* elf64-ppc.c (ppc64_elf_branch_reloc): New function.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
... / ...
CommitLineData
1/* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#ifndef USE_REL
22#define USE_REL 0
23#endif
24
25typedef unsigned long int insn32;
26typedef unsigned short int insn16;
27
28#define INTERWORK_FLAG(abfd) \
29 (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
30
31/* The linker script knows the section names for placement.
32 The entry_names are used to do simple name mangling on the stubs.
33 Given a function name, and its type, the stub can be found. The
34 name can be changed. The only requirement is the %s be present. */
35#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
36#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
37
38#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
39#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
40
41/* The name of the dynamic interpreter. This is put in the .interp
42 section. */
43#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
44
45#ifdef FOUR_WORD_PLT
46
47/* The size in bytes of the special first entry in the procedure
48 linkage table. */
49#define PLT_HEADER_SIZE 16
50
51/* The size in bytes of an entry in the procedure linkage table. */
52#define PLT_ENTRY_SIZE 16
53
54/* The first entry in a procedure linkage table looks like
55 this. It is set up so that any shared library function that is
56 called before the relocation has been set up calls the dynamic
57 linker first. */
58static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
59 {
60 0xe52de004, /* str lr, [sp, #-4]! */
61 0xe59fe010, /* ldr lr, [pc, #16] */
62 0xe08fe00e, /* add lr, pc, lr */
63 0xe5bef008, /* ldr pc, [lr, #8]! */
64 };
65
66/* Subsequent entries in a procedure linkage table look like
67 this. */
68static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
69 {
70 0xe28fc600, /* add ip, pc, #NN */
71 0xe28cca00, /* add ip, ip, #NN */
72 0xe5bcf000, /* ldr pc, [ip, #NN]! */
73 0x00000000, /* unused */
74 };
75
76#else
77
78/* The size in bytes of the special first entry in the procedure
79 linkage table. */
80#define PLT_HEADER_SIZE 20
81
82/* The size in bytes of an entry in the procedure linkage table. */
83#define PLT_ENTRY_SIZE 12
84
85/* The first entry in a procedure linkage table looks like
86 this. It is set up so that any shared library function that is
87 called before the relocation has been set up calls the dynamic
88 linker first. */
89static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
90 {
91 0xe52de004, /* str lr, [sp, #-4]! */
92 0xe59fe004, /* ldr lr, [pc, #4] */
93 0xe08fe00e, /* add lr, pc, lr */
94 0xe5bef008, /* ldr pc, [lr, #8]! */
95 0x00000000, /* &GOT[0] - . */
96 };
97
98/* Subsequent entries in a procedure linkage table look like
99 this. */
100static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
101 {
102 0xe28fc600, /* add ip, pc, #0xNN00000 */
103 0xe28cca00, /* add ip, ip, #0xNN000 */
104 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
105 };
106
107#endif
108
109/* Used to build a map of a section. This is required for mixed-endian
110 code/data. */
111
112typedef struct elf32_elf_section_map
113{
114 bfd_vma vma;
115 char type;
116}
117elf32_arm_section_map;
118
119struct _arm_elf_section_data
120{
121 struct bfd_elf_section_data elf;
122 int mapcount;
123 elf32_arm_section_map *map;
124};
125
126#define elf32_arm_section_data(sec) \
127 ((struct _arm_elf_section_data *) elf_section_data (sec))
128
129/* The ARM linker needs to keep track of the number of relocs that it
130 decides to copy in check_relocs for each symbol. This is so that
131 it can discard PC relative relocs if it doesn't need them when
132 linking with -Bsymbolic. We store the information in a field
133 extending the regular ELF linker hash table. */
134
135/* This structure keeps track of the number of PC relative relocs we
136 have copied for a given symbol. */
137struct elf32_arm_relocs_copied
138 {
139 /* Next section. */
140 struct elf32_arm_relocs_copied * next;
141 /* A section in dynobj. */
142 asection * section;
143 /* Number of relocs copied in this section. */
144 bfd_size_type count;
145 };
146
147/* Arm ELF linker hash entry. */
148struct elf32_arm_link_hash_entry
149 {
150 struct elf_link_hash_entry root;
151
152 /* Number of PC relative relocs copied for this symbol. */
153 struct elf32_arm_relocs_copied * relocs_copied;
154 };
155
156/* Traverse an arm ELF linker hash table. */
157#define elf32_arm_link_hash_traverse(table, func, info) \
158 (elf_link_hash_traverse \
159 (&(table)->root, \
160 (bfd_boolean (*) (struct elf_link_hash_entry *, void *))) (func), \
161 (info)))
162
163/* Get the ARM elf linker hash table from a link_info structure. */
164#define elf32_arm_hash_table(info) \
165 ((struct elf32_arm_link_hash_table *) ((info)->hash))
166
167/* ARM ELF linker hash table. */
168struct elf32_arm_link_hash_table
169 {
170 /* The main hash table. */
171 struct elf_link_hash_table root;
172
173 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
174 bfd_size_type thumb_glue_size;
175
176 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
177 bfd_size_type arm_glue_size;
178
179 /* An arbitrary input BFD chosen to hold the glue sections. */
180 bfd * bfd_of_glue_owner;
181
182 /* A boolean indicating whether knowledge of the ARM's pipeline
183 length should be applied by the linker. */
184 int no_pipeline_knowledge;
185
186 /* Nonzero to output a BE8 image. */
187 int byteswap_code;
188
189 /* Short-cuts to get to dynamic linker sections. */
190 asection *sgot;
191 asection *sgotplt;
192 asection *srelgot;
193 asection *splt;
194 asection *srelplt;
195 asection *sdynbss;
196 asection *srelbss;
197
198 /* Small local sym to section mapping cache. */
199 struct sym_sec_cache sym_sec;
200 };
201
202/* Create an entry in an ARM ELF linker hash table. */
203
204static struct bfd_hash_entry *
205elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
206 struct bfd_hash_table * table,
207 const char * string)
208{
209 struct elf32_arm_link_hash_entry * ret =
210 (struct elf32_arm_link_hash_entry *) entry;
211
212 /* Allocate the structure if it has not already been allocated by a
213 subclass. */
214 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
215 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
216 if (ret == NULL)
217 return (struct bfd_hash_entry *) ret;
218
219 /* Call the allocation method of the superclass. */
220 ret = ((struct elf32_arm_link_hash_entry *)
221 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
222 table, string));
223 if (ret != NULL)
224 ret->relocs_copied = NULL;
225
226 return (struct bfd_hash_entry *) ret;
227}
228
229/* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
230 shortcuts to them in our hash table. */
231
232static bfd_boolean
233create_got_section (bfd *dynobj, struct bfd_link_info *info)
234{
235 struct elf32_arm_link_hash_table *htab;
236
237 if (! _bfd_elf_create_got_section (dynobj, info))
238 return FALSE;
239
240 htab = elf32_arm_hash_table (info);
241 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
242 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
243 if (!htab->sgot || !htab->sgotplt)
244 abort ();
245
246 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
247 if (htab->srelgot == NULL
248 || ! bfd_set_section_flags (dynobj, htab->srelgot,
249 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
250 | SEC_IN_MEMORY | SEC_LINKER_CREATED
251 | SEC_READONLY))
252 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
253 return FALSE;
254 return TRUE;
255}
256
257/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
258 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
259 hash table. */
260
261static bfd_boolean
262elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
263{
264 struct elf32_arm_link_hash_table *htab;
265
266 htab = elf32_arm_hash_table (info);
267 if (!htab->sgot && !create_got_section (dynobj, info))
268 return FALSE;
269
270 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
271 return FALSE;
272
273 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
274 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
275 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
276 if (!info->shared)
277 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
278
279 if (!htab->splt || !htab->srelplt || !htab->sdynbss
280 || (!info->shared && !htab->srelbss))
281 abort ();
282
283 return TRUE;
284}
285
286/* Copy the extra info we tack onto an elf_link_hash_entry. */
287
288static void
289elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
290 struct elf_link_hash_entry *dir,
291 struct elf_link_hash_entry *ind)
292{
293 struct elf32_arm_link_hash_entry *edir, *eind;
294
295 edir = (struct elf32_arm_link_hash_entry *) dir;
296 eind = (struct elf32_arm_link_hash_entry *) ind;
297
298 if (eind->relocs_copied != NULL)
299 {
300 if (edir->relocs_copied != NULL)
301 {
302 struct elf32_arm_relocs_copied **pp;
303 struct elf32_arm_relocs_copied *p;
304
305 if (ind->root.type == bfd_link_hash_indirect)
306 abort ();
307
308 /* Add reloc counts against the weak sym to the strong sym
309 list. Merge any entries against the same section. */
310 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
311 {
312 struct elf32_arm_relocs_copied *q;
313
314 for (q = edir->relocs_copied; q != NULL; q = q->next)
315 if (q->section == p->section)
316 {
317 q->count += p->count;
318 *pp = p->next;
319 break;
320 }
321 if (q == NULL)
322 pp = &p->next;
323 }
324 *pp = edir->relocs_copied;
325 }
326
327 edir->relocs_copied = eind->relocs_copied;
328 eind->relocs_copied = NULL;
329 }
330
331 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
332}
333
334/* Create an ARM elf linker hash table. */
335
336static struct bfd_link_hash_table *
337elf32_arm_link_hash_table_create (bfd *abfd)
338{
339 struct elf32_arm_link_hash_table *ret;
340 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
341
342 ret = bfd_malloc (amt);
343 if (ret == NULL)
344 return NULL;
345
346 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
347 elf32_arm_link_hash_newfunc))
348 {
349 free (ret);
350 return NULL;
351 }
352
353 ret->sgot = NULL;
354 ret->sgotplt = NULL;
355 ret->srelgot = NULL;
356 ret->splt = NULL;
357 ret->srelplt = NULL;
358 ret->sdynbss = NULL;
359 ret->srelbss = NULL;
360 ret->thumb_glue_size = 0;
361 ret->arm_glue_size = 0;
362 ret->bfd_of_glue_owner = NULL;
363 ret->no_pipeline_knowledge = 0;
364 ret->byteswap_code = 0;
365 ret->sym_sec.abfd = NULL;
366
367 return &ret->root.root;
368}
369
370/* Locate the Thumb encoded calling stub for NAME. */
371
372static struct elf_link_hash_entry *
373find_thumb_glue (struct bfd_link_info *link_info,
374 const char *name,
375 bfd *input_bfd)
376{
377 char *tmp_name;
378 struct elf_link_hash_entry *hash;
379 struct elf32_arm_link_hash_table *hash_table;
380
381 /* We need a pointer to the armelf specific hash table. */
382 hash_table = elf32_arm_hash_table (link_info);
383
384 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
385 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
386
387 BFD_ASSERT (tmp_name);
388
389 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
390
391 hash = elf_link_hash_lookup
392 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
393
394 if (hash == NULL)
395 /* xgettext:c-format */
396 (*_bfd_error_handler) (_("%B: unable to find THUMB glue '%s' for `%s'"),
397 input_bfd, tmp_name, name);
398
399 free (tmp_name);
400
401 return hash;
402}
403
404/* Locate the ARM encoded calling stub for NAME. */
405
406static struct elf_link_hash_entry *
407find_arm_glue (struct bfd_link_info *link_info,
408 const char *name,
409 bfd *input_bfd)
410{
411 char *tmp_name;
412 struct elf_link_hash_entry *myh;
413 struct elf32_arm_link_hash_table *hash_table;
414
415 /* We need a pointer to the elfarm specific hash table. */
416 hash_table = elf32_arm_hash_table (link_info);
417
418 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
419 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
420
421 BFD_ASSERT (tmp_name);
422
423 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
424
425 myh = elf_link_hash_lookup
426 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
427
428 if (myh == NULL)
429 /* xgettext:c-format */
430 (*_bfd_error_handler) (_("%B: unable to find ARM glue '%s' for `%s'"),
431 input_bfd, tmp_name, name);
432
433 free (tmp_name);
434
435 return myh;
436}
437
438/* ARM->Thumb glue:
439
440 .arm
441 __func_from_arm:
442 ldr r12, __func_addr
443 bx r12
444 __func_addr:
445 .word func @ behave as if you saw a ARM_32 reloc. */
446
447#define ARM2THUMB_GLUE_SIZE 12
448static const insn32 a2t1_ldr_insn = 0xe59fc000;
449static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
450static const insn32 a2t3_func_addr_insn = 0x00000001;
451
452/* Thumb->ARM: Thumb->(non-interworking aware) ARM
453
454 .thumb .thumb
455 .align 2 .align 2
456 __func_from_thumb: __func_from_thumb:
457 bx pc push {r6, lr}
458 nop ldr r6, __func_addr
459 .arm mov lr, pc
460 __func_change_to_arm: bx r6
461 b func .arm
462 __func_back_to_thumb:
463 ldmia r13! {r6, lr}
464 bx lr
465 __func_addr:
466 .word func */
467
468#define THUMB2ARM_GLUE_SIZE 8
469static const insn16 t2a1_bx_pc_insn = 0x4778;
470static const insn16 t2a2_noop_insn = 0x46c0;
471static const insn32 t2a3_b_insn = 0xea000000;
472
473#ifndef ELFARM_NABI_C_INCLUDED
474bfd_boolean
475bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
476{
477 asection * s;
478 bfd_byte * foo;
479 struct elf32_arm_link_hash_table * globals;
480
481 globals = elf32_arm_hash_table (info);
482
483 BFD_ASSERT (globals != NULL);
484
485 if (globals->arm_glue_size != 0)
486 {
487 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
488
489 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
490 ARM2THUMB_GLUE_SECTION_NAME);
491
492 BFD_ASSERT (s != NULL);
493
494 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
495
496 s->size = globals->arm_glue_size;
497 s->contents = foo;
498 }
499
500 if (globals->thumb_glue_size != 0)
501 {
502 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
503
504 s = bfd_get_section_by_name
505 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
506
507 BFD_ASSERT (s != NULL);
508
509 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
510
511 s->size = globals->thumb_glue_size;
512 s->contents = foo;
513 }
514
515 return TRUE;
516}
517
518static void
519record_arm_to_thumb_glue (struct bfd_link_info * link_info,
520 struct elf_link_hash_entry * h)
521{
522 const char * name = h->root.root.string;
523 asection * s;
524 char * tmp_name;
525 struct elf_link_hash_entry * myh;
526 struct bfd_link_hash_entry * bh;
527 struct elf32_arm_link_hash_table * globals;
528 bfd_vma val;
529
530 globals = elf32_arm_hash_table (link_info);
531
532 BFD_ASSERT (globals != NULL);
533 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
534
535 s = bfd_get_section_by_name
536 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
537
538 BFD_ASSERT (s != NULL);
539
540 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
541
542 BFD_ASSERT (tmp_name);
543
544 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
545
546 myh = elf_link_hash_lookup
547 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
548
549 if (myh != NULL)
550 {
551 /* We've already seen this guy. */
552 free (tmp_name);
553 return;
554 }
555
556 /* The only trick here is using hash_table->arm_glue_size as the value.
