* libbfd-in.h (BFD_ASSERT, BFD_FAIL): Wrap macro body in do while.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
... / ...
CommitLineData
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "alloca-conf.h"
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#define ARCH_SIZE 64
30
31#define PLT_ENTRY_SIZE 0x10
32#define DLT_ENTRY_SIZE 0x8
33#define OPD_ENTRY_SIZE 0x20
34
35#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37/* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50struct elf64_hppa_dyn_hash_entry
51{
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109};
110
111struct elf64_hppa_dyn_hash_table
112{
113 struct bfd_hash_table root;
114};
115
116struct elf64_hppa_link_hash_table
117{
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152};
153
154#define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
162 new_hash_entry_func new));
163static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
165 const char *string));
166static struct bfd_link_hash_table *elf64_hppa_hash_table_create
167 PARAMS ((bfd *abfd));
168static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
170 bfd_boolean create, bfd_boolean copy));
171static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
173 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
174 PTR info));
175
176static const char *get_dyn_name
177 PARAMS ((bfd *, struct elf_link_hash_entry *,
178 const Elf_Internal_Rela *, char **, size_t *));
179
180/* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182#include "elf-hppa.h"
183
184static bfd_boolean elf64_hppa_object_p
185 PARAMS ((bfd *));
186
187static bfd_boolean elf64_hppa_section_from_shdr
188 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
189
190static void elf64_hppa_post_process_headers
191 PARAMS ((bfd *, struct bfd_link_info *));
192
193static bfd_boolean elf64_hppa_create_dynamic_sections
194 PARAMS ((bfd *, struct bfd_link_info *));
195
196static bfd_boolean elf64_hppa_adjust_dynamic_symbol
197 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198
199static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
200 PARAMS ((struct elf_link_hash_entry *, PTR));
201
202static bfd_boolean elf64_hppa_size_dynamic_sections
203 PARAMS ((bfd *, struct bfd_link_info *));
204
205static bfd_boolean elf64_hppa_link_output_symbol_hook
206 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
207 asection *, struct elf_link_hash_entry *));
208
209static bfd_boolean elf64_hppa_finish_dynamic_symbol
210 PARAMS ((bfd *, struct bfd_link_info *,
211 struct elf_link_hash_entry *, Elf_Internal_Sym *));
212
213static int elf64_hppa_additional_program_headers
214 PARAMS ((bfd *));
215
216static bfd_boolean elf64_hppa_modify_segment_map
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219static enum elf_reloc_type_class elf64_hppa_reloc_type_class
220 PARAMS ((const Elf_Internal_Rela *));
221
222static bfd_boolean elf64_hppa_finish_dynamic_sections
223 PARAMS ((bfd *, struct bfd_link_info *));
224
225static bfd_boolean elf64_hppa_check_relocs
226 PARAMS ((bfd *, struct bfd_link_info *,
227 asection *, const Elf_Internal_Rela *));
228
229static bfd_boolean elf64_hppa_dynamic_symbol_p
230 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
231
232static bfd_boolean elf64_hppa_mark_exported_functions
233 PARAMS ((struct elf_link_hash_entry *, PTR));
234
235static bfd_boolean elf64_hppa_finalize_opd
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static bfd_boolean elf64_hppa_finalize_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static bfd_boolean allocate_global_data_dlt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static bfd_boolean allocate_global_data_plt
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247static bfd_boolean allocate_global_data_stub
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250static bfd_boolean allocate_global_data_opd
251 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
253static bfd_boolean get_reloc_section
254 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
255
256static bfd_boolean count_dyn_reloc
257 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
258 int, asection *, int, bfd_vma, bfd_vma));
259
260static bfd_boolean allocate_dynrel_entries
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263static bfd_boolean elf64_hppa_finalize_dynreloc
264 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
265
266static bfd_boolean get_opd
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269static bfd_boolean get_plt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272static bfd_boolean get_dlt
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
275static bfd_boolean get_stub
276 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
277
278static int elf64_hppa_elf_get_symbol_type
279 PARAMS ((Elf_Internal_Sym *, int));
280
281static bfd_boolean
282elf64_hppa_dyn_hash_table_init (ht, abfd, new)
283 struct elf64_hppa_dyn_hash_table *ht;
284 bfd *abfd ATTRIBUTE_UNUSED;
285 new_hash_entry_func new;
286{
287 memset (ht, 0, sizeof (*ht));
288 return bfd_hash_table_init (&ht->root, new);
289}
290
291static struct bfd_hash_entry*
292elf64_hppa_new_dyn_hash_entry (entry, table, string)
293 struct bfd_hash_entry *entry;
294 struct bfd_hash_table *table;
295 const char *string;
296{
297 struct elf64_hppa_dyn_hash_entry *ret;
298 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
299
300 /* Allocate the structure if it has not already been allocated by a
301 subclass. */
302 if (!ret)
303 ret = bfd_hash_allocate (table, sizeof (*ret));
304
305 if (!ret)
306 return 0;
307
308 /* Initialize our local data. All zeros, and definitely easier
309 than setting 8 bit fields. */
310 memset (ret, 0, sizeof (*ret));
311
312 /* Call the allocation method of the superclass. */
313 ret = ((struct elf64_hppa_dyn_hash_entry *)
314 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
315
316 return &ret->root;
317}
318
319/* Create the derived linker hash table. The PA64 ELF port uses this
320 derived hash table to keep information specific to the PA ElF
321 linker (without using static variables). */
322
323static struct bfd_link_hash_table*
324elf64_hppa_hash_table_create (abfd)
325 bfd *abfd;
326{
327 struct elf64_hppa_link_hash_table *ret;
328
329 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
330 if (!ret)
331 return 0;
332 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
333 _bfd_elf_link_hash_newfunc))
334 {
335 bfd_release (abfd, ret);
336 return 0;
337 }
338
339 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
340 elf64_hppa_new_dyn_hash_entry))
341 return 0;
342 return &ret->root.root;
343}
344
345/* Look up an entry in a PA64 ELF linker hash table. */
346
347static struct elf64_hppa_dyn_hash_entry *
348elf64_hppa_dyn_hash_lookup(table, string, create, copy)
349 struct elf64_hppa_dyn_hash_table *table;
350 const char *string;
351 bfd_boolean create, copy;
352{
353 return ((struct elf64_hppa_dyn_hash_entry *)
354 bfd_hash_lookup (&table->root, string, create, copy));
355}
356
357/* Traverse a PA64 ELF linker hash table. */
358
359static void
360elf64_hppa_dyn_hash_traverse (table, func, info)
361 struct elf64_hppa_dyn_hash_table *table;
362 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
363 PTR info;
364{
365 (bfd_hash_traverse
366 (&table->root,
367 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
368 info));
369}
370\f
371/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
372
373 Additionally we set the default architecture and machine. */
374static bfd_boolean
375elf64_hppa_object_p (abfd)
376 bfd *abfd;
377{
378 Elf_Internal_Ehdr * i_ehdrp;
379 unsigned int flags;
380
381 i_ehdrp = elf_elfheader (abfd);
382 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
383 {
384 /* GCC on hppa-linux produces binaries with OSABI=Linux,
385 but the kernel produces corefiles with OSABI=SysV. */
386 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
387 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
388 return FALSE;
389 }
390 else
391 {
392 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
393 return FALSE;
394 }
395
396 flags = i_ehdrp->e_flags;
397 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
398 {
399 case EFA_PARISC_1_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
401 case EFA_PARISC_1_1:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
403 case EFA_PARISC_2_0:
404 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
405 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
406 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
407 }
408 /* Don't be fussy. */
409 return TRUE;
410}
411
412/* Given section type (hdr->sh_type), return a boolean indicating
413 whether or not the section is an elf64-hppa specific section. */
414static bfd_boolean
415elf64_hppa_section_from_shdr (abfd, hdr, name)
416 bfd *abfd;
417 Elf_Internal_Shdr *hdr;
418 const char *name;
419{
420 asection *newsect;
421
422 switch (hdr->sh_type)
423 {
424 case SHT_PARISC_EXT:
425 if (strcmp (name, ".PARISC.archext") != 0)
426 return FALSE;
427 break;
428 case SHT_PARISC_UNWIND:
429 if (strcmp (name, ".PARISC.unwind") != 0)
430 return FALSE;
431 break;
432 case SHT_PARISC_DOC:
433 case SHT_PARISC_ANNOT:
434 default:
435 return FALSE;
436 }
437
438 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
439 return FALSE;
440 newsect = hdr->bfd_section;
441
442 return TRUE;
443}
444
445/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
446 name describes what was once potentially anonymous memory. We
447 allocate memory as necessary, possibly reusing PBUF/PLEN. */
448
449static const char *
450get_dyn_name (abfd, h, rel, pbuf, plen)
451 bfd *abfd;
452 struct elf_link_hash_entry *h;
453 const Elf_Internal_Rela *rel;
454 char **pbuf;
455 size_t *plen;
456{
457 asection *sec = abfd->sections;
458 size_t nlen, tlen;
459 char *buf;
460 size_t len;
461
462 if (h && rel->r_addend == 0)
463 return h->root.root.string;
464
465 if (h)
466 nlen = strlen (h->root.root.string);
467 else
468 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
469 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
470
471 len = *plen;
472 buf = *pbuf;
473 if (len < tlen)
474 {
475 if (buf)
476 free (buf);
477 *pbuf = buf = malloc (tlen);
478 *plen = len = tlen;
479 if (!buf)
480 return NULL;
481 }
482
483 if (h)
484 {
485 memcpy (buf, h->root.root.string, nlen);
486 buf[nlen++] = '+';
487 sprintf_vma (buf + nlen, rel->r_addend);
488 }
489 else
490 {
491 nlen = sprintf (buf, "%x:%lx",
492 sec->id & 0xffffffff,
493 (long) ELF64_R_SYM (rel->r_info));
494 if (rel->r_addend)
495 {
496 buf[nlen++] = '+';
497 sprintf_vma (buf + nlen, rel->r_addend);
498 }
499 }
500
501 return buf;
502}
503
504/* SEC is a section containing relocs for an input BFD when linking; return
505 a suitable section for holding relocs in the output BFD for a link. */
506
507static bfd_boolean
508get_reloc_section (abfd, hppa_info, sec)
509 bfd *abfd;
510 struct elf64_hppa_link_hash_table *hppa_info;
511 asection *sec;
512{
513 const char *srel_name;
514 asection *srel;
515 bfd *dynobj;
516
517 srel_name = (bfd_elf_string_from_elf_section
518 (abfd, elf_elfheader(abfd)->e_shstrndx,
519 elf_section_data(sec)->rel_hdr.sh_name));
520 if (srel_name == NULL)
521 return FALSE;
522
523 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
524 && strcmp (bfd_get_section_name (abfd, sec),
525 srel_name+5) == 0)
526 || (strncmp (srel_name, ".rel", 4) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+4) == 0));
529
530 dynobj = hppa_info->root.dynobj;
531 if (!dynobj)
532 hppa_info->root.dynobj = dynobj = abfd;
533
534 srel = bfd_get_section_by_name (dynobj, srel_name);
535 if (srel == NULL)
536 {
537 srel = bfd_make_section (dynobj, srel_name);
538 if (srel == NULL
539 || !bfd_set_section_flags (dynobj, srel,
540 (SEC_ALLOC
541 | SEC_LOAD
542 | SEC_HAS_CONTENTS
543 | SEC_IN_MEMORY
544 | SEC_LINKER_CREATED
545 | SEC_READONLY))
546 || !bfd_set_section_alignment (dynobj, srel, 3))
547 return FALSE;
548 }
549
550 hppa_info->other_rel_sec = srel;
551 return TRUE;
552}
553
554/* Add a new entry to the list of dynamic relocations against DYN_H.
