len;
4794 char *s_name;
4795
4796 namelen = strlen (stub_sec_prefix);
4797 len = namelen + sizeof (STUB_SUFFIX);
4798 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4799 if (s_name == NULL)
4800 return NULL;
4801
4802 memcpy (s_name, stub_sec_prefix, namelen);
4803 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4804 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4805 align);
4806 if (*stub_sec_p == NULL)
4807 return NULL;
4808
4809 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4810 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4811 | SEC_KEEP;
4812 }
4813
4814 if (!dedicated_output_section)
4815 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4816
4817 if (link_sec_p)
4818 *link_sec_p = link_sec;
4819
4820 return *stub_sec_p;
4821}
4822
4823/* Add a new stub entry to the stub hash. Not all fields of the new
4824 stub entry are initialised. */
4825
4826static struct elf32_arm_stub_hash_entry *
4827elf32_arm_add_stub (const char *stub_name, asection *section,
4828 struct elf32_arm_link_hash_table *htab,
4829 enum elf32_arm_stub_type stub_type)
4830{
4831 asection *link_sec;
4832 asection *stub_sec;
4833 struct elf32_arm_stub_hash_entry *stub_entry;
4834
4835 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4836 stub_type);
4837 if (stub_sec == NULL)
4838 return NULL;
4839
4840 /* Enter this entry into the linker stub hash table. */
4841 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4842 TRUE, FALSE);
4843 if (stub_entry == NULL)
4844 {
4845 if (section == NULL)
4846 section = stub_sec;
4847 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4848 section->owner, stub_name);
4849 return NULL;
4850 }
4851
4852 stub_entry->stub_sec = stub_sec;
4853 stub_entry->stub_offset = (bfd_vma) -1;
4854 stub_entry->id_sec = link_sec;
4855
4856 return stub_entry;
4857}
4858
4859/* Store an Arm insn into an output section not processed by
4860 elf32_arm_write_section. */
4861
4862static void
4863put_arm_insn (struct elf32_arm_link_hash_table * htab,
4864 bfd * output_bfd, bfd_vma val, void * ptr)
4865{
4866 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4867 bfd_putl32 (val, ptr);
4868 else
4869 bfd_putb32 (val, ptr);
4870}
4871
4872/* Store a 16-bit Thumb insn into an output section not processed by
4873 elf32_arm_write_section. */
4874
4875static void
4876put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4877 bfd * output_bfd, bfd_vma val, void * ptr)
4878{
4879 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4880 bfd_putl16 (val, ptr);
4881 else
4882 bfd_putb16 (val, ptr);
4883}
4884
4885/* Store a Thumb2 insn into an output section not processed by
4886 elf32_arm_write_section. */
4887
4888static void
4889put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4890 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4891{
4892 /* T2 instructions are 16-bit streamed. */
4893 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4894 {
4895 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4896 bfd_putl16 ((val & 0xffff), ptr + 2);
4897 }
4898 else
4899 {
4900 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4901 bfd_putb16 ((val & 0xffff), ptr + 2);
4902 }
4903}
4904
4905/* If it's possible to change R_TYPE to a more efficient access
4906 model, return the new reloc type. */
4907
4908static unsigned
4909elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4910 struct elf_link_hash_entry *h)
4911{
4912 int is_local = (h == NULL);
4913
4914 if (bfd_link_pic (info)
4915 || (h && h->root.type == bfd_link_hash_undefweak))
4916 return r_type;
4917
4918 /* We do not support relaxations for Old TLS models. */
4919 switch (r_type)
4920 {
4921 case R_ARM_TLS_GOTDESC:
4922 case R_ARM_TLS_CALL:
4923 case R_ARM_THM_TLS_CALL:
4924 case R_ARM_TLS_DESCSEQ:
4925 case R_ARM_THM_TLS_DESCSEQ:
4926 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4927 }
4928
4929 return r_type;
4930}
4931
4932static bfd_reloc_status_type elf32_arm_final_link_relocate
4933 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4934 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4935 const char *, unsigned char, enum arm_st_branch_type,
4936 struct elf_link_hash_entry *, bfd_boolean *, char **);
4937
4938static unsigned int
4939arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4940{
4941 switch (stub_type)
4942 {
4943 case arm_stub_a8_veneer_b_cond:
4944 case arm_stub_a8_veneer_b:
4945 case arm_stub_a8_veneer_bl:
4946 return 2;
4947
4948 case arm_stub_long_branch_any_any:
4949 case arm_stub_long_branch_v4t_arm_thumb:
4950 case arm_stub_long_branch_thumb_only:
4951 case arm_stub_long_branch_thumb2_only:
4952 case arm_stub_long_branch_thumb2_only_pure:
4953 case arm_stub_long_branch_v4t_thumb_thumb:
4954 case arm_stub_long_branch_v4t_thumb_arm:
4955 case arm_stub_short_branch_v4t_thumb_arm:
4956 case arm_stub_long_branch_any_arm_pic:
4957 case arm_stub_long_branch_any_thumb_pic:
4958 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4959 case arm_stub_long_branch_v4t_arm_thumb_pic:
4960 case arm_stub_long_branch_v4t_thumb_arm_pic:
4961 case arm_stub_long_branch_thumb_only_pic:
4962 case arm_stub_long_branch_any_tls_pic:
4963 case arm_stub_long_branch_v4t_thumb_tls_pic:
4964 case arm_stub_cmse_branch_thumb_only:
4965 case arm_stub_a8_veneer_blx:
4966 return 4;
4967
4968 case arm_stub_long_branch_arm_nacl:
4969 case arm_stub_long_branch_arm_nacl_pic:
4970 return 16;
4971
4972 default:
4973 abort (); /* Should be unreachable. */
4974 }
4975}
4976
4977/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4978 veneering (TRUE) or have their own symbol (FALSE). */
4979
4980static bfd_boolean
4981arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4982{
4983 if (stub_type >= max_stub_type)
4984 abort (); /* Should be unreachable. */
4985
4986 switch (stub_type)
4987 {
4988 case arm_stub_cmse_branch_thumb_only:
4989 return TRUE;
4990
4991 default:
4992 return FALSE;
4993 }
4994
4995 abort (); /* Should be unreachable. */
4996}
4997
4998/* Returns the padding needed for the dedicated section used stubs of type
4999 STUB_TYPE. */
5000
5001static int
5002arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
5003{
5004 if (stub_type >= max_stub_type)
5005 abort (); /* Should be unreachable. */
5006
5007 switch (stub_type)
5008 {
5009 case arm_stub_cmse_branch_thumb_only:
5010 return 32;
5011
5012 default:
5013 return 0;
5014 }
5015
5016 abort (); /* Should be unreachable. */
5017}
5018
5019/* If veneers of type STUB_TYPE should go in a dedicated output section,
5020 returns the address of the hash table field in HTAB holding the offset at
5021 which new veneers should be layed out in the stub section. */
5022
5023static bfd_vma*
5024arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5025 enum elf32_arm_stub_type stub_type)
5026{
5027 switch (stub_type)
5028 {
5029 case arm_stub_cmse_branch_thumb_only:
5030 return &htab->new_cmse_stub_offset;
5031
5032 default:
5033 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5034 return NULL;
5035 }
5036}
5037
5038static bfd_boolean
5039arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5040 void * in_arg)
5041{
5042#define MAXRELOCS 3
5043 bfd_boolean removed_sg_veneer;
5044 struct elf32_arm_stub_hash_entry *stub_entry;
5045 struct elf32_arm_link_hash_table *globals;
5046 struct bfd_link_info *info;
5047 asection *stub_sec;
5048 bfd *stub_bfd;
5049 bfd_byte *loc;
5050 bfd_vma sym_value;
5051 int template_size;
5052 int size;
5053 const insn_sequence *template_sequence;
5054 int i;
5055 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5056 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5057 int nrelocs = 0;
5058 int just_allocated = 0;
5059
5060 /* Massage our args to the form they really have. */
5061 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5062 info = (struct bfd_link_info *) in_arg;
5063
5064 globals = elf32_arm_hash_table (info);
5065 if (globals == NULL)
5066 return FALSE;
5067
5068 stub_sec = stub_entry->stub_sec;
5069
5070 if ((globals->fix_cortex_a8 < 0)
5071 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5072 /* We have to do less-strictly-aligned fixes last. */
5073 return TRUE;
5074
5075 /* Assign a slot at the end of section if none assigned yet. */
5076 if (stub_entry->stub_offset == (bfd_vma) -1)
5077 {
5078 stub_entry->stub_offset = stub_sec->size;
5079 just_allocated = 1;
5080 }
5081 loc = stub_sec->contents + stub_entry->stub_offset;
5082
5083 stub_bfd = stub_sec->owner;
5084
5085 /* This is the address of the stub destination. */
5086 sym_value = (stub_entry->target_value
5087 + stub_entry->target_section->output_offset
5088 + stub_entry->target_section->output_section->vma);
5089
5090 template_sequence = stub_entry->stub_template;
5091 template_size = stub_entry->stub_template_size;
5092
5093 size = 0;
5094 for (i = 0; i < template_size; i++)
5095 {
5096 switch (template_sequence[i].type)
5097 {
5098 case THUMB16_TYPE:
5099 {
5100 bfd_vma data = (bfd_vma) template_sequence[i].data;
5101 if (template_sequence[i].reloc_addend != 0)
5102 {
5103 /* We've borrowed the reloc_addend field to mean we should
5104 insert a condition code into this (Thumb-1 branch)
5105 instruction. See THUMB16_BCOND_INSN. */
5106 BFD_ASSERT ((data & 0xff00) == 0xd000);
5107 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5108 }
5109 bfd_put_16 (stub_bfd, data, loc + size);
5110 size += 2;
5111 }
5112 break;
5113
5114 case THUMB32_TYPE:
5115 bfd_put_16 (stub_bfd,
5116 (template_sequence[i].data >> 16) & 0xffff,
5117 loc + size);
5118 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5119 loc + size + 2);
5120 if (template_sequence[i].r_type != R_ARM_NONE)
5121 {
5122 stub_reloc_idx[nrelocs] = i;
5123 stub_reloc_offset[nrelocs++] = size;
5124 }
5125 size += 4;
5126 break;
5127
5128 case ARM_TYPE:
5129 bfd_put_32 (stub_bfd, template_sequence[i].data,
5130 loc + size);
5131 /* Handle cases where the target is encoded within the
5132 instruction. */
5133 if (template_sequence[i].r_type == R_ARM_JUMP24)
5134 {
5135 stub_reloc_idx[nrelocs] = i;
5136 stub_reloc_offset[nrelocs++] = size;
5137 }
5138 size += 4;
5139 break;
5140
5141 case DATA_TYPE:
5142 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5143 stub_reloc_idx[nrelocs] = i;
5144 stub_reloc_offset[nrelocs++] = size;
5145 size += 4;
5146 break;
5147
5148 default:
5149 BFD_FAIL ();
5150 return FALSE;
5151 }
5152 }
5153
5154 if (just_allocated)
5155 stub_sec->size += size;
5156
5157 /* Stub size has already been computed in arm_size_one_stub. Check
5158 consistency. */
5159 BFD_ASSERT (size == stub_entry->stub_size);
5160
5161 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5162 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5163 sym_value |= 1;
5164
5165 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5166 to relocate in each stub. */
5167 removed_sg_veneer =
5168 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5169 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5170
5171 for (i = 0; i < nrelocs; i++)
5172 {
5173 Elf_Internal_Rela rel;
5174 bfd_boolean unresolved_reloc;
5175 char *error_message;
5176 bfd_vma points_to =
5177 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5178
5179 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5180 rel.r_info = ELF32_R_INFO (0,
5181 template_sequence[stub_reloc_idx[i]].r_type);
5182 rel.r_addend = 0;
5183
5184 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5185 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5186 template should refer back to the instruction after the original
5187 branch. We use target_section as Cortex-A8 erratum workaround stubs
5188 are only generated when both source and target are in the same
5189 section. */
5190 points_to = stub_entry->target_section->output_section->vma
5191 + stub_entry->target_section->output_offset
5192 + stub_entry->source_value;
5193
5194 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5195 (template_sequence[stub_reloc_idx[i]].r_type),
5196 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5197 points_to, info, stub_entry->target_section, "", STT_FUNC,
5198 stub_entry->branch_type,
5199 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5200 &error_message);
5201 }
5202
5203 return TRUE;
5204#undef MAXRELOCS
5205}
5206
5207/* Calculate the template, template size and instruction size for a stub.
5208 Return value is the instruction size. */
5209
5210static unsigned int
5211find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5212 const insn_sequence **stub_template,
5213 int *stub_template_size)
5214{
5215 const insn_sequence *template_sequence = NULL;
5216 int template_size = 0, i;
5217 unsigned int size;
5218
5219 template_sequence = stub_definitions[stub_type].template_sequence;
5220 if (stub_template)
5221 *stub_template = template_sequence;
5222
5223 template_size = stub_definitions[stub_type].template_size;
5224 if (stub_template_size)
5225 *stub_template_size = template_size;
5226
5227 size = 0;
5228 for (i = 0; i < template_size; i++)
5229 {
5230 switch (template_sequence[i].type)
5231 {
5232 case THUMB16_TYPE:
5233 size += 2;
5234 break;
5235
5236 case ARM_TYPE:
5237 case THUMB32_TYPE:
5238 case DATA_TYPE:
5239 size += 4;
5240 break;
5241
5242 default:
5243 BFD_FAIL ();
5244 return 0;
5245 }
5246 }
5247
5248 return size;
5249}
5250
5251/* As above, but don't actually build the stub. Just bump offset so
5252 we know stub section sizes. */
5253
5254static bfd_boolean
5255arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5256 void *in_arg ATTRIBUTE_UNUSED)
5257{
5258 struct elf32_arm_stub_hash_entry *stub_entry;
5259 const insn_sequence *template_sequence;
5260 int template_size, size;
5261
5262 /* Massage our args to the form they really have. */
5263 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5264
5265 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5266 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5267
5268 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5269 &template_size);
5270
5271 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5272 if (stub_entry->stub_template_size)
5273 {
5274 stub_entry->stub_size = size;
5275 stub_entry->stub_template = template_sequence;
5276 stub_entry->stub_template_size = template_size;
5277 }
5278
5279 /* Already accounted for. */
5280 if (stub_entry->stub_offset != (bfd_vma) -1)
5281 return TRUE;
5282
5283 size = (size + 7) & ~7;
5284 stub_entry->stub_sec->size += size;
5285
5286 return TRUE;
5287}
5288
5289/* External entry points for sizing and building linker stubs. */
5290
5291/* Set up various things so that we can make a list of input sections
5292 for each output section included in the link. Returns -1 on error,
5293 0 when no stubs will be needed, and 1 on success. */
5294
5295int
5296elf32_arm_setup_section_lists (bfd *output_bfd,
5297 struct bfd_link_info *info)
5298{
5299 bfd *input_bfd;
5300 unsigned int bfd_count;
5301 unsigned int top_id, top_index;
5302 asection *section;
5303 asection **input_list, **list;
5304 bfd_size_type amt;
5305 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5306
5307 if (htab == NULL)
5308 return 0;
5309 if (! is_elf_hash_table (htab))
5310 return 0;
5311
5312 /* Count the number of input BFDs and find the top input section id. */
5313 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5314 input_bfd != NULL;
5315 input_bfd = input_bfd->link.next)
5316 {
5317 bfd_count += 1;
5318 for (section = input_bfd->sections;
5319 section != NULL;
5320 section = section->next)
5321 {
5322 if (top_id < section->id)
5323 top_id = section->id;
5324 }
5325 }
5326 htab->bfd_count = bfd_count;
5327
5328 amt = sizeof (struct map_stub) * (top_id + 1);
5329 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5330 if (htab->stub_group == NULL)
5331 return -1;
5332 htab->top_id = top_id;
5333
5334 /* We can't use output_bfd->section_count here to find the top output
5335 section index as some sections may have been removed, and
5336 _bfd_strip_section_from_output doesn't renumber the indices. */
5337 for (section = output_bfd->sections, top_index = 0;
5338 section != NULL;
5339 section = section->next)
5340 {
5341 if (top_index < section->index)
5342 top_index = section->index;
5343 }
5344
5345 htab->top_index = top_index;
5346 amt = sizeof (asection *) * (top_index + 1);
5347 input_list = (asection **) bfd_malloc (amt);
5348 htab->input_list = input_list;
5349 if (input_list == NULL)
5350 return -1;
5351
5352 /* For sections we aren't interested in, mark their entries with a
5353 value we can check later. */
5354 list = input_list + top_index;
5355 do
5356 *list = bfd_abs_section_ptr;
5357 while (list-- != input_list);
5358
5359 for (section = output_bfd->sections;
5360 section != NULL;
5361 section = section->next)
5362 {
5363 if ((section->flags & SEC_CODE) != 0)
5364 input_list[section->index] = NULL;
5365 }
5366
5367 return 1;
5368}
5369
5370/* The linker repeatedly calls this function for each input section,
5371 in the order that input sections are linked into output sections.
5372 Build lists of input sections to determine groupings between which
5373 we may insert linker stubs. */
5374
5375void
5376elf32_arm_next_input_section (struct bfd_link_info *info,
5377 asection *isec)
5378{
5379 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5380
5381 if (htab == NULL)
5382 return;
5383
5384 if (isec->output_section->index <= htab->top_index)
5385 {
5386 asection **list = htab->input_list + isec->output_section->index;
5387
5388 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5389 {
5390 /* Steal the link_sec pointer for our list. */
5391#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5392 /* This happens to make the list in reverse order,
5393 which we reverse later. */
5394 PREV_SEC (isec) = *list;
5395 *list = isec;
5396 }
5397 }
5398}
5399
5400/* See whether we can group stub sections together. Grouping stub
5401 sections may result in fewer stubs. More importantly, we need to
5402 put all .init* and .fini* stubs at the end of the .init or
5403 .fini output sections respectively, because glibc splits the
5404 _init and _fini functions into multiple parts. Putting a stub in
5405 the middle of a function is not a good idea. */
5406
5407static void
5408group_sections (struct elf32_arm_link_hash_table *htab,
5409 bfd_size_type stub_group_size,
5410 bfd_boolean stubs_always_after_branch)
5411{
5412 asection **list = htab->input_list;
5413
5414 do
5415 {
5416 asection *tail = *list;
5417 asection *head;
5418
5419 if (tail == bfd_abs_section_ptr)
5420 continue;
5421
5422 /* Reverse the list: we must avoid placing stubs at the
5423 beginning of the section because the beginning of the text
5424 section may be required for an interrupt vector in bare metal
5425 code. */
5426#define NEXT_SEC PREV_SEC
5427 head = NULL;
5428 while (tail != NULL)
5429 {
5430 /* Pop from tail. */
5431 asection *item = tail;
5432 tail = PREV_SEC (item);
5433
5434 /* Push on head. */
5435 NEXT_SEC (item) = head;
5436 head = item;
5437 }
5438
5439 while (head != NULL)
5440 {
5441 asection *curr;
5442 asection *next;
5443 bfd_vma stub_group_start = head->output_offset;
5444 bfd_vma end_of_next;
5445
5446 curr = head;
5447 while (NEXT_SEC (curr) != NULL)
5448 {
5449 next = NEXT_SEC (curr);
5450 end_of_next = next->output_offset + next->size;
5451 if (end_of_next - stub_group_start >= stub_group_size)
5452 /* End of NEXT is too far from start, so stop. */
5453 break;
5454 /* Add NEXT to the group. */
5455 curr = next;
5456 }
5457
5458 /* OK, the size from the start to the start of CURR is less
5459 than stub_group_size and thus can be handled by one stub
5460 section. (Or the head section is itself larger than
5461 stub_group_size, in which case we may be toast.)
5462 We should really be keeping track of the total size of
5463 stubs added here, as stubs contribute to the final output
5464 section size. */
5465 do
5466 {
5467 next = NEXT_SEC (head);
5468 /* Set up this stub group. */
5469 htab->stub_group[head->id].link_sec = curr;
5470 }
5471 while (head != curr && (head = next) != NULL);
5472
5473 /* But wait, there's more! Input sections up to stub_group_size
5474 bytes after the stub section can be handled by it too. */
5475 if (!stubs_always_after_branch)
5476 {
5477 stub_group_start = curr->output_offset + curr->size;
5478
5479 while (next != NULL)
5480 {
5481 end_of_next = next->output_offset + next->size;
5482 if (end_of_next - stub_group_start >= stub_group_size)
5483 /* End of NEXT is too far from stubs, so stop. */
5484 break;
5485 /* Add NEXT to the stub group. */
5486 head = next;
5487 next = NEXT_SEC (head);
5488 htab->stub_group[head->id].link_sec = curr;
5489 }
5490 }
5491 head = next;
5492 }
5493 }
5494 while (list++ != htab->input_list + htab->top_index);
5495
5496 free (htab->input_list);
5497#undef PREV_SEC
5498#undef NEXT_SEC
5499}
5500
5501/* Comparison function for sorting/searching relocations relating to Cortex-A8
5502 erratum fix. */
5503
5504static int
5505a8_reloc_compare (const void *a, const void *b)
5506{
5507 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5508 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5509
5510 if (ra->from < rb->from)
5511 return -1;
5512 else if (ra->from > rb->from)
5513 return 1;
5514 else
5515 return 0;
5516}
5517
5518static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5519 const char *, char **);
5520
5521/* Helper function to scan code for sequences which might trigger the Cortex-A8
5522 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5523 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5524 otherwise. */
5525
5526static bfd_boolean
5527cortex_a8_erratum_scan (bfd *input_bfd,
5528 struct bfd_link_info *info,
5529 struct a8_erratum_fix **a8_fixes_p,
5530 unsigned int *num_a8_fixes_p,
5531 unsigned int *a8_fix_table_size_p,
5532 struct a8_erratum_reloc *a8_relocs,
5533 unsigned int num_a8_relocs,
5534 unsigned prev_num_a8_fixes,
5535 bfd_boolean *stub_changed_p)
5536{
5537 asection *section;
5538 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5539 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5540 unsigned int num_a8_fixes = *num_a8_fixes_p;
5541 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5542
5543 if (htab == NULL)
5544 return FALSE;
5545
5546 for (section = input_bfd->sections;
5547 section != NULL;
5548 section = section->next)
5549 {
5550 bfd_byte *contents = NULL;
5551 struct _arm_elf_section_data *sec_data;
5552 unsigned int span;
5553 bfd_vma base_vma;
5554
5555 if (elf_section_type (section) != SHT_PROGBITS
5556 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5557 || (section->flags & SEC_EXCLUDE) != 0
5558 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5559 || (section->output_section == bfd_abs_section_ptr))
5560 continue;
5561
5562 base_vma = section->output_section->vma + section->output_offset;
5563
5564 if (elf_section_data (section)->this_hdr.contents != NULL)
5565 contents = elf_section_data (section)->this_hdr.contents;
5566 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5567 return TRUE;
5568
5569 sec_data = elf32_arm_section_data (section);
5570
5571 for (span = 0; span < sec_data->mapcount; span++)
5572 {
5573 unsigned int span_start = sec_data->map[span].vma;
5574 unsigned int span_end = (span == sec_data->mapcount - 1)
5575 ? section->size : sec_data->map[span + 1].vma;
5576 unsigned int i;
5577 char span_type = sec_data->map[span].type;
5578 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5579
5580 if (span_type != 't')
5581 continue;
5582
5583 /* Span is entirely within a single 4KB region: skip scanning. */
5584 if (((base_vma + span_start) & ~0xfff)
5585 == ((base_vma + span_end) & ~0xfff))
5586 continue;
5587
5588 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5589
5590 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5591 * The branch target is in the same 4KB region as the
5592 first half of the branch.
5593 * The instruction before the branch is a 32-bit
5594 length non-branch instruction. */
5595 for (i = span_start; i < span_end;)
5596 {
5597 unsigned int insn = bfd_getl16 (&contents[i]);
5598 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5599 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5600
5601 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5602 insn_32bit = TRUE;
5603
5604 if (insn_32bit)
5605 {
5606 /* Load the rest of the insn (in manual-friendly order). */
5607 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5608
5609 /* Encoding T4: B<c>.W. */
5610 is_b = (insn & 0xf800d000) == 0xf0009000;
5611 /* Encoding T1: BL<c>.W. */
5612 is_bl = (insn & 0xf800d000) == 0xf000d000;
5613 /* Encoding T2: BLX<c>.W. */
5614 is_blx = (insn & 0xf800d000) == 0xf000c000;
5615 /* Encoding T3: B<c>.W (not permitted in IT block). */
5616 is_bcc = (insn & 0xf800d000) == 0xf0008000
5617 && (insn & 0x07f00000) != 0x03800000;
5618 }
5619
5620 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5621
5622 if (((base_vma + i) & 0xfff) == 0xffe
5623 && insn_32bit
5624 && is_32bit_branch
5625 && last_was_32bit
5626 && ! last_was_branch)
5627 {
5628 bfd_signed_vma offset = 0;
5629 bfd_boolean force_target_arm = FALSE;
5630 bfd_boolean force_target_thumb = FALSE;
5631 bfd_vma target;
5632 enum elf32_arm_stub_type stub_type = arm_stub_none;
5633 struct a8_erratum_reloc key, *found;
5634 bfd_boolean use_plt = FALSE;
5635
5636 key.from = base_vma + i;
5637 found = (struct a8_erratum_reloc *)
5638 bsearch (&key, a8_relocs, num_a8_relocs,
5639 sizeof (struct a8_erratum_reloc),
5640 &a8_reloc_compare);
5641
5642 if (found)
5643 {
5644 char *error_message = NULL;
5645 struct elf_link_hash_entry *entry;
5646
5647 /* We don't care about the error returned from this
5648 function, only if there is glue or not. */
5649 entry = find_thumb_glue (info, found->sym_name,
5650 &error_message);
5651
5652 if (entry)
5653 found->non_a8_stub = TRUE;
5654
5655 /* Keep a simpler condition, for the sake of clarity. */
5656 if (htab->root.splt != NULL && found->hash != NULL
5657 && found->hash->root.plt.offset != (bfd_vma) -1)
5658 use_plt = TRUE;
5659
5660 if (found->r_type == R_ARM_THM_CALL)
5661 {
5662 if (found->branch_type == ST_BRANCH_TO_ARM
5663 || use_plt)
5664 force_target_arm = TRUE;
5665 else
5666 force_target_thumb = TRUE;
5667 }
5668 }
5669
5670 /* Check if we have an offending branch instruction. */
5671
5672 if (found && found->non_a8_stub)
5673 /* We've already made a stub for this instruction, e.g.
5674 it's a long branch or a Thumb->ARM stub. Assume that
5675 stub will suffice to work around the A8 erratum (see
5676 setting of always_after_branch above). */
5677 ;
5678 else if (is_bcc)
5679 {
5680 offset = (insn & 0x7ff) << 1;
5681 offset |= (insn & 0x3f0000) >> 4;
5682 offset |= (insn & 0x2000) ? 0x40000 : 0;
5683 offset |= (insn & 0x800) ? 0x80000 : 0;
5684 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5685 if (offset & 0x100000)
5686 offset |= ~ ((bfd_signed_vma) 0xfffff);
5687 stub_type = arm_stub_a8_veneer_b_cond;
5688 }
5689 else if (is_b || is_bl || is_blx)
5690 {
5691 int s = (insn & 0x4000000) != 0;
5692 int j1 = (insn & 0x2000) != 0;
5693 int j2 = (insn & 0x800) != 0;
5694 int i1 = !(j1 ^ s);
5695 int i2 = !(j2 ^ s);
5696
5697 offset = (insn & 0x7ff) << 1;
5698 offset |= (insn & 0x3ff0000) >> 4;
5699 offset |= i2 << 22;
5700 offset |= i1 << 23;
5701 offset |= s << 24;
5702 if (offset & 0x1000000)
5703 offset |= ~ ((bfd_signed_vma) 0xffffff);
5704
5705 if (is_blx)
5706 offset &= ~ ((bfd_signed_vma) 3);
5707
5708 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5709 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5710 }
5711
5712 if (stub_type != arm_stub_none)
5713 {
5714 bfd_vma pc_for_insn = base_vma + i + 4;
5715
5716 /* The original instruction is a BL, but the target is
5717 an ARM instruction. If we were not making a stub,
5718 the BL would have been converted to a BLX. Use the
5719 BLX stub instead in that case. */
5720 if (htab->use_blx && force_target_arm
5721 && stub_type == arm_stub_a8_veneer_bl)
5722 {
5723 stub_type = arm_stub_a8_veneer_blx;
5724 is_blx = TRUE;
5725 is_bl = FALSE;
5726 }
5727 /* Conversely, if the original instruction was
5728 BLX but the target is Thumb mode, use the BL
5729 stub. */
5730 else if (force_target_thumb
5731 && stub_type == arm_stub_a8_veneer_blx)
5732 {
5733 stub_type = arm_stub_a8_veneer_bl;
5734 is_blx = FALSE;
5735 is_bl = TRUE;
5736 }
5737
5738 if (is_blx)
5739 pc_for_insn &= ~ ((bfd_vma) 3);
5740
5741 /* If we found a relocation, use the proper destination,
5742 not the offset in the (unrelocated) instruction.
5743 Note this is always done if we switched the stub type
5744 above. */
5745 if (found)
5746 offset =
5747 (bfd_signed_vma) (found->destination - pc_for_insn);
5748
5749 /* If the stub will use a Thumb-mode branch to a
5750 PLT target, redirect it to the preceding Thumb
5751 entry point. */
5752 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5753 offset -= PLT_THUMB_STUB_SIZE;
5754
5755 target = pc_for_insn + offset;
5756
5757 /* The BLX stub is ARM-mode code. Adjust the offset to
5758 take the different PC value (+8 instead of +4) into
5759 account. */
5760 if (stub_type == arm_stub_a8_veneer_blx)
5761 offset += 4;
5762
5763 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5764 {
5765 char *stub_name = NULL;
5766
5767 if (num_a8_fixes == a8_fix_table_size)
5768 {
5769 a8_fix_table_size *= 2;
5770 a8_fixes = (struct a8_erratum_fix *)
5771 bfd_realloc (a8_fixes,
5772 sizeof (struct a8_erratum_fix)
5773 * a8_fix_table_size);
5774 }
5775
5776 if (num_a8_fixes < prev_num_a8_fixes)
5777 {
5778 /* If we're doing a subsequent scan,
5779 check if we've found the same fix as
5780 before, and try and reuse the stub
5781 name. */
5782 stub_name = a8_fixes[num_a8_fixes].stub_name;
5783 if ((a8_fixes[num_a8_fixes].section != section)
5784 || (a8_fixes[num_a8_fixes].offset != i))
5785 {
5786 free (stub_name);
5787 stub_name = NULL;
5788 *stub_changed_p = TRUE;
5789 }
5790 }
5791
5792 if (!stub_name)
5793 {
5794 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5795 if (stub_name != NULL)
5796 sprintf (stub_name, "%x:%x", section->id, i);
5797 }
5798
5799 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5800 a8_fixes[num_a8_fixes].section = section;
5801 a8_fixes[num_a8_fixes].offset = i;
5802 a8_fixes[num_a8_fixes].target_offset =
5803 target - base_vma;
5804 a8_fixes[num_a8_fixes].orig_insn = insn;
5805 a8_fixes[num_a8_fixes].stub_name = stub_name;
5806 a8_fixes[num_a8_fixes].stub_type = stub_type;
5807 a8_fixes[num_a8_fixes].branch_type =
5808 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5809
5810 num_a8_fixes++;
5811 }
5812 }
5813 }
5814
5815 i += insn_32bit ? 4 : 2;
5816 last_was_32bit = insn_32bit;
5817 last_was_branch = is_32bit_branch;
5818 }
5819 }
5820
5821 if (elf_section_data (section)->this_hdr.contents == NULL)
5822 free (contents);
5823 }
5824
5825 *a8_fixes_p = a8_fixes;
5826 *num_a8_fixes_p = num_a8_fixes;
5827 *a8_fix_table_size_p = a8_fix_table_size;
5828
5829 return FALSE;
5830}
5831
5832/* Create or update a stub entry depending on whether the stub can already be
5833 found in HTAB. The stub is identified by:
5834 - its type STUB_TYPE
5835 - its source branch (note that several can share the same stub) whose
5836 section and relocation (if any) are given by SECTION and IRELA
5837 respectively
5838 - its target symbol whose input section, hash, name, value and branch type
5839 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5840 respectively
5841
5842 If found, the value of the stub's target symbol is updated from SYM_VALUE
5843 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5844 TRUE and the stub entry is initialized.
5845
5846 Returns the stub that was created or updated, or NULL if an error
5847 occurred. */
5848
5849static struct elf32_arm_stub_hash_entry *
5850elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5851 enum elf32_arm_stub_type stub_type, asection *section,
5852 Elf_Internal_Rela *irela, asection *sym_sec,
5853 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5854 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5855 bfd_boolean *new_stub)
5856{
5857 const asection *id_sec;
5858 char *stub_name;
5859 struct elf32_arm_stub_hash_entry *stub_entry;
5860 unsigned int r_type;
5861 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5862
5863 BFD_ASSERT (stub_type != arm_stub_none);
5864 *new_stub = FALSE;
5865
5866 if (sym_claimed)
5867 stub_name = sym_name;
5868 else
5869 {
5870 BFD_ASSERT (irela);
5871 BFD_ASSERT (section);
5872 BFD_ASSERT (section->id <= htab->top_id);
5873
5874 /* Support for grouping stub sections. */
5875 id_sec = htab->stub_group[section->id].link_sec;
5876
5877 /* Get the name of this stub. */
5878 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5879 stub_type);
5880 if (!stub_name)
5881 return NULL;
5882 }
5883
5884 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5885 FALSE);
5886 /* The proper stub has already been created, just update its value. */
5887 if (stub_entry != NULL)
5888 {
5889 if (!sym_claimed)
5890 free (stub_name);
5891 stub_entry->target_value = sym_value;
5892 return stub_entry;
5893 }
5894
5895 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5896 if (stub_entry == NULL)
5897 {
5898 if (!sym_claimed)
5899 free (stub_name);
5900 return NULL;
5901 }
5902
5903 stub_entry->target_value = sym_value;
5904 stub_entry->target_section = sym_sec;
5905 stub_entry->stub_type = stub_type;
5906 stub_entry->h = hash;
5907 stub_entry->branch_type = branch_type;
5908
5909 if (sym_claimed)
5910 stub_entry->output_name = sym_name;
5911 else
5912 {
5913 if (sym_name == NULL)
5914 sym_name = "unnamed";
5915 stub_entry->output_name = (char *)
5916 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5917 + strlen (sym_name));
5918 if (stub_entry->output_name == NULL)
5919 {
5920 free (stub_name);
5921 return NULL;
5922 }
5923
5924 /* For historical reasons, use the existing names for ARM-to-Thumb and
5925 Thumb-to-ARM stubs. */
5926 r_type = ELF32_R_TYPE (irela->r_info);
5927 if ((r_type == (unsigned int) R_ARM_THM_CALL
5928 || r_type == (unsigned int) R_ARM_THM_JUMP24
5929 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5930 && branch_type == ST_BRANCH_TO_ARM)
5931 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5932 else if ((r_type == (unsigned int) R_ARM_CALL
5933 || r_type == (unsigned int) R_ARM_JUMP24)
5934 && branch_type == ST_BRANCH_TO_THUMB)
5935 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5936 else
5937 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5938 }
5939
5940 *new_stub = TRUE;
5941 return stub_entry;
5942}
5943
5944/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5945 gateway veneer to transition from non secure to secure state and create them
5946 accordingly.
5947
5948 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5949 defines the conditions that govern Secure Gateway veneer creation for a
5950 given symbol <SYM> as follows:
5951 - it has function type
5952 - it has non local binding
5953 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5954 same type, binding and value as <SYM> (called normal symbol).
5955 An entry function can handle secure state transition itself in which case
5956 its special symbol would have a different value from the normal symbol.
5957
5958 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5959 entry mapping while HTAB gives the name to hash entry mapping.
5960 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5961 created.
5962
5963 The return value gives whether a stub failed to be allocated. */
5964
5965static bfd_boolean
5966cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5967 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5968 int *cmse_stub_created)
5969{
5970 const struct elf_backend_data *bed;
5971 Elf_Internal_Shdr *symtab_hdr;
5972 unsigned i, j, sym_count, ext_start;
5973 Elf_Internal_Sym *cmse_sym, *local_syms;
5974 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5975 enum arm_st_branch_type branch_type;
5976 char *sym_name, *lsym_name;
5977 bfd_vma sym_value;
5978 asection *section;
5979 struct elf32_arm_stub_hash_entry *stub_entry;
5980 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5981
5982 bed = get_elf_backend_data (input_bfd);
5983 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5984 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5985 ext_start = symtab_hdr->sh_info;
5986 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5987 && out_attr[Tag_CPU_arch_profile].i == 'M');
5988
5989 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5990 if (local_syms == NULL)
5991 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5992 symtab_hdr->sh_info, 0, NULL, NULL,
5993 NULL);
5994 if (symtab_hdr->sh_info && local_syms == NULL)
5995 return FALSE;
5996
5997 /* Scan symbols. */
5998 for (i = 0; i < sym_count; i++)
5999 {
6000 cmse_invalid = FALSE;
6001
6002 if (i < ext_start)
6003 {
6004 cmse_sym = &local_syms[i];
6005 /* Not a special symbol. */
6006 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
6007 continue;
6008 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6009 symtab_hdr->sh_link,
6010 cmse_sym->st_name);
6011 /* Special symbol with local binding. */
6012 cmse_invalid = TRUE;
6013 }
6014 else
6015 {
6016 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
6017 sym_name = (char *) cmse_hash->root.root.root.string;
6018
6019 /* Not a special symbol. */
6020 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
6021 continue;
6022
6023 /* Special symbol has incorrect binding or type. */
6024 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6025 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6026 || cmse_hash->root.type != STT_FUNC)
6027 cmse_invalid = TRUE;
6028 }
6029
6030 if (!is_v8m)
6031 {
6032 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6033 "ARMv8-M architecture or later"),
6034 input_bfd, sym_name);
6035 is_v8m = TRUE; /* Avoid multiple warning. */
6036 ret = FALSE;
6037 }
6038
6039 if (cmse_invalid)
6040 {
6041 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6042 " a global or weak function symbol"),
6043 input_bfd, sym_name);
6044 ret = FALSE;
6045 if (i < ext_start)
6046 continue;
6047 }
6048
6049 sym_name += strlen (CMSE_PREFIX);
6050 hash = (struct elf32_arm_link_hash_entry *)
6051 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6052
6053 /* No associated normal symbol or it is neither global nor weak. */
6054 if (!hash
6055 || (hash->root.root.type != bfd_link_hash_defined
6056 && hash->root.root.type != bfd_link_hash_defweak)
6057 || hash->root.type != STT_FUNC)
6058 {
6059 /* Initialize here to avoid warning about use of possibly
6060 uninitialized variable. */
6061 j = 0;
6062
6063 if (!hash)
6064 {
6065 /* Searching for a normal symbol with local binding. */
6066 for (; j < ext_start; j++)
6067 {
6068 lsym_name =
6069 bfd_elf_string_from_elf_section (input_bfd,
6070 symtab_hdr->sh_link,
6071 local_syms[j].st_name);
6072 if (!strcmp (sym_name, lsym_name))
6073 break;
6074 }
6075 }
6076
6077 if (hash || j < ext_start)
6078 {
6079 _bfd_error_handler
6080 (_("%pB: invalid standard symbol `%s'; it must be "
6081 "a global or weak function symbol"),
6082 input_bfd, sym_name);
6083 }
6084 else
6085 _bfd_error_handler
6086 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6087 ret = FALSE;
6088 if (!hash)
6089 continue;
6090 }
6091
6092 sym_value = hash->root.root.u.def.value;
6093 section = hash->root.root.u.def.section;
6094
6095 if (cmse_hash->root.root.u.def.section != section)
6096 {
6097 _bfd_error_handler
6098 (_("%pB: `%s' and its special symbol are in different sections"),
6099 input_bfd, sym_name);
6100 ret = FALSE;
6101 }
6102 if (cmse_hash->root.root.u.def.value != sym_value)
6103 continue; /* Ignore: could be an entry function starting with SG. */
6104
6105 /* If this section is a link-once section that will be discarded, then
6106 don't create any stubs. */
6107 if (section->output_section == NULL)
6108 {
6109 _bfd_error_handler
6110 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6111 continue;
6112 }
6113
6114 if (hash->root.size == 0)
6115 {
6116 _bfd_error_handler
6117 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6118 ret = FALSE;
6119 }
6120
6121 if (!ret)
6122 continue;
6123 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6124 stub_entry
6125 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6126 NULL, NULL, section, hash, sym_name,
6127 sym_value, branch_type, &new_stub);
6128
6129 if (stub_entry == NULL)
6130 ret = FALSE;
6131 else
6132 {
6133 BFD_ASSERT (new_stub);
6134 (*cmse_stub_created)++;
6135 }
6136 }
6137
6138 if (!symtab_hdr->contents)
6139 free (local_syms);
6140 return ret;
6141}
6142
6143/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6144 code entry function, ie can be called from non secure code without using a
6145 veneer. */
6146
6147static bfd_boolean
6148cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6149{
6150 bfd_byte contents[4];
6151 uint32_t first_insn;
6152 asection *section;
6153 file_ptr offset;
6154 bfd *abfd;
6155
6156 /* Defined symbol of function type. */
6157 if (hash->root.root.type != bfd_link_hash_defined
6158 && hash->root.root.type != bfd_link_hash_defweak)
6159 return FALSE;
6160 if (hash->root.type != STT_FUNC)
6161 return FALSE;
6162
6163 /* Read first instruction. */
6164 section = hash->root.root.u.def.section;
6165 abfd = section->owner;
6166 offset = hash->root.root.u.def.value - section->vma;
6167 if (!bfd_get_section_contents (abfd, section, contents, offset,
6168 sizeof (contents)))
6169 return FALSE;
6170
6171 first_insn = bfd_get_32 (abfd, contents);
6172
6173 /* Starts by SG instruction. */
6174 return first_insn == 0xe97fe97f;
6175}
6176
6177/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6178 secure gateway veneers (ie. the veneers was not in the input import library)
6179 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6180
6181static bfd_boolean
6182arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6183{
6184 struct elf32_arm_stub_hash_entry *stub_entry;
6185 struct bfd_link_info *info;
6186
6187 /* Massage our args to the form they really have. */
6188 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6189 info = (struct bfd_link_info *) gen_info;
6190
6191 if (info->out_implib_bfd)
6192 return TRUE;
6193
6194 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6195 return TRUE;
6196
6197 if (stub_entry->stub_offset == (bfd_vma) -1)
6198 _bfd_error_handler (" %s", stub_entry->output_name);
6199
6200 return TRUE;
6201}
6202
6203/* Set offset of each secure gateway veneers so that its address remain
6204 identical to the one in the input import library referred by
6205 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6206 (present in input import library but absent from the executable being
6207 linked) or if new veneers appeared and there is no output import library
6208 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6209 number of secure gateway veneers found in the input import library.
6210
6211 The function returns whether an error occurred. If no error occurred,
6212 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6213 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6214 veneer observed set for new veneers to be layed out after. */
6215
6216static bfd_boolean
6217set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6218 struct elf32_arm_link_hash_table *htab,
6219 int *cmse_stub_created)
6220{
6221 long symsize;
6222 char *sym_name;
6223 flagword flags;
6224 long i, symcount;
6225 bfd *in_implib_bfd;
6226 asection *stub_out_sec;
6227 bfd_boolean ret = TRUE;
6228 Elf_Internal_Sym *intsym;
6229 const char *out_sec_name;
6230 bfd_size_type cmse_stub_size;
6231 asymbol **sympp = NULL, *sym;
6232 struct elf32_arm_link_hash_entry *hash;
6233 const insn_sequence *cmse_stub_template;
6234 struct elf32_arm_stub_hash_entry *stub_entry;
6235 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6236 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6237 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6238
6239 /* No input secure gateway import library. */
6240 if (!htab->in_implib_bfd)
6241 return TRUE;
6242
6243 in_implib_bfd = htab->in_implib_bfd;
6244 if (!htab->cmse_implib)
6245 {
6246 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6247 "Gateway import libraries"), in_implib_bfd);
6248 return FALSE;
6249 }
6250
6251 /* Get symbol table size. */
6252 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6253 if (symsize < 0)
6254 return FALSE;
6255
6256 /* Read in the input secure gateway import library's symbol table. */
6257 sympp = (asymbol **) xmalloc (symsize);
6258 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6259 if (symcount < 0)
6260 {
6261 ret = FALSE;
6262 goto free_sym_buf;
6263 }
6264
6265 htab->new_cmse_stub_offset = 0;
6266 cmse_stub_size =
6267 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6268 &cmse_stub_template,
6269 &cmse_stub_template_size);
6270 out_sec_name =
6271 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6272 stub_out_sec =
6273 bfd_get_section_by_name (htab->obfd, out_sec_name);
6274 if (stub_out_sec != NULL)
6275 cmse_stub_sec_vma = stub_out_sec->vma;
6276
6277 /* Set addresses of veneers mentionned in input secure gateway import
6278 library's symbol table. */
6279 for (i = 0; i < symcount; i++)
6280 {
6281 sym = sympp[i];
6282 flags = sym->flags;
6283 sym_name = (char *) bfd_asymbol_name (sym);
6284 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6285
6286 if (sym->section != bfd_abs_section_ptr
6287 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6288 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6289 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6290 != ST_BRANCH_TO_THUMB))
6291 {
6292 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6293 "symbol should be absolute, global and "
6294 "refer to Thumb functions"),
6295 in_implib_bfd, sym_name);
6296 ret = FALSE;
6297 continue;
6298 }
6299
6300 veneer_value = bfd_asymbol_value (sym);
6301 stub_offset = veneer_value - cmse_stub_sec_vma;
6302 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6303 FALSE, FALSE);
6304 hash = (struct elf32_arm_link_hash_entry *)
6305 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6306
6307 /* Stub entry should have been created by cmse_scan or the symbol be of
6308 a secure function callable from non secure code. */
6309 if (!stub_entry && !hash)
6310 {
6311 bfd_boolean new_stub;
6312
6313 _bfd_error_handler
6314 (_("entry function `%s' disappeared from secure code"), sym_name);
6315 hash = (struct elf32_arm_link_hash_entry *)
6316 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6317 stub_entry
6318 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6319 NULL, NULL, bfd_abs_section_ptr, hash,
6320 sym_name, veneer_value,
6321 ST_BRANCH_TO_THUMB, &new_stub);
6322 if (stub_entry == NULL)
6323 ret = FALSE;
6324 else
6325 {
6326 BFD_ASSERT (new_stub);
6327 new_cmse_stubs_created++;
6328 (*cmse_stub_created)++;
6329 }
6330 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6331 stub_entry->stub_offset = stub_offset;
6332 }
6333 /* Symbol found is not callable from non secure code. */
6334 else if (!stub_entry)
6335 {
6336 if (!cmse_entry_fct_p (hash))
6337 {
6338 _bfd_error_handler (_("`%s' refers to a non entry function"),
6339 sym_name);
6340 ret = FALSE;
6341 }
6342 continue;
6343 }
6344 else
6345 {
6346 /* Only stubs for SG veneers should have been created. */
6347 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6348
6349 /* Check visibility hasn't changed. */
6350 if (!!(flags & BSF_GLOBAL)
6351 != (hash->root.root.type == bfd_link_hash_defined))
6352 _bfd_error_handler
6353 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6354 sym_name);
6355
6356 stub_entry->stub_offset = stub_offset;
6357 }
6358
6359 /* Size should match that of a SG veneer. */
6360 if (intsym->st_size != cmse_stub_size)
6361 {
6362 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6363 in_implib_bfd, sym_name);
6364 ret = FALSE;
6365 }
6366
6367 /* Previous veneer address is before current SG veneer section. */
6368 if (veneer_value < cmse_stub_sec_vma)
6369 {
6370 /* Avoid offset underflow. */
6371 if (stub_entry)
6372 stub_entry->stub_offset = 0;
6373 stub_offset = 0;
6374 ret = FALSE;
6375 }
6376
6377 /* Complain if stub offset not a multiple of stub size. */
6378 if (stub_offset % cmse_stub_size)
6379 {
6380 _bfd_error_handler
6381 (_("offset of veneer for entry function `%s' not a multiple of "
6382 "its size"), sym_name);
6383 ret = FALSE;
6384 }
6385
6386 if (!ret)
6387 continue;
6388
6389 new_cmse_stubs_created--;
6390 if (veneer_value < cmse_stub_array_start)
6391 cmse_stub_array_start = veneer_value;
6392 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6393 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6394 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6395 }
6396
6397 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6398 {
6399 BFD_ASSERT (new_cmse_stubs_created > 0);
6400 _bfd_error_handler
6401 (_("new entry function(s) introduced but no output import library "
6402 "specified:"));
6403 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6404 }
6405
6406 if (cmse_stub_array_start != cmse_stub_sec_vma)
6407 {
6408 _bfd_error_handler
6409 (_("start address of `%s' is different from previous link"),
6410 out_sec_name);
6411 ret = FALSE;
6412 }
6413
6414free_sym_buf:
6415 free (sympp);
6416 return ret;
6417}
6418
6419/* Determine and set the size of the stub section for a final link.
6420
6421 The basic idea here is to examine all the relocations looking for
6422 PC-relative calls to a target that is unreachable with a "bl"
6423 instruction. */
6424
6425bfd_boolean
6426elf32_arm_size_stubs (bfd *output_bfd,
6427 bfd *stub_bfd,
6428 struct bfd_link_info *info,
6429 bfd_signed_vma group_size,
6430 asection * (*add_stub_section) (const char *, asection *,
6431 asection *,
6432 unsigned int),
6433 void (*layout_sections_again) (void))
6434{
6435 bfd_boolean ret = TRUE;
6436 obj_attribute *out_attr;
6437 int cmse_stub_created = 0;
6438 bfd_size_type stub_group_size;
6439 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6440 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6441 struct a8_erratum_fix *a8_fixes = NULL;
6442 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6443 struct a8_erratum_reloc *a8_relocs = NULL;
6444 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6445
6446 if (htab == NULL)
6447 return FALSE;
6448
6449 if (htab->fix_cortex_a8)
6450 {
6451 a8_fixes = (struct a8_erratum_fix *)
6452 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6453 a8_relocs = (struct a8_erratum_reloc *)
6454 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6455 }
6456
6457 /* Propagate mach to stub bfd, because it may not have been
6458 finalized when we created stub_bfd. */
6459 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6460 bfd_get_mach (output_bfd));
6461
6462 /* Stash our params away. */
6463 htab->stub_bfd = stub_bfd;
6464 htab->add_stub_section = add_stub_section;
6465 htab->layout_sections_again = layout_sections_again;
6466 stubs_always_after_branch = group_size < 0;
6467
6468 out_attr = elf_known_obj_attributes_proc (output_bfd);
6469 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6470
6471 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6472 as the first half of a 32-bit branch straddling two 4K pages. This is a
6473 crude way of enforcing that. */
6474 if (htab->fix_cortex_a8)
6475 stubs_always_after_branch = 1;
6476
6477 if (group_size < 0)
6478 stub_group_size = -group_size;
6479 else
6480 stub_group_size = group_size;
6481
6482 if (stub_group_size == 1)
6483 {
6484 /* Default values. */
6485 /* Thumb branch range is +-4MB has to be used as the default
6486 maximum size (a given section can contain both ARM and Thumb
6487 code, so the worst case has to be taken into account).
6488
6489 This value is 24K less than that, which allows for 2025
6490 12-byte stubs. If we exceed that, then we will fail to link.