557 Even though the section isn't allocated yet, this is where we will be
558 putting it. */
559 bh = NULL;
560 val = globals->arm_glue_size + 1;
561 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
562 tmp_name, BSF_GLOBAL, s, val,
563 NULL, TRUE, FALSE, &bh);
564
565 free (tmp_name);
566
567 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
568
569 return;
570}
571
572static void
573record_thumb_to_arm_glue (struct bfd_link_info *link_info,
574 struct elf_link_hash_entry *h)
575{
576 const char *name = h->root.root.string;
577 asection *s;
578 char *tmp_name;
579 struct elf_link_hash_entry *myh;
580 struct bfd_link_hash_entry *bh;
581 struct elf32_arm_link_hash_table *hash_table;
582 char bind;
583 bfd_vma val;
584
585 hash_table = elf32_arm_hash_table (link_info);
586
587 BFD_ASSERT (hash_table != NULL);
588 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
589
590 s = bfd_get_section_by_name
591 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
592
593 BFD_ASSERT (s != NULL);
594
595 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
596 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
597
598 BFD_ASSERT (tmp_name);
599
600 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
601
602 myh = elf_link_hash_lookup
603 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
604
605 if (myh != NULL)
606 {
607 /* We've already seen this guy. */
608 free (tmp_name);
609 return;
610 }
611
612 bh = NULL;
613 val = hash_table->thumb_glue_size + 1;
614 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
615 tmp_name, BSF_GLOBAL, s, val,
616 NULL, TRUE, FALSE, &bh);
617
618 /* If we mark it 'Thumb', the disassembler will do a better job. */
619 myh = (struct elf_link_hash_entry *) bh;
620 bind = ELF_ST_BIND (myh->type);
621 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
622
623 free (tmp_name);
624
625#define CHANGE_TO_ARM "__%s_change_to_arm"
626#define BACK_FROM_ARM "__%s_back_from_arm"
627
628 /* Allocate another symbol to mark where we switch to Arm mode. */
629 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
630 + strlen (CHANGE_TO_ARM) + 1);
631
632 BFD_ASSERT (tmp_name);
633
634 sprintf (tmp_name, CHANGE_TO_ARM, name);
635
636 bh = NULL;
637 val = hash_table->thumb_glue_size + 4,
638 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
639 tmp_name, BSF_LOCAL, s, val,
640 NULL, TRUE, FALSE, &bh);
641
642 free (tmp_name);
643
644 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
645
646 return;
647}
648
649/* Add the glue sections to ABFD. This function is called from the
650 linker scripts in ld/emultempl/{armelf}.em. */
651
652bfd_boolean
653bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
654 struct bfd_link_info *info)
655{
656 flagword flags;
657 asection *sec;
658
659 /* If we are only performing a partial
660 link do not bother adding the glue. */
661 if (info->relocatable)
662 return TRUE;
663
664 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
665
666 if (sec == NULL)
667 {
668 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
669 will prevent elf_link_input_bfd() from processing the contents
670 of this section. */
671 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
672
673 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
674
675 if (sec == NULL
676 || !bfd_set_section_flags (abfd, sec, flags)
677 || !bfd_set_section_alignment (abfd, sec, 2))
678 return FALSE;
679
680 /* Set the gc mark to prevent the section from being removed by garbage
681 collection, despite the fact that no relocs refer to this section. */
682 sec->gc_mark = 1;
683 }
684
685 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
686
687 if (sec == NULL)
688 {
689 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
690 | SEC_CODE | SEC_READONLY;
691
692 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
693
694 if (sec == NULL
695 || !bfd_set_section_flags (abfd, sec, flags)
696 || !bfd_set_section_alignment (abfd, sec, 2))
697 return FALSE;
698
699 sec->gc_mark = 1;
700 }
701
702 return TRUE;
703}
704
705/* Select a BFD to be used to hold the sections used by the glue code.
706 This function is called from the linker scripts in ld/emultempl/
707 {armelf/pe}.em */
708
709bfd_boolean
710bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
711{
712 struct elf32_arm_link_hash_table *globals;
713
714 /* If we are only performing a partial link
715 do not bother getting a bfd to hold the glue. */
716 if (info->relocatable)
717 return TRUE;
718
719 globals = elf32_arm_hash_table (info);
720
721 BFD_ASSERT (globals != NULL);
722
723 if (globals->bfd_of_glue_owner != NULL)
724 return TRUE;
725
726 /* Save the bfd for later use. */
727 globals->bfd_of_glue_owner = abfd;
728
729 return TRUE;
730}
731
732bfd_boolean
733bfd_elf32_arm_process_before_allocation (bfd *abfd,
734 struct bfd_link_info *link_info,
735 int no_pipeline_knowledge,
736 int byteswap_code)
737{
738 Elf_Internal_Shdr *symtab_hdr;
739 Elf_Internal_Rela *internal_relocs = NULL;
740 Elf_Internal_Rela *irel, *irelend;
741 bfd_byte *contents = NULL;
742
743 asection *sec;
744 struct elf32_arm_link_hash_table *globals;
745
746 /* If we are only performing a partial link do not bother
747 to construct any glue. */
748 if (link_info->relocatable)
749 return TRUE;
750
751 /* Here we have a bfd that is to be included on the link. We have a hook
752 to do reloc rummaging, before section sizes are nailed down. */
753 globals = elf32_arm_hash_table (link_info);
754
755 BFD_ASSERT (globals != NULL);
756 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
757
758 globals->no_pipeline_knowledge = no_pipeline_knowledge;
759 if (byteswap_code && !bfd_big_endian (abfd))
760 {
761 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
762 abfd);
763 return FALSE;
764 }
765 globals->byteswap_code = byteswap_code;
766
767 /* Rummage around all the relocs and map the glue vectors. */
768 sec = abfd->sections;
769
770 if (sec == NULL)
771 return TRUE;
772
773 for (; sec != NULL; sec = sec->next)
774 {
775 if (sec->reloc_count == 0)
776 continue;
777
778 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
779
780 /* Load the relocs. */
781 internal_relocs
782 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
783 (Elf_Internal_Rela *) NULL, FALSE);
784
785 if (internal_relocs == NULL)
786 goto error_return;
787
788 irelend = internal_relocs + sec->reloc_count;
789 for (irel = internal_relocs; irel < irelend; irel++)
790 {
791 long r_type;
792 unsigned long r_index;
793
794 struct elf_link_hash_entry *h;
795
796 r_type = ELF32_R_TYPE (irel->r_info);
797 r_index = ELF32_R_SYM (irel->r_info);
798
799 /* These are the only relocation types we care about. */
800 if ( r_type != R_ARM_PC24
801 && r_type != R_ARM_THM_PC22)
802 continue;
803
804 /* Get the section contents if we haven't done so already. */
805 if (contents == NULL)
806 {
807 /* Get cached copy if it exists. */
808 if (elf_section_data (sec)->this_hdr.contents != NULL)
809 contents = elf_section_data (sec)->this_hdr.contents;
810 else
811 {
812 /* Go get them off disk. */
813 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
814 goto error_return;
815 }
816 }
817
818 /* If the relocation is not against a symbol it cannot concern us. */
819 h = NULL;
820
821 /* We don't care about local symbols. */
822 if (r_index < symtab_hdr->sh_info)
823 continue;
824
825 /* This is an external symbol. */
826 r_index -= symtab_hdr->sh_info;
827 h = (struct elf_link_hash_entry *)
828 elf_sym_hashes (abfd)[r_index];
829
830 /* If the relocation is against a static symbol it must be within
831 the current section and so cannot be a cross ARM/Thumb relocation. */
832 if (h == NULL)
833 continue;
834
835 switch (r_type)
836 {
837 case R_ARM_PC24:
838 /* This one is a call from arm code. We need to look up
839 the target of the call. If it is a thumb target, we
840 insert glue. */
841 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
842 record_arm_to_thumb_glue (link_info, h);
843 break;
844
845 case R_ARM_THM_PC22:
846 /* This one is a call from thumb code. We look
847 up the target of the call. If it is not a thumb
848 target, we insert glue. */
849 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
850 record_thumb_to_arm_glue (link_info, h);
851 break;
852
853 default:
854 break;
855 }
856 }
857
858 if (contents != NULL
859 && elf_section_data (sec)->this_hdr.contents != contents)
860 free (contents);
861 contents = NULL;
862
863 if (internal_relocs != NULL
864 && elf_section_data (sec)->relocs != internal_relocs)
865 free (internal_relocs);
866 internal_relocs = NULL;
867 }
868
869 return TRUE;
870
871error_return:
872 if (contents != NULL
873 && elf_section_data (sec)->this_hdr.contents != contents)
874 free (contents);
875 if (internal_relocs != NULL
876 && elf_section_data (sec)->relocs != internal_relocs)
877 free (internal_relocs);
878
879 return FALSE;
880}
881#endif
882
883/* The thumb form of a long branch is a bit finicky, because the offset
884 encoding is split over two fields, each in it's own instruction. They
885 can occur in any order. So given a thumb form of long branch, and an
886 offset, insert the offset into the thumb branch and return finished
887 instruction.
888
889 It takes two thumb instructions to encode the target address. Each has
890 11 bits to invest. The upper 11 bits are stored in one (identified by
891 H-0.. see below), the lower 11 bits are stored in the other (identified
892 by H-1).
893
894 Combine together and shifted left by 1 (it's a half word address) and
895 there you have it.
896
897 Op: 1111 = F,
898 H-0, upper address-0 = 000
899 Op: 1111 = F,
900 H-1, lower address-0 = 800
901
902 They can be ordered either way, but the arm tools I've seen always put
903 the lower one first. It probably doesn't matter. krk@cygnus.com
904
905 XXX: Actually the order does matter. The second instruction (H-1)
906 moves the computed address into the PC, so it must be the second one
907 in the sequence. The problem, however is that whilst little endian code
908 stores the instructions in HI then LOW order, big endian code does the
909 reverse. nickc@cygnus.com. */
910
911#define LOW_HI_ORDER 0xF800F000
912#define HI_LOW_ORDER 0xF000F800
913
914static insn32
915insert_thumb_branch (insn32 br_insn, int rel_off)
916{
917 unsigned int low_bits;
918 unsigned int high_bits;
919
920 BFD_ASSERT ((rel_off & 1) != 1);
921
922 rel_off >>= 1; /* Half word aligned address. */
923 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
924 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
925
926 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
927 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
928 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
929 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
930 else
931 /* FIXME: abort is probably not the right call. krk@cygnus.com */
932 abort (); /* Error - not a valid branch instruction form. */
933
934 return br_insn;
935}
936
937/* Thumb code calling an ARM function. */
938
939static int
940elf32_thumb_to_arm_stub (struct bfd_link_info * info,
941 const char * name,
942 bfd * input_bfd,
943 bfd * output_bfd,
944 asection * input_section,
945 bfd_byte * hit_data,
946 asection * sym_sec,
947 bfd_vma offset,
948 bfd_signed_vma addend,
949 bfd_vma val)
950{
951 asection * s = 0;
952 bfd_vma my_offset;
953 unsigned long int tmp;
954 long int ret_offset;
955 struct elf_link_hash_entry * myh;
956 struct elf32_arm_link_hash_table * globals;
957
958 myh = find_thumb_glue (info, name, input_bfd);
959 if (myh == NULL)
960 return FALSE;
961
962 globals = elf32_arm_hash_table (info);
963
964 BFD_ASSERT (globals != NULL);
965 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
966
967 my_offset = myh->root.u.def.value;
968
969 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
970 THUMB2ARM_GLUE_SECTION_NAME);
971
972 BFD_ASSERT (s != NULL);
973 BFD_ASSERT (s->contents != NULL);
974 BFD_ASSERT (s->output_section != NULL);
975
976 if ((my_offset & 0x01) == 0x01)
977 {
978 if (sym_sec != NULL
979 && sym_sec->owner != NULL
980 && !INTERWORK_FLAG (sym_sec->owner))
981 {
982 (*_bfd_error_handler)
983 (_("%B(%s): warning: interworking not enabled.\n"
984 " first occurrence: %B: thumb call to arm"),
985 sym_sec->owner, input_bfd, name);
986
987 return FALSE;
988 }
989
990 --my_offset;
991 myh->root.u.def.value = my_offset;
992
993 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
994 s->contents + my_offset);
995
996 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
997 s->contents + my_offset + 2);
998
999 ret_offset =
1000 /* Address of destination of the stub. */
1001 ((bfd_signed_vma) val)
1002 - ((bfd_signed_vma)
1003 /* Offset from the start of the current section
1004 to the start of the stubs. */
1005 (s->output_offset
1006 /* Offset of the start of this stub from the start of the stubs. */
1007 + my_offset
1008 /* Address of the start of the current section. */
1009 + s->output_section->vma)
1010 /* The branch instruction is 4 bytes into the stub. */
1011 + 4
1012 /* ARM branches work from the pc of the instruction + 8. */
1013 + 8);
1014
1015 bfd_put_32 (output_bfd,
1016 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1017 s->contents + my_offset + 4);
1018 }
1019
1020 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1021
1022 /* Now go back and fix up the original BL insn to point to here. */
1023 ret_offset =
1024 /* Address of where the stub is located. */
1025 (s->output_section->vma + s->output_offset + my_offset)
1026 /* Address of where the BL is located. */
1027 - (input_section->output_section->vma + input_section->output_offset
1028 + offset)
1029 /* Addend in the relocation. */
1030 - addend
1031 /* Biassing for PC-relative addressing. */
1032 - 8;
1033
1034 tmp = bfd_get_32 (input_bfd, hit_data
1035 - input_section->vma);
1036
1037 bfd_put_32 (output_bfd,
1038 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1039 hit_data - input_section->vma);
1040
1041 return TRUE;
1042}
1043
1044/* Arm code calling a Thumb function. */
1045
1046static int
1047elf32_arm_to_thumb_stub (struct bfd_link_info * info,
1048 const char * name,
1049 bfd * input_bfd,
1050 bfd * output_bfd,
1051 asection * input_section,
1052 bfd_byte * hit_data,
1053 asection * sym_sec,
1054 bfd_vma offset,
1055 bfd_signed_vma addend,
1056 bfd_vma val)
1057{
1058 unsigned long int tmp;
1059 bfd_vma my_offset;
1060 asection * s;
1061 long int ret_offset;
1062 struct elf_link_hash_entry * myh;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 myh = find_arm_glue (info, name, input_bfd);
1066 if (myh == NULL)
1067 return FALSE;
1068
1069 globals = elf32_arm_hash_table (info);
1070
1071 BFD_ASSERT (globals != NULL);
1072 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1073
1074 my_offset = myh->root.u.def.value;
1075 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1076 ARM2THUMB_GLUE_SECTION_NAME);
1077 BFD_ASSERT (s != NULL);
1078 BFD_ASSERT (s->contents != NULL);
1079 BFD_ASSERT (s->output_section != NULL);
1080
1081 if ((my_offset & 0x01) == 0x01)
1082 {
1083 if (sym_sec != NULL
1084 && sym_sec->owner != NULL
1085 && !INTERWORK_FLAG (sym_sec->owner))
1086 {
1087 (*_bfd_error_handler)
1088 (_("%B(%s): warning: interworking not enabled.\n"
1089 " first occurrence: %B: arm call to thumb"),
1090 sym_sec->owner, input_bfd, name);
1091 }
1092
1093 --my_offset;
1094 myh->root.u.def.value = my_offset;
1095
1096 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1097 s->contents + my_offset);
1098
1099 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1100 s->contents + my_offset + 4);
1101
1102 /* It's a thumb address. Add the low order bit. */
1103 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1104 s->contents + my_offset + 8);
1105 }
1106
1107 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1108
1109 tmp = bfd_get_32 (input_bfd, hit_data);
1110 tmp = tmp & 0xFF000000;
1111
1112 /* Somehow these are both 4 too far, so subtract 8. */
1113 ret_offset = (s->output_offset
1114 + my_offset
1115 + s->output_section->vma
1116 - (input_section->output_offset
1117 + input_section->output_section->vma
1118 + offset + addend)
1119 - 8);
1120
1121 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1122
1123 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1124
1125 return TRUE;
1126}
1127
1128/* Perform a relocation as part of a final link. */
1129
1130static bfd_reloc_status_type
1131elf32_arm_final_link_relocate (reloc_howto_type * howto,
1132 bfd * input_bfd,
1133 bfd * output_bfd,
1134 asection * input_section,
1135 bfd_byte * contents,
1136 Elf_Internal_Rela * rel,
1137 bfd_vma value,
1138 struct bfd_link_info * info,
1139 asection * sym_sec,
1140 const char * sym_name,
1141 int sym_flags,
1142 struct elf_link_hash_entry * h)
1143{
1144 unsigned long r_type = howto->type;
1145 unsigned long r_symndx;
1146 bfd_byte * hit_data = contents + rel->r_offset;
1147 bfd * dynobj = NULL;
1148 Elf_Internal_Shdr * symtab_hdr;
1149 struct elf_link_hash_entry ** sym_hashes;
1150 bfd_vma * local_got_offsets;
1151 asection * sgot = NULL;
1152 asection * splt = NULL;
1153 asection * sreloc = NULL;
1154 bfd_vma addend;
1155 bfd_signed_vma signed_addend;
1156 struct elf32_arm_link_hash_table * globals;
1157
1158 /* If the start address has been set, then set the EF_ARM_HASENTRY
1159 flag. Setting this more than once is redundant, but the cost is
1160 not too high, and it keeps the code simple.