555
556 We use this to keep a record of all the FPTR relocations against a
557 particular symbol so that we can create FPTR relocations in the
558 output file. */
559
560static bfd_boolean
561count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
562 bfd *abfd;
563 struct elf64_hppa_dyn_hash_entry *dyn_h;
564 int type;
565 asection *sec;
566 int sec_symndx;
567 bfd_vma offset;
568 bfd_vma addend;
569{
570 struct elf64_hppa_dyn_reloc_entry *rent;
571
572 rent = (struct elf64_hppa_dyn_reloc_entry *)
573 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
574 if (!rent)
575 return FALSE;
576
577 rent->next = dyn_h->reloc_entries;
578 rent->type = type;
579 rent->sec = sec;
580 rent->sec_symndx = sec_symndx;
581 rent->offset = offset;
582 rent->addend = addend;
583 dyn_h->reloc_entries = rent;
584
585 return TRUE;
586}
587
588/* Scan the RELOCS and record the type of dynamic entries that each
589 referenced symbol needs. */
590
591static bfd_boolean
592elf64_hppa_check_relocs (abfd, info, sec, relocs)
593 bfd *abfd;
594 struct bfd_link_info *info;
595 asection *sec;
596 const Elf_Internal_Rela *relocs;
597{
598 struct elf64_hppa_link_hash_table *hppa_info;
599 const Elf_Internal_Rela *relend;
600 Elf_Internal_Shdr *symtab_hdr;
601 const Elf_Internal_Rela *rel;
602 asection *dlt, *plt, *stubs;
603 char *buf;
604 size_t buf_len;
605 int sec_symndx;
606
607 if (info->relocatable)
608 return TRUE;
609
610 /* If this is the first dynamic object found in the link, create
611 the special sections required for dynamic linking. */
612 if (! elf_hash_table (info)->dynamic_sections_created)
613 {
614 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
615 return FALSE;
616 }
617
618 hppa_info = elf64_hppa_hash_table (info);
619 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
620
621 /* If necessary, build a new table holding section symbols indices
622 for this BFD. */
623
624 if (info->shared && hppa_info->section_syms_bfd != abfd)
625 {
626 unsigned long i;
627 unsigned int highest_shndx;
628 Elf_Internal_Sym *local_syms = NULL;
629 Elf_Internal_Sym *isym, *isymend;
630 bfd_size_type amt;
631
632 /* We're done with the old cache of section index to section symbol
633 index information. Free it.
634
635 ?!? Note we leak the last section_syms array. Presumably we
636 could free it in one of the later routines in this file. */
637 if (hppa_info->section_syms)
638 free (hppa_info->section_syms);
639
640 /* Read this BFD's local symbols. */
641 if (symtab_hdr->sh_info != 0)
642 {
643 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
644 if (local_syms == NULL)
645 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
646 symtab_hdr->sh_info, 0,
647 NULL, NULL, NULL);
648 if (local_syms == NULL)
649 return FALSE;
650 }
651
652 /* Record the highest section index referenced by the local symbols. */
653 highest_shndx = 0;
654 isymend = local_syms + symtab_hdr->sh_info;
655 for (isym = local_syms; isym < isymend; isym++)
656 {
657 if (isym->st_shndx > highest_shndx)
658 highest_shndx = isym->st_shndx;
659 }
660
661 /* Allocate an array to hold the section index to section symbol index
662 mapping. Bump by one since we start counting at zero. */
663 highest_shndx++;
664 amt = highest_shndx;
665 amt *= sizeof (int);
666 hppa_info->section_syms = (int *) bfd_malloc (amt);
667
668 /* Now walk the local symbols again. If we find a section symbol,
669 record the index of the symbol into the section_syms array. */
670 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
671 {
672 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
673 hppa_info->section_syms[isym->st_shndx] = i;
674 }
675
676 /* We are finished with the local symbols. */
677 if (local_syms != NULL
678 && symtab_hdr->contents != (unsigned char *) local_syms)
679 {
680 if (! info->keep_memory)
681 free (local_syms);
682 else
683 {
684 /* Cache the symbols for elf_link_input_bfd. */
685 symtab_hdr->contents = (unsigned char *) local_syms;
686 }
687 }
688
689 /* Record which BFD we built the section_syms mapping for. */
690 hppa_info->section_syms_bfd = abfd;
691 }
692
693 /* Record the symbol index for this input section. We may need it for
694 relocations when building shared libraries. When not building shared
695 libraries this value is never really used, but assign it to zero to
696 prevent out of bounds memory accesses in other routines. */
697 if (info->shared)
698 {
699 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
700
701 /* If we did not find a section symbol for this section, then
702 something went terribly wrong above. */
703 if (sec_symndx == -1)
704 return FALSE;
705
706 sec_symndx = hppa_info->section_syms[sec_symndx];
707 }
708 else
709 sec_symndx = 0;
710
711 dlt = plt = stubs = NULL;
712 buf = NULL;
713 buf_len = 0;
714
715 relend = relocs + sec->reloc_count;
716 for (rel = relocs; rel < relend; ++rel)
717 {
718 enum
719 {
720 NEED_DLT = 1,
721 NEED_PLT = 2,
722 NEED_STUB = 4,
723 NEED_OPD = 8,
724 NEED_DYNREL = 16,
725 };
726
727 struct elf_link_hash_entry *h = NULL;
728 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
729 struct elf64_hppa_dyn_hash_entry *dyn_h;
730 int need_entry;
731 const char *addr_name;
732 bfd_boolean maybe_dynamic;
733 int dynrel_type = R_PARISC_NONE;
734 static reloc_howto_type *howto;
735
736 if (r_symndx >= symtab_hdr->sh_info)
737 {
738 /* We're dealing with a global symbol -- find its hash entry
739 and mark it as being referenced. */
740 long indx = r_symndx - symtab_hdr->sh_info;
741 h = elf_sym_hashes (abfd)[indx];
742 while (h->root.type == bfd_link_hash_indirect
743 || h->root.type == bfd_link_hash_warning)
744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
745
746 h->ref_regular = 1;
747 }
748
749 /* We can only get preliminary data on whether a symbol is
750 locally or externally defined, as not all of the input files
751 have yet been processed. Do something with what we know, as
752 this may help reduce memory usage and processing time later. */
753 maybe_dynamic = FALSE;
754 if (h && ((info->shared
755 && (!info->symbolic
756 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
757 || !h->def_regular
758 || h->root.type == bfd_link_hash_defweak))
759 maybe_dynamic = TRUE;
760
761 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
762 need_entry = 0;
763 switch (howto->type)
764 {
765 /* These are simple indirect references to symbols through the
766 DLT. We need to create a DLT entry for any symbols which
767 appears in a DLTIND relocation. */
768 case R_PARISC_DLTIND21L:
769 case R_PARISC_DLTIND14R:
770 case R_PARISC_DLTIND14F:
771 case R_PARISC_DLTIND14WR:
772 case R_PARISC_DLTIND14DR:
773 need_entry = NEED_DLT;
774 break;
775
776 /* ?!? These need a DLT entry. But I have no idea what to do with
777 the "link time TP value. */
778 case R_PARISC_LTOFF_TP21L:
779 case R_PARISC_LTOFF_TP14R:
780 case R_PARISC_LTOFF_TP14F:
781 case R_PARISC_LTOFF_TP64:
782 case R_PARISC_LTOFF_TP14WR:
783 case R_PARISC_LTOFF_TP14DR:
784 case R_PARISC_LTOFF_TP16F:
785 case R_PARISC_LTOFF_TP16WF:
786 case R_PARISC_LTOFF_TP16DF:
787 need_entry = NEED_DLT;
788 break;
789
790 /* These are function calls. Depending on their precise target we
791 may need to make a stub for them. The stub uses the PLT, so we
792 need to create PLT entries for these symbols too. */
793 case R_PARISC_PCREL12F:
794 case R_PARISC_PCREL17F:
795 case R_PARISC_PCREL22F:
796 case R_PARISC_PCREL32:
797 case R_PARISC_PCREL64:
798 case R_PARISC_PCREL21L:
799 case R_PARISC_PCREL17R:
800 case R_PARISC_PCREL17C:
801 case R_PARISC_PCREL14R:
802 case R_PARISC_PCREL14F:
803 case R_PARISC_PCREL22C:
804 case R_PARISC_PCREL14WR:
805 case R_PARISC_PCREL14DR:
806 case R_PARISC_PCREL16F:
807 case R_PARISC_PCREL16WF:
808 case R_PARISC_PCREL16DF:
809 need_entry = (NEED_PLT | NEED_STUB);
810 break;
811
812 case R_PARISC_PLTOFF21L:
813 case R_PARISC_PLTOFF14R:
814 case R_PARISC_PLTOFF14F:
815 case R_PARISC_PLTOFF14WR:
816 case R_PARISC_PLTOFF14DR:
817 case R_PARISC_PLTOFF16F:
818 case R_PARISC_PLTOFF16WF:
819 case R_PARISC_PLTOFF16DF:
820 need_entry = (NEED_PLT);
821 break;
822
823 case R_PARISC_DIR64:
824 if (info->shared || maybe_dynamic)
825 need_entry = (NEED_DYNREL);
826 dynrel_type = R_PARISC_DIR64;
827 break;
828
829 /* This is an indirect reference through the DLT to get the address
830 of a OPD descriptor. Thus we need to make a DLT entry that points
831 to an OPD entry. */
832 case R_PARISC_LTOFF_FPTR21L:
833 case R_PARISC_LTOFF_FPTR14R:
834 case R_PARISC_LTOFF_FPTR14WR:
835 case R_PARISC_LTOFF_FPTR14DR:
836 case R_PARISC_LTOFF_FPTR32:
837 case R_PARISC_LTOFF_FPTR64:
838 case R_PARISC_LTOFF_FPTR16F:
839 case R_PARISC_LTOFF_FPTR16WF:
840 case R_PARISC_LTOFF_FPTR16DF:
841 if (info->shared || maybe_dynamic)
842 need_entry = (NEED_DLT | NEED_OPD);
843 else
844 need_entry = (NEED_DLT | NEED_OPD);
845 dynrel_type = R_PARISC_FPTR64;
846 break;
847
848 /* This is a simple OPD entry. */
849 case R_PARISC_FPTR64:
850 if (info->shared || maybe_dynamic)
851 need_entry = (NEED_OPD | NEED_DYNREL);
852 else
853 need_entry = (NEED_OPD);
854 dynrel_type = R_PARISC_FPTR64;
855 break;
856
857 /* Add more cases as needed. */
858 }
859
860 if (!need_entry)
861 continue;
862
863 /* Collect a canonical name for this address. */
864 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
865
866 /* Collect the canonical entry data for this address. */
867 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
868 addr_name, TRUE, TRUE);
869 BFD_ASSERT (dyn_h);
870
871 /* Stash away enough information to be able to find this symbol
872 regardless of whether or not it is local or global. */
873 dyn_h->h = h;
874 dyn_h->owner = abfd;
875 dyn_h->sym_indx = r_symndx;
876
877 /* ?!? We may need to do some error checking in here. */
878 /* Create what's needed. */
