* ld-powerpc/symtocbase.d: Adjust for alignment change.
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
... / ...
CommitLineData
1/* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24/* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28#include "bfd.h"
29#include "sysdep.h"
30#include "bfdlink.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/ppc64.h"
34#include "elf64-ppc.h"
35
36static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57#define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58#define TARGET_LITTLE_NAME "elf64-powerpcle"
59#define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60#define TARGET_BIG_NAME "elf64-powerpc"
61#define ELF_ARCH bfd_arch_powerpc
62#define ELF_MACHINE_CODE EM_PPC64
63#define ELF_MAXPAGESIZE 0x10000
64#define elf_info_to_howto ppc64_elf_info_to_howto
65
66#define elf_backend_want_got_sym 0
67#define elf_backend_want_plt_sym 0
68#define elf_backend_plt_alignment 3
69#define elf_backend_plt_not_loaded 1
70#define elf_backend_got_header_size 8
71#define elf_backend_can_gc_sections 1
72#define elf_backend_can_refcount 1
73#define elf_backend_rela_normal 1
74
75#define bfd_elf64_mkobject ppc64_elf_mkobject
76#define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
77#define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
78#define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
79#define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
80#define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
81#define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
82
83#define elf_backend_object_p ppc64_elf_object_p
84#define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
85#define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
86#define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
87#define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
88#define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
89#define elf_backend_check_directives ppc64_elf_check_directives
90#define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
91#define elf_backend_check_relocs ppc64_elf_check_relocs
92#define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
93#define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
94#define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
95#define elf_backend_hide_symbol ppc64_elf_hide_symbol
96#define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
97#define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
98#define elf_backend_action_discarded ppc64_elf_action_discarded
99#define elf_backend_relocate_section ppc64_elf_relocate_section
100#define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101#define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102#define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103#define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104#define elf_backend_special_sections ppc64_elf_special_sections
105
106/* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110/* The size in bytes of an entry in the procedure linkage table. */
111#define PLT_ENTRY_SIZE 24
112
113/* The initial size of the plt reserved for the dynamic linker. */
114#define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116/* TOC base pointers offset from start of TOC. */
117#define TOC_BASE_OFF 0x8000
118
119/* Offset of tp and dtp pointers from start of TLS block. */
120#define TP_OFFSET 0x7000
121#define DTP_OFFSET 0x8000
122
123/* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126#define PLT_CALL_STUB_SIZE (7*4)
127#define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128#define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129#define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130#define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131#define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133#define BCTR 0x4e800420 /* bctr */
134
135
136#define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137#define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139#define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141/* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143#define GLINK_CALL_STUB_SIZE (16*4)
144#define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145#define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146#define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147#define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148#define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149#define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150#define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152#define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153#define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155#define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161/* Pad with this. */
162#define NOP 0x60000000
163
164/* Some other nops. */
165#define CROR_151515 0x4def7b82
166#define CROR_313131 0x4ffffb82
167
168/* .glink entries for the first 32k functions are two instructions. */
169#define LI_R0_0 0x38000000 /* li %r0,0 */
170#define B_DOT 0x48000000 /* b . */
171
172/* After that, we need two instructions to load the index, followed by
173 a branch. */
174#define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175#define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177/* Instructions used by the save and restore reg functions. */
178#define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179#define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180#define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181#define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182#define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183#define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184#define LI_R12_0 0x39800000 /* li %r12,0 */
185#define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186#define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187#define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188#define BLR 0x4e800020 /* blr */
189
190/* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194#ifndef NO_OPD_RELOCS
195#define NO_OPD_RELOCS 0
196#endif
197\f
198#define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200/* Relocation HOWTO's. */
201static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864};
1865
1866\f
1867/* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870static void
1871ppc_howto_init (void)
1872{
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884}
1885
1886static reloc_howto_type *
1887ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889{
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106};
2107
2108/* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110static void
2111ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113{
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 if (type >= (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])))
2123 {
2124 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2125 abfd, (int) type);
2126 type = R_PPC64_NONE;
2127 }
2128 cache_ptr->howto = ppc64_elf_howto_table[type];
2129}
2130
2131/* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2132
2133static bfd_reloc_status_type
2134ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2135 void *data, asection *input_section,
2136 bfd *output_bfd, char **error_message)
2137{
2138 /* If this is a relocatable link (output_bfd test tells us), just
2139 call the generic function. Any adjustment will be done at final
2140 link time. */
2141 if (output_bfd != NULL)
2142 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2143 input_section, output_bfd, error_message);
2144
2145 /* Adjust the addend for sign extension of the low 16 bits.
2146 We won't actually be using the low 16 bits, so trashing them
2147 doesn't matter. */
2148 reloc_entry->addend += 0x8000;
2149 return bfd_reloc_continue;
2150}
2151
2152static bfd_reloc_status_type
2153ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2154 void *data, asection *input_section,
2155 bfd *output_bfd, char **error_message)
2156{
2157 if (output_bfd != NULL)
2158 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2159 input_section, output_bfd, error_message);
2160
2161 if (strcmp (symbol->section->name, ".opd") == 0
2162 && (symbol->section->owner->flags & DYNAMIC) == 0)
2163 {
2164 bfd_vma dest = opd_entry_value (symbol->section,
2165 symbol->value + reloc_entry->addend,
2166 NULL, NULL);
2167 if (dest != (bfd_vma) -1)
2168 reloc_entry->addend = dest - (symbol->value
2169 + symbol->section->output_section->vma
2170 + symbol->section->output_offset);
2171 }
2172 return bfd_reloc_continue;
2173}
2174
2175static bfd_reloc_status_type
2176ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2177 void *data, asection *input_section,
2178 bfd *output_bfd, char **error_message)
2179{
2180 long insn;
2181 enum elf_ppc64_reloc_type r_type;
2182 bfd_size_type octets;
2183 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2184 bfd_boolean is_power4 = FALSE;
2185
2186 /* If this is a relocatable link (output_bfd test tells us), just
2187 call the generic function. Any adjustment will be done at final
2188 link time. */
2189 if (output_bfd != NULL)
2190 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2191 input_section, output_bfd, error_message);
2192
2193 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2194 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2195 insn &= ~(0x01 << 21);
2196 r_type = reloc_entry->howto->type;
2197 if (r_type == R_PPC64_ADDR14_BRTAKEN
2198 || r_type == R_PPC64_REL14_BRTAKEN)
2199 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2200
2201 if (is_power4)
2202 {
2203 /* Set 'a' bit. This is 0b00010 in BO field for branch
2204 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2205 for branch on CTR insns (BO == 1a00t or 1a01t). */
2206 if ((insn & (0x14 << 21)) == (0x04 << 21))
2207 insn |= 0x02 << 21;
2208 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2209 insn |= 0x08 << 21;
2210 else
2211 goto out;
2212 }
2213 else
2214 {
2215 bfd_vma target = 0;
2216 bfd_vma from;
2217
2218 if (!bfd_is_com_section (symbol->section))
2219 target = symbol->value;
2220 target += symbol->section->output_section->vma;
2221 target += symbol->section->output_offset;
2222 target += reloc_entry->addend;
2223
2224 from = (reloc_entry->address
2225 + input_section->output_offset
2226 + input_section->output_section->vma);
2227
2228 /* Invert 'y' bit if not the default. */
2229 if ((bfd_signed_vma) (target - from) < 0)
2230 insn ^= 0x01 << 21;
2231 }
2232 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2233 out:
2234 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2235 input_section, output_bfd, error_message);
2236}
2237
2238static bfd_reloc_status_type
2239ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2240 void *data, asection *input_section,
2241 bfd *output_bfd, char **error_message)
2242{
2243 /* If this is a relocatable link (output_bfd test tells us), just
2244 call the generic function. Any adjustment will be done at final
2245 link time. */
2246 if (output_bfd != NULL)
2247 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2248 input_section, output_bfd, error_message);
2249
2250 /* Subtract the symbol section base address. */
2251 reloc_entry->addend -= symbol->section->output_section->vma;
2252 return bfd_reloc_continue;
2253}
2254
2255static bfd_reloc_status_type
2256ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2257 void *data, asection *input_section,
2258 bfd *output_bfd, char **error_message)
2259{
2260 /* If this is a relocatable link (output_bfd test tells us), just
2261 call the generic function. Any adjustment will be done at final
2262 link time. */
2263 if (output_bfd != NULL)
2264 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2265 input_section, output_bfd, error_message);
2266
2267 /* Subtract the symbol section base address. */
2268 reloc_entry->addend -= symbol->section->output_section->vma;
2269
2270 /* Adjust the addend for sign extension of the low 16 bits. */
2271 reloc_entry->addend += 0x8000;
2272 return bfd_reloc_continue;
2273}
2274
2275static bfd_reloc_status_type
2276ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2277 void *data, asection *input_section,
2278 bfd *output_bfd, char **error_message)
2279{
2280 bfd_vma TOCstart;
2281
2282 /* If this is a relocatable link (output_bfd test tells us), just
2283 call the generic function. Any adjustment will be done at final
2284 link time. */
2285 if (output_bfd != NULL)
2286 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2287 input_section, output_bfd, error_message);
2288
2289 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2290 if (TOCstart == 0)
2291 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2292
2293 /* Subtract the TOC base address. */
2294 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2295 return bfd_reloc_continue;
2296}
2297
2298static bfd_reloc_status_type
2299ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2300 void *data, asection *input_section,
2301 bfd *output_bfd, char **error_message)
2302{
2303 bfd_vma TOCstart;
2304
2305 /* If this is a relocatable link (output_bfd test tells us), just
2306 call the generic function. Any adjustment will be done at final
2307 link time. */
2308 if (output_bfd != NULL)
2309 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2310 input_section, output_bfd, error_message);
2311
2312 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2313 if (TOCstart == 0)
2314 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2315
2316 /* Subtract the TOC base address. */
2317 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2318
2319 /* Adjust the addend for sign extension of the low 16 bits. */
2320 reloc_entry->addend += 0x8000;
2321 return bfd_reloc_continue;
2322}
2323
2324static bfd_reloc_status_type
2325ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2326 void *data, asection *input_section,
2327 bfd *output_bfd, char **error_message)
2328{
2329 bfd_vma TOCstart;
2330 bfd_size_type octets;
2331
2332 /* If this is a relocatable link (output_bfd test tells us), just
2333 call the generic function. Any adjustment will be done at final
2334 link time. */
2335 if (output_bfd != NULL)
2336 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2337 input_section, output_bfd, error_message);
2338
2339 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2340 if (TOCstart == 0)
2341 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2342
2343 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2344 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2345 return bfd_reloc_ok;
2346}
2347
2348static bfd_reloc_status_type
2349ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2350 void *data, asection *input_section,
2351 bfd *output_bfd, char **error_message)
2352{
2353 /* If this is a relocatable link (output_bfd test tells us), just
2354 call the generic function. Any adjustment will be done at final
2355 link time. */
2356 if (output_bfd != NULL)
2357 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2358 input_section, output_bfd, error_message);
2359
2360 if (error_message != NULL)
2361 {
2362 static char buf[60];
2363 sprintf (buf, "generic linker can't handle %s",
2364 reloc_entry->howto->name);
2365 *error_message = buf;
2366 }
2367 return bfd_reloc_dangerous;
2368}
2369
2370struct ppc64_elf_obj_tdata
2371{
2372 struct elf_obj_tdata elf;
2373
2374 /* Shortcuts to dynamic linker sections. */
2375 asection *got;
2376 asection *relgot;
2377
2378 union {
2379 /* Used during garbage collection. We attach global symbols defined
2380 on removed .opd entries to this section so that the sym is removed. */
2381 asection *deleted_section;
2382
2383 /* Used when adding symbols. */
2384 bfd_boolean has_dotsym;
2385 } u;
2386
2387 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2388 sections means we potentially need one of these for each input bfd. */
2389 union {
2390 bfd_signed_vma refcount;
2391 bfd_vma offset;
2392 } tlsld_got;
2393
2394 /* A copy of relocs before they are modified for --emit-relocs. */
2395 Elf_Internal_Rela *opd_relocs;
2396};
2397
2398#define ppc64_elf_tdata(bfd) \
2399 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2400
2401#define ppc64_tlsld_got(bfd) \
2402 (&ppc64_elf_tdata (bfd)->tlsld_got)
2403
2404/* Override the generic function because we store some extras. */
2405
2406static bfd_boolean
2407ppc64_elf_mkobject (bfd *abfd)
2408{
2409 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2410 abfd->tdata.any = bfd_zalloc (abfd, amt);
2411 if (abfd->tdata.any == NULL)
2412 return FALSE;
2413 return TRUE;
2414}
2415
2416/* Return 1 if target is one of ours. */
2417
2418static bfd_boolean
2419is_ppc64_elf_target (const struct bfd_target *targ)
2420{
2421 extern const bfd_target bfd_elf64_powerpc_vec;
2422 extern const bfd_target bfd_elf64_powerpcle_vec;
2423
2424 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2425}
2426
2427/* Fix bad default arch selected for a 64 bit input bfd when the
2428 default is 32 bit. */
2429
2430static bfd_boolean
2431ppc64_elf_object_p (bfd *abfd)
2432{
2433 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2434 {
2435 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2436
2437 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2438 {
2439 /* Relies on arch after 32 bit default being 64 bit default. */
2440 abfd->arch_info = abfd->arch_info->next;
2441 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2442 }
2443 }
2444 return TRUE;
2445}
2446
2447/* Support for core dump NOTE sections. */
2448
2449static bfd_boolean
2450ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2451{
2452 size_t offset, size;
2453
2454 if (note->descsz != 504)
2455 return FALSE;
2456
2457 /* pr_cursig */
2458 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2459
2460 /* pr_pid */
2461 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2462
2463 /* pr_reg */
2464 offset = 112;
2465 size = 384;
2466
2467 /* Make a ".reg/999" section. */
2468 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2469 size, note->descpos + offset);
2470}
2471
2472static bfd_boolean
2473ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2474{
2475 if (note->descsz != 136)
2476 return FALSE;
2477
2478 elf_tdata (abfd)->core_program
2479 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2480 elf_tdata (abfd)->core_command
2481 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2482
2483 return TRUE;
2484}
2485
2486/* Merge backend specific data from an object file to the output
2487 object file when linking. */
2488
2489static bfd_boolean
2490ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2491{
2492 /* Check if we have the same endianess. */
2493 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2494 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2495 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2496 {
2497 const char *msg;
2498
2499 if (bfd_big_endian (ibfd))
2500 msg = _("%B: compiled for a big endian system "
2501 "and target is little endian");
2502 else
2503 msg = _("%B: compiled for a little endian system "
2504 "and target is big endian");
2505
2506 (*_bfd_error_handler) (msg, ibfd);
2507
2508 bfd_set_error (bfd_error_wrong_format);
2509 return FALSE;
2510 }
2511
2512 return TRUE;
2513}
2514
2515/* Add extra PPC sections. */
2516
2517static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2518{
2519 { ".plt", 4, 0, SHT_NOBITS, 0 },
2520 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2521 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2522 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2523 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2524 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2525 { NULL, 0, 0, 0, 0 }
2526};
2527
2528struct _ppc64_elf_section_data
2529{
2530 struct bfd_elf_section_data elf;
2531
2532 /* An array with one entry for each opd function descriptor. */
2533 union
2534 {
2535 /* Points to the function code section for local opd entries. */
2536 asection **func_sec;
2537 /* After editing .opd, adjust references to opd local syms. */
2538 long *adjust;
2539 } opd;
2540
2541 /* An array for toc sections, indexed by offset/8.