1161
1162 The test is done here, rather than somewhere else, because the
1163 start address is only set just before the final link commences.
1164
1165 Note - if the user deliberately sets a start address of 0, the
1166 flag will not be set. */
1167 if (bfd_get_start_address (output_bfd) != 0)
1168 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1169
1170 globals = elf32_arm_hash_table (info);
1171
1172 dynobj = elf_hash_table (info)->dynobj;
1173 if (dynobj)
1174 {
1175 sgot = bfd_get_section_by_name (dynobj, ".got");
1176 splt = bfd_get_section_by_name (dynobj, ".plt");
1177 }
1178 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1179 sym_hashes = elf_sym_hashes (input_bfd);
1180 local_got_offsets = elf_local_got_offsets (input_bfd);
1181 r_symndx = ELF32_R_SYM (rel->r_info);
1182
1183#if USE_REL
1184 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1185
1186 if (addend & ((howto->src_mask + 1) >> 1))
1187 {
1188 signed_addend = -1;
1189 signed_addend &= ~ howto->src_mask;
1190 signed_addend |= addend;
1191 }
1192 else
1193 signed_addend = addend;
1194#else
1195 addend = signed_addend = rel->r_addend;
1196#endif
1197
1198 switch (r_type)
1199 {
1200 case R_ARM_NONE:
1201 return bfd_reloc_ok;
1202
1203 case R_ARM_PC24:
1204 case R_ARM_ABS32:
1205 case R_ARM_REL32:
1206#ifndef OLD_ARM_ABI
1207 case R_ARM_XPC25:
1208#endif
1209 case R_ARM_PLT32:
1210 /* r_symndx will be zero only for relocs against symbols
1211 from removed linkonce sections, or sections discarded by
1212 a linker script. */
1213 if (r_symndx == 0)
1214 return bfd_reloc_ok;
1215
1216 /* Handle relocations which should use the PLT entry. ABS32/REL32
1217 will use the symbol's value, which may point to a PLT entry, but we
1218 don't need to handle that here. If we created a PLT entry, all
1219 branches in this object should go to it. */
1220 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32)
1221 && h != NULL
1222 && splt != NULL
1223 && h->plt.offset != (bfd_vma) -1)
1224 {
1225 /* If we've created a .plt section, and assigned a PLT entry to
1226 this function, it should not be known to bind locally. If
1227 it were, we would have cleared the PLT entry. */
1228 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1229
1230 value = (splt->output_section->vma
1231 + splt->output_offset
1232 + h->plt.offset);
1233 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1234 contents, rel->r_offset, value,
1235 (bfd_vma) 0);
1236 }
1237
1238 /* When generating a shared object, these relocations are copied
1239 into the output file to be resolved at run time. */
1240 if (info->shared
1241 && (input_section->flags & SEC_ALLOC)
1242 && (r_type != R_ARM_REL32
1243 || !SYMBOL_CALLS_LOCAL (info, h))
1244 && (h == NULL
1245 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1246 || h->root.type != bfd_link_hash_undefweak)
1247 && r_type != R_ARM_PC24
1248 && r_type != R_ARM_PLT32)
1249 {
1250 Elf_Internal_Rela outrel;
1251 bfd_byte *loc;
1252 bfd_boolean skip, relocate;
1253
1254 if (sreloc == NULL)
1255 {
1256 const char * name;
1257
1258 name = (bfd_elf_string_from_elf_section
1259 (input_bfd,
1260 elf_elfheader (input_bfd)->e_shstrndx,
1261 elf_section_data (input_section)->rel_hdr.sh_name));
1262 if (name == NULL)
1263 return bfd_reloc_notsupported;
1264
1265 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1266 && strcmp (bfd_get_section_name (input_bfd,
1267 input_section),
1268 name + 4) == 0);
1269
1270 sreloc = bfd_get_section_by_name (dynobj, name);
1271 BFD_ASSERT (sreloc != NULL);
1272 }
1273
1274 skip = FALSE;
1275 relocate = FALSE;
1276
1277 outrel.r_offset =
1278 _bfd_elf_section_offset (output_bfd, info, input_section,
1279 rel->r_offset);
1280 if (outrel.r_offset == (bfd_vma) -1)
1281 skip = TRUE;
1282 else if (outrel.r_offset == (bfd_vma) -2)
1283 skip = TRUE, relocate = TRUE;
1284 outrel.r_offset += (input_section->output_section->vma
1285 + input_section->output_offset);
1286
1287 if (skip)
1288 memset (&outrel, 0, sizeof outrel);
1289 else if (h != NULL
1290 && h->dynindx != -1
1291 && (!info->shared
1292 || !info->symbolic
1293 || (h->elf_link_hash_flags
1294 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1295 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1296 else
1297 {
1298 /* This symbol is local, or marked to become local. */
1299 relocate = TRUE;
1300 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1301 }
1302
1303 loc = sreloc->contents;
1304 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1305 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1306
1307 /* If this reloc is against an external symbol, we do not want to
1308 fiddle with the addend. Otherwise, we need to include the symbol
1309 value so that it becomes an addend for the dynamic reloc. */
1310 if (! relocate)
1311 return bfd_reloc_ok;
1312
1313 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1314 contents, rel->r_offset, value,
1315 (bfd_vma) 0);
1316 }
1317 else switch (r_type)
1318 {
1319#ifndef OLD_ARM_ABI
1320 case R_ARM_XPC25: /* Arm BLX instruction. */
1321#endif
1322 case R_ARM_PC24: /* Arm B/BL instruction */
1323 case R_ARM_PLT32:
1324#ifndef OLD_ARM_ABI
1325 if (r_type == R_ARM_XPC25)
1326 {
1327 /* Check for Arm calling Arm function. */
1328 /* FIXME: Should we translate the instruction into a BL
1329 instruction instead ? */
1330 if (sym_flags != STT_ARM_TFUNC)
1331 (*_bfd_error_handler)
1332 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
1333 input_bfd,
1334 h ? h->root.root.string : "(local)");
1335 }
1336 else
1337#endif
1338 {
1339 /* Check for Arm calling Thumb function. */
1340 if (sym_flags == STT_ARM_TFUNC)
1341 {
1342 elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
1343 output_bfd, input_section,
1344 hit_data, sym_sec, rel->r_offset,
1345 signed_addend, value);
1346 return bfd_reloc_ok;
1347 }
1348 }
1349
1350 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1351 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1352 {
1353 /* The old way of doing things. Trearing the addend as a
1354 byte sized field and adding in the pipeline offset. */
1355 value -= (input_section->output_section->vma
1356 + input_section->output_offset);
1357 value -= rel->r_offset;
1358 value += addend;
1359
1360 if (! globals->no_pipeline_knowledge)
1361 value -= 8;
1362 }
1363 else
1364 {
1365 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1366 where:
1367 S is the address of the symbol in the relocation.
1368 P is address of the instruction being relocated.
1369 A is the addend (extracted from the instruction) in bytes.
1370
1371 S is held in 'value'.
1372 P is the base address of the section containing the
1373 instruction plus the offset of the reloc into that
1374 section, ie:
1375 (input_section->output_section->vma +
1376 input_section->output_offset +
1377 rel->r_offset).
1378 A is the addend, converted into bytes, ie:
1379 (signed_addend * 4)
1380
1381 Note: None of these operations have knowledge of the pipeline
1382 size of the processor, thus it is up to the assembler to
1383 encode this information into the addend. */
1384 value -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 value -= rel->r_offset;
1387 value += (signed_addend << howto->size);
1388
1389 /* Previous versions of this code also used to add in the
1390 pipeline offset here. This is wrong because the linker is
1391 not supposed to know about such things, and one day it might
1392 change. In order to support old binaries that need the old
1393 behaviour however, so we attempt to detect which ABI was
1394 used to create the reloc. */
1395 if (! globals->no_pipeline_knowledge)
1396 {
1397 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1398
1399 i_ehdrp = elf_elfheader (input_bfd);
1400
1401 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1402 value -= 8;
1403 }
1404 }
1405
1406 signed_addend = value;
1407 signed_addend >>= howto->rightshift;
1408
1409 /* It is not an error for an undefined weak reference to be
1410 out of range. Any program that branches to such a symbol
1411 is going to crash anyway, so there is no point worrying
1412 about getting the destination exactly right. */
1413 if (! h || h->root.type != bfd_link_hash_undefweak)
1414 {
1415 /* Perform a signed range check. */
1416 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1417 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1418 return bfd_reloc_overflow;
1419 }
1420
1421#ifndef OLD_ARM_ABI
1422 /* If necessary set the H bit in the BLX instruction. */
1423 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1424 value = (signed_addend & howto->dst_mask)
1425 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1426 | (1 << 24);
1427 else
1428#endif
1429 value = (signed_addend & howto->dst_mask)
1430 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1431 break;
1432
1433 case R_ARM_ABS32:
1434 value += addend;
1435 if (sym_flags == STT_ARM_TFUNC)
1436 value |= 1;
1437 break;
1438
1439 case R_ARM_REL32:
1440 value -= (input_section->output_section->vma
1441 + input_section->output_offset + rel->r_offset);
1442 value += addend;
1443 break;
1444 }
1445
1446 bfd_put_32 (input_bfd, value, hit_data);
1447 return bfd_reloc_ok;
1448
1449 case R_ARM_ABS8:
1450 value += addend;
1451 if ((long) value > 0x7f || (long) value < -0x80)
1452 return bfd_reloc_overflow;
1453
1454 bfd_put_8 (input_bfd, value, hit_data);
1455 return bfd_reloc_ok;
1456
1457 case R_ARM_ABS16:
1458 value += addend;
1459
1460 if ((long) value > 0x7fff || (long) value < -0x8000)
1461 return bfd_reloc_overflow;
1462
1463 bfd_put_16 (input_bfd, value, hit_data);
1464 return bfd_reloc_ok;
1465
1466 case R_ARM_ABS12:
1467 /* Support ldr and str instruction for the arm */
1468 /* Also thumb b (unconditional branch). ??? Really? */
1469 value += addend;
1470
1471 if ((long) value > 0x7ff || (long) value < -0x800)
1472 return bfd_reloc_overflow;
1473
1474 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1475 bfd_put_32 (input_bfd, value, hit_data);
1476 return bfd_reloc_ok;
1477
1478 case R_ARM_THM_ABS5:
1479 /* Support ldr and str instructions for the thumb. */
1480#if USE_REL
1481 /* Need to refetch addend. */
1482 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1483 /* ??? Need to determine shift amount from operand size. */
1484 addend >>= howto->rightshift;
1485#endif
1486 value += addend;
1487
1488 /* ??? Isn't value unsigned? */
1489 if ((long) value > 0x1f || (long) value < -0x10)
1490 return bfd_reloc_overflow;
1491
1492 /* ??? Value needs to be properly shifted into place first. */
1493 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1494 bfd_put_16 (input_bfd, value, hit_data);
1495 return bfd_reloc_ok;
1496
1497#ifndef OLD_ARM_ABI
1498 case R_ARM_THM_XPC22:
1499#endif
1500 case R_ARM_THM_PC22:
1501 /* Thumb BL (branch long instruction). */
1502 {
1503 bfd_vma relocation;
1504 bfd_boolean overflow = FALSE;
1505 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1506 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1507 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1508 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1509 bfd_vma check;
1510 bfd_signed_vma signed_check;
1511
1512#if USE_REL
1513 /* Need to refetch the addend and squish the two 11 bit pieces
1514 together. */
1515 {
1516 bfd_vma upper = upper_insn & 0x7ff;
1517 bfd_vma lower = lower_insn & 0x7ff;
1518 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1519 addend = (upper << 12) | (lower << 1);
1520 signed_addend = addend;
1521 }
1522#endif
1523#ifndef OLD_ARM_ABI
1524 if (r_type == R_ARM_THM_XPC22)
1525 {
1526 /* Check for Thumb to Thumb call. */
1527 /* FIXME: Should we translate the instruction into a BL
1528 instruction instead ? */
1529 if (sym_flags == STT_ARM_TFUNC)
1530 (*_bfd_error_handler)
1531 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
1532 input_bfd,
1533 h ? h->root.root.string : "(local)");
1534 }
1535 else
1536#endif
1537 {
1538 /* If it is not a call to Thumb, assume call to Arm.