879 if (need_entry & NEED_DLT)
880 {
881 if (! hppa_info->dlt_sec
882 && ! get_dlt (abfd, info, hppa_info))
883 goto err_out;
884 dyn_h->want_dlt = 1;
885 }
886
887 if (need_entry & NEED_PLT)
888 {
889 if (! hppa_info->plt_sec
890 && ! get_plt (abfd, info, hppa_info))
891 goto err_out;
892 dyn_h->want_plt = 1;
893 }
894
895 if (need_entry & NEED_STUB)
896 {
897 if (! hppa_info->stub_sec
898 && ! get_stub (abfd, info, hppa_info))
899 goto err_out;
900 dyn_h->want_stub = 1;
901 }
902
903 if (need_entry & NEED_OPD)
904 {
905 if (! hppa_info->opd_sec
906 && ! get_opd (abfd, info, hppa_info))
907 goto err_out;
908
909 dyn_h->want_opd = 1;
910
911 /* FPTRs are not allocated by the dynamic linker for PA64, though
912 it is possible that will change in the future. */
913
914 /* This could be a local function that had its address taken, in
915 which case H will be NULL. */
916 if (h)
917 h->needs_plt = 1;
918 }
919
920 /* Add a new dynamic relocation to the chain of dynamic
921 relocations for this symbol. */
922 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
923 {
924 if (! hppa_info->other_rel_sec
925 && ! get_reloc_section (abfd, hppa_info, sec))
926 goto err_out;
927
928 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
929 sec_symndx, rel->r_offset, rel->r_addend))
930 goto err_out;
931
932 /* If we are building a shared library and we just recorded
933 a dynamic R_PARISC_FPTR64 relocation, then make sure the
934 section symbol for this section ends up in the dynamic
935 symbol table. */
936 if (info->shared && dynrel_type == R_PARISC_FPTR64
937 && ! (bfd_elf_link_record_local_dynamic_symbol
938 (info, abfd, sec_symndx)))
939 return FALSE;
940 }
941 }
942
943 if (buf)
944 free (buf);
945 return TRUE;
946
947 err_out:
948 if (buf)
949 free (buf);
950 return FALSE;
951}
952
953struct elf64_hppa_allocate_data
954{
955 struct bfd_link_info *info;
956 bfd_size_type ofs;
957};
958
959/* Should we do dynamic things to this symbol? */
960
961static bfd_boolean
962elf64_hppa_dynamic_symbol_p (h, info)
963 struct elf_link_hash_entry *h;
964 struct bfd_link_info *info;
965{
966 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
967 and relocations that retrieve a function descriptor? Assume the
968 worst for now. */
969 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
970 {
971 /* ??? Why is this here and not elsewhere is_local_label_name. */
972 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
973 return FALSE;
974
975 return TRUE;
976 }
977 else
978 return FALSE;
979}
980
981/* Mark all functions exported by this file so that we can later allocate
982 entries in .opd for them. */
983
984static bfd_boolean
985elf64_hppa_mark_exported_functions (h, data)
986 struct elf_link_hash_entry *h;
987 PTR data;
988{
989 struct bfd_link_info *info = (struct bfd_link_info *)data;
990 struct elf64_hppa_link_hash_table *hppa_info;
991
992 hppa_info = elf64_hppa_hash_table (info);
993
994 if (h->root.type == bfd_link_hash_warning)
995 h = (struct elf_link_hash_entry *) h->root.u.i.link;
996
997 if (h
998 && (h->root.type == bfd_link_hash_defined
999 || h->root.type == bfd_link_hash_defweak)
1000 && h->root.u.def.section->output_section != NULL
1001 && h->type == STT_FUNC)
1002 {
1003 struct elf64_hppa_dyn_hash_entry *dyn_h;
1004
1005 /* Add this symbol to the PA64 linker hash table. */
1006 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1007 h->root.root.string, TRUE, TRUE);
1008 BFD_ASSERT (dyn_h);
1009 dyn_h->h = h;
1010
1011 if (! hppa_info->opd_sec
1012 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1013 return FALSE;
1014
1015 dyn_h->want_opd = 1;
1016 /* Put a flag here for output_symbol_hook. */
1017 dyn_h->st_shndx = -1;
1018 h->needs_plt = 1;
1019 }
1020
1021 return TRUE;
1022}
1023
1024/* Allocate space for a DLT entry. */
1025
1026static bfd_boolean
1027allocate_global_data_dlt (dyn_h, data)
1028 struct elf64_hppa_dyn_hash_entry *dyn_h;
1029 PTR data;
1030{
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032
1033 if (dyn_h->want_dlt)
1034 {
1035 struct elf_link_hash_entry *h = dyn_h->h;
1036
1037 if (x->info->shared)
1038 {
1039 /* Possibly add the symbol to the local dynamic symbol
1040 table since we might need to create a dynamic relocation
1041 against it. */
1042 if (! h
1043 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1044 {
1045 bfd *owner;
1046 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1047
1048 if (! (bfd_elf_link_record_local_dynamic_symbol
1049 (x->info, owner, dyn_h->sym_indx)))
1050 return FALSE;
1051 }
1052 }
1053
1054 dyn_h->dlt_offset = x->ofs;
1055 x->ofs += DLT_ENTRY_SIZE;
1056 }
1057 return TRUE;
1058}
1059
1060/* Allocate space for a DLT.PLT entry. */
1061
1062static bfd_boolean
1063allocate_global_data_plt (dyn_h, data)
1064 struct elf64_hppa_dyn_hash_entry *dyn_h;
1065 PTR data;
1066{
1067 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1068
1069 if (dyn_h->want_plt
1070 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1071 && !((dyn_h->h->root.type == bfd_link_hash_defined
1072 || dyn_h->h->root.type == bfd_link_hash_defweak)
1073 && dyn_h->h->root.u.def.section->output_section != NULL))
1074 {
1075 dyn_h->plt_offset = x->ofs;
1076 x->ofs += PLT_ENTRY_SIZE;
1077 if (dyn_h->plt_offset < 0x2000)
1078 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1079 }
1080 else
1081 dyn_h->want_plt = 0;
1082
1083 return TRUE;
1084}
1085
1086/* Allocate space for a STUB entry. */
1087
1088static bfd_boolean
1089allocate_global_data_stub (dyn_h, data)
1090 struct elf64_hppa_dyn_hash_entry *dyn_h;
1091 PTR data;
1092{
1093 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1094
1095 if (dyn_h->want_stub
1096 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1097 && !((dyn_h->h->root.type == bfd_link_hash_defined
1098 || dyn_h->h->root.type == bfd_link_hash_defweak)
1099 && dyn_h->h->root.u.def.section->output_section != NULL))
1100 {
1101 dyn_h->stub_offset = x->ofs;
1102 x->ofs += sizeof (plt_stub);
1103 }
1104 else
1105 dyn_h->want_stub = 0;
1106 return TRUE;
1107}
1108
1109/* Allocate space for a FPTR entry. */
1110
1111static bfd_boolean
1112allocate_global_data_opd (dyn_h, data)
1113 struct elf64_hppa_dyn_hash_entry *dyn_h;
1114 PTR data;
1115{
1116 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1117
1118 if (dyn_h->want_opd)
1119 {
1120 struct elf_link_hash_entry *h = dyn_h->h;
1121
1122 if (h)
1123 while (h->root.type == bfd_link_hash_indirect
1124 || h->root.type == bfd_link_hash_warning)
1125 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1126
1127 /* We never need an opd entry for a symbol which is not
1128 defined by this output file. */
1129 if (h && (h->root.type == bfd_link_hash_undefined
1130 || h->root.u.def.section->output_section == NULL))
1131 dyn_h->want_opd = 0;
1132
1133 /* If we are creating a shared library, took the address of a local
1134 function or might export this function from this object file, then
1135 we have to create an opd descriptor. */
1136 else if (x->info->shared
1137 || h == NULL
1138 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1139 || (h->root.type == bfd_link_hash_defined
1140 || h->root.type == bfd_link_hash_defweak))
1141 {
1142 /* If we are creating a shared library, then we will have to
1143 create a runtime relocation for the symbol to properly
1144 initialize the .opd entry. Make sure the symbol gets
1145 added to the dynamic symbol table. */
1146 if (x->info->shared
1147 && (h == NULL || (h->dynindx == -1)))
1148 {
1149 bfd *owner;
1150 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1151
1152 if (!bfd_elf_link_record_local_dynamic_symbol
1153 (x->info, owner, dyn_h->sym_indx))
1154 return FALSE;
1155 }
1156
1157 /* This may not be necessary or desirable anymore now that
1158 we have some support for dealing with section symbols
1159 in dynamic relocs. But name munging does make the result
1160 much easier to debug. ie, the EPLT reloc will reference
1161 a symbol like .foobar, instead of .text + offset. */
1162 if (x->info->shared && h)
1163 {
1164 char *new_name;
1165 struct elf_link_hash_entry *nh;
1166
1167 new_name = alloca (strlen (h->root.root.string) + 2);
1168 new_name[0] = '.';
1169 strcpy (new_name + 1, h->root.root.string);
1170
1171 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1172 new_name, TRUE, TRUE, TRUE);
1173
1174 nh->root.type = h->root.type;
1175 nh->root.u.def.value = h->root.u.def.value;
1176 nh->root.u.def.section = h->root.u.def.section;
1177
1178 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1179 return FALSE;
1180
1181 }
1182 dyn_h->opd_offset = x->ofs;
1183 x->ofs += OPD_ENTRY_SIZE;
1184 }
1185
1186 /* Otherwise we do not need an opd entry. */
1187 else
1188 dyn_h->want_opd = 0;
1189 }
1190 return TRUE;
1191}
1192
1193/* HP requires the EI_OSABI field to be filled in. The assignment to
1194 EI_ABIVERSION may not be strictly necessary. */
1195
1196static void
1197elf64_hppa_post_process_headers (abfd, link_info)
1198 bfd * abfd;
1199 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1200{
1201 Elf_Internal_Ehdr * i_ehdrp;
1202
1203 i_ehdrp = elf_elfheader (abfd);
1204
1205 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1206 {
1207 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1208 }
1209 else
1210 {
1211 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1212 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1213 }
1214}
1215
1216/* Create function descriptor section (.opd). This section is called .opd
1217 because it contains "official procedure descriptors". The "official"
1218 refers to the fact that these descriptors are used when taking the address
1219 of a procedure, thus ensuring a unique address for each procedure. */
1220
1221static bfd_boolean
1222get_opd (abfd, info, hppa_info)
1223 bfd *abfd;