6491 The user will have to relink with an explicit group size
6492 option. */
6493 stub_group_size = 4170000;
6494 }
6495
6496 group_sections (htab, stub_group_size, stubs_always_after_branch);
6497
6498 /* If we're applying the cortex A8 fix, we need to determine the
6499 program header size now, because we cannot change it later --
6500 that could alter section placements. Notice the A8 erratum fix
6501 ends up requiring the section addresses to remain unchanged
6502 modulo the page size. That's something we cannot represent
6503 inside BFD, and we don't want to force the section alignment to
6504 be the page size. */
6505 if (htab->fix_cortex_a8)
6506 (*htab->layout_sections_again) ();
6507
6508 while (1)
6509 {
6510 bfd *input_bfd;
6511 unsigned int bfd_indx;
6512 asection *stub_sec;
6513 enum elf32_arm_stub_type stub_type;
6514 bfd_boolean stub_changed = FALSE;
6515 unsigned prev_num_a8_fixes = num_a8_fixes;
6516
6517 num_a8_fixes = 0;
6518 for (input_bfd = info->input_bfds, bfd_indx = 0;
6519 input_bfd != NULL;
6520 input_bfd = input_bfd->link.next, bfd_indx++)
6521 {
6522 Elf_Internal_Shdr *symtab_hdr;
6523 asection *section;
6524 Elf_Internal_Sym *local_syms = NULL;
6525
6526 if (!is_arm_elf (input_bfd)
6527 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6528 continue;
6529
6530 num_a8_relocs = 0;
6531
6532 /* We'll need the symbol table in a second. */
6533 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6534 if (symtab_hdr->sh_info == 0)
6535 continue;
6536
6537 /* Limit scan of symbols to object file whose profile is
6538 Microcontroller to not hinder performance in the general case. */
6539 if (m_profile && first_veneer_scan)
6540 {
6541 struct elf_link_hash_entry **sym_hashes;
6542
6543 sym_hashes = elf_sym_hashes (input_bfd);
6544 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6545 &cmse_stub_created))
6546 goto error_ret_free_local;
6547
6548 if (cmse_stub_created != 0)
6549 stub_changed = TRUE;
6550 }
6551
6552 /* Walk over each section attached to the input bfd. */
6553 for (section = input_bfd->sections;
6554 section != NULL;
6555 section = section->next)
6556 {
6557 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6558
6559 /* If there aren't any relocs, then there's nothing more
6560 to do. */
6561 if ((section->flags & SEC_RELOC) == 0
6562 || section->reloc_count == 0
6563 || (section->flags & SEC_CODE) == 0)
6564 continue;
6565
6566 /* If this section is a link-once section that will be
6567 discarded, then don't create any stubs. */
6568 if (section->output_section == NULL
6569 || section->output_section->owner != output_bfd)
6570 continue;
6571
6572 /* Get the relocs. */
6573 internal_relocs
6574 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6575 NULL, info->keep_memory);
6576 if (internal_relocs == NULL)
6577 goto error_ret_free_local;
6578
6579 /* Now examine each relocation. */
6580 irela = internal_relocs;
6581 irelaend = irela + section->reloc_count;
6582 for (; irela < irelaend; irela++)
6583 {
6584 unsigned int r_type, r_indx;
6585 asection *sym_sec;
6586 bfd_vma sym_value;
6587 bfd_vma destination;
6588 struct elf32_arm_link_hash_entry *hash;
6589 const char *sym_name;
6590 unsigned char st_type;
6591 enum arm_st_branch_type branch_type;
6592 bfd_boolean created_stub = FALSE;
6593
6594 r_type = ELF32_R_TYPE (irela->r_info);
6595 r_indx = ELF32_R_SYM (irela->r_info);
6596
6597 if (r_type >= (unsigned int) R_ARM_max)
6598 {
6599 bfd_set_error (bfd_error_bad_value);
6600 error_ret_free_internal:
6601 if (elf_section_data (section)->relocs == NULL)
6602 free (internal_relocs);
6603 /* Fall through. */
6604 error_ret_free_local:
6605 if (local_syms != NULL
6606 && (symtab_hdr->contents
6607 != (unsigned char *) local_syms))
6608 free (local_syms);
6609 return FALSE;
6610 }
6611
6612 hash = NULL;
6613 if (r_indx >= symtab_hdr->sh_info)
6614 hash = elf32_arm_hash_entry
6615 (elf_sym_hashes (input_bfd)
6616 [r_indx - symtab_hdr->sh_info]);
6617
6618 /* Only look for stubs on branch instructions, or
6619 non-relaxed TLSCALL */
6620 if ((r_type != (unsigned int) R_ARM_CALL)
6621 && (r_type != (unsigned int) R_ARM_THM_CALL)
6622 && (r_type != (unsigned int) R_ARM_JUMP24)
6623 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6624 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6625 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6626 && (r_type != (unsigned int) R_ARM_PLT32)
6627 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6628 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6629 && r_type == elf32_arm_tls_transition
6630 (info, r_type, &hash->root)
6631 && ((hash ? hash->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd)[r_indx]))
6634 & GOT_TLS_GDESC) != 0))
6635 continue;
6636
6637 /* Now determine the call target, its name, value,
6638 section. */
6639 sym_sec = NULL;
6640 sym_value = 0;
6641 destination = 0;
6642 sym_name = NULL;
6643
6644 if (r_type == (unsigned int) R_ARM_TLS_CALL
6645 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6646 {
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6649 with the symbol. */
6650 BFD_ASSERT (htab->tls_trampoline > 0);
6651 sym_sec = htab->root.splt;
6652 sym_value = htab->tls_trampoline;
6653 hash = 0;
6654 st_type = STT_FUNC;
6655 branch_type = ST_BRANCH_TO_ARM;
6656 }
6657 else if (!hash)
6658 {
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym *sym;
6661
6662 if (local_syms == NULL)
6663 {
6664 local_syms
6665 = (Elf_Internal_Sym *) symtab_hdr->contents;
6666 if (local_syms == NULL)
6667 local_syms
6668 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6669 symtab_hdr->sh_info, 0,
6670 NULL, NULL, NULL);
6671 if (local_syms == NULL)
6672 goto error_ret_free_internal;
6673 }
6674
6675 sym = local_syms + r_indx;
6676 if (sym->st_shndx == SHN_UNDEF)
6677 sym_sec = bfd_und_section_ptr;
6678 else if (sym->st_shndx == SHN_ABS)
6679 sym_sec = bfd_abs_section_ptr;
6680 else if (sym->st_shndx == SHN_COMMON)
6681 sym_sec = bfd_com_section_ptr;
6682 else
6683 sym_sec =
6684 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6685
6686 if (!sym_sec)
6687 /* This is an undefined symbol. It can never
6688 be resolved. */
6689 continue;
6690
6691 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6692 sym_value = sym->st_value;
6693 destination = (sym_value + irela->r_addend
6694 + sym_sec->output_offset
6695 + sym_sec->output_section->vma);
6696 st_type = ELF_ST_TYPE (sym->st_info);
6697 branch_type =
6698 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6699 sym_name
6700 = bfd_elf_string_from_elf_section (input_bfd,
6701 symtab_hdr->sh_link,
6702 sym->st_name);
6703 }
6704 else
6705 {
6706 /* It's an external symbol. */
6707 while (hash->root.root.type == bfd_link_hash_indirect
6708 || hash->root.root.type == bfd_link_hash_warning)
6709 hash = ((struct elf32_arm_link_hash_entry *)
6710 hash->root.root.u.i.link);
6711
6712 if (hash->root.root.type == bfd_link_hash_defined
6713 || hash->root.root.type == bfd_link_hash_defweak)
6714 {
6715 sym_sec = hash->root.root.u.def.section;
6716 sym_value = hash->root.root.u.def.value;
6717
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6724 needed. */
6725 if (globals != NULL
6726 && globals->root.splt != NULL
6727 && hash != NULL
6728 && hash->root.plt.offset != (bfd_vma) -1)
6729 {
6730 sym_sec = globals->root.splt;
6731 sym_value = hash->root.plt.offset;
6732 if (sym_sec->output_section != NULL)
6733 destination = (sym_value
6734 + sym_sec->output_offset
6735 + sym_sec->output_section->vma);
6736 }
6737 else if (sym_sec->output_section != NULL)
6738 destination = (sym_value + irela->r_addend
6739 + sym_sec->output_offset
6740 + sym_sec->output_section->vma);
6741 }
6742 else if ((hash->root.root.type == bfd_link_hash_undefined)
6743 || (hash->root.root.type == bfd_link_hash_undefweak))
6744 {
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table *globals =
6750 elf32_arm_hash_table (info);
6751
6752 if (globals != NULL
6753 && globals->root.splt != NULL
6754 && hash != NULL
6755 && hash->root.plt.offset != (bfd_vma) -1)
6756 {
6757 sym_sec = globals->root.splt;
6758 sym_value = hash->root.plt.offset;
6759 if (sym_sec->output_section != NULL)
6760 destination = (sym_value
6761 + sym_sec->output_offset
6762 + sym_sec->output_section->vma);
6763 }
6764 else
6765 continue;
6766 }
6767 else
6768 {
6769 bfd_set_error (bfd_error_bad_value);
6770 goto error_ret_free_internal;
6771 }
6772 st_type = hash->root.type;
6773 branch_type =
6774 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6775 sym_name = hash->root.root.root.string;
6776 }
6777
6778 do
6779 {
6780 bfd_boolean new_stub;
6781 struct elf32_arm_stub_hash_entry *stub_entry;
6782
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type = arm_type_of_stub (info, section, irela,
6785 st_type, &branch_type,
6786 hash, destination, sym_sec,
6787 input_bfd, sym_name);
6788 if (stub_type == arm_stub_none)
6789 break;
6790
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
6793 stub_entry =
6794 elf32_arm_create_stub (htab, stub_type, section, irela,
6795 sym_sec, hash,
6796 (char *) sym_name, sym_value,
6797 branch_type, &new_stub);
6798
6799 created_stub = stub_entry != NULL;
6800 if (!created_stub)
6801 goto error_ret_free_internal;
6802 else if (!new_stub)
6803 break;
6804 else
6805 stub_changed = TRUE;
6806 }
6807 while (0);
6808
6809 /* Look for relocations which might trigger Cortex-A8
6810 erratum. */
6811 if (htab->fix_cortex_a8
6812 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6813 || r_type == (unsigned int) R_ARM_THM_JUMP19
6814 || r_type == (unsigned int) R_ARM_THM_CALL
6815 || r_type == (unsigned int) R_ARM_THM_XPC22))
6816 {
6817 bfd_vma from = section->output_section->vma
6818 + section->output_offset
6819 + irela->r_offset;
6820
6821 if ((from & 0xfff) == 0xffe)
6822 {
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6827 scanning later. */
6828 if (num_a8_relocs == a8_reloc_table_size)
6829 {
6830 a8_reloc_table_size *= 2;
6831 a8_relocs = (struct a8_erratum_reloc *)
6832 bfd_realloc (a8_relocs,
6833 sizeof (struct a8_erratum_reloc)
6834 * a8_reloc_table_size);
6835 }
6836
6837 a8_relocs[num_a8_relocs].from = from;
6838 a8_relocs[num_a8_relocs].destination = destination;
6839 a8_relocs[num_a8_relocs].r_type = r_type;
6840 a8_relocs[num_a8_relocs].branch_type = branch_type;
6841 a8_relocs[num_a8_relocs].sym_name = sym_name;
6842 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6843 a8_relocs[num_a8_relocs].hash = hash;
6844
6845 num_a8_relocs++;
6846 }
6847 }
6848 }
6849
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section)->relocs == NULL)
6852 free (internal_relocs);
6853 }
6854
6855 if (htab->fix_cortex_a8)
6856 {
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs, num_a8_relocs,
6859 sizeof (struct a8_erratum_reloc),
6860 &a8_reloc_compare);
6861
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6864 &num_a8_fixes, &a8_fix_table_size,
6865 a8_relocs, num_a8_relocs,
6866 prev_num_a8_fixes, &stub_changed)
6867 != 0)
6868 goto error_ret_free_local;
6869 }
6870
6871 if (local_syms != NULL
6872 && symtab_hdr->contents != (unsigned char *) local_syms)
6873 {
6874 if (!info->keep_memory)
6875 free (local_syms);
6876 else
6877 symtab_hdr->contents = (unsigned char *) local_syms;
6878 }
6879 }
6880
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info, htab,
6883 &cmse_stub_created))
6884 ret = FALSE;
6885
6886 if (prev_num_a8_fixes != num_a8_fixes)
6887 stub_changed = TRUE;
6888
6889 if (!stub_changed)
6890 break;
6891
6892 /* OK, we've added some stubs. Find out the new size of the
6893 stub sections. */
6894 for (stub_sec = htab->stub_bfd->sections;
6895 stub_sec != NULL;
6896 stub_sec = stub_sec->next)
6897 {
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec->name, STUB_SUFFIX))
6900 continue;
6901
6902 stub_sec->size = 0;
6903 }
6904
6905 /* Add new SG veneers after those already in the input import
6906 library. */
6907 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6908 stub_type++)
6909 {
6910 bfd_vma *start_offset_p;
6911 asection **stub_sec_p;
6912
6913 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6914 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6915 if (start_offset_p == NULL)
6916 continue;
6917
6918 BFD_ASSERT (stub_sec_p != NULL);
6919 if (*stub_sec_p != NULL)
6920 (*stub_sec_p)->size = *start_offset_p;
6921 }
6922
6923 /* Compute stub section size, considering padding. */
6924 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6925 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6926 stub_type++)
6927 {
6928 int size, padding;
6929 asection **stub_sec_p;
6930
6931 padding = arm_dedicated_stub_section_padding (stub_type);
6932 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6933 /* Skip if no stub input section or no stub section padding
6934 required. */
6935 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6936 continue;
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p);
6939
6940 size = (*stub_sec_p)->size;
6941 size = (size + padding - 1) & ~(padding - 1);
6942 (*stub_sec_p)->size = size;
6943 }
6944
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab->fix_cortex_a8)
6947 for (i = 0; i < num_a8_fixes; i++)
6948 {
6949 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6950 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6951
6952 if (stub_sec == NULL)
6953 return FALSE;
6954
6955 stub_sec->size
6956 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6957 NULL);
6958 }
6959
6960
6961 /* Ask the linker to do its stuff. */
6962 (*htab->layout_sections_again) ();
6963 first_veneer_scan = FALSE;
6964 }
6965
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab->fix_cortex_a8)
6968 {
6969 for (i = 0; i < num_a8_fixes; i++)
6970 {
6971 struct elf32_arm_stub_hash_entry *stub_entry;
6972 char *stub_name = a8_fixes[i].stub_name;
6973 asection *section = a8_fixes[i].section;
6974 unsigned int section_id = a8_fixes[i].section->id;
6975 asection *link_sec = htab->stub_group[section_id].link_sec;
6976 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6977 const insn_sequence *template_sequence;
6978 int template_size, size = 0;
6979
6980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6981 TRUE, FALSE);
6982 if (stub_entry == NULL)
6983 {
6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6985 section->owner, stub_name);
6986 return FALSE;
6987 }
6988
6989 stub_entry->stub_sec = stub_sec;
6990 stub_entry->stub_offset = (bfd_vma) -1;
6991 stub_entry->id_sec = link_sec;
6992 stub_entry->stub_type = a8_fixes[i].stub_type;
6993 stub_entry->source_value = a8_fixes[i].offset;
6994 stub_entry->target_section = a8_fixes[i].section;
6995 stub_entry->target_value = a8_fixes[i].target_offset;
6996 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6997 stub_entry->branch_type = a8_fixes[i].branch_type;
6998
6999 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7000 &template_sequence,
7001 &template_size);
7002
7003 stub_entry->stub_size = size;
7004 stub_entry->stub_template = template_sequence;
7005 stub_entry->stub_template_size = template_size;
7006 }
7007
7008 /* Stash the Cortex-A8 erratum fix array for use later in
7009 elf32_arm_write_section(). */
7010 htab->a8_erratum_fixes = a8_fixes;
7011 htab->num_a8_erratum_fixes = num_a8_fixes;
7012 }
7013 else
7014 {
7015 htab->a8_erratum_fixes = NULL;
7016 htab->num_a8_erratum_fixes = 0;
7017 }
7018 return ret;
7019}
7020
7021/* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7025 linker. */
7026
7027bfd_boolean
7028elf32_arm_build_stubs (struct bfd_link_info *info)
7029{
7030 asection *stub_sec;
7031 struct bfd_hash_table *table;
7032 enum elf32_arm_stub_type stub_type;
7033 struct elf32_arm_link_hash_table *htab;
7034
7035 htab = elf32_arm_hash_table (info);
7036 if (htab == NULL)
7037 return FALSE;
7038
7039 for (stub_sec = htab->stub_bfd->sections;
7040 stub_sec != NULL;
7041 stub_sec = stub_sec->next)
7042 {
7043 bfd_size_type size;
7044
7045 /* Ignore non-stub sections. */
7046 if (!strstr (stub_sec->name, STUB_SUFFIX))
7047 continue;
7048
7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
7053 size = stub_sec->size;
7054 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7055 if (stub_sec->contents == NULL && size != 0)
7056 return FALSE;
7057
7058 stub_sec->size = 0;
7059 }
7060
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7063 {
7064 bfd_vma *start_offset_p;
7065 asection **stub_sec_p;
7066
7067 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7068 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7069 if (start_offset_p == NULL)
7070 continue;
7071
7072 BFD_ASSERT (stub_sec_p != NULL);
7073 if (*stub_sec_p != NULL)
7074 (*stub_sec_p)->size = *start_offset_p;
7075 }
7076
7077 /* Build the stubs as directed by the stub hash table. */
7078 table = &htab->stub_hash_table;
7079 bfd_hash_traverse (table, arm_build_one_stub, info);
7080 if (htab->fix_cortex_a8)
7081 {
7082 /* Place the cortex a8 stubs last. */
7083 htab->fix_cortex_a8 = -1;
7084 bfd_hash_traverse (table, arm_build_one_stub, info);
7085 }
7086
7087 return TRUE;
7088}
7089
7090/* Locate the Thumb encoded calling stub for NAME. */
7091
7092static struct elf_link_hash_entry *
7093find_thumb_glue (struct bfd_link_info *link_info,
7094 const char *name,
7095 char **error_message)
7096{
7097 char *tmp_name;
7098 struct elf_link_hash_entry *hash;
7099 struct elf32_arm_link_hash_table *hash_table;
7100
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table = elf32_arm_hash_table (link_info);
7103 if (hash_table == NULL)
7104 return NULL;
7105
7106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7108
7109 BFD_ASSERT (tmp_name);
7110
7111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7112
7113 hash = elf_link_hash_lookup
7114 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7115
7116 if (hash == NULL
7117 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7118 "Thumb", tmp_name, name) == -1)
7119 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7120
7121 free (tmp_name);
7122
7123 return hash;
7124}
7125
7126/* Locate the ARM encoded calling stub for NAME. */
7127
7128static struct elf_link_hash_entry *
7129find_arm_glue (struct bfd_link_info *link_info,
7130 const char *name,
7131 char **error_message)
7132{
7133 char *tmp_name;
7134 struct elf_link_hash_entry *myh;
7135 struct elf32_arm_link_hash_table *hash_table;
7136
7137 /* We need a pointer to the elfarm specific hash table. */
7138 hash_table = elf32_arm_hash_table (link_info);
7139 if (hash_table == NULL)
7140 return NULL;
7141
7142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7143 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7144
7145 BFD_ASSERT (tmp_name);
7146
7147 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7148
7149 myh = elf_link_hash_lookup
7150 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7151
7152 if (myh == NULL
7153 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7154 "ARM", tmp_name, name) == -1)
7155 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7156
7157 free (tmp_name);
7158
7159 return myh;
7160}
7161
7162/* ARM->Thumb glue (static images):
7163
7164 .arm
7165 __func_from_arm:
7166 ldr r12, __func_addr
7167 bx r12
7168 __func_addr:
7169 .word func @ behave as if you saw a ARM_32 reloc.
7170
7171 (v5t static images)
7172 .arm
7173 __func_from_arm:
7174 ldr pc, __func_addr
7175 __func_addr:
7176 .word func @ behave as if you saw a ARM_32 reloc.
7177
7178 (relocatable images)
7179 .arm
7180 __func_from_arm:
7181 ldr r12, __func_offset
7182 add r12, r12, pc
7183 bx r12
7184 __func_offset:
7185 .word func - . */
7186
7187#define ARM2THUMB_STATIC_GLUE_SIZE 12
7188static const insn32 a2t1_ldr_insn = 0xe59fc000;
7189static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7190static const insn32 a2t3_func_addr_insn = 0x00000001;
7191
7192#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7193static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7194static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7195
7196#define ARM2THUMB_PIC_GLUE_SIZE 16
7197static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7198static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7199static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7200
7201/* Thumb->ARM: Thumb->(non-interworking aware) ARM
7202
7203 .thumb .thumb
7204 .align 2 .align 2
7205 __func_from_thumb: __func_from_thumb:
7206 bx pc push {r6, lr}
7207 nop ldr r6, __func_addr
7208 .arm mov lr, pc
7209 b func bx r6
7210 .arm
7211 ;; back_to_thumb
7212 ldmia r13! {r6, lr}
7213 bx lr
7214 __func_addr:
7215 .word func */
7216
7217#define THUMB2ARM_GLUE_SIZE 8
7218static const insn16 t2a1_bx_pc_insn = 0x4778;
7219static const insn16 t2a2_noop_insn = 0x46c0;
7220static const insn32 t2a3_b_insn = 0xea000000;
7221
7222#define VFP11_ERRATUM_VENEER_SIZE 8
7223#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7224#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7225
7226#define ARM_BX_VENEER_SIZE 12
7227static const insn32 armbx1_tst_insn = 0xe3100001;
7228static const insn32 armbx2_moveq_insn = 0x01a0f000;
7229static const insn32 armbx3_bx_insn = 0xe12fff10;
7230
7231#ifndef ELFARM_NABI_C_INCLUDED
7232static void
7233arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7234{
7235 asection * s;
7236 bfd_byte * contents;
7237
7238 if (size == 0)
7239 {
7240 /* Do not include empty glue sections in the output. */
7241 if (abfd != NULL)
7242 {
7243 s = bfd_get_linker_section (abfd, name);
7244 if (s != NULL)
7245 s->flags |= SEC_EXCLUDE;
7246 }
7247 return;
7248 }
7249
7250 BFD_ASSERT (abfd != NULL);
7251
7252 s = bfd_get_linker_section (abfd, name);
7253 BFD_ASSERT (s != NULL);
7254
7255 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7256
7257 BFD_ASSERT (s->size == size);
7258 s->contents = contents;
7259}
7260
7261bfd_boolean
7262bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7263{
7264 struct elf32_arm_link_hash_table * globals;
7265
7266 globals = elf32_arm_hash_table (info);
7267 BFD_ASSERT (globals != NULL);
7268
7269 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7270 globals->arm_glue_size,
7271 ARM2THUMB_GLUE_SECTION_NAME);
7272
7273 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7274 globals->thumb_glue_size,
7275 THUMB2ARM_GLUE_SECTION_NAME);
7276
7277 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7278 globals->vfp11_erratum_glue_size,
7279 VFP11_ERRATUM_VENEER_SECTION_NAME);
7280
7281 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7282 globals->stm32l4xx_erratum_glue_size,
7283 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7284
7285 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7286 globals->bx_glue_size,
7287 ARM_BX_GLUE_SECTION_NAME);
7288
7289 return TRUE;
7290}
7291
7292/* Allocate space and symbols for calling a Thumb function from Arm mode.
7293 returns the symbol identifying the stub. */
7294
7295static struct elf_link_hash_entry *
7296record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7297 struct elf_link_hash_entry * h)
7298{
7299 const char * name = h->root.root.string;
7300 asection * s;
7301 char * tmp_name;
7302 struct elf_link_hash_entry * myh;
7303 struct bfd_link_hash_entry * bh;
7304 struct elf32_arm_link_hash_table * globals;
7305 bfd_vma val;
7306 bfd_size_type size;
7307
7308 globals = elf32_arm_hash_table (link_info);
7309 BFD_ASSERT (globals != NULL);
7310 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7311
7312 s = bfd_get_linker_section
7313 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7314
7315 BFD_ASSERT (s != NULL);
7316
7317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7319
7320 BFD_ASSERT (tmp_name);
7321
7322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7323
7324 myh = elf_link_hash_lookup
7325 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7326
7327 if (myh != NULL)
7328 {
7329 /* We've already seen this guy. */
7330 free (tmp_name);
7331 return myh;
7332 }
7333
7334 /* The only trick here is using hash_table->arm_glue_size as the value.
7335 Even though the section isn't allocated yet, this is where we will be
7336 putting it. The +1 on the value marks that the stub has not been
7337 output yet - not that it is a Thumb function. */
7338 bh = NULL;
7339 val = globals->arm_glue_size + 1;
7340 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7341 tmp_name, BSF_GLOBAL, s, val,
7342 NULL, TRUE, FALSE, &bh);
7343
7344 myh = (struct elf_link_hash_entry *) bh;
7345 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7346 myh->forced_local = 1;
7347
7348 free (tmp_name);
7349
7350 if (bfd_link_pic (link_info)
7351 || globals->root.is_relocatable_executable
7352 || globals->pic_veneer)
7353 size = ARM2THUMB_PIC_GLUE_SIZE;
7354 else if (globals->use_blx)
7355 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7356 else
7357 size = ARM2THUMB_STATIC_GLUE_SIZE;
7358
7359 s->size += size;
7360 globals->arm_glue_size += size;
7361
7362 return myh;
7363}
7364
7365/* Allocate space for ARMv4 BX veneers. */
7366
7367static void
7368record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7369{
7370 asection * s;
7371 struct elf32_arm_link_hash_table *globals;
7372 char *tmp_name;
7373 struct elf_link_hash_entry *myh;
7374 struct bfd_link_hash_entry *bh;
7375 bfd_vma val;
7376
7377 /* BX PC does not need a veneer. */
7378 if (reg == 15)
7379 return;
7380
7381 globals = elf32_arm_hash_table (link_info);
7382 BFD_ASSERT (globals != NULL);
7383 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7384
7385 /* Check if this veneer has already been allocated. */
7386 if (globals->bx_glue_offset[reg])
7387 return;
7388
7389 s = bfd_get_linker_section
7390 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7391
7392 BFD_ASSERT (s != NULL);
7393
7394 /* Add symbol for veneer. */
7395 tmp_name = (char *)
7396 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7397
7398 BFD_ASSERT (tmp_name);
7399
7400 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7401
7402 myh = elf_link_hash_lookup
7403 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7404
7405 BFD_ASSERT (myh == NULL);
7406
7407 bh = NULL;
7408 val = globals->bx_glue_size;
7409 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7410 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7411 NULL, TRUE, FALSE, &bh);
7412
7413 myh = (struct elf_link_hash_entry *) bh;
7414 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7415 myh->forced_local = 1;
7416
7417 s->size += ARM_BX_VENEER_SIZE;
7418 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7419 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7420}
7421
7422
7423/* Add an entry to the code/data map for section SEC. */
7424
7425static void
7426elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7427{
7428 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7429 unsigned int newidx;
7430
7431 if (sec_data->map == NULL)
7432 {
7433 sec_data->map = (elf32_arm_section_map *)
7434 bfd_malloc (sizeof (elf32_arm_section_map));
7435 sec_data->mapcount = 0;
7436 sec_data->mapsize = 1;
7437 }
7438
7439 newidx = sec_data->mapcount++;
7440
7441 if (sec_data->mapcount > sec_data->mapsize)
7442 {
7443 sec_data->mapsize *= 2;
7444 sec_data->map = (elf32_arm_section_map *)
7445 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7446 * sizeof (elf32_arm_section_map));
7447 }
7448
7449 if (sec_data->map)
7450 {
7451 sec_data->map[newidx].vma = vma;
7452 sec_data->map[newidx].type = type;
7453 }
7454}
7455
7456
7457/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7458 veneers are handled for now. */
7459
7460static bfd_vma
7461record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7462 elf32_vfp11_erratum_list *branch,
7463 bfd *branch_bfd,
7464 asection *branch_sec,
7465 unsigned int offset)
7466{
7467 asection *s;
7468 struct elf32_arm_link_hash_table *hash_table;
7469 char *tmp_name;
7470 struct elf_link_hash_entry *myh;
7471 struct bfd_link_hash_entry *bh;
7472 bfd_vma val;
7473 struct _arm_elf_section_data *sec_data;
7474 elf32_vfp11_erratum_list *newerr;
7475
7476 hash_table = elf32_arm_hash_table (link_info);
7477 BFD_ASSERT (hash_table != NULL);
7478 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7479
7480 s = bfd_get_linker_section
7481 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7482
7483 sec_data = elf32_arm_section_data (s);
7484
7485 BFD_ASSERT (s != NULL);
7486
7487 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7488 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7489
7490 BFD_ASSERT (tmp_name);
7491
7492 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7493 hash_table->num_vfp11_fixes);
7494
7495 myh = elf_link_hash_lookup
7496 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7497
7498 BFD_ASSERT (myh == NULL);
7499
7500 bh = NULL;
7501 val = hash_table->vfp11_erratum_glue_size;
7502 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7503 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7504 NULL, TRUE, FALSE, &bh);
7505
7506 myh = (struct elf_link_hash_entry *) bh;
7507 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7508 myh->forced_local = 1;
7509
7510 /* Link veneer back to calling location. */
7511 sec_data->erratumcount += 1;
7512 newerr = (elf32_vfp11_erratum_list *)
7513 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7514
7515 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7516 newerr->vma = -1;
7517 newerr->u.v.branch = branch;
7518 newerr->u.v.id = hash_table->num_vfp11_fixes;
7519 branch->u.b.veneer = newerr;
7520
7521 newerr->next = sec_data->erratumlist;
7522 sec_data->erratumlist = newerr;
7523
7524 /* A symbol for the return from the veneer. */
7525 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7526 hash_table->num_vfp11_fixes);
7527
7528 myh = elf_link_hash_lookup
7529 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7530
7531 if (myh != NULL)
7532 abort ();
7533
7534 bh = NULL;
7535 val = offset + 4;
7536 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7537 branch_sec, val, NULL, TRUE, FALSE, &bh);
7538
7539 myh = (struct elf_link_hash_entry *) bh;
7540 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7541 myh->forced_local = 1;
7542
7543 free (tmp_name);
7544
7545 /* Generate a mapping symbol for the veneer section, and explicitly add an
7546 entry for that symbol to the code/data map for the section. */
7547 if (hash_table->vfp11_erratum_glue_size == 0)
7548 {
7549 bh = NULL;
7550 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7551 ever requires this erratum fix. */
7552 _bfd_generic_link_add_one_symbol (link_info,
7553 hash_table->bfd_of_glue_owner, "$a",
7554 BSF_LOCAL, s, 0, NULL,
7555 TRUE, FALSE, &bh);
7556
7557 myh = (struct elf_link_hash_entry *) bh;
7558 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7559 myh->forced_local = 1;
7560
7561 /* The elf32_arm_init_maps function only cares about symbols from input
7562 BFDs. We must make a note of this generated mapping symbol
7563 ourselves so that code byteswapping works properly in
7564 elf32_arm_write_section. */
7565 elf32_arm_section_map_add (s, 'a', 0);
7566 }
7567
7568 s->size += VFP11_ERRATUM_VENEER_SIZE;
7569 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7570 hash_table->num_vfp11_fixes++;
7571
7572 /* The offset of the veneer. */
7573 return val;
7574}
7575
7576/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7577 veneers need to be handled because used only in Cortex-M. */
7578
7579static bfd_vma
7580record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7581 elf32_stm32l4xx_erratum_list *branch,
7582 bfd *branch_bfd,
7583 asection *branch_sec,
7584 unsigned int offset,
7585 bfd_size_type veneer_size)
7586{
7587 asection *s;
7588 struct elf32_arm_link_hash_table *hash_table;
7589 char *tmp_name;
7590 struct elf_link_hash_entry *myh;
7591 struct bfd_link_hash_entry *bh;
7592 bfd_vma val;
7593 struct _arm_elf_section_data *sec_data;
7594 elf32_stm32l4xx_erratum_list *newerr;
7595
7596 hash_table = elf32_arm_hash_table (link_info);
7597 BFD_ASSERT (hash_table != NULL);
7598 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7599
7600 s = bfd_get_linker_section
7601 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7602
7603 BFD_ASSERT (s != NULL);
7604
7605 sec_data = elf32_arm_section_data (s);
7606
7607 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7608 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7609
7610 BFD_ASSERT (tmp_name);
7611
7612 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7613 hash_table->num_stm32l4xx_fixes);
7614
7615 myh = elf_link_hash_lookup
7616 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7617
7618 BFD_ASSERT (myh == NULL);
7619
7620 bh = NULL;
7621 val = hash_table->stm32l4xx_erratum_glue_size;
7622 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7623 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7624 NULL, TRUE, FALSE, &bh);
7625
7626 myh = (struct elf_link_hash_entry *) bh;
7627 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7628 myh->forced_local = 1;
7629
7630 /* Link veneer back to calling location. */
7631 sec_data->stm32l4xx_erratumcount += 1;
7632 newerr = (elf32_stm32l4xx_erratum_list *)
7633 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7634
7635 newerr->type = STM32L4XX_ERRATUM_VENEER;
7636 newerr->vma = -1;
7637 newerr->u.v.branch = branch;
7638 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7639 branch->u.b.veneer = newerr;
7640
7641 newerr->next = sec_data->stm32l4xx_erratumlist;
7642 sec_data->stm32l4xx_erratumlist = newerr;
7643
7644 /* A symbol for the return from the veneer. */
7645 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7646 hash_table->num_stm32l4xx_fixes);
7647
7648 myh = elf_link_hash_lookup
7649 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7650
7651 if (myh != NULL)
7652 abort ();
7653
7654 bh = NULL;
7655 val = offset + 4;
7656 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7657 branch_sec, val, NULL, TRUE, FALSE, &bh);
7658
7659 myh = (struct elf_link_hash_entry *) bh;
7660 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7661 myh->forced_local = 1;
7662
7663 free (tmp_name);
7664
7665 /* Generate a mapping symbol for the veneer section, and explicitly add an
7666 entry for that symbol to the code/data map for the section. */
7667 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7668 {
7669 bh = NULL;
7670 /* Creates a THUMB symbol since there is no other choice. */
7671 _bfd_generic_link_add_one_symbol (link_info,
7672 hash_table->bfd_of_glue_owner, "$t",
7673 BSF_LOCAL, s, 0, NULL,
7674 TRUE, FALSE, &bh);
7675
7676 myh = (struct elf_link_hash_entry *) bh;
7677 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7678 myh->forced_local = 1;
7679
7680 /* The elf32_arm_init_maps function only cares about symbols from input
7681 BFDs. We must make a note of this generated mapping symbol
7682 ourselves so that code byteswapping works properly in
7683 elf32_arm_write_section. */
7684 elf32_arm_section_map_add (s, 't', 0);
7685 }
7686
7687 s->size += veneer_size;
7688 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7689 hash_table->num_stm32l4xx_fixes++;
7690
7691 /* The offset of the veneer. */
7692 return val;
7693}
7694
7695#define ARM_GLUE_SECTION_FLAGS \
7696 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7697 | SEC_READONLY | SEC_LINKER_CREATED)
7698
7699/* Create a fake section for use by the ARM backend of the linker. */
7700
7701static bfd_boolean
7702arm_make_glue_section (bfd * abfd, const char * name)
7703{
7704 asection * sec;
7705
7706 sec = bfd_get_linker_section (abfd, name);
7707 if (sec != NULL)
7708 /* Already made. */
7709 return TRUE;
7710
7711 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7712
7713 if (sec == NULL
7714 || !bfd_set_section_alignment (abfd, sec, 2))
7715 return FALSE;
7716
7717 /* Set the gc mark to prevent the section from being removed by garbage
7718 collection, despite the fact that no relocs refer to this section. */
7719 sec->gc_mark = 1;
7720
7721 return TRUE;
7722}
7723
7724/* Set size of .plt entries. This function is called from the
7725 linker scripts in ld/emultempl/{armelf}.em. */
7726
7727void
7728bfd_elf32_arm_use_long_plt (void)
7729{
7730 elf32_arm_use_long_plt_entry = TRUE;
7731}
7732
7733/* Add the glue sections to ABFD. This function is called from the
7734 linker scripts in ld/emultempl/{armelf}.em. */
7735
7736bfd_boolean
7737bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7738 struct bfd_link_info *info)
7739{
7740 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7741 bfd_boolean dostm32l4xx = globals
7742 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7743 bfd_boolean addglue;
7744
7745 /* If we are only performing a partial
7746 link do not bother adding the glue. */
7747 if (bfd_link_relocatable (info))
7748 return TRUE;
7749
7750 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7751 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7752 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7753 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7754
7755 if (!dostm32l4xx)
7756 return addglue;
7757
7758 return addglue
7759 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7760}
7761
7762/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7763 ensures they are not marked for deletion by
7764 strip_excluded_output_sections () when veneers are going to be created
7765 later. Not doing so would trigger assert on empty section size in
7766 lang_size_sections_1 (). */
7767
7768void
7769bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7770{
7771 enum elf32_arm_stub_type stub_type;
7772
7773 /* If we are only performing a partial
7774 link do not bother adding the glue. */
7775 if (bfd_link_relocatable (info))
7776 return;
7777
7778 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7779 {
7780 asection *out_sec;
7781 const char *out_sec_name;
7782
7783 if (!arm_dedicated_stub_output_section_required (stub_type))
7784 continue;
7785
7786 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7787 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7788 if (out_sec != NULL)
7789 out_sec->flags |= SEC_KEEP;
7790 }
7791}
7792
7793/* Select a BFD to be used to hold the sections used by the glue code.
7794 This function is called from the linker scripts in ld/emultempl/
7795 {armelf/pe}.em. */
7796
7797bfd_boolean
7798bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7799{
7800 struct elf32_arm_link_hash_table *globals;
7801
7802 /* If we are only performing a partial link
7803 do not bother getting a bfd to hold the glue. */
7804 if (bfd_link_relocatable (info))
7805 return TRUE;
7806
7807 /* Make sure we don't attach the glue sections to a dynamic object. */
7808 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7809
7810 globals = elf32_arm_hash_table (info);
7811 BFD_ASSERT (globals != NULL);
7812
7813 if (globals->bfd_of_glue_owner != NULL)
7814 return TRUE;
7815
7816 /* Save the bfd for later use. */
7817 globals->bfd_of_glue_owner = abfd;
7818
7819 return TRUE;
7820}
7821
7822static void
7823check_use_blx (struct elf32_arm_link_hash_table *globals)
7824{
7825 int cpu_arch;
7826
7827 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7828 Tag_CPU_arch);
7829
7830 if (globals->fix_arm1176)
7831 {
7832 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7833 globals->use_blx = 1;
7834 }
7835 else
7836 {
7837 if (cpu_arch > TAG_CPU_ARCH_V4T)
7838 globals->use_blx = 1;
7839 }
7840}
7841
7842bfd_boolean
7843bfd_elf32_arm_process_before_allocation (bfd *abfd,
7844 struct bfd_link_info *link_info)
7845{
7846 Elf_Internal_Shdr *symtab_hdr;
7847 Elf_Internal_Rela *internal_relocs = NULL;
7848 Elf_Internal_Rela *irel, *irelend;
7849 bfd_byte *contents = NULL;
7850
7851 asection *sec;
7852 struct elf32_arm_link_hash_table *globals;
7853
7854 /* If we are only performing a partial link do not bother
7855 to construct any glue. */
7856 if (bfd_link_relocatable (link_info))
7857 return TRUE;
7858
7859 /* Here we have a bfd that is to be included on the link. We have a
7860 hook to do reloc rummaging, before section sizes are nailed down. */
7861 globals = elf32_arm_hash_table (link_info);
7862 BFD_ASSERT (globals != NULL);
7863
7864 check_use_blx (globals);
7865
7866 if (globals->byteswap_code && !bfd_big_endian (abfd))
7867 {
7868 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7869 abfd);
7870 return FALSE;
7871 }
7872
7873 /* PR 5398: If we have not decided to include any loadable sections in
7874 the output then we will not have a glue owner bfd. This is OK, it
7875 just means that there is nothing else for us to do here. */
7876 if (globals->bfd_of_glue_owner == NULL)
7877 return TRUE;
7878
7879 /* Rummage around all the relocs and map the glue vectors. */
7880 sec = abfd->sections;
7881
7882 if (sec == NULL)
7883 return TRUE;
7884
7885 for (; sec != NULL; sec = sec->next)
7886 {
7887 if (sec->reloc_count == 0)
7888 continue;
7889
7890 if ((sec->flags & SEC_EXCLUDE) != 0)
7891 continue;
7892
7893 symtab_hdr = & elf_symtab_hdr (abfd);
7894
7895 /* Load the relocs. */
7896 internal_relocs
7897 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7898
7899 if (internal_relocs == NULL)
7900 goto error_return;
7901
7902 irelend = internal_relocs + sec->reloc_count;
7903 for (irel = internal_relocs; irel < irelend; irel++)
7904 {
7905 long r_type;
7906 unsigned long r_index;
7907
7908 struct elf_link_hash_entry *h;
7909
7910 r_type = ELF32_R_TYPE (irel->r_info);
7911 r_index = ELF32_R_SYM (irel->r_info);
7912
7913 /* These are the only relocation types we care about. */
7914 if ( r_type != R_ARM_PC24
7915 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7916 continue;
7917
7918 /* Get the section contents if we haven't done so already. */
7919 if (contents == NULL)
7920 {
7921 /* Get cached copy if it exists. */
7922 if (elf_section_data (sec)->this_hdr.contents != NULL)
7923 contents = elf_section_data (sec)->this_hdr.contents;
7924 else
7925 {
7926 /* Go get them off disk. */
7927 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7928 goto error_return;
7929 }
7930 }
7931
7932 if (r_type == R_ARM_V4BX)
7933 {
7934 int reg;
7935
7936 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7937 record_arm_bx_glue (link_info, reg);
7938 continue;
7939 }
7940
7941 /* If the relocation is not against a symbol it cannot concern us. */
7942 h = NULL;
7943
7944 /* We don't care about local symbols. */
7945 if (r_index < symtab_hdr->sh_info)
7946 continue;
7947
7948 /* This is an external symbol. */
7949 r_index -= symtab_hdr->sh_info;
7950 h = (struct elf_link_hash_entry *)
7951 elf_sym_hashes (abfd)[r_index];
7952
7953 /* If the relocation is against a static symbol it must be within
7954 the current section and so cannot be a cross ARM/Thumb relocation. */
7955 if (h == NULL)
7956 continue;
7957
7958 /* If the call will go through a PLT entry then we do not need
7959 glue. */
7960 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7961 continue;
7962
7963 switch (r_type)
7964 {
7965 case R_ARM_PC24:
7966 /* This one is a call from arm code. We need to look up
7967 the target of the call. If it is a thumb target, we
7968 insert glue. */
7969 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7970 == ST_BRANCH_TO_THUMB)
7971 record_arm_to_thumb_glue (link_info, h);
7972 break;
7973
7974 default:
7975 abort ();
7976 }
7977 }
7978
7979 if (contents != NULL
7980 && elf_section_data (sec)->this_hdr.contents != contents)
7981 free (contents);
7982 contents = NULL;
7983
7984 if (internal_relocs != NULL
7985 && elf_section_data (sec)->relocs != internal_relocs)
7986 free (internal_relocs);
7987 internal_relocs = NULL;
7988 }
7989
7990 return TRUE;
7991
7992error_return:
7993 if (contents != NULL
7994 && elf_section_data (sec)->this_hdr.contents != contents)
7995 free (contents);
7996 if (internal_relocs != NULL
7997 && elf_section_data (sec)->relocs != internal_relocs)
7998 free (internal_relocs);
7999
8000 return FALSE;
8001}
8002#endif
8003
8004
8005/* Initialise maps of ARM/Thumb/data for input BFDs. */
8006
8007void
8008bfd_elf32_arm_init_maps (bfd *abfd)
8009{
8010 Elf_Internal_Sym *isymbuf;
8011 Elf_Internal_Shdr *hdr;
8012 unsigned int i, localsyms;
8013
8014 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8015 if (! is_arm_elf (abfd))
8016 return;
8017
8018 if ((abfd->flags & DYNAMIC) != 0)
8019 return;
8020
8021 hdr = & elf_symtab_hdr (abfd);
8022 localsyms = hdr->sh_info;
8023
8024 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8025 should contain the number of local symbols, which should come before any
8026 global symbols. Mapping symbols are always local. */
8027 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8028 NULL);
8029
8030 /* No internal symbols read? Skip this BFD. */
8031 if (isymbuf == NULL)
8032 return;
8033
8034 for (i = 0; i < localsyms; i++)
8035 {
8036 Elf_Internal_Sym *isym = &isymbuf[i];
8037 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8038 const char *name;
8039
8040 if (sec != NULL
8041 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8042 {
8043 name = bfd_elf_string_from_elf_section (abfd,
8044 hdr->sh_link, isym->st_name);
8045
8046 if (bfd_is_arm_special_symbol_name (name,
8047 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8048 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8049 }
8050 }
8051}
8052
8053
8054/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8055 say what they wanted. */
8056
8057void
8058bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8059{
8060 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8061 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8062
8063 if (globals == NULL)
8064 return;
8065
8066 if (globals->fix_cortex_a8 == -1)
8067 {
8068 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8069 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8070 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8071 || out_attr[Tag_CPU_arch_profile].i == 0))
8072 globals->fix_cortex_a8 = 1;
8073 else
8074 globals->fix_cortex_a8 = 0;
8075 }
8076}
8077
8078
8079void
8080bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8081{
8082 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8083 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8084
8085 if (globals == NULL)
8086 return;
8087 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8088 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8089 {
8090 switch (globals->vfp11_fix)
8091 {
8092 case BFD_ARM_VFP11_FIX_DEFAULT:
8093 case BFD_ARM_VFP11_FIX_NONE:
8094 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8095 break;
8096
8097 default:
8098 /* Give a warning, but do as the user requests anyway. */
8099 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8100 "workaround is not necessary for target architecture"), obfd);
8101 }
8102 }
8103 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8104 /* For earlier architectures, we might need the workaround, but do not
8105 enable it by default. If users is running with broken hardware, they
8106 must enable the erratum fix explicitly. */
8107 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8108}
8109
8110void
8111bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8112{
8113 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8114 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8115
8116 if (globals == NULL)
8117 return;
8118
8119 /* We assume only Cortex-M4 may require the fix. */
8120 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8121 || out_attr[Tag_CPU_arch_profile].i != 'M')
8122 {
8123 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8124 /* Give a warning, but do as the user requests anyway. */
8125 _bfd_error_handler
8126 (_("%pB: warning: selected STM32L4XX erratum "
8127 "workaround is not necessary for target architecture"), obfd);
8128 }
8129}
8130
8131enum bfd_arm_vfp11_pipe
8132{
8133 VFP11_FMAC,
8134 VFP11_LS,
8135 VFP11_DS,
8136 VFP11_BAD
8137};
8138
8139/* Return a VFP register number. This is encoded as RX:X for single-precision
8140 registers, or X:RX for double-precision registers, where RX is the group of
8141 four bits in the instruction encoding and X is the single extension bit.
8142 RX and X fields are specified using their lowest (starting) bit. The return
8143 value is:
8144
8145 0...31: single-precision registers s0...s31
8146 32...63: double-precision registers d0...d31.
8147
8148 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8149 encounter VFP3 instructions, so we allow the full range for DP registers. */
8150
8151static unsigned int
8152bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8153 unsigned int x)
8154{
8155 if (is_double)
8156 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8157 else
8158 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8159}
8160
8161/* Set bits in *WMASK according to a register number REG as encoded by
8162 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8163
8164static void
8165bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8166{
8167 if (reg < 32)
8168 *wmask |= 1 << reg;
8169 else if (reg < 48)
8170 *wmask |= 3 << ((reg - 32) * 2);
8171}
8172
8173/* Return TRUE if WMASK overwrites anything in REGS. */
8174
8175static bfd_boolean
8176bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8177{
8178 int i;
8179
8180 for (i = 0; i < numregs; i++)
8181 {
8182 unsigned int reg = regs[i];
8183
8184 if (reg < 32 && (wmask & (1 << reg)) != 0)
8185 return TRUE;
8186
8187 reg -= 32;
8188
8189 if (reg >= 16)
8190 continue;
8191
8192 if ((wmask & (3 << (reg * 2))) != 0)
8193 return TRUE;
8194 }
8195
8196 return FALSE;
8197}
8198
8199/* In this function, we're interested in two things: finding input registers
8200 for VFP data-processing instructions, and finding the set of registers which
8201 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8202 hold the written set, so FLDM etc. are easy to deal with (we're only
8203 interested in 32 SP registers or 16 dp registers, due to the VFP version
8204 implemented by the chip in question). DP registers are marked by setting
8205 both SP registers in the write mask). */
8206
8207static enum bfd_arm_vfp11_pipe
8208bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8209 int *numregs)
8210{
8211 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8212 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8213
8214 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8215 {
8216 unsigned int pqrs;
8217 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8218 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8219
8220 pqrs = ((insn & 0x00800000) >> 20)
8221 | ((insn & 0x00300000) >> 19)
8222 | ((insn & 0x00000040) >> 6);
8223
8224 switch (pqrs)
8225 {
8226 case 0: /* fmac[sd]. */
8227 case 1: /* fnmac[sd]. */
8228 case 2: /* fmsc[sd]. */
8229 case 3: /* fnmsc[sd]. */
8230 vpipe = VFP11_FMAC;
8231 bfd_arm_vfp11_write_mask (destmask, fd);
8232 regs[0] = fd;
8233 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8234 regs[2] = fm;
8235 *numregs = 3;
8236 break;
8237
8238 case 4: /* fmul[sd]. */
8239 case 5: /* fnmul[sd]. */
8240 case 6: /* fadd[sd]. */
8241 case 7: /* fsub[sd]. */
8242 vpipe = VFP11_FMAC;
8243 goto vfp_binop;
8244
8245 case 8: /* fdiv[sd]. */
8246 vpipe = VFP11_DS;
8247 vfp_binop:
8248 bfd_arm_vfp11_write_mask (destmask, fd);
8249 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8250 regs[1] = fm;
8251 *numregs = 2;
8252 break;
8253
8254 case 15: /* extended opcode. */
8255 {
8256 unsigned int extn = ((insn >> 15) & 0x1e)
8257 | ((insn >> 7) & 1);
8258
8259 switch (extn)
8260 {
8261 case 0: /* fcpy[sd]. */
8262 case 1: /* fabs[sd]. */
8263 case 2: /* fneg[sd]. */
8264 case 8: /* fcmp[sd]. */
8265 case 9: /* fcmpe[sd]. */
8266 case 10: /* fcmpz[sd]. */
8267 case 11: /* fcmpez[sd]. */
8268 case 16: /* fuito[sd]. */
8269 case 17: /* fsito[sd]. */
8270 case 24: /* ftoui[sd]. */
8271 case 25: /* ftouiz[sd]. */
8272 case 26: /* ftosi[sd]. */
8273 case 27: /* ftosiz[sd]. */
8274 /* These instructions will not bounce due to underflow. */
8275 *numregs = 0;
8276 vpipe = VFP11_FMAC;
8277 break;
8278
8279 case 3: /* fsqrt[sd]. */
8280 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8281 registers to cause the erratum in previous instructions. */
8282 bfd_arm_vfp11_write_mask (destmask, fd);
8283 vpipe = VFP11_DS;
8284 break;
8285
8286 case 15: /* fcvt{ds,sd}. */
8287 {
8288 int rnum = 0;
8289
8290 bfd_arm_vfp11_write_mask (destmask, fd);
8291
8292 /* Only FCVTSD can underflow. */
8293 if ((insn & 0x100) != 0)
8294 regs[rnum++] = fm;
8295
8296 *numregs = rnum;
8297
8298 vpipe = VFP11_FMAC;
8299 }
8300 break;
8301
8302 default:
8303 return VFP11_BAD;
8304 }
8305 }
8306 break;
8307
8308 default:
8309 return VFP11_BAD;
8310 }
8311 }
8312 /* Two-register transfer. */
8313 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8314 {
8315 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8316
8317 if ((insn & 0x100000) == 0)
8318 {
8319 if (is_double)
8320 bfd_arm_vfp11_write_mask (destmask, fm);
8321 else
8322 {
8323 bfd_arm_vfp11_write_mask (destmask, fm);
8324 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8325 }
8326 }
8327
8328 vpipe = VFP11_LS;
8329 }
8330 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8331 {
8332 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8333 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8334
8335 switch (puw)
8336 {
8337 case 0: /* Two-reg transfer. We should catch these above. */
8338 abort ();
8339
8340 case 2: /* fldm[sdx]. */
8341 case 3:
8342 case 5:
8343 {
8344 unsigned int i, offset = insn & 0xff;
8345
8346 if (is_double)
8347 offset >>= 1;
8348
8349 for (i = fd; i < fd + offset; i++)
8350 bfd_arm_vfp11_write_mask (destmask, i);
8351 }
8352 break;
8353
8354 case 4: /* fld[sd]. */
8355 case 6:
8356 bfd_arm_vfp11_write_mask (destmask, fd);
8357 break;
8358
8359 default:
8360 return VFP11_BAD;
8361 }
8362
8363 vpipe = VFP11_LS;
8364 }
8365 /* Single-register transfer. Note L==0. */
8366 else if ((insn & 0x0f100e10) == 0x0e000a10)
8367 {
8368 unsigned int opcode = (insn >> 21) & 7;
8369 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8370
8371 switch (opcode)
8372 {
8373 case 0: /* fmsr/fmdlr. */
8374 case 1: /* fmdhr. */
8375 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8376 destination register. I don't know if this is exactly right,
8377 but it is the conservative choice. */
8378 bfd_arm_vfp11_write_mask (destmask, fn);
8379 break;
8380
8381 case 7: /* fmxr. */
8382 break;
8383 }
8384
8385 vpipe = VFP11_LS;
8386 }
8387
8388 return vpipe;
8389}
8390
8391
8392static int elf32_arm_compare_mapping (const void * a, const void * b);
8393
8394
8395/* Look for potentially-troublesome code sequences which might trigger the
8396 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8397 (available from ARM) for details of the erratum. A short version is
8398 described in ld.texinfo. */
8399
8400bfd_boolean
8401bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8402{
8403 asection *sec;
8404 bfd_byte *contents = NULL;
8405 int state = 0;
8406 int regs[3], numregs = 0;
8407 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8408 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8409
8410 if (globals == NULL)
8411 return FALSE;
8412
8413 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8414 The states transition as follows:
8415
8416 0 -> 1 (vector) or 0 -> 2 (scalar)
8417 A VFP FMAC-pipeline instruction has been seen. Fill
8418 regs[0]..regs[numregs-1] with its input operands. Remember this
8419 instruction in 'first_fmac'.
8420
8421 1 -> 2
8422 Any instruction, except for a VFP instruction which overwrites
8423 regs[*].
8424
8425 1 -> 3 [ -> 0 ] or
8426 2 -> 3 [ -> 0 ]
8427 A VFP instruction has been seen which overwrites any of regs[*].
8428 We must make a veneer! Reset state to 0 before examining next
8429 instruction.
8430
8431 2 -> 0
8432 If we fail to match anything in state 2, reset to state 0 and reset
8433 the instruction pointer to the instruction after 'first_fmac'.
8434
8435 If the VFP11 vector mode is in use, there must be at least two unrelated
8436 instructions between anti-dependent VFP11 instructions to properly avoid
8437 triggering the erratum, hence the use of the extra state 1. */
8438
8439 /* If we are only performing a partial link do not bother
8440 to construct any glue. */
8441 if (bfd_link_relocatable (link_info))
8442 return TRUE;
8443
8444 /* Skip if this bfd does not correspond to an ELF image. */
8445 if (! is_arm_elf (abfd))
8446 return TRUE;
8447
8448 /* We should have chosen a fix type by the time we get here. */
8449 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8450
8451 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8452 return TRUE;
8453
8454 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8455 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8456 return TRUE;
8457
8458 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8459 {
8460 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8461 struct _arm_elf_section_data *sec_data;
8462
8463 /* If we don't have executable progbits, we're not interested in this
8464 section. Also skip if section is to be excluded. */
8465 if (elf_section_type (sec) != SHT_PROGBITS
8466 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8467 || (sec->flags & SEC_EXCLUDE) != 0
8468 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8469 || sec->output_section == bfd_abs_section_ptr
8470 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8471 continue;
8472
8473 sec_data = elf32_arm_section_data (sec);
8474
8475 if (sec_data->mapcount == 0)
8476 continue;
8477
8478 if (elf_section_data (sec)->this_hdr.contents != NULL)
8479 contents = elf_section_data (sec)->this_hdr.contents;
8480 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8481 goto error_return;
8482
8483 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8484 elf32_arm_compare_mapping);
8485
8486 for (span = 0; span < sec_data->mapcount; span++)
8487 {
8488 unsigned int span_start = sec_data->map[span].vma;
8489 unsigned int span_end = (span == sec_data->mapcount - 1)
8490 ? sec->size : sec_data->map[span + 1].vma;
8491 char span_type = sec_data->map[span].type;
8492
8493 /* FIXME: Only ARM mode is supported at present. We may need to
8494 support Thumb-2 mode also at some point. */
8495 if (span_type != 'a')
8496 continue;
8497
8498 for (i = span_start; i < span_end;)
8499 {
8500 unsigned int next_i = i + 4;
8501 unsigned int insn = bfd_big_endian (abfd)
8502 ? (contents[i] << 24)
8503 | (contents[i + 1] << 16)
8504 | (contents[i + 2] << 8)
8505 | contents[i + 3]
8506 : (contents[i + 3] << 24)
8507 | (contents[i + 2] << 16)
8508 | (contents[i + 1] << 8)
8509 | contents[i];
8510 unsigned int writemask = 0;
8511 enum bfd_arm_vfp11_pipe vpipe;
8512
8513 switch (state)
8514 {
8515 case 0:
8516 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8517 &numregs);
8518 /* I'm assuming the VFP11 erratum can trigger with denorm
8519 operands on either the FMAC or the DS pipeline. This might
8520 lead to slightly overenthusiastic veneer insertion. */
8521 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8522 {
8523 state = use_vector ? 1 : 2;
8524 first_fmac = i;
8525 veneer_of_insn = insn;
8526 }
8527 break;
8528
8529 case 1:
8530 {
8531 int other_regs[3], other_numregs;
8532 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8533 other_regs,
8534 &other_numregs);
8535 if (vpipe != VFP11_BAD
8536 && bfd_arm_vfp11_antidependency (writemask, regs,
8537 numregs))
8538 state = 3;
8539 else
8540 state = 2;
8541 }
8542 break;
8543
8544 case 2:
8545 {
8546 int other_regs[3], other_numregs;
8547 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8548 other_regs,
8549 &other_numregs);
8550 if (vpipe != VFP11_BAD
8551 && bfd_arm_vfp11_antidependency (writemask, regs,
8552 numregs))
8553 state = 3;
8554 else
8555 {
8556 state = 0;
8557 next_i = first_fmac + 4;
8558 }
8559 }
8560 break;
8561
8562 case 3:
8563 abort (); /* Should be unreachable. */
8564 }
8565
8566 if (state == 3)
8567 {
8568 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8569 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8570
8571 elf32_arm_section_data (sec)->erratumcount += 1;
8572
8573 newerr->u.b.vfp_insn = veneer_of_insn;
8574
8575 switch (span_type)
8576 {
8577 case 'a':
8578 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8579 break;
8580
8581 default:
8582 abort ();
8583 }
8584
8585 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8586 first_fmac);
8587
8588 newerr->vma = -1;
8589
8590 newerr->next = sec_data->erratumlist;
8591 sec_data->erratumlist = newerr;
8592
8593 state = 0;
8594 }
8595
8596 i = next_i;
8597 }
8598 }
8599
8600 if (contents != NULL
8601 && elf_section_data (sec)->this_hdr.contents != contents)
8602 free (contents);
8603 contents = NULL;
8604 }
8605
8606 return TRUE;
8607
8608error_return:
8609 if (contents != NULL
8610 && elf_section_data (sec)->this_hdr.contents != contents)
8611 free (contents);
8612
8613 return FALSE;
8614}
8615
8616/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8617 after sections have been laid out, using specially-named symbols. */
8618
8619void
8620bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8621 struct bfd_link_info *link_info)
8622{
8623 asection *sec;
8624 struct elf32_arm_link_hash_table *globals;
8625 char *tmp_name;
8626
8627 if (bfd_link_relocatable (link_info))
8628 return;
8629
8630 /* Skip if this bfd does not correspond to an ELF image. */
8631 if (! is_arm_elf (abfd))
8632 return;
8633
8634 globals = elf32_arm_hash_table (link_info);
8635 if (globals == NULL)
8636 return;
8637
8638 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8639 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8640
8641 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8642 {
8643 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8644 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8645
8646 for (; errnode != NULL; errnode = errnode->next)
8647 {
8648 struct elf_link_hash_entry *myh;
8649 bfd_vma vma;
8650
8651 switch (errnode->type)
8652 {
8653 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8654 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8655 /* Find veneer symbol. */
8656 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8657 errnode->u.b.veneer->u.v.id);
8658
8659 myh = elf_link_hash_lookup
8660 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8661
8662 if (myh == NULL)
8663 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8664 abfd, "VFP11", tmp_name);
8665
8666 vma = myh->root.u.def.section->output_section->vma
8667 + myh->root.u.def.section->output_offset
8668 + myh->root.u.def.value;
8669
8670 errnode->u.b.veneer->vma = vma;
8671 break;
8672
8673 case VFP11_ERRATUM_ARM_VENEER:
8674 case VFP11_ERRATUM_THUMB_VENEER:
8675 /* Find return location. */
8676 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8677 errnode->u.v.id);
8678
8679 myh = elf_link_hash_lookup
8680 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8681
8682 if (myh == NULL)
8683 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8684 abfd, "VFP11", tmp_name);
8685
8686 vma = myh->root.u.def.section->output_section->vma
8687 + myh->root.u.def.section->output_offset
8688 + myh->root.u.def.value;
8689
8690 errnode->u.v.branch->vma = vma;
8691 break;
8692
8693 default:
8694 abort ();
8695 }
8696 }
8697 }
8698
8699 free (tmp_name);
8700}
8701
8702/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8703 return locations after sections have been laid out, using
8704 specially-named symbols. */
8705
8706void
8707bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8708 struct bfd_link_info *link_info)
8709{
8710 asection *sec;
8711 struct elf32_arm_link_hash_table *globals;
8712 char *tmp_name;
8713
8714 if (bfd_link_relocatable (link_info))
8715 return;
8716
8717 /* Skip if this bfd does not correspond to an ELF image. */
8718 if (! is_arm_elf (abfd))
8719 return;
8720
8721 globals = elf32_arm_hash_table (link_info);
8722 if (globals == NULL)
8723 return;
8724
8725 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8726 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8727
8728 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8729 {
8730 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8731 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8732
8733 for (; errnode != NULL; errnode = errnode->next)
8734 {
8735 struct elf_link_hash_entry *myh;
8736 bfd_vma vma;
8737
8738 switch (errnode->type)
8739 {
8740 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8741 /* Find veneer symbol. */
8742 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8743 errnode->u.b.veneer->u.v.id);
8744
8745 myh = elf_link_hash_lookup
8746 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8747
8748 if (myh == NULL)
8749 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8750 abfd, "STM32L4XX", tmp_name);
8751
8752 vma = myh->root.u.def.section->output_section->vma
8753 + myh->root.u.def.section->output_offset
8754 + myh->root.u.def.value;
8755
8756 errnode->u.b.veneer->vma = vma;
8757 break;
8758
8759 case STM32L4XX_ERRATUM_VENEER:
8760 /* Find return location. */
8761 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8762 errnode->u.v.id);
8763
8764 myh = elf_link_hash_lookup
8765 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8766
8767 if (myh == NULL)
8768 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8769 abfd, "STM32L4XX", tmp_name);
8770
8771 vma = myh->root.u.def.section->output_section->vma
8772 + myh->root.u.def.section->output_offset
8773 + myh->root.u.def.value;
8774
8775 errnode->u.v.branch->vma = vma;
8776 break;
8777
8778 default:
8779 abort ();
8780 }
8781 }
8782 }
8783
8784 free (tmp_name);
8785}
8786
8787static inline bfd_boolean
8788is_thumb2_ldmia (const insn32 insn)
8789{
8790 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8791 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8792 return (insn & 0xffd02000) == 0xe8900000;
8793}
8794
8795static inline bfd_boolean
8796is_thumb2_ldmdb (const insn32 insn)
8797{
8798 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8799 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8800 return (insn & 0xffd02000) == 0xe9100000;
8801}
8802
8803static inline bfd_boolean
8804is_thumb2_vldm (const insn32 insn)
8805{
8806 /* A6.5 Extension register load or store instruction
8807 A7.7.229
8808 We look for SP 32-bit and DP 64-bit registers.
8809 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8810 <list> is consecutive 64-bit registers
8811 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8812 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8813 <list> is consecutive 32-bit registers
8814 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8815 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8816 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8817 return
8818 (((insn & 0xfe100f00) == 0xec100b00) ||
8819 ((insn & 0xfe100f00) == 0xec100a00))
8820 && /* (IA without !). */
8821 (((((insn << 7) >> 28) & 0xd) == 0x4)
8822 /* (IA with !), includes VPOP (when reg number is SP). */
8823 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8824 /* (DB with !). */
8825 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8826}
8827
8828/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8829 VLDM opcode and:
8830 - computes the number and the mode of memory accesses
8831 - decides if the replacement should be done:
8832 . replaces only if > 8-word accesses
8833 . or (testing purposes only) replaces all accesses. */
8834
8835static bfd_boolean
8836stm32l4xx_need_create_replacing_stub (const insn32 insn,
8837 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8838{
8839 int nb_words = 0;
8840
8841 /* The field encoding the register list is the same for both LDMIA
8842 and LDMDB encodings. */
8843 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8844 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8845 else if (is_thumb2_vldm (insn))
8846 nb_words = (insn & 0xff);
8847
8848 /* DEFAULT mode accounts for the real bug condition situation,
8849 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8850 return
8851 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8852 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8853}
8854
8855/* Look for potentially-troublesome code sequences which might trigger
8856 the STM STM32L4XX erratum. */
8857
8858bfd_boolean
8859bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8860 struct bfd_link_info *link_info)
8861{
8862 asection *sec;
8863 bfd_byte *contents = NULL;
8864 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8865
8866 if (globals == NULL)
8867 return FALSE;
8868
8869 /* If we are only performing a partial link do not bother
8870 to construct any glue. */
8871 if (bfd_link_relocatable (link_info))
8872 return TRUE;
8873
8874 /* Skip if this bfd does not correspond to an ELF image. */
8875 if (! is_arm_elf (abfd))
8876 return TRUE;
8877
8878 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8879 return TRUE;
8880
8881 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8882 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8883 return TRUE;
8884
8885 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8886 {
8887 unsigned int i, span;
8888 struct _arm_elf_section_data *sec_data;
8889
8890 /* If we don't have executable progbits, we're not interested in this
8891 section. Also skip if section is to be excluded. */
8892 if (elf_section_type (sec) != SHT_PROGBITS
8893 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8894 || (sec->flags & SEC_EXCLUDE) != 0
8895 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8896 || sec->output_section == bfd_abs_section_ptr
8897 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8898 continue;
8899
8900 sec_data = elf32_arm_section_data (sec);
8901
8902 if (sec_data->mapcount == 0)
8903 continue;
8904
8905 if (elf_section_data (sec)->this_hdr.contents != NULL)
8906 contents = elf_section_data (sec)->this_hdr.contents;
8907 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8908 goto error_return;
8909
8910 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8911 elf32_arm_compare_mapping);
8912
8913 for (span = 0; span < sec_data->mapcount; span++)
8914 {
8915 unsigned int span_start = sec_data->map[span].vma;
8916 unsigned int span_end = (span == sec_data->mapcount - 1)
8917 ? sec->size : sec_data->map[span + 1].vma;
8918 char span_type = sec_data->map[span].type;
8919 int itblock_current_pos = 0;
8920
8921 /* Only Thumb2 mode need be supported with this CM4 specific
8922 code, we should not encounter any arm mode eg span_type
8923 != 'a'. */
8924 if (span_type != 't')
8925 continue;
8926
8927 for (i = span_start; i < span_end;)
8928 {
8929 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8930 bfd_boolean insn_32bit = FALSE;
8931 bfd_boolean is_ldm = FALSE;
8932 bfd_boolean is_vldm = FALSE;
8933 bfd_boolean is_not_last_in_it_block = FALSE;
8934
8935 /* The first 16-bits of all 32-bit thumb2 instructions start
8936 with opcode[15..13]=0b111 and the encoded op1 can be anything
8937 except opcode[12..11]!=0b00.
8938 See 32-bit Thumb instruction encoding. */
8939 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8940 insn_32bit = TRUE;
8941
8942 /* Compute the predicate that tells if the instruction
8943 is concerned by the IT block
8944 - Creates an error if there is a ldm that is not
8945 last in the IT block thus cannot be replaced
8946 - Otherwise we can create a branch at the end of the
8947 IT block, it will be controlled naturally by IT
8948 with the proper pseudo-predicate
8949 - So the only interesting predicate is the one that
8950 tells that we are not on the last item of an IT
8951 block. */
8952 if (itblock_current_pos != 0)
8953 is_not_last_in_it_block = !!--itblock_current_pos;
8954
8955 if (insn_32bit)
8956 {
8957 /* Load the rest of the insn (in manual-friendly order). */
8958 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8959 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8960 is_vldm = is_thumb2_vldm (insn);
8961
8962 /* Veneers are created for (v)ldm depending on
8963 option flags and memory accesses conditions; but
8964 if the instruction is not the last instruction of
8965 an IT block, we cannot create a jump there, so we
8966 bail out. */
8967 if ((is_ldm || is_vldm)
8968 && stm32l4xx_need_create_replacing_stub
8969 (insn, globals->stm32l4xx_fix))
8970 {
8971 if (is_not_last_in_it_block)
8972 {
8973 _bfd_error_handler
8974 /* xgettext:c-format */
8975 (_("%pB(%pA+%#x): error: multiple load detected"
8976 " in non-last IT block instruction:"
8977 " STM32L4XX veneer cannot be generated; "
8978 "use gcc option -mrestrict-it to generate"
8979 " only one instruction per IT block"),
8980 abfd, sec, i);
8981 }
8982 else
8983 {
8984 elf32_stm32l4xx_erratum_list *newerr =
8985 (elf32_stm32l4xx_erratum_list *)
8986 bfd_zmalloc
8987 (sizeof (elf32_stm32l4xx_erratum_list));
8988
8989 elf32_arm_section_data (sec)
8990 ->stm32l4xx_erratumcount += 1;
8991 newerr->u.b.insn = insn;
8992 /* We create only thumb branches. */
8993 newerr->type =
8994 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8995 record_stm32l4xx_erratum_veneer
8996 (link_info, newerr, abfd, sec,
8997 i,
8998 is_ldm ?