1539 If it is a call relative to a section name, then it is not a
1540 function call at all, but rather a long jump. */
1541 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1542 {
1543 if (elf32_thumb_to_arm_stub
1544 (info, sym_name, input_bfd, output_bfd, input_section,
1545 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1546 return bfd_reloc_ok;
1547 else
1548 return bfd_reloc_dangerous;
1549 }
1550 }
1551
1552 relocation = value + signed_addend;
1553
1554 relocation -= (input_section->output_section->vma
1555 + input_section->output_offset
1556 + rel->r_offset);
1557
1558 if (! globals->no_pipeline_knowledge)
1559 {
1560 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1561
1562 i_ehdrp = elf_elfheader (input_bfd);
1563
1564 /* Previous versions of this code also used to add in the pipline
1565 offset here. This is wrong because the linker is not supposed
1566 to know about such things, and one day it might change. In order
1567 to support old binaries that need the old behaviour however, so
1568 we attempt to detect which ABI was used to create the reloc. */
1569 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1570 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1571 || i_ehdrp->e_ident[EI_OSABI] == 0)
1572 relocation += 4;
1573 }
1574
1575 check = relocation >> howto->rightshift;
1576
1577 /* If this is a signed value, the rightshift just dropped
1578 leading 1 bits (assuming twos complement). */
1579 if ((bfd_signed_vma) relocation >= 0)
1580 signed_check = check;
1581 else
1582 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1583
1584 /* Assumes two's complement. */
1585 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1586 overflow = TRUE;
1587
1588#ifndef OLD_ARM_ABI
1589 if (r_type == R_ARM_THM_XPC22
1590 && ((lower_insn & 0x1800) == 0x0800))
1591 /* For a BLX instruction, make sure that the relocation is rounded up
1592 to a word boundary. This follows the semantics of the instruction
1593 which specifies that bit 1 of the target address will come from bit
1594 1 of the base address. */
1595 relocation = (relocation + 2) & ~ 3;
1596#endif
1597 /* Put RELOCATION back into the insn. */
1598 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1599 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1600
1601 /* Put the relocated value back in the object file: */
1602 bfd_put_16 (input_bfd, upper_insn, hit_data);
1603 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1604
1605 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1606 }
1607 break;
1608
1609 case R_ARM_THM_PC11:
1610 /* Thumb B (branch) instruction). */
1611 {
1612 bfd_signed_vma relocation;
1613 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1614 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1615 bfd_signed_vma signed_check;
1616
1617#if USE_REL
1618 /* Need to refetch addend. */
1619 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1620 if (addend & ((howto->src_mask + 1) >> 1))
1621 {
1622 signed_addend = -1;
1623 signed_addend &= ~ howto->src_mask;
1624 signed_addend |= addend;
1625 }
1626 else
1627 signed_addend = addend;
1628 /* The value in the insn has been right shifted. We need to
1629 undo this, so that we can perform the address calculation
1630 in terms of bytes. */
1631 signed_addend <<= howto->rightshift;
1632#endif
1633 relocation = value + signed_addend;
1634
1635 relocation -= (input_section->output_section->vma
1636 + input_section->output_offset
1637 + rel->r_offset);
1638
1639 relocation >>= howto->rightshift;
1640 signed_check = relocation;
1641 relocation &= howto->dst_mask;
1642 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1643
1644 bfd_put_16 (input_bfd, relocation, hit_data);
1645
1646 /* Assumes two's complement. */
1647 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1648 return bfd_reloc_overflow;
1649
1650 return bfd_reloc_ok;
1651 }
1652
1653#ifndef OLD_ARM_ABI
1654 case R_ARM_ALU_PCREL7_0:
1655 case R_ARM_ALU_PCREL15_8:
1656 case R_ARM_ALU_PCREL23_15:
1657 {
1658 bfd_vma insn;
1659 bfd_vma relocation;
1660
1661 insn = bfd_get_32 (input_bfd, hit_data);
1662#if USE_REL
1663 /* Extract the addend. */
1664 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1665 signed_addend = addend;
1666#endif
1667 relocation = value + signed_addend;
1668
1669 relocation -= (input_section->output_section->vma
1670 + input_section->output_offset
1671 + rel->r_offset);
1672 insn = (insn & ~0xfff)
1673 | ((howto->bitpos << 7) & 0xf00)
1674 | ((relocation >> howto->bitpos) & 0xff);
1675 bfd_put_32 (input_bfd, value, hit_data);
1676 }
1677 return bfd_reloc_ok;
1678#endif
1679
1680 case R_ARM_GNU_VTINHERIT:
1681 case R_ARM_GNU_VTENTRY:
1682 return bfd_reloc_ok;
1683
1684 case R_ARM_COPY:
1685 return bfd_reloc_notsupported;
1686
1687 case R_ARM_GLOB_DAT:
1688 return bfd_reloc_notsupported;
1689
1690 case R_ARM_JUMP_SLOT:
1691 return bfd_reloc_notsupported;
1692
1693 case R_ARM_RELATIVE:
1694 return bfd_reloc_notsupported;
1695
1696 case R_ARM_GOTOFF:
1697 /* Relocation is relative to the start of the
1698 global offset table. */
1699
1700 BFD_ASSERT (sgot != NULL);
1701 if (sgot == NULL)
1702 return bfd_reloc_notsupported;
1703
1704 /* If we are addressing a Thumb function, we need to adjust the
1705 address by one, so that attempts to call the function pointer will
1706 correctly interpret it as Thumb code. */
1707 if (sym_flags == STT_ARM_TFUNC)
1708 value += 1;
1709
1710 /* Note that sgot->output_offset is not involved in this
1711 calculation. We always want the start of .got. If we
1712 define _GLOBAL_OFFSET_TABLE in a different way, as is
1713 permitted by the ABI, we might have to change this
1714 calculation. */
1715 value -= sgot->output_section->vma;
1716 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1717 contents, rel->r_offset, value,
1718 (bfd_vma) 0);
1719
1720 case R_ARM_GOTPC:
1721 /* Use global offset table as symbol value. */
1722 BFD_ASSERT (sgot != NULL);
1723
1724 if (sgot == NULL)
1725 return bfd_reloc_notsupported;
1726
1727 value = sgot->output_section->vma;
1728 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1729 contents, rel->r_offset, value,
1730 (bfd_vma) 0);
1731
1732 case R_ARM_GOT32:
1733 /* Relocation is to the entry for this symbol in the
1734 global offset table. */
1735 if (sgot == NULL)
1736 return bfd_reloc_notsupported;
1737
1738 if (h != NULL)
1739 {
1740 bfd_vma off;
1741 bfd_boolean dyn;
1742
1743 off = h->got.offset;
1744 BFD_ASSERT (off != (bfd_vma) -1);
1745 dyn = globals->root.dynamic_sections_created;
1746
1747 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1748 || (info->shared
1749 && SYMBOL_REFERENCES_LOCAL (info, h))
1750 || (ELF_ST_VISIBILITY (h->other)
1751 && h->root.type == bfd_link_hash_undefweak))
1752 {
1753 /* This is actually a static link, or it is a -Bsymbolic link
1754 and the symbol is defined locally. We must initialize this
1755 entry in the global offset table. Since the offset must
1756 always be a multiple of 4, we use the least significant bit
1757 to record whether we have initialized it already.
1758
1759 When doing a dynamic link, we create a .rel.got relocation
1760 entry to initialize the value. This is done in the
1761 finish_dynamic_symbol routine. */
1762 if ((off & 1) != 0)
1763 off &= ~1;
1764 else
1765 {
1766 /* If we are addressing a Thumb function, we need to
1767 adjust the address by one, so that attempts to
1768 call the function pointer will correctly
1769 interpret it as Thumb code. */
1770 if (sym_flags == STT_ARM_TFUNC)
1771 value |= 1;
1772
1773 bfd_put_32 (output_bfd, value, sgot->contents + off);
1774 h->got.offset |= 1;
1775 }
1776 }
1777
1778 value = sgot->output_offset + off;
1779 }
1780 else
1781 {
1782 bfd_vma off;
1783
1784 BFD_ASSERT (local_got_offsets != NULL &&
1785 local_got_offsets[r_symndx] != (bfd_vma) -1);
1786
1787 off = local_got_offsets[r_symndx];
1788
1789 /* The offset must always be a multiple of 4. We use the
1790 least significant bit to record whether we have already
1791 generated the necessary reloc. */
1792 if ((off & 1) != 0)
1793 off &= ~1;
1794 else
1795 {
1796 bfd_put_32 (output_bfd, value, sgot->contents + off);
1797
1798 if (info->shared)
1799 {
1800 asection * srelgot;
1801 Elf_Internal_Rela outrel;
1802 bfd_byte *loc;
1803
1804 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1805 BFD_ASSERT (srelgot != NULL);
1806
1807 outrel.r_offset = (sgot->output_section->vma
1808 + sgot->output_offset
1809 + off);
1810 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1811 loc = srelgot->contents;
1812 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1813 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1814 }
1815
1816 local_got_offsets[r_symndx] |= 1;
1817 }
1818
1819 value = sgot->output_offset + off;
1820 }
1821
1822 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1823 contents, rel->r_offset, value,
1824 (bfd_vma) 0);
1825
1826 case R_ARM_SBREL32:
1827 return bfd_reloc_notsupported;
1828
1829 case R_ARM_AMP_VCALL9:
1830 return bfd_reloc_notsupported;
1831
1832 case R_ARM_RSBREL32:
1833 return bfd_reloc_notsupported;
1834
1835 case R_ARM_THM_RPC22:
1836 return bfd_reloc_notsupported;
1837
1838 case R_ARM_RREL32:
1839 return bfd_reloc_notsupported;
1840
1841 case R_ARM_RABS32:
1842 return bfd_reloc_notsupported;
1843
1844 case R_ARM_RPC24:
1845 return bfd_reloc_notsupported;
1846
1847 case R_ARM_RBASE:
1848 return bfd_reloc_notsupported;
1849
1850 default:
1851 return bfd_reloc_notsupported;
1852 }
1853}
1854
1855#if USE_REL
1856/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1857static void
1858arm_add_to_rel (bfd * abfd,
1859 bfd_byte * address,
1860 reloc_howto_type * howto,
1861 bfd_signed_vma increment)
1862{
1863 bfd_signed_vma addend;
1864
1865 if (howto->type == R_ARM_THM_PC22)
1866 {
1867 int upper_insn, lower_insn;
1868 int upper, lower;
1869
1870 upper_insn = bfd_get_16 (abfd, address);
1871 lower_insn = bfd_get_16 (abfd, address + 2);
1872 upper = upper_insn & 0x7ff;
1873 lower = lower_insn & 0x7ff;
1874
1875 addend = (upper << 12) | (lower << 1);
1876 addend += increment;
1877 addend >>= 1;
1878
1879 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1880 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1881
1882 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1883 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1884 }
1885 else
1886 {
1887 bfd_vma contents;
1888
1889 contents = bfd_get_32 (abfd, address);
1890
1891 /* Get the (signed) value from the instruction. */
1892 addend = contents & howto->src_mask;
1893 if (addend & ((howto->src_mask + 1) >> 1))
1894 {
1895 bfd_signed_vma mask;
1896
1897 mask = -1;
1898 mask &= ~ howto->src_mask;
1899 addend |= mask;
1900 }
1901
1902 /* Add in the increment, (which is a byte value). */
1903 switch (howto->type)
1904 {
1905 default:
1906 addend += increment;
1907 break;
1908
1909 case R_ARM_PC24:
1910 addend <<= howto->size;
1911 addend += increment;
1912
1913 /* Should we check for overflow here ? */
1914
1915 /* Drop any undesired bits. */
1916 addend >>= howto->rightshift;
1917 break;
1918 }
1919
1920 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1921
1922 bfd_put_32 (abfd, contents, address);
1923 }
1924}
1925#endif /* USE_REL */
1926
1927/* Relocate an ARM ELF section. */
1928static bfd_boolean
1929elf32_arm_relocate_section (bfd * output_bfd,
1930 struct bfd_link_info * info,
1931 bfd * input_bfd,
1932 asection * input_section,
1933 bfd_byte * contents,
1934 Elf_Internal_Rela * relocs,
1935 Elf_Internal_Sym * local_syms,
1936 asection ** local_sections)
1937{
1938 Elf_Internal_Shdr *symtab_hdr;
1939 struct elf_link_hash_entry **sym_hashes;
1940 Elf_Internal_Rela *rel;
1941 Elf_Internal_Rela *relend;
1942 const char *name;
1943
1944#if !USE_REL
1945 if (info->relocatable)
1946 return TRUE;
1947#endif
1948
1949 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1950 sym_hashes = elf_sym_hashes (input_bfd);
1951
1952 rel = relocs;
1953 relend = relocs + input_section->reloc_count;
1954 for (; rel < relend; rel++)
1955 {
1956 int r_type;
1957 reloc_howto_type * howto;
1958 unsigned long r_symndx;
1959 Elf_Internal_Sym * sym;
1960 asection * sec;
1961 struct elf_link_hash_entry * h;
1962 bfd_vma relocation;
1963 bfd_reloc_status_type r;
1964 arelent bfd_reloc;
1965
1966 r_symndx = ELF32_R_SYM (rel->r_info);
1967 r_type = ELF32_R_TYPE (rel->r_info);
1968
1969 if ( r_type == R_ARM_GNU_VTENTRY
1970 || r_type == R_ARM_GNU_VTINHERIT)
1971 continue;
1972
1973 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1974 howto = bfd_reloc.howto;
1975
1976#if USE_REL
1977 if (info->relocatable)
1978 {
1979 /* This is a relocatable link. We don't have to change
1980 anything, unless the reloc is against a section symbol,
1981 in which case we have to adjust according to where the
1982 section symbol winds up in the output section. */
1983 if (r_symndx < symtab_hdr->sh_info)
1984 {
1985 sym = local_syms + r_symndx;
1986 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1987 {
1988 sec = local_sections[r_symndx];
1989 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1990 howto,
1991 (bfd_signed_vma) (sec->output_offset
1992 + sym->st_value));
1993 }
1994 }
1995
1996 continue;
1997 }
1998#endif
1999
2000 /* This is a final link. */
2001 h = NULL;
2002 sym = NULL;
2003 sec = NULL;
2004
2005 if (r_symndx < symtab_hdr->sh_info)
2006 {
2007 sym = local_syms + r_symndx;
2008 sec = local_sections[r_symndx];
2009#if USE_REL
2010 relocation = (sec->output_section->vma
2011 + sec->output_offset
2012 + sym->st_value);
2013 if ((sec->flags & SEC_MERGE)
2014 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2015 {
2016 asection *msec;
2017 bfd_vma addend, value;
2018
2019 if (howto->rightshift)
2020 {
2021 (*_bfd_error_handler)
2022 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
2023 input_bfd, input_section,
2024 (long) rel->r_offset, howto->name);
2025 return FALSE;
2026 }
2027
2028 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2029
2030 /* Get the (signed) value from the instruction. */
2031 addend = value & howto->src_mask;
2032 if (addend & ((howto->src_mask + 1) >> 1))
2033 {
2034 bfd_signed_vma mask;
2035
2036 mask = -1;
2037 mask &= ~ howto->src_mask;
2038 addend |= mask;
2039 }
2040 msec = sec;
2041 addend =
2042 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2043 - relocation;
2044 addend += msec->output_section->vma + msec->output_offset;
2045 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2046 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2047 }
2048#else
2049 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2050#endif
2051 }
2052 else
2053 {
2054 bfd_boolean warned;
2055 bfd_boolean unresolved_reloc;
2056
2057 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2058 r_symndx, symtab_hdr, sym_hashes,
2059 h, sec, relocation,
2060 unresolved_reloc, warned);
2061
2062 if (unresolved_reloc || relocation != 0)
2063 {
2064 /* In these cases, we don't need the relocation value.