1224 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1225 struct elf64_hppa_link_hash_table *hppa_info;
1226{
1227 asection *opd;
1228 bfd *dynobj;
1229
1230 opd = hppa_info->opd_sec;
1231 if (!opd)
1232 {
1233 dynobj = hppa_info->root.dynobj;
1234 if (!dynobj)
1235 hppa_info->root.dynobj = dynobj = abfd;
1236
1237 opd = bfd_make_section (dynobj, ".opd");
1238 if (!opd
1239 || !bfd_set_section_flags (dynobj, opd,
1240 (SEC_ALLOC
1241 | SEC_LOAD
1242 | SEC_HAS_CONTENTS
1243 | SEC_IN_MEMORY
1244 | SEC_LINKER_CREATED))
1245 || !bfd_set_section_alignment (abfd, opd, 3))
1246 {
1247 BFD_ASSERT (0);
1248 return FALSE;
1249 }
1250
1251 hppa_info->opd_sec = opd;
1252 }
1253
1254 return TRUE;
1255}
1256
1257/* Create the PLT section. */
1258
1259static bfd_boolean
1260get_plt (abfd, info, hppa_info)
1261 bfd *abfd;
1262 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1263 struct elf64_hppa_link_hash_table *hppa_info;
1264{
1265 asection *plt;
1266 bfd *dynobj;
1267
1268 plt = hppa_info->plt_sec;
1269 if (!plt)
1270 {
1271 dynobj = hppa_info->root.dynobj;
1272 if (!dynobj)
1273 hppa_info->root.dynobj = dynobj = abfd;
1274
1275 plt = bfd_make_section (dynobj, ".plt");
1276 if (!plt
1277 || !bfd_set_section_flags (dynobj, plt,
1278 (SEC_ALLOC
1279 | SEC_LOAD
1280 | SEC_HAS_CONTENTS
1281 | SEC_IN_MEMORY
1282 | SEC_LINKER_CREATED))
1283 || !bfd_set_section_alignment (abfd, plt, 3))
1284 {
1285 BFD_ASSERT (0);
1286 return FALSE;
1287 }
1288
1289 hppa_info->plt_sec = plt;
1290 }
1291
1292 return TRUE;
1293}
1294
1295/* Create the DLT section. */
1296
1297static bfd_boolean
1298get_dlt (abfd, info, hppa_info)
1299 bfd *abfd;
1300 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1301 struct elf64_hppa_link_hash_table *hppa_info;
1302{
1303 asection *dlt;
1304 bfd *dynobj;
1305
1306 dlt = hppa_info->dlt_sec;
1307 if (!dlt)
1308 {
1309 dynobj = hppa_info->root.dynobj;
1310 if (!dynobj)
1311 hppa_info->root.dynobj = dynobj = abfd;
1312
1313 dlt = bfd_make_section (dynobj, ".dlt");
1314 if (!dlt
1315 || !bfd_set_section_flags (dynobj, dlt,
1316 (SEC_ALLOC
1317 | SEC_LOAD
1318 | SEC_HAS_CONTENTS
1319 | SEC_IN_MEMORY
1320 | SEC_LINKER_CREATED))
1321 || !bfd_set_section_alignment (abfd, dlt, 3))
1322 {
1323 BFD_ASSERT (0);
1324 return FALSE;
1325 }
1326
1327 hppa_info->dlt_sec = dlt;
1328 }
1329
1330 return TRUE;
1331}
1332
1333/* Create the stubs section. */
1334
1335static bfd_boolean
1336get_stub (abfd, info, hppa_info)
1337 bfd *abfd;
1338 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1339 struct elf64_hppa_link_hash_table *hppa_info;
1340{
1341 asection *stub;
1342 bfd *dynobj;
1343
1344 stub = hppa_info->stub_sec;
1345 if (!stub)
1346 {
1347 dynobj = hppa_info->root.dynobj;
1348 if (!dynobj)
1349 hppa_info->root.dynobj = dynobj = abfd;
1350
1351 stub = bfd_make_section (dynobj, ".stub");
1352 if (!stub
1353 || !bfd_set_section_flags (dynobj, stub,
1354 (SEC_ALLOC
1355 | SEC_LOAD
1356 | SEC_HAS_CONTENTS
1357 | SEC_IN_MEMORY
1358 | SEC_READONLY
1359 | SEC_LINKER_CREATED))
1360 || !bfd_set_section_alignment (abfd, stub, 3))
1361 {
1362 BFD_ASSERT (0);
1363 return FALSE;
1364 }
1365
1366 hppa_info->stub_sec = stub;
1367 }
1368
1369 return TRUE;
1370}
1371
1372/* Create sections necessary for dynamic linking. This is only a rough
1373 cut and will likely change as we learn more about the somewhat
1374 unusual dynamic linking scheme HP uses.
1375
1376 .stub:
1377 Contains code to implement cross-space calls. The first time one
1378 of the stubs is used it will call into the dynamic linker, later
1379 calls will go straight to the target.
1380
1381 The only stub we support right now looks like
1382
1383 ldd OFFSET(%dp),%r1
1384 bve %r0(%r1)
1385 ldd OFFSET+8(%dp),%dp
1386
1387 Other stubs may be needed in the future. We may want the remove
1388 the break/nop instruction. It is only used right now to keep the
1389 offset of a .plt entry and a .stub entry in sync.
1390
1391 .dlt:
1392 This is what most people call the .got. HP used a different name.
1393 Losers.
1394
1395 .rela.dlt:
1396 Relocations for the DLT.
1397
1398 .plt:
1399 Function pointers as address,gp pairs.
1400
1401 .rela.plt:
1402 Should contain dynamic IPLT (and EPLT?) relocations.
1403
1404 .opd:
1405 FPTRS
1406
1407 .rela.opd:
1408 EPLT relocations for symbols exported from shared libraries. */
1409
1410static bfd_boolean
1411elf64_hppa_create_dynamic_sections (abfd, info)
1412 bfd *abfd;
1413 struct bfd_link_info *info;
1414{
1415 asection *s;
1416
1417 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1418 return FALSE;
1419
1420 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1421 return FALSE;
1422
1423 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1424 return FALSE;
1425
1426 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1427 return FALSE;
1428
1429 s = bfd_make_section(abfd, ".rela.dlt");
1430 if (s == NULL
1431 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1432 | SEC_HAS_CONTENTS
1433 | SEC_IN_MEMORY
1434 | SEC_READONLY
1435 | SEC_LINKER_CREATED))
1436 || !bfd_set_section_alignment (abfd, s, 3))
1437 return FALSE;
1438 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1439
1440 s = bfd_make_section(abfd, ".rela.plt");
1441 if (s == NULL
1442 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1443 | SEC_HAS_CONTENTS
1444 | SEC_IN_MEMORY
1445 | SEC_READONLY
1446 | SEC_LINKER_CREATED))
1447 || !bfd_set_section_alignment (abfd, s, 3))
1448 return FALSE;
1449 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1450
1451 s = bfd_make_section(abfd, ".rela.data");
1452 if (s == NULL
1453 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1454 | SEC_HAS_CONTENTS
1455 | SEC_IN_MEMORY
1456 | SEC_READONLY
1457 | SEC_LINKER_CREATED))
1458 || !bfd_set_section_alignment (abfd, s, 3))
1459 return FALSE;
1460 elf64_hppa_hash_table (info)->other_rel_sec = s;
1461
1462 s = bfd_make_section(abfd, ".rela.opd");
1463 if (s == NULL
1464 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1465 | SEC_HAS_CONTENTS
1466 | SEC_IN_MEMORY
1467 | SEC_READONLY
1468 | SEC_LINKER_CREATED))
1469 || !bfd_set_section_alignment (abfd, s, 3))
1470 return FALSE;
1471 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1472
1473 return TRUE;
1474}
1475
1476/* Allocate dynamic relocations for those symbols that turned out
1477 to be dynamic. */
1478
1479static bfd_boolean
1480allocate_dynrel_entries (dyn_h, data)
1481 struct elf64_hppa_dyn_hash_entry *dyn_h;
1482 PTR data;
1483{
1484 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1485 struct elf64_hppa_link_hash_table *hppa_info;
1486 struct elf64_hppa_dyn_reloc_entry *rent;
1487 bfd_boolean dynamic_symbol, shared;
1488
1489 hppa_info = elf64_hppa_hash_table (x->info);
1490 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1491 shared = x->info->shared;
1492
1493 /* We may need to allocate relocations for a non-dynamic symbol
1494 when creating a shared library. */
1495 if (!dynamic_symbol && !shared)
1496 return TRUE;
1497
1498 /* Take care of the normal data relocations. */
1499
1500 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1501 {
1502 /* Allocate one iff we are building a shared library, the relocation
1503 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1504 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1505 continue;
1506
1507 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1508
1509 /* Make sure this symbol gets into the dynamic symbol table if it is
1510 not already recorded. ?!? This should not be in the loop since
1511 the symbol need only be added once. */
1512 if (dyn_h->h == 0
1513 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1514 if (!bfd_elf_link_record_local_dynamic_symbol
1515 (x->info, rent->sec->owner, dyn_h->sym_indx))
1516 return FALSE;
1517 }
1518
1519 /* Take care of the GOT and PLT relocations. */
1520
1521 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1522 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1523
1524 /* If we are building a shared library, then every symbol that has an
1525 opd entry will need an EPLT relocation to relocate the symbol's address
1526 and __gp value based on the runtime load address. */
1527 if (shared && dyn_h->want_opd)
1528 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1529
1530 if (dyn_h->want_plt && dynamic_symbol)
1531 {
1532 bfd_size_type t = 0;
1533
1534 /* Dynamic symbols get one IPLT relocation. Local symbols in
1535 shared libraries get two REL relocations. Local symbols in
1536 main applications get nothing. */
1537 if (dynamic_symbol)
1538 t = sizeof (Elf64_External_Rela);
1539 else if (shared)
1540 t = 2 * sizeof (Elf64_External_Rela);
1541
1542 hppa_info->plt_rel_sec->size += t;
1543 }
1544
1545 return TRUE;
1546}
1547
1548/* Adjust a symbol defined by a dynamic object and referenced by a
1549 regular object. */
1550
1551static bfd_boolean
1552elf64_hppa_adjust_dynamic_symbol (info, h)
1553 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1554 struct elf_link_hash_entry *h;
1555{
1556 /* ??? Undefined symbols with PLT entries should be re-defined
1557 to be the PLT entry. */
1558
1559 /* If this is a weak symbol, and there is a real definition, the
1560 processor independent code will have arranged for us to see the
1561 real definition first, and we can just use the same value. */
1562 if (h->u.weakdef != NULL)
1563 {
1564 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1565 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1566 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1567 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1568 return TRUE;
1569 }
1570
1571 /* If this is a reference to a symbol defined by a dynamic object which
1572 is not a function, we might allocate the symbol in our .dynbss section
1573 and allocate a COPY dynamic relocation.