2542 Specifies the relocation symbol index used at a given toc offset. */
2543 unsigned *t_symndx;
2544};
2545
2546#define ppc64_elf_section_data(sec) \
2547 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2548
2549static bfd_boolean
2550ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2551{
2552 struct _ppc64_elf_section_data *sdata;
2553 bfd_size_type amt = sizeof (*sdata);
2554
2555 sdata = bfd_zalloc (abfd, amt);
2556 if (sdata == NULL)
2557 return FALSE;
2558 sec->used_by_bfd = sdata;
2559
2560 return _bfd_elf_new_section_hook (abfd, sec);
2561}
2562
2563static void *
2564get_opd_info (asection * sec)
2565{
2566 if (sec != NULL
2567 && ppc64_elf_section_data (sec) != NULL
2568 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2569 return ppc64_elf_section_data (sec)->opd.adjust;
2570 return NULL;
2571}
2572\f
2573/* Parameters for the qsort hook. */
2574static asection *synthetic_opd;
2575static bfd_boolean synthetic_relocatable;
2576
2577/* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2578
2579static int
2580compare_symbols (const void *ap, const void *bp)
2581{
2582 const asymbol *a = * (const asymbol **) ap;
2583 const asymbol *b = * (const asymbol **) bp;
2584
2585 /* Section symbols first. */
2586 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2587 return -1;
2588 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2589 return 1;
2590
2591 /* then .opd symbols. */
2592 if (a->section == synthetic_opd && b->section != synthetic_opd)
2593 return -1;
2594 if (a->section != synthetic_opd && b->section == synthetic_opd)
2595 return 1;
2596
2597 /* then other code symbols. */
2598 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2599 == (SEC_CODE | SEC_ALLOC)
2600 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2601 != (SEC_CODE | SEC_ALLOC))
2602 return -1;
2603
2604 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2605 != (SEC_CODE | SEC_ALLOC)
2606 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2607 == (SEC_CODE | SEC_ALLOC))
2608 return 1;
2609
2610 if (synthetic_relocatable)
2611 {
2612 if (a->section->id < b->section->id)
2613 return -1;
2614
2615 if (a->section->id > b->section->id)
2616 return 1;
2617 }
2618
2619 if (a->value + a->section->vma < b->value + b->section->vma)
2620 return -1;
2621
2622 if (a->value + a->section->vma > b->value + b->section->vma)
2623 return 1;
2624
2625 return 0;
2626}
2627
2628/* Search SYMS for a symbol of the given VALUE. */
2629
2630static asymbol *
2631sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2632{
2633 long mid;
2634
2635 if (id == -1)
2636 {
2637 while (lo < hi)
2638 {
2639 mid = (lo + hi) >> 1;
2640 if (syms[mid]->value + syms[mid]->section->vma < value)
2641 lo = mid + 1;
2642 else if (syms[mid]->value + syms[mid]->section->vma > value)
2643 hi = mid;
2644 else
2645 return syms[mid];
2646 }
2647 }
2648 else
2649 {
2650 while (lo < hi)
2651 {
2652 mid = (lo + hi) >> 1;
2653 if (syms[mid]->section->id < id)
2654 lo = mid + 1;
2655 else if (syms[mid]->section->id > id)
2656 hi = mid;
2657 else if (syms[mid]->value < value)
2658 lo = mid + 1;
2659 else if (syms[mid]->value > value)
2660 hi = mid;
2661 else
2662 return syms[mid];
2663 }
2664 }
2665 return NULL;
2666}
2667
2668/* Create synthetic symbols, effectively restoring "dot-symbol" function
2669 entry syms. */
2670
2671static long
2672ppc64_elf_get_synthetic_symtab (bfd *abfd,
2673 long static_count, asymbol **static_syms,
2674 long dyn_count, asymbol **dyn_syms,
2675 asymbol **ret)
2676{
2677 asymbol *s;
2678 long i;
2679 long count;
2680 char *names;
2681 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2682 asection *opd;
2683 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2684 asymbol **syms;
2685
2686 *ret = NULL;
2687
2688 opd = bfd_get_section_by_name (abfd, ".opd");
2689 if (opd == NULL)
2690 return 0;
2691
2692 symcount = static_count;
2693 if (!relocatable)
2694 symcount += dyn_count;
2695 if (symcount == 0)
2696 return 0;
2697
2698 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2699 if (syms == NULL)
2700 return -1;
2701
2702 if (!relocatable && static_count != 0 && dyn_count != 0)
2703 {
2704 /* Use both symbol tables. */
2705 memcpy (syms, static_syms, static_count * sizeof (*syms));
2706 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2707 }
2708 else if (!relocatable && static_count == 0)
2709 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2710 else
2711 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2712
2713 synthetic_opd = opd;
2714 synthetic_relocatable = relocatable;
2715 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2716
2717 if (!relocatable && symcount > 1)
2718 {
2719 long j;
2720 /* Trim duplicate syms, since we may have merged the normal and
2721 dynamic symbols. Actually, we only care about syms that have
2722 different values, so trim any with the same value. */
2723 for (i = 1, j = 1; i < symcount; ++i)
2724 if (syms[i - 1]->value + syms[i - 1]->section->vma
2725 != syms[i]->value + syms[i]->section->vma)
2726 syms[j++] = syms[i];
2727 symcount = j;
2728 }
2729
2730 i = 0;
2731 if (syms[i]->section == opd)
2732 ++i;
2733 codesecsym = i;
2734
2735 for (; i < symcount; ++i)
2736 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2737 != (SEC_CODE | SEC_ALLOC))
2738 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2739 break;
2740 codesecsymend = i;
2741
2742 for (; i < symcount; ++i)
2743 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2744 break;
2745 secsymend = i;
2746
2747 for (; i < symcount; ++i)
2748 if (syms[i]->section != opd)
2749 break;
2750 opdsymend = i;
2751
2752 for (; i < symcount; ++i)
2753 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2754 != (SEC_CODE | SEC_ALLOC))
2755 break;
2756 symcount = i;
2757
2758 count = 0;
2759 if (opdsymend == secsymend)
2760 goto done;
2761
2762 if (relocatable)
2763 {
2764 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2765 arelent *r;
2766 size_t size;
2767 long relcount;
2768
2769 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2770 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2771 if (relcount == 0)
2772 goto done;
2773
2774 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2775 {
2776 count = -1;
2777 goto done;
2778 }
2779
2780 size = 0;
2781 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2782 {
2783 asymbol *sym;
2784
2785 while (r < opd->relocation + relcount
2786 && r->address < syms[i]->value + opd->vma)
2787 ++r;
2788
2789 if (r == opd->relocation + relcount)
2790 break;
2791
2792 if (r->address != syms[i]->value + opd->vma)
2793 continue;
2794
2795 if (r->howto->type != R_PPC64_ADDR64)
2796 continue;
2797
2798 sym = *r->sym_ptr_ptr;
2799 if (!sym_exists_at (syms, opdsymend, symcount,
2800 sym->section->id, sym->value + r->addend))
2801 {
2802 ++count;
2803 size += sizeof (asymbol);
2804 size += strlen (syms[i]->name) + 2;
2805 }
2806 }
2807
2808 s = *ret = bfd_malloc (size);
2809 if (s == NULL)
2810 {
2811 count = -1;
2812 goto done;
2813 }
2814
2815 names = (char *) (s + count);
2816
2817 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2818 {
2819 asymbol *sym;
2820
2821 while (r < opd->relocation + relcount
2822 && r->address < syms[i]->value + opd->vma)
2823 ++r;
2824
2825 if (r == opd->relocation + relcount)
2826 break;
2827
2828 if (r->address != syms[i]->value + opd->vma)
2829 continue;
2830
2831 if (r->howto->type != R_PPC64_ADDR64)
2832 continue;
2833
2834 sym = *r->sym_ptr_ptr;
2835 if (!sym_exists_at (syms, opdsymend, symcount,
2836 sym->section->id, sym->value + r->addend))
2837 {
2838 size_t len;
2839
2840 *s = *syms[i];
2841 s->section = sym->section;
2842 s->value = sym->value + r->addend;
2843 s->name = names;
2844 *names++ = '.';
2845 len = strlen (syms[i]->name);
2846 memcpy (names, syms[i]->name, len + 1);
2847 names += len + 1;
2848 s++;
2849 }
2850 }
2851 }
2852 else
2853 {
2854 bfd_byte *contents;
2855 size_t size;
2856
2857 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2858 {
2859 if (contents)
2860 {
2861 free_contents_and_exit:
2862 free (contents);
2863 }
2864 count = -1;
2865 goto done;
2866 }
2867
2868 size = 0;
2869 for (i = secsymend; i < opdsymend; ++i)
2870 {
2871 bfd_vma ent;
2872
2873 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2874 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2875 {
2876 ++count;
2877 size += sizeof (asymbol);
2878 size += strlen (syms[i]->name) + 2;
2879 }
2880 }
2881
2882 s = *ret = bfd_malloc (size);
2883 if (s == NULL)
2884 goto free_contents_and_exit;
2885
2886 names = (char *) (s + count);
2887
2888 for (i = secsymend; i < opdsymend; ++i)
2889 {
2890 bfd_vma ent;
2891
2892 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2893 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2894 {
2895 long lo, hi;
2896 size_t len;
2897 asection *sec = abfd->sections;
2898
2899 *s = *syms[i];
2900 lo = codesecsym;
2901 hi = codesecsymend;
2902 while (lo < hi)
2903 {
2904 long mid = (lo + hi) >> 1;
2905 if (syms[mid]->section->vma < ent)
2906 lo = mid + 1;
2907 else if (syms[mid]->section->vma > ent)
2908 hi = mid;
2909 else
2910 {
2911 sec = syms[mid]->section;
2912 break;
2913 }
2914 }
2915
2916 if (lo >= hi && lo > codesecsym)
2917 sec = syms[lo - 1]->section;
2918
2919 for (; sec != NULL; sec = sec->next)
2920 {
2921 if (sec->vma > ent)
2922 break;
2923 if ((sec->flags & SEC_ALLOC) == 0
2924 || (sec->flags & SEC_LOAD) == 0)
2925 break;
2926 if ((sec->flags & SEC_CODE) != 0)
2927 s->section = sec;
2928 }
2929 s->value = ent - s->section->vma;
2930 s->name = names;
2931 *names++ = '.';
2932 len = strlen (syms[i]->name);
2933 memcpy (names, syms[i]->name, len + 1);
2934 names += len + 1;
2935 s++;
2936 }
2937 }
2938 free (contents);
2939 }
2940
2941 done:
2942 free (syms);
2943 return count;
2944}
2945\f
2946/* The following functions are specific to the ELF linker, while
2947 functions above are used generally. Those named ppc64_elf_* are
2948 called by the main ELF linker code. They appear in this file more
2949 or less in the order in which they are called. eg.
2950 ppc64_elf_check_relocs is called early in the link process,
2951 ppc64_elf_finish_dynamic_sections is one of the last functions
2952 called.
2953
2954 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2955 functions have both a function code symbol and a function descriptor
2956 symbol. A call to foo in a relocatable object file looks like:
2957
2958 . .text
2959 . x:
2960 . bl .foo
2961 . nop
2962
2963 The function definition in another object file might be:
2964
2965 . .section .opd
2966 . foo: .quad .foo
2967 . .quad .TOC.@tocbase
2968 . .quad 0
2969 .
2970 . .text
2971 . .foo: blr
2972
2973 When the linker resolves the call during a static link, the branch
2974 unsurprisingly just goes to .foo and the .opd information is unused.