8999 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
9000 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
9001 newerr->vma = -1;
9002 newerr->next = sec_data->stm32l4xx_erratumlist;
9003 sec_data->stm32l4xx_erratumlist = newerr;
9004 }
9005 }
9006 }
9007 else
9008 {
9009 /* A7.7.37 IT p208
9010 IT blocks are only encoded in T1
9011 Encoding T1: IT{x{y{z}}} <firstcond>
9012 1 0 1 1 - 1 1 1 1 - firstcond - mask
9013 if mask = '0000' then see 'related encodings'
9014 We don't deal with UNPREDICTABLE, just ignore these.
9015 There can be no nested IT blocks so an IT block
9016 is naturally a new one for which it is worth
9017 computing its size. */
9018 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
9019 && ((insn & 0x000f) != 0x0000);
9020 /* If we have a new IT block we compute its size. */
9021 if (is_newitblock)
9022 {
9023 /* Compute the number of instructions controlled
9024 by the IT block, it will be used to decide
9025 whether we are inside an IT block or not. */
9026 unsigned int mask = insn & 0x000f;
9027 itblock_current_pos = 4 - ctz (mask);
9028 }
9029 }
9030
9031 i += insn_32bit ? 4 : 2;
9032 }
9033 }
9034
9035 if (contents != NULL
9036 && elf_section_data (sec)->this_hdr.contents != contents)
9037 free (contents);
9038 contents = NULL;
9039 }
9040
9041 return TRUE;
9042
9043error_return:
9044 if (contents != NULL
9045 && elf_section_data (sec)->this_hdr.contents != contents)
9046 free (contents);
9047
9048 return FALSE;
9049}
9050
9051/* Set target relocation values needed during linking. */
9052
9053void
9054bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9055 struct bfd_link_info *link_info,
9056 struct elf32_arm_params *params)
9057{
9058 struct elf32_arm_link_hash_table *globals;
9059
9060 globals = elf32_arm_hash_table (link_info);
9061 if (globals == NULL)
9062 return;
9063
9064 globals->target1_is_rel = params->target1_is_rel;
9065 if (globals->fdpic_p)
9066 globals->target2_reloc = R_ARM_GOT32;
9067 else if (strcmp (params->target2_type, "rel") == 0)
9068 globals->target2_reloc = R_ARM_REL32;
9069 else if (strcmp (params->target2_type, "abs") == 0)
9070 globals->target2_reloc = R_ARM_ABS32;
9071 else if (strcmp (params->target2_type, "got-rel") == 0)
9072 globals->target2_reloc = R_ARM_GOT_PREL;
9073 else
9074 {
9075 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9076 params->target2_type);
9077 }
9078 globals->fix_v4bx = params->fix_v4bx;
9079 globals->use_blx |= params->use_blx;
9080 globals->vfp11_fix = params->vfp11_denorm_fix;
9081 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9082 if (globals->fdpic_p)
9083 globals->pic_veneer = 1;
9084 else
9085 globals->pic_veneer = params->pic_veneer;
9086 globals->fix_cortex_a8 = params->fix_cortex_a8;
9087 globals->fix_arm1176 = params->fix_arm1176;
9088 globals->cmse_implib = params->cmse_implib;
9089 globals->in_implib_bfd = params->in_implib_bfd;
9090
9091 BFD_ASSERT (is_arm_elf (output_bfd));
9092 elf_arm_tdata (output_bfd)->no_enum_size_warning
9093 = params->no_enum_size_warning;
9094 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9095 = params->no_wchar_size_warning;
9096}
9097
9098/* Replace the target offset of a Thumb bl or b.w instruction. */
9099
9100static void
9101insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9102{
9103 bfd_vma upper;
9104 bfd_vma lower;
9105 int reloc_sign;
9106
9107 BFD_ASSERT ((offset & 1) == 0);
9108
9109 upper = bfd_get_16 (abfd, insn);
9110 lower = bfd_get_16 (abfd, insn + 2);
9111 reloc_sign = (offset < 0) ? 1 : 0;
9112 upper = (upper & ~(bfd_vma) 0x7ff)
9113 | ((offset >> 12) & 0x3ff)
9114 | (reloc_sign << 10);
9115 lower = (lower & ~(bfd_vma) 0x2fff)
9116 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9117 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9118 | ((offset >> 1) & 0x7ff);
9119 bfd_put_16 (abfd, upper, insn);
9120 bfd_put_16 (abfd, lower, insn + 2);
9121}
9122
9123/* Thumb code calling an ARM function. */
9124
9125static int
9126elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9127 const char * name,
9128 bfd * input_bfd,
9129 bfd * output_bfd,
9130 asection * input_section,
9131 bfd_byte * hit_data,
9132 asection * sym_sec,
9133 bfd_vma offset,
9134 bfd_signed_vma addend,
9135 bfd_vma val,
9136 char **error_message)
9137{
9138 asection * s = 0;
9139 bfd_vma my_offset;
9140 long int ret_offset;
9141 struct elf_link_hash_entry * myh;
9142 struct elf32_arm_link_hash_table * globals;
9143
9144 myh = find_thumb_glue (info, name, error_message);
9145 if (myh == NULL)
9146 return FALSE;
9147
9148 globals = elf32_arm_hash_table (info);
9149 BFD_ASSERT (globals != NULL);
9150 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9151
9152 my_offset = myh->root.u.def.value;
9153
9154 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9155 THUMB2ARM_GLUE_SECTION_NAME);
9156
9157 BFD_ASSERT (s != NULL);
9158 BFD_ASSERT (s->contents != NULL);
9159 BFD_ASSERT (s->output_section != NULL);
9160
9161 if ((my_offset & 0x01) == 0x01)
9162 {
9163 if (sym_sec != NULL
9164 && sym_sec->owner != NULL
9165 && !INTERWORK_FLAG (sym_sec->owner))
9166 {
9167 _bfd_error_handler
9168 (_("%pB(%s): warning: interworking not enabled;"
9169 " first occurrence: %pB: %s call to %s"),
9170 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9171
9172 return FALSE;
9173 }
9174
9175 --my_offset;
9176 myh->root.u.def.value = my_offset;
9177
9178 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9179 s->contents + my_offset);
9180
9181 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9182 s->contents + my_offset + 2);
9183
9184 ret_offset =
9185 /* Address of destination of the stub. */
9186 ((bfd_signed_vma) val)
9187 - ((bfd_signed_vma)
9188 /* Offset from the start of the current section
9189 to the start of the stubs. */
9190 (s->output_offset
9191 /* Offset of the start of this stub from the start of the stubs. */
9192 + my_offset
9193 /* Address of the start of the current section. */
9194 + s->output_section->vma)
9195 /* The branch instruction is 4 bytes into the stub. */
9196 + 4
9197 /* ARM branches work from the pc of the instruction + 8. */
9198 + 8);
9199
9200 put_arm_insn (globals, output_bfd,
9201 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9202 s->contents + my_offset + 4);
9203 }
9204
9205 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9206
9207 /* Now go back and fix up the original BL insn to point to here. */
9208 ret_offset =
9209 /* Address of where the stub is located. */
9210 (s->output_section->vma + s->output_offset + my_offset)
9211 /* Address of where the BL is located. */
9212 - (input_section->output_section->vma + input_section->output_offset
9213 + offset)
9214 /* Addend in the relocation. */
9215 - addend
9216 /* Biassing for PC-relative addressing. */
9217 - 8;
9218
9219 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9220
9221 return TRUE;
9222}
9223
9224/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9225
9226static struct elf_link_hash_entry *
9227elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9228 const char * name,
9229 bfd * input_bfd,
9230 bfd * output_bfd,
9231 asection * sym_sec,
9232 bfd_vma val,
9233 asection * s,
9234 char ** error_message)
9235{
9236 bfd_vma my_offset;
9237 long int ret_offset;
9238 struct elf_link_hash_entry * myh;
9239 struct elf32_arm_link_hash_table * globals;
9240
9241 myh = find_arm_glue (info, name, error_message);
9242 if (myh == NULL)
9243 return NULL;
9244
9245 globals = elf32_arm_hash_table (info);
9246 BFD_ASSERT (globals != NULL);
9247 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9248
9249 my_offset = myh->root.u.def.value;
9250
9251 if ((my_offset & 0x01) == 0x01)
9252 {
9253 if (sym_sec != NULL
9254 && sym_sec->owner != NULL
9255 && !INTERWORK_FLAG (sym_sec->owner))
9256 {
9257 _bfd_error_handler
9258 (_("%pB(%s): warning: interworking not enabled;"
9259 " first occurrence: %pB: %s call to %s"),
9260 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9261 }
9262
9263 --my_offset;
9264 myh->root.u.def.value = my_offset;
9265
9266 if (bfd_link_pic (info)
9267 || globals->root.is_relocatable_executable
9268 || globals->pic_veneer)
9269 {
9270 /* For relocatable objects we can't use absolute addresses,
9271 so construct the address from a relative offset. */
9272 /* TODO: If the offset is small it's probably worth
9273 constructing the address with adds. */
9274 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9275 s->contents + my_offset);
9276 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9277 s->contents + my_offset + 4);
9278 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9279 s->contents + my_offset + 8);
9280 /* Adjust the offset by 4 for the position of the add,
9281 and 8 for the pipeline offset. */
9282 ret_offset = (val - (s->output_offset
9283 + s->output_section->vma
9284 + my_offset + 12))
9285 | 1;
9286 bfd_put_32 (output_bfd, ret_offset,
9287 s->contents + my_offset + 12);
9288 }
9289 else if (globals->use_blx)
9290 {
9291 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9292 s->contents + my_offset);
9293
9294 /* It's a thumb address. Add the low order bit. */
9295 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9296 s->contents + my_offset + 4);
9297 }
9298 else
9299 {
9300 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9301 s->contents + my_offset);
9302
9303 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9304 s->contents + my_offset + 4);
9305
9306 /* It's a thumb address. Add the low order bit. */
9307 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9308 s->contents + my_offset + 8);
9309
9310 my_offset += 12;
9311 }
9312 }
9313
9314 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9315
9316 return myh;
9317}
9318
9319/* Arm code calling a Thumb function. */
9320
9321static int
9322elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9323 const char * name,
9324 bfd * input_bfd,
9325 bfd * output_bfd,
9326 asection * input_section,
9327 bfd_byte * hit_data,
9328 asection * sym_sec,
9329 bfd_vma offset,
9330 bfd_signed_vma addend,
9331 bfd_vma val,
9332 char **error_message)
9333{
9334 unsigned long int tmp;
9335 bfd_vma my_offset;
9336 asection * s;
9337 long int ret_offset;
9338 struct elf_link_hash_entry * myh;
9339 struct elf32_arm_link_hash_table * globals;
9340
9341 globals = elf32_arm_hash_table (info);
9342 BFD_ASSERT (globals != NULL);
9343 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9344
9345 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9346 ARM2THUMB_GLUE_SECTION_NAME);
9347 BFD_ASSERT (s != NULL);
9348 BFD_ASSERT (s->contents != NULL);
9349 BFD_ASSERT (s->output_section != NULL);
9350
9351 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9352 sym_sec, val, s, error_message);
9353 if (!myh)
9354 return FALSE;
9355
9356 my_offset = myh->root.u.def.value;
9357 tmp = bfd_get_32 (input_bfd, hit_data);
9358 tmp = tmp & 0xFF000000;
9359
9360 /* Somehow these are both 4 too far, so subtract 8. */
9361 ret_offset = (s->output_offset
9362 + my_offset
9363 + s->output_section->vma
9364 - (input_section->output_offset
9365 + input_section->output_section->vma
9366 + offset + addend)
9367 - 8);
9368
9369 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9370
9371 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9372
9373 return TRUE;
9374}
9375
9376/* Populate Arm stub for an exported Thumb function. */
9377
9378static bfd_boolean
9379elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9380{
9381 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9382 asection * s;
9383 struct elf_link_hash_entry * myh;
9384 struct elf32_arm_link_hash_entry *eh;
9385 struct elf32_arm_link_hash_table * globals;
9386 asection *sec;
9387 bfd_vma val;
9388 char *error_message;
9389
9390 eh = elf32_arm_hash_entry (h);
9391 /* Allocate stubs for exported Thumb functions on v4t. */
9392 if (eh->export_glue == NULL)
9393 return TRUE;
9394
9395 globals = elf32_arm_hash_table (info);
9396 BFD_ASSERT (globals != NULL);
9397 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9398
9399 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9400 ARM2THUMB_GLUE_SECTION_NAME);
9401 BFD_ASSERT (s != NULL);
9402 BFD_ASSERT (s->contents != NULL);
9403 BFD_ASSERT (s->output_section != NULL);
9404
9405 sec = eh->export_glue->root.u.def.section;
9406
9407 BFD_ASSERT (sec->output_section != NULL);
9408
9409 val = eh->export_glue->root.u.def.value + sec->output_offset
9410 + sec->output_section->vma;
9411
9412 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9413 h->root.u.def.section->owner,
9414 globals->obfd, sec, val, s,
9415 &error_message);
9416 BFD_ASSERT (myh);
9417 return TRUE;
9418}
9419
9420/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9421
9422static bfd_vma
9423elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9424{
9425 bfd_byte *p;
9426 bfd_vma glue_addr;
9427 asection *s;
9428 struct elf32_arm_link_hash_table *globals;
9429
9430 globals = elf32_arm_hash_table (info);
9431 BFD_ASSERT (globals != NULL);
9432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9433
9434 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9435 ARM_BX_GLUE_SECTION_NAME);
9436 BFD_ASSERT (s != NULL);
9437 BFD_ASSERT (s->contents != NULL);
9438 BFD_ASSERT (s->output_section != NULL);
9439
9440 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9441
9442 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9443
9444 if ((globals->bx_glue_offset[reg] & 1) == 0)
9445 {
9446 p = s->contents + glue_addr;
9447 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9448 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9449 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9450 globals->bx_glue_offset[reg] |= 1;
9451 }
9452
9453 return glue_addr + s->output_section->vma + s->output_offset;
9454}
9455
9456/* Generate Arm stubs for exported Thumb symbols. */
9457static void
9458elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9459 struct bfd_link_info *link_info)
9460{
9461 struct elf32_arm_link_hash_table * globals;
9462
9463 if (link_info == NULL)
9464 /* Ignore this if we are not called by the ELF backend linker. */
9465 return;
9466
9467 globals = elf32_arm_hash_table (link_info);
9468 if (globals == NULL)
9469 return;
9470
9471 /* If blx is available then exported Thumb symbols are OK and there is
9472 nothing to do. */
9473 if (globals->use_blx)
9474 return;
9475
9476 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9477 link_info);
9478}
9479
9480/* Reserve space for COUNT dynamic relocations in relocation selection
9481 SRELOC. */
9482
9483static void
9484elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9485 bfd_size_type count)
9486{
9487 struct elf32_arm_link_hash_table *htab;
9488
9489 htab = elf32_arm_hash_table (info);
9490 BFD_ASSERT (htab->root.dynamic_sections_created);
9491 if (sreloc == NULL)
9492 abort ();
9493 sreloc->size += RELOC_SIZE (htab) * count;
9494}
9495
9496/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9497 dynamic, the relocations should go in SRELOC, otherwise they should
9498 go in the special .rel.iplt section. */
9499
9500static void
9501elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9502 bfd_size_type count)
9503{
9504 struct elf32_arm_link_hash_table *htab;
9505
9506 htab = elf32_arm_hash_table (info);
9507 if (!htab->root.dynamic_sections_created)
9508 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9509 else
9510 {
9511 BFD_ASSERT (sreloc != NULL);
9512 sreloc->size += RELOC_SIZE (htab) * count;
9513 }
9514}
9515
9516/* Add relocation REL to the end of relocation section SRELOC. */
9517
9518static void
9519elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9520 asection *sreloc, Elf_Internal_Rela *rel)
9521{
9522 bfd_byte *loc;
9523 struct elf32_arm_link_hash_table *htab;
9524
9525 htab = elf32_arm_hash_table (info);
9526 if (!htab->root.dynamic_sections_created
9527 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9528 sreloc = htab->root.irelplt;
9529 if (sreloc == NULL)
9530 abort ();
9531 loc = sreloc->contents;
9532 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9533 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9534 abort ();
9535 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9536}
9537
9538/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9539 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9540 to .plt. */
9541
9542static void
9543elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9544 bfd_boolean is_iplt_entry,
9545 union gotplt_union *root_plt,
9546 struct arm_plt_info *arm_plt)
9547{
9548 struct elf32_arm_link_hash_table *htab;
9549 asection *splt;
9550 asection *sgotplt;
9551
9552 htab = elf32_arm_hash_table (info);
9553
9554 if (is_iplt_entry)
9555 {
9556 splt = htab->root.iplt;
9557 sgotplt = htab->root.igotplt;
9558
9559 /* NaCl uses a special first entry in .iplt too. */
9560 if (htab->nacl_p && splt->size == 0)
9561 splt->size += htab->plt_header_size;
9562
9563 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9564 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9565 }
9566 else
9567 {
9568 splt = htab->root.splt;
9569 sgotplt = htab->root.sgotplt;
9570
9571 if (htab->fdpic_p)
9572 {
9573 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9574 /* For lazy binding, relocations will be put into .rel.plt, in
9575 .rel.got otherwise. */
9576 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9577 if (info->flags & DF_BIND_NOW)
9578 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9579 else
9580 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9581 }
9582 else
9583 {
9584 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9585 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9586 }
9587
9588 /* If this is the first .plt entry, make room for the special
9589 first entry. */
9590 if (splt->size == 0)
9591 splt->size += htab->plt_header_size;
9592
9593 htab->next_tls_desc_index++;
9594 }
9595
9596 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9597 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9598 splt->size += PLT_THUMB_STUB_SIZE;
9599 root_plt->offset = splt->size;
9600 splt->size += htab->plt_entry_size;
9601
9602 if (!htab->symbian_p)
9603 {
9604 /* We also need to make an entry in the .got.plt section, which
9605 will be placed in the .got section by the linker script. */
9606 if (is_iplt_entry)
9607 arm_plt->got_offset = sgotplt->size;
9608 else
9609 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9610 if (htab->fdpic_p)
9611 /* Function descriptor takes 64 bits in GOT. */
9612 sgotplt->size += 8;
9613 else
9614 sgotplt->size += 4;
9615 }
9616}
9617
9618static bfd_vma
9619arm_movw_immediate (bfd_vma value)
9620{
9621 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9622}
9623
9624static bfd_vma
9625arm_movt_immediate (bfd_vma value)
9626{
9627 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9628}
9629
9630/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9631 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9632 Otherwise, DYNINDX is the index of the symbol in the dynamic
9633 symbol table and SYM_VALUE is undefined.
9634
9635 ROOT_PLT points to the offset of the PLT entry from the start of its
9636 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9637 bookkeeping information.
9638
9639 Returns FALSE if there was a problem. */
9640
9641static bfd_boolean
9642elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9643 union gotplt_union *root_plt,
9644 struct arm_plt_info *arm_plt,
9645 int dynindx, bfd_vma sym_value)
9646{
9647 struct elf32_arm_link_hash_table *htab;
9648 asection *sgot;
9649 asection *splt;
9650 asection *srel;
9651 bfd_byte *loc;
9652 bfd_vma plt_index;
9653 Elf_Internal_Rela rel;
9654 bfd_vma plt_header_size;
9655 bfd_vma got_header_size;
9656
9657 htab = elf32_arm_hash_table (info);
9658
9659 /* Pick the appropriate sections and sizes. */
9660 if (dynindx == -1)
9661 {
9662 splt = htab->root.iplt;
9663 sgot = htab->root.igotplt;
9664 srel = htab->root.irelplt;
9665
9666 /* There are no reserved entries in .igot.plt, and no special
9667 first entry in .iplt. */
9668 got_header_size = 0;
9669 plt_header_size = 0;
9670 }
9671 else
9672 {
9673 splt = htab->root.splt;
9674 sgot = htab->root.sgotplt;
9675 srel = htab->root.srelplt;
9676
9677 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9678 plt_header_size = htab->plt_header_size;
9679 }
9680 BFD_ASSERT (splt != NULL && srel != NULL);
9681
9682 /* Fill in the entry in the procedure linkage table. */
9683 if (htab->symbian_p)
9684 {
9685 BFD_ASSERT (dynindx >= 0);
9686 put_arm_insn (htab, output_bfd,
9687 elf32_arm_symbian_plt_entry[0],
9688 splt->contents + root_plt->offset);
9689 bfd_put_32 (output_bfd,
9690 elf32_arm_symbian_plt_entry[1],
9691 splt->contents + root_plt->offset + 4);
9692
9693 /* Fill in the entry in the .rel.plt section. */
9694 rel.r_offset = (splt->output_section->vma
9695 + splt->output_offset
9696 + root_plt->offset + 4);
9697 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9698
9699 /* Get the index in the procedure linkage table which
9700 corresponds to this symbol. This is the index of this symbol
9701 in all the symbols for which we are making plt entries. The
9702 first entry in the procedure linkage table is reserved. */
9703 plt_index = ((root_plt->offset - plt_header_size)
9704 / htab->plt_entry_size);
9705 }
9706 else
9707 {
9708 bfd_vma got_offset, got_address, plt_address;
9709 bfd_vma got_displacement, initial_got_entry;
9710 bfd_byte * ptr;
9711
9712 BFD_ASSERT (sgot != NULL);
9713
9714 /* Get the offset into the .(i)got.plt table of the entry that
9715 corresponds to this function. */
9716 got_offset = (arm_plt->got_offset & -2);
9717
9718 /* Get the index in the procedure linkage table which
9719 corresponds to this symbol. This is the index of this symbol
9720 in all the symbols for which we are making plt entries.
9721 After the reserved .got.plt entries, all symbols appear in
9722 the same order as in .plt. */
9723 if (htab->fdpic_p)
9724 /* Function descriptor takes 8 bytes. */
9725 plt_index = (got_offset - got_header_size) / 8;
9726 else
9727 plt_index = (got_offset - got_header_size) / 4;
9728
9729 /* Calculate the address of the GOT entry. */
9730 got_address = (sgot->output_section->vma
9731 + sgot->output_offset
9732 + got_offset);
9733
9734 /* ...and the address of the PLT entry. */
9735 plt_address = (splt->output_section->vma
9736 + splt->output_offset
9737 + root_plt->offset);
9738
9739 ptr = splt->contents + root_plt->offset;
9740 if (htab->vxworks_p && bfd_link_pic (info))
9741 {
9742 unsigned int i;
9743 bfd_vma val;
9744
9745 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9746 {
9747 val = elf32_arm_vxworks_shared_plt_entry[i];
9748 if (i == 2)
9749 val |= got_address - sgot->output_section->vma;
9750 if (i == 5)
9751 val |= plt_index * RELOC_SIZE (htab);
9752 if (i == 2 || i == 5)
9753 bfd_put_32 (output_bfd, val, ptr);
9754 else
9755 put_arm_insn (htab, output_bfd, val, ptr);
9756 }
9757 }
9758 else if (htab->vxworks_p)
9759 {
9760 unsigned int i;
9761 bfd_vma val;
9762
9763 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9764 {
9765 val = elf32_arm_vxworks_exec_plt_entry[i];
9766 if (i == 2)
9767 val |= got_address;
9768 if (i == 4)
9769 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9770 if (i == 5)
9771 val |= plt_index * RELOC_SIZE (htab);
9772 if (i == 2 || i == 5)
9773 bfd_put_32 (output_bfd, val, ptr);
9774 else
9775 put_arm_insn (htab, output_bfd, val, ptr);
9776 }
9777
9778 loc = (htab->srelplt2->contents
9779 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9780
9781 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9782 referencing the GOT for this PLT entry. */
9783 rel.r_offset = plt_address + 8;
9784 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9785 rel.r_addend = got_offset;
9786 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9787 loc += RELOC_SIZE (htab);
9788
9789 /* Create the R_ARM_ABS32 relocation referencing the
9790 beginning of the PLT for this GOT entry. */
9791 rel.r_offset = got_address;
9792 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9793 rel.r_addend = 0;
9794 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9795 }
9796 else if (htab->nacl_p)
9797 {
9798 /* Calculate the displacement between the PLT slot and the
9799 common tail that's part of the special initial PLT slot. */
9800 int32_t tail_displacement
9801 = ((splt->output_section->vma + splt->output_offset
9802 + ARM_NACL_PLT_TAIL_OFFSET)
9803 - (plt_address + htab->plt_entry_size + 4));
9804 BFD_ASSERT ((tail_displacement & 3) == 0);
9805 tail_displacement >>= 2;
9806
9807 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9808 || (-tail_displacement & 0xff000000) == 0);
9809
9810 /* Calculate the displacement between the PLT slot and the entry
9811 in the GOT. The offset accounts for the value produced by
9812 adding to pc in the penultimate instruction of the PLT stub. */
9813 got_displacement = (got_address
9814 - (plt_address + htab->plt_entry_size));
9815
9816 /* NaCl does not support interworking at all. */
9817 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9818
9819 put_arm_insn (htab, output_bfd,
9820 elf32_arm_nacl_plt_entry[0]
9821 | arm_movw_immediate (got_displacement),
9822 ptr + 0);
9823 put_arm_insn (htab, output_bfd,
9824 elf32_arm_nacl_plt_entry[1]
9825 | arm_movt_immediate (got_displacement),
9826 ptr + 4);
9827 put_arm_insn (htab, output_bfd,
9828 elf32_arm_nacl_plt_entry[2],
9829 ptr + 8);
9830 put_arm_insn (htab, output_bfd,
9831 elf32_arm_nacl_plt_entry[3]
9832 | (tail_displacement & 0x00ffffff),
9833 ptr + 12);
9834 }
9835 else if (htab->fdpic_p)
9836 {
9837 const bfd_vma *plt_entry = using_thumb_only(htab)
9838 ? elf32_arm_fdpic_thumb_plt_entry
9839 : elf32_arm_fdpic_plt_entry;
9840
9841 /* Fill-up Thumb stub if needed. */
9842 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9843 {
9844 put_thumb_insn (htab, output_bfd,
9845 elf32_arm_plt_thumb_stub[0], ptr - 4);
9846 put_thumb_insn (htab, output_bfd,
9847 elf32_arm_plt_thumb_stub[1], ptr - 2);
9848 }
9849 /* As we are using 32 bit instructions even for the Thumb
9850 version, we have to use 'put_arm_insn' instead of
9851 'put_thumb_insn'. */
9852 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9853 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9854 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9855 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9856 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9857
9858 if (!(info->flags & DF_BIND_NOW))
9859 {
9860 /* funcdesc_value_reloc_offset. */
9861 bfd_put_32 (output_bfd,
9862 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9863 ptr + 20);
9864 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9865 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9866 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9867 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9868 }
9869 }
9870 else if (using_thumb_only (htab))
9871 {
9872 /* PR ld/16017: Generate thumb only PLT entries. */
9873 if (!using_thumb2 (htab))
9874 {
9875 /* FIXME: We ought to be able to generate thumb-1 PLT
9876 instructions... */
9877 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9878 output_bfd);
9879 return FALSE;
9880 }
9881
9882 /* Calculate the displacement between the PLT slot and the entry in
9883 the GOT. The 12-byte offset accounts for the value produced by
9884 adding to pc in the 3rd instruction of the PLT stub. */
9885 got_displacement = got_address - (plt_address + 12);
9886
9887 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9888 instead of 'put_thumb_insn'. */
9889 put_arm_insn (htab, output_bfd,
9890 elf32_thumb2_plt_entry[0]
9891 | ((got_displacement & 0x000000ff) << 16)
9892 | ((got_displacement & 0x00000700) << 20)
9893 | ((got_displacement & 0x00000800) >> 1)
9894 | ((got_displacement & 0x0000f000) >> 12),
9895 ptr + 0);
9896 put_arm_insn (htab, output_bfd,
9897 elf32_thumb2_plt_entry[1]
9898 | ((got_displacement & 0x00ff0000) )
9899 | ((got_displacement & 0x07000000) << 4)
9900 | ((got_displacement & 0x08000000) >> 17)
9901 | ((got_displacement & 0xf0000000) >> 28),
9902 ptr + 4);
9903 put_arm_insn (htab, output_bfd,
9904 elf32_thumb2_plt_entry[2],
9905 ptr + 8);
9906 put_arm_insn (htab, output_bfd,
9907 elf32_thumb2_plt_entry[3],
9908 ptr + 12);
9909 }
9910 else
9911 {
9912 /* Calculate the displacement between the PLT slot and the
9913 entry in the GOT. The eight-byte offset accounts for the
9914 value produced by adding to pc in the first instruction
9915 of the PLT stub. */
9916 got_displacement = got_address - (plt_address + 8);
9917
9918 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9919 {
9920 put_thumb_insn (htab, output_bfd,
9921 elf32_arm_plt_thumb_stub[0], ptr - 4);
9922 put_thumb_insn (htab, output_bfd,
9923 elf32_arm_plt_thumb_stub[1], ptr - 2);
9924 }
9925
9926 if (!elf32_arm_use_long_plt_entry)
9927 {
9928 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9929
9930 put_arm_insn (htab, output_bfd,
9931 elf32_arm_plt_entry_short[0]
9932 | ((got_displacement & 0x0ff00000) >> 20),
9933 ptr + 0);
9934 put_arm_insn (htab, output_bfd,
9935 elf32_arm_plt_entry_short[1]
9936 | ((got_displacement & 0x000ff000) >> 12),
9937 ptr+ 4);
9938 put_arm_insn (htab, output_bfd,
9939 elf32_arm_plt_entry_short[2]
9940 | (got_displacement & 0x00000fff),
9941 ptr + 8);
9942#ifdef FOUR_WORD_PLT
9943 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9944#endif
9945 }
9946 else
9947 {
9948 put_arm_insn (htab, output_bfd,
9949 elf32_arm_plt_entry_long[0]
9950 | ((got_displacement & 0xf0000000) >> 28),
9951 ptr + 0);
9952 put_arm_insn (htab, output_bfd,
9953 elf32_arm_plt_entry_long[1]
9954 | ((got_displacement & 0x0ff00000) >> 20),
9955 ptr + 4);
9956 put_arm_insn (htab, output_bfd,
9957 elf32_arm_plt_entry_long[2]
9958 | ((got_displacement & 0x000ff000) >> 12),
9959 ptr+ 8);
9960 put_arm_insn (htab, output_bfd,
9961 elf32_arm_plt_entry_long[3]
9962 | (got_displacement & 0x00000fff),
9963 ptr + 12);
9964 }
9965 }
9966
9967 /* Fill in the entry in the .rel(a).(i)plt section. */
9968 rel.r_offset = got_address;
9969 rel.r_addend = 0;
9970 if (dynindx == -1)
9971 {
9972 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9973 The dynamic linker or static executable then calls SYM_VALUE
9974 to determine the correct run-time value of the .igot.plt entry. */
9975 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9976 initial_got_entry = sym_value;
9977 }
9978 else
9979 {
9980 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9981 used by PLT entry. */
9982 if (htab->fdpic_p)
9983 {
9984 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9985 initial_got_entry = 0;
9986 }
9987 else
9988 {
9989 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9990 initial_got_entry = (splt->output_section->vma
9991 + splt->output_offset);
9992 }
9993 }
9994
9995 /* Fill in the entry in the global offset table. */
9996 bfd_put_32 (output_bfd, initial_got_entry,
9997 sgot->contents + got_offset);
9998
9999 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
10000 {
10001 /* Setup initial funcdesc value. */
10002 /* FIXME: we don't support lazy binding because there is a
10003 race condition between both words getting written and
10004 some other thread attempting to read them. The ARM
10005 architecture does not have an atomic 64 bit load/store
10006 instruction that could be used to prevent it; it is
10007 recommended that threaded FDPIC applications run with the
10008 LD_BIND_NOW environment variable set. */
10009 bfd_put_32(output_bfd, plt_address + 0x18,
10010 sgot->contents + got_offset);
10011 bfd_put_32(output_bfd, -1 /*TODO*/,
10012 sgot->contents + got_offset + 4);
10013 }
10014 }
10015
10016 if (dynindx == -1)
10017 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
10018 else
10019 {
10020 if (htab->fdpic_p)
10021 {
10022 /* For FDPIC we put PLT relocationss into .rel.got when not
10023 lazy binding otherwise we put them in .rel.plt. For now,
10024 we don't support lazy binding so put it in .rel.got. */
10025 if (info->flags & DF_BIND_NOW)
10026 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
10027 else
10028 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10029 }
10030 else
10031 {
10032 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10033 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10034 }
10035 }
10036
10037 return TRUE;
10038}
10039
10040/* Some relocations map to different relocations depending on the
10041 target. Return the real relocation. */
10042
10043static int
10044arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10045 int r_type)
10046{
10047 switch (r_type)
10048 {
10049 case R_ARM_TARGET1:
10050 if (globals->target1_is_rel)
10051 return R_ARM_REL32;
10052 else
10053 return R_ARM_ABS32;
10054
10055 case R_ARM_TARGET2:
10056 return globals->target2_reloc;
10057
10058 default:
10059 return r_type;
10060 }
10061}
10062
10063/* Return the base VMA address which should be subtracted from real addresses
10064 when resolving @dtpoff relocation.
10065 This is PT_TLS segment p_vaddr. */
10066
10067static bfd_vma
10068dtpoff_base (struct bfd_link_info *info)
10069{
10070 /* If tls_sec is NULL, we should have signalled an error already. */
10071 if (elf_hash_table (info)->tls_sec == NULL)
10072 return 0;
10073 return elf_hash_table (info)->tls_sec->vma;
10074}
10075
10076/* Return the relocation value for @tpoff relocation
10077 if STT_TLS virtual address is ADDRESS. */
10078
10079static bfd_vma
10080tpoff (struct bfd_link_info *info, bfd_vma address)
10081{
10082 struct elf_link_hash_table *htab = elf_hash_table (info);
10083 bfd_vma base;
10084
10085 /* If tls_sec is NULL, we should have signalled an error already. */
10086 if (htab->tls_sec == NULL)
10087 return 0;
10088 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10089 return address - htab->tls_sec->vma + base;
10090}
10091
10092/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10093 VALUE is the relocation value. */
10094
10095static bfd_reloc_status_type
10096elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10097{
10098 if (value > 0xfff)
10099 return bfd_reloc_overflow;
10100
10101 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10102 bfd_put_32 (abfd, value, data);
10103 return bfd_reloc_ok;
10104}
10105
10106/* Handle TLS relaxations. Relaxing is possible for symbols that use
10107 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10108 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10109
10110 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10111 is to then call final_link_relocate. Return other values in the
10112 case of error.
10113
10114 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10115 the pre-relaxed code. It would be nice if the relocs were updated
10116 to match the optimization. */
10117
10118static bfd_reloc_status_type
10119elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10120 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10121 Elf_Internal_Rela *rel, unsigned long is_local)
10122{
10123 unsigned long insn;
10124
10125 switch (ELF32_R_TYPE (rel->r_info))
10126 {
10127 default:
10128 return bfd_reloc_notsupported;
10129
10130 case R_ARM_TLS_GOTDESC:
10131 if (is_local)
10132 insn = 0;
10133 else
10134 {
10135 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10136 if (insn & 1)
10137 insn -= 5; /* THUMB */
10138 else
10139 insn -= 8; /* ARM */
10140 }
10141 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10142 return bfd_reloc_continue;
10143
10144 case R_ARM_THM_TLS_DESCSEQ:
10145 /* Thumb insn. */
10146 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10147 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10148 {
10149 if (is_local)
10150 /* nop */
10151 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10152 }
10153 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10154 {
10155 if (is_local)
10156 /* nop */
10157 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10158 else
10159 /* ldr rx,[ry] */
10160 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10161 }
10162 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10163 {
10164 if (is_local)
10165 /* nop */
10166 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10167 else
10168 /* mov r0, rx */
10169 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10170 contents + rel->r_offset);
10171 }
10172 else
10173 {
10174 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10175 /* It's a 32 bit instruction, fetch the rest of it for
10176 error generation. */
10177 insn = (insn << 16)
10178 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10179 _bfd_error_handler
10180 /* xgettext:c-format */
10181 (_("%pB(%pA+%#" PRIx64 "): "
10182 "unexpected %s instruction '%#lx' in TLS trampoline"),
10183 input_bfd, input_sec, (uint64_t) rel->r_offset,
10184 "Thumb", insn);
10185 return bfd_reloc_notsupported;
10186 }
10187 break;
10188
10189 case R_ARM_TLS_DESCSEQ:
10190 /* arm insn. */
10191 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10192 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10193 {
10194 if (is_local)
10195 /* mov rx, ry */
10196 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10197 contents + rel->r_offset);
10198 }
10199 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10200 {
10201 if (is_local)
10202 /* nop */
10203 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10204 else
10205 /* ldr rx,[ry] */
10206 bfd_put_32 (input_bfd, insn & 0xfffff000,
10207 contents + rel->r_offset);
10208 }
10209 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10210 {
10211 if (is_local)
10212 /* nop */
10213 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10214 else
10215 /* mov r0, rx */
10216 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10217 contents + rel->r_offset);
10218 }
10219 else
10220 {
10221 _bfd_error_handler
10222 /* xgettext:c-format */
10223 (_("%pB(%pA+%#" PRIx64 "): "
10224 "unexpected %s instruction '%#lx' in TLS trampoline"),
10225 input_bfd, input_sec, (uint64_t) rel->r_offset,
10226 "ARM", insn);
10227 return bfd_reloc_notsupported;
10228 }
10229 break;
10230
10231 case R_ARM_TLS_CALL:
10232 /* GD->IE relaxation, turn the instruction into 'nop' or
10233 'ldr r0, [pc,r0]' */
10234 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10235 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10236 break;
10237
10238 case R_ARM_THM_TLS_CALL:
10239 /* GD->IE relaxation. */
10240 if (!is_local)
10241 /* add r0,pc; ldr r0, [r0] */
10242 insn = 0x44786800;
10243 else if (using_thumb2 (globals))
10244 /* nop.w */
10245 insn = 0xf3af8000;
10246 else
10247 /* nop; nop */
10248 insn = 0xbf00bf00;
10249
10250 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10251 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10252 break;
10253 }
10254 return bfd_reloc_ok;
10255}
10256
10257/* For a given value of n, calculate the value of G_n as required to
10258 deal with group relocations. We return it in the form of an
10259 encoded constant-and-rotation, together with the final residual. If n is
10260 specified as less than zero, then final_residual is filled with the
10261 input value and no further action is performed. */
10262
10263static bfd_vma
10264calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10265{
10266 int current_n;
10267 bfd_vma g_n;
10268 bfd_vma encoded_g_n = 0;
10269 bfd_vma residual = value; /* Also known as Y_n. */
10270
10271 for (current_n = 0; current_n <= n; current_n++)
10272 {
10273 int shift;
10274
10275 /* Calculate which part of the value to mask. */
10276 if (residual == 0)
10277 shift = 0;
10278 else
10279 {
10280 int msb;
10281
10282 /* Determine the most significant bit in the residual and
10283 align the resulting value to a 2-bit boundary. */
10284 for (msb = 30; msb >= 0; msb -= 2)
10285 if (residual & (3 << msb))
10286 break;
10287
10288 /* The desired shift is now (msb - 6), or zero, whichever
10289 is the greater. */
10290 shift = msb - 6;
10291 if (shift < 0)
10292 shift = 0;
10293 }
10294
10295 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10296 g_n = residual & (0xff << shift);
10297 encoded_g_n = (g_n >> shift)
10298 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10299
10300 /* Calculate the residual for the next time around. */
10301 residual &= ~g_n;
10302 }
10303
10304 *final_residual = residual;
10305
10306 return encoded_g_n;
10307}
10308
10309/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10310 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10311
10312static int
10313identify_add_or_sub (bfd_vma insn)
10314{
10315 int opcode = insn & 0x1e00000;
10316
10317 if (opcode == 1 << 23) /* ADD */
10318 return 1;
10319
10320 if (opcode == 1 << 22) /* SUB */
10321 return -1;
10322
10323 return 0;
10324}
10325
10326/* Perform a relocation as part of a final link. */
10327
10328static bfd_reloc_status_type
10329elf32_arm_final_link_relocate (reloc_howto_type * howto,
10330 bfd * input_bfd,
10331 bfd * output_bfd,
10332 asection * input_section,
10333 bfd_byte * contents,
10334 Elf_Internal_Rela * rel,
10335 bfd_vma value,
10336 struct bfd_link_info * info,
10337 asection * sym_sec,
10338 const char * sym_name,
10339 unsigned char st_type,
10340 enum arm_st_branch_type branch_type,
10341 struct elf_link_hash_entry * h,
10342 bfd_boolean * unresolved_reloc_p,
10343 char ** error_message)
10344{
10345 unsigned long r_type = howto->type;
10346 unsigned long r_symndx;
10347 bfd_byte * hit_data = contents + rel->r_offset;
10348 bfd_vma * local_got_offsets;
10349 bfd_vma * local_tlsdesc_gotents;
10350 asection * sgot;
10351 asection * splt;
10352 asection * sreloc = NULL;
10353 asection * srelgot;
10354 bfd_vma addend;
10355 bfd_signed_vma signed_addend;
10356 unsigned char dynreloc_st_type;
10357 bfd_vma dynreloc_value;
10358 struct elf32_arm_link_hash_table * globals;
10359 struct elf32_arm_link_hash_entry *eh;
10360 union gotplt_union *root_plt;
10361 struct arm_plt_info *arm_plt;
10362 bfd_vma plt_offset;
10363 bfd_vma gotplt_offset;
10364 bfd_boolean has_iplt_entry;
10365 bfd_boolean resolved_to_zero;
10366
10367 globals = elf32_arm_hash_table (info);
10368 if (globals == NULL)
10369 return bfd_reloc_notsupported;
10370
10371 BFD_ASSERT (is_arm_elf (input_bfd));
10372 BFD_ASSERT (howto != NULL);
10373
10374 /* Some relocation types map to different relocations depending on the
10375 target. We pick the right one here. */
10376 r_type = arm_real_reloc_type (globals, r_type);
10377
10378 /* It is possible to have linker relaxations on some TLS access
10379 models. Update our information here. */
10380 r_type = elf32_arm_tls_transition (info, r_type, h);
10381
10382 if (r_type != howto->type)
10383 howto = elf32_arm_howto_from_type (r_type);
10384
10385 eh = (struct elf32_arm_link_hash_entry *) h;
10386 sgot = globals->root.sgot;
10387 local_got_offsets = elf_local_got_offsets (input_bfd);
10388 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10389
10390 if (globals->root.dynamic_sections_created)
10391 srelgot = globals->root.srelgot;
10392 else
10393 srelgot = NULL;
10394
10395 r_symndx = ELF32_R_SYM (rel->r_info);
10396
10397 if (globals->use_rel)
10398 {
10399 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10400
10401 if (addend & ((howto->src_mask + 1) >> 1))
10402 {
10403 signed_addend = -1;
10404 signed_addend &= ~ howto->src_mask;
10405 signed_addend |= addend;
10406 }
10407 else
10408 signed_addend = addend;
10409 }
10410 else
10411 addend = signed_addend = rel->r_addend;
10412
10413 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10414 are resolving a function call relocation. */
10415 if (using_thumb_only (globals)
10416 && (r_type == R_ARM_THM_CALL
10417 || r_type == R_ARM_THM_JUMP24)
10418 && branch_type == ST_BRANCH_TO_ARM)
10419 branch_type = ST_BRANCH_TO_THUMB;
10420
10421 /* Record the symbol information that should be used in dynamic
10422 relocations. */
10423 dynreloc_st_type = st_type;
10424 dynreloc_value = value;
10425 if (branch_type == ST_BRANCH_TO_THUMB)
10426 dynreloc_value |= 1;
10427
10428 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10429 VALUE appropriately for relocations that we resolve at link time. */
10430 has_iplt_entry = FALSE;
10431 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10432 &arm_plt)
10433 && root_plt->offset != (bfd_vma) -1)
10434 {
10435 plt_offset = root_plt->offset;
10436 gotplt_offset = arm_plt->got_offset;
10437
10438 if (h == NULL || eh->is_iplt)
10439 {
10440 has_iplt_entry = TRUE;
10441 splt = globals->root.iplt;
10442
10443 /* Populate .iplt entries here, because not all of them will
10444 be seen by finish_dynamic_symbol. The lower bit is set if
10445 we have already populated the entry. */
10446 if (plt_offset & 1)
10447 plt_offset--;
10448 else
10449 {
10450 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10451 -1, dynreloc_value))
10452 root_plt->offset |= 1;
10453 else
10454 return bfd_reloc_notsupported;
10455 }
10456
10457 /* Static relocations always resolve to the .iplt entry. */
10458 st_type = STT_FUNC;
10459 value = (splt->output_section->vma
10460 + splt->output_offset
10461 + plt_offset);
10462 branch_type = ST_BRANCH_TO_ARM;
10463
10464 /* If there are non-call relocations that resolve to the .iplt
10465 entry, then all dynamic ones must too. */
10466 if (arm_plt->noncall_refcount != 0)
10467 {
10468 dynreloc_st_type = st_type;
10469 dynreloc_value = value;
10470 }
10471 }
10472 else
10473 /* We populate the .plt entry in finish_dynamic_symbol. */
10474 splt = globals->root.splt;
10475 }
10476 else
10477 {
10478 splt = NULL;
10479 plt_offset = (bfd_vma) -1;
10480 gotplt_offset = (bfd_vma) -1;
10481 }
10482
10483 resolved_to_zero = (h != NULL
10484 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10485
10486 switch (r_type)
10487 {
10488 case R_ARM_NONE:
10489 /* We don't need to find a value for this symbol. It's just a
10490 marker. */
10491 *unresolved_reloc_p = FALSE;
10492 return bfd_reloc_ok;
10493
10494 case R_ARM_ABS12:
10495 if (!globals->vxworks_p)
10496 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10497 /* Fall through. */
10498
10499 case R_ARM_PC24:
10500 case R_ARM_ABS32:
10501 case R_ARM_ABS32_NOI:
10502 case R_ARM_REL32:
10503 case R_ARM_REL32_NOI:
10504 case R_ARM_CALL:
10505 case R_ARM_JUMP24:
10506 case R_ARM_XPC25:
10507 case R_ARM_PREL31:
10508 case R_ARM_PLT32:
10509 /* Handle relocations which should use the PLT entry. ABS32/REL32
10510 will use the symbol's value, which may point to a PLT entry, but we
10511 don't need to handle that here. If we created a PLT entry, all
10512 branches in this object should go to it, except if the PLT is too
10513 far away, in which case a long branch stub should be inserted. */
10514 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10515 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10516 && r_type != R_ARM_CALL
10517 && r_type != R_ARM_JUMP24
10518 && r_type != R_ARM_PLT32)
10519 && plt_offset != (bfd_vma) -1)
10520 {
10521 /* If we've created a .plt section, and assigned a PLT entry
10522 to this function, it must either be a STT_GNU_IFUNC reference
10523 or not be known to bind locally. In other cases, we should
10524 have cleared the PLT entry by now. */
10525 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10526
10527 value = (splt->output_section->vma
10528 + splt->output_offset
10529 + plt_offset);
10530 *unresolved_reloc_p = FALSE;
10531 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10532 contents, rel->r_offset, value,
10533 rel->r_addend);
10534 }
10535
10536 /* When generating a shared object or relocatable executable, these
10537 relocations are copied into the output file to be resolved at
10538 run time. */
10539 if ((bfd_link_pic (info)
10540 || globals->root.is_relocatable_executable
10541 || globals->fdpic_p)
10542 && (input_section->flags & SEC_ALLOC)
10543 && !(globals->vxworks_p
10544 && strcmp (input_section->output_section->name,
10545 ".tls_vars") == 0)
10546 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10547 || !SYMBOL_CALLS_LOCAL (info, h))
10548 && !(input_bfd == globals->stub_bfd
10549 && strstr (input_section->name, STUB_SUFFIX))
10550 && (h == NULL
10551 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10552 && !resolved_to_zero)
10553 || h->root.type != bfd_link_hash_undefweak)
10554 && r_type != R_ARM_PC24
10555 && r_type != R_ARM_CALL
10556 && r_type != R_ARM_JUMP24
10557 && r_type != R_ARM_PREL31
10558 && r_type != R_ARM_PLT32)
10559 {
10560 Elf_Internal_Rela outrel;
10561 bfd_boolean skip, relocate;
10562 int isrofixup = 0;
10563
10564 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10565 && !h->def_regular)
10566 {
10567 char *v = _("shared object");
10568
10569 if (bfd_link_executable (info))
10570 v = _("PIE executable");
10571
10572 _bfd_error_handler
10573 (_("%pB: relocation %s against external or undefined symbol `%s'"
10574 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10575 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10576 return bfd_reloc_notsupported;
10577 }
10578
10579 *unresolved_reloc_p = FALSE;
10580
10581 if (sreloc == NULL && globals->root.dynamic_sections_created)
10582 {
10583 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10584 ! globals->use_rel);
10585
10586 if (sreloc == NULL)
10587 return bfd_reloc_notsupported;
10588 }
10589
10590 skip = FALSE;
10591 relocate = FALSE;
10592
10593 outrel.r_addend = addend;
10594 outrel.r_offset =
10595 _bfd_elf_section_offset (output_bfd, info, input_section,
10596 rel->r_offset);
10597 if (outrel.r_offset == (bfd_vma) -1)
10598 skip = TRUE;
10599 else if (outrel.r_offset == (bfd_vma) -2)
10600 skip = TRUE, relocate = TRUE;
10601 outrel.r_offset += (input_section->output_section->vma
10602 + input_section->output_offset);
10603
10604 if (skip)
10605 memset (&outrel, 0, sizeof outrel);
10606 else if (h != NULL
10607 && h->dynindx != -1
10608 && (!bfd_link_pic (info)
10609 || !(bfd_link_pie (info)
10610 || SYMBOLIC_BIND (info, h))
10611 || !h->def_regular))
10612 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10613 else
10614 {
10615 int symbol;
10616
10617 /* This symbol is local, or marked to become local. */
10618 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10619 || (globals->fdpic_p && !bfd_link_pic(info)));
10620 if (globals->symbian_p)
10621 {
10622 asection *osec;
10623
10624 /* On Symbian OS, the data segment and text segement
10625 can be relocated independently. Therefore, we
10626 must indicate the segment to which this
10627 relocation is relative. The BPABI allows us to
10628 use any symbol in the right segment; we just use
10629 the section symbol as it is convenient. (We
10630 cannot use the symbol given by "h" directly as it
10631 will not appear in the dynamic symbol table.)
10632
10633 Note that the dynamic linker ignores the section
10634 symbol value, so we don't subtract osec->vma
10635 from the emitted reloc addend. */
10636 if (sym_sec)
10637 osec = sym_sec->output_section;
10638 else
10639 osec = input_section->output_section;
10640 symbol = elf_section_data (osec)->dynindx;
10641 if (symbol == 0)
10642 {
10643 struct elf_link_hash_table *htab = elf_hash_table (info);
10644
10645 if ((osec->flags & SEC_READONLY) == 0
10646 && htab->data_index_section != NULL)
10647 osec = htab->data_index_section;
10648 else
10649 osec = htab->text_index_section;
10650 symbol = elf_section_data (osec)->dynindx;
10651 }
10652 BFD_ASSERT (symbol != 0);
10653 }
10654 else
10655 /* On SVR4-ish systems, the dynamic loader cannot
10656 relocate the text and data segments independently,
10657 so the symbol does not matter. */
10658 symbol = 0;
10659 if (dynreloc_st_type == STT_GNU_IFUNC)
10660 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10661 to the .iplt entry. Instead, every non-call reference
10662 must use an R_ARM_IRELATIVE relocation to obtain the
10663 correct run-time address. */
10664 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10665 else if (globals->fdpic_p && !bfd_link_pic(info))
10666 isrofixup = 1;
10667 else
10668 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10669 if (globals->use_rel)
10670 relocate = TRUE;
10671 else
10672 outrel.r_addend += dynreloc_value;
10673 }
10674
10675 if (isrofixup)
10676 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10677 else
10678 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10679
10680 /* If this reloc is against an external symbol, we do not want to
10681 fiddle with the addend. Otherwise, we need to include the symbol
10682 value so that it becomes an addend for the dynamic reloc. */
10683 if (! relocate)
10684 return bfd_reloc_ok;
10685
10686 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10687 contents, rel->r_offset,
10688 dynreloc_value, (bfd_vma) 0);
10689 }
10690 else switch (r_type)
10691 {
10692 case R_ARM_ABS12:
10693 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10694
10695 case R_ARM_XPC25: /* Arm BLX instruction. */
10696 case R_ARM_CALL:
10697 case R_ARM_JUMP24:
10698 case R_ARM_PC24: /* Arm B/BL instruction. */
10699 case R_ARM_PLT32:
10700 {
10701 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10702
10703 if (r_type == R_ARM_XPC25)
10704 {
10705 /* Check for Arm calling Arm function. */
10706 /* FIXME: Should we translate the instruction into a BL
10707 instruction instead ? */
10708 if (branch_type != ST_BRANCH_TO_THUMB)
10709 _bfd_error_handler
10710 (_("\%pB: warning: %s BLX instruction targets"
10711 " %s function '%s'"),
10712 input_bfd, "ARM",
10713 "ARM", h ? h->root.root.string : "(local)");
10714 }
10715 else if (r_type == R_ARM_PC24)
10716 {
10717 /* Check for Arm calling Thumb function. */
10718 if (branch_type == ST_BRANCH_TO_THUMB)
10719 {
10720 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10721 output_bfd, input_section,
10722 hit_data, sym_sec, rel->r_offset,
10723 signed_addend, value,
10724 error_message))
10725 return bfd_reloc_ok;
10726 else
10727 return bfd_reloc_dangerous;
10728 }
10729 }
10730
10731 /* Check if a stub has to be inserted because the
10732 destination is too far or we are changing mode. */
10733 if ( r_type == R_ARM_CALL
10734 || r_type == R_ARM_JUMP24
10735 || r_type == R_ARM_PLT32)
10736 {
10737 enum elf32_arm_stub_type stub_type = arm_stub_none;
10738 struct elf32_arm_link_hash_entry *hash;
10739
10740 hash = (struct elf32_arm_link_hash_entry *) h;
10741 stub_type = arm_type_of_stub (info, input_section, rel,
10742 st_type, &branch_type,
10743 hash, value, sym_sec,
10744 input_bfd, sym_name);
10745
10746 if (stub_type != arm_stub_none)
10747 {
10748 /* The target is out of reach, so redirect the
10749 branch to the local stub for this function. */
10750 stub_entry = elf32_arm_get_stub_entry (input_section,
10751 sym_sec, h,
10752 rel, globals,
10753 stub_type);
10754 {
10755 if (stub_entry != NULL)
10756 value = (stub_entry->stub_offset
10757 + stub_entry->stub_sec->output_offset
10758 + stub_entry->stub_sec->output_section->vma);
10759
10760 if (plt_offset != (bfd_vma) -1)
10761 *unresolved_reloc_p = FALSE;
10762 }
10763 }
10764 else
10765 {
10766 /* If the call goes through a PLT entry, make sure to
10767 check distance to the right destination address. */
10768 if (plt_offset != (bfd_vma) -1)
10769 {
10770 value = (splt->output_section->vma
10771 + splt->output_offset
10772 + plt_offset);
10773 *unresolved_reloc_p = FALSE;
10774 /* The PLT entry is in ARM mode, regardless of the
10775 target function. */
10776 branch_type = ST_BRANCH_TO_ARM;
10777 }
10778 }
10779 }
10780
10781 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10782 where:
10783 S is the address of the symbol in the relocation.
10784 P is address of the instruction being relocated.
10785 A is the addend (extracted from the instruction) in bytes.
10786
10787 S is held in 'value'.
10788 P is the base address of the section containing the
10789 instruction plus the offset of the reloc into that
10790 section, ie:
10791 (input_section->output_section->vma +
10792 input_section->output_offset +
10793 rel->r_offset).
10794 A is the addend, converted into bytes, ie:
10795 (signed_addend * 4)
10796
10797 Note: None of these operations have knowledge of the pipeline
10798 size of the processor, thus it is up to the assembler to
10799 encode this information into the addend. */
10800 value -= (input_section->output_section->vma
10801 + input_section->output_offset);
10802 value -= rel->r_offset;
10803 if (globals->use_rel)
10804 value += (signed_addend << howto->size);
10805 else
10806 /* RELA addends do not have to be adjusted by howto->size. */
10807 value += signed_addend;
10808
10809 signed_addend = value;
10810 signed_addend >>= howto->rightshift;
10811
10812 /* A branch to an undefined weak symbol is turned into a jump to
10813 the next instruction unless a PLT entry will be created.
10814 Do the same for local undefined symbols (but not for STN_UNDEF).
10815 The jump to the next instruction is optimized as a NOP depending
10816 on the architecture. */
10817 if (h ? (h->root.type == bfd_link_hash_undefweak
10818 && plt_offset == (bfd_vma) -1)
10819 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10820 {
10821 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10822
10823 if (arch_has_arm_nop (globals))
10824 value |= 0x0320f000;
10825 else
10826 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10827 }
10828 else
10829 {
10830 /* Perform a signed range check. */
10831 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10832 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10833 return bfd_reloc_overflow;
10834
10835 addend = (value & 2);
10836
10837 value = (signed_addend & howto->dst_mask)
10838 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10839
10840 if (r_type == R_ARM_CALL)
10841 {
10842 /* Set the H bit in the BLX instruction. */
10843 if (branch_type == ST_BRANCH_TO_THUMB)
10844 {
10845 if (addend)
10846 value |= (1 << 24);
10847 else
10848 value &= ~(bfd_vma)(1 << 24);
10849 }
10850
10851 /* Select the correct instruction (BL or BLX). */
10852 /* Only if we are not handling a BL to a stub. In this
10853 case, mode switching is performed by the stub. */
10854 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10855 value |= (1 << 28);
10856 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10857 {
10858 value &= ~(bfd_vma)(1 << 28);
10859 value |= (1 << 24);
10860 }
10861 }
10862 }
10863 }
10864 break;
10865
10866 case R_ARM_ABS32:
10867 value += addend;
10868 if (branch_type == ST_BRANCH_TO_THUMB)
10869 value |= 1;
10870 break;
10871
10872 case R_ARM_ABS32_NOI:
10873 value += addend;
10874 break;
10875
10876 case R_ARM_REL32:
10877 value += addend;
10878 if (branch_type == ST_BRANCH_TO_THUMB)
10879 value |= 1;
10880 value -= (input_section->output_section->vma
10881 + input_section->output_offset + rel->r_offset);
10882 break;
10883
10884 case R_ARM_REL32_NOI:
10885 value += addend;
10886 value -= (input_section->output_section->vma
10887 + input_section->output_offset + rel->r_offset);
10888 break;
10889
10890 case R_ARM_PREL31:
10891 value -= (input_section->output_section->vma
10892 + input_section->output_offset + rel->r_offset);
10893 value += signed_addend;
10894 if (! h || h->root.type != bfd_link_hash_undefweak)
10895 {
10896 /* Check for overflow. */
10897 if ((value ^ (value >> 1)) & (1 << 30))
10898 return bfd_reloc_overflow;
10899 }
10900 value &= 0x7fffffff;
10901 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10902 if (branch_type == ST_BRANCH_TO_THUMB)
10903 value |= 1;
10904 break;
10905 }
10906
10907 bfd_put_32 (input_bfd, value, hit_data);
10908 return bfd_reloc_ok;
10909
10910 case R_ARM_ABS8:
10911 /* PR 16202: Refectch the addend using the correct size. */
10912 if (globals->use_rel)
10913 addend = bfd_get_8 (input_bfd, hit_data);
10914 value += addend;
10915
10916 /* There is no way to tell whether the user intended to use a signed or
10917 unsigned addend. When checking for overflow we accept either,
10918 as specified by the AAELF. */
10919 if ((long) value > 0xff || (long) value < -0x80)
10920 return bfd_reloc_overflow;
10921
10922 bfd_put_8 (input_bfd, value, hit_data);
10923 return bfd_reloc_ok;
10924
10925 case R_ARM_ABS16:
10926 /* PR 16202: Refectch the addend using the correct size. */
10927 if (globals->use_rel)
10928 addend = bfd_get_16 (input_bfd, hit_data);
10929 value += addend;
10930
10931 /* See comment for R_ARM_ABS8. */
10932 if ((long) value > 0xffff || (long) value < -0x8000)
10933 return bfd_reloc_overflow;
10934
10935 bfd_put_16 (input_bfd, value, hit_data);
10936 return bfd_reloc_ok;
10937
10938 case R_ARM_THM_ABS5:
10939 /* Support ldr and str instructions for the thumb. */
10940 if (globals->use_rel)
10941 {
10942 /* Need to refetch addend. */
10943 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10944 /* ??? Need to determine shift amount from operand size. */
10945 addend >>= howto->rightshift;
10946 }
10947 value += addend;
10948
10949 /* ??? Isn't value unsigned? */
10950 if ((long) value > 0x1f || (long) value < -0x10)
10951 return bfd_reloc_overflow;
10952
10953 /* ??? Value needs to be properly shifted into place first. */
10954 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10955 bfd_put_16 (input_bfd, value, hit_data);
10956 return bfd_reloc_ok;
10957
10958 case R_ARM_THM_ALU_PREL_11_0:
10959 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10960 {
10961 bfd_vma insn;
10962 bfd_signed_vma relocation;
10963
10964 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10965 | bfd_get_16 (input_bfd, hit_data + 2);
10966
10967 if (globals->use_rel)
10968 {
10969 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10970 | ((insn & (1 << 26)) >> 15);
10971 if (insn & 0xf00000)
10972 signed_addend = -signed_addend;
10973 }
10974
10975 relocation = value + signed_addend;
10976 relocation -= Pa (input_section->output_section->vma
10977 + input_section->output_offset
10978 + rel->r_offset);
10979
10980 /* PR 21523: Use an absolute value. The user of this reloc will
10981 have already selected an ADD or SUB insn appropriately. */
10982 value = llabs (relocation);
10983
10984 if (value >= 0x1000)
10985 return bfd_reloc_overflow;
10986
10987 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10988 if (branch_type == ST_BRANCH_TO_THUMB)
10989 value |= 1;
10990
10991 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10992 | ((value & 0x700) << 4)
10993 | ((value & 0x800) << 15);
10994 if (relocation < 0)
10995 insn |= 0xa00000;
10996
10997 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10998 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10999
11000 return bfd_reloc_ok;
11001 }
11002
11003 case R_ARM_THM_PC8:
11004 /* PR 10073: This reloc is not generated by the GNU toolchain,
11005 but it is supported for compatibility with third party libraries
11006 generated by other compilers, specifically the ARM/IAR. */
11007 {
11008 bfd_vma insn;
11009 bfd_signed_vma relocation;
11010
11011 insn = bfd_get_16 (input_bfd, hit_data);
11012
11013 if (globals->use_rel)
11014 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11015
11016 relocation = value + addend;
11017 relocation -= Pa (input_section->output_section->vma
11018 + input_section->output_offset
11019 + rel->r_offset);
11020
11021 value = relocation;
11022
11023 /* We do not check for overflow of this reloc. Although strictly
11024 speaking this is incorrect, it appears to be necessary in order
11025 to work with IAR generated relocs. Since GCC and GAS do not
11026 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11027 a problem for them. */
11028 value &= 0x3fc;
11029
11030 insn = (insn & 0xff00) | (value >> 2);
11031
11032 bfd_put_16 (input_bfd, insn, hit_data);
11033
11034 return bfd_reloc_ok;
11035 }
11036
11037 case R_ARM_THM_PC12:
11038 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11039 {
11040 bfd_vma insn;
11041 bfd_signed_vma relocation;
11042
11043 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11044 | bfd_get_16 (input_bfd, hit_data + 2);
11045
11046 if (globals->use_rel)
11047 {
11048 signed_addend = insn & 0xfff;
11049 if (!(insn & (1 << 23)))
11050 signed_addend = -signed_addend;
11051 }
11052
11053 relocation = value + signed_addend;
11054 relocation -= Pa (input_section->output_section->vma
11055 + input_section->output_offset
11056 + rel->r_offset);
11057
11058 value = relocation;
11059
11060 if (value >= 0x1000)
11061 return bfd_reloc_overflow;
11062
11063 insn = (insn & 0xff7ff000) | value;
11064 if (relocation >= 0)
11065 insn |= (1 << 23);
11066
11067 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11068 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11069
11070 return bfd_reloc_ok;
11071 }
11072
11073 case R_ARM_THM_XPC22:
11074 case R_ARM_THM_CALL:
11075 case R_ARM_THM_JUMP24:
11076 /* Thumb BL (branch long instruction). */
11077 {
11078 bfd_vma relocation;
11079 bfd_vma reloc_sign;
11080 bfd_boolean overflow = FALSE;
11081 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11082 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11083 bfd_signed_vma reloc_signed_max;
11084 bfd_signed_vma reloc_signed_min;
11085 bfd_vma check;
11086 bfd_signed_vma signed_check;
11087 int bitsize;
11088 const int thumb2 = using_thumb2 (globals);
11089 const int thumb2_bl = using_thumb2_bl (globals);
11090
11091 /* A branch to an undefined weak symbol is turned into a jump to
11092 the next instruction unless a PLT entry will be created.