1574
1575 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1576 of hackery. */
1577
1578 return TRUE;
1579}
1580
1581/* This function is called via elf_link_hash_traverse to mark millicode
1582 symbols with a dynindx of -1 and to remove the string table reference
1583 from the dynamic symbol table. If the symbol is not a millicode symbol,
1584 elf64_hppa_mark_exported_functions is called. */
1585
1586static bfd_boolean
1587elf64_hppa_mark_milli_and_exported_functions (h, data)
1588 struct elf_link_hash_entry *h;
1589 PTR data;
1590{
1591 struct bfd_link_info *info = (struct bfd_link_info *)data;
1592 struct elf_link_hash_entry *elf = h;
1593
1594 if (elf->root.type == bfd_link_hash_warning)
1595 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1596
1597 if (elf->type == STT_PARISC_MILLI)
1598 {
1599 if (elf->dynindx != -1)
1600 {
1601 elf->dynindx = -1;
1602 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1603 elf->dynstr_index);
1604 }
1605 return TRUE;
1606 }
1607
1608 return elf64_hppa_mark_exported_functions (h, data);
1609}
1610
1611/* Set the final sizes of the dynamic sections and allocate memory for
1612 the contents of our special sections. */
1613
1614static bfd_boolean
1615elf64_hppa_size_dynamic_sections (output_bfd, info)
1616 bfd *output_bfd;
1617 struct bfd_link_info *info;
1618{
1619 bfd *dynobj;
1620 asection *s;
1621 bfd_boolean plt;
1622 bfd_boolean relocs;
1623 bfd_boolean reltext;
1624 struct elf64_hppa_allocate_data data;
1625 struct elf64_hppa_link_hash_table *hppa_info;
1626
1627 hppa_info = elf64_hppa_hash_table (info);
1628
1629 dynobj = elf_hash_table (info)->dynobj;
1630 BFD_ASSERT (dynobj != NULL);
1631
1632 /* Mark each function this program exports so that we will allocate
1633 space in the .opd section for each function's FPTR. If we are
1634 creating dynamic sections, change the dynamic index of millicode
1635 symbols to -1 and remove them from the string table for .dynstr.
1636
1637 We have to traverse the main linker hash table since we have to
1638 find functions which may not have been mentioned in any relocs. */
1639 elf_link_hash_traverse (elf_hash_table (info),
1640 (elf_hash_table (info)->dynamic_sections_created
1641 ? elf64_hppa_mark_milli_and_exported_functions
1642 : elf64_hppa_mark_exported_functions),
1643 info);
1644
1645 if (elf_hash_table (info)->dynamic_sections_created)
1646 {
1647 /* Set the contents of the .interp section to the interpreter. */
1648 if (info->executable)
1649 {
1650 s = bfd_get_section_by_name (dynobj, ".interp");
1651 BFD_ASSERT (s != NULL);
1652 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1653 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1654 }
1655 }
1656 else
1657 {
1658 /* We may have created entries in the .rela.got section.
1659 However, if we are not creating the dynamic sections, we will
1660 not actually use these entries. Reset the size of .rela.dlt,
1661 which will cause it to get stripped from the output file
1662 below. */
1663 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1664 if (s != NULL)
1665 s->size = 0;
1666 }
1667
1668 /* Allocate the GOT entries. */
1669
1670 data.info = info;
1671 if (elf64_hppa_hash_table (info)->dlt_sec)
1672 {
1673 data.ofs = 0x0;
1674 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1675 allocate_global_data_dlt, &data);
1676 hppa_info->dlt_sec->size = data.ofs;
1677
1678 data.ofs = 0x0;
1679 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1680 allocate_global_data_plt, &data);
1681 hppa_info->plt_sec->size = data.ofs;
1682
1683 data.ofs = 0x0;
1684 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1685 allocate_global_data_stub, &data);
1686 hppa_info->stub_sec->size = data.ofs;
1687 }
1688
1689 /* Allocate space for entries in the .opd section. */
1690 if (elf64_hppa_hash_table (info)->opd_sec)
1691 {
1692 data.ofs = 0;
1693 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1694 allocate_global_data_opd, &data);
1695 hppa_info->opd_sec->size = data.ofs;
1696 }
1697
1698 /* Now allocate space for dynamic relocations, if necessary. */
1699 if (hppa_info->root.dynamic_sections_created)
1700 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1701 allocate_dynrel_entries, &data);
1702
1703 /* The sizes of all the sections are set. Allocate memory for them. */
1704 plt = FALSE;
1705 relocs = FALSE;
1706 reltext = FALSE;
1707 for (s = dynobj->sections; s != NULL; s = s->next)
1708 {
1709 const char *name;
1710 bfd_boolean strip;
1711
1712 if ((s->flags & SEC_LINKER_CREATED) == 0)
1713 continue;
1714
1715 /* It's OK to base decisions on the section name, because none
1716 of the dynobj section names depend upon the input files. */
1717 name = bfd_get_section_name (dynobj, s);
1718
1719 strip = 0;
1720
1721 if (strcmp (name, ".plt") == 0)
1722 {
1723 /* Strip this section if we don't need it; see the comment below. */
1724 if (s->size == 0)
1725 {
1726 strip = TRUE;
1727 }
1728 else
1729 {
1730 /* Remember whether there is a PLT. */
1731 plt = TRUE;
1732 }
1733 }
1734 else if (strcmp (name, ".dlt") == 0)
1735 {
1736 /* Strip this section if we don't need it; see the comment below. */
1737 if (s->size == 0)
1738 {
1739 strip = TRUE;
1740 }
1741 }
1742 else if (strcmp (name, ".opd") == 0)
1743 {
1744 /* Strip this section if we don't need it; see the comment below. */
1745 if (s->size == 0)
1746 {
1747 strip = TRUE;
1748 }
1749 }
1750 else if (strncmp (name, ".rela", 5) == 0)
1751 {
1752 /* If we don't need this section, strip it from the output file.
1753 This is mostly to handle .rela.bss and .rela.plt. We must
1754 create both sections in create_dynamic_sections, because they
1755 must be created before the linker maps input sections to output
1756 sections. The linker does that before adjust_dynamic_symbol
1757 is called, and it is that function which decides whether
1758 anything needs to go into these sections. */
1759 if (s->size == 0)
1760 {
1761 /* If we don't need this section, strip it from the
1762 output file. This is mostly to handle .rela.bss and
1763 .rela.plt. We must create both sections in
1764 create_dynamic_sections, because they must be created
1765 before the linker maps input sections to output
1766 sections. The linker does that before
1767 adjust_dynamic_symbol is called, and it is that
1768 function which decides whether anything needs to go
1769 into these sections. */
1770 strip = TRUE;
1771 }
1772 else
1773 {
1774 asection *target;
1775
1776 /* Remember whether there are any reloc sections other
1777 than .rela.plt. */
1778 if (strcmp (name, ".rela.plt") != 0)
1779 {
1780 const char *outname;
1781
1782 relocs = TRUE;
1783
1784 /* If this relocation section applies to a read only
1785 section, then we probably need a DT_TEXTREL
1786 entry. The entries in the .rela.plt section
1787 really apply to the .got section, which we
1788 created ourselves and so know is not readonly. */
1789 outname = bfd_get_section_name (output_bfd,
1790 s->output_section);
1791 target = bfd_get_section_by_name (output_bfd, outname + 4);
1792 if (target != NULL
1793 && (target->flags & SEC_READONLY) != 0
1794 && (target->flags & SEC_ALLOC) != 0)
1795 reltext = TRUE;
1796 }
1797
1798 /* We use the reloc_count field as a counter if we need
1799 to copy relocs into the output file. */
1800 s->reloc_count = 0;
1801 }
1802 }
1803 else if (strncmp (name, ".dlt", 4) != 0
1804 && strcmp (name, ".stub") != 0
1805 && strcmp (name, ".got") != 0)
1806 {
1807 /* It's not one of our sections, so don't allocate space. */
1808 continue;
1809 }
1810
1811 if (strip)
1812 {
1813 _bfd_strip_section_from_output (info, s);
1814 continue;
1815 }
1816
1817 /* Allocate memory for the section contents if it has not
1818 been allocated already. We use bfd_zalloc here in case
1819 unused entries are not reclaimed before the section's
1820 contents are written out. This should not happen, but this
1821 way if it does, we get a R_PARISC_NONE reloc instead of
1822 garbage. */
1823 if (s->contents == NULL)
1824 {
1825 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1826 if (s->contents == NULL && s->size != 0)
1827 return FALSE;
1828 }
1829 }
1830
1831 if (elf_hash_table (info)->dynamic_sections_created)
1832 {
1833 /* Always create a DT_PLTGOT. It actually has nothing to do with
1834 the PLT, it is how we communicate the __gp value of a load
1835 module to the dynamic linker. */
1836#define add_dynamic_entry(TAG, VAL) \
1837 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1838
1839 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1840 || !add_dynamic_entry (DT_PLTGOT, 0))
1841 return FALSE;
1842
1843 /* Add some entries to the .dynamic section. We fill in the
1844 values later, in elf64_hppa_finish_dynamic_sections, but we
1845 must add the entries now so that we get the correct size for
1846 the .dynamic section. The DT_DEBUG entry is filled in by the
1847 dynamic linker and used by the debugger. */
1848 if (! info->shared)
1849 {
1850 if (!add_dynamic_entry (DT_DEBUG, 0)
1851 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1852 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1853 return FALSE;
1854 }
1855
1856 /* Force DT_FLAGS to always be set.