2975 If the function definition is in a shared library, things are a little
2976 different: The call goes via a plt call stub, the opd information gets
2977 copied to the plt, and the linker patches the nop.
2978
2979 . x:
2980 . bl .foo_stub
2981 . ld 2,40(1)
2982 .
2983 .
2984 . .foo_stub:
2985 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2986 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2987 . std 2,40(1) # this is the general idea
2988 . ld 11,0(12)
2989 . ld 2,8(12)
2990 . mtctr 11
2991 . ld 11,16(12)
2992 . bctr
2993 .
2994 . .section .plt
2995 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2996
2997 The "reloc ()" notation is supposed to indicate that the linker emits
2998 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2999 copying.
3000
3001 What are the difficulties here? Well, firstly, the relocations
3002 examined by the linker in check_relocs are against the function code
3003 sym .foo, while the dynamic relocation in the plt is emitted against
3004 the function descriptor symbol, foo. Somewhere along the line, we need
3005 to carefully copy dynamic link information from one symbol to the other.
3006 Secondly, the generic part of the elf linker will make .foo a dynamic
3007 symbol as is normal for most other backends. We need foo dynamic
3008 instead, at least for an application final link. However, when
3009 creating a shared library containing foo, we need to have both symbols
3010 dynamic so that references to .foo are satisfied during the early
3011 stages of linking. Otherwise the linker might decide to pull in a
3012 definition from some other object, eg. a static library.
3013
3014 Update: As of August 2004, we support a new convention. Function
3015 calls may use the function descriptor symbol, ie. "bl foo". This
3016 behaves exactly as "bl .foo". */
3017
3018/* The linker needs to keep track of the number of relocs that it
3019 decides to copy as dynamic relocs in check_relocs for each symbol.
3020 This is so that it can later discard them if they are found to be
3021 unnecessary. We store the information in a field extending the
3022 regular ELF linker hash table. */
3023
3024struct ppc_dyn_relocs
3025{
3026 struct ppc_dyn_relocs *next;
3027
3028 /* The input section of the reloc. */
3029 asection *sec;
3030
3031 /* Total number of relocs copied for the input section. */
3032 bfd_size_type count;
3033
3034 /* Number of pc-relative relocs copied for the input section. */
3035 bfd_size_type pc_count;
3036};
3037
3038/* Track GOT entries needed for a given symbol. We might need more
3039 than one got entry per symbol. */
3040struct got_entry
3041{
3042 struct got_entry *next;
3043
3044 /* The symbol addend that we'll be placing in the GOT. */
3045 bfd_vma addend;
3046
3047 /* Unlike other ELF targets, we use separate GOT entries for the same
3048 symbol referenced from different input files. This is to support
3049 automatic multiple TOC/GOT sections, where the TOC base can vary
3050 from one input file to another.
3051
3052 Point to the BFD owning this GOT entry. */
3053 bfd *owner;
3054
3055 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3056 TLS_TPREL or TLS_DTPREL for tls entries. */
3057 char tls_type;
3058
3059 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3060 union
3061 {
3062 bfd_signed_vma refcount;
3063 bfd_vma offset;
3064 } got;
3065};
3066
3067/* The same for PLT. */
3068struct plt_entry
3069{
3070 struct plt_entry *next;
3071
3072 bfd_vma addend;
3073
3074 union
3075 {
3076 bfd_signed_vma refcount;
3077 bfd_vma offset;
3078 } plt;
3079};
3080
3081/* Of those relocs that might be copied as dynamic relocs, this macro
3082 selects those that must be copied when linking a shared library,
3083 even when the symbol is local. */
3084
3085#define MUST_BE_DYN_RELOC(RTYPE) \
3086 ((RTYPE) != R_PPC64_REL32 \
3087 && (RTYPE) != R_PPC64_REL64 \
3088 && (RTYPE) != R_PPC64_REL30)
3089
3090/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3091 copying dynamic variables from a shared lib into an app's dynbss
3092 section, and instead use a dynamic relocation to point into the
3093 shared lib. With code that gcc generates, it's vital that this be
3094 enabled; In the PowerPC64 ABI, the address of a function is actually
3095 the address of a function descriptor, which resides in the .opd
3096 section. gcc uses the descriptor directly rather than going via the
3097 GOT as some other ABI's do, which means that initialized function
3098 pointers must reference the descriptor. Thus, a function pointer
3099 initialized to the address of a function in a shared library will
3100 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3101 redefines the function descriptor symbol to point to the copy. This
3102 presents a problem as a plt entry for that function is also
3103 initialized from the function descriptor symbol and the copy reloc
3104 may not be initialized first. */
3105#define ELIMINATE_COPY_RELOCS 1
3106
3107/* Section name for stubs is the associated section name plus this
3108 string. */
3109#define STUB_SUFFIX ".stub"
3110
3111/* Linker stubs.
3112 ppc_stub_long_branch:
3113 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3114 destination, but a 24 bit branch in a stub section will reach.
3115 . b dest
3116
3117 ppc_stub_plt_branch:
3118 Similar to the above, but a 24 bit branch in the stub section won't
3119 reach its destination.
3120 . addis %r12,%r2,xxx@toc@ha
3121 . ld %r11,xxx@toc@l(%r12)
3122 . mtctr %r11
3123 . bctr
3124
3125 ppc_stub_plt_call:
3126 Used to call a function in a shared library. If it so happens that
3127 the plt entry referenced crosses a 64k boundary, then an extra
3128 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3129 xxx+16 as appropriate.
3130 . addis %r12,%r2,xxx@toc@ha
3131 . std %r2,40(%r1)
3132 . ld %r11,xxx+0@toc@l(%r12)
3133 . ld %r2,xxx+8@toc@l(%r12)
3134 . mtctr %r11
3135 . ld %r11,xxx+16@toc@l(%r12)
3136 . bctr
3137
3138 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3139 code to adjust the value and save r2 to support multiple toc sections.
3140 A ppc_stub_long_branch with an r2 offset looks like:
3141 . std %r2,40(%r1)
3142 . addis %r2,%r2,off@ha
3143 . addi %r2,%r2,off@l
3144 . b dest
3145
3146 A ppc_stub_plt_branch with an r2 offset looks like:
3147 . std %r2,40(%r1)
3148 . addis %r12,%r2,xxx@toc@ha
3149 . ld %r11,xxx@toc@l(%r12)
3150 . addis %r2,%r2,off@ha
3151 . addi %r2,%r2,off@l
3152 . mtctr %r11
3153 . bctr
3154*/
3155
3156enum ppc_stub_type {
3157 ppc_stub_none,
3158 ppc_stub_long_branch,
3159 ppc_stub_long_branch_r2off,
3160 ppc_stub_plt_branch,
3161 ppc_stub_plt_branch_r2off,
3162 ppc_stub_plt_call
3163};
3164
3165struct ppc_stub_hash_entry {
3166
3167 /* Base hash table entry structure. */
3168 struct bfd_hash_entry root;
3169
3170 enum ppc_stub_type stub_type;
3171
3172 /* The stub section. */
3173 asection *stub_sec;
3174
3175 /* Offset within stub_sec of the beginning of this stub. */
3176 bfd_vma stub_offset;
3177
3178 /* Given the symbol's value and its section we can determine its final
3179 value when building the stubs (so the stub knows where to jump. */
3180 bfd_vma target_value;
3181 asection *target_section;
3182
3183 /* The symbol table entry, if any, that this was derived from. */
3184 struct ppc_link_hash_entry *h;
3185
3186 /* And the reloc addend that this was derived from. */
3187 bfd_vma addend;
3188
3189 /* Where this stub is being called from, or, in the case of combined
3190 stub sections, the first input section in the group. */
3191 asection *id_sec;
3192};
3193
3194struct ppc_branch_hash_entry {
3195
3196 /* Base hash table entry structure. */
3197 struct bfd_hash_entry root;
3198
3199 /* Offset within branch lookup table. */
3200 unsigned int offset;
3201
3202 /* Generation marker. */
3203 unsigned int iter;
3204};
3205
3206struct ppc_link_hash_entry
3207{
3208 struct elf_link_hash_entry elf;
3209
3210 /* A pointer to the most recently used stub hash entry against this
3211 symbol. */
3212 struct ppc_stub_hash_entry *stub_cache;
3213
3214 /* Track dynamic relocs copied for this symbol. */
3215 struct ppc_dyn_relocs *dyn_relocs;
3216
3217 /* Link between function code and descriptor symbols. */
3218 struct ppc_link_hash_entry *oh;
3219
3220 /* Flag function code and descriptor symbols. */
3221 unsigned int is_func:1;
3222 unsigned int is_func_descriptor:1;
3223 unsigned int fake:1;
3224
3225 /* Whether global opd/toc sym has been adjusted or not.
3226 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3227 should be set for all globals defined in any opd/toc section. */
3228 unsigned int adjust_done:1;
3229
3230 /* Set if we twiddled this symbol to weak at some stage. */
3231 unsigned int was_undefined:1;
3232
3233 /* Contexts in which symbol is used in the GOT (or TOC).
3234 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3235 corresponding relocs are encountered during check_relocs.
3236 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3237 indicate the corresponding GOT entry type is not needed.
3238 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3239 a TPREL one. We use a separate flag rather than setting TPREL
3240 just for convenience in distinguishing the two cases. */
3241#define TLS_GD 1 /* GD reloc. */
3242#define TLS_LD 2 /* LD reloc. */
3243#define TLS_TPREL 4 /* TPREL reloc, => IE. */
3244#define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3245#define TLS_TLS 16 /* Any TLS reloc. */
3246#define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3247#define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3248 char tls_mask;
3249};
3250
3251/* ppc64 ELF linker hash table. */
3252
3253struct ppc_link_hash_table
3254{
3255 struct elf_link_hash_table elf;
3256
3257 /* The stub hash table. */
3258 struct bfd_hash_table stub_hash_table;
3259
3260 /* Another hash table for plt_branch stubs. */
3261 struct bfd_hash_table branch_hash_table;
3262
3263 /* Linker stub bfd. */
3264 bfd *stub_bfd;
3265
3266 /* Linker call-backs. */
3267 asection * (*add_stub_section) (const char *, asection *);
3268 void (*layout_sections_again) (void);
3269
3270 /* Array to keep track of which stub sections have been created, and
3271 information on stub grouping. */
3272 struct map_stub {
3273 /* This is the section to which stubs in the group will be attached. */
3274 asection *link_sec;
3275 /* The stub section. */
3276 asection *stub_sec;
3277 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3278 bfd_vma toc_off;
3279 } *stub_group;
3280
3281 /* Temp used when calculating TOC pointers. */
3282 bfd_vma toc_curr;
3283
3284 /* Highest input section id. */
3285 int top_id;
3286
3287 /* Highest output section index. */
3288 int top_index;
3289
3290 /* List of input sections for each output section. */
3291 asection **input_list;
3292
3293 /* Short-cuts to get to dynamic linker sections. */
3294 asection *got;
3295 asection *plt;
3296 asection *relplt;
3297 asection *dynbss;
3298 asection *relbss;
3299 asection *glink;
3300 asection *sfpr;
3301 asection *brlt;
3302 asection *relbrlt;
3303
3304 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3305 struct ppc_link_hash_entry *tls_get_addr;
3306 struct ppc_link_hash_entry *tls_get_addr_fd;
3307
3308 /* Statistics. */
3309 unsigned long stub_count[ppc_stub_plt_call];
3310
3311 /* Number of stubs against global syms. */
3312 unsigned long stub_globals;
3313
3314 /* Set if we should emit symbols for stubs. */
3315 unsigned int emit_stub_syms:1;
3316
3317 /* Support for multiple toc sections. */
3318 unsigned int no_multi_toc:1;
3319 unsigned int multi_toc_needed:1;
3320
3321 /* Set on error. */
3322 unsigned int stub_error:1;
3323
3324 /* Flag set when small branches are detected. Used to
3325 select suitable defaults for the stub group size. */
3326 unsigned int has_14bit_branch:1;
3327
3328 /* Temp used by ppc64_elf_check_directives. */
3329 unsigned int twiddled_syms:1;
3330
3331 /* Incremented every time we size stubs. */
3332 unsigned int stub_iteration;
3333
3334 /* Small local sym to section mapping cache. */
3335 struct sym_sec_cache sym_sec;
3336};
3337
3338/* Rename some of the generic section flags to better document how they
3339 are used here. */
3340#define has_toc_reloc has_gp_reloc
3341#define makes_toc_func_call need_finalize_relax
3342#define call_check_in_progress reloc_done
3343
3344/* Get the ppc64 ELF linker hash table from a link_info structure. */
3345
3346#define ppc_hash_table(p) \
3347 ((struct ppc_link_hash_table *) ((p)->hash))
3348
3349#define ppc_stub_hash_lookup(table, string, create, copy) \
3350 ((struct ppc_stub_hash_entry *) \
3351 bfd_hash_lookup ((table), (string), (create), (copy)))
3352
3353#define ppc_branch_hash_lookup(table, string, create, copy) \
3354 ((struct ppc_branch_hash_entry *) \
3355 bfd_hash_lookup ((table), (string), (create), (copy)))
3356
3357/* Create an entry in the stub hash table. */
3358
3359static struct bfd_hash_entry *
3360stub_hash_newfunc (struct bfd_hash_entry *entry,
3361 struct bfd_hash_table *table,
3362 const char *string)
3363{
3364 /* Allocate the structure if it has not already been allocated by a
3365 subclass. */
3366 if (entry == NULL)
3367 {