11093 The jump to the next instruction is optimized as a NOP.W for
11094 Thumb-2 enabled architectures. */
11095 if (h && h->root.type == bfd_link_hash_undefweak
11096 && plt_offset == (bfd_vma) -1)
11097 {
11098 if (thumb2)
11099 {
11100 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11101 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11102 }
11103 else
11104 {
11105 bfd_put_16 (input_bfd, 0xe000, hit_data);
11106 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11107 }
11108 return bfd_reloc_ok;
11109 }
11110
11111 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11112 with Thumb-1) involving the J1 and J2 bits. */
11113 if (globals->use_rel)
11114 {
11115 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11116 bfd_vma upper = upper_insn & 0x3ff;
11117 bfd_vma lower = lower_insn & 0x7ff;
11118 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11119 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11120 bfd_vma i1 = j1 ^ s ? 0 : 1;
11121 bfd_vma i2 = j2 ^ s ? 0 : 1;
11122
11123 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11124 /* Sign extend. */
11125 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11126
11127 signed_addend = addend;
11128 }
11129
11130 if (r_type == R_ARM_THM_XPC22)
11131 {
11132 /* Check for Thumb to Thumb call. */
11133 /* FIXME: Should we translate the instruction into a BL
11134 instruction instead ? */
11135 if (branch_type == ST_BRANCH_TO_THUMB)
11136 _bfd_error_handler
11137 (_("%pB: warning: %s BLX instruction targets"
11138 " %s function '%s'"),
11139 input_bfd, "Thumb",
11140 "Thumb", h ? h->root.root.string : "(local)");
11141 }
11142 else
11143 {
11144 /* If it is not a call to Thumb, assume call to Arm.
11145 If it is a call relative to a section name, then it is not a
11146 function call at all, but rather a long jump. Calls through
11147 the PLT do not require stubs. */
11148 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11149 {
11150 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11151 {
11152 /* Convert BL to BLX. */
11153 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11154 }
11155 else if (( r_type != R_ARM_THM_CALL)
11156 && (r_type != R_ARM_THM_JUMP24))
11157 {
11158 if (elf32_thumb_to_arm_stub
11159 (info, sym_name, input_bfd, output_bfd, input_section,
11160 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11161 error_message))
11162 return bfd_reloc_ok;
11163 else
11164 return bfd_reloc_dangerous;
11165 }
11166 }
11167 else if (branch_type == ST_BRANCH_TO_THUMB
11168 && globals->use_blx
11169 && r_type == R_ARM_THM_CALL)
11170 {
11171 /* Make sure this is a BL. */
11172 lower_insn |= 0x1800;
11173 }
11174 }
11175
11176 enum elf32_arm_stub_type stub_type = arm_stub_none;
11177 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11178 {
11179 /* Check if a stub has to be inserted because the destination
11180 is too far. */
11181 struct elf32_arm_stub_hash_entry *stub_entry;
11182 struct elf32_arm_link_hash_entry *hash;
11183
11184 hash = (struct elf32_arm_link_hash_entry *) h;
11185
11186 stub_type = arm_type_of_stub (info, input_section, rel,
11187 st_type, &branch_type,
11188 hash, value, sym_sec,
11189 input_bfd, sym_name);
11190
11191 if (stub_type != arm_stub_none)
11192 {
11193 /* The target is out of reach or we are changing modes, so
11194 redirect the branch to the local stub for this
11195 function. */
11196 stub_entry = elf32_arm_get_stub_entry (input_section,
11197 sym_sec, h,
11198 rel, globals,
11199 stub_type);
11200 if (stub_entry != NULL)
11201 {
11202 value = (stub_entry->stub_offset
11203 + stub_entry->stub_sec->output_offset
11204 + stub_entry->stub_sec->output_section->vma);
11205
11206 if (plt_offset != (bfd_vma) -1)
11207 *unresolved_reloc_p = FALSE;
11208 }
11209
11210 /* If this call becomes a call to Arm, force BLX. */
11211 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11212 {
11213 if ((stub_entry
11214 && !arm_stub_is_thumb (stub_entry->stub_type))
11215 || branch_type != ST_BRANCH_TO_THUMB)
11216 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11217 }
11218 }
11219 }
11220
11221 /* Handle calls via the PLT. */
11222 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11223 {
11224 value = (splt->output_section->vma
11225 + splt->output_offset
11226 + plt_offset);
11227
11228 if (globals->use_blx
11229 && r_type == R_ARM_THM_CALL
11230 && ! using_thumb_only (globals))
11231 {
11232 /* If the Thumb BLX instruction is available, convert
11233 the BL to a BLX instruction to call the ARM-mode
11234 PLT entry. */
11235 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11236 branch_type = ST_BRANCH_TO_ARM;
11237 }
11238 else
11239 {
11240 if (! using_thumb_only (globals))
11241 /* Target the Thumb stub before the ARM PLT entry. */
11242 value -= PLT_THUMB_STUB_SIZE;
11243 branch_type = ST_BRANCH_TO_THUMB;
11244 }
11245 *unresolved_reloc_p = FALSE;
11246 }
11247
11248 relocation = value + signed_addend;
11249
11250 relocation -= (input_section->output_section->vma
11251 + input_section->output_offset
11252 + rel->r_offset);
11253
11254 check = relocation >> howto->rightshift;
11255
11256 /* If this is a signed value, the rightshift just dropped
11257 leading 1 bits (assuming twos complement). */
11258 if ((bfd_signed_vma) relocation >= 0)
11259 signed_check = check;
11260 else
11261 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11262
11263 /* Calculate the permissable maximum and minimum values for
11264 this relocation according to whether we're relocating for
11265 Thumb-2 or not. */
11266 bitsize = howto->bitsize;
11267 if (!thumb2_bl)
11268 bitsize -= 2;
11269 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11270 reloc_signed_min = ~reloc_signed_max;
11271
11272 /* Assumes two's complement. */
11273 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11274 overflow = TRUE;
11275
11276 if ((lower_insn & 0x5000) == 0x4000)
11277 /* For a BLX instruction, make sure that the relocation is rounded up
11278 to a word boundary. This follows the semantics of the instruction
11279 which specifies that bit 1 of the target address will come from bit
11280 1 of the base address. */
11281 relocation = (relocation + 2) & ~ 3;
11282
11283 /* Put RELOCATION back into the insn. Assumes two's complement.
11284 We use the Thumb-2 encoding, which is safe even if dealing with
11285 a Thumb-1 instruction by virtue of our overflow check above. */
11286 reloc_sign = (signed_check < 0) ? 1 : 0;
11287 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11288 | ((relocation >> 12) & 0x3ff)
11289 | (reloc_sign << 10);
11290 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11291 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11292 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11293 | ((relocation >> 1) & 0x7ff);
11294
11295 /* Put the relocated value back in the object file: */
11296 bfd_put_16 (input_bfd, upper_insn, hit_data);
11297 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11298
11299 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11300 }
11301 break;
11302
11303 case R_ARM_THM_JUMP19:
11304 /* Thumb32 conditional branch instruction. */
11305 {
11306 bfd_vma relocation;
11307 bfd_boolean overflow = FALSE;
11308 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11309 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11310 bfd_signed_vma reloc_signed_max = 0xffffe;
11311 bfd_signed_vma reloc_signed_min = -0x100000;
11312 bfd_signed_vma signed_check;
11313 enum elf32_arm_stub_type stub_type = arm_stub_none;
11314 struct elf32_arm_stub_hash_entry *stub_entry;
11315 struct elf32_arm_link_hash_entry *hash;
11316
11317 /* Need to refetch the addend, reconstruct the top three bits,
11318 and squish the two 11 bit pieces together. */
11319 if (globals->use_rel)
11320 {
11321 bfd_vma S = (upper_insn & 0x0400) >> 10;
11322 bfd_vma upper = (upper_insn & 0x003f);
11323 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11324 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11325 bfd_vma lower = (lower_insn & 0x07ff);
11326
11327 upper |= J1 << 6;
11328 upper |= J2 << 7;
11329 upper |= (!S) << 8;
11330 upper -= 0x0100; /* Sign extend. */
11331
11332 addend = (upper << 12) | (lower << 1);
11333 signed_addend = addend;
11334 }
11335
11336 /* Handle calls via the PLT. */
11337 if (plt_offset != (bfd_vma) -1)
11338 {
11339 value = (splt->output_section->vma
11340 + splt->output_offset
11341 + plt_offset);
11342 /* Target the Thumb stub before the ARM PLT entry. */
11343 value -= PLT_THUMB_STUB_SIZE;
11344 *unresolved_reloc_p = FALSE;
11345 }
11346
11347 hash = (struct elf32_arm_link_hash_entry *)h;
11348
11349 stub_type = arm_type_of_stub (info, input_section, rel,
11350 st_type, &branch_type,
11351 hash, value, sym_sec,
11352 input_bfd, sym_name);
11353 if (stub_type != arm_stub_none)
11354 {
11355 stub_entry = elf32_arm_get_stub_entry (input_section,
11356 sym_sec, h,
11357 rel, globals,
11358 stub_type);
11359 if (stub_entry != NULL)
11360 {
11361 value = (stub_entry->stub_offset
11362 + stub_entry->stub_sec->output_offset
11363 + stub_entry->stub_sec->output_section->vma);
11364 }
11365 }
11366
11367 relocation = value + signed_addend;
11368 relocation -= (input_section->output_section->vma
11369 + input_section->output_offset
11370 + rel->r_offset);
11371 signed_check = (bfd_signed_vma) relocation;
11372
11373 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11374 overflow = TRUE;
11375
11376 /* Put RELOCATION back into the insn. */
11377 {
11378 bfd_vma S = (relocation & 0x00100000) >> 20;
11379 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11380 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11381 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11382 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11383
11384 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11385 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11386 }
11387
11388 /* Put the relocated value back in the object file: */
11389 bfd_put_16 (input_bfd, upper_insn, hit_data);
11390 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11391
11392 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11393 }
11394
11395 case R_ARM_THM_JUMP11:
11396 case R_ARM_THM_JUMP8:
11397 case R_ARM_THM_JUMP6:
11398 /* Thumb B (branch) instruction). */
11399 {
11400 bfd_signed_vma relocation;
11401 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11402 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11403 bfd_signed_vma signed_check;
11404
11405 /* CZB cannot jump backward. */
11406 if (r_type == R_ARM_THM_JUMP6)
11407 reloc_signed_min = 0;
11408
11409 if (globals->use_rel)
11410 {
11411 /* Need to refetch addend. */
11412 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11413 if (addend & ((howto->src_mask + 1) >> 1))
11414 {
11415 signed_addend = -1;
11416 signed_addend &= ~ howto->src_mask;
11417 signed_addend |= addend;
11418 }
11419 else
11420 signed_addend = addend;
11421 /* The value in the insn has been right shifted. We need to
11422 undo this, so that we can perform the address calculation
11423 in terms of bytes. */
11424 signed_addend <<= howto->rightshift;
11425 }
11426 relocation = value + signed_addend;
11427
11428 relocation -= (input_section->output_section->vma
11429 + input_section->output_offset
11430 + rel->r_offset);
11431
11432 relocation >>= howto->rightshift;
11433 signed_check = relocation;
11434
11435 if (r_type == R_ARM_THM_JUMP6)
11436 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11437 else
11438 relocation &= howto->dst_mask;
11439 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11440
11441 bfd_put_16 (input_bfd, relocation, hit_data);
11442
11443 /* Assumes two's complement. */
11444 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11445 return bfd_reloc_overflow;
11446
11447 return bfd_reloc_ok;
11448 }
11449
11450 case R_ARM_ALU_PCREL7_0:
11451 case R_ARM_ALU_PCREL15_8:
11452 case R_ARM_ALU_PCREL23_15:
11453 {
11454 bfd_vma insn;
11455 bfd_vma relocation;
11456
11457 insn = bfd_get_32 (input_bfd, hit_data);
11458 if (globals->use_rel)
11459 {
11460 /* Extract the addend. */
11461 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11462 signed_addend = addend;
11463 }
11464 relocation = value + signed_addend;
11465
11466 relocation -= (input_section->output_section->vma
11467 + input_section->output_offset
11468 + rel->r_offset);
11469 insn = (insn & ~0xfff)
11470 | ((howto->bitpos << 7) & 0xf00)
11471 | ((relocation >> howto->bitpos) & 0xff);
11472 bfd_put_32 (input_bfd, value, hit_data);
11473 }
11474 return bfd_reloc_ok;
11475
11476 case R_ARM_GNU_VTINHERIT:
11477 case R_ARM_GNU_VTENTRY:
11478 return bfd_reloc_ok;
11479
11480 case R_ARM_GOTOFF32:
11481 /* Relocation is relative to the start of the
11482 global offset table. */
11483
11484 BFD_ASSERT (sgot != NULL);
11485 if (sgot == NULL)
11486 return bfd_reloc_notsupported;
11487
11488 /* If we are addressing a Thumb function, we need to adjust the
11489 address by one, so that attempts to call the function pointer will
11490 correctly interpret it as Thumb code. */
11491 if (branch_type == ST_BRANCH_TO_THUMB)
11492 value += 1;
11493
11494 /* Note that sgot->output_offset is not involved in this
11495 calculation. We always want the start of .got. If we
11496 define _GLOBAL_OFFSET_TABLE in a different way, as is
11497 permitted by the ABI, we might have to change this
11498 calculation. */
11499 value -= sgot->output_section->vma;
11500 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11501 contents, rel->r_offset, value,
11502 rel->r_addend);
11503
11504 case R_ARM_GOTPC:
11505 /* Use global offset table as symbol value. */
11506 BFD_ASSERT (sgot != NULL);
11507
11508 if (sgot == NULL)
11509 return bfd_reloc_notsupported;
11510
11511 *unresolved_reloc_p = FALSE;
11512 value = sgot->output_section->vma;
11513 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11514 contents, rel->r_offset, value,
11515 rel->r_addend);
11516
11517 case R_ARM_GOT32:
11518 case R_ARM_GOT_PREL:
11519 /* Relocation is to the entry for this symbol in the
11520 global offset table. */
11521 if (sgot == NULL)
11522 return bfd_reloc_notsupported;
11523
11524 if (dynreloc_st_type == STT_GNU_IFUNC
11525 && plt_offset != (bfd_vma) -1
11526 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11527 {
11528 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11529 symbol, and the relocation resolves directly to the runtime
11530 target rather than to the .iplt entry. This means that any
11531 .got entry would be the same value as the .igot.plt entry,
11532 so there's no point creating both. */
11533 sgot = globals->root.igotplt;
11534 value = sgot->output_offset + gotplt_offset;
11535 }
11536 else if (h != NULL)
11537 {
11538 bfd_vma off;
11539
11540 off = h->got.offset;
11541 BFD_ASSERT (off != (bfd_vma) -1);
11542 if ((off & 1) != 0)
11543 {
11544 /* We have already processsed one GOT relocation against
11545 this symbol. */
11546 off &= ~1;
11547 if (globals->root.dynamic_sections_created
11548 && !SYMBOL_REFERENCES_LOCAL (info, h))
11549 *unresolved_reloc_p = FALSE;
11550 }
11551 else
11552 {
11553 Elf_Internal_Rela outrel;
11554 int isrofixup = 0;
11555
11556 if (((h->dynindx != -1) || globals->fdpic_p)
11557 && !SYMBOL_REFERENCES_LOCAL (info, h))
11558 {
11559 /* If the symbol doesn't resolve locally in a static
11560 object, we have an undefined reference. If the
11561 symbol doesn't resolve locally in a dynamic object,
11562 it should be resolved by the dynamic linker. */
11563 if (globals->root.dynamic_sections_created)
11564 {
11565 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11566 *unresolved_reloc_p = FALSE;
11567 }
11568 else
11569 outrel.r_info = 0;
11570 outrel.r_addend = 0;
11571 }
11572 else
11573 {
11574 if (dynreloc_st_type == STT_GNU_IFUNC)
11575 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11576 else if (bfd_link_pic (info)
11577 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11578 || h->root.type != bfd_link_hash_undefweak))
11579 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11580 else
11581 {
11582 outrel.r_info = 0;
11583 if (globals->fdpic_p)
11584 isrofixup = 1;
11585 }
11586 outrel.r_addend = dynreloc_value;
11587 }
11588
11589 /* The GOT entry is initialized to zero by default.
11590 See if we should install a different value. */
11591 if (outrel.r_addend != 0
11592 && (globals->use_rel || outrel.r_info == 0))
11593 {
11594 bfd_put_32 (output_bfd, outrel.r_addend,
11595 sgot->contents + off);
11596 outrel.r_addend = 0;
11597 }
11598
11599 if (isrofixup)
11600 arm_elf_add_rofixup (output_bfd,
11601 elf32_arm_hash_table(info)->srofixup,
11602 sgot->output_section->vma
11603 + sgot->output_offset + off);
11604
11605 else if (outrel.r_info != 0)
11606 {
11607 outrel.r_offset = (sgot->output_section->vma
11608 + sgot->output_offset
11609 + off);
11610 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11611 }
11612
11613 h->got.offset |= 1;
11614 }
11615 value = sgot->output_offset + off;
11616 }
11617 else
11618 {
11619 bfd_vma off;
11620
11621 BFD_ASSERT (local_got_offsets != NULL
11622 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11623
11624 off = local_got_offsets[r_symndx];
11625
11626 /* The offset must always be a multiple of 4. We use the
11627 least significant bit to record whether we have already
11628 generated the necessary reloc. */
11629 if ((off & 1) != 0)
11630 off &= ~1;
11631 else
11632 {
11633 Elf_Internal_Rela outrel;
11634 int isrofixup = 0;
11635
11636 if (dynreloc_st_type == STT_GNU_IFUNC)
11637 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11638 else if (bfd_link_pic (info))
11639 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11640 else
11641 {
11642 outrel.r_info = 0;
11643 if (globals->fdpic_p)
11644 isrofixup = 1;
11645 }
11646
11647 /* The GOT entry is initialized to zero by default.
11648 See if we should install a different value. */
11649 if (globals->use_rel || outrel.r_info == 0)
11650 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11651
11652 if (isrofixup)
11653 arm_elf_add_rofixup (output_bfd,
11654 globals->srofixup,
11655 sgot->output_section->vma
11656 + sgot->output_offset + off);
11657
11658 else if (outrel.r_info != 0)
11659 {
11660 outrel.r_addend = addend + dynreloc_value;
11661 outrel.r_offset = (sgot->output_section->vma
11662 + sgot->output_offset
11663 + off);
11664 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11665 }
11666
11667 local_got_offsets[r_symndx] |= 1;
11668 }
11669
11670 value = sgot->output_offset + off;
11671 }
11672 if (r_type != R_ARM_GOT32)
11673 value += sgot->output_section->vma;
11674
11675 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11676 contents, rel->r_offset, value,
11677 rel->r_addend);
11678
11679 case R_ARM_TLS_LDO32:
11680 value = value - dtpoff_base (info);
11681
11682 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11683 contents, rel->r_offset, value,
11684 rel->r_addend);
11685
11686 case R_ARM_TLS_LDM32:
11687 case R_ARM_TLS_LDM32_FDPIC:
11688 {
11689 bfd_vma off;
11690
11691 if (sgot == NULL)
11692 abort ();
11693
11694 off = globals->tls_ldm_got.offset;
11695
11696 if ((off & 1) != 0)
11697 off &= ~1;
11698 else
11699 {
11700 /* If we don't know the module number, create a relocation
11701 for it. */
11702 if (bfd_link_pic (info))
11703 {
11704 Elf_Internal_Rela outrel;
11705
11706 if (srelgot == NULL)
11707 abort ();
11708
11709 outrel.r_addend = 0;
11710 outrel.r_offset = (sgot->output_section->vma
11711 + sgot->output_offset + off);
11712 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11713
11714 if (globals->use_rel)
11715 bfd_put_32 (output_bfd, outrel.r_addend,
11716 sgot->contents + off);
11717
11718 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11719 }
11720 else
11721 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11722
11723 globals->tls_ldm_got.offset |= 1;
11724 }
11725
11726 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11727 {
11728 bfd_put_32(output_bfd,
11729 globals->root.sgot->output_offset + off,
11730 contents + rel->r_offset);
11731
11732 return bfd_reloc_ok;
11733 }
11734 else
11735 {
11736 value = sgot->output_section->vma + sgot->output_offset + off
11737 - (input_section->output_section->vma
11738 + input_section->output_offset + rel->r_offset);
11739
11740 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11741 contents, rel->r_offset, value,
11742 rel->r_addend);
11743 }
11744 }
11745
11746 case R_ARM_TLS_CALL:
11747 case R_ARM_THM_TLS_CALL:
11748 case R_ARM_TLS_GD32:
11749 case R_ARM_TLS_GD32_FDPIC:
11750 case R_ARM_TLS_IE32:
11751 case R_ARM_TLS_IE32_FDPIC:
11752 case R_ARM_TLS_GOTDESC:
11753 case R_ARM_TLS_DESCSEQ:
11754 case R_ARM_THM_TLS_DESCSEQ:
11755 {
11756 bfd_vma off, offplt;
11757 int indx = 0;
11758 char tls_type;
11759
11760 BFD_ASSERT (sgot != NULL);
11761
11762 if (h != NULL)
11763 {
11764 bfd_boolean dyn;
11765 dyn = globals->root.dynamic_sections_created;
11766 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11767 bfd_link_pic (info),
11768 h)
11769 && (!bfd_link_pic (info)
11770 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11771 {
11772 *unresolved_reloc_p = FALSE;
11773 indx = h->dynindx;
11774 }
11775 off = h->got.offset;
11776 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11777 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11778 }
11779 else
11780 {
11781 BFD_ASSERT (local_got_offsets != NULL);
11782 off = local_got_offsets[r_symndx];
11783 offplt = local_tlsdesc_gotents[r_symndx];
11784 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11785 }
11786
11787 /* Linker relaxations happens from one of the
11788 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11789 if (ELF32_R_TYPE(rel->r_info) != r_type)
11790 tls_type = GOT_TLS_IE;
11791
11792 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11793
11794 if ((off & 1) != 0)
11795 off &= ~1;
11796 else
11797 {
11798 bfd_boolean need_relocs = FALSE;
11799 Elf_Internal_Rela outrel;
11800 int cur_off = off;
11801
11802 /* The GOT entries have not been initialized yet. Do it
11803 now, and emit any relocations. If both an IE GOT and a
11804 GD GOT are necessary, we emit the GD first. */
11805
11806 if ((bfd_link_pic (info) || indx != 0)
11807 && (h == NULL
11808 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11809 && !resolved_to_zero)
11810 || h->root.type != bfd_link_hash_undefweak))
11811 {
11812 need_relocs = TRUE;
11813 BFD_ASSERT (srelgot != NULL);
11814 }
11815
11816 if (tls_type & GOT_TLS_GDESC)
11817 {
11818 bfd_byte *loc;
11819
11820 /* We should have relaxed, unless this is an undefined
11821 weak symbol. */
11822 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11823 || bfd_link_pic (info));
11824 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11825 <= globals->root.sgotplt->size);
11826
11827 outrel.r_addend = 0;
11828 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11829 + globals->root.sgotplt->output_offset
11830 + offplt
11831 + globals->sgotplt_jump_table_size);
11832
11833 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11834 sreloc = globals->root.srelplt;
11835 loc = sreloc->contents;
11836 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11837 BFD_ASSERT (loc + RELOC_SIZE (globals)
11838 <= sreloc->contents + sreloc->size);
11839
11840 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11841
11842 /* For globals, the first word in the relocation gets
11843 the relocation index and the top bit set, or zero,
11844 if we're binding now. For locals, it gets the
11845 symbol's offset in the tls section. */
11846 bfd_put_32 (output_bfd,
11847 !h ? value - elf_hash_table (info)->tls_sec->vma
11848 : info->flags & DF_BIND_NOW ? 0
11849 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11850 globals->root.sgotplt->contents + offplt
11851 + globals->sgotplt_jump_table_size);
11852
11853 /* Second word in the relocation is always zero. */
11854 bfd_put_32 (output_bfd, 0,
11855 globals->root.sgotplt->contents + offplt
11856 + globals->sgotplt_jump_table_size + 4);
11857 }
11858 if (tls_type & GOT_TLS_GD)
11859 {
11860 if (need_relocs)
11861 {
11862 outrel.r_addend = 0;
11863 outrel.r_offset = (sgot->output_section->vma
11864 + sgot->output_offset
11865 + cur_off);
11866 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11867
11868 if (globals->use_rel)
11869 bfd_put_32 (output_bfd, outrel.r_addend,
11870 sgot->contents + cur_off);
11871
11872 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11873
11874 if (indx == 0)
11875 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11876 sgot->contents + cur_off + 4);
11877 else
11878 {
11879 outrel.r_addend = 0;
11880 outrel.r_info = ELF32_R_INFO (indx,
11881 R_ARM_TLS_DTPOFF32);
11882 outrel.r_offset += 4;
11883
11884 if (globals->use_rel)
11885 bfd_put_32 (output_bfd, outrel.r_addend,
11886 sgot->contents + cur_off + 4);
11887
11888 elf32_arm_add_dynreloc (output_bfd, info,
11889 srelgot, &outrel);
11890 }
11891 }
11892 else
11893 {
11894 /* If we are not emitting relocations for a
11895 general dynamic reference, then we must be in a
11896 static link or an executable link with the
11897 symbol binding locally. Mark it as belonging
11898 to module 1, the executable. */
11899 bfd_put_32 (output_bfd, 1,
11900 sgot->contents + cur_off);
11901 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11902 sgot->contents + cur_off + 4);
11903 }
11904
11905 cur_off += 8;
11906 }
11907
11908 if (tls_type & GOT_TLS_IE)
11909 {
11910 if (need_relocs)
11911 {
11912 if (indx == 0)
11913 outrel.r_addend = value - dtpoff_base (info);
11914 else
11915 outrel.r_addend = 0;
11916 outrel.r_offset = (sgot->output_section->vma
11917 + sgot->output_offset
11918 + cur_off);
11919 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11920
11921 if (globals->use_rel)
11922 bfd_put_32 (output_bfd, outrel.r_addend,
11923 sgot->contents + cur_off);
11924
11925 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11926 }
11927 else
11928 bfd_put_32 (output_bfd, tpoff (info, value),
11929 sgot->contents + cur_off);
11930 cur_off += 4;
11931 }
11932
11933 if (h != NULL)
11934 h->got.offset |= 1;
11935 else
11936 local_got_offsets[r_symndx] |= 1;
11937 }
11938
11939 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11940 off += 8;
11941 else if (tls_type & GOT_TLS_GDESC)
11942 off = offplt;
11943
11944 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11945 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11946 {
11947 bfd_signed_vma offset;
11948 /* TLS stubs are arm mode. The original symbol is a
11949 data object, so branch_type is bogus. */
11950 branch_type = ST_BRANCH_TO_ARM;
11951 enum elf32_arm_stub_type stub_type
11952 = arm_type_of_stub (info, input_section, rel,
11953 st_type, &branch_type,
11954 (struct elf32_arm_link_hash_entry *)h,
11955 globals->tls_trampoline, globals->root.splt,
11956 input_bfd, sym_name);
11957
11958 if (stub_type != arm_stub_none)
11959 {
11960 struct elf32_arm_stub_hash_entry *stub_entry
11961 = elf32_arm_get_stub_entry
11962 (input_section, globals->root.splt, 0, rel,
11963 globals, stub_type);
11964 offset = (stub_entry->stub_offset
11965 + stub_entry->stub_sec->output_offset
11966 + stub_entry->stub_sec->output_section->vma);
11967 }
11968 else
11969 offset = (globals->root.splt->output_section->vma
11970 + globals->root.splt->output_offset
11971 + globals->tls_trampoline);
11972
11973 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11974 {
11975 unsigned long inst;
11976
11977 offset -= (input_section->output_section->vma
11978 + input_section->output_offset
11979 + rel->r_offset + 8);
11980
11981 inst = offset >> 2;
11982 inst &= 0x00ffffff;
11983 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11984 }
11985 else
11986 {
11987 /* Thumb blx encodes the offset in a complicated
11988 fashion. */
11989 unsigned upper_insn, lower_insn;
11990 unsigned neg;
11991
11992 offset -= (input_section->output_section->vma
11993 + input_section->output_offset
11994 + rel->r_offset + 4);
11995
11996 if (stub_type != arm_stub_none
11997 && arm_stub_is_thumb (stub_type))
11998 {
11999 lower_insn = 0xd000;
12000 }
12001 else
12002 {
12003 lower_insn = 0xc000;
12004 /* Round up the offset to a word boundary. */
12005 offset = (offset + 2) & ~2;
12006 }
12007
12008 neg = offset < 0;
12009 upper_insn = (0xf000
12010 | ((offset >> 12) & 0x3ff)
12011 | (neg << 10));
12012 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12013 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12014 | ((offset >> 1) & 0x7ff);
12015 bfd_put_16 (input_bfd, upper_insn, hit_data);
12016 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12017 return bfd_reloc_ok;
12018 }
12019 }
12020 /* These relocations needs special care, as besides the fact
12021 they point somewhere in .gotplt, the addend must be
12022 adjusted accordingly depending on the type of instruction
12023 we refer to. */
12024 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12025 {
12026 unsigned long data, insn;
12027 unsigned thumb;
12028
12029 data = bfd_get_32 (input_bfd, hit_data);
12030 thumb = data & 1;
12031 data &= ~1u;
12032
12033 if (thumb)
12034 {
12035 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12036 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12037 insn = (insn << 16)
12038 | bfd_get_16 (input_bfd,
12039 contents + rel->r_offset - data + 2);
12040 if ((insn & 0xf800c000) == 0xf000c000)
12041 /* bl/blx */
12042 value = -6;
12043 else if ((insn & 0xffffff00) == 0x4400)
12044 /* add */
12045 value = -5;
12046 else
12047 {
12048 _bfd_error_handler
12049 /* xgettext:c-format */
12050 (_("%pB(%pA+%#" PRIx64 "): "
12051 "unexpected %s instruction '%#lx' "
12052 "referenced by TLS_GOTDESC"),
12053 input_bfd, input_section, (uint64_t) rel->r_offset,
12054 "Thumb", insn);
12055 return bfd_reloc_notsupported;
12056 }
12057 }
12058 else
12059 {
12060 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12061
12062 switch (insn >> 24)
12063 {
12064 case 0xeb: /* bl */
12065 case 0xfa: /* blx */
12066 value = -4;
12067 break;
12068
12069 case 0xe0: /* add */
12070 value = -8;
12071 break;
12072
12073 default:
12074 _bfd_error_handler
12075 /* xgettext:c-format */
12076 (_("%pB(%pA+%#" PRIx64 "): "
12077 "unexpected %s instruction '%#lx' "
12078 "referenced by TLS_GOTDESC"),
12079 input_bfd, input_section, (uint64_t) rel->r_offset,
12080 "ARM", insn);
12081 return bfd_reloc_notsupported;
12082 }
12083 }
12084
12085 value += ((globals->root.sgotplt->output_section->vma
12086 + globals->root.sgotplt->output_offset + off)
12087 - (input_section->output_section->vma
12088 + input_section->output_offset
12089 + rel->r_offset)
12090 + globals->sgotplt_jump_table_size);
12091 }
12092 else
12093 value = ((globals->root.sgot->output_section->vma
12094 + globals->root.sgot->output_offset + off)
12095 - (input_section->output_section->vma
12096 + input_section->output_offset + rel->r_offset));
12097
12098 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12099 r_type == R_ARM_TLS_IE32_FDPIC))
12100 {
12101 /* For FDPIC relocations, resolve to the offset of the GOT
12102 entry from the start of GOT. */
12103 bfd_put_32(output_bfd,
12104 globals->root.sgot->output_offset + off,
12105 contents + rel->r_offset);
12106
12107 return bfd_reloc_ok;
12108 }
12109 else
12110 {
12111 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12112 contents, rel->r_offset, value,
12113 rel->r_addend);
12114 }
12115 }
12116
12117 case R_ARM_TLS_LE32:
12118 if (bfd_link_dll (info))
12119 {
12120 _bfd_error_handler
12121 /* xgettext:c-format */
12122 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12123 "in shared object"),
12124 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12125 return bfd_reloc_notsupported;
12126 }
12127 else
12128 value = tpoff (info, value);
12129
12130 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12131 contents, rel->r_offset, value,
12132 rel->r_addend);
12133
12134 case R_ARM_V4BX:
12135 if (globals->fix_v4bx)
12136 {
12137 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12138
12139 /* Ensure that we have a BX instruction. */
12140 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12141
12142 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12143 {
12144 /* Branch to veneer. */
12145 bfd_vma glue_addr;
12146 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12147 glue_addr -= input_section->output_section->vma
12148 + input_section->output_offset
12149 + rel->r_offset + 8;
12150 insn = (insn & 0xf0000000) | 0x0a000000
12151 | ((glue_addr >> 2) & 0x00ffffff);
12152 }
12153 else
12154 {
12155 /* Preserve Rm (lowest four bits) and the condition code
12156 (highest four bits). Other bits encode MOV PC,Rm. */
12157 insn = (insn & 0xf000000f) | 0x01a0f000;
12158 }
12159
12160 bfd_put_32 (input_bfd, insn, hit_data);
12161 }
12162 return bfd_reloc_ok;
12163
12164 case R_ARM_MOVW_ABS_NC:
12165 case R_ARM_MOVT_ABS:
12166 case R_ARM_MOVW_PREL_NC:
12167 case R_ARM_MOVT_PREL:
12168 /* Until we properly support segment-base-relative addressing then
12169 we assume the segment base to be zero, as for the group relocations.
12170 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12171 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12172 case R_ARM_MOVW_BREL_NC:
12173 case R_ARM_MOVW_BREL:
12174 case R_ARM_MOVT_BREL:
12175 {
12176 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12177
12178 if (globals->use_rel)
12179 {
12180 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12181 signed_addend = (addend ^ 0x8000) - 0x8000;
12182 }
12183
12184 value += signed_addend;
12185
12186 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12187 value -= (input_section->output_section->vma
12188 + input_section->output_offset + rel->r_offset);
12189
12190 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12191 return bfd_reloc_overflow;
12192
12193 if (branch_type == ST_BRANCH_TO_THUMB)
12194 value |= 1;
12195
12196 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12197 || r_type == R_ARM_MOVT_BREL)
12198 value >>= 16;
12199
12200 insn &= 0xfff0f000;
12201 insn |= value & 0xfff;
12202 insn |= (value & 0xf000) << 4;
12203 bfd_put_32 (input_bfd, insn, hit_data);
12204 }
12205 return bfd_reloc_ok;
12206
12207 case R_ARM_THM_MOVW_ABS_NC:
12208 case R_ARM_THM_MOVT_ABS:
12209 case R_ARM_THM_MOVW_PREL_NC:
12210 case R_ARM_THM_MOVT_PREL:
12211 /* Until we properly support segment-base-relative addressing then
12212 we assume the segment base to be zero, as for the above relocations.
12213 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12214 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12215 as R_ARM_THM_MOVT_ABS. */
12216 case R_ARM_THM_MOVW_BREL_NC:
12217 case R_ARM_THM_MOVW_BREL:
12218 case R_ARM_THM_MOVT_BREL:
12219 {
12220 bfd_vma insn;
12221
12222 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12223 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12224
12225 if (globals->use_rel)
12226 {
12227 addend = ((insn >> 4) & 0xf000)
12228 | ((insn >> 15) & 0x0800)
12229 | ((insn >> 4) & 0x0700)
12230 | (insn & 0x00ff);
12231 signed_addend = (addend ^ 0x8000) - 0x8000;
12232 }
12233
12234 value += signed_addend;
12235
12236 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12237 value -= (input_section->output_section->vma
12238 + input_section->output_offset + rel->r_offset);
12239
12240 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12241 return bfd_reloc_overflow;
12242
12243 if (branch_type == ST_BRANCH_TO_THUMB)
12244 value |= 1;
12245
12246 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12247 || r_type == R_ARM_THM_MOVT_BREL)
12248 value >>= 16;
12249
12250 insn &= 0xfbf08f00;
12251 insn |= (value & 0xf000) << 4;
12252 insn |= (value & 0x0800) << 15;
12253 insn |= (value & 0x0700) << 4;
12254 insn |= (value & 0x00ff);
12255
12256 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12257 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12258 }
12259 return bfd_reloc_ok;
12260
12261 case R_ARM_ALU_PC_G0_NC:
12262 case R_ARM_ALU_PC_G1_NC:
12263 case R_ARM_ALU_PC_G0:
12264 case R_ARM_ALU_PC_G1:
12265 case R_ARM_ALU_PC_G2:
12266 case R_ARM_ALU_SB_G0_NC:
12267 case R_ARM_ALU_SB_G1_NC:
12268 case R_ARM_ALU_SB_G0:
12269 case R_ARM_ALU_SB_G1:
12270 case R_ARM_ALU_SB_G2:
12271 {
12272 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12273 bfd_vma pc = input_section->output_section->vma
12274 + input_section->output_offset + rel->r_offset;
12275 /* sb is the origin of the *segment* containing the symbol. */
12276 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12277 bfd_vma residual;
12278 bfd_vma g_n;
12279 bfd_signed_vma signed_value;
12280 int group = 0;
12281
12282 /* Determine which group of bits to select. */
12283 switch (r_type)
12284 {
12285 case R_ARM_ALU_PC_G0_NC:
12286 case R_ARM_ALU_PC_G0:
12287 case R_ARM_ALU_SB_G0_NC:
12288 case R_ARM_ALU_SB_G0:
12289 group = 0;
12290 break;
12291
12292 case R_ARM_ALU_PC_G1_NC:
12293 case R_ARM_ALU_PC_G1:
12294 case R_ARM_ALU_SB_G1_NC:
12295 case R_ARM_ALU_SB_G1:
12296 group = 1;
12297 break;
12298
12299 case R_ARM_ALU_PC_G2:
12300 case R_ARM_ALU_SB_G2:
12301 group = 2;
12302 break;
12303
12304 default:
12305 abort ();
12306 }
12307
12308 /* If REL, extract the addend from the insn. If RELA, it will
12309 have already been fetched for us. */
12310 if (globals->use_rel)
12311 {
12312 int negative;
12313 bfd_vma constant = insn & 0xff;
12314 bfd_vma rotation = (insn & 0xf00) >> 8;
12315
12316 if (rotation == 0)
12317 signed_addend = constant;
12318 else
12319 {
12320 /* Compensate for the fact that in the instruction, the
12321 rotation is stored in multiples of 2 bits. */
12322 rotation *= 2;
12323
12324 /* Rotate "constant" right by "rotation" bits. */
12325 signed_addend = (constant >> rotation) |
12326 (constant << (8 * sizeof (bfd_vma) - rotation));
12327 }
12328
12329 /* Determine if the instruction is an ADD or a SUB.
12330 (For REL, this determines the sign of the addend.) */
12331 negative = identify_add_or_sub (insn);
12332 if (negative == 0)
12333 {
12334 _bfd_error_handler
12335 /* xgettext:c-format */
12336 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12337 "are allowed for ALU group relocations"),
12338 input_bfd, input_section, (uint64_t) rel->r_offset);
12339 return bfd_reloc_overflow;
12340 }
12341
12342 signed_addend *= negative;
12343 }
12344
12345 /* Compute the value (X) to go in the place. */
12346 if (r_type == R_ARM_ALU_PC_G0_NC
12347 || r_type == R_ARM_ALU_PC_G1_NC
12348 || r_type == R_ARM_ALU_PC_G0
12349 || r_type == R_ARM_ALU_PC_G1
12350 || r_type == R_ARM_ALU_PC_G2)
12351 /* PC relative. */
12352 signed_value = value - pc + signed_addend;
12353 else
12354 /* Section base relative. */
12355 signed_value = value - sb + signed_addend;
12356
12357 /* If the target symbol is a Thumb function, then set the
12358 Thumb bit in the address. */
12359 if (branch_type == ST_BRANCH_TO_THUMB)
12360 signed_value |= 1;
12361
12362 /* Calculate the value of the relevant G_n, in encoded
12363 constant-with-rotation format. */
12364 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12365 group, &residual);
12366
12367 /* Check for overflow if required. */
12368 if ((r_type == R_ARM_ALU_PC_G0
12369 || r_type == R_ARM_ALU_PC_G1
12370 || r_type == R_ARM_ALU_PC_G2
12371 || r_type == R_ARM_ALU_SB_G0
12372 || r_type == R_ARM_ALU_SB_G1
12373 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12374 {
12375 _bfd_error_handler
12376 /* xgettext:c-format */
12377 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12378 "splitting %#" PRIx64 " for group relocation %s"),
12379 input_bfd, input_section, (uint64_t) rel->r_offset,
12380 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12381 howto->name);
12382 return bfd_reloc_overflow;
12383 }
12384
12385 /* Mask out the value and the ADD/SUB part of the opcode; take care
12386 not to destroy the S bit. */
12387 insn &= 0xff1ff000;
12388
12389 /* Set the opcode according to whether the value to go in the
12390 place is negative. */
12391 if (signed_value < 0)
12392 insn |= 1 << 22;
12393 else
12394 insn |= 1 << 23;
12395
12396 /* Encode the offset. */
12397 insn |= g_n;
12398
12399 bfd_put_32 (input_bfd, insn, hit_data);
12400 }
12401 return bfd_reloc_ok;
12402
12403 case R_ARM_LDR_PC_G0:
12404 case R_ARM_LDR_PC_G1:
12405 case R_ARM_LDR_PC_G2:
12406 case R_ARM_LDR_SB_G0:
12407 case R_ARM_LDR_SB_G1:
12408 case R_ARM_LDR_SB_G2:
12409 {
12410 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12411 bfd_vma pc = input_section->output_section->vma
12412 + input_section->output_offset + rel->r_offset;
12413 /* sb is the origin of the *segment* containing the symbol. */
12414 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12415 bfd_vma residual;
12416 bfd_signed_vma signed_value;
12417 int group = 0;
12418
12419 /* Determine which groups of bits to calculate. */
12420 switch (r_type)
12421 {
12422 case R_ARM_LDR_PC_G0:
12423 case R_ARM_LDR_SB_G0:
12424 group = 0;
12425 break;
12426
12427 case R_ARM_LDR_PC_G1:
12428 case R_ARM_LDR_SB_G1:
12429 group = 1;
12430 break;
12431
12432 case R_ARM_LDR_PC_G2:
12433 case R_ARM_LDR_SB_G2:
12434 group = 2;
12435 break;
12436
12437 default:
12438 abort ();
12439 }
12440
12441 /* If REL, extract the addend from the insn. If RELA, it will
12442 have already been fetched for us. */
12443 if (globals->use_rel)
12444 {
12445 int negative = (insn & (1 << 23)) ? 1 : -1;
12446 signed_addend = negative * (insn & 0xfff);
12447 }
12448
12449 /* Compute the value (X) to go in the place. */
12450 if (r_type == R_ARM_LDR_PC_G0
12451 || r_type == R_ARM_LDR_PC_G1
12452 || r_type == R_ARM_LDR_PC_G2)
12453 /* PC relative. */
12454 signed_value = value - pc + signed_addend;
12455 else
12456 /* Section base relative. */
12457 signed_value = value - sb + signed_addend;
12458
12459 /* Calculate the value of the relevant G_{n-1} to obtain
12460 the residual at that stage. */
12461 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12462 group - 1, &residual);
12463
12464 /* Check for overflow. */
12465 if (residual >= 0x1000)
12466 {
12467 _bfd_error_handler
12468 /* xgettext:c-format */
12469 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12470 "splitting %#" PRIx64 " for group relocation %s"),
12471 input_bfd, input_section, (uint64_t) rel->r_offset,
12472 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12473 howto->name);
12474 return bfd_reloc_overflow;
12475 }
12476
12477 /* Mask out the value and U bit. */
12478 insn &= 0xff7ff000;
12479
12480 /* Set the U bit if the value to go in the place is non-negative. */
12481 if (signed_value >= 0)
12482 insn |= 1 << 23;
12483
12484 /* Encode the offset. */
12485 insn |= residual;
12486
12487 bfd_put_32 (input_bfd, insn, hit_data);
12488 }
12489 return bfd_reloc_ok;
12490
12491 case R_ARM_LDRS_PC_G0:
12492 case R_ARM_LDRS_PC_G1:
12493 case R_ARM_LDRS_PC_G2:
12494 case R_ARM_LDRS_SB_G0:
12495 case R_ARM_LDRS_SB_G1:
12496 case R_ARM_LDRS_SB_G2:
12497 {
12498 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12499 bfd_vma pc = input_section->output_section->vma
12500 + input_section->output_offset + rel->r_offset;
12501 /* sb is the origin of the *segment* containing the symbol. */
12502 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12503 bfd_vma residual;
12504 bfd_signed_vma signed_value;
12505 int group = 0;
12506
12507 /* Determine which groups of bits to calculate. */
12508 switch (r_type)
12509 {
12510 case R_ARM_LDRS_PC_G0:
12511 case R_ARM_LDRS_SB_G0:
12512 group = 0;
12513 break;
12514
12515 case R_ARM_LDRS_PC_G1:
12516 case R_ARM_LDRS_SB_G1:
12517 group = 1;
12518 break;
12519
12520 case R_ARM_LDRS_PC_G2:
12521 case R_ARM_LDRS_SB_G2:
12522 group = 2;
12523 break;
12524
12525 default:
12526 abort ();
12527 }
12528
12529 /* If REL, extract the addend from the insn. If RELA, it will
12530 have already been fetched for us. */
12531 if (globals->use_rel)
12532 {
12533 int negative = (insn & (1 << 23)) ? 1 : -1;
12534 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12535 }
12536
12537 /* Compute the value (X) to go in the place. */
12538 if (r_type == R_ARM_LDRS_PC_G0
12539 || r_type == R_ARM_LDRS_PC_G1
12540 || r_type == R_ARM_LDRS_PC_G2)
12541 /* PC relative. */
12542 signed_value = value - pc + signed_addend;
12543 else
12544 /* Section base relative. */
12545 signed_value = value - sb + signed_addend;
12546
12547 /* Calculate the value of the relevant G_{n-1} to obtain
12548 the residual at that stage. */
12549 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12550 group - 1, &residual);
12551
12552 /* Check for overflow. */
12553 if (residual >= 0x100)
12554 {
12555 _bfd_error_handler
12556 /* xgettext:c-format */
12557 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12558 "splitting %#" PRIx64 " for group relocation %s"),
12559 input_bfd, input_section, (uint64_t) rel->r_offset,
12560 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12561 howto->name);
12562 return bfd_reloc_overflow;
12563 }
12564
12565 /* Mask out the value and U bit. */
12566 insn &= 0xff7ff0f0;
12567
12568 /* Set the U bit if the value to go in the place is non-negative. */
12569 if (signed_value >= 0)
12570 insn |= 1 << 23;
12571
12572 /* Encode the offset. */
12573 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12574
12575 bfd_put_32 (input_bfd, insn, hit_data);
12576 }
12577 return bfd_reloc_ok;
12578
12579 case R_ARM_LDC_PC_G0:
12580 case R_ARM_LDC_PC_G1:
12581 case R_ARM_LDC_PC_G2:
12582 case R_ARM_LDC_SB_G0:
12583 case R_ARM_LDC_SB_G1:
12584 case R_ARM_LDC_SB_G2:
12585 {
12586 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12587 bfd_vma pc = input_section->output_section->vma
12588 + input_section->output_offset + rel->r_offset;
12589 /* sb is the origin of the *segment* containing the symbol. */
12590 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12591 bfd_vma residual;
12592 bfd_signed_vma signed_value;
12593 int group = 0;
12594
12595 /* Determine which groups of bits to calculate. */
12596 switch (r_type)
12597 {
12598 case R_ARM_LDC_PC_G0:
12599 case R_ARM_LDC_SB_G0:
12600 group = 0;
12601 break;
12602
12603 case R_ARM_LDC_PC_G1:
12604 case R_ARM_LDC_SB_G1:
12605 group = 1;
12606 break;
12607
12608 case R_ARM_LDC_PC_G2:
12609 case R_ARM_LDC_SB_G2:
12610 group = 2;
12611 break;
12612
12613 default:
12614 abort ();
12615 }
12616
12617 /* If REL, extract the addend from the insn. If RELA, it will
12618 have already been fetched for us. */
12619 if (globals->use_rel)
12620 {
12621 int negative = (insn & (1 << 23)) ? 1 : -1;
12622 signed_addend = negative * ((insn & 0xff) << 2);
12623 }
12624
12625 /* Compute the value (X) to go in the place. */
12626 if (r_type == R_ARM_LDC_PC_G0
12627 || r_type == R_ARM_LDC_PC_G1
12628 || r_type == R_ARM_LDC_PC_G2)
12629 /* PC relative. */
12630 signed_value = value - pc + signed_addend;
12631 else
12632 /* Section base relative. */
12633 signed_value = value - sb + signed_addend;
12634
12635 /* Calculate the value of the relevant G_{n-1} to obtain
12636 the residual at that stage. */
12637 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12638 group - 1, &residual);
12639
12640 /* Check for overflow. (The absolute value to go in the place must be
12641 divisible by four and, after having been divided by four, must
12642 fit in eight bits.) */
12643 if ((residual & 0x3) != 0 || residual >= 0x400)
12644 {
12645 _bfd_error_handler
12646 /* xgettext:c-format */
12647 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12648 "splitting %#" PRIx64 " for group relocation %s"),
12649 input_bfd, input_section, (uint64_t) rel->r_offset,
12650 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12651 howto->name);
12652 return bfd_reloc_overflow;
12653 }
12654
12655 /* Mask out the value and U bit. */
12656 insn &= 0xff7fff00;
12657
12658 /* Set the U bit if the value to go in the place is non-negative. */
12659 if (signed_value >= 0)
12660 insn |= 1 << 23;
12661
12662 /* Encode the offset. */
12663 insn |= residual >> 2;
12664
12665 bfd_put_32 (input_bfd, insn, hit_data);
12666 }
12667 return bfd_reloc_ok;
12668
12669 case R_ARM_THM_ALU_ABS_G0_NC:
12670 case R_ARM_THM_ALU_ABS_G1_NC:
12671 case R_ARM_THM_ALU_ABS_G2_NC:
12672 case R_ARM_THM_ALU_ABS_G3_NC:
12673 {
12674 const int shift_array[4] = {0, 8, 16, 24};
12675 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12676 bfd_vma addr = value;
12677 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12678
12679 /* Compute address. */
12680 if (globals->use_rel)
12681 signed_addend = insn & 0xff;
12682 addr += signed_addend;
12683 if (branch_type == ST_BRANCH_TO_THUMB)
12684 addr |= 1;
12685 /* Clean imm8 insn. */
12686 insn &= 0xff00;
12687 /* And update with correct part of address. */
12688 insn |= (addr >> shift) & 0xff;
12689 /* Update insn. */
12690 bfd_put_16 (input_bfd, insn, hit_data);
12691 }
12692
12693 *unresolved_reloc_p = FALSE;
12694 return bfd_reloc_ok;
12695
12696 case R_ARM_GOTOFFFUNCDESC:
12697 {
12698 if (h == NULL)
12699 {
12700 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12701 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12702 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12703 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12704 bfd_vma seg = -1;
12705
12706 if (bfd_link_pic(info) && dynindx == 0)
12707 abort();
12708
12709 /* Resolve relocation. */
12710 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12711 , contents + rel->r_offset);
12712 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12713 not done yet. */
12714 arm_elf_fill_funcdesc(output_bfd, info,
12715 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12716 dynindx, offset, addr, dynreloc_value, seg);
12717 }
12718 else
12719 {
12720 int dynindx;
12721 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12722 bfd_vma addr;
12723 bfd_vma seg = -1;
12724
12725 /* For static binaries, sym_sec can be null. */
12726 if (sym_sec)
12727 {
12728 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12729 addr = dynreloc_value - sym_sec->output_section->vma;
12730 }
12731 else
12732 {
12733 dynindx = 0;
12734 addr = 0;
12735 }
12736
12737 if (bfd_link_pic(info) && dynindx == 0)
12738 abort();
12739
12740 /* This case cannot occur since funcdesc is allocated by
12741 the dynamic loader so we cannot resolve the relocation. */
12742 if (h->dynindx != -1)
12743 abort();
12744
12745 /* Resolve relocation. */
12746 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12747 contents + rel->r_offset);
12748 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12749 arm_elf_fill_funcdesc(output_bfd, info,
12750 &eh->fdpic_cnts.funcdesc_offset,
12751 dynindx, offset, addr, dynreloc_value, seg);
12752 }
12753 }
12754 *unresolved_reloc_p = FALSE;
12755 return bfd_reloc_ok;
12756
12757 case R_ARM_GOTFUNCDESC:
12758 {
12759 if (h != NULL)
12760 {
12761 Elf_Internal_Rela outrel;
12762
12763 /* Resolve relocation. */
12764 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12765 + sgot->output_offset),
12766 contents + rel->r_offset);
12767 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12768 if(h->dynindx == -1)
12769 {
12770 int dynindx;
12771 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12772 bfd_vma addr;
12773 bfd_vma seg = -1;
12774
12775 /* For static binaries sym_sec can be null. */
12776 if (sym_sec)
12777 {
12778 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12779 addr = dynreloc_value - sym_sec->output_section->vma;
12780 }
12781 else
12782 {
12783 dynindx = 0;
12784 addr = 0;
12785 }
12786
12787 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12788 arm_elf_fill_funcdesc(output_bfd, info,
12789 &eh->fdpic_cnts.funcdesc_offset,
12790 dynindx, offset, addr, dynreloc_value, seg);
12791 }
12792
12793 /* Add a dynamic relocation on GOT entry if not already done. */
12794 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12795 {
12796 if (h->dynindx == -1)
12797 {
12798 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12799 if (h->root.type == bfd_link_hash_undefweak)
12800 bfd_put_32(output_bfd, 0, sgot->contents
12801 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12802 else
12803 bfd_put_32(output_bfd, sgot->output_section->vma
12804 + sgot->output_offset
12805 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12806 sgot->contents
12807 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12808 }
12809 else
12810 {
12811 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12812 }
12813 outrel.r_offset = sgot->output_section->vma
12814 + sgot->output_offset
12815 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12816 outrel.r_addend = 0;
12817 if (h->dynindx == -1 && !bfd_link_pic(info))
12818 if (h->root.type == bfd_link_hash_undefweak)
12819 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12820 else
12821 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12822 outrel.r_offset);
12823 else
12824 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12825 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12826 }
12827 }
12828 else
12829 {
12830 /* Such relocation on static function should not have been
12831 emitted by the compiler. */
12832 abort();
12833 }
12834 }
12835 *unresolved_reloc_p = FALSE;
12836 return bfd_reloc_ok;
12837
12838 case R_ARM_FUNCDESC:
12839 {
12840 if (h == NULL)
12841 {
12842 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12843 Elf_Internal_Rela outrel;
12844 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12845 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12846 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12847 bfd_vma seg = -1;
12848
12849 if (bfd_link_pic(info) && dynindx == 0)
12850 abort();
12851
12852 /* Replace static FUNCDESC relocation with a
12853 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12854 executable. */
12855 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12856 outrel.r_offset = input_section->output_section->vma
12857 + input_section->output_offset + rel->r_offset;
12858 outrel.r_addend = 0;
12859 if (bfd_link_pic(info))
12860 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12861 else
12862 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12863
12864 bfd_put_32 (input_bfd, sgot->output_section->vma
12865 + sgot->output_offset + offset, hit_data);
12866
12867 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12868 arm_elf_fill_funcdesc(output_bfd, info,
12869 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12870 dynindx, offset, addr, dynreloc_value, seg);
12871 }
12872 else
12873 {
12874 if (h->dynindx == -1)
12875 {
12876 int dynindx;
12877 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12878 bfd_vma addr;
12879 bfd_vma seg = -1;
12880 Elf_Internal_Rela outrel;
12881
12882 /* For static binaries sym_sec can be null. */
12883 if (sym_sec)
12884 {
12885 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12886 addr = dynreloc_value - sym_sec->output_section->vma;
12887 }
12888 else
12889 {
12890 dynindx = 0;
12891 addr = 0;
12892 }
12893
12894 if (bfd_link_pic(info) && dynindx == 0)
12895 abort();
12896
12897 /* Replace static FUNCDESC relocation with a
12898 R_ARM_RELATIVE dynamic relocation. */
12899 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12900 outrel.r_offset = input_section->output_section->vma
12901 + input_section->output_offset + rel->r_offset;
12902 outrel.r_addend = 0;
12903 if (bfd_link_pic(info))
12904 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12905 else
12906 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12907
12908 bfd_put_32 (input_bfd, sgot->output_section->vma
12909 + sgot->output_offset + offset, hit_data);
12910
12911 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12912 arm_elf_fill_funcdesc(output_bfd, info,
12913 &eh->fdpic_cnts.funcdesc_offset,
12914 dynindx, offset, addr, dynreloc_value, seg);
12915 }
12916 else
12917 {
12918 Elf_Internal_Rela outrel;
12919
12920 /* Add a dynamic relocation. */
12921 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12922 outrel.r_offset = input_section->output_section->vma
12923 + input_section->output_offset + rel->r_offset;
12924 outrel.r_addend = 0;
12925 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12926 }
12927 }
12928 }
12929 *unresolved_reloc_p = FALSE;
12930 return bfd_reloc_ok;
12931
12932 case R_ARM_THM_BF16:
12933 {
12934 bfd_vma relocation;
12935 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12936 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12937
12938 if (globals->use_rel)
12939 {
12940 bfd_vma immA = (upper_insn & 0x001f);
12941 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12942 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12943 addend = (immA << 12);
12944 addend |= (immB << 2);
12945 addend |= (immC << 1);
12946 addend |= 1;
12947 /* Sign extend. */
12948 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12949 }
12950
12951 relocation = value + signed_addend;
12952 relocation -= (input_section->output_section->vma
12953 + input_section->output_offset
12954 + rel->r_offset);
12955
12956 /* Put RELOCATION back into the insn. */
12957 {
12958 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12959 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12960 bfd_vma immC = (relocation & 0x00000002) >> 1;
12961
12962 upper_insn = (upper_insn & 0xffe0) | immA;
12963 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12964 }
12965
12966 /* Put the relocated value back in the object file: */
12967 bfd_put_16 (input_bfd, upper_insn, hit_data);
12968 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12969
12970 return bfd_reloc_ok;
12971 }
12972
12973 case R_ARM_THM_BF12:
12974 {
12975 bfd_vma relocation;
12976 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12977 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12978
12979 if (globals->use_rel)
12980 {
12981 bfd_vma immA = (upper_insn & 0x0001);
12982 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12983 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12984 addend = (immA << 12);
12985 addend |= (immB << 2);
12986 addend |= (immC << 1);
12987 addend |= 1;
12988 /* Sign extend. */
12989 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
12990 signed_addend = addend;
12991 }
12992
12993 relocation = value + signed_addend;
12994 relocation -= (input_section->output_section->vma
12995 + input_section->output_offset
12996 + rel->r_offset);
12997
12998 /* Put RELOCATION back into the insn. */
12999 {
13000 bfd_vma immA = (relocation & 0x00001000) >> 12;
13001 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13002 bfd_vma immC = (relocation & 0x00000002) >> 1;
13003
13004 upper_insn = (upper_insn & 0xfffe) | immA;
13005 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13006 }
13007
13008 /* Put the relocated value back in the object file: */
13009 bfd_put_16 (input_bfd, upper_insn, hit_data);
13010 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13011
13012 return bfd_reloc_ok;
13013 }
13014
13015 case R_ARM_THM_BF18:
13016 {
13017 bfd_vma relocation;
13018 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13019 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13020
13021 if (globals->use_rel)
13022 {
13023 bfd_vma immA = (upper_insn & 0x007f);
13024 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13025 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13026 addend = (immA << 12);
13027 addend |= (immB << 2);
13028 addend |= (immC << 1);
13029 addend |= 1;
13030 /* Sign extend. */
13031 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13032 signed_addend = addend;
13033 }
13034
13035 relocation = value + signed_addend;
13036 relocation -= (input_section->output_section->vma
13037 + input_section->output_offset
13038 + rel->r_offset);
13039
13040 /* Put RELOCATION back into the insn. */
13041 {
13042 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13043 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13044 bfd_vma immC = (relocation & 0x00000002) >> 1;
13045
13046 upper_insn = (upper_insn & 0xff80) | immA;
13047 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13048 }
13049
13050 /* Put the relocated value back in the object file: */
13051 bfd_put_16 (input_bfd, upper_insn, hit_data);
13052 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13053
13054 return bfd_reloc_ok;
13055 }
13056
13057 default:
13058 return bfd_reloc_notsupported;
13059 }
13060}
13061
13062/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13063static void
13064arm_add_to_rel (bfd * abfd,
13065 bfd_byte * address,
13066 reloc_howto_type * howto,
13067 bfd_signed_vma increment)
13068{
13069 bfd_signed_vma addend;
13070
13071 if (howto->type == R_ARM_THM_CALL
13072 || howto->type == R_ARM_THM_JUMP24)
13073 {
13074 int upper_insn, lower_insn;
13075 int upper, lower;
13076
13077 upper_insn = bfd_get_16 (abfd, address);
13078 lower_insn = bfd_get_16 (abfd, address + 2);
13079 upper = upper_insn & 0x7ff;
13080 lower = lower_insn & 0x7ff;
13081
13082 addend = (upper << 12) | (lower << 1);
13083 addend += increment;
13084 addend >>= 1;
13085
13086 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13087 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13088
13089 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13090 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13091 }
13092 else
13093 {
13094 bfd_vma contents;
13095
13096 contents = bfd_get_32 (abfd, address);
13097
13098 /* Get the (signed) value from the instruction. */
13099 addend = contents & howto->src_mask;
13100 if (addend & ((howto->src_mask + 1) >> 1))
13101 {
13102 bfd_signed_vma mask;
13103
13104 mask = -1;
13105 mask &= ~ howto->src_mask;
13106 addend |= mask;
13107 }
13108
13109 /* Add in the increment, (which is a byte value). */
13110 switch (howto->type)
13111 {
13112 default:
13113 addend += increment;
13114 break;
13115
13116 case R_ARM_PC24:
13117 case R_ARM_PLT32:
13118 case R_ARM_CALL:
13119 case R_ARM_JUMP24:
13120 addend <<= howto->size;
13121 addend += increment;
13122
13123 /* Should we check for overflow here ? */
13124
13125 /* Drop any undesired bits. */
13126 addend >>= howto->rightshift;
13127 break;
13128 }
13129
13130 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13131
13132 bfd_put_32 (abfd, contents, address);
13133 }
13134}
13135
13136#define IS_ARM_TLS_RELOC(R_TYPE) \
13137 ((R_TYPE) == R_ARM_TLS_GD32 \
13138 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13139 || (R_TYPE) == R_ARM_TLS_LDO32 \
13140 || (R_TYPE) == R_ARM_TLS_LDM32 \
13141 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13142 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13143 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13144 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13145 || (R_TYPE) == R_ARM_TLS_LE32 \
13146 || (R_TYPE) == R_ARM_TLS_IE32 \
13147 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13148 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13149
13150/* Specific set of relocations for the gnu tls dialect. */
13151#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13152 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13153 || (R_TYPE) == R_ARM_TLS_CALL \
13154 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13155 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13156 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13157
13158/* Relocate an ARM ELF section. */
13159
13160static bfd_boolean
13161elf32_arm_relocate_section (bfd * output_bfd,
13162 struct bfd_link_info * info,
13163 bfd * input_bfd,
13164 asection * input_section,
13165 bfd_byte * contents,
13166 Elf_Internal_Rela * relocs,
13167 Elf_Internal_Sym * local_syms,
13168 asection ** local_sections)
13169{
13170 Elf_Internal_Shdr *symtab_hdr;
13171 struct elf_link_hash_entry **sym_hashes;
13172 Elf_Internal_Rela *rel;
13173 Elf_Internal_Rela *relend;
13174 const char *name;
13175 struct elf32_arm_link_hash_table * globals;
13176
13177 globals = elf32_arm_hash_table (info);
13178 if (globals == NULL)
13179 return FALSE;
13180
13181 symtab_hdr = & elf_symtab_hdr (input_bfd);
13182 sym_hashes = elf_sym_hashes (input_bfd);
13183
13184 rel = relocs;
13185 relend = relocs + input_section->reloc_count;
13186 for (; rel < relend; rel++)
13187 {
13188 int r_type;
13189 reloc_howto_type * howto;
13190 unsigned long r_symndx;
13191 Elf_Internal_Sym * sym;
13192 asection * sec;
13193 struct elf_link_hash_entry * h;
13194 bfd_vma relocation;
13195 bfd_reloc_status_type r;
13196 arelent bfd_reloc;
13197 char sym_type;
13198 bfd_boolean unresolved_reloc = FALSE;
13199 char *error_message = NULL;
13200
13201 r_symndx = ELF32_R_SYM (rel->r_info);
13202 r_type = ELF32_R_TYPE (rel->r_info);
13203 r_type = arm_real_reloc_type (globals, r_type);
13204
13205 if ( r_type == R_ARM_GNU_VTENTRY
13206 || r_type == R_ARM_GNU_VTINHERIT)
13207 continue;
13208
13209 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13210
13211 if (howto == NULL)
13212 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13213
13214 h = NULL;
13215 sym = NULL;
13216 sec = NULL;
13217
13218 if (r_symndx < symtab_hdr->sh_info)
13219 {
13220 sym = local_syms + r_symndx;
13221 sym_type = ELF32_ST_TYPE (sym->st_info);
13222 sec = local_sections[r_symndx];
13223
13224 /* An object file might have a reference to a local
13225 undefined symbol. This is a daft object file, but we
13226 should at least do something about it. V4BX & NONE
13227 relocations do not use the symbol and are explicitly
13228 allowed to use the undefined symbol, so allow those.