2065 We check specially because in some obscure cases
2066 sec->output_section will be NULL. */
2067 switch (r_type)
2068 {
2069 case R_ARM_PC24:
2070 case R_ARM_ABS32:
2071 case R_ARM_THM_PC22:
2072 case R_ARM_PLT32:
2073
2074 if (info->shared
2075 && (
2076 (!info->symbolic && h->dynindx != -1)
2077 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2078 )
2079 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2080 && ((input_section->flags & SEC_ALLOC) != 0
2081 /* DWARF will emit R_ARM_ABS32 relocations in its
2082 sections against symbols defined externally
2083 in shared libraries. We can't do anything
2084 with them here. */
2085 || ((input_section->flags & SEC_DEBUGGING) != 0
2086 && (h->elf_link_hash_flags
2087 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2088 )
2089 relocation = 0;
2090 break;
2091
2092 case R_ARM_GOTPC:
2093 relocation = 0;
2094 break;
2095
2096 case R_ARM_GOT32:
2097 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2098 (elf_hash_table (info)->dynamic_sections_created,
2099 info->shared, h))
2100 && (!info->shared
2101 || (!info->symbolic && h->dynindx != -1)
2102 || (h->elf_link_hash_flags
2103 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2104 relocation = 0;
2105 break;
2106
2107 default:
2108 if (unresolved_reloc)
2109 _bfd_error_handler
2110 (_("%B(%A): warning: unresolvable relocation %d against symbol `%s'"),
2111 input_bfd, input_section,
2112 r_type,
2113 h->root.root.string);
2114 break;
2115 }
2116 }
2117 }
2118
2119 if (h != NULL)
2120 name = h->root.root.string;
2121 else
2122 {
2123 name = (bfd_elf_string_from_elf_section
2124 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2125 if (name == NULL || *name == '\0')
2126 name = bfd_section_name (input_bfd, sec);
2127 }
2128
2129 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2130 input_section, contents, rel,
2131 relocation, info, sec, name,
2132 (h ? ELF_ST_TYPE (h->type) :
2133 ELF_ST_TYPE (sym->st_info)), h);
2134
2135 if (r != bfd_reloc_ok)
2136 {
2137 const char * msg = (const char *) 0;
2138
2139 switch (r)
2140 {
2141 case bfd_reloc_overflow:
2142 /* If the overflowing reloc was to an undefined symbol,
2143 we have already printed one error message and there
2144 is no point complaining again. */
2145 if ((! h ||
2146 h->root.type != bfd_link_hash_undefined)
2147 && (!((*info->callbacks->reloc_overflow)
2148 (info, name, howto->name, (bfd_vma) 0,
2149 input_bfd, input_section, rel->r_offset))))
2150 return FALSE;
2151 break;
2152
2153 case bfd_reloc_undefined:
2154 if (!((*info->callbacks->undefined_symbol)
2155 (info, name, input_bfd, input_section,
2156 rel->r_offset, TRUE)))
2157 return FALSE;
2158 break;
2159
2160 case bfd_reloc_outofrange:
2161 msg = _("internal error: out of range error");
2162 goto common_error;
2163
2164 case bfd_reloc_notsupported:
2165 msg = _("internal error: unsupported relocation error");
2166 goto common_error;
2167
2168 case bfd_reloc_dangerous:
2169 msg = _("internal error: dangerous error");
2170 goto common_error;
2171
2172 default:
2173 msg = _("internal error: unknown error");
2174 /* fall through */
2175
2176 common_error:
2177 if (!((*info->callbacks->warning)
2178 (info, msg, name, input_bfd, input_section,
2179 rel->r_offset)))
2180 return FALSE;
2181 break;
2182 }
2183 }
2184 }
2185
2186 return TRUE;
2187}
2188
2189/* Set the right machine number. */
2190
2191static bfd_boolean
2192elf32_arm_object_p (bfd *abfd)
2193{
2194 unsigned int mach;
2195
2196 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2197
2198 if (mach != bfd_mach_arm_unknown)
2199 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2200
2201 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2202 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2203
2204 else
2205 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2206
2207 return TRUE;
2208}
2209
2210/* Function to keep ARM specific flags in the ELF header. */
2211static bfd_boolean
2212elf32_arm_set_private_flags (bfd *abfd, flagword flags)
2213{
2214 if (elf_flags_init (abfd)
2215 && elf_elfheader (abfd)->e_flags != flags)
2216 {
2217 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2218 {
2219 if (flags & EF_ARM_INTERWORK)
2220 (*_bfd_error_handler)
2221 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
2222 abfd);
2223 else
2224 _bfd_error_handler
2225 (_("Warning: Clearing the interworking flag of %B due to outside request"),
2226 abfd);
2227 }
2228 }
2229 else
2230 {
2231 elf_elfheader (abfd)->e_flags = flags;
2232 elf_flags_init (abfd) = TRUE;
2233 }
2234
2235 return TRUE;
2236}
2237
2238/* Copy backend specific data from one object module to another. */
2239
2240static bfd_boolean
2241elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
2242{
2243 flagword in_flags;
2244 flagword out_flags;
2245
2246 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2247 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2248 return TRUE;
2249
2250 in_flags = elf_elfheader (ibfd)->e_flags;
2251 out_flags = elf_elfheader (obfd)->e_flags;
2252
2253 if (elf_flags_init (obfd)
2254 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2255 && in_flags != out_flags)
2256 {
2257 /* Cannot mix APCS26 and APCS32 code. */
2258 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2259 return FALSE;
2260
2261 /* Cannot mix float APCS and non-float APCS code. */
2262 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2263 return FALSE;
2264
2265 /* If the src and dest have different interworking flags
2266 then turn off the interworking bit. */
2267 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2268 {
2269 if (out_flags & EF_ARM_INTERWORK)
2270 _bfd_error_handler
2271 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
2272 obfd, ibfd);
2273
2274 in_flags &= ~EF_ARM_INTERWORK;
2275 }
2276
2277 /* Likewise for PIC, though don't warn for this case. */
2278 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2279 in_flags &= ~EF_ARM_PIC;
2280 }
2281
2282 elf_elfheader (obfd)->e_flags = in_flags;
2283 elf_flags_init (obfd) = TRUE;
2284
2285 return TRUE;
2286}
2287
2288/* Merge backend specific data from an object file to the output
2289 object file when linking. */
2290
2291static bfd_boolean
2292elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
2293{
2294 flagword out_flags;
2295 flagword in_flags;
2296 bfd_boolean flags_compatible = TRUE;
2297 asection *sec;
2298
2299 /* Check if we have the same endianess. */
2300 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2301 return FALSE;
2302
2303 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2304 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2305 return TRUE;
2306
2307 /* The input BFD must have had its flags initialised. */
2308 /* The following seems bogus to me -- The flags are initialized in
2309 the assembler but I don't think an elf_flags_init field is
2310 written into the object. */
2311 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2312
2313 in_flags = elf_elfheader (ibfd)->e_flags;
2314 out_flags = elf_elfheader (obfd)->e_flags;
2315
2316 if (!elf_flags_init (obfd))
2317 {
2318 /* If the input is the default architecture and had the default
2319 flags then do not bother setting the flags for the output
2320 architecture, instead allow future merges to do this. If no
2321 future merges ever set these flags then they will retain their
2322 uninitialised values, which surprise surprise, correspond
2323 to the default values. */
2324 if (bfd_get_arch_info (ibfd)->the_default
2325 && elf_elfheader (ibfd)->e_flags == 0)
2326 return TRUE;
2327
2328 elf_flags_init (obfd) = TRUE;
2329 elf_elfheader (obfd)->e_flags = in_flags;
2330
2331 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2332 && bfd_get_arch_info (obfd)->the_default)
2333 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2334
2335 return TRUE;
2336 }
2337
2338 /* Determine what should happen if the input ARM architecture
2339 does not match the output ARM architecture. */
2340 if (! bfd_arm_merge_machines (ibfd, obfd))
2341 return FALSE;
2342
2343 /* Identical flags must be compatible. */
2344 if (in_flags == out_flags)
2345 return TRUE;
2346
2347 /* Check to see if the input BFD actually contains any sections. If
2348 not, its flags may not have been initialised either, but it
2349 cannot actually cause any incompatibility. Do not short-circuit
2350 dynamic objects; their section list may be emptied by
2351 elf_link_add_object_symbols.
2352
2353 Also check to see if there are no code sections in the input.
2354 In this case there is no need to check for code specific flags.
2355 XXX - do we need to worry about floating-point format compatability
2356 in data sections ? */
2357 if (!(ibfd->flags & DYNAMIC))
2358 {
2359 bfd_boolean null_input_bfd = TRUE;
2360 bfd_boolean only_data_sections = TRUE;
2361
2362 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2363 {
2364 /* Ignore synthetic glue sections. */
2365 if (strcmp (sec->name, ".glue_7")
2366 && strcmp (sec->name, ".glue_7t"))
2367 {
2368 if ((bfd_get_section_flags (ibfd, sec)
2369 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2370 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2371 only_data_sections = FALSE;
2372
2373 null_input_bfd = FALSE;
2374 break;
2375 }
2376 }
2377
2378 if (null_input_bfd || only_data_sections)
2379 return TRUE;
2380 }
2381
2382 /* Complain about various flag mismatches. */
2383 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2384 {
2385 _bfd_error_handler
2386 (_("ERROR: %B is compiled for EABI version %d, whereas %B is compiled for version %d"),
2387 ibfd, obfd,
2388 (in_flags & EF_ARM_EABIMASK) >> 24,
2389 (out_flags & EF_ARM_EABIMASK) >> 24);
2390 return FALSE;
2391 }
2392
2393 /* Not sure what needs to be checked for EABI versions >= 1. */
2394 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2395 {
2396 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2397 {
2398 _bfd_error_handler
2399 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
2400 ibfd, obfd,
2401 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2402 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2403 flags_compatible = FALSE;
2404 }
2405
2406 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2407 {
2408 if (in_flags & EF_ARM_APCS_FLOAT)
2409 _bfd_error_handler
2410 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
2411 ibfd, obfd);
2412 else
2413 _bfd_error_handler
2414 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
2415 ibfd, obfd);
2416
2417 flags_compatible = FALSE;
2418 }
2419
2420 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2421 {
2422 if (in_flags & EF_ARM_VFP_FLOAT)
2423 _bfd_error_handler
2424 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
2425 ibfd, obfd);
2426 else
2427 _bfd_error_handler
2428 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
2429 ibfd, obfd);
2430
2431 flags_compatible = FALSE;
2432 }
2433
2434 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2435 {
2436 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2437 _bfd_error_handler
2438 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
2439 ibfd, obfd);
2440 else
2441 _bfd_error_handler
2442 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
2443 ibfd, obfd);
2444
2445 flags_compatible = FALSE;
2446 }
2447
2448#ifdef EF_ARM_SOFT_FLOAT
2449 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2450 {
2451 /* We can allow interworking between code that is VFP format
2452 layout, and uses either soft float or integer regs for
2453 passing floating point arguments and results. We already
2454 know that the APCS_FLOAT flags match; similarly for VFP
2455 flags. */
2456 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2457 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2458 {
2459 if (in_flags & EF_ARM_SOFT_FLOAT)
2460 _bfd_error_handler
2461 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
2462 ibfd, obfd);
2463 else
2464 _bfd_error_handler
2465 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
2466 ibfd, obfd);
2467
2468 flags_compatible = FALSE;
2469 }
2470 }
2471#endif
2472
2473 /* Interworking mismatch is only a warning. */
2474 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2475 {
2476 if (in_flags & EF_ARM_INTERWORK)
2477 {
2478 _bfd_error_handler
2479 (_("Warning: %B supports interworking, whereas %B does not"),
2480 ibfd, obfd);
2481 }
2482 else
2483 {
2484 _bfd_error_handler
2485 (_("Warning: %B does not support interworking, whereas %B does"),
2486 ibfd, obfd);
2487 }
2488 }
2489 }
2490
2491 return flags_compatible;
2492}
2493
2494/* Display the flags field. */
2495
2496static bfd_boolean
2497elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
2498{
2499 FILE * file = (FILE *) ptr;
2500 unsigned long flags;
2501
2502 BFD_ASSERT (abfd != NULL && ptr != NULL);
2503
2504 /* Print normal ELF private data. */
2505 _bfd_elf_print_private_bfd_data (abfd, ptr);
2506
2507 flags = elf_elfheader (abfd)->e_flags;
2508 /* Ignore init flag - it may not be set, despite the flags field
2509 containing valid data. */
2510
2511 /* xgettext:c-format */
2512 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2513
2514 switch (EF_ARM_EABI_VERSION (flags))
2515 {
2516 case EF_ARM_EABI_UNKNOWN:
2517 /* The following flag bits are GNU extensions and not part of the
2518 official ARM ELF extended ABI. Hence they are only decoded if
2519 the EABI version is not set. */
2520 if (flags & EF_ARM_INTERWORK)
2521 fprintf (file, _(" [interworking enabled]"));
2522
2523 if (flags & EF_ARM_APCS_26)
2524 fprintf (file, " [APCS-26]");
2525 else
2526 fprintf (file, " [APCS-32]");
2527
2528 if (flags & EF_ARM_VFP_FLOAT)
2529 fprintf (file, _(" [VFP float format]"));
2530 else if (flags & EF_ARM_MAVERICK_FLOAT)
2531 fprintf (file, _(" [Maverick float format]"));
2532 else
2533 fprintf (file, _(" [FPA float format]"));
2534
2535 if (flags & EF_ARM_APCS_FLOAT)
2536 fprintf (file, _(" [floats passed in float registers]"));
2537
2538 if (flags & EF_ARM_PIC)
2539 fprintf (file, _(" [position independent]"));
2540
2541 if (flags & EF_ARM_NEW_ABI)
2542 fprintf (file, _(" [new ABI]"));
2543
2544 if (flags & EF_ARM_OLD_ABI)
2545 fprintf (file, _(" [old ABI]"));
2546
2547 if (flags & EF_ARM_SOFT_FLOAT)
2548 fprintf (file, _(" [software FP]"));
2549
2550 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2551 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2552 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2553 | EF_ARM_MAVERICK_FLOAT);
2554 break;
2555
2556 case EF_ARM_EABI_VER1:
2557 fprintf (file, _(" [Version1 EABI]"));
2558
2559 if (flags & EF_ARM_SYMSARESORTED)
2560 fprintf (file, _(" [sorted symbol table]"));
2561 else
2562 fprintf (file, _(" [unsorted symbol table]"));
2563
2564 flags &= ~ EF_ARM_SYMSARESORTED;
2565 break;
2566
2567 case EF_ARM_EABI_VER2:
2568 fprintf (file, _(" [Version2 EABI]"));
2569
2570 if (flags & EF_ARM_SYMSARESORTED)
2571 fprintf (file, _(" [sorted symbol table]"));
2572 else
2573 fprintf (file, _(" [unsorted symbol table]"));
2574
2575 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2576 fprintf (file, _(" [dynamic symbols use segment index]"));
2577
2578 if (flags & EF_ARM_MAPSYMSFIRST)
2579 fprintf (file, _(" [mapping symbols precede others]"));
2580
2581 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2582 | EF_ARM_MAPSYMSFIRST);
2583 break;
2584
2585 case EF_ARM_EABI_VER3:
2586 fprintf (file, _(" [Version3 EABI]"));
2587
2588 if (flags & EF_ARM_BE8)
2589 fprintf (file, _(" [BE8]"));
2590
2591 if (flags & EF_ARM_LE8)
2592 fprintf (file, _(" [LE8]"));
2593
2594 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2595 break;
2596
2597 default:
2598 fprintf (file, _(" <EABI version unrecognised>"));
2599 break;
2600 }
2601
2602 flags &= ~ EF_ARM_EABIMASK;
2603
2604 if (flags & EF_ARM_RELEXEC)
2605 fprintf (file, _(" [relocatable executable]"));
2606
2607 if (flags & EF_ARM_HASENTRY)
2608 fprintf (file, _(" [has entry point]"));
2609