3368 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3369 if (entry == NULL)
3370 return entry;
3371 }
3372
3373 /* Call the allocation method of the superclass. */
3374 entry = bfd_hash_newfunc (entry, table, string);
3375 if (entry != NULL)
3376 {
3377 struct ppc_stub_hash_entry *eh;
3378
3379 /* Initialize the local fields. */
3380 eh = (struct ppc_stub_hash_entry *) entry;
3381 eh->stub_type = ppc_stub_none;
3382 eh->stub_sec = NULL;
3383 eh->stub_offset = 0;
3384 eh->target_value = 0;
3385 eh->target_section = NULL;
3386 eh->h = NULL;
3387 eh->id_sec = NULL;
3388 }
3389
3390 return entry;
3391}
3392
3393/* Create an entry in the branch hash table. */
3394
3395static struct bfd_hash_entry *
3396branch_hash_newfunc (struct bfd_hash_entry *entry,
3397 struct bfd_hash_table *table,
3398 const char *string)
3399{
3400 /* Allocate the structure if it has not already been allocated by a
3401 subclass. */
3402 if (entry == NULL)
3403 {
3404 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3405 if (entry == NULL)
3406 return entry;
3407 }
3408
3409 /* Call the allocation method of the superclass. */
3410 entry = bfd_hash_newfunc (entry, table, string);
3411 if (entry != NULL)
3412 {
3413 struct ppc_branch_hash_entry *eh;
3414
3415 /* Initialize the local fields. */
3416 eh = (struct ppc_branch_hash_entry *) entry;
3417 eh->offset = 0;
3418 eh->iter = 0;
3419 }
3420
3421 return entry;
3422}
3423
3424/* Create an entry in a ppc64 ELF linker hash table. */
3425
3426static struct bfd_hash_entry *
3427link_hash_newfunc (struct bfd_hash_entry *entry,
3428 struct bfd_hash_table *table,
3429 const char *string)
3430{
3431 /* Allocate the structure if it has not already been allocated by a
3432 subclass. */
3433 if (entry == NULL)
3434 {
3435 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3436 if (entry == NULL)
3437 return entry;
3438 }
3439
3440 /* Call the allocation method of the superclass. */
3441 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3442 if (entry != NULL)
3443 {
3444 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3445
3446 memset (&eh->stub_cache, 0,
3447 (sizeof (struct ppc_link_hash_entry)
3448 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3449 }
3450
3451 return entry;
3452}
3453
3454/* Create a ppc64 ELF linker hash table. */
3455
3456static struct bfd_link_hash_table *
3457ppc64_elf_link_hash_table_create (bfd *abfd)
3458{
3459 struct ppc_link_hash_table *htab;
3460 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3461
3462 htab = bfd_zmalloc (amt);
3463 if (htab == NULL)
3464 return NULL;
3465
3466 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3467 {
3468 free (htab);
3469 return NULL;
3470 }
3471
3472 /* Init the stub hash table too. */
3473 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3474 return NULL;
3475
3476 /* And the branch hash table. */
3477 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3478 return NULL;
3479
3480 /* Initializing two fields of the union is just cosmetic. We really
3481 only care about glist, but when compiled on a 32-bit host the
3482 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3483 debugger inspection of these fields look nicer. */
3484 htab->elf.init_got_refcount.refcount = 0;
3485 htab->elf.init_got_refcount.glist = NULL;
3486 htab->elf.init_plt_refcount.refcount = 0;
3487 htab->elf.init_plt_refcount.glist = NULL;
3488 htab->elf.init_got_offset.offset = 0;
3489 htab->elf.init_got_offset.glist = NULL;
3490 htab->elf.init_plt_offset.offset = 0;
3491 htab->elf.init_plt_offset.glist = NULL;
3492
3493 return &htab->elf.root;
3494}
3495
3496/* Free the derived linker hash table. */
3497
3498static void
3499ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3500{
3501 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3502
3503 bfd_hash_table_free (&ret->stub_hash_table);
3504 bfd_hash_table_free (&ret->branch_hash_table);
3505 _bfd_generic_link_hash_table_free (hash);
3506}
3507
3508/* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3509
3510void
3511ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3512{
3513 struct ppc_link_hash_table *htab;
3514
3515 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3516
3517/* Always hook our dynamic sections into the first bfd, which is the
3518 linker created stub bfd. This ensures that the GOT header is at
3519 the start of the output TOC section. */
3520 htab = ppc_hash_table (info);
3521 htab->stub_bfd = abfd;
3522 htab->elf.dynobj = abfd;
3523}
3524
3525/* Build a name for an entry in the stub hash table. */
3526
3527static char *
3528ppc_stub_name (const asection *input_section,
3529 const asection *sym_sec,
3530 const struct ppc_link_hash_entry *h,
3531 const Elf_Internal_Rela *rel)
3532{
3533 char *stub_name;
3534 bfd_size_type len;
3535
3536 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3537 offsets from a sym as a branch target? In fact, we could
3538 probably assume the addend is always zero. */
3539 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3540
3541 if (h)
3542 {
3543 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3544 stub_name = bfd_malloc (len);
3545 if (stub_name == NULL)
3546 return stub_name;
3547
3548 sprintf (stub_name, "%08x.%s+%x",
3549 input_section->id & 0xffffffff,
3550 h->elf.root.root.string,
3551 (int) rel->r_addend & 0xffffffff);
3552 }
3553 else
3554 {
3555 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3556 stub_name = bfd_malloc (len);
3557 if (stub_name == NULL)
3558 return stub_name;
3559
3560 sprintf (stub_name, "%08x.%x:%x+%x",
3561 input_section->id & 0xffffffff,
3562 sym_sec->id & 0xffffffff,
3563 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3564 (int) rel->r_addend & 0xffffffff);
3565 }
3566 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3567 stub_name[len - 2] = 0;
3568 return stub_name;
3569}
3570
3571/* Look up an entry in the stub hash. Stub entries are cached because
3572 creating the stub name takes a bit of time. */
3573
3574static struct ppc_stub_hash_entry *
3575ppc_get_stub_entry (const asection *input_section,
3576 const asection *sym_sec,
3577 struct ppc_link_hash_entry *h,
3578 const Elf_Internal_Rela *rel,
3579 struct ppc_link_hash_table *htab)
3580{
3581 struct ppc_stub_hash_entry *stub_entry;
3582 const asection *id_sec;
3583
3584 /* If this input section is part of a group of sections sharing one
3585 stub section, then use the id of the first section in the group.
3586 Stub names need to include a section id, as there may well be
3587 more than one stub used to reach say, printf, and we need to
3588 distinguish between them. */
3589 id_sec = htab->stub_group[input_section->id].link_sec;
3590
3591 if (h != NULL && h->stub_cache != NULL
3592 && h->stub_cache->h == h
3593 && h->stub_cache->id_sec == id_sec)
3594 {
3595 stub_entry = h->stub_cache;
3596 }
3597 else
3598 {
3599 char *stub_name;
3600
3601 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3602 if (stub_name == NULL)
3603 return NULL;
3604
3605 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3606 stub_name, FALSE, FALSE);
3607 if (h != NULL)
3608 h->stub_cache = stub_entry;
3609
3610 free (stub_name);
3611 }
3612
3613 return stub_entry;
3614}
3615
3616/* Add a new stub entry to the stub hash. Not all fields of the new
3617 stub entry are initialised. */
3618
3619static struct ppc_stub_hash_entry *
3620ppc_add_stub (const char *stub_name,
3621 asection *section,
3622 struct ppc_link_hash_table *htab)
3623{
3624 asection *link_sec;
3625 asection *stub_sec;
3626 struct ppc_stub_hash_entry *stub_entry;
3627
3628 link_sec = htab->stub_group[section->id].link_sec;
3629 stub_sec = htab->stub_group[section->id].stub_sec;
3630 if (stub_sec == NULL)
3631 {
3632 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3633 if (stub_sec == NULL)
3634 {
3635 size_t namelen;
3636 bfd_size_type len;
3637 char *s_name;
3638
3639 namelen = strlen (link_sec->name);
3640 len = namelen + sizeof (STUB_SUFFIX);
3641 s_name = bfd_alloc (htab->stub_bfd, len);
3642 if (s_name == NULL)
3643 return NULL;
3644
3645 memcpy (s_name, link_sec->name, namelen);
3646 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3647 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3648 if (stub_sec == NULL)
3649 return NULL;
3650 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3651 }
3652 htab->stub_group[section->id].stub_sec = stub_sec;
3653 }
3654
3655 /* Enter this entry into the linker stub hash table. */
3656 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3657 TRUE, FALSE);
3658 if (stub_entry == NULL)
3659 {
3660 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3661 section->owner, stub_name);
3662 return NULL;
3663 }
3664
3665 stub_entry->stub_sec = stub_sec;
3666 stub_entry->stub_offset = 0;
3667 stub_entry->id_sec = link_sec;
3668 return stub_entry;
3669}
3670
3671/* Create sections for linker generated code. */
3672
3673static bfd_boolean
3674create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3675{
3676 struct ppc_link_hash_table *htab;
3677 flagword flags;
3678
3679 htab = ppc_hash_table (info);
3680
3681 /* Create .sfpr for code to save and restore fp regs. */
3682 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3683 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3684 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3685 flags);
3686 if (htab->sfpr == NULL
3687 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3688 return FALSE;
3689
3690 /* Create .glink for lazy dynamic linking support. */
3691 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3692 flags);
3693 if (htab->glink == NULL
3694 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3695 return FALSE;
3696
3697 /* Create branch lookup table for plt_branch stubs. */
3698 if (info->shared)
3699 {
3700 flags = (SEC_ALLOC | SEC_LOAD
3701 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3702 htab->brlt
3703 = bfd_make_section_anyway_with_flags (dynobj, ".data.rel.ro.brlt",
3704 flags);
3705 }
3706 else
3707 {
3708 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3709 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3710 htab->brlt
3711 = bfd_make_section_anyway_with_flags (dynobj, ".rodata.brlt", flags);
3712 }
3713
3714 if (htab->brlt == NULL
3715 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3716 return FALSE;
3717
3718 if (info->shared)
3719 {
3720 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3721 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3722 htab->relbrlt
3723 = bfd_make_section_anyway_with_flags (dynobj, ".rela.data.rel.ro.brlt",
3724 flags);
3725 }
3726 else if (info->emitrelocations)
3727 {
3728 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3729 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3730 htab->relbrlt
3731 = bfd_make_section_anyway_with_flags (dynobj, ".rela.rodata.brlt",
3732 flags);
3733 }
3734 else
3735 return TRUE;
3736
3737 if (!htab->relbrlt
3738 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3739 return FALSE;
3740
3741 return TRUE;
3742}
3743
3744/* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3745 not already done. */
3746
3747static bfd_boolean
3748create_got_section (bfd *abfd, struct bfd_link_info *info)
3749{
3750 asection *got, *relgot;
3751 flagword flags;
3752 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3753
3754 if (!htab->got)
3755 {
3756 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3757 return FALSE;
3758
3759 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3760 if (!htab->got)
3761 abort ();
3762 }
3763
3764 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3765 | SEC_LINKER_CREATED);
3766
3767 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3768 if (!got
3769 || !bfd_set_section_alignment (abfd, got, 3))
3770 return FALSE;
3771
3772 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3773 flags | SEC_READONLY);
3774 if (!relgot
3775 || ! bfd_set_section_alignment (abfd, relgot, 3))
3776 return FALSE;
3777
3778 ppc64_elf_tdata (abfd)->got = got;
3779 ppc64_elf_tdata (abfd)->relgot = relgot;
3780 return TRUE;
3781}
3782
3783/* Create the dynamic sections, and set up shortcuts. */
3784
3785static bfd_boolean
3786ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3787{
3788 struct ppc_link_hash_table *htab;
3789
3790 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3791 return FALSE;
3792
3793 htab = ppc_hash_table (info);
3794 if (!htab->got)
3795 htab->got = bfd_get_section_by_name (dynobj, ".got");
3796 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3797 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3798 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3799 if (!info->shared)
3800 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3801
3802 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3803 || (!info->shared && !htab->relbss))
3804 abort ();
3805
3806 return TRUE;
3807}
3808
3809/* Merge PLT info on FROM with that on TO. */
3810
3811static void
3812move_plt_plist (struct ppc_link_hash_entry *from,
3813 struct ppc_link_hash_entry *to)
3814{
3815 if (from->elf.plt.plist != NULL)
3816 {
3817 if (to->elf.plt.plist != NULL)
3818 {
3819 struct plt_entry **entp;
3820 struct plt_entry *ent;
3821
3822 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3823 {