13229 Likewise for relocations against STN_UNDEF. */
13230 if (r_type != R_ARM_V4BX
13231 && r_type != R_ARM_NONE
13232 && r_symndx != STN_UNDEF
13233 && bfd_is_und_section (sec)
13234 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13235 (*info->callbacks->undefined_symbol)
13236 (info, bfd_elf_string_from_elf_section
13237 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13238 input_bfd, input_section,
13239 rel->r_offset, TRUE);
13240
13241 if (globals->use_rel)
13242 {
13243 relocation = (sec->output_section->vma
13244 + sec->output_offset
13245 + sym->st_value);
13246 if (!bfd_link_relocatable (info)
13247 && (sec->flags & SEC_MERGE)
13248 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13249 {
13250 asection *msec;
13251 bfd_vma addend, value;
13252
13253 switch (r_type)
13254 {
13255 case R_ARM_MOVW_ABS_NC:
13256 case R_ARM_MOVT_ABS:
13257 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13258 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13259 addend = (addend ^ 0x8000) - 0x8000;
13260 break;
13261
13262 case R_ARM_THM_MOVW_ABS_NC:
13263 case R_ARM_THM_MOVT_ABS:
13264 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13265 << 16;
13266 value |= bfd_get_16 (input_bfd,
13267 contents + rel->r_offset + 2);
13268 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13269 | ((value & 0x04000000) >> 15);
13270 addend = (addend ^ 0x8000) - 0x8000;
13271 break;
13272
13273 default:
13274 if (howto->rightshift
13275 || (howto->src_mask & (howto->src_mask + 1)))
13276 {
13277 _bfd_error_handler
13278 /* xgettext:c-format */
13279 (_("%pB(%pA+%#" PRIx64 "): "
13280 "%s relocation against SEC_MERGE section"),
13281 input_bfd, input_section,
13282 (uint64_t) rel->r_offset, howto->name);
13283 return FALSE;
13284 }
13285
13286 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13287
13288 /* Get the (signed) value from the instruction. */
13289 addend = value & howto->src_mask;
13290 if (addend & ((howto->src_mask + 1) >> 1))
13291 {
13292 bfd_signed_vma mask;
13293
13294 mask = -1;
13295 mask &= ~ howto->src_mask;
13296 addend |= mask;
13297 }
13298 break;
13299 }
13300
13301 msec = sec;
13302 addend =
13303 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13304 - relocation;
13305 addend += msec->output_section->vma + msec->output_offset;
13306
13307 /* Cases here must match those in the preceding
13308 switch statement. */
13309 switch (r_type)
13310 {
13311 case R_ARM_MOVW_ABS_NC:
13312 case R_ARM_MOVT_ABS:
13313 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13314 | (addend & 0xfff);
13315 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13316 break;
13317
13318 case R_ARM_THM_MOVW_ABS_NC:
13319 case R_ARM_THM_MOVT_ABS:
13320 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13321 | (addend & 0xff) | ((addend & 0x0800) << 15);
13322 bfd_put_16 (input_bfd, value >> 16,
13323 contents + rel->r_offset);
13324 bfd_put_16 (input_bfd, value,
13325 contents + rel->r_offset + 2);
13326 break;
13327
13328 default:
13329 value = (value & ~ howto->dst_mask)
13330 | (addend & howto->dst_mask);
13331 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13332 break;
13333 }
13334 }
13335 }
13336 else
13337 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13338 }
13339 else
13340 {
13341 bfd_boolean warned, ignored;
13342
13343 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13344 r_symndx, symtab_hdr, sym_hashes,
13345 h, sec, relocation,
13346 unresolved_reloc, warned, ignored);
13347
13348 sym_type = h->type;
13349 }
13350
13351 if (sec != NULL && discarded_section (sec))
13352 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13353 rel, 1, relend, howto, 0, contents);
13354
13355 if (bfd_link_relocatable (info))
13356 {
13357 /* This is a relocatable link. We don't have to change
13358 anything, unless the reloc is against a section symbol,
13359 in which case we have to adjust according to where the
13360 section symbol winds up in the output section. */
13361 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13362 {
13363 if (globals->use_rel)
13364 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13365 howto, (bfd_signed_vma) sec->output_offset);
13366 else
13367 rel->r_addend += sec->output_offset;
13368 }
13369 continue;
13370 }
13371
13372 if (h != NULL)
13373 name = h->root.root.string;
13374 else
13375 {
13376 name = (bfd_elf_string_from_elf_section
13377 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13378 if (name == NULL || *name == '\0')
13379 name = bfd_section_name (input_bfd, sec);
13380 }
13381
13382 if (r_symndx != STN_UNDEF
13383 && r_type != R_ARM_NONE
13384 && (h == NULL
13385 || h->root.type == bfd_link_hash_defined
13386 || h->root.type == bfd_link_hash_defweak)
13387 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13388 {
13389 _bfd_error_handler
13390 ((sym_type == STT_TLS
13391 /* xgettext:c-format */
13392 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13393 /* xgettext:c-format */
13394 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13395 input_bfd,
13396 input_section,
13397 (uint64_t) rel->r_offset,
13398 howto->name,
13399 name);
13400 }
13401
13402 /* We call elf32_arm_final_link_relocate unless we're completely
13403 done, i.e., the relaxation produced the final output we want,
13404 and we won't let anybody mess with it. Also, we have to do
13405 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13406 both in relaxed and non-relaxed cases. */
13407 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13408 || (IS_ARM_TLS_GNU_RELOC (r_type)
13409 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13410 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13411 & GOT_TLS_GDESC)))
13412 {
13413 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13414 contents, rel, h == NULL);
13415 /* This may have been marked unresolved because it came from
13416 a shared library. But we've just dealt with that. */
13417 unresolved_reloc = 0;
13418 }
13419 else
13420 r = bfd_reloc_continue;
13421
13422 if (r == bfd_reloc_continue)
13423 {
13424 unsigned char branch_type =
13425 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13426 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13427
13428 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13429 input_section, contents, rel,
13430 relocation, info, sec, name,
13431 sym_type, branch_type, h,
13432 &unresolved_reloc,
13433 &error_message);
13434 }
13435
13436 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13437 because such sections are not SEC_ALLOC and thus ld.so will
13438 not process them. */
13439 if (unresolved_reloc
13440 && !((input_section->flags & SEC_DEBUGGING) != 0
13441 && h->def_dynamic)
13442 && _bfd_elf_section_offset (output_bfd, info, input_section,
13443 rel->r_offset) != (bfd_vma) -1)
13444 {
13445 _bfd_error_handler
13446 /* xgettext:c-format */
13447 (_("%pB(%pA+%#" PRIx64 "): "
13448 "unresolvable %s relocation against symbol `%s'"),
13449 input_bfd,
13450 input_section,
13451 (uint64_t) rel->r_offset,
13452 howto->name,
13453 h->root.root.string);
13454 return FALSE;
13455 }
13456
13457 if (r != bfd_reloc_ok)
13458 {
13459 switch (r)
13460 {
13461 case bfd_reloc_overflow:
13462 /* If the overflowing reloc was to an undefined symbol,
13463 we have already printed one error message and there
13464 is no point complaining again. */
13465 if (!h || h->root.type != bfd_link_hash_undefined)
13466 (*info->callbacks->reloc_overflow)
13467 (info, (h ? &h->root : NULL), name, howto->name,
13468 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13469 break;
13470
13471 case bfd_reloc_undefined:
13472 (*info->callbacks->undefined_symbol)
13473 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13474 break;
13475
13476 case bfd_reloc_outofrange:
13477 error_message = _("out of range");
13478 goto common_error;
13479
13480 case bfd_reloc_notsupported:
13481 error_message = _("unsupported relocation");
13482 goto common_error;
13483
13484 case bfd_reloc_dangerous:
13485 /* error_message should already be set. */
13486 goto common_error;
13487
13488 default:
13489 error_message = _("unknown error");
13490 /* Fall through. */
13491
13492 common_error:
13493 BFD_ASSERT (error_message != NULL);
13494 (*info->callbacks->reloc_dangerous)
13495 (info, error_message, input_bfd, input_section, rel->r_offset);
13496 break;
13497 }
13498 }
13499 }
13500
13501 return TRUE;
13502}
13503
13504/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13505 adds the edit to the start of the list. (The list must be built in order of
13506 ascending TINDEX: the function's callers are primarily responsible for
13507 maintaining that condition). */
13508
13509static void
13510add_unwind_table_edit (arm_unwind_table_edit **head,
13511 arm_unwind_table_edit **tail,
13512 arm_unwind_edit_type type,
13513 asection *linked_section,
13514 unsigned int tindex)
13515{
13516 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13517 xmalloc (sizeof (arm_unwind_table_edit));
13518
13519 new_edit->type = type;
13520 new_edit->linked_section = linked_section;
13521 new_edit->index = tindex;
13522
13523 if (tindex > 0)
13524 {
13525 new_edit->next = NULL;
13526
13527 if (*tail)
13528 (*tail)->next = new_edit;
13529
13530 (*tail) = new_edit;
13531
13532 if (!*head)
13533 (*head) = new_edit;
13534 }
13535 else
13536 {
13537 new_edit->next = *head;
13538
13539 if (!*tail)
13540 *tail = new_edit;
13541
13542 *head = new_edit;
13543 }
13544}
13545
13546static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13547
13548/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13549static void
13550adjust_exidx_size(asection *exidx_sec, int adjust)
13551{
13552 asection *out_sec;
13553
13554 if (!exidx_sec->rawsize)
13555 exidx_sec->rawsize = exidx_sec->size;
13556
13557 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13558 out_sec = exidx_sec->output_section;
13559 /* Adjust size of output section. */
13560 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13561}
13562
13563/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13564static void
13565insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13566{
13567 struct _arm_elf_section_data *exidx_arm_data;
13568
13569 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13570 add_unwind_table_edit (
13571 &exidx_arm_data->u.exidx.unwind_edit_list,
13572 &exidx_arm_data->u.exidx.unwind_edit_tail,
13573 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13574
13575 exidx_arm_data->additional_reloc_count++;
13576
13577 adjust_exidx_size(exidx_sec, 8);
13578}
13579
13580/* Scan .ARM.exidx tables, and create a list describing edits which should be
13581 made to those tables, such that:
13582
13583 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13584 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13585 codes which have been inlined into the index).
13586
13587 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13588
13589 The edits are applied when the tables are written
13590 (in elf32_arm_write_section). */
13591
13592bfd_boolean
13593elf32_arm_fix_exidx_coverage (asection **text_section_order,
13594 unsigned int num_text_sections,
13595 struct bfd_link_info *info,
13596 bfd_boolean merge_exidx_entries)
13597{
13598 bfd *inp;
13599 unsigned int last_second_word = 0, i;
13600 asection *last_exidx_sec = NULL;
13601 asection *last_text_sec = NULL;
13602 int last_unwind_type = -1;
13603
13604 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13605 text sections. */
13606 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13607 {
13608 asection *sec;
13609
13610 for (sec = inp->sections; sec != NULL; sec = sec->next)
13611 {
13612 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13613 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13614
13615 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13616 continue;
13617
13618 if (elf_sec->linked_to)
13619 {
13620 Elf_Internal_Shdr *linked_hdr
13621 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13622 struct _arm_elf_section_data *linked_sec_arm_data
13623 = get_arm_elf_section_data (linked_hdr->bfd_section);
13624
13625 if (linked_sec_arm_data == NULL)
13626 continue;
13627
13628 /* Link this .ARM.exidx section back from the text section it
13629 describes. */
13630 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13631 }
13632 }
13633 }
13634
13635 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13636 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13637 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13638
13639 for (i = 0; i < num_text_sections; i++)
13640 {
13641 asection *sec = text_section_order[i];
13642 asection *exidx_sec;
13643 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13644 struct _arm_elf_section_data *exidx_arm_data;
13645 bfd_byte *contents = NULL;
13646 int deleted_exidx_bytes = 0;
13647 bfd_vma j;
13648 arm_unwind_table_edit *unwind_edit_head = NULL;
13649 arm_unwind_table_edit *unwind_edit_tail = NULL;
13650 Elf_Internal_Shdr *hdr;
13651 bfd *ibfd;
13652
13653 if (arm_data == NULL)
13654 continue;
13655
13656 exidx_sec = arm_data->u.text.arm_exidx_sec;
13657 if (exidx_sec == NULL)
13658 {
13659 /* Section has no unwind data. */
13660 if (last_unwind_type == 0 || !last_exidx_sec)
13661 continue;
13662
13663 /* Ignore zero sized sections. */
13664 if (sec->size == 0)
13665 continue;
13666
13667 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13668 last_unwind_type = 0;
13669 continue;
13670 }
13671
13672 /* Skip /DISCARD/ sections. */
13673 if (bfd_is_abs_section (exidx_sec->output_section))
13674 continue;
13675
13676 hdr = &elf_section_data (exidx_sec)->this_hdr;
13677 if (hdr->sh_type != SHT_ARM_EXIDX)
13678 continue;
13679
13680 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13681 if (exidx_arm_data == NULL)
13682 continue;
13683
13684 ibfd = exidx_sec->owner;
13685
13686 if (hdr->contents != NULL)
13687 contents = hdr->contents;
13688 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13689 /* An error? */
13690 continue;
13691
13692 if (last_unwind_type > 0)
13693 {
13694 unsigned int first_word = bfd_get_32 (ibfd, contents);
13695 /* Add cantunwind if first unwind item does not match section
13696 start. */
13697 if (first_word != sec->vma)
13698 {
13699 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13700 last_unwind_type = 0;
13701 }
13702 }
13703
13704 for (j = 0; j < hdr->sh_size; j += 8)
13705 {
13706 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13707 int unwind_type;
13708 int elide = 0;
13709
13710 /* An EXIDX_CANTUNWIND entry. */
13711 if (second_word == 1)
13712 {
13713 if (last_unwind_type == 0)
13714 elide = 1;
13715 unwind_type = 0;
13716 }
13717 /* Inlined unwinding data. Merge if equal to previous. */
13718 else if ((second_word & 0x80000000) != 0)
13719 {
13720 if (merge_exidx_entries
13721 && last_second_word == second_word && last_unwind_type == 1)
13722 elide = 1;
13723 unwind_type = 1;
13724 last_second_word = second_word;
13725 }
13726 /* Normal table entry. In theory we could merge these too,
13727 but duplicate entries are likely to be much less common. */
13728 else
13729 unwind_type = 2;
13730
13731 if (elide && !bfd_link_relocatable (info))
13732 {
13733 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13734 DELETE_EXIDX_ENTRY, NULL, j / 8);
13735
13736 deleted_exidx_bytes += 8;
13737 }
13738
13739 last_unwind_type = unwind_type;
13740 }
13741
13742 /* Free contents if we allocated it ourselves. */
13743 if (contents != hdr->contents)
13744 free (contents);
13745
13746 /* Record edits to be applied later (in elf32_arm_write_section). */
13747 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13748 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13749
13750 if (deleted_exidx_bytes > 0)
13751 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13752
13753 last_exidx_sec = exidx_sec;
13754 last_text_sec = sec;
13755 }
13756
13757 /* Add terminating CANTUNWIND entry. */
13758 if (!bfd_link_relocatable (info) && last_exidx_sec
13759 && last_unwind_type != 0)
13760 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13761
13762 return TRUE;
13763}
13764
13765static bfd_boolean
13766elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13767 bfd *ibfd, const char *name)
13768{
13769 asection *sec, *osec;
13770
13771 sec = bfd_get_linker_section (ibfd, name);
13772 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13773 return TRUE;
13774
13775 osec = sec->output_section;
13776 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13777 return TRUE;
13778
13779 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13780 sec->output_offset, sec->size))
13781 return FALSE;
13782
13783 return TRUE;
13784}
13785
13786static bfd_boolean
13787elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13788{
13789 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13790 asection *sec, *osec;
13791
13792 if (globals == NULL)
13793 return FALSE;
13794
13795 /* Invoke the regular ELF backend linker to do all the work. */
13796 if (!bfd_elf_final_link (abfd, info))
13797 return FALSE;
13798
13799 /* Process stub sections (eg BE8 encoding, ...). */
13800 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13801 unsigned int i;
13802 for (i=0; i<htab->top_id; i++)
13803 {
13804 sec = htab->stub_group[i].stub_sec;
13805 /* Only process it once, in its link_sec slot. */
13806 if (sec && i == htab->stub_group[i].link_sec->id)
13807 {
13808 osec = sec->output_section;
13809 elf32_arm_write_section (abfd, info, sec, sec->contents);
13810 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13811 sec->output_offset, sec->size))
13812 return FALSE;
13813 }
13814 }
13815
13816 /* Write out any glue sections now that we have created all the
13817 stubs. */
13818 if (globals->bfd_of_glue_owner != NULL)
13819 {
13820 if (! elf32_arm_output_glue_section (info, abfd,
13821 globals->bfd_of_glue_owner,
13822 ARM2THUMB_GLUE_SECTION_NAME))
13823 return FALSE;
13824
13825 if (! elf32_arm_output_glue_section (info, abfd,
13826 globals->bfd_of_glue_owner,
13827 THUMB2ARM_GLUE_SECTION_NAME))
13828 return FALSE;
13829
13830 if (! elf32_arm_output_glue_section (info, abfd,
13831 globals->bfd_of_glue_owner,
13832 VFP11_ERRATUM_VENEER_SECTION_NAME))
13833 return FALSE;
13834
13835 if (! elf32_arm_output_glue_section (info, abfd,
13836 globals->bfd_of_glue_owner,
13837 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13838 return FALSE;
13839
13840 if (! elf32_arm_output_glue_section (info, abfd,
13841 globals->bfd_of_glue_owner,
13842 ARM_BX_GLUE_SECTION_NAME))
13843 return FALSE;
13844 }
13845
13846 return TRUE;
13847}
13848
13849/* Return a best guess for the machine number based on the attributes. */
13850
13851static unsigned int
13852bfd_arm_get_mach_from_attributes (bfd * abfd)
13853{
13854 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13855
13856 switch (arch)
13857 {
13858 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13859 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13860 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13861 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13862
13863 case TAG_CPU_ARCH_V5TE:
13864 {
13865 char * name;
13866
13867 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13868 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13869
13870 if (name)
13871 {
13872 if (strcmp (name, "IWMMXT2") == 0)
13873 return bfd_mach_arm_iWMMXt2;
13874
13875 if (strcmp (name, "IWMMXT") == 0)
13876 return bfd_mach_arm_iWMMXt;
13877
13878 if (strcmp (name, "XSCALE") == 0)
13879 {
13880 int wmmx;
13881
13882 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13883 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13884 switch (wmmx)
13885 {
13886 case 1: return bfd_mach_arm_iWMMXt;
13887 case 2: return bfd_mach_arm_iWMMXt2;
13888 default: return bfd_mach_arm_XScale;
13889 }
13890 }
13891 }
13892
13893 return bfd_mach_arm_5TE;
13894 }
13895
13896 case TAG_CPU_ARCH_V5TEJ:
13897 return bfd_mach_arm_5TEJ;
13898 case TAG_CPU_ARCH_V6:
13899 return bfd_mach_arm_6;
13900 case TAG_CPU_ARCH_V6KZ:
13901 return bfd_mach_arm_6KZ;
13902 case TAG_CPU_ARCH_V6T2:
13903 return bfd_mach_arm_6T2;
13904 case TAG_CPU_ARCH_V6K:
13905 return bfd_mach_arm_6K;
13906 case TAG_CPU_ARCH_V7:
13907 return bfd_mach_arm_7;
13908 case TAG_CPU_ARCH_V6_M:
13909 return bfd_mach_arm_6M;
13910 case TAG_CPU_ARCH_V6S_M:
13911 return bfd_mach_arm_6SM;
13912 case TAG_CPU_ARCH_V7E_M:
13913 return bfd_mach_arm_7EM;
13914 case TAG_CPU_ARCH_V8:
13915 return bfd_mach_arm_8;
13916 case TAG_CPU_ARCH_V8R:
13917 return bfd_mach_arm_8R;
13918 case TAG_CPU_ARCH_V8M_BASE:
13919 return bfd_mach_arm_8M_BASE;
13920 case TAG_CPU_ARCH_V8M_MAIN:
13921 return bfd_mach_arm_8M_MAIN;
13922 case TAG_CPU_ARCH_V8_1M_MAIN:
13923 return bfd_mach_arm_8_1M_MAIN;
13924
13925 default:
13926 /* Force entry to be added for any new known Tag_CPU_arch value. */
13927 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13928
13929 /* Unknown Tag_CPU_arch value. */
13930 return bfd_mach_arm_unknown;
13931 }
13932}
13933
13934/* Set the right machine number. */
13935
13936static bfd_boolean
13937elf32_arm_object_p (bfd *abfd)
13938{
13939 unsigned int mach;
13940
13941 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13942
13943 if (mach == bfd_mach_arm_unknown)
13944 {
13945 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13946 mach = bfd_mach_arm_ep9312;
13947 else
13948 mach = bfd_arm_get_mach_from_attributes (abfd);
13949 }
13950
13951 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13952 return TRUE;
13953}
13954
13955/* Function to keep ARM specific flags in the ELF header. */
13956
13957static bfd_boolean
13958elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13959{
13960 if (elf_flags_init (abfd)
13961 && elf_elfheader (abfd)->e_flags != flags)
13962 {
13963 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13964 {
13965 if (flags & EF_ARM_INTERWORK)
13966 _bfd_error_handler
13967 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13968 abfd);
13969 else
13970 _bfd_error_handler
13971 (_("warning: clearing the interworking flag of %pB due to outside request"),
13972 abfd);
13973 }
13974 }
13975 else
13976 {
13977 elf_elfheader (abfd)->e_flags = flags;
13978 elf_flags_init (abfd) = TRUE;
13979 }
13980
13981 return TRUE;
13982}
13983
13984/* Copy backend specific data from one object module to another. */
13985
13986static bfd_boolean
13987elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13988{
13989 flagword in_flags;
13990 flagword out_flags;
13991
13992 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13993 return TRUE;
13994
13995 in_flags = elf_elfheader (ibfd)->e_flags;
13996 out_flags = elf_elfheader (obfd)->e_flags;
13997
13998 if (elf_flags_init (obfd)
13999 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
14000 && in_flags != out_flags)
14001 {
14002 /* Cannot mix APCS26 and APCS32 code. */
14003 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14004 return FALSE;
14005
14006 /* Cannot mix float APCS and non-float APCS code. */
14007 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14008 return FALSE;
14009
14010 /* If the src and dest have different interworking flags
14011 then turn off the interworking bit. */
14012 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14013 {
14014 if (out_flags & EF_ARM_INTERWORK)
14015 _bfd_error_handler
14016 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14017 obfd, ibfd);
14018
14019 in_flags &= ~EF_ARM_INTERWORK;
14020 }
14021
14022 /* Likewise for PIC, though don't warn for this case. */
14023 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14024 in_flags &= ~EF_ARM_PIC;
14025 }
14026
14027 elf_elfheader (obfd)->e_flags = in_flags;
14028 elf_flags_init (obfd) = TRUE;
14029
14030 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14031}
14032
14033/* Values for Tag_ABI_PCS_R9_use. */
14034enum
14035{
14036 AEABI_R9_V6,
14037 AEABI_R9_SB,
14038 AEABI_R9_TLS,
14039 AEABI_R9_unused
14040};
14041
14042/* Values for Tag_ABI_PCS_RW_data. */
14043enum
14044{
14045 AEABI_PCS_RW_data_absolute,
14046 AEABI_PCS_RW_data_PCrel,
14047 AEABI_PCS_RW_data_SBrel,
14048 AEABI_PCS_RW_data_unused
14049};
14050
14051/* Values for Tag_ABI_enum_size. */
14052enum
14053{
14054 AEABI_enum_unused,
14055 AEABI_enum_short,
14056 AEABI_enum_wide,
14057 AEABI_enum_forced_wide
14058};
14059
14060/* Determine whether an object attribute tag takes an integer, a
14061 string or both. */
14062
14063static int
14064elf32_arm_obj_attrs_arg_type (int tag)
14065{
14066 if (tag == Tag_compatibility)
14067 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14068 else if (tag == Tag_nodefaults)
14069 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14070 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14071 return ATTR_TYPE_FLAG_STR_VAL;
14072 else if (tag < 32)
14073 return ATTR_TYPE_FLAG_INT_VAL;
14074 else
14075 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14076}
14077
14078/* The ABI defines that Tag_conformance should be emitted first, and that
14079 Tag_nodefaults should be second (if either is defined). This sets those
14080 two positions, and bumps up the position of all the remaining tags to
14081 compensate. */
14082static int
14083elf32_arm_obj_attrs_order (int num)
14084{
14085 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14086 return Tag_conformance;
14087 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14088 return Tag_nodefaults;
14089 if ((num - 2) < Tag_nodefaults)
14090 return num - 2;
14091 if ((num - 1) < Tag_conformance)
14092 return num - 1;
14093 return num;
14094}
14095
14096/* Attribute numbers >=64 (mod 128) can be safely ignored. */
14097static bfd_boolean
14098elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14099{
14100 if ((tag & 127) < 64)
14101 {
14102 _bfd_error_handler
14103 (_("%pB: unknown mandatory EABI object attribute %d"),
14104 abfd, tag);
14105 bfd_set_error (bfd_error_bad_value);
14106 return FALSE;
14107 }
14108 else
14109 {
14110 _bfd_error_handler
14111 (_("warning: %pB: unknown EABI object attribute %d"),
14112 abfd, tag);
14113 return TRUE;
14114 }
14115}
14116
14117/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14118 Returns -1 if no architecture could be read. */
14119
14120static int
14121get_secondary_compatible_arch (bfd *abfd)
14122{
14123 obj_attribute *attr =
14124 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14125
14126 /* Note: the tag and its argument below are uleb128 values, though
14127 currently-defined values fit in one byte for each. */
14128 if (attr->s
14129 && attr->s[0] == Tag_CPU_arch
14130 && (attr->s[1] & 128) != 128
14131 && attr->s[2] == 0)
14132 return attr->s[1];
14133
14134 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14135 return -1;
14136}
14137
14138/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14139 The tag is removed if ARCH is -1. */
14140
14141static void
14142set_secondary_compatible_arch (bfd *abfd, int arch)
14143{
14144 obj_attribute *attr =
14145 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14146
14147 if (arch == -1)
14148 {
14149 attr->s = NULL;
14150 return;
14151 }
14152
14153 /* Note: the tag and its argument below are uleb128 values, though
14154 currently-defined values fit in one byte for each. */
14155 if (!attr->s)
14156 attr->s = (char *) bfd_alloc (abfd, 3);
14157 attr->s[0] = Tag_CPU_arch;
14158 attr->s[1] = arch;
14159 attr->s[2] = '\0';
14160}
14161
14162/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14163 into account. */
14164
14165static int
14166tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14167 int newtag, int secondary_compat)
14168{
14169#define T(X) TAG_CPU_ARCH_##X
14170 int tagl, tagh, result;
14171 const int v6t2[] =
14172 {
14173 T(V6T2), /* PRE_V4. */
14174 T(V6T2), /* V4. */
14175 T(V6T2), /* V4T. */
14176 T(V6T2), /* V5T. */
14177 T(V6T2), /* V5TE. */
14178 T(V6T2), /* V5TEJ. */
14179 T(V6T2), /* V6. */
14180 T(V7), /* V6KZ. */
14181 T(V6T2) /* V6T2. */
14182 };
14183 const int v6k[] =
14184 {
14185 T(V6K), /* PRE_V4. */
14186 T(V6K), /* V4. */
14187 T(V6K), /* V4T. */
14188 T(V6K), /* V5T. */
14189 T(V6K), /* V5TE. */
14190 T(V6K), /* V5TEJ. */
14191 T(V6K), /* V6. */
14192 T(V6KZ), /* V6KZ. */
14193 T(V7), /* V6T2. */
14194 T(V6K) /* V6K. */
14195 };
14196 const int v7[] =
14197 {
14198 T(V7), /* PRE_V4. */
14199 T(V7), /* V4. */
14200 T(V7), /* V4T. */
14201 T(V7), /* V5T. */
14202 T(V7), /* V5TE. */
14203 T(V7), /* V5TEJ. */
14204 T(V7), /* V6. */
14205 T(V7), /* V6KZ. */
14206 T(V7), /* V6T2. */
14207 T(V7), /* V6K. */
14208 T(V7) /* V7. */
14209 };
14210 const int v6_m[] =
14211 {
14212 -1, /* PRE_V4. */
14213 -1, /* V4. */
14214 T(V6K), /* V4T. */
14215 T(V6K), /* V5T. */
14216 T(V6K), /* V5TE. */
14217 T(V6K), /* V5TEJ. */
14218 T(V6K), /* V6. */
14219 T(V6KZ), /* V6KZ. */
14220 T(V7), /* V6T2. */
14221 T(V6K), /* V6K. */
14222 T(V7), /* V7. */
14223 T(V6_M) /* V6_M. */
14224 };
14225 const int v6s_m[] =
14226 {
14227 -1, /* PRE_V4. */
14228 -1, /* V4. */
14229 T(V6K), /* V4T. */
14230 T(V6K), /* V5T. */
14231 T(V6K), /* V5TE. */
14232 T(V6K), /* V5TEJ. */
14233 T(V6K), /* V6. */
14234 T(V6KZ), /* V6KZ. */
14235 T(V7), /* V6T2. */
14236 T(V6K), /* V6K. */
14237 T(V7), /* V7. */
14238 T(V6S_M), /* V6_M. */
14239 T(V6S_M) /* V6S_M. */
14240 };
14241 const int v7e_m[] =
14242 {
14243 -1, /* PRE_V4. */
14244 -1, /* V4. */
14245 T(V7E_M), /* V4T. */
14246 T(V7E_M), /* V5T. */
14247 T(V7E_M), /* V5TE. */
14248 T(V7E_M), /* V5TEJ. */
14249 T(V7E_M), /* V6. */
14250 T(V7E_M), /* V6KZ. */
14251 T(V7E_M), /* V6T2. */
14252 T(V7E_M), /* V6K. */
14253 T(V7E_M), /* V7. */
14254 T(V7E_M), /* V6_M. */
14255 T(V7E_M), /* V6S_M. */
14256 T(V7E_M) /* V7E_M. */
14257 };
14258 const int v8[] =
14259 {
14260 T(V8), /* PRE_V4. */
14261 T(V8), /* V4. */
14262 T(V8), /* V4T. */
14263 T(V8), /* V5T. */
14264 T(V8), /* V5TE. */
14265 T(V8), /* V5TEJ. */
14266 T(V8), /* V6. */
14267 T(V8), /* V6KZ. */
14268 T(V8), /* V6T2. */
14269 T(V8), /* V6K. */
14270 T(V8), /* V7. */
14271 T(V8), /* V6_M. */
14272 T(V8), /* V6S_M. */
14273 T(V8), /* V7E_M. */
14274 T(V8) /* V8. */
14275 };
14276 const int v8r[] =
14277 {
14278 T(V8R), /* PRE_V4. */
14279 T(V8R), /* V4. */
14280 T(V8R), /* V4T. */
14281 T(V8R), /* V5T. */
14282 T(V8R), /* V5TE. */
14283 T(V8R), /* V5TEJ. */
14284 T(V8R), /* V6. */
14285 T(V8R), /* V6KZ. */
14286 T(V8R), /* V6T2. */
14287 T(V8R), /* V6K. */
14288 T(V8R), /* V7. */
14289 T(V8R), /* V6_M. */
14290 T(V8R), /* V6S_M. */
14291 T(V8R), /* V7E_M. */
14292 T(V8), /* V8. */
14293 T(V8R), /* V8R. */
14294 };
14295 const int v8m_baseline[] =
14296 {
14297 -1, /* PRE_V4. */
14298 -1, /* V4. */
14299 -1, /* V4T. */
14300 -1, /* V5T. */
14301 -1, /* V5TE. */
14302 -1, /* V5TEJ. */
14303 -1, /* V6. */
14304 -1, /* V6KZ. */
14305 -1, /* V6T2. */
14306 -1, /* V6K. */
14307 -1, /* V7. */
14308 T(V8M_BASE), /* V6_M. */
14309 T(V8M_BASE), /* V6S_M. */
14310 -1, /* V7E_M. */
14311 -1, /* V8. */
14312 -1, /* V8R. */
14313 T(V8M_BASE) /* V8-M BASELINE. */
14314 };
14315 const int v8m_mainline[] =
14316 {
14317 -1, /* PRE_V4. */
14318 -1, /* V4. */
14319 -1, /* V4T. */
14320 -1, /* V5T. */
14321 -1, /* V5TE. */
14322 -1, /* V5TEJ. */
14323 -1, /* V6. */
14324 -1, /* V6KZ. */
14325 -1, /* V6T2. */
14326 -1, /* V6K. */
14327 T(V8M_MAIN), /* V7. */
14328 T(V8M_MAIN), /* V6_M. */
14329 T(V8M_MAIN), /* V6S_M. */
14330 T(V8M_MAIN), /* V7E_M. */
14331 -1, /* V8. */
14332 -1, /* V8R. */
14333 T(V8M_MAIN), /* V8-M BASELINE. */
14334 T(V8M_MAIN) /* V8-M MAINLINE. */
14335 };
14336 const int v8_1m_mainline[] =
14337 {
14338 -1, /* PRE_V4. */
14339 -1, /* V4. */
14340 -1, /* V4T. */
14341 -1, /* V5T. */
14342 -1, /* V5TE. */
14343 -1, /* V5TEJ. */
14344 -1, /* V6. */
14345 -1, /* V6KZ. */
14346 -1, /* V6T2. */
14347 -1, /* V6K. */
14348 T(V8_1M_MAIN), /* V7. */
14349 T(V8_1M_MAIN), /* V6_M. */
14350 T(V8_1M_MAIN), /* V6S_M. */
14351 T(V8_1M_MAIN), /* V7E_M. */
14352 -1, /* V8. */
14353 -1, /* V8R. */
14354 T(V8_1M_MAIN), /* V8-M BASELINE. */
14355 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14356 -1, /* Unused (18). */
14357 -1, /* Unused (19). */
14358 -1, /* Unused (20). */
14359 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14360 };
14361 const int v4t_plus_v6_m[] =
14362 {
14363 -1, /* PRE_V4. */
14364 -1, /* V4. */
14365 T(V4T), /* V4T. */
14366 T(V5T), /* V5T. */
14367 T(V5TE), /* V5TE. */
14368 T(V5TEJ), /* V5TEJ. */
14369 T(V6), /* V6. */
14370 T(V6KZ), /* V6KZ. */
14371 T(V6T2), /* V6T2. */
14372 T(V6K), /* V6K. */
14373 T(V7), /* V7. */
14374 T(V6_M), /* V6_M. */
14375 T(V6S_M), /* V6S_M. */
14376 T(V7E_M), /* V7E_M. */
14377 T(V8), /* V8. */
14378 -1, /* V8R. */
14379 T(V8M_BASE), /* V8-M BASELINE. */
14380 T(V8M_MAIN), /* V8-M MAINLINE. */
14381 -1, /* Unused (18). */
14382 -1, /* Unused (19). */
14383 -1, /* Unused (20). */
14384 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14385 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14386 };
14387 const int *comb[] =
14388 {
14389 v6t2,
14390 v6k,
14391 v7,
14392 v6_m,
14393 v6s_m,
14394 v7e_m,
14395 v8,
14396 v8r,
14397 v8m_baseline,
14398 v8m_mainline,
14399 NULL,
14400 NULL,
14401 NULL,
14402 v8_1m_mainline,
14403 /* Pseudo-architecture. */
14404 v4t_plus_v6_m
14405 };
14406
14407 /* Check we've not got a higher architecture than we know about. */
14408
14409 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14410 {
14411 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14412 return -1;
14413 }
14414
14415 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14416
14417 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14418 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14419 oldtag = T(V4T_PLUS_V6_M);
14420
14421 /* And override the new tag if we have a Tag_also_compatible_with on the
14422 input. */
14423
14424 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14425 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14426 newtag = T(V4T_PLUS_V6_M);
14427
14428 tagl = (oldtag < newtag) ? oldtag : newtag;
14429 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14430
14431 /* Architectures before V6KZ add features monotonically. */
14432 if (tagh <= TAG_CPU_ARCH_V6KZ)
14433 return result;
14434
14435 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14436
14437 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14438 as the canonical version. */
14439 if (result == T(V4T_PLUS_V6_M))
14440 {
14441 result = T(V4T);
14442 *secondary_compat_out = T(V6_M);
14443 }
14444 else
14445 *secondary_compat_out = -1;
14446
14447 if (result == -1)
14448 {
14449 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14450 ibfd, oldtag, newtag);
14451 return -1;
14452 }
14453
14454 return result;
14455#undef T
14456}
14457
14458/* Query attributes object to see if integer divide instructions may be
14459 present in an object. */
14460static bfd_boolean
14461elf32_arm_attributes_accept_div (const obj_attribute *attr)
14462{
14463 int arch = attr[Tag_CPU_arch].i;
14464 int profile = attr[Tag_CPU_arch_profile].i;
14465
14466 switch (attr[Tag_DIV_use].i)
14467 {
14468 case 0:
14469 /* Integer divide allowed if instruction contained in archetecture. */
14470 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14471 return TRUE;
14472 else if (arch >= TAG_CPU_ARCH_V7E_M)
14473 return TRUE;
14474 else
14475 return FALSE;
14476
14477 case 1:
14478 /* Integer divide explicitly prohibited. */
14479 return FALSE;
14480
14481 default:
14482 /* Unrecognised case - treat as allowing divide everywhere. */
14483 case 2:
14484 /* Integer divide allowed in ARM state. */
14485 return TRUE;
14486 }
14487}
14488
14489/* Query attributes object to see if integer divide instructions are
14490 forbidden to be in the object. This is not the inverse of
14491 elf32_arm_attributes_accept_div. */
14492static bfd_boolean
14493elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14494{
14495 return attr[Tag_DIV_use].i == 1;
14496}
14497
14498/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14499 are conflicting attributes. */
14500
14501static bfd_boolean
14502elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14503{
14504 bfd *obfd = info->output_bfd;
14505 obj_attribute *in_attr;
14506 obj_attribute *out_attr;
14507 /* Some tags have 0 = don't care, 1 = strong requirement,
14508 2 = weak requirement. */
14509 static const int order_021[3] = {0, 2, 1};
14510 int i;
14511 bfd_boolean result = TRUE;
14512 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14513
14514 /* Skip the linker stubs file. This preserves previous behavior
14515 of accepting unknown attributes in the first input file - but
14516 is that a bug? */
14517 if (ibfd->flags & BFD_LINKER_CREATED)
14518 return TRUE;
14519
14520 /* Skip any input that hasn't attribute section.
14521 This enables to link object files without attribute section with
14522 any others. */
14523 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14524 return TRUE;
14525
14526 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14527 {
14528 /* This is the first object. Copy the attributes. */
14529 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14530
14531 out_attr = elf_known_obj_attributes_proc (obfd);
14532
14533 /* Use the Tag_null value to indicate the attributes have been
14534 initialized. */
14535 out_attr[0].i = 1;
14536
14537 /* We do not output objects with Tag_MPextension_use_legacy - we move
14538 the attribute's value to Tag_MPextension_use. */
14539 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14540 {
14541 if (out_attr[Tag_MPextension_use].i != 0
14542 && out_attr[Tag_MPextension_use_legacy].i
14543 != out_attr[Tag_MPextension_use].i)
14544 {
14545 _bfd_error_handler
14546 (_("Error: %pB has both the current and legacy "
14547 "Tag_MPextension_use attributes"), ibfd);
14548 result = FALSE;
14549 }
14550
14551 out_attr[Tag_MPextension_use] =
14552 out_attr[Tag_MPextension_use_legacy];
14553 out_attr[Tag_MPextension_use_legacy].type = 0;
14554 out_attr[Tag_MPextension_use_legacy].i = 0;
14555 }
14556
14557 return result;
14558 }
14559
14560 in_attr = elf_known_obj_attributes_proc (ibfd);
14561 out_attr = elf_known_obj_attributes_proc (obfd);
14562 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14563 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14564 {
14565 /* Ignore mismatches if the object doesn't use floating point or is
14566 floating point ABI independent. */
14567 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14568 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14569 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14570 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14571 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14572 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14573 {
14574 _bfd_error_handler
14575 (_("error: %pB uses VFP register arguments, %pB does not"),
14576 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14577 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14578 result = FALSE;
14579 }
14580 }
14581
14582 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14583 {
14584 /* Merge this attribute with existing attributes. */
14585 switch (i)
14586 {
14587 case Tag_CPU_raw_name:
14588 case Tag_CPU_name:
14589 /* These are merged after Tag_CPU_arch. */
14590 break;
14591
14592 case Tag_ABI_optimization_goals:
14593 case Tag_ABI_FP_optimization_goals:
14594 /* Use the first value seen. */
14595 break;
14596
14597 case Tag_CPU_arch:
14598 {
14599 int secondary_compat = -1, secondary_compat_out = -1;
14600 unsigned int saved_out_attr = out_attr[i].i;
14601 int arch_attr;
14602 static const char *name_table[] =
14603 {
14604 /* These aren't real CPU names, but we can't guess
14605 that from the architecture version alone. */
14606 "Pre v4",
14607 "ARM v4",
14608 "ARM v4T",
14609 "ARM v5T",
14610 "ARM v5TE",
14611 "ARM v5TEJ",
14612 "ARM v6",
14613 "ARM v6KZ",
14614 "ARM v6T2",
14615 "ARM v6K",
14616 "ARM v7",
14617 "ARM v6-M",
14618 "ARM v6S-M",
14619 "ARM v8",
14620 "",
14621 "ARM v8-M.baseline",
14622 "ARM v8-M.mainline",
14623 };
14624
14625 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14626 secondary_compat = get_secondary_compatible_arch (ibfd);
14627 secondary_compat_out = get_secondary_compatible_arch (obfd);
14628 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14629 &secondary_compat_out,
14630 in_attr[i].i,
14631 secondary_compat);
14632
14633 /* Return with error if failed to merge. */
14634 if (arch_attr == -1)
14635 return FALSE;
14636
14637 out_attr[i].i = arch_attr;
14638
14639 set_secondary_compatible_arch (obfd, secondary_compat_out);
14640
14641 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14642 if (out_attr[i].i == saved_out_attr)
14643 ; /* Leave the names alone. */
14644 else if (out_attr[i].i == in_attr[i].i)
14645 {
14646 /* The output architecture has been changed to match the
14647 input architecture. Use the input names. */
14648 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14649 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14650 : NULL;
14651 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14652 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14653 : NULL;
14654 }
14655 else
14656 {
14657 out_attr[Tag_CPU_name].s = NULL;
14658 out_attr[Tag_CPU_raw_name].s = NULL;
14659 }
14660
14661 /* If we still don't have a value for Tag_CPU_name,
14662 make one up now. Tag_CPU_raw_name remains blank. */
14663 if (out_attr[Tag_CPU_name].s == NULL
14664 && out_attr[i].i < ARRAY_SIZE (name_table))
14665 out_attr[Tag_CPU_name].s =
14666 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14667 }
14668 break;
14669
14670 case Tag_ARM_ISA_use:
14671 case Tag_THUMB_ISA_use:
14672 case Tag_WMMX_arch:
14673 case Tag_Advanced_SIMD_arch:
14674 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14675 case Tag_ABI_FP_rounding:
14676 case Tag_ABI_FP_exceptions:
14677 case Tag_ABI_FP_user_exceptions:
14678 case Tag_ABI_FP_number_model:
14679 case Tag_FP_HP_extension:
14680 case Tag_CPU_unaligned_access:
14681 case Tag_T2EE_use:
14682 case Tag_MPextension_use:
14683 case Tag_MVE_arch:
14684 /* Use the largest value specified. */
14685 if (in_attr[i].i > out_attr[i].i)
14686 out_attr[i].i = in_attr[i].i;
14687 break;
14688
14689 case Tag_ABI_align_preserved:
14690 case Tag_ABI_PCS_RO_data:
14691 /* Use the smallest value specified. */
14692 if (in_attr[i].i < out_attr[i].i)
14693 out_attr[i].i = in_attr[i].i;
14694 break;
14695
14696 case Tag_ABI_align_needed:
14697 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14698 && (in_attr[Tag_ABI_align_preserved].i == 0
14699 || out_attr[Tag_ABI_align_preserved].i == 0))
14700 {
14701 /* This error message should be enabled once all non-conformant
14702 binaries in the toolchain have had the attributes set
14703 properly.
14704 _bfd_error_handler
14705 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14706 obfd, ibfd);
14707 result = FALSE; */
14708 }
14709 /* Fall through. */
14710 case Tag_ABI_FP_denormal:
14711 case Tag_ABI_PCS_GOT_use:
14712 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14713 value if greater than 2 (for future-proofing). */
14714 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14715 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14716 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14717 out_attr[i].i = in_attr[i].i;
14718 break;
14719
14720 case Tag_Virtualization_use:
14721 /* The virtualization tag effectively stores two bits of
14722 information: the intended use of TrustZone (in bit 0), and the
14723 intended use of Virtualization (in bit 1). */
14724 if (out_attr[i].i == 0)
14725 out_attr[i].i = in_attr[i].i;
14726 else if (in_attr[i].i != 0
14727 && in_attr[i].i != out_attr[i].i)
14728 {
14729 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14730 out_attr[i].i = 3;
14731 else
14732 {
14733 _bfd_error_handler
14734 (_("error: %pB: unable to merge virtualization attributes "
14735 "with %pB"),
14736 obfd, ibfd);
14737 result = FALSE;
14738 }
14739 }
14740 break;
14741
14742 case Tag_CPU_arch_profile:
14743 if (out_attr[i].i != in_attr[i].i)
14744 {
14745 /* 0 will merge with anything.
14746 'A' and 'S' merge to 'A'.
14747 'R' and 'S' merge to 'R'.
14748 'M' and 'A|R|S' is an error. */
14749 if (out_attr[i].i == 0
14750 || (out_attr[i].i == 'S'
14751 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14752 out_attr[i].i = in_attr[i].i;
14753 else if (in_attr[i].i == 0
14754 || (in_attr[i].i == 'S'
14755 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14756 ; /* Do nothing. */
14757 else
14758 {
14759 _bfd_error_handler
14760 (_("error: %pB: conflicting architecture profiles %c/%c"),
14761 ibfd,
14762 in_attr[i].i ? in_attr[i].i : '0',
14763 out_attr[i].i ? out_attr[i].i : '0');
14764 result = FALSE;
14765 }
14766 }
14767 break;
14768
14769 case Tag_DSP_extension:
14770 /* No need to change output value if any of:
14771 - pre (<=) ARMv5T input architecture (do not have DSP)
14772 - M input profile not ARMv7E-M and do not have DSP. */
14773 if (in_attr[Tag_CPU_arch].i <= 3
14774 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14775 && in_attr[Tag_CPU_arch].i != 13
14776 && in_attr[i].i == 0))
14777 ; /* Do nothing. */
14778 /* Output value should be 0 if DSP part of architecture, ie.
14779 - post (>=) ARMv5te architecture output
14780 - A, R or S profile output or ARMv7E-M output architecture. */
14781 else if (out_attr[Tag_CPU_arch].i >= 4
14782 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14783 || out_attr[Tag_CPU_arch_profile].i == 'R'
14784 || out_attr[Tag_CPU_arch_profile].i == 'S'
14785 || out_attr[Tag_CPU_arch].i == 13))
14786 out_attr[i].i = 0;
14787 /* Otherwise, DSP instructions are added and not part of output
14788 architecture. */
14789 else
14790 out_attr[i].i = 1;
14791 break;
14792
14793 case Tag_FP_arch:
14794 {
14795 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14796 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14797 when it's 0. It might mean absence of FP hardware if
14798 Tag_FP_arch is zero. */
14799
14800#define VFP_VERSION_COUNT 9
14801 static const struct
14802 {
14803 int ver;
14804 int regs;
14805 } vfp_versions[VFP_VERSION_COUNT] =
14806 {
14807 {0, 0},
14808 {1, 16},
14809 {2, 16},
14810 {3, 32},
14811 {3, 16},
14812 {4, 32},
14813 {4, 16},
14814 {8, 32},
14815 {8, 16}
14816 };
14817 int ver;
14818 int regs;
14819 int newval;
14820
14821 /* If the output has no requirement about FP hardware,
14822 follow the requirement of the input. */
14823 if (out_attr[i].i == 0)
14824 {
14825 /* This assert is still reasonable, we shouldn't
14826 produce the suspicious build attribute
14827 combination (See below for in_attr). */
14828 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14829 out_attr[i].i = in_attr[i].i;
14830 out_attr[Tag_ABI_HardFP_use].i
14831 = in_attr[Tag_ABI_HardFP_use].i;
14832 break;
14833 }
14834 /* If the input has no requirement about FP hardware, do
14835 nothing. */
14836 else if (in_attr[i].i == 0)
14837 {
14838 /* We used to assert that Tag_ABI_HardFP_use was
14839 zero here, but we should never assert when
14840 consuming an object file that has suspicious
14841 build attributes. The single precision variant
14842 of 'no FP architecture' is still 'no FP
14843 architecture', so we just ignore the tag in this
14844 case. */
14845 break;
14846 }
14847
14848 /* Both the input and the output have nonzero Tag_FP_arch.
14849 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14850
14851 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14852 do nothing. */
14853 if (in_attr[Tag_ABI_HardFP_use].i == 0
14854 && out_attr[Tag_ABI_HardFP_use].i == 0)
14855 ;
14856 /* If the input and the output have different Tag_ABI_HardFP_use,
14857 the combination of them is 0 (implied by Tag_FP_arch). */
14858 else if (in_attr[Tag_ABI_HardFP_use].i
14859 != out_attr[Tag_ABI_HardFP_use].i)
14860 out_attr[Tag_ABI_HardFP_use].i = 0;
14861
14862 /* Now we can handle Tag_FP_arch. */
14863
14864 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14865 pick the biggest. */
14866 if (in_attr[i].i >= VFP_VERSION_COUNT
14867 && in_attr[i].i > out_attr[i].i)
14868 {
14869 out_attr[i] = in_attr[i];
14870 break;
14871 }
14872 /* The output uses the superset of input features
14873 (ISA version) and registers. */
14874 ver = vfp_versions[in_attr[i].i].ver;
14875 if (ver < vfp_versions[out_attr[i].i].ver)
14876 ver = vfp_versions[out_attr[i].i].ver;
14877 regs = vfp_versions[in_attr[i].i].regs;
14878 if (regs < vfp_versions[out_attr[i].i].regs)
14879 regs = vfp_versions[out_attr[i].i].regs;
14880 /* This assumes all possible supersets are also a valid
14881 options. */
14882 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14883 {
14884 if (regs == vfp_versions[newval].regs
14885 && ver == vfp_versions[newval].ver)
14886 break;
14887 }
14888 out_attr[i].i = newval;
14889 }
14890 break;
14891 case Tag_PCS_config:
14892 if (out_attr[i].i == 0)
14893 out_attr[i].i = in_attr[i].i;
14894 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14895 {
14896 /* It's sometimes ok to mix different configs, so this is only
14897 a warning. */
14898 _bfd_error_handler
14899 (_("warning: %pB: conflicting platform configuration"), ibfd);
14900 }
14901 break;
14902 case Tag_ABI_PCS_R9_use:
14903 if (in_attr[i].i != out_attr[i].i
14904 && out_attr[i].i != AEABI_R9_unused
14905 && in_attr[i].i != AEABI_R9_unused)
14906 {
14907 _bfd_error_handler
14908 (_("error: %pB: conflicting use of R9"), ibfd);
14909 result = FALSE;
14910 }
14911 if (out_attr[i].i == AEABI_R9_unused)
14912 out_attr[i].i = in_attr[i].i;
14913 break;
14914 case Tag_ABI_PCS_RW_data:
14915 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14916 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14917 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14918 {
14919 _bfd_error_handler
14920 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14921 ibfd);
14922 result = FALSE;
14923 }
14924 /* Use the smallest value specified. */
14925 if (in_attr[i].i < out_attr[i].i)
14926 out_attr[i].i = in_attr[i].i;
14927 break;
14928 case Tag_ABI_PCS_wchar_t:
14929 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14930 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14931 {
14932 _bfd_error_handler
14933 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14934 ibfd, in_attr[i].i, out_attr[i].i);
14935 }
14936 else if (in_attr[i].i && !out_attr[i].i)
14937 out_attr[i].i = in_attr[i].i;
14938 break;
14939 case Tag_ABI_enum_size:
14940 if (in_attr[i].i != AEABI_enum_unused)
14941 {
14942 if (out_attr[i].i == AEABI_enum_unused
14943 || out_attr[i].i == AEABI_enum_forced_wide)
14944 {
14945 /* The existing object is compatible with anything.