1857 Required by HPUX 11.00 patch PHSS_26559. */
1858 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1859 return FALSE;
1860
1861 if (plt)
1862 {
1863 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1864 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1865 || !add_dynamic_entry (DT_JMPREL, 0))
1866 return FALSE;
1867 }
1868
1869 if (relocs)
1870 {
1871 if (!add_dynamic_entry (DT_RELA, 0)
1872 || !add_dynamic_entry (DT_RELASZ, 0)
1873 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1874 return FALSE;
1875 }
1876
1877 if (reltext)
1878 {
1879 if (!add_dynamic_entry (DT_TEXTREL, 0))
1880 return FALSE;
1881 info->flags |= DF_TEXTREL;
1882 }
1883 }
1884#undef add_dynamic_entry
1885
1886 return TRUE;
1887}
1888
1889/* Called after we have output the symbol into the dynamic symbol
1890 table, but before we output the symbol into the normal symbol
1891 table.
1892
1893 For some symbols we had to change their address when outputting
1894 the dynamic symbol table. We undo that change here so that
1895 the symbols have their expected value in the normal symbol
1896 table. Ick. */
1897
1898static bfd_boolean
1899elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1900 struct bfd_link_info *info;
1901 const char *name;
1902 Elf_Internal_Sym *sym;
1903 asection *input_sec ATTRIBUTE_UNUSED;
1904 struct elf_link_hash_entry *h;
1905{
1906 struct elf64_hppa_link_hash_table *hppa_info;
1907 struct elf64_hppa_dyn_hash_entry *dyn_h;
1908
1909 /* We may be called with the file symbol or section symbols.
1910 They never need munging, so it is safe to ignore them. */
1911 if (!name)
1912 return TRUE;
1913
1914 /* Get the PA dyn_symbol (if any) associated with NAME. */
1915 hppa_info = elf64_hppa_hash_table (info);
1916 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1917 name, FALSE, FALSE);
1918 if (!dyn_h || dyn_h->h != h)
1919 return TRUE;
1920
1921 /* Function symbols for which we created .opd entries *may* have been
1922 munged by finish_dynamic_symbol and have to be un-munged here.
1923
1924 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1925 into non-dynamic ones, so we initialize st_shndx to -1 in
1926 mark_exported_functions and check to see if it was overwritten
1927 here instead of just checking dyn_h->h->dynindx. */
1928 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1929 {
1930 /* Restore the saved value and section index. */
1931 sym->st_value = dyn_h->st_value;
1932 sym->st_shndx = dyn_h->st_shndx;
1933 }
1934
1935 return TRUE;
1936}
1937
1938/* Finish up dynamic symbol handling. We set the contents of various
1939 dynamic sections here. */
1940
1941static bfd_boolean
1942elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1943 bfd *output_bfd;
1944 struct bfd_link_info *info;
1945 struct elf_link_hash_entry *h;
1946 Elf_Internal_Sym *sym;
1947{
1948 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1949 struct elf64_hppa_link_hash_table *hppa_info;
1950 struct elf64_hppa_dyn_hash_entry *dyn_h;
1951
1952 hppa_info = elf64_hppa_hash_table (info);
1953 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1954 h->root.root.string, FALSE, FALSE);
1955
1956 stub = hppa_info->stub_sec;
1957 splt = hppa_info->plt_sec;
1958 sdlt = hppa_info->dlt_sec;
1959 sopd = hppa_info->opd_sec;
1960 spltrel = hppa_info->plt_rel_sec;
1961 sdltrel = hppa_info->dlt_rel_sec;
1962
1963 /* Incredible. It is actually necessary to NOT use the symbol's real
1964 value when building the dynamic symbol table for a shared library.
1965 At least for symbols that refer to functions.
1966
1967 We will store a new value and section index into the symbol long
1968 enough to output it into the dynamic symbol table, then we restore
1969 the original values (in elf64_hppa_link_output_symbol_hook). */
1970 if (dyn_h && dyn_h->want_opd)
1971 {
1972 BFD_ASSERT (sopd != NULL);
1973
1974 /* Save away the original value and section index so that we
1975 can restore them later. */
1976 dyn_h->st_value = sym->st_value;
1977 dyn_h->st_shndx = sym->st_shndx;
1978
1979 /* For the dynamic symbol table entry, we want the value to be
1980 address of this symbol's entry within the .opd section. */
1981 sym->st_value = (dyn_h->opd_offset
1982 + sopd->output_offset
1983 + sopd->output_section->vma);
1984 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1985 sopd->output_section);
1986 }
1987
1988 /* Initialize a .plt entry if requested. */
1989 if (dyn_h && dyn_h->want_plt
1990 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1991 {
1992 bfd_vma value;
1993 Elf_Internal_Rela rel;
1994 bfd_byte *loc;
1995
1996 BFD_ASSERT (splt != NULL && spltrel != NULL);
1997
1998 /* We do not actually care about the value in the PLT entry
1999 if we are creating a shared library and the symbol is
2000 still undefined, we create a dynamic relocation to fill
2001 in the correct value. */
2002 if (info->shared && h->root.type == bfd_link_hash_undefined)
2003 value = 0;
2004 else
2005 value = (h->root.u.def.value + h->root.u.def.section->vma);
2006
2007 /* Fill in the entry in the procedure linkage table.
2008
2009 The format of a plt entry is
2010 <funcaddr> <__gp>.
2011
2012 plt_offset is the offset within the PLT section at which to
2013 install the PLT entry.
2014
2015 We are modifying the in-memory PLT contents here, so we do not add
2016 in the output_offset of the PLT section. */
2017
2018 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2019 value = _bfd_get_gp_value (splt->output_section->owner);
2020 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2021
2022 /* Create a dynamic IPLT relocation for this entry.
2023
2024 We are creating a relocation in the output file's PLT section,
2025 which is included within the DLT secton. So we do need to include
2026 the PLT's output_offset in the computation of the relocation's
2027 address. */
2028 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2029 + splt->output_section->vma);
2030 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2031 rel.r_addend = 0;
2032
2033 loc = spltrel->contents;
2034 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2035 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2036 }
2037
2038 /* Initialize an external call stub entry if requested. */
2039 if (dyn_h && dyn_h->want_stub
2040 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2041 {
2042 bfd_vma value;
2043 int insn;
2044 unsigned int max_offset;
2045
2046 BFD_ASSERT (stub != NULL);
2047
2048 /* Install the generic stub template.
2049
2050 We are modifying the contents of the stub section, so we do not
2051 need to include the stub section's output_offset here. */
2052 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2053
2054 /* Fix up the first ldd instruction.
2055
2056 We are modifying the contents of the STUB section in memory,
2057 so we do not need to include its output offset in this computation.
2058
2059 Note the plt_offset value is the value of the PLT entry relative to
2060 the start of the PLT section. These instructions will reference
2061 data relative to the value of __gp, which may not necessarily have
2062 the same address as the start of the PLT section.
2063
2064 gp_offset contains the offset of __gp within the PLT section. */
2065 value = dyn_h->plt_offset - hppa_info->gp_offset;
2066
2067 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2068 if (output_bfd->arch_info->mach >= 25)
2069 {
2070 /* Wide mode allows 16 bit offsets. */
2071 max_offset = 32768;
2072 insn &= ~ 0xfff1;
2073 insn |= re_assemble_16 ((int) value);
2074 }
2075 else
2076 {
2077 max_offset = 8192;
2078 insn &= ~ 0x3ff1;
2079 insn |= re_assemble_14 ((int) value);
2080 }
2081
2082 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2083 {
2084 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 dyn_h->root.string,
2086 (long) value);
2087 return FALSE;
2088 }
2089
2090 bfd_put_32 (stub->owner, (bfd_vma) insn,
2091 stub->contents + dyn_h->stub_offset);
2092
2093 /* Fix up the second ldd instruction. */
2094 value += 8;
2095 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2096 if (output_bfd->arch_info->mach >= 25)
2097 {
2098 insn &= ~ 0xfff1;
2099 insn |= re_assemble_16 ((int) value);
2100 }
2101 else
2102 {
2103 insn &= ~ 0x3ff1;
2104 insn |= re_assemble_14 ((int) value);
2105 }
2106 bfd_put_32 (stub->owner, (bfd_vma) insn,
2107 stub->contents + dyn_h->stub_offset + 8);
2108 }
2109
2110 return TRUE;
2111}
2112
2113/* The .opd section contains FPTRs for each function this file
2114 exports. Initialize the FPTR entries. */
2115
2116static bfd_boolean
2117elf64_hppa_finalize_opd (dyn_h, data)
2118 struct elf64_hppa_dyn_hash_entry *dyn_h;
2119 PTR data;
2120{
2121 struct bfd_link_info *info = (struct bfd_link_info *)data;
2122 struct elf64_hppa_link_hash_table *hppa_info;
2123 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2124 asection *sopd;
2125 asection *sopdrel;
2126
2127 hppa_info = elf64_hppa_hash_table (info);
2128 sopd = hppa_info->opd_sec;
2129 sopdrel = hppa_info->opd_rel_sec;
2130
2131 if (h && dyn_h->want_opd)
2132 {
2133 bfd_vma value;
2134
2135 /* The first two words of an .opd entry are zero.