3824 struct plt_entry *dent;
3825
3826 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3827 if (dent->addend == ent->addend)
3828 {
3829 dent->plt.refcount += ent->plt.refcount;
3830 *entp = ent->next;
3831 break;
3832 }
3833 if (dent == NULL)
3834 entp = &ent->next;
3835 }
3836 *entp = to->elf.plt.plist;
3837 }
3838
3839 to->elf.plt.plist = from->elf.plt.plist;
3840 from->elf.plt.plist = NULL;
3841 }
3842}
3843
3844/* Copy the extra info we tack onto an elf_link_hash_entry. */
3845
3846static void
3847ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3848 struct elf_link_hash_entry *dir,
3849 struct elf_link_hash_entry *ind)
3850{
3851 struct ppc_link_hash_entry *edir, *eind;
3852
3853 edir = (struct ppc_link_hash_entry *) dir;
3854 eind = (struct ppc_link_hash_entry *) ind;
3855
3856 /* Copy over any dynamic relocs we may have on the indirect sym. */
3857 if (eind->dyn_relocs != NULL)
3858 {
3859 if (edir->dyn_relocs != NULL)
3860 {
3861 struct ppc_dyn_relocs **pp;
3862 struct ppc_dyn_relocs *p;
3863
3864 /* Add reloc counts against the indirect sym to the direct sym
3865 list. Merge any entries against the same section. */
3866 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3867 {
3868 struct ppc_dyn_relocs *q;
3869
3870 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3871 if (q->sec == p->sec)
3872 {
3873 q->pc_count += p->pc_count;
3874 q->count += p->count;
3875 *pp = p->next;
3876 break;
3877 }
3878 if (q == NULL)
3879 pp = &p->next;
3880 }
3881 *pp = edir->dyn_relocs;
3882 }
3883
3884 edir->dyn_relocs = eind->dyn_relocs;
3885 eind->dyn_relocs = NULL;
3886 }
3887
3888 edir->is_func |= eind->is_func;
3889 edir->is_func_descriptor |= eind->is_func_descriptor;
3890 edir->tls_mask |= eind->tls_mask;
3891
3892 /* If called to transfer flags for a weakdef during processing
3893 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3894 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3895 if (!(ELIMINATE_COPY_RELOCS
3896 && eind->elf.root.type != bfd_link_hash_indirect
3897 && edir->elf.dynamic_adjusted))
3898 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3899
3900 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3901 edir->elf.ref_regular |= eind->elf.ref_regular;
3902 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3903 edir->elf.needs_plt |= eind->elf.needs_plt;
3904
3905 /* If we were called to copy over info for a weak sym, that's all. */
3906 if (eind->elf.root.type != bfd_link_hash_indirect)
3907 return;
3908
3909 /* Copy over got entries that we may have already seen to the
3910 symbol which just became indirect. */
3911 if (eind->elf.got.glist != NULL)
3912 {
3913 if (edir->elf.got.glist != NULL)
3914 {
3915 struct got_entry **entp;
3916 struct got_entry *ent;
3917
3918 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3919 {
3920 struct got_entry *dent;
3921
3922 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3923 if (dent->addend == ent->addend
3924 && dent->owner == ent->owner
3925 && dent->tls_type == ent->tls_type)
3926 {
3927 dent->got.refcount += ent->got.refcount;
3928 *entp = ent->next;
3929 break;
3930 }
3931 if (dent == NULL)
3932 entp = &ent->next;
3933 }
3934 *entp = edir->elf.got.glist;
3935 }
3936
3937 edir->elf.got.glist = eind->elf.got.glist;
3938 eind->elf.got.glist = NULL;
3939 }
3940
3941 /* And plt entries. */
3942 move_plt_plist (eind, edir);
3943
3944 if (eind->elf.dynindx != -1)
3945 {
3946 if (edir->elf.dynindx != -1)
3947 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3948 edir->elf.dynstr_index);
3949 edir->elf.dynindx = eind->elf.dynindx;
3950 edir->elf.dynstr_index = eind->elf.dynstr_index;
3951 eind->elf.dynindx = -1;
3952 eind->elf.dynstr_index = 0;
3953 }
3954}
3955
3956/* Find the function descriptor hash entry from the given function code
3957 hash entry FH. Link the entries via their OH fields. */
3958
3959static struct ppc_link_hash_entry *
3960get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3961{
3962 struct ppc_link_hash_entry *fdh = fh->oh;
3963
3964 if (fdh == NULL)
3965 {
3966 const char *fd_name = fh->elf.root.root.string + 1;
3967
3968 fdh = (struct ppc_link_hash_entry *)
3969 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3970 if (fdh != NULL)
3971 {
3972 fdh->is_func_descriptor = 1;
3973 fdh->oh = fh;
3974 fh->is_func = 1;
3975 fh->oh = fdh;
3976 }
3977 }
3978
3979 return fdh;
3980}
3981
3982/* Make a fake function descriptor sym for the code sym FH. */
3983
3984static struct ppc_link_hash_entry *
3985make_fdh (struct bfd_link_info *info,
3986 struct ppc_link_hash_entry *fh)
3987{
3988 bfd *abfd;
3989 asymbol *newsym;
3990 struct bfd_link_hash_entry *bh;
3991 struct ppc_link_hash_entry *fdh;
3992
3993 abfd = fh->elf.root.u.undef.abfd;
3994 newsym = bfd_make_empty_symbol (abfd);
3995 newsym->name = fh->elf.root.root.string + 1;
3996 newsym->section = bfd_und_section_ptr;
3997 newsym->value = 0;
3998 newsym->flags = BSF_WEAK;
3999
4000 bh = NULL;
4001 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4002 newsym->flags, newsym->section,
4003 newsym->value, NULL, FALSE, FALSE,
4004 &bh))
4005 return NULL;
4006
4007 fdh = (struct ppc_link_hash_entry *) bh;
4008 fdh->elf.non_elf = 0;
4009 fdh->fake = 1;
4010 fdh->is_func_descriptor = 1;
4011 fdh->oh = fh;
4012 fh->is_func = 1;
4013 fh->oh = fdh;
4014 return fdh;
4015}
4016
4017/* Hacks to support old ABI code.
4018 When making function calls, old ABI code references function entry
4019 points (dot symbols), while new ABI code references the function
4020 descriptor symbol. We need to make any combination of reference and
4021 definition work together, without breaking archive linking.
4022
4023 For a defined function "foo" and an undefined call to "bar":
4024 An old object defines "foo" and ".foo", references ".bar" (possibly
4025 "bar" too).
4026 A new object defines "foo" and references "bar".
4027
4028 A new object thus has no problem with its undefined symbols being
4029 satisfied by definitions in an old object. On the other hand, the
4030 old object won't have ".bar" satisfied by a new object. */
4031
4032/* Fix function descriptor symbols defined in .opd sections to be
4033 function type. */
4034
4035static bfd_boolean
4036ppc64_elf_add_symbol_hook (bfd *ibfd,
4037 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4038 Elf_Internal_Sym *isym,
4039 const char **name,
4040 flagword *flags ATTRIBUTE_UNUSED,
4041 asection **sec,
4042 bfd_vma *value ATTRIBUTE_UNUSED)
4043{
4044 if (*sec != NULL
4045 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4046 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4047
4048 if ((*name)[0] == '.'
4049 && ELF_ST_BIND (isym->st_info) == STB_GLOBAL
4050 && ELF_ST_TYPE (isym->st_info) < STT_SECTION
4051 && is_ppc64_elf_target (ibfd->xvec))
4052 ppc64_elf_tdata (ibfd)->u.has_dotsym = 1;
4053
4054 return TRUE;
4055}
4056
4057/* This function makes an old ABI object reference to ".bar" cause the
4058 inclusion of a new ABI object archive that defines "bar".
4059 NAME is a symbol defined in an archive. Return a symbol in the hash
4060 table that might be satisfied by the archive symbols. */
4061
4062static struct elf_link_hash_entry *
4063ppc64_elf_archive_symbol_lookup (bfd *abfd,
4064 struct bfd_link_info *info,
4065 const char *name)
4066{
4067 struct elf_link_hash_entry *h;
4068 char *dot_name;
4069 size_t len;
4070
4071 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4072 if (h != NULL
4073 /* Don't return this sym if it is a fake function descriptor
4074 created by add_symbol_adjust. */
4075 && !(h->root.type == bfd_link_hash_undefweak
4076 && ((struct ppc_link_hash_entry *) h)->fake))
4077 return h;
4078
4079 if (name[0] == '.')
4080 return h;
4081
4082 len = strlen (name);
4083 dot_name = bfd_alloc (abfd, len + 2);
4084 if (dot_name == NULL)
4085 return (struct elf_link_hash_entry *) 0 - 1;
4086 dot_name[0] = '.';
4087 memcpy (dot_name + 1, name, len + 1);
4088 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4089 bfd_release (abfd, dot_name);
4090 return h;
4091}
4092
4093/* This function satisfies all old ABI object references to ".bar" if a
4094 new ABI object defines "bar". Well, at least, undefined dot symbols
4095 are made weak. This stops later archive searches from including an
4096 object if we already have a function descriptor definition. It also
4097 prevents the linker complaining about undefined symbols.
4098 We also check and correct mismatched symbol visibility here. The
4099 most restrictive visibility of the function descriptor and the
4100 function entry symbol is used. */
4101
4102struct add_symbol_adjust_data
4103{
4104 struct bfd_link_info *info;
4105 bfd_boolean ok;
4106};
4107
4108static bfd_boolean
4109add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4110{
4111 struct add_symbol_adjust_data *data;
4112 struct ppc_link_hash_table *htab;
4113 struct ppc_link_hash_entry *eh;
4114 struct ppc_link_hash_entry *fdh;
4115
4116 if (h->root.type == bfd_link_hash_indirect)
4117 return TRUE;
4118
4119 if (h->root.type == bfd_link_hash_warning)
4120 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4121
4122 if (h->root.root.string[0] != '.')
4123 return TRUE;
4124
4125 data = inf;
4126 htab = ppc_hash_table (data->info);
4127 eh = (struct ppc_link_hash_entry *) h;
4128 fdh = get_fdh (eh, htab);
4129 if (fdh == NULL
4130 && !data->info->relocatable
4131 && (eh->elf.root.type == bfd_link_hash_undefined
4132 || eh->elf.root.type == bfd_link_hash_undefweak)
4133 && eh->elf.ref_regular)
4134 {
4135 /* Make an undefweak function descriptor sym, which is enough to
4136 pull in an --as-needed shared lib, but won't cause link
4137 errors. Archives are handled elsewhere. */
4138 fdh = make_fdh (data->info, eh);
4139 if (fdh == NULL)
4140 data->ok = FALSE;
4141 else
4142 fdh->elf.ref_regular = 1;
4143 }
4144 else if (fdh != NULL)
4145 {
4146 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4147 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4148 if (entry_vis < descr_vis)
4149 fdh->elf.other += entry_vis - descr_vis;
4150 else if (entry_vis > descr_vis)
4151 eh->elf.other += descr_vis - entry_vis;
4152
4153 if ((fdh->elf.root.type == bfd_link_hash_defined
4154 || fdh->elf.root.type == bfd_link_hash_defweak)
4155 && eh->elf.root.type == bfd_link_hash_undefined)
4156 {
4157 eh->elf.root.type = bfd_link_hash_undefweak;
4158 eh->was_undefined = 1;
4159 htab->twiddled_syms = 1;
4160 }
4161 }
4162
4163 return TRUE;
4164}
4165
4166static bfd_boolean
4167ppc64_elf_check_directives (bfd *abfd, struct bfd_link_info *info)
4168{
4169 struct ppc_link_hash_table *htab;
4170 struct add_symbol_adjust_data data;
4171
4172 if (!is_ppc64_elf_target (abfd->xvec))
4173 return TRUE;
4174
4175 if (!ppc64_elf_tdata (abfd)->u.has_dotsym)
4176 return TRUE;
4177 ppc64_elf_tdata (abfd)->u.deleted_section = NULL;
4178
4179 htab = ppc_hash_table (info);
4180 if (!is_ppc64_elf_target (htab->elf.root.creator))
4181 return TRUE;
4182
4183 data.info = info;
4184 data.ok = TRUE;
4185 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4186
4187 /* We need to fix the undefs list for any syms we have twiddled to
4188 undef_weak. */
4189 if (htab->twiddled_syms)
4190 {
4191 bfd_link_repair_undef_list (&htab->elf.root);
4192 htab->twiddled_syms = 0;
4193 }
4194 return data.ok;
4195}
4196
4197static bfd_boolean
4198update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4199 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4200{
4201 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4202 char *local_got_tls_masks;
4203
4204 if (local_got_ents == NULL)
4205 {
4206 bfd_size_type size = symtab_hdr->sh_info;
4207
4208 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4209 local_got_ents = bfd_zalloc (abfd, size);
4210 if (local_got_ents == NULL)
4211 return FALSE;
4212 elf_local_got_ents (abfd) = local_got_ents;
4213 }
4214
4215 if ((tls_type & TLS_EXPLICIT) == 0)
4216 {
4217 struct got_entry *ent;
4218
4219 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4220 if (ent->addend == r_addend
4221 && ent->owner == abfd
4222 && ent->tls_type == tls_type)
4223 break;
4224 if (ent == NULL)
4225 {
4226 bfd_size_type amt = sizeof (*ent);
4227 ent = bfd_alloc (abfd, amt);
4228 if (ent == NULL)
4229 return FALSE;
4230 ent->next = local_got_ents[r_symndx];
4231 ent->addend = r_addend;
4232 ent->owner = abfd;
4233 ent->tls_type = tls_type;
4234 ent->got.refcount = 0;
4235 local_got_ents[r_symndx] = ent;
4236 }
4237 ent->got.refcount += 1;
4238 }
4239
4240 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4241 local_got_tls_masks[r_symndx] |= tls_type;
4242 return TRUE;
4243}
4244
4245static bfd_boolean
4246update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4247{
4248 struct plt_entry *ent;
4249
4250 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4251 if (ent->addend == addend)
4252 break;
4253 if (ent == NULL)
4254 {
4255 bfd_size_type amt = sizeof (*ent);
4256 ent = bfd_alloc (abfd, amt);
4257 if (ent == NULL)
4258 return FALSE;
4259 ent->next = eh->elf.plt.plist;
4260 ent->addend = addend;
4261 ent->plt.refcount = 0;
4262 eh->elf.plt.plist = ent;
4263 }
4264 ent->plt.refcount += 1;
4265 eh->elf.needs_plt = 1;
4266 if (eh->elf.root.root.string[0] == '.'