2610 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2611
2612 if (flags)
2613 fprintf (file, _("<Unrecognised flag bits set>"));
2614
2615 fputc ('\n', file);
2616
2617 return TRUE;
2618}
2619
2620static int
2621elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
2622{
2623 switch (ELF_ST_TYPE (elf_sym->st_info))
2624 {
2625 case STT_ARM_TFUNC:
2626 return ELF_ST_TYPE (elf_sym->st_info);
2627
2628 case STT_ARM_16BIT:
2629 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2630 This allows us to distinguish between data used by Thumb instructions
2631 and non-data (which is probably code) inside Thumb regions of an
2632 executable. */
2633 if (type != STT_OBJECT)
2634 return ELF_ST_TYPE (elf_sym->st_info);
2635 break;
2636
2637 default:
2638 break;
2639 }
2640
2641 return type;
2642}
2643
2644static asection *
2645elf32_arm_gc_mark_hook (asection * sec,
2646 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2647 Elf_Internal_Rela * rel,
2648 struct elf_link_hash_entry * h,
2649 Elf_Internal_Sym * sym)
2650{
2651 if (h != NULL)
2652 {
2653 switch (ELF32_R_TYPE (rel->r_info))
2654 {
2655 case R_ARM_GNU_VTINHERIT:
2656 case R_ARM_GNU_VTENTRY:
2657 break;
2658
2659 default:
2660 switch (h->root.type)
2661 {
2662 case bfd_link_hash_defined:
2663 case bfd_link_hash_defweak:
2664 return h->root.u.def.section;
2665
2666 case bfd_link_hash_common:
2667 return h->root.u.c.p->section;
2668
2669 default:
2670 break;
2671 }
2672 }
2673 }
2674 else
2675 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2676
2677 return NULL;
2678}
2679
2680/* Update the got entry reference counts for the section being removed. */
2681
2682static bfd_boolean
2683elf32_arm_gc_sweep_hook (bfd * abfd ATTRIBUTE_UNUSED,
2684 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2685 asection * sec ATTRIBUTE_UNUSED,
2686 const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)
2687{
2688 Elf_Internal_Shdr *symtab_hdr;
2689 struct elf_link_hash_entry **sym_hashes;
2690 bfd_signed_vma *local_got_refcounts;
2691 const Elf_Internal_Rela *rel, *relend;
2692 unsigned long r_symndx;
2693 struct elf_link_hash_entry *h;
2694
2695 elf_section_data (sec)->local_dynrel = NULL;
2696
2697 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2698 sym_hashes = elf_sym_hashes (abfd);
2699 local_got_refcounts = elf_local_got_refcounts (abfd);
2700
2701 relend = relocs + sec->reloc_count;
2702 for (rel = relocs; rel < relend; rel++)
2703 switch (ELF32_R_TYPE (rel->r_info))
2704 {
2705 case R_ARM_GOT32:
2706 r_symndx = ELF32_R_SYM (rel->r_info);
2707 if (r_symndx >= symtab_hdr->sh_info)
2708 {
2709 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2710 if (h->got.refcount > 0)
2711 h->got.refcount -= 1;
2712 }
2713 else if (local_got_refcounts != NULL)
2714 {
2715 if (local_got_refcounts[r_symndx] > 0)
2716 local_got_refcounts[r_symndx] -= 1;
2717 }
2718 break;
2719
2720 case R_ARM_ABS32:
2721 case R_ARM_REL32:
2722 case R_ARM_PC24:
2723 case R_ARM_PLT32:
2724 r_symndx = ELF32_R_SYM (rel->r_info);
2725 if (r_symndx >= symtab_hdr->sh_info)
2726 {
2727 struct elf32_arm_link_hash_entry *eh;
2728 struct elf32_arm_relocs_copied **pp;
2729 struct elf32_arm_relocs_copied *p;
2730
2731 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2732
2733 if (h->plt.refcount > 0)
2734 h->plt.refcount -= 1;
2735
2736 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
2737 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
2738 {
2739 eh = (struct elf32_arm_link_hash_entry *) h;
2740
2741 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2742 pp = &p->next)
2743 if (p->section == sec)
2744 {
2745 p->count -= 1;
2746 if (p->count == 0)
2747 *pp = p->next;
2748 break;
2749 }
2750 }
2751 }
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 return TRUE;
2759}
2760
2761/* Look through the relocs for a section during the first phase. */
2762
2763static bfd_boolean
2764elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
2765 asection *sec, const Elf_Internal_Rela *relocs)
2766{
2767 Elf_Internal_Shdr *symtab_hdr;
2768 struct elf_link_hash_entry **sym_hashes;
2769 struct elf_link_hash_entry **sym_hashes_end;
2770 const Elf_Internal_Rela *rel;
2771 const Elf_Internal_Rela *rel_end;
2772 bfd *dynobj;
2773 asection *sreloc;
2774 bfd_vma *local_got_offsets;
2775 struct elf32_arm_link_hash_table *htab;
2776
2777 if (info->relocatable)
2778 return TRUE;
2779
2780 htab = elf32_arm_hash_table (info);
2781 sreloc = NULL;
2782
2783 dynobj = elf_hash_table (info)->dynobj;
2784 local_got_offsets = elf_local_got_offsets (abfd);
2785
2786 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2787 sym_hashes = elf_sym_hashes (abfd);
2788 sym_hashes_end = sym_hashes
2789 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2790
2791 if (!elf_bad_symtab (abfd))
2792 sym_hashes_end -= symtab_hdr->sh_info;
2793
2794 rel_end = relocs + sec->reloc_count;
2795 for (rel = relocs; rel < rel_end; rel++)
2796 {
2797 struct elf_link_hash_entry *h;
2798 unsigned long r_symndx;
2799
2800 r_symndx = ELF32_R_SYM (rel->r_info);
2801 if (r_symndx < symtab_hdr->sh_info)
2802 h = NULL;
2803 else
2804 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2805
2806 switch (ELF32_R_TYPE (rel->r_info))
2807 {
2808 case R_ARM_GOT32:
2809 /* This symbol requires a global offset table entry. */
2810 if (h != NULL)
2811 {
2812 h->got.refcount++;
2813 }
2814 else
2815 {
2816 bfd_signed_vma *local_got_refcounts;
2817
2818 /* This is a global offset table entry for a local symbol. */
2819 local_got_refcounts = elf_local_got_refcounts (abfd);
2820 if (local_got_refcounts == NULL)
2821 {
2822 bfd_size_type size;
2823
2824 size = symtab_hdr->sh_info;
2825 size *= (sizeof (bfd_signed_vma) + sizeof (char));
2826 local_got_refcounts = bfd_zalloc (abfd, size);
2827 if (local_got_refcounts == NULL)
2828 return FALSE;
2829 elf_local_got_refcounts (abfd) = local_got_refcounts;
2830 }
2831 local_got_refcounts[r_symndx] += 1;
2832 }
2833 break;
2834
2835 case R_ARM_GOTOFF:
2836 case R_ARM_GOTPC:
2837 if (htab->sgot == NULL)
2838 {
2839 if (htab->root.dynobj == NULL)
2840 htab->root.dynobj = abfd;
2841 if (!create_got_section (htab->root.dynobj, info))
2842 return FALSE;
2843 }
2844 break;
2845
2846 case R_ARM_ABS32:
2847 case R_ARM_REL32:
2848 case R_ARM_PC24:
2849 case R_ARM_PLT32:
2850 if (h != NULL)
2851 {
2852 /* If this reloc is in a read-only section, we might
2853 need a copy reloc. We can't check reliably at this
2854 stage whether the section is read-only, as input
2855 sections have not yet been mapped to output sections.
2856 Tentatively set the flag for now, and correct in
2857 adjust_dynamic_symbol. */
2858 if (!info->shared)
2859 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
2860
2861 /* We may need a .plt entry if the function this reloc
2862 refers to is in a different object. We can't tell for
2863 sure yet, because something later might force the
2864 symbol local. */
2865 if (ELF32_R_TYPE (rel->r_info) == R_ARM_PC24
2866 || ELF32_R_TYPE (rel->r_info) == R_ARM_PLT32)
2867 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2868
2869 /* If we create a PLT entry, this relocation will reference
2870 it, even if it's an ABS32 relocation. */
2871 h->plt.refcount += 1;
2872 }
2873
2874 /* If we are creating a shared library, and this is a reloc
2875 against a global symbol, or a non PC relative reloc
2876 against a local symbol, then we need to copy the reloc
2877 into the shared library. However, if we are linking with
2878 -Bsymbolic, we do not need to copy a reloc against a
2879 global symbol which is defined in an object we are
2880 including in the link (i.e., DEF_REGULAR is set). At
2881 this point we have not seen all the input files, so it is
2882 possible that DEF_REGULAR is not set now but will be set
2883 later (it is never cleared). We account for that
2884 possibility below by storing information in the
2885 relocs_copied field of the hash table entry. */
2886 if (info->shared
2887 && (sec->flags & SEC_ALLOC) != 0
2888 && ((ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2889 && ELF32_R_TYPE (rel->r_info) != R_ARM_PLT32
2890 && ELF32_R_TYPE (rel->r_info) != R_ARM_REL32)
2891 || (h != NULL
2892 && (! info->symbolic
2893 || (h->elf_link_hash_flags
2894 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2895 {
2896 struct elf32_arm_relocs_copied *p, **head;
2897
2898 /* When creating a shared object, we must copy these
2899 reloc types into the output file. We create a reloc
2900 section in dynobj and make room for this reloc. */
2901 if (sreloc == NULL)
2902 {
2903 const char * name;
2904
2905 name = (bfd_elf_string_from_elf_section
2906 (abfd,
2907 elf_elfheader (abfd)->e_shstrndx,
2908 elf_section_data (sec)->rel_hdr.sh_name));
2909 if (name == NULL)
2910 return FALSE;
2911
2912 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2913 && strcmp (bfd_get_section_name (abfd, sec),
2914 name + 4) == 0);
2915
2916 sreloc = bfd_get_section_by_name (dynobj, name);
2917 if (sreloc == NULL)
2918 {
2919 flagword flags;
2920
2921 sreloc = bfd_make_section (dynobj, name);
2922 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2923 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2924 if ((sec->flags & SEC_ALLOC) != 0)
2925 flags |= SEC_ALLOC | SEC_LOAD;
2926 if (sreloc == NULL
2927 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2928 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2929 return FALSE;
2930 }
2931
2932 elf_section_data (sec)->sreloc = sreloc;
2933 }
2934
2935 /* If this is a global symbol, we count the number of
2936 relocations we need for this symbol. */
2937 if (h != NULL)
2938 {
2939 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
2940 }
2941 else
2942 {
2943 /* Track dynamic relocs needed for local syms too.
2944 We really need local syms available to do this
2945 easily. Oh well. */
2946
2947 asection *s;
2948 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
2949 sec, r_symndx);
2950 if (s == NULL)
2951 return FALSE;
2952
2953 head = ((struct elf32_arm_relocs_copied **)
2954 &elf_section_data (s)->local_dynrel);
2955 }
2956
2957 p = *head;
2958 if (p == NULL || p->section != sec)
2959 {
2960 bfd_size_type amt = sizeof *p;
2961
2962 p = bfd_alloc (htab->root.dynobj, amt);
2963 if (p == NULL)
2964 return FALSE;
2965 p->next = *head;
2966 *head = p;
2967 p->section = sec;
2968 p->count = 0;
2969 }
2970
2971 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
2972 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
2973 p->count += 1;
2974 }
2975 break;
2976
2977 /* This relocation describes the C++ object vtable hierarchy.
2978 Reconstruct it for later use during GC. */
2979 case R_ARM_GNU_VTINHERIT:
2980 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2981 return FALSE;
2982 break;
2983
2984 /* This relocation describes which C++ vtable entries are actually
2985 used. Record for later use during GC. */
2986 case R_ARM_GNU_VTENTRY:
2987 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2988 return FALSE;
2989 break;
2990 }
2991 }
2992
2993 return TRUE;
2994}
2995
2996/* Find the nearest line to a particular section and offset, for error
2997 reporting. This code is a duplicate of the code in elf.c, except
2998 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2999
3000static bfd_boolean
3001elf32_arm_find_nearest_line (bfd * abfd,
3002 asection * section,
3003 asymbol ** symbols,
3004 bfd_vma offset,
3005 const char ** filename_ptr,
3006 const char ** functionname_ptr,
3007 unsigned int * line_ptr)
3008{
3009 bfd_boolean found;
3010 const char *filename;
3011 asymbol *func;
3012 bfd_vma low_func;
3013 asymbol **p;
3014
3015 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3016 filename_ptr, functionname_ptr,
3017 line_ptr, 0,
3018 &elf_tdata (abfd)->dwarf2_find_line_info))
3019 return TRUE;
3020
3021 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3022 &found, filename_ptr,
3023 functionname_ptr, line_ptr,
3024 &elf_tdata (abfd)->line_info))
3025 return FALSE;
3026
3027 if (found)
3028 return TRUE;
3029
3030 if (symbols == NULL)
3031 return FALSE;
3032
3033 filename = NULL;
3034 func = NULL;
3035 low_func = 0;
3036
3037 for (p = symbols; *p != NULL; p++)
3038 {
3039 elf_symbol_type *q;
3040
3041 q = (elf_symbol_type *) *p;
3042
3043 if (bfd_get_section (&q->symbol) != section)
3044 continue;
3045
3046 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3047 {
3048 default:
3049 break;
3050 case STT_FILE:
3051 filename = bfd_asymbol_name (&q->symbol);
3052 break;
3053 case STT_NOTYPE:
3054 case STT_FUNC:
3055 case STT_ARM_TFUNC:
3056 if (q->symbol.section == section
3057 && q->symbol.value >= low_func
3058 && q->symbol.value <= offset)
3059 {
3060 func = (asymbol *) q;
3061 low_func = q->symbol.value;
3062 }
3063 break;
3064 }
3065 }
3066
3067 if (func == NULL)
3068 return FALSE;
3069
3070 *filename_ptr = filename;
3071 *functionname_ptr = bfd_asymbol_name (func);
3072 *line_ptr = 0;
3073
3074 return TRUE;
3075}
3076
3077/* Adjust a symbol defined by a dynamic object and referenced by a
3078 regular object. The current definition is in some section of the
3079 dynamic object, but we're not including those sections. We have to
3080 change the definition to something the rest of the link can
3081 understand. */
3082
3083static bfd_boolean
3084elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
3085 struct elf_link_hash_entry * h)
3086{
3087 bfd * dynobj;
3088 asection * s;
3089 unsigned int power_of_two;
3090
3091 dynobj = elf_hash_table (info)->dynobj;
3092
3093 /* Make sure we know what is going on here. */
3094 BFD_ASSERT (dynobj != NULL
3095 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
3096 || h->weakdef != NULL
3097 || ((h->elf_link_hash_flags
3098 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3099 && (h->elf_link_hash_flags
3100 & ELF_LINK_HASH_REF_REGULAR) != 0
3101 && (h->elf_link_hash_flags
3102 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3103
3104 /* If this is a function, put it in the procedure linkage table. We
3105 will fill in the contents of the procedure linkage table later,
3106 when we know the address of the .got section. */
3107 if (h->type == STT_FUNC
3108 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3109 {
3110 if (h->plt.refcount <= 0
3111 || SYMBOL_CALLS_LOCAL (info, h)
3112 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3113 && h->root.type == bfd_link_hash_undefweak))
3114 {
3115 /* This case can occur if we saw a PLT32 reloc in an input
3116 file, but the symbol was never referred to by a dynamic
3117 object, or if all references were garbage collected. In
3118 such a case, we don't actually need to build a procedure
3119 linkage table, and we can just do a PC24 reloc instead. */
3120 h->plt.offset = (bfd_vma) -1;
3121 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3122 }
3123
3124 return TRUE;
3125 }
3126 else
3127 /* It's possible that we incorrectly decided a .plt reloc was
3128 needed for an R_ARM_PC24 reloc to a non-function sym in
3129 check_relocs. We can't decide accurately between function and
3130 non-function syms in check-relocs; Objects loaded later in
3131 the link may change h->type. So fix it now. */
3132 h->plt.offset = (bfd_vma) -1;
3133
3134 /* If this is a weak symbol, and there is a real definition, the
3135 processor independent code will have arranged for us to see the
3136 real definition first, and we can just use the same value. */
3137 if (h->weakdef != NULL)
3138 {
3139 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3140 || h->weakdef->root.type == bfd_link_hash_defweak);
3141 h->root.u.def.section = h->weakdef->root.u.def.section;
3142 h->root.u.def.value = h->weakdef->root.u.def.value;
3143 return TRUE;
3144 }
3145
3146 /* This is a reference to a symbol defined by a dynamic object which
3147 is not a function. */
3148
3149 /* If we are creating a shared library, we must presume that the
3150 only references to the symbol are via the global offset table.