14946 Use whatever requirements the new object has. */
14947 out_attr[i].i = in_attr[i].i;
14948 }
14949 else if (in_attr[i].i != AEABI_enum_forced_wide
14950 && out_attr[i].i != in_attr[i].i
14951 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14952 {
14953 static const char *aeabi_enum_names[] =
14954 { "", "variable-size", "32-bit", "" };
14955 const char *in_name =
14956 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14957 ? aeabi_enum_names[in_attr[i].i]
14958 : "<unknown>";
14959 const char *out_name =
14960 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14961 ? aeabi_enum_names[out_attr[i].i]
14962 : "<unknown>";
14963 _bfd_error_handler
14964 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14965 ibfd, in_name, out_name);
14966 }
14967 }
14968 break;
14969 case Tag_ABI_VFP_args:
14970 /* Aready done. */
14971 break;
14972 case Tag_ABI_WMMX_args:
14973 if (in_attr[i].i != out_attr[i].i)
14974 {
14975 _bfd_error_handler
14976 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14977 ibfd, obfd);
14978 result = FALSE;
14979 }
14980 break;
14981 case Tag_compatibility:
14982 /* Merged in target-independent code. */
14983 break;
14984 case Tag_ABI_HardFP_use:
14985 /* This is handled along with Tag_FP_arch. */
14986 break;
14987 case Tag_ABI_FP_16bit_format:
14988 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14989 {
14990 if (in_attr[i].i != out_attr[i].i)
14991 {
14992 _bfd_error_handler
14993 (_("error: fp16 format mismatch between %pB and %pB"),
14994 ibfd, obfd);
14995 result = FALSE;
14996 }
14997 }
14998 if (in_attr[i].i != 0)
14999 out_attr[i].i = in_attr[i].i;
15000 break;
15001
15002 case Tag_DIV_use:
15003 /* A value of zero on input means that the divide instruction may
15004 be used if available in the base architecture as specified via
15005 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15006 the user did not want divide instructions. A value of 2
15007 explicitly means that divide instructions were allowed in ARM
15008 and Thumb state. */
15009 if (in_attr[i].i == out_attr[i].i)
15010 /* Do nothing. */ ;
15011 else if (elf32_arm_attributes_forbid_div (in_attr)
15012 && !elf32_arm_attributes_accept_div (out_attr))
15013 out_attr[i].i = 1;
15014 else if (elf32_arm_attributes_forbid_div (out_attr)
15015 && elf32_arm_attributes_accept_div (in_attr))
15016 out_attr[i].i = in_attr[i].i;
15017 else if (in_attr[i].i == 2)
15018 out_attr[i].i = in_attr[i].i;
15019 break;
15020
15021 case Tag_MPextension_use_legacy:
15022 /* We don't output objects with Tag_MPextension_use_legacy - we
15023 move the value to Tag_MPextension_use. */
15024 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15025 {
15026 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15027 {
15028 _bfd_error_handler
15029 (_("%pB has both the current and legacy "
15030 "Tag_MPextension_use attributes"),
15031 ibfd);
15032 result = FALSE;
15033 }
15034 }
15035
15036 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15037 out_attr[Tag_MPextension_use] = in_attr[i];
15038
15039 break;
15040
15041 case Tag_nodefaults:
15042 /* This tag is set if it exists, but the value is unused (and is
15043 typically zero). We don't actually need to do anything here -
15044 the merge happens automatically when the type flags are merged
15045 below. */
15046 break;
15047 case Tag_also_compatible_with:
15048 /* Already done in Tag_CPU_arch. */
15049 break;
15050 case Tag_conformance:
15051 /* Keep the attribute if it matches. Throw it away otherwise.
15052 No attribute means no claim to conform. */
15053 if (!in_attr[i].s || !out_attr[i].s
15054 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15055 out_attr[i].s = NULL;
15056 break;
15057
15058 default:
15059 result
15060 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15061 }
15062
15063 /* If out_attr was copied from in_attr then it won't have a type yet. */
15064 if (in_attr[i].type && !out_attr[i].type)
15065 out_attr[i].type = in_attr[i].type;
15066 }
15067
15068 /* Merge Tag_compatibility attributes and any common GNU ones. */
15069 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15070 return FALSE;
15071
15072 /* Check for any attributes not known on ARM. */
15073 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15074
15075 return result;
15076}
15077
15078
15079/* Return TRUE if the two EABI versions are incompatible. */
15080
15081static bfd_boolean
15082elf32_arm_versions_compatible (unsigned iver, unsigned over)
15083{
15084 /* v4 and v5 are the same spec before and after it was released,
15085 so allow mixing them. */
15086 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15087 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15088 return TRUE;
15089
15090 return (iver == over);
15091}
15092
15093/* Merge backend specific data from an object file to the output
15094 object file when linking. */
15095
15096static bfd_boolean
15097elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15098
15099/* Display the flags field. */
15100
15101static bfd_boolean
15102elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15103{
15104 FILE * file = (FILE *) ptr;
15105 unsigned long flags;
15106
15107 BFD_ASSERT (abfd != NULL && ptr != NULL);
15108
15109 /* Print normal ELF private data. */
15110 _bfd_elf_print_private_bfd_data (abfd, ptr);
15111
15112 flags = elf_elfheader (abfd)->e_flags;
15113 /* Ignore init flag - it may not be set, despite the flags field
15114 containing valid data. */
15115
15116 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15117
15118 switch (EF_ARM_EABI_VERSION (flags))
15119 {
15120 case EF_ARM_EABI_UNKNOWN:
15121 /* The following flag bits are GNU extensions and not part of the
15122 official ARM ELF extended ABI. Hence they are only decoded if
15123 the EABI version is not set. */
15124 if (flags & EF_ARM_INTERWORK)
15125 fprintf (file, _(" [interworking enabled]"));
15126
15127 if (flags & EF_ARM_APCS_26)
15128 fprintf (file, " [APCS-26]");
15129 else
15130 fprintf (file, " [APCS-32]");
15131
15132 if (flags & EF_ARM_VFP_FLOAT)
15133 fprintf (file, _(" [VFP float format]"));
15134 else if (flags & EF_ARM_MAVERICK_FLOAT)
15135 fprintf (file, _(" [Maverick float format]"));
15136 else
15137 fprintf (file, _(" [FPA float format]"));
15138
15139 if (flags & EF_ARM_APCS_FLOAT)
15140 fprintf (file, _(" [floats passed in float registers]"));
15141
15142 if (flags & EF_ARM_PIC)
15143 fprintf (file, _(" [position independent]"));
15144
15145 if (flags & EF_ARM_NEW_ABI)
15146 fprintf (file, _(" [new ABI]"));
15147
15148 if (flags & EF_ARM_OLD_ABI)
15149 fprintf (file, _(" [old ABI]"));
15150
15151 if (flags & EF_ARM_SOFT_FLOAT)
15152 fprintf (file, _(" [software FP]"));
15153
15154 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15155 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15156 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15157 | EF_ARM_MAVERICK_FLOAT);
15158 break;
15159
15160 case EF_ARM_EABI_VER1:
15161 fprintf (file, _(" [Version1 EABI]"));
15162
15163 if (flags & EF_ARM_SYMSARESORTED)
15164 fprintf (file, _(" [sorted symbol table]"));
15165 else
15166 fprintf (file, _(" [unsorted symbol table]"));
15167
15168 flags &= ~ EF_ARM_SYMSARESORTED;
15169 break;
15170
15171 case EF_ARM_EABI_VER2:
15172 fprintf (file, _(" [Version2 EABI]"));
15173
15174 if (flags & EF_ARM_SYMSARESORTED)
15175 fprintf (file, _(" [sorted symbol table]"));
15176 else
15177 fprintf (file, _(" [unsorted symbol table]"));
15178
15179 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15180 fprintf (file, _(" [dynamic symbols use segment index]"));
15181
15182 if (flags & EF_ARM_MAPSYMSFIRST)
15183 fprintf (file, _(" [mapping symbols precede others]"));
15184
15185 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15186 | EF_ARM_MAPSYMSFIRST);
15187 break;
15188
15189 case EF_ARM_EABI_VER3:
15190 fprintf (file, _(" [Version3 EABI]"));
15191 break;
15192
15193 case EF_ARM_EABI_VER4:
15194 fprintf (file, _(" [Version4 EABI]"));
15195 goto eabi;
15196
15197 case EF_ARM_EABI_VER5:
15198 fprintf (file, _(" [Version5 EABI]"));
15199
15200 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15201 fprintf (file, _(" [soft-float ABI]"));
15202
15203 if (flags & EF_ARM_ABI_FLOAT_HARD)
15204 fprintf (file, _(" [hard-float ABI]"));
15205
15206 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15207
15208 eabi:
15209 if (flags & EF_ARM_BE8)
15210 fprintf (file, _(" [BE8]"));
15211
15212 if (flags & EF_ARM_LE8)
15213 fprintf (file, _(" [LE8]"));
15214
15215 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15216 break;
15217
15218 default:
15219 fprintf (file, _(" <EABI version unrecognised>"));
15220 break;
15221 }
15222
15223 flags &= ~ EF_ARM_EABIMASK;
15224
15225 if (flags & EF_ARM_RELEXEC)
15226 fprintf (file, _(" [relocatable executable]"));
15227
15228 if (flags & EF_ARM_PIC)
15229 fprintf (file, _(" [position independent]"));
15230
15231 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15232 fprintf (file, _(" [FDPIC ABI supplement]"));
15233
15234 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15235
15236 if (flags)
15237 fprintf (file, _("<Unrecognised flag bits set>"));
15238
15239 fputc ('\n', file);
15240
15241 return TRUE;
15242}
15243
15244static int
15245elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15246{
15247 switch (ELF_ST_TYPE (elf_sym->st_info))
15248 {
15249 case STT_ARM_TFUNC:
15250 return ELF_ST_TYPE (elf_sym->st_info);
15251
15252 case STT_ARM_16BIT:
15253 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15254 This allows us to distinguish between data used by Thumb instructions
15255 and non-data (which is probably code) inside Thumb regions of an
15256 executable. */
15257 if (type != STT_OBJECT && type != STT_TLS)
15258 return ELF_ST_TYPE (elf_sym->st_info);
15259 break;
15260
15261 default:
15262 break;
15263 }
15264
15265 return type;
15266}
15267
15268static asection *
15269elf32_arm_gc_mark_hook (asection *sec,
15270 struct bfd_link_info *info,
15271 Elf_Internal_Rela *rel,
15272 struct elf_link_hash_entry *h,
15273 Elf_Internal_Sym *sym)
15274{
15275 if (h != NULL)
15276 switch (ELF32_R_TYPE (rel->r_info))
15277 {
15278 case R_ARM_GNU_VTINHERIT:
15279 case R_ARM_GNU_VTENTRY:
15280 return NULL;
15281 }
15282
15283 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15284}
15285
15286/* Look through the relocs for a section during the first phase. */
15287
15288static bfd_boolean
15289elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15290 asection *sec, const Elf_Internal_Rela *relocs)
15291{
15292 Elf_Internal_Shdr *symtab_hdr;
15293 struct elf_link_hash_entry **sym_hashes;
15294 const Elf_Internal_Rela *rel;
15295 const Elf_Internal_Rela *rel_end;
15296 bfd *dynobj;
15297 asection *sreloc;
15298 struct elf32_arm_link_hash_table *htab;
15299 bfd_boolean call_reloc_p;
15300 bfd_boolean may_become_dynamic_p;
15301 bfd_boolean may_need_local_target_p;
15302 unsigned long nsyms;
15303
15304 if (bfd_link_relocatable (info))
15305 return TRUE;
15306
15307 BFD_ASSERT (is_arm_elf (abfd));
15308
15309 htab = elf32_arm_hash_table (info);
15310 if (htab == NULL)
15311 return FALSE;
15312
15313 sreloc = NULL;
15314
15315 /* Create dynamic sections for relocatable executables so that we can
15316 copy relocations. */
15317 if (htab->root.is_relocatable_executable
15318 && ! htab->root.dynamic_sections_created)
15319 {
15320 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15321 return FALSE;
15322 }
15323
15324 if (htab->root.dynobj == NULL)
15325 htab->root.dynobj = abfd;
15326 if (!create_ifunc_sections (info))
15327 return FALSE;
15328
15329 dynobj = htab->root.dynobj;
15330
15331 symtab_hdr = & elf_symtab_hdr (abfd);
15332 sym_hashes = elf_sym_hashes (abfd);
15333 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15334
15335 rel_end = relocs + sec->reloc_count;
15336 for (rel = relocs; rel < rel_end; rel++)
15337 {
15338 Elf_Internal_Sym *isym;
15339 struct elf_link_hash_entry *h;
15340 struct elf32_arm_link_hash_entry *eh;
15341 unsigned int r_symndx;
15342 int r_type;
15343
15344 r_symndx = ELF32_R_SYM (rel->r_info);
15345 r_type = ELF32_R_TYPE (rel->r_info);
15346 r_type = arm_real_reloc_type (htab, r_type);
15347
15348 if (r_symndx >= nsyms
15349 /* PR 9934: It is possible to have relocations that do not
15350 refer to symbols, thus it is also possible to have an
15351 object file containing relocations but no symbol table. */
15352 && (r_symndx > STN_UNDEF || nsyms > 0))
15353 {
15354 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15355 r_symndx);
15356 return FALSE;
15357 }
15358
15359 h = NULL;
15360 isym = NULL;
15361 if (nsyms > 0)
15362 {
15363 if (r_symndx < symtab_hdr->sh_info)
15364 {
15365 /* A local symbol. */
15366 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15367 abfd, r_symndx);
15368 if (isym == NULL)
15369 return FALSE;
15370 }
15371 else
15372 {
15373 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15374 while (h->root.type == bfd_link_hash_indirect
15375 || h->root.type == bfd_link_hash_warning)
15376 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15377 }
15378 }
15379
15380 eh = (struct elf32_arm_link_hash_entry *) h;
15381
15382 call_reloc_p = FALSE;
15383 may_become_dynamic_p = FALSE;
15384 may_need_local_target_p = FALSE;
15385
15386 /* Could be done earlier, if h were already available. */
15387 r_type = elf32_arm_tls_transition (info, r_type, h);
15388 switch (r_type)
15389 {
15390 case R_ARM_GOTOFFFUNCDESC:
15391 {
15392 if (h == NULL)
15393 {
15394 if (!elf32_arm_allocate_local_sym_info (abfd))
15395 return FALSE;
15396 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15397 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15398 }
15399 else
15400 {
15401 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15402 }
15403 }
15404 break;
15405
15406 case R_ARM_GOTFUNCDESC:
15407 {
15408 if (h == NULL)
15409 {
15410 /* Such a relocation is not supposed to be generated
15411 by gcc on a static function. */
15412 /* Anyway if needed it could be handled. */
15413 abort();
15414 }
15415 else
15416 {
15417 eh->fdpic_cnts.gotfuncdesc_cnt++;
15418 }
15419 }
15420 break;
15421
15422 case R_ARM_FUNCDESC:
15423 {
15424 if (h == NULL)
15425 {
15426 if (!elf32_arm_allocate_local_sym_info (abfd))
15427 return FALSE;
15428 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15429 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15430 }
15431 else
15432 {
15433 eh->fdpic_cnts.funcdesc_cnt++;
15434 }
15435 }
15436 break;
15437
15438 case R_ARM_GOT32:
15439 case R_ARM_GOT_PREL:
15440 case R_ARM_TLS_GD32:
15441 case R_ARM_TLS_GD32_FDPIC:
15442 case R_ARM_TLS_IE32:
15443 case R_ARM_TLS_IE32_FDPIC:
15444 case R_ARM_TLS_GOTDESC:
15445 case R_ARM_TLS_DESCSEQ:
15446 case R_ARM_THM_TLS_DESCSEQ:
15447 case R_ARM_TLS_CALL:
15448 case R_ARM_THM_TLS_CALL:
15449 /* This symbol requires a global offset table entry. */
15450 {
15451 int tls_type, old_tls_type;
15452
15453 switch (r_type)
15454 {
15455 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15456 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15457
15458 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15459 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15460
15461 case R_ARM_TLS_GOTDESC:
15462 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15463 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15464 tls_type = GOT_TLS_GDESC; break;
15465
15466 default: tls_type = GOT_NORMAL; break;
15467 }
15468
15469 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15470 info->flags |= DF_STATIC_TLS;
15471
15472 if (h != NULL)
15473 {
15474 h->got.refcount++;
15475 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15476 }
15477 else
15478 {
15479 /* This is a global offset table entry for a local symbol. */
15480 if (!elf32_arm_allocate_local_sym_info (abfd))
15481 return FALSE;
15482 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15483 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15484 }
15485
15486 /* If a variable is accessed with both tls methods, two
15487 slots may be created. */
15488 if (GOT_TLS_GD_ANY_P (old_tls_type)
15489 && GOT_TLS_GD_ANY_P (tls_type))
15490 tls_type |= old_tls_type;
15491
15492 /* We will already have issued an error message if there
15493 is a TLS/non-TLS mismatch, based on the symbol
15494 type. So just combine any TLS types needed. */
15495 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15496 && tls_type != GOT_NORMAL)
15497 tls_type |= old_tls_type;
15498
15499 /* If the symbol is accessed in both IE and GDESC
15500 method, we're able to relax. Turn off the GDESC flag,
15501 without messing up with any other kind of tls types
15502 that may be involved. */
15503 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15504 tls_type &= ~GOT_TLS_GDESC;
15505
15506 if (old_tls_type != tls_type)
15507 {
15508 if (h != NULL)
15509 elf32_arm_hash_entry (h)->tls_type = tls_type;
15510 else
15511 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15512 }
15513 }
15514 /* Fall through. */
15515
15516 case R_ARM_TLS_LDM32:
15517 case R_ARM_TLS_LDM32_FDPIC:
15518 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15519 htab->tls_ldm_got.refcount++;
15520 /* Fall through. */
15521
15522 case R_ARM_GOTOFF32:
15523 case R_ARM_GOTPC:
15524 if (htab->root.sgot == NULL
15525 && !create_got_section (htab->root.dynobj, info))
15526 return FALSE;
15527 break;
15528
15529 case R_ARM_PC24:
15530 case R_ARM_PLT32:
15531 case R_ARM_CALL:
15532 case R_ARM_JUMP24:
15533 case R_ARM_PREL31:
15534 case R_ARM_THM_CALL:
15535 case R_ARM_THM_JUMP24:
15536 case R_ARM_THM_JUMP19:
15537 call_reloc_p = TRUE;
15538 may_need_local_target_p = TRUE;
15539 break;
15540
15541 case R_ARM_ABS12:
15542 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15543 ldr __GOTT_INDEX__ offsets. */
15544 if (!htab->vxworks_p)
15545 {
15546 may_need_local_target_p = TRUE;
15547 break;
15548 }
15549 else goto jump_over;
15550
15551 /* Fall through. */
15552
15553 case R_ARM_MOVW_ABS_NC:
15554 case R_ARM_MOVT_ABS:
15555 case R_ARM_THM_MOVW_ABS_NC:
15556 case R_ARM_THM_MOVT_ABS:
15557 if (bfd_link_pic (info))
15558 {
15559 _bfd_error_handler
15560 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15561 abfd, elf32_arm_howto_table_1[r_type].name,
15562 (h) ? h->root.root.string : "a local symbol");
15563 bfd_set_error (bfd_error_bad_value);
15564 return FALSE;
15565 }
15566
15567 /* Fall through. */
15568 case R_ARM_ABS32:
15569 case R_ARM_ABS32_NOI:
15570 jump_over:
15571 if (h != NULL && bfd_link_executable (info))
15572 {
15573 h->pointer_equality_needed = 1;
15574 }
15575 /* Fall through. */
15576 case R_ARM_REL32:
15577 case R_ARM_REL32_NOI:
15578 case R_ARM_MOVW_PREL_NC:
15579 case R_ARM_MOVT_PREL:
15580 case R_ARM_THM_MOVW_PREL_NC:
15581 case R_ARM_THM_MOVT_PREL:
15582
15583 /* Should the interworking branches be listed here? */
15584 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15585 || htab->fdpic_p)
15586 && (sec->flags & SEC_ALLOC) != 0)
15587 {
15588 if (h == NULL
15589 && elf32_arm_howto_from_type (r_type)->pc_relative)
15590 {
15591 /* In shared libraries and relocatable executables,
15592 we treat local relative references as calls;
15593 see the related SYMBOL_CALLS_LOCAL code in
15594 allocate_dynrelocs. */
15595 call_reloc_p = TRUE;
15596 may_need_local_target_p = TRUE;
15597 }
15598 else
15599 /* We are creating a shared library or relocatable
15600 executable, and this is a reloc against a global symbol,
15601 or a non-PC-relative reloc against a local symbol.
15602 We may need to copy the reloc into the output. */
15603 may_become_dynamic_p = TRUE;
15604 }
15605 else
15606 may_need_local_target_p = TRUE;
15607 break;
15608
15609 /* This relocation describes the C++ object vtable hierarchy.
15610 Reconstruct it for later use during GC. */
15611 case R_ARM_GNU_VTINHERIT:
15612 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15613 return FALSE;
15614 break;
15615
15616 /* This relocation describes which C++ vtable entries are actually
15617 used. Record for later use during GC. */
15618 case R_ARM_GNU_VTENTRY:
15619 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15620 return FALSE;
15621 break;
15622 }
15623
15624 if (h != NULL)
15625 {
15626 if (call_reloc_p)
15627 /* We may need a .plt entry if the function this reloc
15628 refers to is in a different object, regardless of the
15629 symbol's type. We can't tell for sure yet, because
15630 something later might force the symbol local. */
15631 h->needs_plt = 1;
15632 else if (may_need_local_target_p)
15633 /* If this reloc is in a read-only section, we might
15634 need a copy reloc. We can't check reliably at this
15635 stage whether the section is read-only, as input
15636 sections have not yet been mapped to output sections.
15637 Tentatively set the flag for now, and correct in
15638 adjust_dynamic_symbol. */
15639 h->non_got_ref = 1;
15640 }
15641
15642 if (may_need_local_target_p
15643 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15644 {
15645 union gotplt_union *root_plt;
15646 struct arm_plt_info *arm_plt;
15647 struct arm_local_iplt_info *local_iplt;
15648
15649 if (h != NULL)
15650 {
15651 root_plt = &h->plt;
15652 arm_plt = &eh->plt;
15653 }
15654 else
15655 {
15656 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15657 if (local_iplt == NULL)
15658 return FALSE;
15659 root_plt = &local_iplt->root;
15660 arm_plt = &local_iplt->arm;
15661 }
15662
15663 /* If the symbol is a function that doesn't bind locally,
15664 this relocation will need a PLT entry. */
15665 if (root_plt->refcount != -1)
15666 root_plt->refcount += 1;
15667
15668 if (!call_reloc_p)
15669 arm_plt->noncall_refcount++;
15670
15671 /* It's too early to use htab->use_blx here, so we have to
15672 record possible blx references separately from
15673 relocs that definitely need a thumb stub. */
15674
15675 if (r_type == R_ARM_THM_CALL)
15676 arm_plt->maybe_thumb_refcount += 1;
15677
15678 if (r_type == R_ARM_THM_JUMP24
15679 || r_type == R_ARM_THM_JUMP19)
15680 arm_plt->thumb_refcount += 1;
15681 }
15682
15683 if (may_become_dynamic_p)
15684 {
15685 struct elf_dyn_relocs *p, **head;
15686
15687 /* Create a reloc section in dynobj. */
15688 if (sreloc == NULL)
15689 {
15690 sreloc = _bfd_elf_make_dynamic_reloc_section
15691 (sec, dynobj, 2, abfd, ! htab->use_rel);
15692
15693 if (sreloc == NULL)
15694 return FALSE;
15695
15696 /* BPABI objects never have dynamic relocations mapped. */
15697 if (htab->symbian_p)
15698 {
15699 flagword flags;
15700
15701 flags = bfd_get_section_flags (dynobj, sreloc);
15702 flags &= ~(SEC_LOAD | SEC_ALLOC);
15703 bfd_set_section_flags (dynobj, sreloc, flags);
15704 }
15705 }
15706
15707 /* If this is a global symbol, count the number of
15708 relocations we need for this symbol. */
15709 if (h != NULL)
15710 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15711 else
15712 {
15713 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15714 if (head == NULL)
15715 return FALSE;
15716 }
15717
15718 p = *head;
15719 if (p == NULL || p->sec != sec)
15720 {
15721 bfd_size_type amt = sizeof *p;
15722
15723 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15724 if (p == NULL)
15725 return FALSE;
15726 p->next = *head;
15727 *head = p;
15728 p->sec = sec;
15729 p->count = 0;
15730 p->pc_count = 0;
15731 }
15732
15733 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15734 p->pc_count += 1;
15735 p->count += 1;
15736 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15737 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15738 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15739 that will become rofixup. */
15740 /* This is due to the fact that we suppose all will become rofixup. */
15741 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15742 _bfd_error_handler
15743 (_("FDPIC does not yet support %s relocation"
15744 " to become dynamic for executable"),
15745 elf32_arm_howto_table_1[r_type].name);
15746 abort();
15747 }
15748 }
15749 }
15750
15751 return TRUE;
15752}
15753
15754static void
15755elf32_arm_update_relocs (asection *o,
15756 struct bfd_elf_section_reloc_data *reldata)
15757{
15758 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15759 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15760 const struct elf_backend_data *bed;
15761 _arm_elf_section_data *eado;
15762 struct bfd_link_order *p;
15763 bfd_byte *erela_head, *erela;
15764 Elf_Internal_Rela *irela_head, *irela;
15765 Elf_Internal_Shdr *rel_hdr;
15766 bfd *abfd;
15767 unsigned int count;
15768
15769 eado = get_arm_elf_section_data (o);
15770
15771 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15772 return;
15773
15774 abfd = o->owner;
15775 bed = get_elf_backend_data (abfd);
15776 rel_hdr = reldata->hdr;
15777
15778 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15779 {
15780 swap_in = bed->s->swap_reloc_in;
15781 swap_out = bed->s->swap_reloc_out;
15782 }
15783 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15784 {
15785 swap_in = bed->s->swap_reloca_in;
15786 swap_out = bed->s->swap_reloca_out;
15787 }
15788 else
15789 abort ();
15790
15791 erela_head = rel_hdr->contents;
15792 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15793 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15794
15795 erela = erela_head;
15796 irela = irela_head;
15797 count = 0;
15798
15799 for (p = o->map_head.link_order; p; p = p->next)
15800 {
15801 if (p->type == bfd_section_reloc_link_order
15802 || p->type == bfd_symbol_reloc_link_order)
15803 {
15804 (*swap_in) (abfd, erela, irela);
15805 erela += rel_hdr->sh_entsize;
15806 irela++;
15807 count++;
15808 }
15809 else if (p->type == bfd_indirect_link_order)
15810 {
15811 struct bfd_elf_section_reloc_data *input_reldata;
15812 arm_unwind_table_edit *edit_list, *edit_tail;
15813 _arm_elf_section_data *eadi;
15814 bfd_size_type j;
15815 bfd_vma offset;
15816 asection *i;
15817
15818 i = p->u.indirect.section;
15819
15820 eadi = get_arm_elf_section_data (i);
15821 edit_list = eadi->u.exidx.unwind_edit_list;
15822 edit_tail = eadi->u.exidx.unwind_edit_tail;
15823 offset = i->output_offset;
15824
15825 if (eadi->elf.rel.hdr &&
15826 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15827 input_reldata = &eadi->elf.rel;
15828 else if (eadi->elf.rela.hdr &&
15829 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15830 input_reldata = &eadi->elf.rela;
15831 else
15832 abort ();
15833
15834 if (edit_list)
15835 {
15836 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15837 {
15838 arm_unwind_table_edit *edit_node, *edit_next;
15839 bfd_vma bias;
15840 bfd_vma reloc_index;
15841
15842 (*swap_in) (abfd, erela, irela);
15843 reloc_index = (irela->r_offset - offset) / 8;
15844
15845 bias = 0;
15846 edit_node = edit_list;
15847 for (edit_next = edit_list;
15848 edit_next && edit_next->index <= reloc_index;
15849 edit_next = edit_node->next)
15850 {
15851 bias++;
15852 edit_node = edit_next;
15853 }
15854
15855 if (edit_node->type != DELETE_EXIDX_ENTRY
15856 || edit_node->index != reloc_index)
15857 {
15858 irela->r_offset -= bias * 8;
15859 irela++;
15860 count++;
15861 }
15862
15863 erela += rel_hdr->sh_entsize;
15864 }
15865
15866 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15867 {
15868 /* New relocation entity. */
15869 asection *text_sec = edit_tail->linked_section;
15870 asection *text_out = text_sec->output_section;
15871 bfd_vma exidx_offset = offset + i->size - 8;
15872
15873 irela->r_addend = 0;
15874 irela->r_offset = exidx_offset;
15875 irela->r_info = ELF32_R_INFO
15876 (text_out->target_index, R_ARM_PREL31);
15877 irela++;
15878 count++;
15879 }
15880 }
15881 else
15882 {
15883 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15884 {
15885 (*swap_in) (abfd, erela, irela);
15886 erela += rel_hdr->sh_entsize;
15887 irela++;
15888 }
15889
15890 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15891 }
15892 }
15893 }
15894
15895 reldata->count = count;
15896 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15897
15898 erela = erela_head;
15899 irela = irela_head;
15900 while (count > 0)
15901 {
15902 (*swap_out) (abfd, irela, erela);
15903 erela += rel_hdr->sh_entsize;
15904 irela++;
15905 count--;
15906 }
15907
15908 free (irela_head);
15909
15910 /* Hashes are no longer valid. */
15911 free (reldata->hashes);
15912 reldata->hashes = NULL;
15913}
15914
15915/* Unwinding tables are not referenced directly. This pass marks them as
15916 required if the corresponding code section is marked. Similarly, ARMv8-M
15917 secure entry functions can only be referenced by SG veneers which are
15918 created after the GC process. They need to be marked in case they reside in
15919 their own section (as would be the case if code was compiled with
15920 -ffunction-sections). */
15921
15922static bfd_boolean
15923elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15924 elf_gc_mark_hook_fn gc_mark_hook)
15925{
15926 bfd *sub;
15927 Elf_Internal_Shdr **elf_shdrp;
15928 asection *cmse_sec;
15929 obj_attribute *out_attr;
15930 Elf_Internal_Shdr *symtab_hdr;
15931 unsigned i, sym_count, ext_start;
15932 const struct elf_backend_data *bed;
15933 struct elf_link_hash_entry **sym_hashes;
15934 struct elf32_arm_link_hash_entry *cmse_hash;
15935 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15936 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15937 asection *isec;
15938
15939 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15940
15941 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15942 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15943 && out_attr[Tag_CPU_arch_profile].i == 'M';
15944
15945 /* Marking EH data may cause additional code sections to be marked,
15946 requiring multiple passes. */
15947 again = TRUE;
15948 while (again)
15949 {
15950 again = FALSE;
15951 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15952 {
15953 asection *o;
15954
15955 if (! is_arm_elf (sub))
15956 continue;
15957
15958 elf_shdrp = elf_elfsections (sub);
15959 for (o = sub->sections; o != NULL; o = o->next)
15960 {
15961 Elf_Internal_Shdr *hdr;
15962
15963 hdr = &elf_section_data (o)->this_hdr;
15964 if (hdr->sh_type == SHT_ARM_EXIDX
15965 && hdr->sh_link
15966 && hdr->sh_link < elf_numsections (sub)
15967 && !o->gc_mark
15968 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15969 {
15970 again = TRUE;
15971 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15972 return FALSE;
15973 }
15974 }
15975
15976 /* Mark section holding ARMv8-M secure entry functions. We mark all
15977 of them so no need for a second browsing. */
15978 if (is_v8m && first_bfd_browse)
15979 {
15980 sym_hashes = elf_sym_hashes (sub);
15981 bed = get_elf_backend_data (sub);
15982 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15983 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15984 ext_start = symtab_hdr->sh_info;
15985
15986 /* Scan symbols. */
15987 for (i = ext_start; i < sym_count; i++)
15988 {
15989 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15990
15991 /* Assume it is a special symbol. If not, cmse_scan will
15992 warn about it and user can do something about it. */
15993 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15994 {
15995 cmse_sec = cmse_hash->root.root.u.def.section;
15996 if (!cmse_sec->gc_mark
15997 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15998 return FALSE;
15999 /* The debug sections related to these secure entry
16000 functions are marked on enabling below flag. */
16001 debug_sec_need_to_be_marked = TRUE;
16002 }
16003 }
16004
16005 if (debug_sec_need_to_be_marked)
16006 {
16007 /* Looping over all the sections of the object file containing
16008 Armv8-M secure entry functions and marking all the debug
16009 sections. */
16010 for (isec = sub->sections; isec != NULL; isec = isec->next)
16011 {
16012 /* If not a debug sections, skip it. */
16013 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16014 isec->gc_mark = 1 ;
16015 }
16016 debug_sec_need_to_be_marked = FALSE;
16017 }
16018 }
16019 }
16020 first_bfd_browse = FALSE;
16021 }
16022
16023 return TRUE;
16024}
16025
16026/* Treat mapping symbols as special target symbols. */
16027
16028static bfd_boolean
16029elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16030{
16031 return bfd_is_arm_special_symbol_name (sym->name,
16032 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16033}
16034
16035/* This is a version of _bfd_elf_find_function() from dwarf2.c except that
16036 ARM mapping symbols are ignored when looking for function names
16037 and STT_ARM_TFUNC is considered to a function type. */
16038
16039static bfd_boolean
16040arm_elf_find_function (bfd * abfd,
16041 asymbol ** symbols,
16042 asection * section,
16043 bfd_vma offset,
16044 const char ** filename_ptr,
16045 const char ** functionname_ptr)
16046{
16047 const char * filename = NULL;
16048 asymbol * func = NULL;
16049 bfd_vma low_func = 0;
16050 asymbol ** p;
16051
16052 if (symbols == NULL)
16053 return FALSE;
16054
16055 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
16056 return FALSE;
16057
16058 for (p = symbols; *p != NULL; p++)
16059 {
16060 elf_symbol_type *q;
16061
16062 q = (elf_symbol_type *) *p;
16063
16064 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16065 {
16066 default:
16067 break;
16068 case STT_FILE:
16069 filename = bfd_asymbol_name (&q->symbol);
16070 break;
16071 case STT_FUNC:
16072 case STT_ARM_TFUNC:
16073 case STT_NOTYPE:
16074 /* Skip mapping symbols. */
16075 if ((q->symbol.flags & BSF_LOCAL)
16076 && bfd_is_arm_special_symbol_name (q->symbol.name,
16077 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16078 continue;
16079 /* Fall through. */
16080 if (bfd_get_section (&q->symbol) == section
16081 && q->symbol.value >= low_func
16082 && q->symbol.value <= offset)
16083 {
16084 func = (asymbol *) q;
16085 low_func = q->symbol.value;
16086 }
16087 break;
16088 }
16089 }
16090
16091 if (func == NULL)
16092 return FALSE;
16093
16094 if (filename_ptr)
16095 *filename_ptr = filename;
16096 if (functionname_ptr)
16097 *functionname_ptr = bfd_asymbol_name (func);
16098
16099 return TRUE;
16100}
16101
16102
16103/* Find the nearest line to a particular section and offset, for error
16104 reporting. This code is a duplicate of the code in elf.c, except
16105 that it uses arm_elf_find_function. */
16106
16107static bfd_boolean
16108elf32_arm_find_nearest_line (bfd * abfd,
16109 asymbol ** symbols,
16110 asection * section,
16111 bfd_vma offset,
16112 const char ** filename_ptr,
16113 const char ** functionname_ptr,
16114 unsigned int * line_ptr,
16115 unsigned int * discriminator_ptr)
16116{
16117 bfd_boolean found = FALSE;
16118
16119 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16120 filename_ptr, functionname_ptr,
16121 line_ptr, discriminator_ptr,
16122 dwarf_debug_sections,
16123 & elf_tdata (abfd)->dwarf2_find_line_info))
16124 {
16125 if (!*functionname_ptr)
16126 arm_elf_find_function (abfd, symbols, section, offset,
16127 *filename_ptr ? NULL : filename_ptr,
16128 functionname_ptr);
16129
16130 return TRUE;
16131 }
16132
16133 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16134 uses DWARF1. */
16135
16136 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16137 & found, filename_ptr,
16138 functionname_ptr, line_ptr,
16139 & elf_tdata (abfd)->line_info))
16140 return FALSE;
16141
16142 if (found && (*functionname_ptr || *line_ptr))
16143 return TRUE;
16144
16145 if (symbols == NULL)
16146 return FALSE;
16147
16148 if (! arm_elf_find_function (abfd, symbols, section, offset,
16149 filename_ptr, functionname_ptr))
16150 return FALSE;
16151
16152 *line_ptr = 0;
16153 return TRUE;
16154}
16155
16156static bfd_boolean
16157elf32_arm_find_inliner_info (bfd * abfd,
16158 const char ** filename_ptr,
16159 const char ** functionname_ptr,
16160 unsigned int * line_ptr)
16161{
16162 bfd_boolean found;
16163 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16164 functionname_ptr, line_ptr,
16165 & elf_tdata (abfd)->dwarf2_find_line_info);
16166 return found;
16167}
16168
16169/* Find dynamic relocs for H that apply to read-only sections. */
16170
16171static asection *
16172readonly_dynrelocs (struct elf_link_hash_entry *h)
16173{
16174 struct elf_dyn_relocs *p;
16175
16176 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16177 {
16178 asection *s = p->sec->output_section;
16179
16180 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16181 return p->sec;
16182 }
16183 return NULL;
16184}
16185
16186/* Adjust a symbol defined by a dynamic object and referenced by a
16187 regular object. The current definition is in some section of the
16188 dynamic object, but we're not including those sections. We have to
16189 change the definition to something the rest of the link can
16190 understand. */
16191
16192static bfd_boolean
16193elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16194 struct elf_link_hash_entry * h)
16195{
16196 bfd * dynobj;
16197 asection *s, *srel;
16198 struct elf32_arm_link_hash_entry * eh;
16199 struct elf32_arm_link_hash_table *globals;
16200
16201 globals = elf32_arm_hash_table (info);
16202 if (globals == NULL)
16203 return FALSE;
16204
16205 dynobj = elf_hash_table (info)->dynobj;
16206
16207 /* Make sure we know what is going on here. */
16208 BFD_ASSERT (dynobj != NULL
16209 && (h->needs_plt
16210 || h->type == STT_GNU_IFUNC
16211 || h->is_weakalias
16212 || (h->def_dynamic
16213 && h->ref_regular
16214 && !h->def_regular)));
16215
16216 eh = (struct elf32_arm_link_hash_entry *) h;
16217
16218 /* If this is a function, put it in the procedure linkage table. We
16219 will fill in the contents of the procedure linkage table later,
16220 when we know the address of the .got section. */
16221 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16222 {
16223 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16224 symbol binds locally. */
16225 if (h->plt.refcount <= 0
16226 || (h->type != STT_GNU_IFUNC
16227 && (SYMBOL_CALLS_LOCAL (info, h)
16228 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16229 && h->root.type == bfd_link_hash_undefweak))))
16230 {
16231 /* This case can occur if we saw a PLT32 reloc in an input
16232 file, but the symbol was never referred to by a dynamic
16233 object, or if all references were garbage collected. In
16234 such a case, we don't actually need to build a procedure
16235 linkage table, and we can just do a PC24 reloc instead. */
16236 h->plt.offset = (bfd_vma) -1;
16237 eh->plt.thumb_refcount = 0;
16238 eh->plt.maybe_thumb_refcount = 0;
16239 eh->plt.noncall_refcount = 0;
16240 h->needs_plt = 0;
16241 }
16242
16243 return TRUE;
16244 }
16245 else
16246 {
16247 /* It's possible that we incorrectly decided a .plt reloc was
16248 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16249 in check_relocs. We can't decide accurately between function
16250 and non-function syms in check-relocs; Objects loaded later in
16251 the link may change h->type. So fix it now. */
16252 h->plt.offset = (bfd_vma) -1;
16253 eh->plt.thumb_refcount = 0;
16254 eh->plt.maybe_thumb_refcount = 0;
16255 eh->plt.noncall_refcount = 0;
16256 }
16257
16258 /* If this is a weak symbol, and there is a real definition, the
16259 processor independent code will have arranged for us to see the
16260 real definition first, and we can just use the same value. */
16261 if (h->is_weakalias)
16262 {
16263 struct elf_link_hash_entry *def = weakdef (h);
16264 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16265 h->root.u.def.section = def->root.u.def.section;
16266 h->root.u.def.value = def->root.u.def.value;
16267 return TRUE;
16268 }
16269
16270 /* If there are no non-GOT references, we do not need a copy
16271 relocation. */
16272 if (!h->non_got_ref)
16273 return TRUE;
16274
16275 /* This is a reference to a symbol defined by a dynamic object which
16276 is not a function. */
16277
16278 /* If we are creating a shared library, we must presume that the
16279 only references to the symbol are via the global offset table.
16280 For such cases we need not do anything here; the relocations will
16281 be handled correctly by relocate_section. Relocatable executables
16282 can reference data in shared objects directly, so we don't need to
16283 do anything here. */
16284 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16285 return TRUE;
16286
16287 /* We must allocate the symbol in our .dynbss section, which will
16288 become part of the .bss section of the executable. There will be
16289 an entry for this symbol in the .dynsym section. The dynamic
16290 object will contain position independent code, so all references
16291 from the dynamic object to this symbol will go through the global
16292 offset table. The dynamic linker will use the .dynsym entry to
16293 determine the address it must put in the global offset table, so
16294 both the dynamic object and the regular object will refer to the
16295 same memory location for the variable. */
16296 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16297 linker to copy the initial value out of the dynamic object and into
16298 the runtime process image. We need to remember the offset into the
16299 .rel(a).bss section we are going to use. */
16300 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16301 {
16302 s = globals->root.sdynrelro;
16303 srel = globals->root.sreldynrelro;
16304 }
16305 else
16306 {
16307 s = globals->root.sdynbss;
16308 srel = globals->root.srelbss;
16309 }
16310 if (info->nocopyreloc == 0
16311 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16312 && h->size != 0)
16313 {
16314 elf32_arm_allocate_dynrelocs (info, srel, 1);
16315 h->needs_copy = 1;
16316 }
16317
16318 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16319}
16320
16321/* Allocate space in .plt, .got and associated reloc sections for
16322 dynamic relocs. */
16323
16324static bfd_boolean
16325allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16326{
16327 struct bfd_link_info *info;
16328 struct elf32_arm_link_hash_table *htab;
16329 struct elf32_arm_link_hash_entry *eh;
16330 struct elf_dyn_relocs *p;
16331
16332 if (h->root.type == bfd_link_hash_indirect)
16333 return TRUE;
16334
16335 eh = (struct elf32_arm_link_hash_entry *) h;
16336
16337 info = (struct bfd_link_info *) inf;
16338 htab = elf32_arm_hash_table (info);
16339 if (htab == NULL)
16340 return FALSE;
16341
16342 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16343 && h->plt.refcount > 0)
16344 {
16345 /* Make sure this symbol is output as a dynamic symbol.
16346 Undefined weak syms won't yet be marked as dynamic. */
16347 if (h->dynindx == -1 && !h->forced_local
16348 && h->root.type == bfd_link_hash_undefweak)
16349 {
16350 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16351 return FALSE;
16352 }
16353
16354 /* If the call in the PLT entry binds locally, the associated
16355 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16356 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16357 than the .plt section. */
16358 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16359 {
16360 eh->is_iplt = 1;
16361 if (eh->plt.noncall_refcount == 0
16362 && SYMBOL_REFERENCES_LOCAL (info, h))
16363 /* All non-call references can be resolved directly.
16364 This means that they can (and in some cases, must)
16365 resolve directly to the run-time target, rather than
16366 to the PLT. That in turns means that any .got entry
16367 would be equal to the .igot.plt entry, so there's
16368 no point having both. */
16369 h->got.refcount = 0;
16370 }
16371
16372 if (bfd_link_pic (info)
16373 || eh->is_iplt
16374 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16375 {
16376 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16377
16378 /* If this symbol is not defined in a regular file, and we are
16379 not generating a shared library, then set the symbol to this
16380 location in the .plt. This is required to make function
16381 pointers compare as equal between the normal executable and
16382 the shared library. */
16383 if (! bfd_link_pic (info)
16384 && !h->def_regular)
16385 {
16386 h->root.u.def.section = htab->root.splt;
16387 h->root.u.def.value = h->plt.offset;
16388
16389 /* Make sure the function is not marked as Thumb, in case
16390 it is the target of an ABS32 relocation, which will
16391 point to the PLT entry. */
16392 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16393 }
16394
16395 /* VxWorks executables have a second set of relocations for
16396 each PLT entry. They go in a separate relocation section,
16397 which is processed by the kernel loader. */
16398 if (htab->vxworks_p && !bfd_link_pic (info))
16399 {
16400 /* There is a relocation for the initial PLT entry:
16401 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16402 if (h->plt.offset == htab->plt_header_size)
16403 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16404
16405 /* There are two extra relocations for each subsequent
16406 PLT entry: an R_ARM_32 relocation for the GOT entry,
16407 and an R_ARM_32 relocation for the PLT entry. */
16408 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16409 }
16410 }
16411 else
16412 {
16413 h->plt.offset = (bfd_vma) -1;
16414 h->needs_plt = 0;
16415 }
16416 }
16417 else
16418 {
16419 h->plt.offset = (bfd_vma) -1;
16420 h->needs_plt = 0;
16421 }
16422
16423 eh = (struct elf32_arm_link_hash_entry *) h;
16424 eh->tlsdesc_got = (bfd_vma) -1;
16425
16426 if (h->got.refcount > 0)
16427 {
16428 asection *s;
16429 bfd_boolean dyn;
16430 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16431 int indx;
16432
16433 /* Make sure this symbol is output as a dynamic symbol.
16434 Undefined weak syms won't yet be marked as dynamic. */
16435 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16436 && h->root.type == bfd_link_hash_undefweak)
16437 {
16438 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16439 return FALSE;
16440 }
16441
16442 if (!htab->symbian_p)
16443 {
16444 s = htab->root.sgot;
16445 h->got.offset = s->size;
16446
16447 if (tls_type == GOT_UNKNOWN)
16448 abort ();
16449
16450 if (tls_type == GOT_NORMAL)
16451 /* Non-TLS symbols need one GOT slot. */
16452 s->size += 4;
16453 else
16454 {
16455 if (tls_type & GOT_TLS_GDESC)
16456 {
16457 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16458 eh->tlsdesc_got
16459 = (htab->root.sgotplt->size
16460 - elf32_arm_compute_jump_table_size (htab));
16461 htab->root.sgotplt->size += 8;
16462 h->got.offset = (bfd_vma) -2;
16463 /* plt.got_offset needs to know there's a TLS_DESC
16464 reloc in the middle of .got.plt. */
16465 htab->num_tls_desc++;
16466 }
16467
16468 if (tls_type & GOT_TLS_GD)
16469 {
16470 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16471 consecutive GOT slots. If the symbol is both GD
16472 and GDESC, got.offset may have been
16473 overwritten. */
16474 h->got.offset = s->size;
16475 s->size += 8;
16476 }
16477
16478 if (tls_type & GOT_TLS_IE)
16479 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16480 slot. */
16481 s->size += 4;
16482 }
16483
16484 dyn = htab->root.dynamic_sections_created;
16485
16486 indx = 0;
16487 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16488 bfd_link_pic (info),
16489 h)
16490 && (!bfd_link_pic (info)
16491 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16492 indx = h->dynindx;
16493
16494 if (tls_type != GOT_NORMAL
16495 && (bfd_link_pic (info) || indx != 0)
16496 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16497 || h->root.type != bfd_link_hash_undefweak))
16498 {
16499 if (tls_type & GOT_TLS_IE)
16500 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16501
16502 if (tls_type & GOT_TLS_GD)
16503 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16504
16505 if (tls_type & GOT_TLS_GDESC)
16506 {
16507 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16508 /* GDESC needs a trampoline to jump to. */
16509 htab->tls_trampoline = -1;
16510 }
16511
16512 /* Only GD needs it. GDESC just emits one relocation per
16513 2 entries. */
16514 if ((tls_type & GOT_TLS_GD) && indx != 0)
16515 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16516 }
16517 else if (((indx != -1) || htab->fdpic_p)
16518 && !SYMBOL_REFERENCES_LOCAL (info, h))
16519 {
16520 if (htab->root.dynamic_sections_created)
16521 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16522 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16523 }
16524 else if (h->type == STT_GNU_IFUNC
16525 && eh->plt.noncall_refcount == 0)
16526 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16527 they all resolve dynamically instead. Reserve room for the
16528 GOT entry's R_ARM_IRELATIVE relocation. */
16529 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16530 else if (bfd_link_pic (info)
16531 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16532 || h->root.type != bfd_link_hash_undefweak))
16533 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16534 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16535 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16536 /* Reserve room for rofixup for FDPIC executable. */
16537 /* TLS relocs do not need space since they are completely
16538 resolved. */
16539 htab->srofixup->size += 4;
16540 }
16541 }
16542 else
16543 h->got.offset = (bfd_vma) -1;
16544
16545 /* FDPIC support. */
16546 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16547 {
16548 /* Symbol musn't be exported. */
16549 if (h->dynindx != -1)
16550 abort();
16551
16552 /* We only allocate one function descriptor with its associated relocation. */
16553 if (eh->fdpic_cnts.funcdesc_offset == -1)
16554 {
16555 asection *s = htab->root.sgot;
16556
16557 eh->fdpic_cnts.funcdesc_offset = s->size;
16558 s->size += 8;
16559 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16560 if (bfd_link_pic(info))
16561 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16562 else
16563 htab->srofixup->size += 8;
16564 }
16565 }
16566
16567 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16568 {
16569 asection *s = htab->root.sgot;
16570
16571 if (htab->root.dynamic_sections_created && h->dynindx == -1
16572 && !h->forced_local)
16573 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16574 return FALSE;
16575
16576 if (h->dynindx == -1)
16577 {
16578 /* We only allocate one function descriptor with its associated relocation. q */
16579 if (eh->fdpic_cnts.funcdesc_offset == -1)
16580 {
16581
16582 eh->fdpic_cnts.funcdesc_offset = s->size;
16583 s->size += 8;
16584 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16585 if (bfd_link_pic(info))
16586 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16587 else
16588 htab->srofixup->size += 8;
16589 }
16590 }
16591
16592 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16593 R_ARM_RELATIVE/rofixup relocation on it. */
16594 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16595 s->size += 4;
16596 if (h->dynindx == -1 && !bfd_link_pic(info))
16597 htab->srofixup->size += 4;
16598 else
16599 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16600 }
16601
16602 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16603 {
16604 if (htab->root.dynamic_sections_created && h->dynindx == -1
16605 && !h->forced_local)
16606 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16607 return FALSE;
16608
16609 if (h->dynindx == -1)
16610 {
16611 /* We only allocate one function descriptor with its associated relocation. */
16612 if (eh->fdpic_cnts.funcdesc_offset == -1)
16613 {
16614 asection *s = htab->root.sgot;
16615
16616 eh->fdpic_cnts.funcdesc_offset = s->size;
16617 s->size += 8;
16618 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16619 if (bfd_link_pic(info))
16620 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16621 else
16622 htab->srofixup->size += 8;
16623 }
16624 }
16625 if (h->dynindx == -1 && !bfd_link_pic(info))
16626 {
16627 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16628 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16629 }
16630 else
16631 {
16632 /* Will need one dynamic reloc per reference. will be either
16633 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16634 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16635 eh->fdpic_cnts.funcdesc_cnt);
16636 }
16637 }
16638
16639 /* Allocate stubs for exported Thumb functions on v4t. */
16640 if (!htab->use_blx && h->dynindx != -1
16641 && h->def_regular
16642 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16643 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16644 {
16645 struct elf_link_hash_entry * th;
16646 struct bfd_link_hash_entry * bh;
16647 struct elf_link_hash_entry * myh;
16648 char name[1024];
16649 asection *s;
16650 bh = NULL;
16651 /* Create a new symbol to regist the real location of the function. */
16652 s = h->root.u.def.section;
16653 sprintf (name, "__real_%s", h->root.root.string);
16654 _bfd_generic_link_add_one_symbol (info, s->owner,
16655 name, BSF_GLOBAL, s,
16656 h->root.u.def.value,
16657 NULL, TRUE, FALSE, &bh);
16658
16659 myh = (struct elf_link_hash_entry *) bh;
16660 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16661 myh->forced_local = 1;
16662 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16663 eh->export_glue = myh;
16664 th = record_arm_to_thumb_glue (info, h);
16665 /* Point the symbol at the stub. */
16666 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16667 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16668 h->root.u.def.section = th->root.u.def.section;
16669 h->root.u.def.value = th->root.u.def.value & ~1;
16670 }
16671
16672 if (eh->dyn_relocs == NULL)
16673 return TRUE;
16674
16675 /* In the shared -Bsymbolic case, discard space allocated for
16676 dynamic pc-relative relocs against symbols which turn out to be
16677 defined in regular objects. For the normal shared case, discard
16678 space for pc-relative relocs that have become local due to symbol
16679 visibility changes. */
16680
16681 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16682 {
16683 /* Relocs that use pc_count are PC-relative forms, which will appear
16684 on something like ".long foo - ." or "movw REG, foo - .". We want
16685 calls to protected symbols to resolve directly to the function
16686 rather than going via the plt. If people want function pointer
16687 comparisons to work as expected then they should avoid writing
16688 assembly like ".long foo - .". */
16689 if (SYMBOL_CALLS_LOCAL (info, h))
16690 {
16691 struct elf_dyn_relocs **pp;
16692
16693 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16694 {
16695 p->count -= p->pc_count;
16696 p->pc_count = 0;
16697 if (p->count == 0)
16698 *pp = p->next;
16699 else
16700 pp = &p->next;
16701 }
16702 }
16703
16704 if (htab->vxworks_p)
16705 {
16706 struct elf_dyn_relocs **pp;
16707
16708 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16709 {
16710 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16711 *pp = p->next;
16712 else
16713 pp = &p->next;
16714 }
16715 }
16716
16717 /* Also discard relocs on undefined weak syms with non-default
16718 visibility. */
16719 if (eh->dyn_relocs != NULL
16720 && h->root.type == bfd_link_hash_undefweak)
16721 {
16722 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16723 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16724 eh->dyn_relocs = NULL;
16725
16726 /* Make sure undefined weak symbols are output as a dynamic
16727 symbol in PIEs. */
16728 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16729 && !h->forced_local)
16730 {
16731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16732 return FALSE;
16733 }
16734 }
16735
16736 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16737 && h->root.type == bfd_link_hash_new)
16738 {
16739 /* Output absolute symbols so that we can create relocations
16740 against them. For normal symbols we output a relocation
16741 against the section that contains them. */
16742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16743 return FALSE;
16744 }
16745
16746 }
16747 else
16748 {
16749 /* For the non-shared case, discard space for relocs against
16750 symbols which turn out to need copy relocs or are not
16751 dynamic. */
16752
16753 if (!h->non_got_ref
16754 && ((h->def_dynamic
16755 && !h->def_regular)
16756 || (htab->root.dynamic_sections_created
16757 && (h->root.type == bfd_link_hash_undefweak
16758 || h->root.type == bfd_link_hash_undefined))))
16759 {
16760 /* Make sure this symbol is output as a dynamic symbol.