4267 && eh->elf.root.root.string[1] != '\0')
4268 eh->is_func = 1;
4269 return TRUE;
4270}
4271
4272/* Look through the relocs for a section during the first phase, and
4273 calculate needed space in the global offset table, procedure
4274 linkage table, and dynamic reloc sections. */
4275
4276static bfd_boolean
4277ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4278 asection *sec, const Elf_Internal_Rela *relocs)
4279{
4280 struct ppc_link_hash_table *htab;
4281 Elf_Internal_Shdr *symtab_hdr;
4282 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4283 const Elf_Internal_Rela *rel;
4284 const Elf_Internal_Rela *rel_end;
4285 asection *sreloc;
4286 asection **opd_sym_map;
4287
4288 if (info->relocatable)
4289 return TRUE;
4290
4291 /* Don't do anything special with non-loaded, non-alloced sections.
4292 In particular, any relocs in such sections should not affect GOT
4293 and PLT reference counting (ie. we don't allow them to create GOT
4294 or PLT entries), there's no possibility or desire to optimize TLS
4295 relocs, and there's not much point in propagating relocs to shared
4296 libs that the dynamic linker won't relocate. */
4297 if ((sec->flags & SEC_ALLOC) == 0)
4298 return TRUE;
4299
4300 htab = ppc_hash_table (info);
4301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4302
4303 sym_hashes = elf_sym_hashes (abfd);
4304 sym_hashes_end = (sym_hashes
4305 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4306 - symtab_hdr->sh_info);
4307
4308 sreloc = NULL;
4309 opd_sym_map = NULL;
4310 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4311 {
4312 /* Garbage collection needs some extra help with .opd sections.
4313 We don't want to necessarily keep everything referenced by
4314 relocs in .opd, as that would keep all functions. Instead,
4315 if we reference an .opd symbol (a function descriptor), we
4316 want to keep the function code symbol's section. This is
4317 easy for global symbols, but for local syms we need to keep
4318 information about the associated function section. Later, if
4319 edit_opd deletes entries, we'll use this array to adjust
4320 local syms in .opd. */
4321 union opd_info {
4322 asection *func_section;
4323 long entry_adjust;
4324 };
4325 bfd_size_type amt;
4326
4327 amt = sec->size * sizeof (union opd_info) / 8;
4328 opd_sym_map = bfd_zalloc (abfd, amt);
4329 if (opd_sym_map == NULL)
4330 return FALSE;
4331 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4332 }
4333
4334 if (htab->sfpr == NULL
4335 && !create_linkage_sections (htab->elf.dynobj, info))
4336 return FALSE;
4337
4338 rel_end = relocs + sec->reloc_count;
4339 for (rel = relocs; rel < rel_end; rel++)
4340 {
4341 unsigned long r_symndx;
4342 struct elf_link_hash_entry *h;
4343 enum elf_ppc64_reloc_type r_type;
4344 int tls_type = 0;
4345
4346 r_symndx = ELF64_R_SYM (rel->r_info);
4347 if (r_symndx < symtab_hdr->sh_info)
4348 h = NULL;
4349 else
4350 {
4351 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4352 while (h->root.type == bfd_link_hash_indirect
4353 || h->root.type == bfd_link_hash_warning)
4354 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4355 }
4356
4357 r_type = ELF64_R_TYPE (rel->r_info);
4358 switch (r_type)
4359 {
4360 case R_PPC64_GOT_TLSLD16:
4361 case R_PPC64_GOT_TLSLD16_LO:
4362 case R_PPC64_GOT_TLSLD16_HI:
4363 case R_PPC64_GOT_TLSLD16_HA:
4364 ppc64_tlsld_got (abfd)->refcount += 1;
4365 tls_type = TLS_TLS | TLS_LD;
4366 goto dogottls;
4367
4368 case R_PPC64_GOT_TLSGD16:
4369 case R_PPC64_GOT_TLSGD16_LO:
4370 case R_PPC64_GOT_TLSGD16_HI:
4371 case R_PPC64_GOT_TLSGD16_HA:
4372 tls_type = TLS_TLS | TLS_GD;
4373 goto dogottls;
4374
4375 case R_PPC64_GOT_TPREL16_DS:
4376 case R_PPC64_GOT_TPREL16_LO_DS:
4377 case R_PPC64_GOT_TPREL16_HI:
4378 case R_PPC64_GOT_TPREL16_HA:
4379 if (info->shared)
4380 info->flags |= DF_STATIC_TLS;
4381 tls_type = TLS_TLS | TLS_TPREL;
4382 goto dogottls;
4383
4384 case R_PPC64_GOT_DTPREL16_DS:
4385 case R_PPC64_GOT_DTPREL16_LO_DS:
4386 case R_PPC64_GOT_DTPREL16_HI:
4387 case R_PPC64_GOT_DTPREL16_HA:
4388 tls_type = TLS_TLS | TLS_DTPREL;
4389 dogottls:
4390 sec->has_tls_reloc = 1;
4391 /* Fall thru */
4392
4393 case R_PPC64_GOT16:
4394 case R_PPC64_GOT16_DS:
4395 case R_PPC64_GOT16_HA:
4396 case R_PPC64_GOT16_HI:
4397 case R_PPC64_GOT16_LO:
4398 case R_PPC64_GOT16_LO_DS:
4399 /* This symbol requires a global offset table entry. */
4400 sec->has_toc_reloc = 1;
4401 if (ppc64_elf_tdata (abfd)->got == NULL
4402 && !create_got_section (abfd, info))
4403 return FALSE;
4404
4405 if (h != NULL)
4406 {
4407 struct ppc_link_hash_entry *eh;
4408 struct got_entry *ent;
4409
4410 eh = (struct ppc_link_hash_entry *) h;
4411 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4412 if (ent->addend == rel->r_addend
4413 && ent->owner == abfd
4414 && ent->tls_type == tls_type)
4415 break;
4416 if (ent == NULL)
4417 {
4418 bfd_size_type amt = sizeof (*ent);
4419 ent = bfd_alloc (abfd, amt);
4420 if (ent == NULL)
4421 return FALSE;
4422 ent->next = eh->elf.got.glist;
4423 ent->addend = rel->r_addend;
4424 ent->owner = abfd;
4425 ent->tls_type = tls_type;
4426 ent->got.refcount = 0;
4427 eh->elf.got.glist = ent;
4428 }
4429 ent->got.refcount += 1;
4430 eh->tls_mask |= tls_type;
4431 }
4432 else
4433 /* This is a global offset table entry for a local symbol. */
4434 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4435 rel->r_addend, tls_type))
4436 return FALSE;
4437 break;
4438
4439 case R_PPC64_PLT16_HA:
4440 case R_PPC64_PLT16_HI:
4441 case R_PPC64_PLT16_LO:
4442 case R_PPC64_PLT32:
4443 case R_PPC64_PLT64:
4444 /* This symbol requires a procedure linkage table entry. We
4445 actually build the entry in adjust_dynamic_symbol,
4446 because this might be a case of linking PIC code without
4447 linking in any dynamic objects, in which case we don't
4448 need to generate a procedure linkage table after all. */
4449 if (h == NULL)
4450 {
4451 /* It does not make sense to have a procedure linkage
4452 table entry for a local symbol. */
4453 bfd_set_error (bfd_error_bad_value);
4454 return FALSE;
4455 }
4456 else
4457 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4458 rel->r_addend))
4459 return FALSE;
4460 break;
4461
4462 /* The following relocations don't need to propagate the
4463 relocation if linking a shared object since they are
4464 section relative. */
4465 case R_PPC64_SECTOFF:
4466 case R_PPC64_SECTOFF_LO:
4467 case R_PPC64_SECTOFF_HI:
4468 case R_PPC64_SECTOFF_HA:
4469 case R_PPC64_SECTOFF_DS:
4470 case R_PPC64_SECTOFF_LO_DS:
4471 case R_PPC64_DTPREL16:
4472 case R_PPC64_DTPREL16_LO:
4473 case R_PPC64_DTPREL16_HI:
4474 case R_PPC64_DTPREL16_HA:
4475 case R_PPC64_DTPREL16_DS:
4476 case R_PPC64_DTPREL16_LO_DS:
4477 case R_PPC64_DTPREL16_HIGHER:
4478 case R_PPC64_DTPREL16_HIGHERA:
4479 case R_PPC64_DTPREL16_HIGHEST:
4480 case R_PPC64_DTPREL16_HIGHESTA:
4481 break;
4482
4483 /* Nor do these. */
4484 case R_PPC64_TOC16:
4485 case R_PPC64_TOC16_LO:
4486 case R_PPC64_TOC16_HI:
4487 case R_PPC64_TOC16_HA:
4488 case R_PPC64_TOC16_DS:
4489 case R_PPC64_TOC16_LO_DS:
4490 sec->has_toc_reloc = 1;
4491 break;
4492
4493 /* This relocation describes the C++ object vtable hierarchy.
4494 Reconstruct it for later use during GC. */
4495 case R_PPC64_GNU_VTINHERIT:
4496 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4497 return FALSE;
4498 break;
4499
4500 /* This relocation describes which C++ vtable entries are actually
4501 used. Record for later use during GC. */
4502 case R_PPC64_GNU_VTENTRY:
4503 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4504 return FALSE;
4505 break;
4506
4507 case R_PPC64_REL14:
4508 case R_PPC64_REL14_BRTAKEN:
4509 case R_PPC64_REL14_BRNTAKEN:
4510 htab->has_14bit_branch = 1;
4511 /* Fall through. */
4512
4513 case R_PPC64_REL24:
4514 if (h != NULL)
4515 {
4516 /* We may need a .plt entry if the function this reloc
4517 refers to is in a shared lib. */
4518 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4519 rel->r_addend))
4520 return FALSE;
4521 if (h == &htab->tls_get_addr->elf
4522 || h == &htab->tls_get_addr_fd->elf)
4523 sec->has_tls_reloc = 1;
4524 else if (htab->tls_get_addr == NULL
4525 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4526 && (h->root.root.string[15] == 0
4527 || h->root.root.string[15] == '@'))
4528 {
4529 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4530 sec->has_tls_reloc = 1;
4531 }
4532 else if (htab->tls_get_addr_fd == NULL
4533 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4534 && (h->root.root.string[14] == 0
4535 || h->root.root.string[14] == '@'))
4536 {
4537 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4538 sec->has_tls_reloc = 1;
4539 }
4540 }
4541 break;
4542
4543 case R_PPC64_TPREL64:
4544 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4545 if (info->shared)
4546 info->flags |= DF_STATIC_TLS;
4547 goto dotlstoc;
4548
4549 case R_PPC64_DTPMOD64:
4550 if (rel + 1 < rel_end
4551 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4552 && rel[1].r_offset == rel->r_offset + 8)
4553 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4554 else
4555 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4556 goto dotlstoc;
4557
4558 case R_PPC64_DTPREL64:
4559 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4560 if (rel != relocs
4561 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4562 && rel[-1].r_offset == rel->r_offset - 8)
4563 /* This is the second reloc of a dtpmod, dtprel pair.
4564 Don't mark with TLS_DTPREL. */
4565 goto dodyn;
4566
4567 dotlstoc:
4568 sec->has_tls_reloc = 1;
4569 if (h != NULL)
4570 {
4571 struct ppc_link_hash_entry *eh;
4572 eh = (struct ppc_link_hash_entry *) h;
4573 eh->tls_mask |= tls_type;
4574 }
4575 else
4576 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4577 rel->r_addend, tls_type))
4578 return FALSE;
4579
4580 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4581 {
4582 /* One extra to simplify get_tls_mask. */
4583 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4584 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4585 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4586 return FALSE;
4587 }
4588 BFD_ASSERT (rel->r_offset % 8 == 0);
4589 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4590
4591 /* Mark the second slot of a GD or LD entry.
4592 -1 to indicate GD and -2 to indicate LD. */
4593 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4594 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4595 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4596 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4597 goto dodyn;
4598
4599 case R_PPC64_TPREL16:
4600 case R_PPC64_TPREL16_LO:
4601 case R_PPC64_TPREL16_HI:
4602 case R_PPC64_TPREL16_HA:
4603 case R_PPC64_TPREL16_DS:
4604 case R_PPC64_TPREL16_LO_DS:
4605 case R_PPC64_TPREL16_HIGHER:
4606 case R_PPC64_TPREL16_HIGHERA:
4607 case R_PPC64_TPREL16_HIGHEST:
4608 case R_PPC64_TPREL16_HIGHESTA:
4609 if (info->shared)
4610 {
4611 info->flags |= DF_STATIC_TLS;
4612 goto dodyn;
4613 }
4614 break;
4615
4616 case R_PPC64_ADDR64:
4617 if (opd_sym_map != NULL
4618 && rel + 1 < rel_end
4619 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4620 {
4621 if (h != NULL)
4622 {
4623 if (h->root.root.string[0] == '.'