3151 For such cases we need not do anything here; the relocations will
3152 be handled correctly by relocate_section. */
3153 if (info->shared)
3154 return TRUE;
3155
3156 /* We must allocate the symbol in our .dynbss section, which will
3157 become part of the .bss section of the executable. There will be
3158 an entry for this symbol in the .dynsym section. The dynamic
3159 object will contain position independent code, so all references
3160 from the dynamic object to this symbol will go through the global
3161 offset table. The dynamic linker will use the .dynsym entry to
3162 determine the address it must put in the global offset table, so
3163 both the dynamic object and the regular object will refer to the
3164 same memory location for the variable. */
3165 s = bfd_get_section_by_name (dynobj, ".dynbss");
3166 BFD_ASSERT (s != NULL);
3167
3168 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3169 copy the initial value out of the dynamic object and into the
3170 runtime process image. We need to remember the offset into the
3171 .rel.bss section we are going to use. */
3172 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3173 {
3174 asection *srel;
3175
3176 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3177 BFD_ASSERT (srel != NULL);
3178 srel->size += sizeof (Elf32_External_Rel);
3179 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3180 }
3181
3182 /* We need to figure out the alignment required for this symbol. I
3183 have no idea how ELF linkers handle this. */
3184 power_of_two = bfd_log2 (h->size);
3185 if (power_of_two > 3)
3186 power_of_two = 3;
3187
3188 /* Apply the required alignment. */
3189 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
3190 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3191 {
3192 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3193 return FALSE;
3194 }
3195
3196 /* Define the symbol as being at this point in the section. */
3197 h->root.u.def.section = s;
3198 h->root.u.def.value = s->size;
3199
3200 /* Increment the section size to make room for the symbol. */
3201 s->size += h->size;
3202
3203 return TRUE;
3204}
3205
3206/* Allocate space in .plt, .got and associated reloc sections for
3207 dynamic relocs. */
3208
3209static bfd_boolean
3210allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
3211{
3212 struct bfd_link_info *info;
3213 struct elf32_arm_link_hash_table *htab;
3214 struct elf32_arm_link_hash_entry *eh;
3215 struct elf32_arm_relocs_copied *p;
3216
3217 if (h->root.type == bfd_link_hash_indirect)
3218 return TRUE;
3219
3220 if (h->root.type == bfd_link_hash_warning)
3221 /* When warning symbols are created, they **replace** the "real"
3222 entry in the hash table, thus we never get to see the real
3223 symbol in a hash traversal. So look at it now. */
3224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3225
3226 info = (struct bfd_link_info *) inf;
3227 htab = elf32_arm_hash_table (info);
3228
3229 if (htab->root.dynamic_sections_created
3230 && h->plt.refcount > 0)
3231 {
3232 /* Make sure this symbol is output as a dynamic symbol.
3233 Undefined weak syms won't yet be marked as dynamic. */
3234 if (h->dynindx == -1
3235 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3236 {
3237 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3238 return FALSE;
3239 }
3240
3241 if (info->shared
3242 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3243 {
3244 asection *s = htab->splt;
3245
3246 /* If this is the first .plt entry, make room for the special
3247 first entry. */
3248 if (s->size == 0)
3249 s->size += PLT_HEADER_SIZE;
3250
3251 h->plt.offset = s->size;
3252
3253 /* If this symbol is not defined in a regular file, and we are
3254 not generating a shared library, then set the symbol to this
3255 location in the .plt. This is required to make function
3256 pointers compare as equal between the normal executable and
3257 the shared library. */
3258 if (! info->shared
3259 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3260 {
3261 h->root.u.def.section = s;
3262 h->root.u.def.value = h->plt.offset;
3263 }
3264
3265 /* Make room for this entry. */
3266 s->size += PLT_ENTRY_SIZE;
3267
3268 /* We also need to make an entry in the .got.plt section, which
3269 will be placed in the .got section by the linker script. */
3270 htab->sgotplt->size += 4;
3271
3272 /* We also need to make an entry in the .rel.plt section. */
3273 htab->srelplt->size += sizeof (Elf32_External_Rel);
3274 }
3275 else
3276 {
3277 h->plt.offset = (bfd_vma) -1;
3278 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3279 }
3280 }
3281 else
3282 {
3283 h->plt.offset = (bfd_vma) -1;
3284 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3285 }
3286
3287 if (h->got.refcount > 0)
3288 {
3289 asection *s;
3290 bfd_boolean dyn;
3291
3292 /* Make sure this symbol is output as a dynamic symbol.
3293 Undefined weak syms won't yet be marked as dynamic. */
3294 if (h->dynindx == -1
3295 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3296 {
3297 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3298 return FALSE;
3299 }
3300
3301 s = htab->sgot;
3302 h->got.offset = s->size;
3303 s->size += 4;
3304 dyn = htab->root.dynamic_sections_created;
3305 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3306 || h->root.type != bfd_link_hash_undefweak)
3307 && (info->shared
3308 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3309 htab->srelgot->size += sizeof (Elf32_External_Rel);
3310 }
3311 else
3312 h->got.offset = (bfd_vma) -1;
3313
3314 eh = (struct elf32_arm_link_hash_entry *) h;
3315 if (eh->relocs_copied == NULL)
3316 return TRUE;
3317
3318 /* In the shared -Bsymbolic case, discard space allocated for
3319 dynamic pc-relative relocs against symbols which turn out to be
3320 defined in regular objects. For the normal shared case, discard
3321 space for pc-relative relocs that have become local due to symbol
3322 visibility changes. */
3323
3324 if (info->shared)
3325 {
3326 /* Discard relocs on undefined weak syms with non-default
3327 visibility. */
3328 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3329 && h->root.type == bfd_link_hash_undefweak)
3330 eh->relocs_copied = NULL;
3331 }
3332 else
3333 {
3334 /* For the non-shared case, discard space for relocs against
3335 symbols which turn out to need copy relocs or are not
3336 dynamic. */
3337
3338 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3339 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3340 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3341 || (htab->root.dynamic_sections_created
3342 && (h->root.type == bfd_link_hash_undefweak
3343 || h->root.type == bfd_link_hash_undefined))))
3344 {
3345 /* Make sure this symbol is output as a dynamic symbol.
3346 Undefined weak syms won't yet be marked as dynamic. */
3347 if (h->dynindx == -1
3348 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3349 {
3350 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3351 return FALSE;
3352 }
3353
3354 /* If that succeeded, we know we'll be keeping all the
3355 relocs. */
3356 if (h->dynindx != -1)
3357 goto keep;
3358 }
3359
3360 eh->relocs_copied = NULL;
3361
3362 keep: ;
3363 }
3364
3365 /* Finally, allocate space. */
3366 for (p = eh->relocs_copied; p != NULL; p = p->next)
3367 {
3368 asection *sreloc = elf_section_data (p->section)->sreloc;
3369 sreloc->size += p->count * sizeof (Elf32_External_Rel);
3370 }
3371
3372 return TRUE;
3373}
3374
3375/* Set the sizes of the dynamic sections. */
3376
3377static bfd_boolean
3378elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
3379 struct bfd_link_info * info)
3380{
3381 bfd * dynobj;
3382 asection * s;
3383 bfd_boolean plt;
3384 bfd_boolean relocs;
3385 bfd *ibfd;
3386 struct elf32_arm_link_hash_table *htab;
3387
3388 htab = elf32_arm_hash_table (info);
3389 dynobj = elf_hash_table (info)->dynobj;
3390 BFD_ASSERT (dynobj != NULL);
3391
3392 if (elf_hash_table (info)->dynamic_sections_created)
3393 {
3394 /* Set the contents of the .interp section to the interpreter. */
3395 if (info->executable)
3396 {
3397 s = bfd_get_section_by_name (dynobj, ".interp");
3398 BFD_ASSERT (s != NULL);
3399 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3400 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3401 }
3402 }
3403
3404 /* Set up .got offsets for local syms, and space for local dynamic
3405 relocs. */
3406 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3407 {
3408 bfd_signed_vma *local_got;
3409 bfd_signed_vma *end_local_got;
3410 char *local_tls_type;
3411 bfd_size_type locsymcount;
3412 Elf_Internal_Shdr *symtab_hdr;
3413 asection *srel;
3414
3415 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3416 continue;
3417
3418 for (s = ibfd->sections; s != NULL; s = s->next)
3419 {
3420 struct elf32_arm_relocs_copied *p;
3421
3422 for (p = *((struct elf32_arm_relocs_copied **)
3423 &elf_section_data (s)->local_dynrel);
3424 p != NULL;
3425 p = p->next)
3426 {
3427 if (!bfd_is_abs_section (p->section)
3428 && bfd_is_abs_section (p->section->output_section))
3429 {
3430 /* Input section has been discarded, either because
3431 it is a copy of a linkonce section or due to
3432 linker script /DISCARD/, so we'll be discarding
3433 the relocs too. */
3434 }
3435 else if (p->count != 0)
3436 {
3437 srel = elf_section_data (p->section)->sreloc;
3438 srel->size += p->count * sizeof (Elf32_External_Rel);
3439 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3440 info->flags |= DF_TEXTREL;
3441 }
3442 }
3443 }
3444
3445 local_got = elf_local_got_refcounts (ibfd);
3446 if (!local_got)
3447 continue;
3448
3449 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3450 locsymcount = symtab_hdr->sh_info;
3451 end_local_got = local_got + locsymcount;
3452 s = htab->sgot;
3453 srel = htab->srelgot;
3454 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3455 {
3456 if (*local_got > 0)
3457 {
3458 *local_got = s->size;
3459 s->size += 4;
3460 if (info->shared)
3461 srel->size += sizeof (Elf32_External_Rel);
3462 }
3463 else
3464 *local_got = (bfd_vma) -1;
3465 }
3466 }
3467
3468 /* Allocate global sym .plt and .got entries, and space for global
3469 sym dynamic relocs. */
3470 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
3471
3472 /* The check_relocs and adjust_dynamic_symbol entry points have
3473 determined the sizes of the various dynamic sections. Allocate
3474 memory for them. */
3475 plt = FALSE;
3476 relocs = FALSE;
3477 for (s = dynobj->sections; s != NULL; s = s->next)
3478 {
3479 const char * name;
3480 bfd_boolean strip;
3481
3482 if ((s->flags & SEC_LINKER_CREATED) == 0)
3483 continue;
3484
3485 /* It's OK to base decisions on the section name, because none
3486 of the dynobj section names depend upon the input files. */
3487 name = bfd_get_section_name (dynobj, s);
3488
3489 strip = FALSE;
3490
3491 if (strcmp (name, ".plt") == 0)
3492 {
3493 if (s->size == 0)
3494 {
3495 /* Strip this section if we don't need it; see the
3496 comment below. */
3497 strip = TRUE;
3498 }
3499 else
3500 {
3501 /* Remember whether there is a PLT. */
3502 plt = TRUE;
3503 }
3504 }
3505 else if (strncmp (name, ".rel", 4) == 0)
3506 {
3507 if (s->size == 0)
3508 {
3509 /* If we don't need this section, strip it from the
3510 output file. This is mostly to handle .rel.bss and
3511 .rel.plt. We must create both sections in
3512 create_dynamic_sections, because they must be created
3513 before the linker maps input sections to output
3514 sections. The linker does that before
3515 adjust_dynamic_symbol is called, and it is that
3516 function which decides whether anything needs to go
3517 into these sections. */
3518 strip = TRUE;
3519 }
3520 else
3521 {
3522 /* Remember whether there are any reloc sections other
3523 than .rel.plt. */
3524 if (strcmp (name, ".rel.plt") != 0)
3525 relocs = TRUE;
3526
3527 /* We use the reloc_count field as a counter if we need
3528 to copy relocs into the output file. */
3529 s->reloc_count = 0;
3530 }
3531 }
3532 else if (strncmp (name, ".got", 4) != 0)
3533 {
3534 /* It's not one of our sections, so don't allocate space. */
3535 continue;
3536 }
3537
3538 if (strip)
3539 {
3540 _bfd_strip_section_from_output (info, s);
3541 continue;
3542 }
3543
3544 /* Allocate memory for the section contents. */
3545 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3546 if (s->contents == NULL && s->size != 0)
3547 return FALSE;
3548 }
3549
3550 if (elf_hash_table (info)->dynamic_sections_created)
3551 {
3552 /* Add some entries to the .dynamic section. We fill in the
3553 values later, in elf32_arm_finish_dynamic_sections, but we
3554 must add the entries now so that we get the correct size for
3555 the .dynamic section. The DT_DEBUG entry is filled in by the
3556 dynamic linker and used by the debugger. */
3557#define add_dynamic_entry(TAG, VAL) \
3558 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3559
3560 if (!info->shared)
3561 {
3562 if (!add_dynamic_entry (DT_DEBUG, 0))
3563 return FALSE;
3564 }
3565
3566 if (plt)
3567 {
3568 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3569 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3570 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3571 || !add_dynamic_entry (DT_JMPREL, 0))
3572 return FALSE;
3573 }
3574
3575 if (relocs)
3576 {
3577 if ( !add_dynamic_entry (DT_REL, 0)
3578 || !add_dynamic_entry (DT_RELSZ, 0)
3579 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3580 return FALSE;
3581 }
3582
3583 if ((info->flags & DF_TEXTREL) != 0)
3584 {
3585 if (!add_dynamic_entry (DT_TEXTREL, 0))
3586 return FALSE;
3587 info->flags |= DF_TEXTREL;
3588 }
3589 }
3590#undef add_synamic_entry
3591
3592 return TRUE;
3593}
3594
3595/* Finish up dynamic symbol handling. We set the contents of various
3596 dynamic sections here. */
3597
3598static bfd_boolean
3599elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
3600 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
3601{
3602 bfd * dynobj;
3603
3604 dynobj = elf_hash_table (info)->dynobj;
3605
3606 if (h->plt.offset != (bfd_vma) -1)
3607 {
3608 asection * splt;
3609 asection * sgot;
3610 asection * srel;
3611 bfd_vma plt_index;
3612 bfd_vma got_offset;
3613 Elf_Internal_Rela rel;
3614 bfd_byte *loc;
3615 bfd_vma got_displacement;
3616
3617 /* This symbol has an entry in the procedure linkage table. Set
3618 it up. */
3619
3620 BFD_ASSERT (h->dynindx != -1);
3621
3622 splt = bfd_get_section_by_name (dynobj, ".plt");
3623 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3624 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3625 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3626
3627 /* Get the index in the procedure linkage table which
3628 corresponds to this symbol. This is the index of this symbol
3629 in all the symbols for which we are making plt entries. The
3630 first entry in the procedure linkage table is reserved. */
3631 plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
3632
3633 /* Get the offset into the .got table of the entry that
3634 corresponds to this function. Each .got entry is 4 bytes.