2136
2137 We are modifying the contents of the OPD section in memory, so we
2138 do not need to include its output offset in this computation. */
2139 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2140
2141 value = (h->root.u.def.value
2142 + h->root.u.def.section->output_section->vma
2143 + h->root.u.def.section->output_offset);
2144
2145 /* The next word is the address of the function. */
2146 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2147
2148 /* The last word is our local __gp value. */
2149 value = _bfd_get_gp_value (sopd->output_section->owner);
2150 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2151 }
2152
2153 /* If we are generating a shared library, we must generate EPLT relocations
2154 for each entry in the .opd, even for static functions (they may have
2155 had their address taken). */
2156 if (info->shared && dyn_h && dyn_h->want_opd)
2157 {
2158 Elf_Internal_Rela rel;
2159 bfd_byte *loc;
2160 int dynindx;
2161
2162 /* We may need to do a relocation against a local symbol, in
2163 which case we have to look up it's dynamic symbol index off
2164 the local symbol hash table. */
2165 if (h && h->dynindx != -1)
2166 dynindx = h->dynindx;
2167 else
2168 dynindx
2169 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2170 dyn_h->sym_indx);
2171
2172 /* The offset of this relocation is the absolute address of the
2173 .opd entry for this symbol. */
2174 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2175 + sopd->output_section->vma);
2176
2177 /* If H is non-null, then we have an external symbol.
2178
2179 It is imperative that we use a different dynamic symbol for the
2180 EPLT relocation if the symbol has global scope.
2181
2182 In the dynamic symbol table, the function symbol will have a value
2183 which is address of the function's .opd entry.
2184
2185 Thus, we can not use that dynamic symbol for the EPLT relocation
2186 (if we did, the data in the .opd would reference itself rather
2187 than the actual address of the function). Instead we have to use
2188 a new dynamic symbol which has the same value as the original global
2189 function symbol.
2190
2191 We prefix the original symbol with a "." and use the new symbol in
2192 the EPLT relocation. This new symbol has already been recorded in
2193 the symbol table, we just have to look it up and use it.
2194
2195 We do not have such problems with static functions because we do
2196 not make their addresses in the dynamic symbol table point to
2197 the .opd entry. Ultimately this should be safe since a static
2198 function can not be directly referenced outside of its shared
2199 library.
2200
2201 We do have to play similar games for FPTR relocations in shared
2202 libraries, including those for static symbols. See the FPTR
2203 handling in elf64_hppa_finalize_dynreloc. */
2204 if (h)
2205 {
2206 char *new_name;
2207 struct elf_link_hash_entry *nh;
2208
2209 new_name = alloca (strlen (h->root.root.string) + 2);
2210 new_name[0] = '.';
2211 strcpy (new_name + 1, h->root.root.string);
2212
2213 nh = elf_link_hash_lookup (elf_hash_table (info),
2214 new_name, FALSE, FALSE, FALSE);
2215
2216 /* All we really want from the new symbol is its dynamic
2217 symbol index. */
2218 dynindx = nh->dynindx;
2219 }
2220
2221 rel.r_addend = 0;
2222 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2223
2224 loc = sopdrel->contents;
2225 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2226 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2227 }
2228 return TRUE;
2229}
2230
2231/* The .dlt section contains addresses for items referenced through the
2232 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2233 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2234
2235static bfd_boolean
2236elf64_hppa_finalize_dlt (dyn_h, data)
2237 struct elf64_hppa_dyn_hash_entry *dyn_h;
2238 PTR data;
2239{
2240 struct bfd_link_info *info = (struct bfd_link_info *)data;
2241 struct elf64_hppa_link_hash_table *hppa_info;
2242 asection *sdlt, *sdltrel;
2243 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2244
2245 hppa_info = elf64_hppa_hash_table (info);
2246
2247 sdlt = hppa_info->dlt_sec;
2248 sdltrel = hppa_info->dlt_rel_sec;
2249
2250 /* H/DYN_H may refer to a local variable and we know it's
2251 address, so there is no need to create a relocation. Just install
2252 the proper value into the DLT, note this shortcut can not be
2253 skipped when building a shared library. */
2254 if (! info->shared && h && dyn_h->want_dlt)
2255 {
2256 bfd_vma value;
2257
2258 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2259 to point to the FPTR entry in the .opd section.
2260
2261 We include the OPD's output offset in this computation as
2262 we are referring to an absolute address in the resulting
2263 object file. */
2264 if (dyn_h->want_opd)
2265 {
2266 value = (dyn_h->opd_offset
2267 + hppa_info->opd_sec->output_offset
2268 + hppa_info->opd_sec->output_section->vma);
2269 }
2270 else if ((h->root.type == bfd_link_hash_defined
2271 || h->root.type == bfd_link_hash_defweak)
2272 && h->root.u.def.section)
2273 {
2274 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2275 if (h->root.u.def.section->output_section)
2276 value += h->root.u.def.section->output_section->vma;
2277 else
2278 value += h->root.u.def.section->vma;
2279 }
2280 else
2281 /* We have an undefined function reference. */
2282 value = 0;
2283
2284 /* We do not need to include the output offset of the DLT section
2285 here because we are modifying the in-memory contents. */
2286 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2287 }
2288
2289 /* Create a relocation for the DLT entry associated with this symbol.
2290 When building a shared library the symbol does not have to be dynamic. */
2291 if (dyn_h->want_dlt
2292 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2293 {
2294 Elf_Internal_Rela rel;
2295 bfd_byte *loc;
2296 int dynindx;
2297
2298 /* We may need to do a relocation against a local symbol, in
2299 which case we have to look up it's dynamic symbol index off
2300 the local symbol hash table. */
2301 if (h && h->dynindx != -1)
2302 dynindx = h->dynindx;
2303 else
2304 dynindx
2305 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2306 dyn_h->sym_indx);
2307
2308 /* Create a dynamic relocation for this entry. Do include the output
2309 offset of the DLT entry since we need an absolute address in the
2310 resulting object file. */
2311 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2312 + sdlt->output_section->vma);
2313 if (h && h->type == STT_FUNC)
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2315 else
2316 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2317 rel.r_addend = 0;
2318
2319 loc = sdltrel->contents;
2320 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2321 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2322 }
2323 return TRUE;
2324}
2325
2326/* Finalize the dynamic relocations. Specifically the FPTR relocations
2327 for dynamic functions used to initialize static data. */
2328
2329static bfd_boolean
2330elf64_hppa_finalize_dynreloc (dyn_h, data)
2331 struct elf64_hppa_dyn_hash_entry *dyn_h;
2332 PTR data;
2333{
2334 struct bfd_link_info *info = (struct bfd_link_info *)data;
2335 struct elf64_hppa_link_hash_table *hppa_info;
2336 struct elf_link_hash_entry *h;
2337 int dynamic_symbol;
2338
2339 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2340
2341 if (!dynamic_symbol && !info->shared)
2342 return TRUE;
2343
2344 if (dyn_h->reloc_entries)
2345 {
2346 struct elf64_hppa_dyn_reloc_entry *rent;
2347 int dynindx;
2348
2349 hppa_info = elf64_hppa_hash_table (info);
2350 h = dyn_h->h;
2351
2352 /* We may need to do a relocation against a local symbol, in
2353 which case we have to look up it's dynamic symbol index off
2354 the local symbol hash table. */
2355 if (h && h->dynindx != -1)
2356 dynindx = h->dynindx;
2357 else
2358 dynindx
2359 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2360 dyn_h->sym_indx);
2361
2362 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2363 {
2364 Elf_Internal_Rela rel;
2365 bfd_byte *loc;
2366
2367 /* Allocate one iff we are building a shared library, the relocation
2368 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2369 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2370 continue;
2371
2372 /* Create a dynamic relocation for this entry.
2373
2374 We need the output offset for the reloc's section because
2375 we are creating an absolute address in the resulting object
2376 file. */
2377 rel.r_offset = (rent->offset + rent->sec->output_offset
2378 + rent->sec->output_section->vma);
2379
2380 /* An FPTR64 relocation implies that we took the address of
2381 a function and that the function has an entry in the .opd
2382 section. We want the FPTR64 relocation to reference the
2383 entry in .opd.
2384
2385 We could munge the symbol value in the dynamic symbol table
2386 (in fact we already do for functions with global scope) to point
2387 to the .opd entry. Then we could use that dynamic symbol in
2388 this relocation.
2389
2390 Or we could do something sensible, not munge the symbol's
2391 address and instead just use a different symbol to reference
2392 the .opd entry. At least that seems sensible until you
2393 realize there's no local dynamic symbols we can use for that
2394 purpose. Thus the hair in the check_relocs routine.
2395
2396 We use a section symbol recorded by check_relocs as the
2397 base symbol for the relocation. The addend is the difference
2398 between the section symbol and the address of the .opd entry. */
2399 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2400 {
2401 bfd_vma value, value2;
2402
2403 /* First compute the address of the opd entry for this symbol. */
2404 value = (dyn_h->opd_offset
2405 + hppa_info->opd_sec->output_section->vma
2406 + hppa_info->opd_sec->output_offset);
2407
2408 /* Compute the value of the start of the section with
2409 the relocation. */
2410 value2 = (rent->sec->output_section->vma
2411 + rent->sec->output_offset);
2412
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2415 value -= value2;
2416
2417 /* The result becomes the addend of the relocation. */
2418 rel.r_addend = value;
2419
2420 /* The section symbol becomes the symbol for the dynamic
2421 relocation. */
2422 dynindx
2423 = _bfd_elf_link_lookup_local_dynindx (info,
2424 rent->sec->owner,
2425 rent->sec_symndx);
2426 }
2427 else
2428 rel.r_addend = rent->addend;
2429
2430 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432 loc = hppa_info->other_rel_sec->contents;
2433 loc += (hppa_info->other_rel_sec->reloc_count++
2434 * sizeof (Elf64_External_Rela));
2435 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 &rel, loc);
2437 }
2438 }
2439
2440 return TRUE;
2441}
2442
2443/* Used to decide how to sort relocs in an optimal manner for the
2444 dynamic linker, before writing them out. */
2445
2446static enum elf_reloc_type_class
2447elf64_hppa_reloc_type_class (rela)
2448 const Elf_Internal_Rela *rela;
2449{
2450 if (ELF64_R_SYM (rela->r_info) == 0)
2451 return reloc_class_relative;
2452
2453 switch ((int) ELF64_R_TYPE (rela->r_info))
2454 {
2455 case R_PARISC_IPLT:
2456 return reloc_class_plt;
2457 case R_PARISC_COPY:
2458 return reloc_class_copy;
2459 default:
2460 return reloc_class_normal;
2461 }
2462}
2463
2464/* Finish up the dynamic sections. */
2465
2466static bfd_boolean
2467elf64_hppa_finish_dynamic_sections (output_bfd, info)
2468 bfd *output_bfd;
2469 struct bfd_link_info *info;
2470{
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = elf64_hppa_hash_table (info);
2476
2477 /* Finalize the contents of the .opd section. */
2478 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479 elf64_hppa_finalize_opd,
2480 info);
2481
2482 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2483 elf64_hppa_finalize_dynreloc,
2484 info);
2485
2486 /* Finalize the contents of the .dlt section. */
2487 dynobj = elf_hash_table (info)->dynobj;
2488 /* Finalize the contents of the .dlt section. */
2489 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2490 elf64_hppa_finalize_dlt,
2491 info);
2492
2493 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2494
2495 if (elf_hash_table (info)->dynamic_sections_created)
2496 {
2497 Elf64_External_Dyn *dyncon, *dynconend;
2498
2499 BFD_ASSERT (sdyn != NULL);
2500
2501 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2502 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2503 for (; dyncon < dynconend; dyncon++)
2504 {
2505 Elf_Internal_Dyn dyn;
2506 asection *s;
2507
2508 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2509
2510 switch (dyn.d_tag)
2511 {
2512 default:
2513 break;
2514
2515 case DT_HP_LOAD_MAP:
2516 /* Compute the absolute address of 16byte scratchpad area
2517 for the dynamic linker.