4624 && h->root.root.string[1] != 0
4625 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4626 ;
4627 else
4628 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4629 }
4630 else
4631 {
4632 asection *s;
4633
4634 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4635 r_symndx);
4636 if (s == NULL)
4637 return FALSE;
4638 else if (s != sec)
4639 opd_sym_map[rel->r_offset / 8] = s;
4640 }
4641 }
4642 /* Fall through. */
4643
4644 case R_PPC64_REL30:
4645 case R_PPC64_REL32:
4646 case R_PPC64_REL64:
4647 case R_PPC64_ADDR14:
4648 case R_PPC64_ADDR14_BRNTAKEN:
4649 case R_PPC64_ADDR14_BRTAKEN:
4650 case R_PPC64_ADDR16:
4651 case R_PPC64_ADDR16_DS:
4652 case R_PPC64_ADDR16_HA:
4653 case R_PPC64_ADDR16_HI:
4654 case R_PPC64_ADDR16_HIGHER:
4655 case R_PPC64_ADDR16_HIGHERA:
4656 case R_PPC64_ADDR16_HIGHEST:
4657 case R_PPC64_ADDR16_HIGHESTA:
4658 case R_PPC64_ADDR16_LO:
4659 case R_PPC64_ADDR16_LO_DS:
4660 case R_PPC64_ADDR24:
4661 case R_PPC64_ADDR32:
4662 case R_PPC64_UADDR16:
4663 case R_PPC64_UADDR32:
4664 case R_PPC64_UADDR64:
4665 case R_PPC64_TOC:
4666 if (h != NULL && !info->shared)
4667 /* We may need a copy reloc. */
4668 h->non_got_ref = 1;
4669
4670 /* Don't propagate .opd relocs. */
4671 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4672 break;
4673
4674 /* If we are creating a shared library, and this is a reloc
4675 against a global symbol, or a non PC relative reloc
4676 against a local symbol, then we need to copy the reloc
4677 into the shared library. However, if we are linking with
4678 -Bsymbolic, we do not need to copy a reloc against a
4679 global symbol which is defined in an object we are
4680 including in the link (i.e., DEF_REGULAR is set). At
4681 this point we have not seen all the input files, so it is
4682 possible that DEF_REGULAR is not set now but will be set
4683 later (it is never cleared). In case of a weak definition,
4684 DEF_REGULAR may be cleared later by a strong definition in
4685 a shared library. We account for that possibility below by
4686 storing information in the dyn_relocs field of the hash
4687 table entry. A similar situation occurs when creating
4688 shared libraries and symbol visibility changes render the
4689 symbol local.
4690
4691 If on the other hand, we are creating an executable, we
4692 may need to keep relocations for symbols satisfied by a
4693 dynamic library if we manage to avoid copy relocs for the
4694 symbol. */
4695 dodyn:
4696 if ((info->shared
4697 && (MUST_BE_DYN_RELOC (r_type)
4698 || (h != NULL
4699 && (! info->symbolic
4700 || h->root.type == bfd_link_hash_defweak
4701 || !h->def_regular))))
4702 || (ELIMINATE_COPY_RELOCS
4703 && !info->shared
4704 && h != NULL
4705 && (h->root.type == bfd_link_hash_defweak
4706 || !h->def_regular)))
4707 {
4708 struct ppc_dyn_relocs *p;
4709 struct ppc_dyn_relocs **head;
4710
4711 /* We must copy these reloc types into the output file.
4712 Create a reloc section in dynobj and make room for
4713 this reloc. */
4714 if (sreloc == NULL)
4715 {
4716 const char *name;
4717 bfd *dynobj;
4718
4719 name = (bfd_elf_string_from_elf_section
4720 (abfd,
4721 elf_elfheader (abfd)->e_shstrndx,
4722 elf_section_data (sec)->rel_hdr.sh_name));
4723 if (name == NULL)
4724 return FALSE;
4725
4726 if (strncmp (name, ".rela", 5) != 0
4727 || strcmp (bfd_get_section_name (abfd, sec),
4728 name + 5) != 0)
4729 {
4730 (*_bfd_error_handler)
4731 (_("%B: bad relocation section name `%s\'"),
4732 abfd, name);
4733 bfd_set_error (bfd_error_bad_value);
4734 }
4735
4736 dynobj = htab->elf.dynobj;
4737 sreloc = bfd_get_section_by_name (dynobj, name);
4738 if (sreloc == NULL)
4739 {
4740 flagword flags;
4741
4742 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4743 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4744 | SEC_ALLOC | SEC_LOAD);
4745 sreloc = bfd_make_section_with_flags (dynobj,
4746 name,
4747 flags);
4748 if (sreloc == NULL
4749 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4750 return FALSE;
4751 }
4752 elf_section_data (sec)->sreloc = sreloc;
4753 }
4754
4755 /* If this is a global symbol, we count the number of
4756 relocations we need for this symbol. */
4757 if (h != NULL)
4758 {
4759 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4760 }
4761 else
4762 {
4763 /* Track dynamic relocs needed for local syms too.
4764 We really need local syms available to do this
4765 easily. Oh well. */
4766
4767 asection *s;
4768 void *vpp;
4769
4770 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4771 sec, r_symndx);
4772 if (s == NULL)
4773 return FALSE;
4774
4775 vpp = &elf_section_data (s)->local_dynrel;
4776 head = (struct ppc_dyn_relocs **) vpp;
4777 }
4778
4779 p = *head;
4780 if (p == NULL || p->sec != sec)
4781 {
4782 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4783 if (p == NULL)
4784 return FALSE;
4785 p->next = *head;
4786 *head = p;
4787 p->sec = sec;
4788 p->count = 0;
4789 p->pc_count = 0;
4790 }
4791
4792 p->count += 1;
4793 if (!MUST_BE_DYN_RELOC (r_type))
4794 p->pc_count += 1;
4795 }
4796 break;
4797
4798 default:
4799 break;
4800 }
4801 }
4802
4803 return TRUE;
4804}
4805
4806/* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4807 of the code entry point, and its section. */
4808
4809static bfd_vma
4810opd_entry_value (asection *opd_sec,
4811 bfd_vma offset,
4812 asection **code_sec,
4813 bfd_vma *code_off)
4814{
4815 bfd *opd_bfd = opd_sec->owner;
4816 Elf_Internal_Rela *relocs;
4817 Elf_Internal_Rela *lo, *hi, *look;
4818 bfd_vma val;
4819
4820 /* No relocs implies we are linking a --just-symbols object. */
4821 if (opd_sec->reloc_count == 0)
4822 {
4823 bfd_vma val;
4824
4825 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4826 return (bfd_vma) -1;
4827
4828 if (code_sec != NULL)
4829 {
4830 asection *sec, *likely = NULL;
4831 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4832 if (sec->vma <= val
4833 && (sec->flags & SEC_LOAD) != 0
4834 && (sec->flags & SEC_ALLOC) != 0)
4835 likely = sec;
4836 if (likely != NULL)
4837 {
4838 *code_sec = likely;
4839 if (code_off != NULL)
4840 *code_off = val - likely->vma;
4841 }
4842 }
4843 return val;
4844 }
4845
4846 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4847 if (relocs == NULL)
4848 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4849
4850 /* Go find the opd reloc at the sym address. */
4851 lo = relocs;
4852 BFD_ASSERT (lo != NULL);
4853 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4854 val = (bfd_vma) -1;
4855 while (lo < hi)
4856 {
4857 look = lo + (hi - lo) / 2;
4858 if (look->r_offset < offset)
4859 lo = look + 1;
4860 else if (look->r_offset > offset)
4861 hi = look;
4862 else
4863 {
4864 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4865 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4866 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4867 {
4868 unsigned long symndx = ELF64_R_SYM (look->r_info);
4869 asection *sec;
4870
4871 if (symndx < symtab_hdr->sh_info)
4872 {
4873 Elf_Internal_Sym *sym;
4874
4875 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4876 if (sym == NULL)
4877 {
4878 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4879 symtab_hdr->sh_info,
4880 0, NULL, NULL, NULL);
4881 if (sym == NULL)
4882 break;
4883 symtab_hdr->contents = (bfd_byte *) sym;
4884 }
4885
4886 sym += symndx;
4887 val = sym->st_value;
4888 sec = NULL;
4889 if ((sym->st_shndx != SHN_UNDEF
4890 && sym->st_shndx < SHN_LORESERVE)
4891 || sym->st_shndx > SHN_HIRESERVE)
4892 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4893 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4894 }
4895 else
4896 {
4897 struct elf_link_hash_entry **sym_hashes;
4898 struct elf_link_hash_entry *rh;
4899
4900 sym_hashes = elf_sym_hashes (opd_bfd);
4901 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4902 while (rh->root.type == bfd_link_hash_indirect
4903 || rh->root.type == bfd_link_hash_warning)
4904 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4905 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4906 || rh->root.type == bfd_link_hash_defweak);
4907 val = rh->root.u.def.value;
4908 sec = rh->root.u.def.section;
4909 }
4910 val += look->r_addend;
4911 if (code_off != NULL)
4912 *code_off = val;
4913 if (code_sec != NULL)
4914 *code_sec = sec;
4915 if (sec != NULL && sec->output_section != NULL)
4916 val += sec->output_section->vma + sec->output_offset;
4917 }
4918 break;
4919 }
4920 }
4921
4922 return val;
4923}
4924
4925/* Return the section that should be marked against GC for a given
4926 relocation. */
4927
4928static asection *
4929ppc64_elf_gc_mark_hook (asection *sec,
4930 struct bfd_link_info *info,
4931 Elf_Internal_Rela *rel,
4932 struct elf_link_hash_entry *h,
4933 Elf_Internal_Sym *sym)
4934{
4935 asection *rsec;
4936
4937 /* First mark all our entry sym sections. */
4938 if (info->gc_sym_list != NULL)
4939 {
4940 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4941 struct bfd_sym_chain *sym = info->gc_sym_list;
4942
4943 info->gc_sym_list = NULL;
4944 do
4945 {
4946 struct ppc_link_hash_entry *eh;
4947
4948 eh = (struct ppc_link_hash_entry *)
4949 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4950 if (eh == NULL)
4951 continue;
4952 if (eh->elf.root.type != bfd_link_hash_defined
4953 && eh->elf.root.type != bfd_link_hash_defweak)
4954 continue;
4955
4956 if (eh->is_func_descriptor
4957 && (eh->oh->elf.root.type == bfd_link_hash_defined
4958 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4959 rsec = eh->oh->elf.root.u.def.section;
4960 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4961 && opd_entry_value (eh->elf.root.u.def.section,
4962 eh->elf.root.u.def.value,
4963 &rsec, NULL) != (bfd_vma) -1)
4964 ;
4965 else
4966 continue;
4967
4968 if (!rsec->gc_mark)
4969 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4970
4971 rsec = eh->elf.root.u.def.section;
4972 if (!rsec->gc_mark)
4973 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4974
4975 sym = sym->next;
4976 }
4977 while (sym != NULL);
4978 }
4979
4980 /* Syms return NULL if we're marking .opd, so we avoid marking all
4981 function sections, as all functions are referenced in .opd. */
4982 rsec = NULL;
4983 if (get_opd_info (sec) != NULL)
4984 return rsec;
4985
4986 if (h != NULL)
4987 {
4988 enum elf_ppc64_reloc_type r_type;
4989 struct ppc_link_hash_entry *eh;
4990
4991 r_type = ELF64_R_TYPE (rel->r_info);
4992 switch (r_type)
4993 {
4994 case R_PPC64_GNU_VTINHERIT:
4995 case R_PPC64_GNU_VTENTRY:
4996 break;
4997
4998 default:
4999 switch (h->root.type)
5000 {
5001 case bfd_link_hash_defined:
5002 case bfd_link_hash_defweak:
5003 eh = (struct ppc_link_hash_entry *) h;
5004 if (eh->oh != NULL
5005 && eh->oh->is_func_descriptor
5006 && (eh->oh->elf.root.type == bfd_link_hash_defined
5007 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5008 eh = eh->oh;
5009
5010 /* Function descriptor syms cause the associated
5011 function code sym section to be marked. */
5012 if (eh->is_func_descriptor
5013 && (eh->oh->elf.root.type == bfd_link_hash_defined
5014 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5015 {
5016 /* They also mark their opd section. */
5017 if (!eh->elf.root.u.def.section->gc_mark)
5018 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5019 ppc64_elf_gc_mark_hook);
5020
5021 rsec = eh->oh->elf.root.u.def.section;
5022 }
5023 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5024 && opd_entry_value (eh->elf.root.u.def.section,
5025 eh->elf.root.u.def.value,
5026 &rsec, NULL) != (bfd_vma) -1)
5027 {
5028 if (!eh->elf.root.u.def.section->gc_mark)
5029 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5030 ppc64_elf_gc_mark_hook);
5031 }
5032 else
5033 rsec = h->root.u.def.section;
5034 break;
5035
5036 case bfd_link_hash_common:
5037 rsec = h->root.u.c.p->section;
5038 break;
5039
5040 default:
5041 break;
5042 }
5043 }
5044 }
5045 else
5046 {
5047 asection **opd_sym_section;
5048
5049 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5050 opd_sym_section = get_opd_info (rsec);
5051 if (opd_sym_section != NULL)
5052 {
5053 if (!rsec->gc_mark)
5054 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
5055
5056 rsec = opd_sym_section[(sym->st_value + rel->r_addend) / 8];
5057 }
5058 }
5059
5060 return rsec;
5061}
5062
5063/* Update the .got, .plt. and dynamic reloc reference counts for the
5064 section being removed. */
5065
5066static bfd_boolean
5067ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5068 asection *sec, const Elf_Internal_Rela *relocs)