3635 The first three are reserved. */
3636 got_offset = (plt_index + 3) * 4;
3637
3638 /* Calculate the displacement between the PLT slot and the
3639 entry in the GOT. */
3640 got_displacement = (sgot->output_section->vma
3641 + sgot->output_offset
3642 + got_offset
3643 - splt->output_section->vma
3644 - splt->output_offset
3645 - h->plt.offset
3646 - 8);
3647
3648 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3649
3650 /* Fill in the entry in the procedure linkage table. */
3651 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3652 splt->contents + h->plt.offset + 0);
3653 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3654 splt->contents + h->plt.offset + 4);
3655 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3656 splt->contents + h->plt.offset + 8);
3657#ifdef FOUR_WORD_PLT
3658 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3659 splt->contents + h->plt.offset + 12);
3660#endif
3661
3662 /* Fill in the entry in the global offset table. */
3663 bfd_put_32 (output_bfd,
3664 (splt->output_section->vma
3665 + splt->output_offset),
3666 sgot->contents + got_offset);
3667
3668 /* Fill in the entry in the .rel.plt section. */
3669 rel.r_offset = (sgot->output_section->vma
3670 + sgot->output_offset
3671 + got_offset);
3672 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3673 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3674 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3675
3676 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3677 {
3678 /* Mark the symbol as undefined, rather than as defined in
3679 the .plt section. Leave the value alone. */
3680 sym->st_shndx = SHN_UNDEF;
3681 /* If the symbol is weak, we do need to clear the value.
3682 Otherwise, the PLT entry would provide a definition for
3683 the symbol even if the symbol wasn't defined anywhere,
3684 and so the symbol would never be NULL. */
3685 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3686 == 0)
3687 sym->st_value = 0;
3688 }
3689 }
3690
3691 if (h->got.offset != (bfd_vma) -1)
3692 {
3693 asection * sgot;
3694 asection * srel;
3695 Elf_Internal_Rela rel;
3696 bfd_byte *loc;
3697
3698 /* This symbol has an entry in the global offset table. Set it
3699 up. */
3700 sgot = bfd_get_section_by_name (dynobj, ".got");
3701 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3702 BFD_ASSERT (sgot != NULL && srel != NULL);
3703
3704 rel.r_offset = (sgot->output_section->vma
3705 + sgot->output_offset
3706 + (h->got.offset &~ (bfd_vma) 1));
3707
3708 /* If this is a static link, or it is a -Bsymbolic link and the
3709 symbol is defined locally or was forced to be local because
3710 of a version file, we just want to emit a RELATIVE reloc.
3711 The entry in the global offset table will already have been
3712 initialized in the relocate_section function. */
3713 if (info->shared
3714 && SYMBOL_REFERENCES_LOCAL (info, h))
3715 {
3716 BFD_ASSERT((h->got.offset & 1) != 0);
3717 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3718 }
3719 else
3720 {
3721 BFD_ASSERT((h->got.offset & 1) == 0);
3722 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3723 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3724 }
3725
3726 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3727 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3728 }
3729
3730 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3731 {
3732 asection * s;
3733 Elf_Internal_Rela rel;
3734 bfd_byte *loc;
3735
3736 /* This symbol needs a copy reloc. Set it up. */
3737 BFD_ASSERT (h->dynindx != -1
3738 && (h->root.type == bfd_link_hash_defined
3739 || h->root.type == bfd_link_hash_defweak));
3740
3741 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3742 ".rel.bss");
3743 BFD_ASSERT (s != NULL);
3744
3745 rel.r_offset = (h->root.u.def.value
3746 + h->root.u.def.section->output_section->vma
3747 + h->root.u.def.section->output_offset);
3748 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3749 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3750 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3751 }
3752
3753 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3754 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3755 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3756 sym->st_shndx = SHN_ABS;
3757
3758 return TRUE;
3759}
3760
3761/* Finish up the dynamic sections. */
3762
3763static bfd_boolean
3764elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
3765{
3766 bfd * dynobj;
3767 asection * sgot;
3768 asection * sdyn;
3769
3770 dynobj = elf_hash_table (info)->dynobj;
3771
3772 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3773 BFD_ASSERT (sgot != NULL);
3774 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3775
3776 if (elf_hash_table (info)->dynamic_sections_created)
3777 {
3778 asection *splt;
3779 Elf32_External_Dyn *dyncon, *dynconend;
3780
3781 splt = bfd_get_section_by_name (dynobj, ".plt");
3782 BFD_ASSERT (splt != NULL && sdyn != NULL);
3783
3784 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3785 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3786
3787 for (; dyncon < dynconend; dyncon++)
3788 {
3789 Elf_Internal_Dyn dyn;
3790 const char * name;
3791 asection * s;
3792
3793 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3794
3795 switch (dyn.d_tag)
3796 {
3797 default:
3798 break;
3799
3800 case DT_PLTGOT:
3801 name = ".got";
3802 goto get_vma;
3803 case DT_JMPREL:
3804 name = ".rel.plt";
3805 get_vma:
3806 s = bfd_get_section_by_name (output_bfd, name);
3807 BFD_ASSERT (s != NULL);
3808 dyn.d_un.d_ptr = s->vma;
3809 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3810 break;
3811
3812 case DT_PLTRELSZ:
3813 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3814 BFD_ASSERT (s != NULL);
3815 dyn.d_un.d_val = s->size;
3816 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3817 break;
3818
3819 case DT_RELSZ:
3820 /* My reading of the SVR4 ABI indicates that the
3821 procedure linkage table relocs (DT_JMPREL) should be
3822 included in the overall relocs (DT_REL). This is
3823 what Solaris does. However, UnixWare can not handle
3824 that case. Therefore, we override the DT_RELSZ entry
3825 here to make it not include the JMPREL relocs. Since
3826 the linker script arranges for .rel.plt to follow all
3827 other relocation sections, we don't have to worry
3828 about changing the DT_REL entry. */
3829 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3830 if (s != NULL)
3831 dyn.d_un.d_val -= s->size;
3832 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3833 break;
3834
3835 /* Set the bottom bit of DT_INIT/FINI if the
3836 corresponding function is Thumb. */
3837 case DT_INIT:
3838 name = info->init_function;
3839 goto get_sym;
3840 case DT_FINI:
3841 name = info->fini_function;
3842 get_sym:
3843 /* If it wasn't set by elf_bfd_final_link
3844 then there is nothing to adjust. */
3845 if (dyn.d_un.d_val != 0)
3846 {
3847 struct elf_link_hash_entry * eh;
3848
3849 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3850 FALSE, FALSE, TRUE);
3851 if (eh != (struct elf_link_hash_entry *) NULL
3852 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3853 {
3854 dyn.d_un.d_val |= 1;
3855 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3856 }
3857 }
3858 break;
3859 }
3860 }
3861
3862 /* Fill in the first entry in the procedure linkage table. */
3863 if (splt->size > 0)
3864 {
3865 bfd_vma got_displacement;
3866
3867 /* Calculate the displacement between the PLT slot and &GOT[0]. */
3868 got_displacement = (sgot->output_section->vma
3869 + sgot->output_offset
3870 - splt->output_section->vma
3871 - splt->output_offset
3872 - 16);
3873
3874 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3875 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3876 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3877 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3878#ifdef FOUR_WORD_PLT
3879 /* The displacement value goes in the otherwise-unused last word of
3880 the second entry. */
3881 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
3882#else
3883 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
3884#endif
3885 }
3886
3887 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3888 really seem like the right value. */
3889 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3890 }
3891
3892 /* Fill in the first three entries in the global offset table. */
3893 if (sgot->size > 0)
3894 {
3895 if (sdyn == NULL)
3896 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3897 else
3898 bfd_put_32 (output_bfd,
3899 sdyn->output_section->vma + sdyn->output_offset,
3900 sgot->contents);
3901 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3902 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3903 }
3904
3905 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3906
3907 return TRUE;
3908}
3909
3910static void
3911elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
3912{
3913 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3914 struct elf32_arm_link_hash_table *globals;
3915
3916 i_ehdrp = elf_elfheader (abfd);
3917
3918 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3919 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3920
3921 if (link_info)
3922 {
3923 globals = elf32_arm_hash_table (link_info);
3924 if (globals->byteswap_code)
3925 i_ehdrp->e_flags |= EF_ARM_BE8;
3926 }
3927}
3928
3929static enum elf_reloc_type_class
3930elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
3931{
3932 switch ((int) ELF32_R_TYPE (rela->r_info))
3933 {
3934 case R_ARM_RELATIVE:
3935 return reloc_class_relative;
3936 case R_ARM_JUMP_SLOT:
3937 return reloc_class_plt;
3938 case R_ARM_COPY:
3939 return reloc_class_copy;
3940 default:
3941 return reloc_class_normal;
3942 }
3943}
3944
3945static bfd_boolean elf32_arm_section_flags (flagword *, const Elf_Internal_Shdr *);
3946static void elf32_arm_final_write_processing (bfd *, bfd_boolean);
3947
3948/* Set the right machine number for an Arm ELF file. */
3949
3950static bfd_boolean
3951elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
3952{
3953 if (hdr->sh_type == SHT_NOTE)
3954 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
3955
3956 return TRUE;
3957}
3958
3959static void
3960elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
3961{
3962 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
3963}
3964
3965
3966/* Called for each symbol. Builds a section map based on mapping symbols.
3967 Does not alter any of the symbols. */
3968
3969static bfd_boolean
3970elf32_arm_output_symbol_hook (struct bfd_link_info *info,
3971 const char *name,
3972 Elf_Internal_Sym *elfsym,
3973 asection *input_sec,
3974 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
3975{
3976 int mapcount;
3977 elf32_arm_section_map *map;
3978 struct elf32_arm_link_hash_table *globals;
3979
3980 /* Only do this on final link. */
3981 if (info->relocatable)
3982 return TRUE;
3983
3984 /* Only build a map if we need to byteswap code. */
3985 globals = elf32_arm_hash_table (info);
3986 if (!globals->byteswap_code)
3987 return TRUE;
3988
3989 /* We only want mapping symbols. */
3990 if (name == NULL
3991 || name[0] != '$'
3992 || (name[1] != 'a'
3993 && name[1] != 't'
3994 && name[1] != 'd'))
3995 return TRUE;
3996
3997 mapcount = ++(elf32_arm_section_data (input_sec)->mapcount);
3998 map = elf32_arm_section_data (input_sec)->map;
3999 /* TODO: This may be inefficient, but we probably don't usually have many
4000 mapping symbols per section. */
4001 map = bfd_realloc (map, mapcount * sizeof (elf32_arm_section_map));
4002 elf32_arm_section_data (input_sec)->map = map;
4003
4004 map[mapcount - 1].vma = elfsym->st_value;
4005 map[mapcount - 1].type = name[1];
4006 return TRUE;
4007}
4008
4009
4010/* Allocate target specific section data. */
4011
4012static bfd_boolean
4013elf32_arm_new_section_hook (bfd *abfd, asection *sec)
4014{
4015 struct _arm_elf_section_data *sdata;
4016 bfd_size_type amt = sizeof (*sdata);
4017
4018 sdata = bfd_zalloc (abfd, amt);
4019 if (sdata == NULL)
4020 return FALSE;
4021 sec->used_by_bfd = sdata;
4022
4023 return _bfd_elf_new_section_hook (abfd, sec);
4024}
4025
4026
4027/* Used to order a list of mapping symbols by address. */
4028
4029static int
4030elf32_arm_compare_mapping (const void * a, const void * b)
4031{
4032 return ((const elf32_arm_section_map *) a)->vma
4033 > ((const elf32_arm_section_map *) b)->vma;
4034}
4035
4036
4037/* Do code byteswapping. Return FALSE afterwards so that the section is
4038 written out as normal. */
4039
4040static bfd_boolean
4041elf32_arm_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, asection *sec,
4042 bfd_byte *contents)
4043{
4044 int mapcount;
4045 elf32_arm_section_map *map;
4046 bfd_vma ptr;
4047 bfd_vma end;
4048 bfd_vma offset;
4049 bfd_byte tmp;
4050 int i;
4051
4052 mapcount = elf32_arm_section_data (sec)->mapcount;
4053 map = elf32_arm_section_data (sec)->map;
4054
4055 if (mapcount == 0)
4056 return FALSE;
4057
4058 qsort (map, mapcount, sizeof (elf32_arm_section_map),
4059 elf32_arm_compare_mapping);
4060
4061 offset = sec->output_section->vma + sec->output_offset;
4062 ptr = map[0].vma - offset;
4063 for (i = 0; i < mapcount; i++)
4064 {
4065 if (i == mapcount - 1)
4066 end = sec->size;
4067 else
4068 end = map[i + 1].vma - offset;
4069
4070 switch (map[i].type)
4071 {
4072 case 'a':
4073 /* Byte swap code words. */
4074 while (ptr + 3 < end)
4075 {
4076 tmp = contents[ptr];
4077 contents[ptr] = contents[ptr + 3];
4078 contents[ptr + 3] = tmp;
4079 tmp = contents[ptr + 1];
4080 contents[ptr + 1] = contents[ptr + 2];
4081 contents[ptr + 2] = tmp;
4082 ptr += 4;
4083 }
4084 break;
4085
4086 case 't':
4087 /* Byte swap code halfwords. */
4088 while (ptr + 1 < end)
4089 {
4090 tmp = contents[ptr];
4091 contents[ptr] = contents[ptr + 1];
4092 contents[ptr + 1] = tmp;
4093 ptr += 2;
4094 }
4095 break;
4096
4097 case 'd':
4098 /* Leave data alone. */
4099 break;
4100 }
4101 ptr = end;
4102 }
4103 free (map);
4104 return FALSE;
4105}
4106
4107#define ELF_ARCH bfd_arch_arm
4108#define ELF_MACHINE_CODE EM_ARM
4109#ifdef __QNXTARGET__
4110#define ELF_MAXPAGESIZE 0x1000
4111#else
4112#define ELF_MAXPAGESIZE 0x8000
4113#endif
4114
4115#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4116#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4117#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4118#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4119#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4120#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4121#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4122#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4123
4124#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4125#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4126#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4127#define elf_backend_check_relocs elf32_arm_check_relocs
4128#define elf_backend_relocate_section elf32_arm_relocate_section
4129#define elf_backend_write_section elf32_arm_write_section
4130#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4131#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4132#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4133#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4134#define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4135#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4136#define elf_backend_post_process_headers elf32_arm_post_process_headers
4137#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4138#define elf_backend_object_p elf32_arm_object_p
4139#define elf_backend_section_flags elf32_arm_section_flags
4140#define elf_backend_final_write_processing elf32_arm_final_write_processing
4141#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4142
4143#define elf_backend_can_refcount 1
4144#define elf_backend_can_gc_sections 1
4145#define elf_backend_plt_readonly 1
4146#define elf_backend_want_got_plt 1
4147#define elf_backend_want_plt_sym 0
4148#if !USE_REL
4149#define elf_backend_rela_normal 1
4150#endif
4151
4152#define elf_backend_got_header_size 12
4153
4154#include "elf32-target.h"
4155
This page took 0.039393 seconds and 4 git commands to generate.