16761 Undefined weak syms won't yet be marked as dynamic. */
16762 if (h->dynindx == -1 && !h->forced_local
16763 && h->root.type == bfd_link_hash_undefweak)
16764 {
16765 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16766 return FALSE;
16767 }
16768
16769 /* If that succeeded, we know we'll be keeping all the
16770 relocs. */
16771 if (h->dynindx != -1)
16772 goto keep;
16773 }
16774
16775 eh->dyn_relocs = NULL;
16776
16777 keep: ;
16778 }
16779
16780 /* Finally, allocate space. */
16781 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16782 {
16783 asection *sreloc = elf_section_data (p->sec)->sreloc;
16784
16785 if (h->type == STT_GNU_IFUNC
16786 && eh->plt.noncall_refcount == 0
16787 && SYMBOL_REFERENCES_LOCAL (info, h))
16788 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16789 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16790 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16791 else if (htab->fdpic_p && !bfd_link_pic(info))
16792 htab->srofixup->size += 4 * p->count;
16793 else
16794 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16795 }
16796
16797 return TRUE;
16798}
16799
16800/* Set DF_TEXTREL if we find any dynamic relocs that apply to
16801 read-only sections. */
16802
16803static bfd_boolean
16804maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16805{
16806 asection *sec;
16807
16808 if (h->root.type == bfd_link_hash_indirect)
16809 return TRUE;
16810
16811 sec = readonly_dynrelocs (h);
16812 if (sec != NULL)
16813 {
16814 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16815
16816 info->flags |= DF_TEXTREL;
16817 info->callbacks->minfo
16818 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16819 sec->owner, h->root.root.string, sec);
16820
16821 /* Not an error, just cut short the traversal. */
16822 return FALSE;
16823 }
16824
16825 return TRUE;
16826}
16827
16828void
16829bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16830 int byteswap_code)
16831{
16832 struct elf32_arm_link_hash_table *globals;
16833
16834 globals = elf32_arm_hash_table (info);
16835 if (globals == NULL)
16836 return;
16837
16838 globals->byteswap_code = byteswap_code;
16839}
16840
16841/* Set the sizes of the dynamic sections. */
16842
16843static bfd_boolean
16844elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16845 struct bfd_link_info * info)
16846{
16847 bfd * dynobj;
16848 asection * s;
16849 bfd_boolean plt;
16850 bfd_boolean relocs;
16851 bfd *ibfd;
16852 struct elf32_arm_link_hash_table *htab;
16853
16854 htab = elf32_arm_hash_table (info);
16855 if (htab == NULL)
16856 return FALSE;
16857
16858 dynobj = elf_hash_table (info)->dynobj;
16859 BFD_ASSERT (dynobj != NULL);
16860 check_use_blx (htab);
16861
16862 if (elf_hash_table (info)->dynamic_sections_created)
16863 {
16864 /* Set the contents of the .interp section to the interpreter. */
16865 if (bfd_link_executable (info) && !info->nointerp)
16866 {
16867 s = bfd_get_linker_section (dynobj, ".interp");
16868 BFD_ASSERT (s != NULL);
16869 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16870 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16871 }
16872 }
16873
16874 /* Set up .got offsets for local syms, and space for local dynamic
16875 relocs. */
16876 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16877 {
16878 bfd_signed_vma *local_got;
16879 bfd_signed_vma *end_local_got;
16880 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16881 char *local_tls_type;
16882 bfd_vma *local_tlsdesc_gotent;
16883 bfd_size_type locsymcount;
16884 Elf_Internal_Shdr *symtab_hdr;
16885 asection *srel;
16886 bfd_boolean is_vxworks = htab->vxworks_p;
16887 unsigned int symndx;
16888 struct fdpic_local *local_fdpic_cnts;
16889
16890 if (! is_arm_elf (ibfd))
16891 continue;
16892
16893 for (s = ibfd->sections; s != NULL; s = s->next)
16894 {
16895 struct elf_dyn_relocs *p;
16896
16897 for (p = (struct elf_dyn_relocs *)
16898 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16899 {
16900 if (!bfd_is_abs_section (p->sec)
16901 && bfd_is_abs_section (p->sec->output_section))
16902 {
16903 /* Input section has been discarded, either because
16904 it is a copy of a linkonce section or due to
16905 linker script /DISCARD/, so we'll be discarding
16906 the relocs too. */
16907 }
16908 else if (is_vxworks
16909 && strcmp (p->sec->output_section->name,
16910 ".tls_vars") == 0)
16911 {
16912 /* Relocations in vxworks .tls_vars sections are
16913 handled specially by the loader. */
16914 }
16915 else if (p->count != 0)
16916 {
16917 srel = elf_section_data (p->sec)->sreloc;
16918 if (htab->fdpic_p && !bfd_link_pic(info))
16919 htab->srofixup->size += 4 * p->count;
16920 else
16921 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16922 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16923 info->flags |= DF_TEXTREL;
16924 }
16925 }
16926 }
16927
16928 local_got = elf_local_got_refcounts (ibfd);
16929 if (!local_got)
16930 continue;
16931
16932 symtab_hdr = & elf_symtab_hdr (ibfd);
16933 locsymcount = symtab_hdr->sh_info;
16934 end_local_got = local_got + locsymcount;
16935 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16936 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16937 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16938 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16939 symndx = 0;
16940 s = htab->root.sgot;
16941 srel = htab->root.srelgot;
16942 for (; local_got < end_local_got;
16943 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16944 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16945 {
16946 *local_tlsdesc_gotent = (bfd_vma) -1;
16947 local_iplt = *local_iplt_ptr;
16948
16949 /* FDPIC support. */
16950 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16951 {
16952 if (local_fdpic_cnts->funcdesc_offset == -1)
16953 {
16954 local_fdpic_cnts->funcdesc_offset = s->size;
16955 s->size += 8;
16956
16957 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16958 if (bfd_link_pic(info))
16959 elf32_arm_allocate_dynrelocs (info, srel, 1);
16960 else
16961 htab->srofixup->size += 8;
16962 }
16963 }
16964
16965 if (local_fdpic_cnts->funcdesc_cnt > 0)
16966 {
16967 if (local_fdpic_cnts->funcdesc_offset == -1)
16968 {
16969 local_fdpic_cnts->funcdesc_offset = s->size;
16970 s->size += 8;
16971
16972 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16973 if (bfd_link_pic(info))
16974 elf32_arm_allocate_dynrelocs (info, srel, 1);
16975 else
16976 htab->srofixup->size += 8;
16977 }
16978
16979 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16980 if (bfd_link_pic(info))
16981 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16982 else
16983 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16984 }
16985
16986 if (local_iplt != NULL)
16987 {
16988 struct elf_dyn_relocs *p;
16989
16990 if (local_iplt->root.refcount > 0)
16991 {
16992 elf32_arm_allocate_plt_entry (info, TRUE,
16993 &local_iplt->root,
16994 &local_iplt->arm);
16995 if (local_iplt->arm.noncall_refcount == 0)
16996 /* All references to the PLT are calls, so all
16997 non-call references can resolve directly to the
16998 run-time target. This means that the .got entry
16999 would be the same as the .igot.plt entry, so there's
17000 no point creating both. */
17001 *local_got = 0;
17002 }
17003 else
17004 {
17005 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
17006 local_iplt->root.offset = (bfd_vma) -1;
17007 }
17008
17009 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
17010 {
17011 asection *psrel;
17012
17013 psrel = elf_section_data (p->sec)->sreloc;
17014 if (local_iplt->arm.noncall_refcount == 0)
17015 elf32_arm_allocate_irelocs (info, psrel, p->count);
17016 else
17017 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
17018 }
17019 }
17020 if (*local_got > 0)
17021 {
17022 Elf_Internal_Sym *isym;
17023
17024 *local_got = s->size;
17025 if (*local_tls_type & GOT_TLS_GD)
17026 /* TLS_GD relocs need an 8-byte structure in the GOT. */
17027 s->size += 8;
17028 if (*local_tls_type & GOT_TLS_GDESC)
17029 {
17030 *local_tlsdesc_gotent = htab->root.sgotplt->size
17031 - elf32_arm_compute_jump_table_size (htab);
17032 htab->root.sgotplt->size += 8;
17033 *local_got = (bfd_vma) -2;
17034 /* plt.got_offset needs to know there's a TLS_DESC
17035 reloc in the middle of .got.plt. */
17036 htab->num_tls_desc++;
17037 }
17038 if (*local_tls_type & GOT_TLS_IE)
17039 s->size += 4;
17040
17041 if (*local_tls_type & GOT_NORMAL)
17042 {
17043 /* If the symbol is both GD and GDESC, *local_got
17044 may have been overwritten. */
17045 *local_got = s->size;
17046 s->size += 4;
17047 }
17048
17049 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17050 if (isym == NULL)
17051 return FALSE;
17052
17053 /* If all references to an STT_GNU_IFUNC PLT are calls,
17054 then all non-call references, including this GOT entry,
17055 resolve directly to the run-time target. */
17056 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17057 && (local_iplt == NULL
17058 || local_iplt->arm.noncall_refcount == 0))
17059 elf32_arm_allocate_irelocs (info, srel, 1);
17060 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17061 {
17062 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17063 elf32_arm_allocate_dynrelocs (info, srel, 1);
17064 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17065 htab->srofixup->size += 4;
17066
17067 if ((bfd_link_pic (info) || htab->fdpic_p)
17068 && *local_tls_type & GOT_TLS_GDESC)
17069 {
17070 elf32_arm_allocate_dynrelocs (info,
17071 htab->root.srelplt, 1);
17072 htab->tls_trampoline = -1;
17073 }
17074 }
17075 }
17076 else
17077 *local_got = (bfd_vma) -1;
17078 }
17079 }
17080
17081 if (htab->tls_ldm_got.refcount > 0)
17082 {
17083 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17084 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17085 htab->tls_ldm_got.offset = htab->root.sgot->size;
17086 htab->root.sgot->size += 8;
17087 if (bfd_link_pic (info))
17088 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17089 }
17090 else
17091 htab->tls_ldm_got.offset = -1;
17092
17093 /* At the very end of the .rofixup section is a pointer to the GOT,
17094 reserve space for it. */
17095 if (htab->fdpic_p && htab->srofixup != NULL)
17096 htab->srofixup->size += 4;
17097
17098 /* Allocate global sym .plt and .got entries, and space for global
17099 sym dynamic relocs. */
17100 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17101
17102 /* Here we rummage through the found bfds to collect glue information. */
17103 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17104 {
17105 if (! is_arm_elf (ibfd))
17106 continue;
17107
17108 /* Initialise mapping tables for code/data. */
17109 bfd_elf32_arm_init_maps (ibfd);
17110
17111 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17112 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17113 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17114 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17115 }
17116
17117 /* Allocate space for the glue sections now that we've sized them. */
17118 bfd_elf32_arm_allocate_interworking_sections (info);
17119
17120 /* For every jump slot reserved in the sgotplt, reloc_count is
17121 incremented. However, when we reserve space for TLS descriptors,
17122 it's not incremented, so in order to compute the space reserved
17123 for them, it suffices to multiply the reloc count by the jump
17124 slot size. */
17125 if (htab->root.srelplt)
17126 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17127
17128 if (htab->tls_trampoline)
17129 {
17130 if (htab->root.splt->size == 0)
17131 htab->root.splt->size += htab->plt_header_size;
17132
17133 htab->tls_trampoline = htab->root.splt->size;
17134 htab->root.splt->size += htab->plt_entry_size;
17135
17136 /* If we're not using lazy TLS relocations, don't generate the
17137 PLT and GOT entries they require. */
17138 if (!(info->flags & DF_BIND_NOW))
17139 {
17140 htab->dt_tlsdesc_got = htab->root.sgot->size;
17141 htab->root.sgot->size += 4;
17142
17143 htab->dt_tlsdesc_plt = htab->root.splt->size;
17144 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17145 }
17146 }
17147
17148 /* The check_relocs and adjust_dynamic_symbol entry points have
17149 determined the sizes of the various dynamic sections. Allocate
17150 memory for them. */
17151 plt = FALSE;
17152 relocs = FALSE;
17153 for (s = dynobj->sections; s != NULL; s = s->next)
17154 {
17155 const char * name;
17156
17157 if ((s->flags & SEC_LINKER_CREATED) == 0)
17158 continue;
17159
17160 /* It's OK to base decisions on the section name, because none
17161 of the dynobj section names depend upon the input files. */
17162 name = bfd_get_section_name (dynobj, s);
17163
17164 if (s == htab->root.splt)
17165 {
17166 /* Remember whether there is a PLT. */
17167 plt = s->size != 0;
17168 }
17169 else if (CONST_STRNEQ (name, ".rel"))
17170 {
17171 if (s->size != 0)
17172 {
17173 /* Remember whether there are any reloc sections other
17174 than .rel(a).plt and .rela.plt.unloaded. */
17175 if (s != htab->root.srelplt && s != htab->srelplt2)
17176 relocs = TRUE;
17177
17178 /* We use the reloc_count field as a counter if we need
17179 to copy relocs into the output file. */
17180 s->reloc_count = 0;
17181 }
17182 }
17183 else if (s != htab->root.sgot
17184 && s != htab->root.sgotplt
17185 && s != htab->root.iplt
17186 && s != htab->root.igotplt
17187 && s != htab->root.sdynbss
17188 && s != htab->root.sdynrelro
17189 && s != htab->srofixup)
17190 {
17191 /* It's not one of our sections, so don't allocate space. */
17192 continue;
17193 }
17194
17195 if (s->size == 0)
17196 {
17197 /* If we don't need this section, strip it from the
17198 output file. This is mostly to handle .rel(a).bss and
17199 .rel(a).plt. We must create both sections in
17200 create_dynamic_sections, because they must be created
17201 before the linker maps input sections to output
17202 sections. The linker does that before
17203 adjust_dynamic_symbol is called, and it is that
17204 function which decides whether anything needs to go
17205 into these sections. */
17206 s->flags |= SEC_EXCLUDE;
17207 continue;
17208 }
17209
17210 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17211 continue;
17212
17213 /* Allocate memory for the section contents. */
17214 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17215 if (s->contents == NULL)
17216 return FALSE;
17217 }
17218
17219 if (elf_hash_table (info)->dynamic_sections_created)
17220 {
17221 /* Add some entries to the .dynamic section. We fill in the
17222 values later, in elf32_arm_finish_dynamic_sections, but we
17223 must add the entries now so that we get the correct size for
17224 the .dynamic section. The DT_DEBUG entry is filled in by the
17225 dynamic linker and used by the debugger. */
17226#define add_dynamic_entry(TAG, VAL) \
17227 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17228
17229 if (bfd_link_executable (info))
17230 {
17231 if (!add_dynamic_entry (DT_DEBUG, 0))
17232 return FALSE;
17233 }
17234
17235 if (plt)
17236 {
17237 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17238 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17239 || !add_dynamic_entry (DT_PLTREL,
17240 htab->use_rel ? DT_REL : DT_RELA)
17241 || !add_dynamic_entry (DT_JMPREL, 0))
17242 return FALSE;
17243
17244 if (htab->dt_tlsdesc_plt
17245 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17246 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17247 return FALSE;
17248 }
17249
17250 if (relocs)
17251 {
17252 if (htab->use_rel)
17253 {
17254 if (!add_dynamic_entry (DT_REL, 0)
17255 || !add_dynamic_entry (DT_RELSZ, 0)
17256 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17257 return FALSE;
17258 }
17259 else
17260 {
17261 if (!add_dynamic_entry (DT_RELA, 0)
17262 || !add_dynamic_entry (DT_RELASZ, 0)
17263 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17264 return FALSE;
17265 }
17266 }
17267
17268 /* If any dynamic relocs apply to a read-only section,
17269 then we need a DT_TEXTREL entry. */
17270 if ((info->flags & DF_TEXTREL) == 0)
17271 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17272
17273 if ((info->flags & DF_TEXTREL) != 0)
17274 {
17275 if (!add_dynamic_entry (DT_TEXTREL, 0))
17276 return FALSE;
17277 }
17278 if (htab->vxworks_p
17279 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17280 return FALSE;
17281 }
17282#undef add_dynamic_entry
17283
17284 return TRUE;
17285}
17286
17287/* Size sections even though they're not dynamic. We use it to setup
17288 _TLS_MODULE_BASE_, if needed. */
17289
17290static bfd_boolean
17291elf32_arm_always_size_sections (bfd *output_bfd,
17292 struct bfd_link_info *info)
17293{
17294 asection *tls_sec;
17295 struct elf32_arm_link_hash_table *htab;
17296
17297 htab = elf32_arm_hash_table (info);
17298
17299 if (bfd_link_relocatable (info))
17300 return TRUE;
17301
17302 tls_sec = elf_hash_table (info)->tls_sec;
17303
17304 if (tls_sec)
17305 {
17306 struct elf_link_hash_entry *tlsbase;
17307
17308 tlsbase = elf_link_hash_lookup
17309 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17310
17311 if (tlsbase)
17312 {
17313 struct bfd_link_hash_entry *bh = NULL;
17314 const struct elf_backend_data *bed
17315 = get_elf_backend_data (output_bfd);
17316
17317 if (!(_bfd_generic_link_add_one_symbol
17318 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17319 tls_sec, 0, NULL, FALSE,
17320 bed->collect, &bh)))
17321 return FALSE;
17322
17323 tlsbase->type = STT_TLS;
17324 tlsbase = (struct elf_link_hash_entry *)bh;
17325 tlsbase->def_regular = 1;
17326 tlsbase->other = STV_HIDDEN;
17327 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17328 }
17329 }
17330
17331 if (htab->fdpic_p && !bfd_link_relocatable (info)
17332 && !bfd_elf_stack_segment_size (output_bfd, info,
17333 "__stacksize", DEFAULT_STACK_SIZE))
17334 return FALSE;
17335
17336 return TRUE;
17337}
17338
17339/* Finish up dynamic symbol handling. We set the contents of various
17340 dynamic sections here. */
17341
17342static bfd_boolean
17343elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17344 struct bfd_link_info * info,
17345 struct elf_link_hash_entry * h,
17346 Elf_Internal_Sym * sym)
17347{
17348 struct elf32_arm_link_hash_table *htab;
17349 struct elf32_arm_link_hash_entry *eh;
17350
17351 htab = elf32_arm_hash_table (info);
17352 if (htab == NULL)
17353 return FALSE;
17354
17355 eh = (struct elf32_arm_link_hash_entry *) h;
17356
17357 if (h->plt.offset != (bfd_vma) -1)
17358 {
17359 if (!eh->is_iplt)
17360 {
17361 BFD_ASSERT (h->dynindx != -1);
17362 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17363 h->dynindx, 0))
17364 return FALSE;
17365 }
17366
17367 if (!h->def_regular)
17368 {
17369 /* Mark the symbol as undefined, rather than as defined in
17370 the .plt section. */
17371 sym->st_shndx = SHN_UNDEF;
17372 /* If the symbol is weak we need to clear the value.
17373 Otherwise, the PLT entry would provide a definition for
17374 the symbol even if the symbol wasn't defined anywhere,
17375 and so the symbol would never be NULL. Leave the value if
17376 there were any relocations where pointer equality matters
17377 (this is a clue for the dynamic linker, to make function
17378 pointer comparisons work between an application and shared
17379 library). */
17380 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17381 sym->st_value = 0;
17382 }
17383 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17384 {
17385 /* At least one non-call relocation references this .iplt entry,
17386 so the .iplt entry is the function's canonical address. */
17387 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17388 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17389 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17390 (output_bfd, htab->root.iplt->output_section));
17391 sym->st_value = (h->plt.offset
17392 + htab->root.iplt->output_section->vma
17393 + htab->root.iplt->output_offset);
17394 }
17395 }
17396
17397 if (h->needs_copy)
17398 {
17399 asection * s;
17400 Elf_Internal_Rela rel;
17401
17402 /* This symbol needs a copy reloc. Set it up. */
17403 BFD_ASSERT (h->dynindx != -1
17404 && (h->root.type == bfd_link_hash_defined
17405 || h->root.type == bfd_link_hash_defweak));
17406
17407 rel.r_addend = 0;
17408 rel.r_offset = (h->root.u.def.value
17409 + h->root.u.def.section->output_section->vma
17410 + h->root.u.def.section->output_offset);
17411 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17412 if (h->root.u.def.section == htab->root.sdynrelro)
17413 s = htab->root.sreldynrelro;
17414 else
17415 s = htab->root.srelbss;
17416 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17417 }
17418
17419 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17420 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17421 it is relative to the ".got" section. */
17422 if (h == htab->root.hdynamic
17423 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17424 sym->st_shndx = SHN_ABS;
17425
17426 return TRUE;
17427}
17428
17429static void
17430arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17431 void *contents,
17432 const unsigned long *template, unsigned count)
17433{
17434 unsigned ix;
17435
17436 for (ix = 0; ix != count; ix++)
17437 {
17438 unsigned long insn = template[ix];
17439
17440 /* Emit mov pc,rx if bx is not permitted. */
17441 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17442 insn = (insn & 0xf000000f) | 0x01a0f000;
17443 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17444 }
17445}
17446
17447/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17448 other variants, NaCl needs this entry in a static executable's
17449 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17450 zero. For .iplt really only the last bundle is useful, and .iplt
17451 could have a shorter first entry, with each individual PLT entry's
17452 relative branch calculated differently so it targets the last
17453 bundle instead of the instruction before it (labelled .Lplt_tail
17454 above). But it's simpler to keep the size and layout of PLT0
17455 consistent with the dynamic case, at the cost of some dead code at
17456 the start of .iplt and the one dead store to the stack at the start
17457 of .Lplt_tail. */
17458static void
17459arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17460 asection *plt, bfd_vma got_displacement)
17461{
17462 unsigned int i;
17463
17464 put_arm_insn (htab, output_bfd,
17465 elf32_arm_nacl_plt0_entry[0]
17466 | arm_movw_immediate (got_displacement),
17467 plt->contents + 0);
17468 put_arm_insn (htab, output_bfd,
17469 elf32_arm_nacl_plt0_entry[1]
17470 | arm_movt_immediate (got_displacement),
17471 plt->contents + 4);
17472
17473 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17474 put_arm_insn (htab, output_bfd,
17475 elf32_arm_nacl_plt0_entry[i],
17476 plt->contents + (i * 4));
17477}
17478
17479/* Finish up the dynamic sections. */
17480
17481static bfd_boolean
17482elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17483{
17484 bfd * dynobj;
17485 asection * sgot;
17486 asection * sdyn;
17487 struct elf32_arm_link_hash_table *htab;
17488
17489 htab = elf32_arm_hash_table (info);
17490 if (htab == NULL)
17491 return FALSE;
17492
17493 dynobj = elf_hash_table (info)->dynobj;
17494
17495 sgot = htab->root.sgotplt;
17496 /* A broken linker script might have discarded the dynamic sections.
17497 Catch this here so that we do not seg-fault later on. */
17498 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17499 return FALSE;
17500 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17501
17502 if (elf_hash_table (info)->dynamic_sections_created)
17503 {
17504 asection *splt;
17505 Elf32_External_Dyn *dyncon, *dynconend;
17506
17507 splt = htab->root.splt;
17508 BFD_ASSERT (splt != NULL && sdyn != NULL);
17509 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17510
17511 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17512 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17513
17514 for (; dyncon < dynconend; dyncon++)
17515 {
17516 Elf_Internal_Dyn dyn;
17517 const char * name;
17518 asection * s;
17519
17520 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17521
17522 switch (dyn.d_tag)
17523 {
17524 unsigned int type;
17525
17526 default:
17527 if (htab->vxworks_p
17528 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17529 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17530 break;
17531
17532 case DT_HASH:
17533 name = ".hash";
17534 goto get_vma_if_bpabi;
17535 case DT_STRTAB:
17536 name = ".dynstr";
17537 goto get_vma_if_bpabi;
17538 case DT_SYMTAB:
17539 name = ".dynsym";
17540 goto get_vma_if_bpabi;
17541 case DT_VERSYM:
17542 name = ".gnu.version";
17543 goto get_vma_if_bpabi;
17544 case DT_VERDEF:
17545 name = ".gnu.version_d";
17546 goto get_vma_if_bpabi;
17547 case DT_VERNEED:
17548 name = ".gnu.version_r";
17549 goto get_vma_if_bpabi;
17550
17551 case DT_PLTGOT:
17552 name = htab->symbian_p ? ".got" : ".got.plt";
17553 goto get_vma;
17554 case DT_JMPREL:
17555 name = RELOC_SECTION (htab, ".plt");
17556 get_vma:
17557 s = bfd_get_linker_section (dynobj, name);
17558 if (s == NULL)
17559 {
17560 _bfd_error_handler
17561 (_("could not find section %s"), name);
17562 bfd_set_error (bfd_error_invalid_operation);
17563 return FALSE;
17564 }
17565 if (!htab->symbian_p)
17566 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17567 else
17568 /* In the BPABI, tags in the PT_DYNAMIC section point
17569 at the file offset, not the memory address, for the
17570 convenience of the post linker. */
17571 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17572 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17573 break;
17574
17575 get_vma_if_bpabi:
17576 if (htab->symbian_p)
17577 goto get_vma;
17578 break;
17579
17580 case DT_PLTRELSZ:
17581 s = htab->root.srelplt;
17582 BFD_ASSERT (s != NULL);
17583 dyn.d_un.d_val = s->size;
17584 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17585 break;
17586
17587 case DT_RELSZ:
17588 case DT_RELASZ:
17589 case DT_REL:
17590 case DT_RELA:
17591 /* In the BPABI, the DT_REL tag must point at the file
17592 offset, not the VMA, of the first relocation
17593 section. So, we use code similar to that in
17594 elflink.c, but do not check for SHF_ALLOC on the
17595 relocation section, since relocation sections are
17596 never allocated under the BPABI. PLT relocs are also
17597 included. */
17598 if (htab->symbian_p)
17599 {
17600 unsigned int i;
17601 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17602 ? SHT_REL : SHT_RELA);
17603 dyn.d_un.d_val = 0;
17604 for (i = 1; i < elf_numsections (output_bfd); i++)
17605 {
17606 Elf_Internal_Shdr *hdr
17607 = elf_elfsections (output_bfd)[i];
17608 if (hdr->sh_type == type)
17609 {
17610 if (dyn.d_tag == DT_RELSZ
17611 || dyn.d_tag == DT_RELASZ)
17612 dyn.d_un.d_val += hdr->sh_size;
17613 else if ((ufile_ptr) hdr->sh_offset
17614 <= dyn.d_un.d_val - 1)
17615 dyn.d_un.d_val = hdr->sh_offset;
17616 }
17617 }
17618 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17619 }
17620 break;
17621
17622 case DT_TLSDESC_PLT:
17623 s = htab->root.splt;
17624 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17625 + htab->dt_tlsdesc_plt);
17626 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17627 break;
17628
17629 case DT_TLSDESC_GOT:
17630 s = htab->root.sgot;
17631 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17632 + htab->dt_tlsdesc_got);
17633 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17634 break;
17635
17636 /* Set the bottom bit of DT_INIT/FINI if the
17637 corresponding function is Thumb. */
17638 case DT_INIT:
17639 name = info->init_function;
17640 goto get_sym;
17641 case DT_FINI:
17642 name = info->fini_function;
17643 get_sym:
17644 /* If it wasn't set by elf_bfd_final_link
17645 then there is nothing to adjust. */
17646 if (dyn.d_un.d_val != 0)
17647 {
17648 struct elf_link_hash_entry * eh;
17649
17650 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17651 FALSE, FALSE, TRUE);
17652 if (eh != NULL
17653 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17654 == ST_BRANCH_TO_THUMB)
17655 {
17656 dyn.d_un.d_val |= 1;
17657 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17658 }
17659 }
17660 break;
17661 }
17662 }
17663
17664 /* Fill in the first entry in the procedure linkage table. */
17665 if (splt->size > 0 && htab->plt_header_size)
17666 {
17667 const bfd_vma *plt0_entry;
17668 bfd_vma got_address, plt_address, got_displacement;
17669
17670 /* Calculate the addresses of the GOT and PLT. */
17671 got_address = sgot->output_section->vma + sgot->output_offset;
17672 plt_address = splt->output_section->vma + splt->output_offset;
17673
17674 if (htab->vxworks_p)
17675 {
17676 /* The VxWorks GOT is relocated by the dynamic linker.
17677 Therefore, we must emit relocations rather than simply
17678 computing the values now. */
17679 Elf_Internal_Rela rel;
17680
17681 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17682 put_arm_insn (htab, output_bfd, plt0_entry[0],
17683 splt->contents + 0);
17684 put_arm_insn (htab, output_bfd, plt0_entry[1],
17685 splt->contents + 4);
17686 put_arm_insn (htab, output_bfd, plt0_entry[2],
17687 splt->contents + 8);
17688 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17689
17690 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17691 rel.r_offset = plt_address + 12;
17692 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17693 rel.r_addend = 0;
17694 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17695 htab->srelplt2->contents);
17696 }
17697 else if (htab->nacl_p)
17698 arm_nacl_put_plt0 (htab, output_bfd, splt,
17699 got_address + 8 - (plt_address + 16));
17700 else if (using_thumb_only (htab))
17701 {
17702 got_displacement = got_address - (plt_address + 12);
17703
17704 plt0_entry = elf32_thumb2_plt0_entry;
17705 put_arm_insn (htab, output_bfd, plt0_entry[0],
17706 splt->contents + 0);
17707 put_arm_insn (htab, output_bfd, plt0_entry[1],
17708 splt->contents + 4);
17709 put_arm_insn (htab, output_bfd, plt0_entry[2],
17710 splt->contents + 8);
17711
17712 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17713 }
17714 else
17715 {
17716 got_displacement = got_address - (plt_address + 16);
17717
17718 plt0_entry = elf32_arm_plt0_entry;
17719 put_arm_insn (htab, output_bfd, plt0_entry[0],
17720 splt->contents + 0);
17721 put_arm_insn (htab, output_bfd, plt0_entry[1],
17722 splt->contents + 4);
17723 put_arm_insn (htab, output_bfd, plt0_entry[2],
17724 splt->contents + 8);
17725 put_arm_insn (htab, output_bfd, plt0_entry[3],
17726 splt->contents + 12);
17727
17728#ifdef FOUR_WORD_PLT
17729 /* The displacement value goes in the otherwise-unused
17730 last word of the second entry. */
17731 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17732#else
17733 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17734#endif
17735 }
17736 }
17737
17738 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17739 really seem like the right value. */
17740 if (splt->output_section->owner == output_bfd)
17741 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17742
17743 if (htab->dt_tlsdesc_plt)
17744 {
17745 bfd_vma got_address
17746 = sgot->output_section->vma + sgot->output_offset;
17747 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17748 + htab->root.sgot->output_offset);
17749 bfd_vma plt_address
17750 = splt->output_section->vma + splt->output_offset;
17751
17752 arm_put_trampoline (htab, output_bfd,
17753 splt->contents + htab->dt_tlsdesc_plt,
17754 dl_tlsdesc_lazy_trampoline, 6);
17755
17756 bfd_put_32 (output_bfd,
17757 gotplt_address + htab->dt_tlsdesc_got
17758 - (plt_address + htab->dt_tlsdesc_plt)
17759 - dl_tlsdesc_lazy_trampoline[6],
17760 splt->contents + htab->dt_tlsdesc_plt + 24);
17761 bfd_put_32 (output_bfd,
17762 got_address - (plt_address + htab->dt_tlsdesc_plt)
17763 - dl_tlsdesc_lazy_trampoline[7],
17764 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17765 }
17766
17767 if (htab->tls_trampoline)
17768 {
17769 arm_put_trampoline (htab, output_bfd,
17770 splt->contents + htab->tls_trampoline,
17771 tls_trampoline, 3);
17772#ifdef FOUR_WORD_PLT
17773 bfd_put_32 (output_bfd, 0x00000000,
17774 splt->contents + htab->tls_trampoline + 12);
17775#endif
17776 }
17777
17778 if (htab->vxworks_p
17779 && !bfd_link_pic (info)
17780 && htab->root.splt->size > 0)
17781 {
17782 /* Correct the .rel(a).plt.unloaded relocations. They will have
17783 incorrect symbol indexes. */
17784 int num_plts;
17785 unsigned char *p;
17786
17787 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17788 / htab->plt_entry_size);
17789 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17790
17791 for (; num_plts; num_plts--)
17792 {
17793 Elf_Internal_Rela rel;
17794
17795 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17796 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17797 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17798 p += RELOC_SIZE (htab);
17799
17800 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17801 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17802 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17803 p += RELOC_SIZE (htab);
17804 }
17805 }
17806 }
17807
17808 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17809 /* NaCl uses a special first entry in .iplt too. */
17810 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17811
17812 /* Fill in the first three entries in the global offset table. */
17813 if (sgot)
17814 {
17815 if (sgot->size > 0)
17816 {
17817 if (sdyn == NULL)
17818 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17819 else
17820 bfd_put_32 (output_bfd,
17821 sdyn->output_section->vma + sdyn->output_offset,
17822 sgot->contents);
17823 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17824 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17825 }
17826
17827 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17828 }
17829
17830 /* At the very end of the .rofixup section is a pointer to the GOT. */
17831 if (htab->fdpic_p && htab->srofixup != NULL)
17832 {
17833 struct elf_link_hash_entry *hgot = htab->root.hgot;
17834
17835 bfd_vma got_value = hgot->root.u.def.value
17836 + hgot->root.u.def.section->output_section->vma
17837 + hgot->root.u.def.section->output_offset;
17838
17839 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17840
17841 /* Make sure we allocated and generated the same number of fixups. */
17842 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17843 }
17844
17845 return TRUE;
17846}
17847
17848static void
17849elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17850{
17851 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17852 struct elf32_arm_link_hash_table *globals;
17853 struct elf_segment_map *m;
17854
17855 i_ehdrp = elf_elfheader (abfd);
17856
17857 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17858 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17859 else
17860 _bfd_elf_post_process_headers (abfd, link_info);
17861 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17862
17863 if (link_info)
17864 {
17865 globals = elf32_arm_hash_table (link_info);
17866 if (globals != NULL && globals->byteswap_code)
17867 i_ehdrp->e_flags |= EF_ARM_BE8;
17868
17869 if (globals->fdpic_p)
17870 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17871 }
17872
17873 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17874 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17875 {
17876 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17877 if (abi == AEABI_VFP_args_vfp)
17878 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17879 else
17880 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17881 }
17882
17883 /* Scan segment to set p_flags attribute if it contains only sections with
17884 SHF_ARM_PURECODE flag. */
17885 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17886 {
17887 unsigned int j;
17888
17889 if (m->count == 0)
17890 continue;
17891 for (j = 0; j < m->count; j++)
17892 {
17893 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17894 break;
17895 }
17896 if (j == m->count)
17897 {
17898 m->p_flags = PF_X;
17899 m->p_flags_valid = 1;
17900 }
17901 }
17902}
17903
17904static enum elf_reloc_type_class
17905elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17906 const asection *rel_sec ATTRIBUTE_UNUSED,
17907 const Elf_Internal_Rela *rela)
17908{
17909 switch ((int) ELF32_R_TYPE (rela->r_info))
17910 {
17911 case R_ARM_RELATIVE:
17912 return reloc_class_relative;
17913 case R_ARM_JUMP_SLOT:
17914 return reloc_class_plt;
17915 case R_ARM_COPY:
17916 return reloc_class_copy;
17917 case R_ARM_IRELATIVE:
17918 return reloc_class_ifunc;
17919 default:
17920 return reloc_class_normal;
17921 }
17922}
17923
17924static void
17925arm_final_write_processing (bfd *abfd)
17926{
17927 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17928}
17929
17930static bfd_boolean
17931elf32_arm_final_write_processing (bfd *abfd)
17932{
17933 arm_final_write_processing (abfd);
17934 return _bfd_elf_final_write_processing (abfd);
17935}
17936
17937/* Return TRUE if this is an unwinding table entry. */
17938
17939static bfd_boolean
17940is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17941{
17942 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17943 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17944}
17945
17946
17947/* Set the type and flags for an ARM section. We do this by
17948 the section name, which is a hack, but ought to work. */
17949
17950static bfd_boolean
17951elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17952{
17953 const char * name;
17954
17955 name = bfd_get_section_name (abfd, sec);
17956
17957 if (is_arm_elf_unwind_section_name (abfd, name))
17958 {
17959 hdr->sh_type = SHT_ARM_EXIDX;
17960 hdr->sh_flags |= SHF_LINK_ORDER;
17961 }
17962
17963 if (sec->flags & SEC_ELF_PURECODE)
17964 hdr->sh_flags |= SHF_ARM_PURECODE;
17965
17966 return TRUE;
17967}
17968
17969/* Handle an ARM specific section when reading an object file. This is
17970 called when bfd_section_from_shdr finds a section with an unknown
17971 type. */
17972
17973static bfd_boolean
17974elf32_arm_section_from_shdr (bfd *abfd,
17975 Elf_Internal_Shdr * hdr,
17976 const char *name,
17977 int shindex)
17978{
17979 /* There ought to be a place to keep ELF backend specific flags, but
17980 at the moment there isn't one. We just keep track of the
17981 sections by their name, instead. Fortunately, the ABI gives
17982 names for all the ARM specific sections, so we will probably get
17983 away with this. */
17984 switch (hdr->sh_type)
17985 {
17986 case SHT_ARM_EXIDX:
17987 case SHT_ARM_PREEMPTMAP:
17988 case SHT_ARM_ATTRIBUTES:
17989 break;
17990
17991 default:
17992 return FALSE;
17993 }
17994
17995 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17996 return FALSE;
17997
17998 return TRUE;
17999}
18000
18001static _arm_elf_section_data *
18002get_arm_elf_section_data (asection * sec)
18003{
18004 if (sec && sec->owner && is_arm_elf (sec->owner))
18005 return elf32_arm_section_data (sec);
18006 else
18007 return NULL;
18008}
18009
18010typedef struct
18011{
18012 void *flaginfo;
18013 struct bfd_link_info *info;
18014 asection *sec;
18015 int sec_shndx;
18016 int (*func) (void *, const char *, Elf_Internal_Sym *,
18017 asection *, struct elf_link_hash_entry *);
18018} output_arch_syminfo;
18019
18020enum map_symbol_type
18021{
18022 ARM_MAP_ARM,
18023 ARM_MAP_THUMB,
18024 ARM_MAP_DATA
18025};
18026
18027
18028/* Output a single mapping symbol. */
18029
18030static bfd_boolean
18031elf32_arm_output_map_sym (output_arch_syminfo *osi,
18032 enum map_symbol_type type,
18033 bfd_vma offset)
18034{
18035 static const char *names[3] = {"$a", "$t", "$d"};
18036 Elf_Internal_Sym sym;
18037
18038 sym.st_value = osi->sec->output_section->vma
18039 + osi->sec->output_offset
18040 + offset;
18041 sym.st_size = 0;
18042 sym.st_other = 0;
18043 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
18044 sym.st_shndx = osi->sec_shndx;
18045 sym.st_target_internal = 0;
18046 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
18047 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
18048}
18049
18050/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
18051 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
18052
18053static bfd_boolean
18054elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
18055 bfd_boolean is_iplt_entry_p,
18056 union gotplt_union *root_plt,
18057 struct arm_plt_info *arm_plt)
18058{
18059 struct elf32_arm_link_hash_table *htab;
18060 bfd_vma addr, plt_header_size;
18061
18062 if (root_plt->offset == (bfd_vma) -1)
18063 return TRUE;
18064
18065 htab = elf32_arm_hash_table (osi->info);
18066 if (htab == NULL)
18067 return FALSE;
18068
18069 if (is_iplt_entry_p)
18070 {
18071 osi->sec = htab->root.iplt;
18072 plt_header_size = 0;
18073 }
18074 else
18075 {
18076 osi->sec = htab->root.splt;
18077 plt_header_size = htab->plt_header_size;
18078 }
18079 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18080 (osi->info->output_bfd, osi->sec->output_section));
18081
18082 addr = root_plt->offset & -2;
18083 if (htab->symbian_p)
18084 {
18085 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18086 return FALSE;
18087 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18088 return FALSE;
18089 }
18090 else if (htab->vxworks_p)
18091 {
18092 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18093 return FALSE;
18094 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18095 return FALSE;
18096 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18097 return FALSE;
18098 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18099 return FALSE;
18100 }
18101 else if (htab->nacl_p)
18102 {
18103 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18104 return FALSE;
18105 }
18106 else if (htab->fdpic_p)
18107 {
18108 enum map_symbol_type type = using_thumb_only(htab)
18109 ? ARM_MAP_THUMB
18110 : ARM_MAP_ARM;
18111
18112 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18113 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18114 return FALSE;
18115 if (!elf32_arm_output_map_sym (osi, type, addr))
18116 return FALSE;
18117 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18118 return FALSE;
18119 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18120 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18121 return FALSE;
18122 }
18123 else if (using_thumb_only (htab))
18124 {
18125 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18126 return FALSE;
18127 }
18128 else
18129 {
18130 bfd_boolean thumb_stub_p;
18131
18132 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18133 if (thumb_stub_p)
18134 {
18135 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18136 return FALSE;
18137 }
18138#ifdef FOUR_WORD_PLT
18139 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18140 return FALSE;
18141 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18142 return FALSE;
18143#else
18144 /* A three-word PLT with no Thumb thunk contains only Arm code,
18145 so only need to output a mapping symbol for the first PLT entry and
18146 entries with thumb thunks. */
18147 if (thumb_stub_p || addr == plt_header_size)
18148 {
18149 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18150 return FALSE;
18151 }
18152#endif
18153 }
18154
18155 return TRUE;
18156}
18157
18158/* Output mapping symbols for PLT entries associated with H. */
18159
18160static bfd_boolean
18161elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18162{
18163 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18164 struct elf32_arm_link_hash_entry *eh;
18165
18166 if (h->root.type == bfd_link_hash_indirect)
18167 return TRUE;
18168
18169 if (h->root.type == bfd_link_hash_warning)
18170 /* When warning symbols are created, they **replace** the "real"
18171 entry in the hash table, thus we never get to see the real
18172 symbol in a hash traversal. So look at it now. */
18173 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18174
18175 eh = (struct elf32_arm_link_hash_entry *) h;
18176 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18177 &h->plt, &eh->plt);
18178}
18179
18180/* Bind a veneered symbol to its veneer identified by its hash entry
18181 STUB_ENTRY. The veneered location thus loose its symbol. */
18182
18183static void
18184arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18185{
18186 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18187
18188 BFD_ASSERT (hash);
18189 hash->root.root.u.def.section = stub_entry->stub_sec;
18190 hash->root.root.u.def.value = stub_entry->stub_offset;
18191 hash->root.size = stub_entry->stub_size;
18192}
18193
18194/* Output a single local symbol for a generated stub. */
18195
18196static bfd_boolean
18197elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18198 bfd_vma offset, bfd_vma size)
18199{
18200 Elf_Internal_Sym sym;
18201
18202 sym.st_value = osi->sec->output_section->vma
18203 + osi->sec->output_offset
18204 + offset;
18205 sym.st_size = size;
18206 sym.st_other = 0;
18207 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18208 sym.st_shndx = osi->sec_shndx;
18209 sym.st_target_internal = 0;
18210 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18211}
18212
18213static bfd_boolean
18214arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18215 void * in_arg)
18216{
18217 struct elf32_arm_stub_hash_entry *stub_entry;
18218 asection *stub_sec;
18219 bfd_vma addr;
18220 char *stub_name;
18221 output_arch_syminfo *osi;
18222 const insn_sequence *template_sequence;
18223 enum stub_insn_type prev_type;
18224 int size;
18225 int i;
18226 enum map_symbol_type sym_type;
18227
18228 /* Massage our args to the form they really have. */
18229 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18230 osi = (output_arch_syminfo *) in_arg;
18231
18232 stub_sec = stub_entry->stub_sec;
18233
18234 /* Ensure this stub is attached to the current section being
18235 processed. */
18236 if (stub_sec != osi->sec)
18237 return TRUE;
18238
18239 addr = (bfd_vma) stub_entry->stub_offset;
18240 template_sequence = stub_entry->stub_template;
18241
18242 if (arm_stub_sym_claimed (stub_entry->stub_type))
18243 arm_stub_claim_sym (stub_entry);
18244 else
18245 {
18246 stub_name = stub_entry->output_name;
18247 switch (template_sequence[0].type)
18248 {
18249 case ARM_TYPE:
18250 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18251 stub_entry->stub_size))
18252 return FALSE;
18253 break;
18254 case THUMB16_TYPE:
18255 case THUMB32_TYPE:
18256 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18257 stub_entry->stub_size))
18258 return FALSE;
18259 break;
18260 default:
18261 BFD_FAIL ();
18262 return 0;
18263 }
18264 }
18265
18266 prev_type = DATA_TYPE;
18267 size = 0;
18268 for (i = 0; i < stub_entry->stub_template_size; i++)
18269 {
18270 switch (template_sequence[i].type)
18271 {
18272 case ARM_TYPE:
18273 sym_type = ARM_MAP_ARM;
18274 break;
18275
18276 case THUMB16_TYPE:
18277 case THUMB32_TYPE:
18278 sym_type = ARM_MAP_THUMB;
18279 break;
18280
18281 case DATA_TYPE:
18282 sym_type = ARM_MAP_DATA;
18283 break;
18284
18285 default:
18286 BFD_FAIL ();
18287 return FALSE;
18288 }
18289
18290 if (template_sequence[i].type != prev_type)
18291 {
18292 prev_type = template_sequence[i].type;
18293 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18294 return FALSE;
18295 }
18296
18297 switch (template_sequence[i].type)
18298 {
18299 case ARM_TYPE:
18300 case THUMB32_TYPE:
18301 size += 4;
18302 break;
18303
18304 case THUMB16_TYPE:
18305 size += 2;
18306 break;
18307
18308 case DATA_TYPE:
18309 size += 4;
18310 break;
18311
18312 default:
18313 BFD_FAIL ();
18314 return FALSE;
18315 }
18316 }
18317
18318 return TRUE;
18319}
18320
18321/* Output mapping symbols for linker generated sections,
18322 and for those data-only sections that do not have a
18323 $d. */
18324
18325static bfd_boolean
18326elf32_arm_output_arch_local_syms (bfd *output_bfd,
18327 struct bfd_link_info *info,
18328 void *flaginfo,
18329 int (*func) (void *, const char *,
18330 Elf_Internal_Sym *,
18331 asection *,
18332 struct elf_link_hash_entry *))
18333{
18334 output_arch_syminfo osi;
18335 struct elf32_arm_link_hash_table *htab;
18336 bfd_vma offset;
18337 bfd_size_type size;
18338 bfd *input_bfd;
18339
18340 htab = elf32_arm_hash_table (info);
18341 if (htab == NULL)
18342 return FALSE;
18343
18344 check_use_blx (htab);
18345
18346 osi.flaginfo = flaginfo;
18347 osi.info = info;
18348 osi.func = func;
18349
18350 /* Add a $d mapping symbol to data-only sections that
18351 don't have any mapping symbol. This may result in (harmless) redundant
18352 mapping symbols. */
18353 for (input_bfd = info->input_bfds;
18354 input_bfd != NULL;
18355 input_bfd = input_bfd->link.next)
18356 {
18357 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18358 for (osi.sec = input_bfd->sections;
18359 osi.sec != NULL;
18360 osi.sec = osi.sec->next)
18361 {
18362 if (osi.sec->output_section != NULL
18363 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18364 != 0)
18365 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18366 == SEC_HAS_CONTENTS
18367 && get_arm_elf_section_data (osi.sec) != NULL
18368 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18369 && osi.sec->size > 0
18370 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18371 {
18372 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18373 (output_bfd, osi.sec->output_section);
18374 if (osi.sec_shndx != (int)SHN_BAD)
18375 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18376 }
18377 }
18378 }
18379
18380 /* ARM->Thumb glue. */
18381 if (htab->arm_glue_size > 0)
18382 {
18383 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18384 ARM2THUMB_GLUE_SECTION_NAME);
18385
18386 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18387 (output_bfd, osi.sec->output_section);
18388 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18389 || htab->pic_veneer)
18390 size = ARM2THUMB_PIC_GLUE_SIZE;
18391 else if (htab->use_blx)
18392 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18393 else
18394 size = ARM2THUMB_STATIC_GLUE_SIZE;
18395
18396 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18397 {
18398 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18399 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18400 }
18401 }
18402
18403 /* Thumb->ARM glue. */
18404 if (htab->thumb_glue_size > 0)
18405 {
18406 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18407 THUMB2ARM_GLUE_SECTION_NAME);
18408
18409 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18410 (output_bfd, osi.sec->output_section);
18411 size = THUMB2ARM_GLUE_SIZE;
18412
18413 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18414 {
18415 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18416 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18417 }
18418 }
18419
18420 /* ARMv4 BX veneers. */
18421 if (htab->bx_glue_size > 0)
18422 {
18423 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18424 ARM_BX_GLUE_SECTION_NAME);
18425
18426 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18427 (output_bfd, osi.sec->output_section);
18428
18429 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18430 }
18431
18432 /* Long calls stubs. */
18433 if (htab->stub_bfd && htab->stub_bfd->sections)
18434 {
18435 asection* stub_sec;
18436
18437 for (stub_sec = htab->stub_bfd->sections;
18438 stub_sec != NULL;
18439 stub_sec = stub_sec->next)
18440 {
18441 /* Ignore non-stub sections. */
18442 if (!strstr (stub_sec->name, STUB_SUFFIX))
18443 continue;
18444
18445 osi.sec = stub_sec;
18446
18447 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18448 (output_bfd, osi.sec->output_section);
18449
18450 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18451 }
18452 }
18453
18454 /* Finally, output mapping symbols for the PLT. */
18455 if (htab->root.splt && htab->root.splt->size > 0)
18456 {
18457 osi.sec = htab->root.splt;
18458 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18459 (output_bfd, osi.sec->output_section));
18460
18461 /* Output mapping symbols for the plt header. SymbianOS does not have a
18462 plt header. */
18463 if (htab->vxworks_p)
18464 {
18465 /* VxWorks shared libraries have no PLT header. */
18466 if (!bfd_link_pic (info))
18467 {
18468 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18469 return FALSE;
18470 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18471 return FALSE;
18472 }
18473 }
18474 else if (htab->nacl_p)
18475 {
18476 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18477 return FALSE;
18478 }
18479 else if (using_thumb_only (htab) && !htab->fdpic_p)
18480 {
18481 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18482 return FALSE;
18483 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18484 return FALSE;
18485 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18486 return FALSE;
18487 }
18488 else if (!htab->symbian_p && !htab->fdpic_p)
18489 {
18490 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18491 return FALSE;
18492#ifndef FOUR_WORD_PLT
18493 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18494 return FALSE;
18495#endif
18496 }
18497 }
18498 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18499 {
18500 /* NaCl uses a special first entry in .iplt too. */
18501 osi.sec = htab->root.iplt;
18502 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18503 (output_bfd, osi.sec->output_section));
18504 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18505 return FALSE;
18506 }
18507 if ((htab->root.splt && htab->root.splt->size > 0)
18508 || (htab->root.iplt && htab->root.iplt->size > 0))
18509 {
18510 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18511 for (input_bfd = info->input_bfds;
18512 input_bfd != NULL;
18513 input_bfd = input_bfd->link.next)
18514 {
18515 struct arm_local_iplt_info **local_iplt;
18516 unsigned int i, num_syms;
18517
18518 local_iplt = elf32_arm_local_iplt (input_bfd);
18519 if (local_iplt != NULL)
18520 {
18521 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18522 for (i = 0; i < num_syms; i++)
18523 if (local_iplt[i] != NULL
18524 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18525 &local_iplt[i]->root,
18526 &local_iplt[i]->arm))
18527 return FALSE;
18528 }
18529 }
18530 }
18531 if (htab->dt_tlsdesc_plt != 0)
18532 {
18533 /* Mapping symbols for the lazy tls trampoline. */
18534 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18535 return FALSE;
18536
18537 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18538 htab->dt_tlsdesc_plt + 24))
18539 return FALSE;
18540 }
18541 if (htab->tls_trampoline != 0)
18542 {
18543 /* Mapping symbols for the tls trampoline. */
18544 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18545 return FALSE;
18546#ifdef FOUR_WORD_PLT
18547 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18548 htab->tls_trampoline + 12))
18549 return FALSE;
18550#endif
18551 }
18552
18553 return TRUE;
18554}
18555
18556/* Filter normal symbols of CMSE entry functions of ABFD to include in
18557 the import library. All SYMCOUNT symbols of ABFD can be examined
18558 from their pointers in SYMS. Pointers of symbols to keep should be
18559 stored continuously at the beginning of that array.
18560
18561 Returns the number of symbols to keep. */
18562
18563static unsigned int
18564elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18565 struct bfd_link_info *info,
18566 asymbol **syms, long symcount)
18567{
18568 size_t maxnamelen;
18569 char *cmse_name;
18570 long src_count, dst_count = 0;
18571 struct elf32_arm_link_hash_table *htab;
18572
18573 htab = elf32_arm_hash_table (info);
18574 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18575 symcount = 0;
18576
18577 maxnamelen = 128;
18578 cmse_name = (char *) bfd_malloc (maxnamelen);
18579 for (src_count = 0; src_count < symcount; src_count++)
18580 {
18581 struct elf32_arm_link_hash_entry *cmse_hash;
18582 asymbol *sym;
18583 flagword flags;
18584 char *name;
18585 size_t namelen;
18586
18587 sym = syms[src_count];
18588 flags = sym->flags;
18589 name = (char *) bfd_asymbol_name (sym);
18590
18591 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18592 continue;
18593 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18594 continue;
18595
18596 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18597 if (namelen > maxnamelen)
18598 {
18599 cmse_name = (char *)
18600 bfd_realloc (cmse_name, namelen);
18601 maxnamelen = namelen;
18602 }
18603 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18604 cmse_hash = (struct elf32_arm_link_hash_entry *)
18605 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18606
18607 if (!cmse_hash
18608 || (cmse_hash->root.root.type != bfd_link_hash_defined
18609 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18610 || cmse_hash->root.type != STT_FUNC)
18611 continue;
18612
18613 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18614 continue;
18615
18616 syms[dst_count++] = sym;
18617 }
18618 free (cmse_name);
18619
18620 syms[dst_count] = NULL;
18621
18622 return dst_count;
18623}
18624
18625/* Filter symbols of ABFD to include in the import library. All
18626 SYMCOUNT symbols of ABFD can be examined from their pointers in
18627 SYMS. Pointers of symbols to keep should be stored continuously at
18628 the beginning of that array.
18629
18630 Returns the number of symbols to keep. */
18631
18632static unsigned int
18633elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18634 struct bfd_link_info *info,
18635 asymbol **syms, long symcount)
18636{
18637 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18638
18639 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18640 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18641 library to be a relocatable object file. */
18642 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18643 if (globals->cmse_implib)
18644 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18645 else
18646 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18647}
18648
18649/* Allocate target specific section data. */
18650
18651static bfd_boolean
18652elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18653{
18654 if (!sec->used_by_bfd)
18655 {
18656 _arm_elf_section_data *sdata;
18657 bfd_size_type amt = sizeof (*sdata);
18658
18659 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18660 if (sdata == NULL)
18661 return FALSE;
18662 sec->used_by_bfd = sdata;
18663 }
18664
18665 return _bfd_elf_new_section_hook (abfd, sec);
18666}
18667
18668
18669/* Used to order a list of mapping symbols by address. */
18670
18671static int
18672elf32_arm_compare_mapping (const void * a, const void * b)
18673{
18674 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18675 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18676
18677 if (amap->vma > bmap->vma)
18678 return 1;
18679 else if (amap->vma < bmap->vma)
18680 return -1;
18681 else if (amap->type > bmap->type)
18682 /* Ensure results do not depend on the host qsort for objects with
18683 multiple mapping symbols at the same address by sorting on type
18684 after vma. */
18685 return 1;
18686 else if (amap->type < bmap->type)
18687 return -1;
18688 else
18689 return 0;
18690}
18691
18692/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18693
18694static unsigned long
18695offset_prel31 (unsigned long addr, bfd_vma offset)
18696{
18697 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18698}
18699
18700/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18701 relocations. */
18702
18703static void
18704copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18705{
18706 unsigned long first_word = bfd_get_32 (output_bfd, from);
18707 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18708
18709 /* High bit of first word is supposed to be zero. */
18710 if ((first_word & 0x80000000ul) == 0)
18711 first_word = offset_prel31 (first_word, offset);
18712
18713 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18714 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18715 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18716 second_word = offset_prel31 (second_word, offset);
18717
18718 bfd_put_32 (output_bfd, first_word, to);
18719 bfd_put_32 (output_bfd, second_word, to + 4);
18720}
18721
18722/* Data for make_branch_to_a8_stub(). */
18723
18724struct a8_branch_to_stub_data
18725{
18726 asection *writing_section;
18727 bfd_byte *contents;
18728};
18729
18730
18731/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18732 places for a particular section. */
18733
18734static bfd_boolean
18735make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18736 void *in_arg)
18737{
18738 struct elf32_arm_stub_hash_entry *stub_entry;
18739 struct a8_branch_to_stub_data *data;
18740 bfd_byte *contents;
18741 unsigned long branch_insn;
18742 bfd_vma veneered_insn_loc, veneer_entry_loc;
18743 bfd_signed_vma branch_offset;
18744 bfd *abfd;
18745 unsigned int loc;
18746
18747 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18748 data = (struct a8_branch_to_stub_data *) in_arg;
18749
18750 if (stub_entry->target_section != data->writing_section
18751 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18752 return TRUE;
18753
18754 contents = data->contents;
18755
18756 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18757 generated when both source and target are in the same section. */
18758 veneered_insn_loc = stub_entry->target_section->output_section->vma
18759 + stub_entry->target_section->output_offset
18760 + stub_entry->source_value;
18761
18762 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18763 + stub_entry->stub_sec->output_offset
18764 + stub_entry->stub_offset;
18765
18766 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18767 veneered_insn_loc &= ~3u;
18768
18769 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18770
18771 abfd = stub_entry->target_section->owner;
18772 loc = stub_entry->source_value;
18773
18774 /* We attempt to avoid this condition by setting stubs_always_after_branch
18775 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18776 This check is just to be on the safe side... */
18777 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18778 {
18779 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18780 "allocated in unsafe location"), abfd);
18781 return FALSE;
18782 }
18783
18784 switch (stub_entry->stub_type)
18785 {
18786 case arm_stub_a8_veneer_b:
18787 case arm_stub_a8_veneer_b_cond:
18788 branch_insn = 0xf0009000;
18789 goto jump24;
18790
18791 case arm_stub_a8_veneer_blx:
18792 branch_insn = 0xf000e800;
18793 goto jump24;
18794
18795 case arm_stub_a8_veneer_bl:
18796 {
18797 unsigned int i1, j1, i2, j2, s;
18798
18799 branch_insn = 0xf000d000;
18800
18801 jump24:
18802 if (branch_offset < -16777216 || branch_offset > 16777214)
18803 {
18804 /* There's not much we can do apart from complain if this
18805 happens. */
18806 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18807 "of range (input file too large)"), abfd);
18808 return FALSE;
18809 }
18810
18811 /* i1 = not(j1 eor s), so:
18812 not i1 = j1 eor s
18813 j1 = (not i1) eor s. */
18814
18815 branch_insn |= (branch_offset >> 1) & 0x7ff;
18816 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18817 i2 = (branch_offset >> 22) & 1;
18818 i1 = (branch_offset >> 23) & 1;
18819 s = (branch_offset >> 24) & 1;
18820 j1 = (!i1) ^ s;
18821 j2 = (!i2) ^ s;
18822 branch_insn |= j2 << 11;
18823 branch_insn |= j1 << 13;
18824 branch_insn |= s << 26;
18825 }
18826 break;
18827
18828 default:
18829 BFD_FAIL ();
18830 return FALSE;
18831 }
18832
18833 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18834 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18835
18836 return TRUE;
18837}
18838
18839/* Beginning of stm32l4xx work-around. */
18840
18841/* Functions encoding instructions necessary for the emission of the
18842 fix-stm32l4xx-629360.
18843 Encoding is extracted from the
18844 ARM (C) Architecture Reference Manual
18845 ARMv7-A and ARMv7-R edition
18846 ARM DDI 0406C.b (ID072512). */
18847
18848static inline bfd_vma
18849create_instruction_branch_absolute (int branch_offset)
18850{
18851 /* A8.8.18 B (A8-334)
18852 B target_address (Encoding T4). */
18853 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18854 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18855 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18856
18857 int s = ((branch_offset & 0x1000000) >> 24);
18858 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18859 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18860
18861 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18862 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18863
18864 bfd_vma patched_inst = 0xf0009000
18865 | s << 26 /* S. */
18866 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18867 | j1 << 13 /* J1. */
18868 | j2 << 11 /* J2. */
18869 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18870
18871 return patched_inst;
18872}
18873
18874static inline bfd_vma
18875create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18876{
18877 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18878 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18879 bfd_vma patched_inst = 0xe8900000
18880 | (/*W=*/wback << 21)
18881 | (base_reg << 16)
18882 | (reg_mask & 0x0000ffff);
18883
18884 return patched_inst;
18885}
18886
18887static inline bfd_vma
18888create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18889{
18890 /* A8.8.60 LDMDB/LDMEA (A8-402)
18891 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18892 bfd_vma patched_inst = 0xe9100000
18893 | (/*W=*/wback << 21)
18894 | (base_reg << 16)
18895 | (reg_mask & 0x0000ffff);
18896
18897 return patched_inst;
18898}
18899
18900static inline bfd_vma
18901create_instruction_mov (int target_reg, int source_reg)
18902{
18903 /* A8.8.103 MOV (register) (A8-486)
18904 MOV Rd, Rm (Encoding T1). */
18905 bfd_vma patched_inst = 0x4600
18906 | (target_reg & 0x7)
18907 | ((target_reg & 0x8) >> 3) << 7
18908 | (source_reg << 3);
18909
18910 return patched_inst;
18911}
18912
18913static inline bfd_vma
18914create_instruction_sub (int target_reg, int source_reg, int value)
18915{
18916 /* A8.8.221 SUB (immediate) (A8-708)
18917 SUB Rd, Rn, #value (Encoding T3). */
18918 bfd_vma patched_inst = 0xf1a00000
18919 | (target_reg << 8)
18920 | (source_reg << 16)
18921 | (/*S=*/0 << 20)
18922 | ((value & 0x800) >> 11) << 26
18923 | ((value & 0x700) >> 8) << 12
18924 | (value & 0x0ff);
18925
18926 return patched_inst;
18927}
18928
18929static inline bfd_vma
18930create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18931 int first_reg)
18932{
18933 /* A8.8.332 VLDM (A8-922)
18934 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18935 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18936 | (/*W=*/wback << 21)
18937 | (base_reg << 16)
18938 | (num_words & 0x000000ff)
18939 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18940 | (first_reg & 0x00000001) << 22;
18941
18942 return patched_inst;
18943}
18944
18945static inline bfd_vma
18946create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18947 int first_reg)
18948{
18949 /* A8.8.332 VLDM (A8-922)
18950 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18951 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18952 | (base_reg << 16)
18953 | (num_words & 0x000000ff)
18954 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18955 | (first_reg & 0x00000001) << 22;
18956
18957 return patched_inst;
18958}
18959
18960static inline bfd_vma
18961create_instruction_udf_w (int value)
18962{
18963 /* A8.8.247 UDF (A8-758)
18964 Undefined (Encoding T2). */
18965 bfd_vma patched_inst = 0xf7f0a000
18966 | (value & 0x00000fff)
18967 | (value & 0x000f0000) << 16;
18968
18969 return patched_inst;
18970}
18971
18972static inline bfd_vma
18973create_instruction_udf (int value)
18974{
18975 /* A8.8.247 UDF (A8-758)
18976 Undefined (Encoding T1). */
18977 bfd_vma patched_inst = 0xde00
18978 | (value & 0xff);
18979
18980 return patched_inst;
18981}
18982
18983/* Functions writing an instruction in memory, returning the next
18984 memory position to write to. */
18985
18986static inline bfd_byte *
18987push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18988 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18989{
18990 put_thumb2_insn (htab, output_bfd, insn, pt);
18991 return pt + 4;
18992}
18993
18994static inline bfd_byte *
18995push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18996 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18997{
18998 put_thumb_insn (htab, output_bfd, insn, pt);
18999 return pt + 2;
19000}
19001
19002/* Function filling up a region in memory with T1 and T2 UDFs taking
19003 care of alignment. */
19004
19005static bfd_byte *
19006stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
19007 bfd * output_bfd,
19008 const bfd_byte * const base_stub_contents,
19009 bfd_byte * const from_stub_contents,
19010 const bfd_byte * const end_stub_contents)
19011{
19012 bfd_byte *current_stub_contents = from_stub_contents;
19013
19014 /* Fill the remaining of the stub with deterministic contents : UDF
19015 instructions.
19016 Check if realignment is needed on modulo 4 frontier using T1, to
19017 further use T2. */
19018 if ((current_stub_contents < end_stub_contents)
19019 && !((current_stub_contents - base_stub_contents) % 2)
19020 && ((current_stub_contents - base_stub_contents) % 4))
19021 current_stub_contents =
19022 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19023 create_instruction_udf (0));
19024
19025 for (; current_stub_contents < end_stub_contents;)
19026 current_stub_contents =
19027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19028 create_instruction_udf_w (0));
19029
19030 return current_stub_contents;
19031}
19032
19033/* Functions writing the stream of instructions equivalent to the
19034 derived sequence for ldmia, ldmdb, vldm respectively. */
19035
19036static void
19037stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
19038 bfd * output_bfd,
19039 const insn32 initial_insn,
19040 const bfd_byte *const initial_insn_addr,
19041 bfd_byte *const base_stub_contents)
19042{
19043 int wback = (initial_insn & 0x00200000) >> 21;
19044 int ri, rn = (initial_insn & 0x000F0000) >> 16;
19045 int insn_all_registers = initial_insn & 0x0000ffff;
19046 int insn_low_registers, insn_high_registers;
19047 int usable_register_mask;
19048 int nb_registers = elf32_arm_popcount (insn_all_registers);
19049 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19050 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19051 bfd_byte *current_stub_contents = base_stub_contents;
19052
19053 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
19054
19055 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19056 smaller than 8 registers load sequences that do not cause the
19057 hardware issue. */
19058 if (nb_registers <= 8)
19059 {
19060 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19061 current_stub_contents =
19062 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19063 initial_insn);
19064
19065 /* B initial_insn_addr+4. */
19066 if (!restore_pc)
19067 current_stub_contents =
19068 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19069 create_instruction_branch_absolute
19070 (initial_insn_addr - current_stub_contents));
19071
19072 /* Fill the remaining of the stub with deterministic contents. */
19073 current_stub_contents =
19074 stm32l4xx_fill_stub_udf (htab, output_bfd,
19075 base_stub_contents, current_stub_contents,
19076 base_stub_contents +
19077 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19078
19079 return;
19080 }
19081
19082 /* - reg_list[13] == 0. */
19083 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19084
19085 /* - reg_list[14] & reg_list[15] != 1. */
19086 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19087
19088 /* - if (wback==1) reg_list[rn] == 0. */
19089 BFD_ASSERT (!wback || !restore_rn);
19090
19091 /* - nb_registers > 8. */
19092 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19093
19094 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19095
19096 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19097 - One with the 7 lowest registers (register mask 0x007F)
19098 This LDM will finally contain between 2 and 7 registers
19099 - One with the 7 highest registers (register mask 0xDF80)
19100 This ldm will finally contain between 2 and 7 registers. */
19101 insn_low_registers = insn_all_registers & 0x007F;
19102 insn_high_registers = insn_all_registers & 0xDF80;
19103
19104 /* A spare register may be needed during this veneer to temporarily
19105 handle the base register. This register will be restored with the
19106 last LDM operation.