2518
2519 By convention the linker script will allocate the scratchpad
2520 area at the start of the .data section. So all we have to
2521 to is find the start of the .data section. */
2522 s = bfd_get_section_by_name (output_bfd, ".data");
2523 dyn.d_un.d_ptr = s->vma;
2524 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525 break;
2526
2527 case DT_PLTGOT:
2528 /* HP's use PLTGOT to set the GOT register. */
2529 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_JMPREL:
2534 s = hppa_info->plt_rel_sec;
2535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2536 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 break;
2538
2539 case DT_PLTRELSZ:
2540 s = hppa_info->plt_rel_sec;
2541 dyn.d_un.d_val = s->size;
2542 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 break;
2544
2545 case DT_RELA:
2546 s = hppa_info->other_rel_sec;
2547 if (! s || ! s->size)
2548 s = hppa_info->dlt_rel_sec;
2549 if (! s || ! s->size)
2550 s = hppa_info->opd_rel_sec;
2551 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2552 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2553 break;
2554
2555 case DT_RELASZ:
2556 s = hppa_info->other_rel_sec;
2557 dyn.d_un.d_val = s->size;
2558 s = hppa_info->dlt_rel_sec;
2559 dyn.d_un.d_val += s->size;
2560 s = hppa_info->opd_rel_sec;
2561 dyn.d_un.d_val += s->size;
2562 /* There is some question about whether or not the size of
2563 the PLT relocs should be included here. HP's tools do
2564 it, so we'll emulate them. */
2565 s = hppa_info->plt_rel_sec;
2566 dyn.d_un.d_val += s->size;
2567 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2568 break;
2569
2570 }
2571 }
2572 }
2573
2574 return TRUE;
2575}
2576
2577/* Return the number of additional phdrs we will need.
2578
2579 The generic ELF code only creates PT_PHDRs for executables. The HP
2580 dynamic linker requires PT_PHDRs for dynamic libraries too.
2581
2582 This routine indicates that the backend needs one additional program
2583 header for that case.
2584
2585 Note we do not have access to the link info structure here, so we have
2586 to guess whether or not we are building a shared library based on the
2587 existence of a .interp section. */
2588
2589static int
2590elf64_hppa_additional_program_headers (abfd)
2591 bfd *abfd;
2592{
2593 asection *s;
2594
2595 /* If we are creating a shared library, then we have to create a
2596 PT_PHDR segment. HP's dynamic linker chokes without it. */
2597 s = bfd_get_section_by_name (abfd, ".interp");
2598 if (! s)
2599 return 1;
2600 return 0;
2601}
2602
2603/* Allocate and initialize any program headers required by this
2604 specific backend.
2605
2606 The generic ELF code only creates PT_PHDRs for executables. The HP
2607 dynamic linker requires PT_PHDRs for dynamic libraries too.
2608
2609 This allocates the PT_PHDR and initializes it in a manner suitable
2610 for the HP linker.
2611
2612 Note we do not have access to the link info structure here, so we have
2613 to guess whether or not we are building a shared library based on the
2614 existence of a .interp section. */
2615
2616static bfd_boolean
2617elf64_hppa_modify_segment_map (abfd, info)
2618 bfd *abfd;
2619 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2620{
2621 struct elf_segment_map *m;
2622 asection *s;
2623
2624 s = bfd_get_section_by_name (abfd, ".interp");
2625 if (! s)
2626 {
2627 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2628 if (m->p_type == PT_PHDR)
2629 break;
2630 if (m == NULL)
2631 {
2632 m = ((struct elf_segment_map *)
2633 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2634 if (m == NULL)
2635 return FALSE;
2636
2637 m->p_type = PT_PHDR;
2638 m->p_flags = PF_R | PF_X;
2639 m->p_flags_valid = 1;
2640 m->p_paddr_valid = 1;
2641 m->includes_phdrs = 1;
2642
2643 m->next = elf_tdata (abfd)->segment_map;
2644 elf_tdata (abfd)->segment_map = m;
2645 }
2646 }
2647
2648 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2649 if (m->p_type == PT_LOAD)
2650 {
2651 unsigned int i;
2652
2653 for (i = 0; i < m->count; i++)
2654 {
2655 /* The code "hint" is not really a hint. It is a requirement
2656 for certain versions of the HP dynamic linker. Worse yet,
2657 it must be set even if the shared library does not have
2658 any code in its "text" segment (thus the check for .hash
2659 to catch this situation). */
2660 if (m->sections[i]->flags & SEC_CODE
2661 || (strcmp (m->sections[i]->name, ".hash") == 0))
2662 m->p_flags |= (PF_X | PF_HP_CODE);
2663 }
2664 }
2665
2666 return TRUE;
2667}
2668
2669/* Called when writing out an object file to decide the type of a
2670 symbol. */
2671static int
2672elf64_hppa_elf_get_symbol_type (elf_sym, type)
2673 Elf_Internal_Sym *elf_sym;
2674 int type;
2675{
2676 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2677 return STT_PARISC_MILLI;
2678 else
2679 return type;
2680}
2681
2682static struct bfd_elf_special_section const elf64_hppa_special_sections[]=
2683{
2684 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2685 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2686 { NULL, 0, 0, 0, 0 }
2687};
2688
2689/* The hash bucket size is the standard one, namely 4. */
2690
2691const struct elf_size_info hppa64_elf_size_info =
2692{
2693 sizeof (Elf64_External_Ehdr),
2694 sizeof (Elf64_External_Phdr),
2695 sizeof (Elf64_External_Shdr),
2696 sizeof (Elf64_External_Rel),
2697 sizeof (Elf64_External_Rela),
2698 sizeof (Elf64_External_Sym),
2699 sizeof (Elf64_External_Dyn),
2700 sizeof (Elf_External_Note),
2701 4,
2702 1,
2703 64, 3,
2704 ELFCLASS64, EV_CURRENT,
2705 bfd_elf64_write_out_phdrs,
2706 bfd_elf64_write_shdrs_and_ehdr,
2707 bfd_elf64_write_relocs,
2708 bfd_elf64_swap_symbol_in,
2709 bfd_elf64_swap_symbol_out,
2710 bfd_elf64_slurp_reloc_table,
2711 bfd_elf64_slurp_symbol_table,
2712 bfd_elf64_swap_dyn_in,
2713 bfd_elf64_swap_dyn_out,
2714 bfd_elf64_swap_reloc_in,
2715 bfd_elf64_swap_reloc_out,
2716 bfd_elf64_swap_reloca_in,
2717 bfd_elf64_swap_reloca_out
2718};
2719
2720#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2721#define TARGET_BIG_NAME "elf64-hppa"
2722#define ELF_ARCH bfd_arch_hppa
2723#define ELF_MACHINE_CODE EM_PARISC
2724/* This is not strictly correct. The maximum page size for PA2.0 is
2725 64M. But everything still uses 4k. */
2726#define ELF_MAXPAGESIZE 0x1000
2727#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2728#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2729#define elf_info_to_howto elf_hppa_info_to_howto
2730#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2731
2732#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2733#define elf_backend_object_p elf64_hppa_object_p
2734#define elf_backend_final_write_processing \
2735 elf_hppa_final_write_processing
2736#define elf_backend_fake_sections elf_hppa_fake_sections
2737#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2738
2739#define elf_backend_relocate_section elf_hppa_relocate_section
2740
2741#define bfd_elf64_bfd_final_link elf_hppa_final_link
2742
2743#define elf_backend_create_dynamic_sections \
2744 elf64_hppa_create_dynamic_sections
2745#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2746
2747#define elf_backend_adjust_dynamic_symbol \
2748 elf64_hppa_adjust_dynamic_symbol
2749
2750#define elf_backend_size_dynamic_sections \
2751 elf64_hppa_size_dynamic_sections
2752
2753#define elf_backend_finish_dynamic_symbol \
2754 elf64_hppa_finish_dynamic_symbol
2755#define elf_backend_finish_dynamic_sections \
2756 elf64_hppa_finish_dynamic_sections
2757
2758/* Stuff for the BFD linker: */
2759#define bfd_elf64_bfd_link_hash_table_create \
2760 elf64_hppa_hash_table_create
2761
2762#define elf_backend_check_relocs \
2763 elf64_hppa_check_relocs
2764
2765#define elf_backend_size_info \
2766 hppa64_elf_size_info
2767
2768#define elf_backend_additional_program_headers \
2769 elf64_hppa_additional_program_headers
2770
2771#define elf_backend_modify_segment_map \
2772 elf64_hppa_modify_segment_map
2773
2774#define elf_backend_link_output_symbol_hook \
2775 elf64_hppa_link_output_symbol_hook
2776
2777#define elf_backend_want_got_plt 0
2778#define elf_backend_plt_readonly 0
2779#define elf_backend_want_plt_sym 0
2780#define elf_backend_got_header_size 0
2781#define elf_backend_type_change_ok TRUE
2782#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2783#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2784#define elf_backend_rela_normal 1
2785#define elf_backend_special_sections elf64_hppa_special_sections
2786
2787#include "elf64-target.h"
2788
2789#undef TARGET_BIG_SYM
2790#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2791#undef TARGET_BIG_NAME
2792#define TARGET_BIG_NAME "elf64-hppa-linux"
2793
2794#undef elf_backend_special_sections
2795
2796#define INCLUDED_TARGET_FILE 1
2797#include "elf64-target.h"
This page took 0.031067 seconds and 4 git commands to generate.