19107 The usable register may be any general purpose register (that
19108 excludes PC, SP, LR : register mask is 0x1FFF). */
19109 usable_register_mask = 0x1FFF;
19110
19111 /* Generate the stub function. */
19112 if (wback)
19113 {
19114 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19115 current_stub_contents =
19116 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19117 create_instruction_ldmia
19118 (rn, /*wback=*/1, insn_low_registers));
19119
19120 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19121 current_stub_contents =
19122 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19123 create_instruction_ldmia
19124 (rn, /*wback=*/1, insn_high_registers));
19125 if (!restore_pc)
19126 {
19127 /* B initial_insn_addr+4. */
19128 current_stub_contents =
19129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19130 create_instruction_branch_absolute
19131 (initial_insn_addr - current_stub_contents));
19132 }
19133 }
19134 else /* if (!wback). */
19135 {
19136 ri = rn;
19137
19138 /* If Rn is not part of the high-register-list, move it there. */
19139 if (!(insn_high_registers & (1 << rn)))
19140 {
19141 /* Choose a Ri in the high-register-list that will be restored. */
19142 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19143
19144 /* MOV Ri, Rn. */
19145 current_stub_contents =
19146 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19147 create_instruction_mov (ri, rn));
19148 }
19149
19150 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19151 current_stub_contents =
19152 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19153 create_instruction_ldmia
19154 (ri, /*wback=*/1, insn_low_registers));
19155
19156 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19157 current_stub_contents =
19158 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19159 create_instruction_ldmia
19160 (ri, /*wback=*/0, insn_high_registers));
19161
19162 if (!restore_pc)
19163 {
19164 /* B initial_insn_addr+4. */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_branch_absolute
19168 (initial_insn_addr - current_stub_contents));
19169 }
19170 }
19171
19172 /* Fill the remaining of the stub with deterministic contents. */
19173 current_stub_contents =
19174 stm32l4xx_fill_stub_udf (htab, output_bfd,
19175 base_stub_contents, current_stub_contents,
19176 base_stub_contents +
19177 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19178}
19179
19180static void
19181stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19182 bfd * output_bfd,
19183 const insn32 initial_insn,
19184 const bfd_byte *const initial_insn_addr,
19185 bfd_byte *const base_stub_contents)
19186{
19187 int wback = (initial_insn & 0x00200000) >> 21;
19188 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19189 int insn_all_registers = initial_insn & 0x0000ffff;
19190 int insn_low_registers, insn_high_registers;
19191 int usable_register_mask;
19192 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19193 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19194 int nb_registers = elf32_arm_popcount (insn_all_registers);
19195 bfd_byte *current_stub_contents = base_stub_contents;
19196
19197 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19198
19199 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19200 smaller than 8 registers load sequences that do not cause the
19201 hardware issue. */
19202 if (nb_registers <= 8)
19203 {
19204 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19205 current_stub_contents =
19206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19207 initial_insn);
19208
19209 /* B initial_insn_addr+4. */
19210 current_stub_contents =
19211 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19212 create_instruction_branch_absolute
19213 (initial_insn_addr - current_stub_contents));
19214
19215 /* Fill the remaining of the stub with deterministic contents. */
19216 current_stub_contents =
19217 stm32l4xx_fill_stub_udf (htab, output_bfd,
19218 base_stub_contents, current_stub_contents,
19219 base_stub_contents +
19220 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19221
19222 return;
19223 }
19224
19225 /* - reg_list[13] == 0. */
19226 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19227
19228 /* - reg_list[14] & reg_list[15] != 1. */
19229 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19230
19231 /* - if (wback==1) reg_list[rn] == 0. */
19232 BFD_ASSERT (!wback || !restore_rn);
19233
19234 /* - nb_registers > 8. */
19235 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19236
19237 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19238
19239 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19240 - One with the 7 lowest registers (register mask 0x007F)
19241 This LDM will finally contain between 2 and 7 registers
19242 - One with the 7 highest registers (register mask 0xDF80)
19243 This ldm will finally contain between 2 and 7 registers. */
19244 insn_low_registers = insn_all_registers & 0x007F;
19245 insn_high_registers = insn_all_registers & 0xDF80;
19246
19247 /* A spare register may be needed during this veneer to temporarily
19248 handle the base register. This register will be restored with
19249 the last LDM operation.
19250 The usable register may be any general purpose register (that excludes
19251 PC, SP, LR : register mask is 0x1FFF). */
19252 usable_register_mask = 0x1FFF;
19253
19254 /* Generate the stub function. */
19255 if (!wback && !restore_pc && !restore_rn)
19256 {
19257 /* Choose a Ri in the low-register-list that will be restored. */
19258 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19259
19260 /* MOV Ri, Rn. */
19261 current_stub_contents =
19262 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19263 create_instruction_mov (ri, rn));
19264
19265 /* LDMDB Ri!, {R-high-register-list}. */
19266 current_stub_contents =
19267 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19268 create_instruction_ldmdb
19269 (ri, /*wback=*/1, insn_high_registers));
19270
19271 /* LDMDB Ri, {R-low-register-list}. */
19272 current_stub_contents =
19273 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19274 create_instruction_ldmdb
19275 (ri, /*wback=*/0, insn_low_registers));
19276
19277 /* B initial_insn_addr+4. */
19278 current_stub_contents =
19279 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19280 create_instruction_branch_absolute
19281 (initial_insn_addr - current_stub_contents));
19282 }
19283 else if (wback && !restore_pc && !restore_rn)
19284 {
19285 /* LDMDB Rn!, {R-high-register-list}. */
19286 current_stub_contents =
19287 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19288 create_instruction_ldmdb
19289 (rn, /*wback=*/1, insn_high_registers));
19290
19291 /* LDMDB Rn!, {R-low-register-list}. */
19292 current_stub_contents =
19293 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19294 create_instruction_ldmdb
19295 (rn, /*wback=*/1, insn_low_registers));
19296
19297 /* B initial_insn_addr+4. */
19298 current_stub_contents =
19299 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19300 create_instruction_branch_absolute
19301 (initial_insn_addr - current_stub_contents));
19302 }
19303 else if (!wback && restore_pc && !restore_rn)
19304 {
19305 /* Choose a Ri in the high-register-list that will be restored. */
19306 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19307
19308 /* SUB Ri, Rn, #(4*nb_registers). */
19309 current_stub_contents =
19310 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19311 create_instruction_sub (ri, rn, (4 * nb_registers)));
19312
19313 /* LDMIA Ri!, {R-low-register-list}. */
19314 current_stub_contents =
19315 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19316 create_instruction_ldmia
19317 (ri, /*wback=*/1, insn_low_registers));
19318
19319 /* LDMIA Ri, {R-high-register-list}. */
19320 current_stub_contents =
19321 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19322 create_instruction_ldmia
19323 (ri, /*wback=*/0, insn_high_registers));
19324 }
19325 else if (wback && restore_pc && !restore_rn)
19326 {
19327 /* Choose a Ri in the high-register-list that will be restored. */
19328 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19329
19330 /* SUB Rn, Rn, #(4*nb_registers) */
19331 current_stub_contents =
19332 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19333 create_instruction_sub (rn, rn, (4 * nb_registers)));
19334
19335 /* MOV Ri, Rn. */
19336 current_stub_contents =
19337 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19338 create_instruction_mov (ri, rn));
19339
19340 /* LDMIA Ri!, {R-low-register-list}. */
19341 current_stub_contents =
19342 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19343 create_instruction_ldmia
19344 (ri, /*wback=*/1, insn_low_registers));
19345
19346 /* LDMIA Ri, {R-high-register-list}. */
19347 current_stub_contents =
19348 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19349 create_instruction_ldmia
19350 (ri, /*wback=*/0, insn_high_registers));
19351 }
19352 else if (!wback && !restore_pc && restore_rn)
19353 {
19354 ri = rn;
19355 if (!(insn_low_registers & (1 << rn)))
19356 {
19357 /* Choose a Ri in the low-register-list that will be restored. */
19358 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19359
19360 /* MOV Ri, Rn. */
19361 current_stub_contents =
19362 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19363 create_instruction_mov (ri, rn));
19364 }
19365
19366 /* LDMDB Ri!, {R-high-register-list}. */
19367 current_stub_contents =
19368 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19369 create_instruction_ldmdb
19370 (ri, /*wback=*/1, insn_high_registers));
19371
19372 /* LDMDB Ri, {R-low-register-list}. */
19373 current_stub_contents =
19374 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19375 create_instruction_ldmdb
19376 (ri, /*wback=*/0, insn_low_registers));
19377
19378 /* B initial_insn_addr+4. */
19379 current_stub_contents =
19380 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19381 create_instruction_branch_absolute
19382 (initial_insn_addr - current_stub_contents));
19383 }
19384 else if (!wback && restore_pc && restore_rn)
19385 {
19386 ri = rn;
19387 if (!(insn_high_registers & (1 << rn)))
19388 {
19389 /* Choose a Ri in the high-register-list that will be restored. */
19390 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19391 }
19392
19393 /* SUB Ri, Rn, #(4*nb_registers). */
19394 current_stub_contents =
19395 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19396 create_instruction_sub (ri, rn, (4 * nb_registers)));
19397
19398 /* LDMIA Ri!, {R-low-register-list}. */
19399 current_stub_contents =
19400 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19401 create_instruction_ldmia
19402 (ri, /*wback=*/1, insn_low_registers));
19403
19404 /* LDMIA Ri, {R-high-register-list}. */
19405 current_stub_contents =
19406 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19407 create_instruction_ldmia
19408 (ri, /*wback=*/0, insn_high_registers));
19409 }
19410 else if (wback && restore_rn)
19411 {
19412 /* The assembler should not have accepted to encode this. */
19413 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19414 "undefined behavior.\n");
19415 }
19416
19417 /* Fill the remaining of the stub with deterministic contents. */
19418 current_stub_contents =
19419 stm32l4xx_fill_stub_udf (htab, output_bfd,
19420 base_stub_contents, current_stub_contents,
19421 base_stub_contents +
19422 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19423
19424}
19425
19426static void
19427stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19428 bfd * output_bfd,
19429 const insn32 initial_insn,
19430 const bfd_byte *const initial_insn_addr,
19431 bfd_byte *const base_stub_contents)
19432{
19433 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19434 bfd_byte *current_stub_contents = base_stub_contents;
19435
19436 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19437
19438 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19439 smaller than 8 words load sequences that do not cause the
19440 hardware issue. */
19441 if (num_words <= 8)
19442 {
19443 /* Untouched instruction. */
19444 current_stub_contents =
19445 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19446 initial_insn);
19447
19448 /* B initial_insn_addr+4. */
19449 current_stub_contents =
19450 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19451 create_instruction_branch_absolute
19452 (initial_insn_addr - current_stub_contents));
19453 }
19454 else
19455 {
19456 bfd_boolean is_dp = /* DP encoding. */
19457 (initial_insn & 0xfe100f00) == 0xec100b00;
19458 bfd_boolean is_ia_nobang = /* (IA without !). */
19459 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19460 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19461 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19462 bfd_boolean is_db_bang = /* (DB with !). */
19463 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19464 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19465 /* d = UInt (Vd:D);. */
19466 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19467 | (((unsigned int)initial_insn << 9) >> 31);
19468
19469 /* Compute the number of 8-words chunks needed to split. */
19470 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19471 int chunk;
19472
19473 /* The test coverage has been done assuming the following
19474 hypothesis that exactly one of the previous is_ predicates is
19475 true. */
19476 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19477 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19478
19479 /* We treat the cutting of the words in one pass for all
19480 cases, then we emit the adjustments:
19481
19482 vldm rx, {...}
19483 -> vldm rx!, {8_words_or_less} for each needed 8_word
19484 -> sub rx, rx, #size (list)
19485
19486 vldm rx!, {...}
19487 -> vldm rx!, {8_words_or_less} for each needed 8_word
19488 This also handles vpop instruction (when rx is sp)
19489
19490 vldmd rx!, {...}
19491 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19492 for (chunk = 0; chunk < chunks; ++chunk)
19493 {
19494 bfd_vma new_insn = 0;
19495
19496 if (is_ia_nobang || is_ia_bang)
19497 {
19498 new_insn = create_instruction_vldmia
19499 (base_reg,
19500 is_dp,
19501 /*wback= . */1,
19502 chunks - (chunk + 1) ?
19503 8 : num_words - chunk * 8,
19504 first_reg + chunk * 8);
19505 }
19506 else if (is_db_bang)
19507 {
19508 new_insn = create_instruction_vldmdb
19509 (base_reg,
19510 is_dp,
19511 chunks - (chunk + 1) ?
19512 8 : num_words - chunk * 8,
19513 first_reg + chunk * 8);
19514 }
19515
19516 if (new_insn)
19517 current_stub_contents =
19518 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19519 new_insn);
19520 }
19521
19522 /* Only this case requires the base register compensation
19523 subtract. */
19524 if (is_ia_nobang)
19525 {
19526 current_stub_contents =
19527 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19528 create_instruction_sub
19529 (base_reg, base_reg, 4*num_words));
19530 }
19531
19532 /* B initial_insn_addr+4. */
19533 current_stub_contents =
19534 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19535 create_instruction_branch_absolute
19536 (initial_insn_addr - current_stub_contents));
19537 }
19538
19539 /* Fill the remaining of the stub with deterministic contents. */
19540 current_stub_contents =
19541 stm32l4xx_fill_stub_udf (htab, output_bfd,
19542 base_stub_contents, current_stub_contents,
19543 base_stub_contents +
19544 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19545}
19546
19547static void
19548stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19549 bfd * output_bfd,
19550 const insn32 wrong_insn,
19551 const bfd_byte *const wrong_insn_addr,
19552 bfd_byte *const stub_contents)
19553{
19554 if (is_thumb2_ldmia (wrong_insn))
19555 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19556 wrong_insn, wrong_insn_addr,
19557 stub_contents);
19558 else if (is_thumb2_ldmdb (wrong_insn))
19559 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19560 wrong_insn, wrong_insn_addr,
19561 stub_contents);
19562 else if (is_thumb2_vldm (wrong_insn))
19563 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19564 wrong_insn, wrong_insn_addr,
19565 stub_contents);
19566}
19567
19568/* End of stm32l4xx work-around. */
19569
19570
19571/* Do code byteswapping. Return FALSE afterwards so that the section is
19572 written out as normal. */
19573
19574static bfd_boolean
19575elf32_arm_write_section (bfd *output_bfd,
19576 struct bfd_link_info *link_info,
19577 asection *sec,
19578 bfd_byte *contents)
19579{
19580 unsigned int mapcount, errcount;
19581 _arm_elf_section_data *arm_data;
19582 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19583 elf32_arm_section_map *map;
19584 elf32_vfp11_erratum_list *errnode;
19585 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19586 bfd_vma ptr;
19587 bfd_vma end;
19588 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19589 bfd_byte tmp;
19590 unsigned int i;
19591
19592 if (globals == NULL)
19593 return FALSE;
19594
19595 /* If this section has not been allocated an _arm_elf_section_data
19596 structure then we cannot record anything. */
19597 arm_data = get_arm_elf_section_data (sec);
19598 if (arm_data == NULL)
19599 return FALSE;
19600
19601 mapcount = arm_data->mapcount;
19602 map = arm_data->map;
19603 errcount = arm_data->erratumcount;
19604
19605 if (errcount != 0)
19606 {
19607 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19608
19609 for (errnode = arm_data->erratumlist; errnode != 0;
19610 errnode = errnode->next)
19611 {
19612 bfd_vma target = errnode->vma - offset;
19613
19614 switch (errnode->type)
19615 {
19616 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19617 {
19618 bfd_vma branch_to_veneer;
19619 /* Original condition code of instruction, plus bit mask for
19620 ARM B instruction. */
19621 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19622 | 0x0a000000;
19623
19624 /* The instruction is before the label. */
19625 target -= 4;
19626
19627 /* Above offset included in -4 below. */
19628 branch_to_veneer = errnode->u.b.veneer->vma
19629 - errnode->vma - 4;
19630
19631 if ((signed) branch_to_veneer < -(1 << 25)
19632 || (signed) branch_to_veneer >= (1 << 25))
19633 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19634 "range"), output_bfd);
19635
19636 insn |= (branch_to_veneer >> 2) & 0xffffff;
19637 contents[endianflip ^ target] = insn & 0xff;
19638 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19639 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19640 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19641 }
19642 break;
19643
19644 case VFP11_ERRATUM_ARM_VENEER:
19645 {
19646 bfd_vma branch_from_veneer;
19647 unsigned int insn;
19648
19649 /* Take size of veneer into account. */
19650 branch_from_veneer = errnode->u.v.branch->vma
19651 - errnode->vma - 12;
19652
19653 if ((signed) branch_from_veneer < -(1 << 25)
19654 || (signed) branch_from_veneer >= (1 << 25))
19655 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19656 "range"), output_bfd);
19657
19658 /* Original instruction. */
19659 insn = errnode->u.v.branch->u.b.vfp_insn;
19660 contents[endianflip ^ target] = insn & 0xff;
19661 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19662 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19663 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19664
19665 /* Branch back to insn after original insn. */
19666 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19667 contents[endianflip ^ (target + 4)] = insn & 0xff;
19668 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19669 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19670 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19671 }
19672 break;
19673
19674 default:
19675 abort ();
19676 }
19677 }
19678 }
19679
19680 if (arm_data->stm32l4xx_erratumcount != 0)
19681 {
19682 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19683 stm32l4xx_errnode != 0;
19684 stm32l4xx_errnode = stm32l4xx_errnode->next)
19685 {
19686 bfd_vma target = stm32l4xx_errnode->vma - offset;
19687
19688 switch (stm32l4xx_errnode->type)
19689 {
19690 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19691 {
19692 unsigned int insn;
19693 bfd_vma branch_to_veneer =
19694 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19695
19696 if ((signed) branch_to_veneer < -(1 << 24)
19697 || (signed) branch_to_veneer >= (1 << 24))
19698 {
19699 bfd_vma out_of_range =
19700 ((signed) branch_to_veneer < -(1 << 24)) ?
19701 - branch_to_veneer - (1 << 24) :
19702 ((signed) branch_to_veneer >= (1 << 24)) ?
19703 branch_to_veneer - (1 << 24) : 0;
19704
19705 _bfd_error_handler
19706 (_("%pB(%#" PRIx64 "): error: "
19707 "cannot create STM32L4XX veneer; "
19708 "jump out of range by %" PRId64 " bytes; "
19709 "cannot encode branch instruction"),
19710 output_bfd,
19711 (uint64_t) (stm32l4xx_errnode->vma - 4),
19712 (int64_t) out_of_range);
19713 continue;
19714 }
19715
19716 insn = create_instruction_branch_absolute
19717 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19718
19719 /* The instruction is before the label. */
19720 target -= 4;
19721
19722 put_thumb2_insn (globals, output_bfd,
19723 (bfd_vma) insn, contents + target);
19724 }
19725 break;
19726
19727 case STM32L4XX_ERRATUM_VENEER:
19728 {
19729 bfd_byte * veneer;
19730 bfd_byte * veneer_r;
19731 unsigned int insn;
19732
19733 veneer = contents + target;
19734 veneer_r = veneer
19735 + stm32l4xx_errnode->u.b.veneer->vma
19736 - stm32l4xx_errnode->vma - 4;
19737
19738 if ((signed) (veneer_r - veneer -
19739 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19740 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19741 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19742 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19743 || (signed) (veneer_r - veneer) >= (1 << 24))
19744 {
19745 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19746 "veneer"), output_bfd);
19747 continue;
19748 }
19749
19750 /* Original instruction. */
19751 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19752
19753 stm32l4xx_create_replacing_stub
19754 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19755 }
19756 break;
19757
19758 default:
19759 abort ();
19760 }
19761 }
19762 }
19763
19764 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19765 {
19766 arm_unwind_table_edit *edit_node
19767 = arm_data->u.exidx.unwind_edit_list;
19768 /* Now, sec->size is the size of the section we will write. The original
19769 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19770 markers) was sec->rawsize. (This isn't the case if we perform no
19771 edits, then rawsize will be zero and we should use size). */
19772 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19773 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19774 unsigned int in_index, out_index;
19775 bfd_vma add_to_offsets = 0;
19776
19777 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19778 {
19779 if (edit_node)
19780 {
19781 unsigned int edit_index = edit_node->index;
19782
19783 if (in_index < edit_index && in_index * 8 < input_size)
19784 {
19785 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19786 contents + in_index * 8, add_to_offsets);
19787 out_index++;
19788 in_index++;
19789 }
19790 else if (in_index == edit_index
19791 || (in_index * 8 >= input_size
19792 && edit_index == UINT_MAX))
19793 {
19794 switch (edit_node->type)
19795 {
19796 case DELETE_EXIDX_ENTRY:
19797 in_index++;
19798 add_to_offsets += 8;
19799 break;
19800
19801 case INSERT_EXIDX_CANTUNWIND_AT_END:
19802 {
19803 asection *text_sec = edit_node->linked_section;
19804 bfd_vma text_offset = text_sec->output_section->vma
19805 + text_sec->output_offset
19806 + text_sec->size;
19807 bfd_vma exidx_offset = offset + out_index * 8;
19808 unsigned long prel31_offset;
19809
19810 /* Note: this is meant to be equivalent to an
19811 R_ARM_PREL31 relocation. These synthetic
19812 EXIDX_CANTUNWIND markers are not relocated by the
19813 usual BFD method. */
19814 prel31_offset = (text_offset - exidx_offset)
19815 & 0x7ffffffful;
19816 if (bfd_link_relocatable (link_info))
19817 {
19818 /* Here relocation for new EXIDX_CANTUNWIND is
19819 created, so there is no need to
19820 adjust offset by hand. */
19821 prel31_offset = text_sec->output_offset
19822 + text_sec->size;
19823 }
19824
19825 /* First address we can't unwind. */
19826 bfd_put_32 (output_bfd, prel31_offset,
19827 &edited_contents[out_index * 8]);
19828
19829 /* Code for EXIDX_CANTUNWIND. */
19830 bfd_put_32 (output_bfd, 0x1,
19831 &edited_contents[out_index * 8 + 4]);
19832
19833 out_index++;
19834 add_to_offsets -= 8;
19835 }
19836 break;
19837 }
19838
19839 edit_node = edit_node->next;
19840 }
19841 }
19842 else
19843 {
19844 /* No more edits, copy remaining entries verbatim. */
19845 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19846 contents + in_index * 8, add_to_offsets);
19847 out_index++;
19848 in_index++;
19849 }
19850 }
19851
19852 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19853 bfd_set_section_contents (output_bfd, sec->output_section,
19854 edited_contents,
19855 (file_ptr) sec->output_offset, sec->size);
19856
19857 return TRUE;
19858 }
19859
19860 /* Fix code to point to Cortex-A8 erratum stubs. */
19861 if (globals->fix_cortex_a8)
19862 {
19863 struct a8_branch_to_stub_data data;
19864
19865 data.writing_section = sec;
19866 data.contents = contents;
19867
19868 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19869 & data);
19870 }
19871
19872 if (mapcount == 0)
19873 return FALSE;
19874
19875 if (globals->byteswap_code)
19876 {
19877 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19878
19879 ptr = map[0].vma;
19880 for (i = 0; i < mapcount; i++)
19881 {
19882 if (i == mapcount - 1)
19883 end = sec->size;
19884 else
19885 end = map[i + 1].vma;
19886
19887 switch (map[i].type)
19888 {
19889 case 'a':
19890 /* Byte swap code words. */
19891 while (ptr + 3 < end)
19892 {
19893 tmp = contents[ptr];
19894 contents[ptr] = contents[ptr + 3];
19895 contents[ptr + 3] = tmp;
19896 tmp = contents[ptr + 1];
19897 contents[ptr + 1] = contents[ptr + 2];
19898 contents[ptr + 2] = tmp;
19899 ptr += 4;
19900 }
19901 break;
19902
19903 case 't':
19904 /* Byte swap code halfwords. */
19905 while (ptr + 1 < end)
19906 {
19907 tmp = contents[ptr];
19908 contents[ptr] = contents[ptr + 1];
19909 contents[ptr + 1] = tmp;
19910 ptr += 2;
19911 }
19912 break;
19913
19914 case 'd':
19915 /* Leave data alone. */
19916 break;
19917 }
19918 ptr = end;
19919 }
19920 }
19921
19922 free (map);
19923 arm_data->mapcount = -1;
19924 arm_data->mapsize = 0;
19925 arm_data->map = NULL;
19926
19927 return FALSE;
19928}
19929
19930/* Mangle thumb function symbols as we read them in. */
19931
19932static bfd_boolean
19933elf32_arm_swap_symbol_in (bfd * abfd,
19934 const void *psrc,
19935 const void *pshn,
19936 Elf_Internal_Sym *dst)
19937{
19938 Elf_Internal_Shdr *symtab_hdr;
19939 const char *name = NULL;
19940
19941 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19942 return FALSE;
19943 dst->st_target_internal = 0;
19944
19945 /* New EABI objects mark thumb function symbols by setting the low bit of
19946 the address. */
19947 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19948 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19949 {
19950 if (dst->st_value & 1)
19951 {
19952 dst->st_value &= ~(bfd_vma) 1;
19953 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19954 ST_BRANCH_TO_THUMB);
19955 }
19956 else
19957 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19958 }
19959 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19960 {
19961 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19962 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19963 }
19964 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19965 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19966 else
19967 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19968
19969 /* Mark CMSE special symbols. */
19970 symtab_hdr = & elf_symtab_hdr (abfd);
19971 if (symtab_hdr->sh_size)
19972 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19973 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19974 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19975
19976 return TRUE;
19977}
19978
19979
19980/* Mangle thumb function symbols as we write them out. */
19981
19982static void
19983elf32_arm_swap_symbol_out (bfd *abfd,
19984 const Elf_Internal_Sym *src,
19985 void *cdst,
19986 void *shndx)
19987{
19988 Elf_Internal_Sym newsym;
19989
19990 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19991 of the address set, as per the new EABI. We do this unconditionally
19992 because objcopy does not set the elf header flags until after
19993 it writes out the symbol table. */
19994 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19995 {
19996 newsym = *src;
19997 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19998 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19999 if (newsym.st_shndx != SHN_UNDEF)
20000 {
20001 /* Do this only for defined symbols. At link type, the static
20002 linker will simulate the work of dynamic linker of resolving
20003 symbols and will carry over the thumbness of found symbols to
20004 the output symbol table. It's not clear how it happens, but
20005 the thumbness of undefined symbols can well be different at
20006 runtime, and writing '1' for them will be confusing for users
20007 and possibly for dynamic linker itself.
20008 */
20009 newsym.st_value |= 1;
20010 }
20011
20012 src = &newsym;
20013 }
20014 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
20015}
20016
20017/* Add the PT_ARM_EXIDX program header. */
20018
20019static bfd_boolean
20020elf32_arm_modify_segment_map (bfd *abfd,
20021 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20022{
20023 struct elf_segment_map *m;
20024 asection *sec;
20025
20026 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20027 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20028 {
20029 /* If there is already a PT_ARM_EXIDX header, then we do not
20030 want to add another one. This situation arises when running
20031 "strip"; the input binary already has the header. */
20032 m = elf_seg_map (abfd);
20033 while (m && m->p_type != PT_ARM_EXIDX)
20034 m = m->next;
20035 if (!m)
20036 {
20037 m = (struct elf_segment_map *)
20038 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
20039 if (m == NULL)
20040 return FALSE;
20041 m->p_type = PT_ARM_EXIDX;
20042 m->count = 1;
20043 m->sections[0] = sec;
20044
20045 m->next = elf_seg_map (abfd);
20046 elf_seg_map (abfd) = m;
20047 }
20048 }
20049
20050 return TRUE;
20051}
20052
20053/* We may add a PT_ARM_EXIDX program header. */
20054
20055static int
20056elf32_arm_additional_program_headers (bfd *abfd,
20057 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20058{
20059 asection *sec;
20060
20061 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20062 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20063 return 1;
20064 else
20065 return 0;
20066}
20067
20068/* Hook called by the linker routine which adds symbols from an object
20069 file. */
20070
20071static bfd_boolean
20072elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20073 Elf_Internal_Sym *sym, const char **namep,
20074 flagword *flagsp, asection **secp, bfd_vma *valp)
20075{
20076 if (elf32_arm_hash_table (info) == NULL)
20077 return FALSE;
20078
20079 if (elf32_arm_hash_table (info)->vxworks_p
20080 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20081 flagsp, secp, valp))
20082 return FALSE;
20083
20084 return TRUE;
20085}
20086
20087/* We use this to override swap_symbol_in and swap_symbol_out. */
20088const struct elf_size_info elf32_arm_size_info =
20089{
20090 sizeof (Elf32_External_Ehdr),
20091 sizeof (Elf32_External_Phdr),
20092 sizeof (Elf32_External_Shdr),
20093 sizeof (Elf32_External_Rel),
20094 sizeof (Elf32_External_Rela),
20095 sizeof (Elf32_External_Sym),
20096 sizeof (Elf32_External_Dyn),
20097 sizeof (Elf_External_Note),
20098 4,
20099 1,
20100 32, 2,
20101 ELFCLASS32, EV_CURRENT,
20102 bfd_elf32_write_out_phdrs,
20103 bfd_elf32_write_shdrs_and_ehdr,
20104 bfd_elf32_checksum_contents,
20105 bfd_elf32_write_relocs,
20106 elf32_arm_swap_symbol_in,
20107 elf32_arm_swap_symbol_out,
20108 bfd_elf32_slurp_reloc_table,
20109 bfd_elf32_slurp_symbol_table,
20110 bfd_elf32_swap_dyn_in,
20111 bfd_elf32_swap_dyn_out,
20112 bfd_elf32_swap_reloc_in,
20113 bfd_elf32_swap_reloc_out,
20114 bfd_elf32_swap_reloca_in,
20115 bfd_elf32_swap_reloca_out
20116};
20117
20118static bfd_vma
20119read_code32 (const bfd *abfd, const bfd_byte *addr)
20120{
20121 /* V7 BE8 code is always little endian. */
20122 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20123 return bfd_getl32 (addr);
20124
20125 return bfd_get_32 (abfd, addr);
20126}
20127
20128static bfd_vma
20129read_code16 (const bfd *abfd, const bfd_byte *addr)
20130{
20131 /* V7 BE8 code is always little endian. */
20132 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20133 return bfd_getl16 (addr);
20134
20135 return bfd_get_16 (abfd, addr);
20136}
20137
20138/* Return size of plt0 entry starting at ADDR
20139 or (bfd_vma) -1 if size can not be determined. */
20140
20141static bfd_vma
20142elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20143{
20144 bfd_vma first_word;
20145 bfd_vma plt0_size;
20146
20147 first_word = read_code32 (abfd, addr);
20148
20149 if (first_word == elf32_arm_plt0_entry[0])
20150 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20151 else if (first_word == elf32_thumb2_plt0_entry[0])
20152 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20153 else
20154 /* We don't yet handle this PLT format. */
20155 return (bfd_vma) -1;
20156
20157 return plt0_size;
20158}
20159
20160/* Return size of plt entry starting at offset OFFSET
20161 of plt section located at address START
20162 or (bfd_vma) -1 if size can not be determined. */
20163
20164static bfd_vma
20165elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20166{
20167 bfd_vma first_insn;
20168 bfd_vma plt_size = 0;
20169 const bfd_byte *addr = start + offset;
20170
20171 /* PLT entry size if fixed on Thumb-only platforms. */
20172 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20173 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20174
20175 /* Respect Thumb stub if necessary. */
20176 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20177 {
20178 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20179 }
20180
20181 /* Strip immediate from first add. */
20182 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20183
20184#ifdef FOUR_WORD_PLT
20185 if (first_insn == elf32_arm_plt_entry[0])
20186 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20187#else
20188 if (first_insn == elf32_arm_plt_entry_long[0])
20189 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20190 else if (first_insn == elf32_arm_plt_entry_short[0])
20191 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20192#endif
20193 else
20194 /* We don't yet handle this PLT format. */
20195 return (bfd_vma) -1;
20196
20197 return plt_size;
20198}
20199
20200/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20201
20202static long
20203elf32_arm_get_synthetic_symtab (bfd *abfd,
20204 long symcount ATTRIBUTE_UNUSED,
20205 asymbol **syms ATTRIBUTE_UNUSED,
20206 long dynsymcount,
20207 asymbol **dynsyms,
20208 asymbol **ret)
20209{
20210 asection *relplt;
20211 asymbol *s;
20212 arelent *p;
20213 long count, i, n;
20214 size_t size;
20215 Elf_Internal_Shdr *hdr;
20216 char *names;
20217 asection *plt;
20218 bfd_vma offset;
20219 bfd_byte *data;
20220
20221 *ret = NULL;
20222
20223 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20224 return 0;
20225
20226 if (dynsymcount <= 0)
20227 return 0;
20228
20229 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20230 if (relplt == NULL)
20231 return 0;
20232
20233 hdr = &elf_section_data (relplt)->this_hdr;
20234 if (hdr->sh_link != elf_dynsymtab (abfd)
20235 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20236 return 0;
20237
20238 plt = bfd_get_section_by_name (abfd, ".plt");
20239 if (plt == NULL)
20240 return 0;
20241
20242 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20243 return -1;
20244
20245 data = plt->contents;
20246 if (data == NULL)
20247 {
20248 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20249 return -1;
20250 bfd_cache_section_contents((asection *) plt, data);
20251 }
20252
20253 count = relplt->size / hdr->sh_entsize;
20254 size = count * sizeof (asymbol);
20255 p = relplt->relocation;
20256 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20257 {
20258 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20259 if (p->addend != 0)
20260 size += sizeof ("+0x") - 1 + 8;
20261 }
20262
20263 s = *ret = (asymbol *) bfd_malloc (size);
20264 if (s == NULL)
20265 return -1;
20266
20267 offset = elf32_arm_plt0_size (abfd, data);
20268 if (offset == (bfd_vma) -1)
20269 return -1;
20270
20271 names = (char *) (s + count);
20272 p = relplt->relocation;
20273 n = 0;
20274 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20275 {
20276 size_t len;
20277
20278 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20279 if (plt_size == (bfd_vma) -1)
20280 break;
20281
20282 *s = **p->sym_ptr_ptr;
20283 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20284 we are defining a symbol, ensure one of them is set. */
20285 if ((s->flags & BSF_LOCAL) == 0)
20286 s->flags |= BSF_GLOBAL;
20287 s->flags |= BSF_SYNTHETIC;
20288 s->section = plt;
20289 s->value = offset;
20290 s->name = names;
20291 s->udata.p = NULL;
20292 len = strlen ((*p->sym_ptr_ptr)->name);
20293 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20294 names += len;
20295 if (p->addend != 0)
20296 {
20297 char buf[30], *a;
20298
20299 memcpy (names, "+0x", sizeof ("+0x") - 1);
20300 names += sizeof ("+0x") - 1;
20301 bfd_sprintf_vma (abfd, buf, p->addend);
20302 for (a = buf; *a == '0'; ++a)
20303 ;
20304 len = strlen (a);
20305 memcpy (names, a, len);
20306 names += len;
20307 }
20308 memcpy (names, "@plt", sizeof ("@plt"));
20309 names += sizeof ("@plt");
20310 ++s, ++n;
20311 offset += plt_size;
20312 }
20313
20314 return n;
20315}
20316
20317static bfd_boolean
20318elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20319{
20320 if (hdr->sh_flags & SHF_ARM_PURECODE)
20321 *flags |= SEC_ELF_PURECODE;
20322 return TRUE;
20323}
20324
20325static flagword
20326elf32_arm_lookup_section_flags (char *flag_name)
20327{
20328 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20329 return SHF_ARM_PURECODE;
20330
20331 return SEC_NO_FLAGS;
20332}
20333
20334static unsigned int
20335elf32_arm_count_additional_relocs (asection *sec)
20336{
20337 struct _arm_elf_section_data *arm_data;
20338 arm_data = get_arm_elf_section_data (sec);
20339
20340 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20341}
20342
20343/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20344 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20345 FALSE otherwise. ISECTION is the best guess matching section from the
20346 input bfd IBFD, but it might be NULL. */
20347
20348static bfd_boolean
20349elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20350 bfd *obfd ATTRIBUTE_UNUSED,
20351 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20352 Elf_Internal_Shdr *osection)
20353{
20354 switch (osection->sh_type)
20355 {
20356 case SHT_ARM_EXIDX:
20357 {
20358 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20359 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20360 unsigned i = 0;
20361
20362 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20363 osection->sh_info = 0;
20364
20365 /* The sh_link field must be set to the text section associated with
20366 this index section. Unfortunately the ARM EHABI does not specify
20367 exactly how to determine this association. Our caller does try
20368 to match up OSECTION with its corresponding input section however
20369 so that is a good first guess. */
20370 if (isection != NULL
20371 && osection->bfd_section != NULL
20372 && isection->bfd_section != NULL
20373 && isection->bfd_section->output_section != NULL
20374 && isection->bfd_section->output_section == osection->bfd_section
20375 && iheaders != NULL
20376 && isection->sh_link > 0
20377 && isection->sh_link < elf_numsections (ibfd)
20378 && iheaders[isection->sh_link]->bfd_section != NULL
20379 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20380 )
20381 {
20382 for (i = elf_numsections (obfd); i-- > 0;)
20383 if (oheaders[i]->bfd_section
20384 == iheaders[isection->sh_link]->bfd_section->output_section)
20385 break;
20386 }
20387
20388 if (i == 0)
20389 {
20390 /* Failing that we have to find a matching section ourselves. If
20391 we had the output section name available we could compare that
20392 with input section names. Unfortunately we don't. So instead
20393 we use a simple heuristic and look for the nearest executable
20394 section before this one. */
20395 for (i = elf_numsections (obfd); i-- > 0;)
20396 if (oheaders[i] == osection)
20397 break;
20398 if (i == 0)
20399 break;
20400
20401 while (i-- > 0)
20402 if (oheaders[i]->sh_type == SHT_PROGBITS
20403 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20404 == (SHF_ALLOC | SHF_EXECINSTR))
20405 break;
20406 }
20407
20408 if (i)
20409 {
20410 osection->sh_link = i;
20411 /* If the text section was part of a group
20412 then the index section should be too. */
20413 if (oheaders[i]->sh_flags & SHF_GROUP)
20414 osection->sh_flags |= SHF_GROUP;
20415 return TRUE;
20416 }
20417 }
20418 break;
20419
20420 case SHT_ARM_PREEMPTMAP:
20421 osection->sh_flags = SHF_ALLOC;
20422 break;
20423
20424 case SHT_ARM_ATTRIBUTES:
20425 case SHT_ARM_DEBUGOVERLAY:
20426 case SHT_ARM_OVERLAYSECTION:
20427 default:
20428 break;
20429 }
20430
20431 return FALSE;
20432}
20433
20434/* Returns TRUE if NAME is an ARM mapping symbol.
20435 Traditionally the symbols $a, $d and $t have been used.
20436 The ARM ELF standard also defines $x (for A64 code). It also allows a
20437 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20438 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20439 not support them here. $t.x indicates the start of ThumbEE instructions. */
20440
20441static bfd_boolean
20442is_arm_mapping_symbol (const char * name)
20443{
20444 return name != NULL /* Paranoia. */
20445 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20446 the mapping symbols could have acquired a prefix.
20447 We do not support this here, since such symbols no
20448 longer conform to the ARM ELF ABI. */
20449 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20450 && (name[2] == 0 || name[2] == '.');
20451 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20452 any characters that follow the period are legal characters for the body
20453 of a symbol's name. For now we just assume that this is the case. */
20454}
20455
20456/* Make sure that mapping symbols in object files are not removed via the
20457 "strip --strip-unneeded" tool. These symbols are needed in order to
20458 correctly generate interworking veneers, and for byte swapping code
20459 regions. Once an object file has been linked, it is safe to remove the
20460 symbols as they will no longer be needed. */
20461
20462static void
20463elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20464{
20465 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20466 && sym->section != bfd_abs_section_ptr
20467 && is_arm_mapping_symbol (sym->name))
20468 sym->flags |= BSF_KEEP;
20469}
20470
20471#undef elf_backend_copy_special_section_fields
20472#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20473
20474#define ELF_ARCH bfd_arch_arm
20475#define ELF_TARGET_ID ARM_ELF_DATA
20476#define ELF_MACHINE_CODE EM_ARM
20477#ifdef __QNXTARGET__
20478#define ELF_MAXPAGESIZE 0x1000
20479#else
20480#define ELF_MAXPAGESIZE 0x10000
20481#endif
20482#define ELF_MINPAGESIZE 0x1000
20483#define ELF_COMMONPAGESIZE 0x1000
20484
20485#define bfd_elf32_mkobject elf32_arm_mkobject
20486
20487#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20488#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20489#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20490#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20491#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20492#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20493#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20494#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20495#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20496#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20497#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20498#define bfd_elf32_bfd_final_link elf32_arm_final_link
20499#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20500
20501#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20502#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20503#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20504#define elf_backend_check_relocs elf32_arm_check_relocs
20505#define elf_backend_update_relocs elf32_arm_update_relocs
20506#define elf_backend_relocate_section elf32_arm_relocate_section
20507#define elf_backend_write_section elf32_arm_write_section
20508#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20509#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20510#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20511#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20512#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20513#define elf_backend_always_size_sections elf32_arm_always_size_sections
20514#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20515#define elf_backend_post_process_headers elf32_arm_post_process_headers
20516#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20517#define elf_backend_object_p elf32_arm_object_p
20518#define elf_backend_fake_sections elf32_arm_fake_sections
20519#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20520#define elf_backend_final_write_processing elf32_arm_final_write_processing
20521#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20522#define elf_backend_size_info elf32_arm_size_info
20523#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20524#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20525#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20526#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20527#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20528#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20529#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20530#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20531
20532#define elf_backend_can_refcount 1
20533#define elf_backend_can_gc_sections 1
20534#define elf_backend_plt_readonly 1
20535#define elf_backend_want_got_plt 1
20536#define elf_backend_want_plt_sym 0
20537#define elf_backend_want_dynrelro 1
20538#define elf_backend_may_use_rel_p 1
20539#define elf_backend_may_use_rela_p 0
20540#define elf_backend_default_use_rela_p 0
20541#define elf_backend_dtrel_excludes_plt 1
20542
20543#define elf_backend_got_header_size 12
20544#define elf_backend_extern_protected_data 1
20545
20546#undef elf_backend_obj_attrs_vendor
20547#define elf_backend_obj_attrs_vendor "aeabi"
20548#undef elf_backend_obj_attrs_section
20549#define elf_backend_obj_attrs_section ".ARM.attributes"
20550#undef elf_backend_obj_attrs_arg_type
20551#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20552#undef elf_backend_obj_attrs_section_type
20553#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20554#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20555#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20556
20557#undef elf_backend_section_flags
20558#define elf_backend_section_flags elf32_arm_section_flags
20559#undef elf_backend_lookup_section_flags_hook
20560#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20561
20562#define elf_backend_linux_prpsinfo32_ugid16 TRUE
20563
20564#include "elf32-target.h"
20565
20566/* Native Client targets. */
20567
20568#undef TARGET_LITTLE_SYM
20569#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20570#undef TARGET_LITTLE_NAME
20571#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20572#undef TARGET_BIG_SYM
20573#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20574#undef TARGET_BIG_NAME
20575#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20576
20577/* Like elf32_arm_link_hash_table_create -- but overrides
20578 appropriately for NaCl. */
20579
20580static struct bfd_link_hash_table *
20581elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20582{
20583 struct bfd_link_hash_table *ret;
20584
20585 ret = elf32_arm_link_hash_table_create (abfd);
20586 if (ret)
20587 {
20588 struct elf32_arm_link_hash_table *htab
20589 = (struct elf32_arm_link_hash_table *) ret;
20590
20591 htab->nacl_p = 1;
20592
20593 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20594 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20595 }
20596 return ret;
20597}
20598
20599/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20600 really need to use elf32_arm_modify_segment_map. But we do it
20601 anyway just to reduce gratuitous differences with the stock ARM backend. */
20602
20603static bfd_boolean
20604elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20605{
20606 return (elf32_arm_modify_segment_map (abfd, info)
20607 && nacl_modify_segment_map (abfd, info));
20608}
20609
20610static bfd_boolean
20611elf32_arm_nacl_final_write_processing (bfd *abfd)
20612{
20613 arm_final_write_processing (abfd);
20614 return nacl_final_write_processing (abfd);
20615}
20616
20617static bfd_vma
20618elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20619 const arelent *rel ATTRIBUTE_UNUSED)
20620{
20621 return plt->vma
20622 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20623 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20624}
20625
20626#undef elf32_bed
20627#define elf32_bed elf32_arm_nacl_bed
20628#undef bfd_elf32_bfd_link_hash_table_create
20629#define bfd_elf32_bfd_link_hash_table_create \
20630 elf32_arm_nacl_link_hash_table_create
20631#undef elf_backend_plt_alignment
20632#define elf_backend_plt_alignment 4
20633#undef elf_backend_modify_segment_map
20634#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20635#undef elf_backend_modify_program_headers
20636#define elf_backend_modify_program_headers nacl_modify_program_headers
20637#undef elf_backend_final_write_processing
20638#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20639#undef bfd_elf32_get_synthetic_symtab
20640#undef elf_backend_plt_sym_val
20641#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20642#undef elf_backend_copy_special_section_fields
20643
20644#undef ELF_MINPAGESIZE
20645#undef ELF_COMMONPAGESIZE
20646
20647
20648#include "elf32-target.h"
20649
20650/* Reset to defaults. */
20651#undef elf_backend_plt_alignment
20652#undef elf_backend_modify_segment_map
20653#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20654#undef elf_backend_modify_program_headers
20655#undef elf_backend_final_write_processing
20656#define elf_backend_final_write_processing elf32_arm_final_write_processing
20657#undef ELF_MINPAGESIZE
20658#define ELF_MINPAGESIZE 0x1000
20659#undef ELF_COMMONPAGESIZE
20660#define ELF_COMMONPAGESIZE 0x1000
20661
20662
20663/* FDPIC Targets. */
20664
20665#undef TARGET_LITTLE_SYM
20666#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20667#undef TARGET_LITTLE_NAME
20668#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20669#undef TARGET_BIG_SYM
20670#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20671#undef TARGET_BIG_NAME
20672#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20673#undef elf_match_priority
20674#define elf_match_priority 128
20675#undef ELF_OSABI
20676#define ELF_OSABI ELFOSABI_ARM_FDPIC
20677
20678/* Like elf32_arm_link_hash_table_create -- but overrides
20679 appropriately for FDPIC. */
20680
20681static struct bfd_link_hash_table *
20682elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20683{
20684 struct bfd_link_hash_table *ret;
20685
20686 ret = elf32_arm_link_hash_table_create (abfd);
20687 if (ret)
20688 {
20689 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20690
20691 htab->fdpic_p = 1;
20692 }
20693 return ret;
20694}
20695
20696/* We need dynamic symbols for every section, since segments can
20697 relocate independently. */
20698static bfd_boolean
20699elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20700 struct bfd_link_info *info
20701 ATTRIBUTE_UNUSED,
20702 asection *p ATTRIBUTE_UNUSED)
20703{
20704 switch (elf_section_data (p)->this_hdr.sh_type)
20705 {
20706 case SHT_PROGBITS:
20707 case SHT_NOBITS:
20708 /* If sh_type is yet undecided, assume it could be
20709 SHT_PROGBITS/SHT_NOBITS. */
20710 case SHT_NULL:
20711 return FALSE;
20712
20713 /* There shouldn't be section relative relocations
20714 against any other section. */
20715 default:
20716 return TRUE;
20717 }
20718}
20719
20720#undef elf32_bed
20721#define elf32_bed elf32_arm_fdpic_bed
20722
20723#undef bfd_elf32_bfd_link_hash_table_create
20724#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20725
20726#undef elf_backend_omit_section_dynsym
20727#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20728
20729#include "elf32-target.h"
20730
20731#undef elf_match_priority
20732#undef ELF_OSABI
20733#undef elf_backend_omit_section_dynsym
20734
20735/* VxWorks Targets. */
20736
20737#undef TARGET_LITTLE_SYM
20738#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20739#undef TARGET_LITTLE_NAME
20740#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20741#undef TARGET_BIG_SYM
20742#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20743#undef TARGET_BIG_NAME
20744#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20745
20746/* Like elf32_arm_link_hash_table_create -- but overrides
20747 appropriately for VxWorks. */
20748
20749static struct bfd_link_hash_table *
20750elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20751{
20752 struct bfd_link_hash_table *ret;
20753
20754 ret = elf32_arm_link_hash_table_create (abfd);
20755 if (ret)
20756 {
20757 struct elf32_arm_link_hash_table *htab
20758 = (struct elf32_arm_link_hash_table *) ret;
20759 htab->use_rel = 0;
20760 htab->vxworks_p = 1;
20761 }
20762 return ret;
20763}
20764
20765static bfd_boolean
20766elf32_arm_vxworks_final_write_processing (bfd *abfd)
20767{
20768 arm_final_write_processing (abfd);
20769 return elf_vxworks_final_write_processing (abfd);
20770}
20771
20772#undef elf32_bed
20773#define elf32_bed elf32_arm_vxworks_bed
20774
20775#undef bfd_elf32_bfd_link_hash_table_create
20776#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20777#undef elf_backend_final_write_processing
20778#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20779#undef elf_backend_emit_relocs
20780#define elf_backend_emit_relocs elf_vxworks_emit_relocs
20781
20782#undef elf_backend_may_use_rel_p
20783#define elf_backend_may_use_rel_p 0
20784#undef elf_backend_may_use_rela_p
20785#define elf_backend_may_use_rela_p 1
20786#undef elf_backend_default_use_rela_p
20787#define elf_backend_default_use_rela_p 1
20788#undef elf_backend_want_plt_sym
20789#define elf_backend_want_plt_sym 1
20790#undef ELF_MAXPAGESIZE
20791#define ELF_MAXPAGESIZE 0x1000
20792
20793#include "elf32-target.h"
20794
20795
20796/* Merge backend specific data from an object file to the output
20797 object file when linking. */
20798
20799static bfd_boolean
20800elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20801{
20802 bfd *obfd = info->output_bfd;
20803 flagword out_flags;
20804 flagword in_flags;
20805 bfd_boolean flags_compatible = TRUE;
20806 asection *sec;
20807
20808 /* Check if we have the same endianness. */
20809 if (! _bfd_generic_verify_endian_match (ibfd, info))
20810 return FALSE;
20811
20812 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20813 return TRUE;
20814
20815 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20816 return FALSE;
20817
20818 /* The input BFD must have had its flags initialised. */
20819 /* The following seems bogus to me -- The flags are initialized in
20820 the assembler but I don't think an elf_flags_init field is
20821 written into the object. */
20822 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20823
20824 in_flags = elf_elfheader (ibfd)->e_flags;
20825 out_flags = elf_elfheader (obfd)->e_flags;
20826
20827 /* In theory there is no reason why we couldn't handle this. However
20828 in practice it isn't even close to working and there is no real
20829 reason to want it. */
20830 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20831 && !(ibfd->flags & DYNAMIC)
20832 && (in_flags & EF_ARM_BE8))
20833 {
20834 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20835 ibfd);
20836 return FALSE;
20837 }
20838
20839 if (!elf_flags_init (obfd))
20840 {
20841 /* If the input is the default architecture and had the default
20842 flags then do not bother setting the flags for the output
20843 architecture, instead allow future merges to do this. If no
20844 future merges ever set these flags then they will retain their
20845 uninitialised values, which surprise surprise, correspond
20846 to the default values. */
20847 if (bfd_get_arch_info (ibfd)->the_default
20848 && elf_elfheader (ibfd)->e_flags == 0)
20849 return TRUE;
20850
20851 elf_flags_init (obfd) = TRUE;
20852 elf_elfheader (obfd)->e_flags = in_flags;
20853
20854 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20855 && bfd_get_arch_info (obfd)->the_default)
20856 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20857
20858 return TRUE;
20859 }
20860
20861 /* Determine what should happen if the input ARM architecture
20862 does not match the output ARM architecture. */
20863 if (! bfd_arm_merge_machines (ibfd, obfd))
20864 return FALSE;
20865
20866 /* Identical flags must be compatible. */
20867 if (in_flags == out_flags)
20868 return TRUE;
20869
20870 /* Check to see if the input BFD actually contains any sections. If
20871 not, its flags may not have been initialised either, but it
20872 cannot actually cause any incompatiblity. Do not short-circuit
20873 dynamic objects; their section list may be emptied by
20874 elf_link_add_object_symbols.
20875
20876 Also check to see if there are no code sections in the input.
20877 In this case there is no need to check for code specific flags.
20878 XXX - do we need to worry about floating-point format compatability
20879 in data sections ? */
20880 if (!(ibfd->flags & DYNAMIC))
20881 {
20882 bfd_boolean null_input_bfd = TRUE;
20883 bfd_boolean only_data_sections = TRUE;
20884
20885 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20886 {
20887 /* Ignore synthetic glue sections. */
20888 if (strcmp (sec->name, ".glue_7")
20889 && strcmp (sec->name, ".glue_7t"))
20890 {
20891 if ((bfd_get_section_flags (ibfd, sec)
20892 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20893 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20894 only_data_sections = FALSE;
20895
20896 null_input_bfd = FALSE;
20897 break;
20898 }
20899 }
20900
20901 if (null_input_bfd || only_data_sections)
20902 return TRUE;
20903 }
20904
20905 /* Complain about various flag mismatches. */
20906 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20907 EF_ARM_EABI_VERSION (out_flags)))
20908 {
20909 _bfd_error_handler
20910 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20911 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20912 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20913 return FALSE;
20914 }
20915
20916 /* Not sure what needs to be checked for EABI versions >= 1. */
20917 /* VxWorks libraries do not use these flags. */
20918 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20919 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20920 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20921 {
20922 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20923 {
20924 _bfd_error_handler
20925 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20926 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20927 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20928 flags_compatible = FALSE;
20929 }
20930
20931 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20932 {
20933 if (in_flags & EF_ARM_APCS_FLOAT)
20934 _bfd_error_handler
20935 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20936 ibfd, obfd);
20937 else
20938 _bfd_error_handler
20939 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20940 ibfd, obfd);
20941
20942 flags_compatible = FALSE;
20943 }
20944
20945 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20946 {
20947 if (in_flags & EF_ARM_VFP_FLOAT)
20948 _bfd_error_handler
20949 (_("error: %pB uses %s instructions, whereas %pB does not"),
20950 ibfd, "VFP", obfd);
20951 else
20952 _bfd_error_handler
20953 (_("error: %pB uses %s instructions, whereas %pB does not"),
20954 ibfd, "FPA", obfd);
20955
20956 flags_compatible = FALSE;
20957 }
20958
20959 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20960 {
20961 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20962 _bfd_error_handler
20963 (_("error: %pB uses %s instructions, whereas %pB does not"),
20964 ibfd, "Maverick", obfd);
20965 else
20966 _bfd_error_handler
20967 (_("error: %pB does not use %s instructions, whereas %pB does"),
20968 ibfd, "Maverick", obfd);
20969
20970 flags_compatible = FALSE;
20971 }
20972
20973#ifdef EF_ARM_SOFT_FLOAT
20974 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20975 {
20976 /* We can allow interworking between code that is VFP format
20977 layout, and uses either soft float or integer regs for
20978 passing floating point arguments and results. We already
20979 know that the APCS_FLOAT flags match; similarly for VFP
20980 flags. */
20981 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20982 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20983 {
20984 if (in_flags & EF_ARM_SOFT_FLOAT)
20985 _bfd_error_handler
20986 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20987 ibfd, obfd);
20988 else
20989 _bfd_error_handler
20990 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20991 ibfd, obfd);
20992
20993 flags_compatible = FALSE;
20994 }
20995 }
20996#endif
20997
20998 /* Interworking mismatch is only a warning. */
20999 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
21000 {
21001 if (in_flags & EF_ARM_INTERWORK)
21002 {
21003 _bfd_error_handler
21004 (_("warning: %pB supports interworking, whereas %pB does not"),
21005 ibfd, obfd);
21006 }
21007 else
21008 {
21009 _bfd_error_handler
21010 (_("warning: %pB does not support interworking, whereas %pB does"),
21011 ibfd, obfd);
21012 }
21013 }
21014 }
21015
21016 return flags_compatible;
21017}
21018
21019
21020/* Symbian OS Targets. */
21021
21022#undef TARGET_LITTLE_SYM
21023#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
21024#undef TARGET_LITTLE_NAME
21025#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
21026#undef TARGET_BIG_SYM
21027#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
21028#undef TARGET_BIG_NAME
21029#define TARGET_BIG_NAME "elf32-bigarm-symbian"
21030
21031/* Like elf32_arm_link_hash_table_create -- but overrides
21032 appropriately for Symbian OS. */
21033
21034static struct bfd_link_hash_table *
21035elf32_arm_symbian_link_hash_table_create (bfd *abfd)
21036{
21037 struct bfd_link_hash_table *ret;
21038
21039 ret = elf32_arm_link_hash_table_create (abfd);
21040 if (ret)
21041 {
21042 struct elf32_arm_link_hash_table *htab
21043 = (struct elf32_arm_link_hash_table *)ret;
21044 /* There is no PLT header for Symbian OS. */
21045 htab->plt_header_size = 0;
21046 /* The PLT entries are each one instruction and one word. */
21047 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
21048 htab->symbian_p = 1;
21049 /* Symbian uses armv5t or above, so use_blx is always true. */
21050 htab->use_blx = 1;
21051 htab->root.is_relocatable_executable = 1;
21052 }
21053 return ret;
21054}
21055
21056static const struct bfd_elf_special_section
21057elf32_arm_symbian_special_sections[] =
21058{
21059 /* In a BPABI executable, the dynamic linking sections do not go in
21060 the loadable read-only segment. The post-linker may wish to
21061 refer to these sections, but they are not part of the final
21062 program image. */
21063 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21064 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21065 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21066 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21067 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21068 /* These sections do not need to be writable as the SymbianOS
21069 postlinker will arrange things so that no dynamic relocation is
21070 required. */
21071 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21072 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21073 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21074 { NULL, 0, 0, 0, 0 }
21075};
21076
21077static void
21078elf32_arm_symbian_begin_write_processing (bfd *abfd,
21079 struct bfd_link_info *link_info)
21080{
21081 /* BPABI objects are never loaded directly by an OS kernel; they are
21082 processed by a postlinker first, into an OS-specific format. If
21083 the D_PAGED bit is set on the file, BFD will align segments on
21084 page boundaries, so that an OS can directly map the file. With
21085 BPABI objects, that just results in wasted space. In addition,
21086 because we clear the D_PAGED bit, map_sections_to_segments will
21087 recognize that the program headers should not be mapped into any
21088 loadable segment. */
21089 abfd->flags &= ~D_PAGED;
21090 elf32_arm_begin_write_processing (abfd, link_info);
21091}
21092
21093static bfd_boolean
21094elf32_arm_symbian_modify_segment_map (bfd *abfd,
21095 struct bfd_link_info *info)
21096{
21097 struct elf_segment_map *m;
21098 asection *dynsec;
21099
21100 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21101 segment. However, because the .dynamic section is not marked
21102 with SEC_LOAD, the generic ELF code will not create such a
21103 segment. */
21104 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21105 if (dynsec)
21106 {
21107 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21108 if (m->p_type == PT_DYNAMIC)
21109 break;
21110
21111 if (m == NULL)
21112 {
21113 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21114 m->next = elf_seg_map (abfd);
21115 elf_seg_map (abfd) = m;
21116 }
21117 }
21118
21119 /* Also call the generic arm routine. */
21120 return elf32_arm_modify_segment_map (abfd, info);
21121}
21122
21123/* Return address for Ith PLT stub in section PLT, for relocation REL
21124 or (bfd_vma) -1 if it should not be included. */
21125
21126static bfd_vma
21127elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21128 const arelent *rel ATTRIBUTE_UNUSED)
21129{
21130 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21131}
21132
21133#undef elf32_bed
21134#define elf32_bed elf32_arm_symbian_bed
21135
21136/* The dynamic sections are not allocated on SymbianOS; the postlinker
21137 will process them and then discard them. */
21138#undef ELF_DYNAMIC_SEC_FLAGS
21139#define ELF_DYNAMIC_SEC_FLAGS \
21140 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21141
21142#undef elf_backend_emit_relocs
21143
21144#undef bfd_elf32_bfd_link_hash_table_create
21145#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21146#undef elf_backend_special_sections
21147#define elf_backend_special_sections elf32_arm_symbian_special_sections
21148#undef elf_backend_begin_write_processing
21149#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21150#undef elf_backend_final_write_processing
21151#define elf_backend_final_write_processing elf32_arm_final_write_processing
21152
21153#undef elf_backend_modify_segment_map
21154#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21155
21156/* There is no .got section for BPABI objects, and hence no header. */
21157#undef elf_backend_got_header_size
21158#define elf_backend_got_header_size 0
21159
21160/* Similarly, there is no .got.plt section. */
21161#undef elf_backend_want_got_plt
21162#define elf_backend_want_got_plt 0
21163
21164#undef elf_backend_plt_sym_val
21165#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21166
21167#undef elf_backend_may_use_rel_p
21168#define elf_backend_may_use_rel_p 1
21169#undef elf_backend_may_use_rela_p
21170#define elf_backend_may_use_rela_p 0
21171#undef elf_backend_default_use_rela_p
21172#define elf_backend_default_use_rela_p 0
21173#undef elf_backend_want_plt_sym
21174#define elf_backend_want_plt_sym 0
21175#undef elf_backend_dtrel_excludes_plt
21176#define elf_backend_dtrel_excludes_plt 0
21177#undef ELF_MAXPAGESIZE
21178#define ELF_MAXPAGESIZE 0x8000
21179
21180#include "elf32-target.h"
This page took 0.12024 seconds and 4 git commands to generate.