5069{
5070 struct ppc_link_hash_table *htab;
5071 Elf_Internal_Shdr *symtab_hdr;
5072 struct elf_link_hash_entry **sym_hashes;
5073 struct got_entry **local_got_ents;
5074 const Elf_Internal_Rela *rel, *relend;
5075
5076 if ((sec->flags & SEC_ALLOC) == 0)
5077 return TRUE;
5078
5079 elf_section_data (sec)->local_dynrel = NULL;
5080
5081 htab = ppc_hash_table (info);
5082 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5083 sym_hashes = elf_sym_hashes (abfd);
5084 local_got_ents = elf_local_got_ents (abfd);
5085
5086 relend = relocs + sec->reloc_count;
5087 for (rel = relocs; rel < relend; rel++)
5088 {
5089 unsigned long r_symndx;
5090 enum elf_ppc64_reloc_type r_type;
5091 struct elf_link_hash_entry *h = NULL;
5092 char tls_type = 0;
5093
5094 r_symndx = ELF64_R_SYM (rel->r_info);
5095 r_type = ELF64_R_TYPE (rel->r_info);
5096 if (r_symndx >= symtab_hdr->sh_info)
5097 {
5098 struct ppc_link_hash_entry *eh;
5099 struct ppc_dyn_relocs **pp;
5100 struct ppc_dyn_relocs *p;
5101
5102 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5103 while (h->root.type == bfd_link_hash_indirect
5104 || h->root.type == bfd_link_hash_warning)
5105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5106 eh = (struct ppc_link_hash_entry *) h;
5107
5108 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5109 if (p->sec == sec)
5110 {
5111 /* Everything must go for SEC. */
5112 *pp = p->next;
5113 break;
5114 }
5115 }
5116
5117 switch (r_type)
5118 {
5119 case R_PPC64_GOT_TLSLD16:
5120 case R_PPC64_GOT_TLSLD16_LO:
5121 case R_PPC64_GOT_TLSLD16_HI:
5122 case R_PPC64_GOT_TLSLD16_HA:
5123 ppc64_tlsld_got (abfd)->refcount -= 1;
5124 tls_type = TLS_TLS | TLS_LD;
5125 goto dogot;
5126
5127 case R_PPC64_GOT_TLSGD16:
5128 case R_PPC64_GOT_TLSGD16_LO:
5129 case R_PPC64_GOT_TLSGD16_HI:
5130 case R_PPC64_GOT_TLSGD16_HA:
5131 tls_type = TLS_TLS | TLS_GD;
5132 goto dogot;
5133
5134 case R_PPC64_GOT_TPREL16_DS:
5135 case R_PPC64_GOT_TPREL16_LO_DS:
5136 case R_PPC64_GOT_TPREL16_HI:
5137 case R_PPC64_GOT_TPREL16_HA:
5138 tls_type = TLS_TLS | TLS_TPREL;
5139 goto dogot;
5140
5141 case R_PPC64_GOT_DTPREL16_DS:
5142 case R_PPC64_GOT_DTPREL16_LO_DS:
5143 case R_PPC64_GOT_DTPREL16_HI:
5144 case R_PPC64_GOT_DTPREL16_HA:
5145 tls_type = TLS_TLS | TLS_DTPREL;
5146 goto dogot;
5147
5148 case R_PPC64_GOT16:
5149 case R_PPC64_GOT16_DS:
5150 case R_PPC64_GOT16_HA:
5151 case R_PPC64_GOT16_HI:
5152 case R_PPC64_GOT16_LO:
5153 case R_PPC64_GOT16_LO_DS:
5154 dogot:
5155 {
5156 struct got_entry *ent;
5157
5158 if (h != NULL)
5159 ent = h->got.glist;
5160 else
5161 ent = local_got_ents[r_symndx];
5162
5163 for (; ent != NULL; ent = ent->next)
5164 if (ent->addend == rel->r_addend
5165 && ent->owner == abfd
5166 && ent->tls_type == tls_type)
5167 break;
5168 if (ent == NULL)
5169 abort ();
5170 if (ent->got.refcount > 0)
5171 ent->got.refcount -= 1;
5172 }
5173 break;
5174
5175 case R_PPC64_PLT16_HA:
5176 case R_PPC64_PLT16_HI:
5177 case R_PPC64_PLT16_LO:
5178 case R_PPC64_PLT32:
5179 case R_PPC64_PLT64:
5180 case R_PPC64_REL14:
5181 case R_PPC64_REL14_BRNTAKEN:
5182 case R_PPC64_REL14_BRTAKEN:
5183 case R_PPC64_REL24:
5184 if (h != NULL)
5185 {
5186 struct plt_entry *ent;
5187
5188 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5189 if (ent->addend == rel->r_addend)
5190 break;
5191 if (ent == NULL)
5192 abort ();
5193 if (ent->plt.refcount > 0)
5194 ent->plt.refcount -= 1;
5195 }
5196 break;
5197
5198 default:
5199 break;
5200 }
5201 }
5202 return TRUE;
5203}
5204
5205/* The maximum size of .sfpr. */
5206#define SFPR_MAX (218*4)
5207
5208struct sfpr_def_parms
5209{
5210 const char name[12];
5211 unsigned char lo, hi;
5212 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5213 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5214};
5215
5216/* Auto-generate _save*, _rest* functions in .sfpr. */
5217
5218static unsigned int
5219sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5220{
5221 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5222 unsigned int i;
5223 size_t len = strlen (parm->name);
5224 bfd_boolean writing = FALSE;
5225 char sym[16];
5226
5227 memcpy (sym, parm->name, len);
5228 sym[len + 2] = 0;
5229
5230 for (i = parm->lo; i <= parm->hi; i++)
5231 {
5232 struct elf_link_hash_entry *h;
5233
5234 sym[len + 0] = i / 10 + '0';
5235 sym[len + 1] = i % 10 + '0';
5236 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5237 if (h != NULL
5238 && !h->def_regular)
5239 {
5240 h->root.type = bfd_link_hash_defined;
5241 h->root.u.def.section = htab->sfpr;
5242 h->root.u.def.value = htab->sfpr->size;
5243 h->type = STT_FUNC;
5244 h->def_regular = 1;
5245 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5246 writing = TRUE;
5247 if (htab->sfpr->contents == NULL)
5248 {
5249 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5250 if (htab->sfpr->contents == NULL)
5251 return FALSE;
5252 }
5253 }
5254 if (writing)
5255 {
5256 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5257 if (i != parm->hi)
5258 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5259 else
5260 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5261 htab->sfpr->size = p - htab->sfpr->contents;
5262 }
5263 }
5264
5265 return TRUE;
5266}
5267
5268static bfd_byte *
5269savegpr0 (bfd *abfd, bfd_byte *p, int r)
5270{
5271 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5272 return p + 4;
5273}
5274
5275static bfd_byte *
5276savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5277{
5278 p = savegpr0 (abfd, p, r);
5279 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5280 p = p + 4;
5281 bfd_put_32 (abfd, BLR, p);
5282 return p + 4;
5283}
5284
5285static bfd_byte *
5286restgpr0 (bfd *abfd, bfd_byte *p, int r)
5287{
5288 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5289 return p + 4;
5290}
5291
5292static bfd_byte *
5293restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5294{
5295 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5296 p = p + 4;
5297 p = restgpr0 (abfd, p, r);
5298 bfd_put_32 (abfd, MTLR_R0, p);
5299 p = p + 4;
5300 if (r == 29)
5301 {
5302 p = restgpr0 (abfd, p, 30);
5303 p = restgpr0 (abfd, p, 31);
5304 }
5305 bfd_put_32 (abfd, BLR, p);
5306 return p + 4;
5307}
5308
5309static bfd_byte *
5310savegpr1 (bfd *abfd, bfd_byte *p, int r)
5311{
5312 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5313 return p + 4;
5314}
5315
5316static bfd_byte *
5317savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5318{
5319 p = savegpr1 (abfd, p, r);
5320 bfd_put_32 (abfd, BLR, p);
5321 return p + 4;
5322}
5323
5324static bfd_byte *
5325restgpr1 (bfd *abfd, bfd_byte *p, int r)
5326{
5327 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5328 return p + 4;
5329}
5330
5331static bfd_byte *
5332restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5333{
5334 p = restgpr1 (abfd, p, r);
5335 bfd_put_32 (abfd, BLR, p);
5336 return p + 4;
5337}
5338
5339static bfd_byte *
5340savefpr (bfd *abfd, bfd_byte *p, int r)
5341{
5342 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5343 return p + 4;
5344}
5345
5346static bfd_byte *
5347savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5348{
5349 p = savefpr (abfd, p, r);
5350 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5351 p = p + 4;
5352 bfd_put_32 (abfd, BLR, p);
5353 return p + 4;
5354}
5355
5356static bfd_byte *
5357restfpr (bfd *abfd, bfd_byte *p, int r)
5358{
5359 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5360 return p + 4;
5361}
5362
5363static bfd_byte *
5364restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5365{
5366 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5367 p = p + 4;
5368 p = restfpr (abfd, p, r);
5369 bfd_put_32 (abfd, MTLR_R0, p);
5370 p = p + 4;
5371 if (r == 29)
5372 {
5373 p = restfpr (abfd, p, 30);
5374 p = restfpr (abfd, p, 31);
5375 }
5376 bfd_put_32 (abfd, BLR, p);
5377 return p + 4;
5378}
5379
5380static bfd_byte *
5381savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5382{
5383 p = savefpr (abfd, p, r);
5384 bfd_put_32 (abfd, BLR, p);
5385 return p + 4;
5386}
5387
5388static bfd_byte *
5389restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5390{
5391 p = restfpr (abfd, p, r);
5392 bfd_put_32 (abfd, BLR, p);
5393 return p + 4;
5394}
5395
5396static bfd_byte *
5397savevr (bfd *abfd, bfd_byte *p, int r)
5398{
5399 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5400 p = p + 4;
5401 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5402 return p + 4;
5403}
5404
5405static bfd_byte *
5406savevr_tail (bfd *abfd, bfd_byte *p, int r)
5407{
5408 p = savevr (abfd, p, r);
5409 bfd_put_32 (abfd, BLR, p);
5410 return p + 4;
5411}
5412
5413static bfd_byte *
5414restvr (bfd *abfd, bfd_byte *p, int r)
5415{
5416 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5417 p = p + 4;
5418 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5419 return p + 4;
5420}
5421
5422static bfd_byte *
5423restvr_tail (bfd *abfd, bfd_byte *p, int r)
5424{
5425 p = restvr (abfd, p, r);
5426 bfd_put_32 (abfd, BLR, p);
5427 return p + 4;
5428}
5429
5430/* Called via elf_link_hash_traverse to transfer dynamic linking
5431 information on function code symbol entries to their corresponding
5432 function descriptor symbol entries. */
5433
5434static bfd_boolean
5435func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5436{
5437 struct bfd_link_info *info;
5438 struct ppc_link_hash_table *htab;
5439 struct plt_entry *ent;
5440 struct ppc_link_hash_entry *fh;
5441 struct ppc_link_hash_entry *fdh;
5442 bfd_boolean force_local;
5443
5444 fh = (struct ppc_link_hash_entry *) h;
5445 if (fh->elf.root.type == bfd_link_hash_indirect)
5446 return TRUE;
5447
5448 if (fh->elf.root.type == bfd_link_hash_warning)
5449 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5450
5451 info = inf;
5452 htab = ppc_hash_table (info);
5453
5454 /* Resolve undefined references to dot-symbols as the value
5455 in the function descriptor, if we have one in a regular object.
5456 This is to satisfy cases like ".quad .foo". Calls to functions
5457 in dynamic objects are handled elsewhere. */
5458 if (fh->elf.root.type == bfd_link_hash_undefweak
5459 && fh->was_undefined
5460 && (fh->oh->elf.root.type == bfd_link_hash_defined
5461 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5462 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5463 && opd_entry_value (fh->oh->elf.root.u.def.section,
5464 fh->oh->elf.root.u.def.value,
5465 &fh->elf.root.u.def.section,
5466 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5467 {
5468 fh->elf.root.type = fh->oh->elf.root.type;
5469 fh->elf.forced_local = 1;
5470 }
5471
5472 /* If this is a function code symbol, transfer dynamic linking
5473 information to the function descriptor symbol. */
5474 if (!fh->is_func)
5475 return TRUE;
5476
5477 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5478 if (ent->plt.refcount > 0)
5479 break;
5480 if (ent == NULL
5481 || fh->elf.root.root.string[0] != '.'
5482 || fh->elf.root.root.string[1] == '\0')
5483 return TRUE;
5484
5485 /* Find the corresponding function descriptor symbol. Create it
5486 as undefined if necessary. */
5487
5488 fdh = get_fdh (fh, htab);
5489 if (fdh != NULL)
5490 while (fdh->elf.root.type == bfd_link_hash_indirect
5491 || fdh->elf.root.type == bfd_link_hash_warning)
5492 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5493
5494 if (fdh == NULL
5495 && info->shared
5496 && (fh->elf.root.type == bfd_link_hash_undefined
5497 || fh->elf.root.type == bfd_link_hash_undefweak))
5498 {
5499 fdh = make_fdh (info, fh);
5500 if (fdh == NULL)
5501 return FALSE;
5502 }
5503
5504 /* Fake function descriptors are made undefweak. If the function
5505 code symbol is strong undefined, make the fake sym the same.
5506 If the function code symbol is defined, then force the fake
5507 descriptor local; We can't support overriding of symbols in a
5508 shared library on a fake descriptor. */
5509
5510 if (fdh != NULL
5511 && fdh->fake
5512 && fdh->elf.root.type == bfd_link_hash_undefweak)
5513 {
5514 if (fh->elf.root.type == bfd_link_hash_undefined)
5515 {
5516 fdh->elf.root.type = bfd_link_hash_undefined;
5517 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5518 }
5519 else if (fh->elf.root.type == bfd_link_hash_defined
5520 || fh->elf.root.type == bfd_link_hash_defweak)
5521 {
5522 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5523 }
5524 }
5525
5526 if (fdh != NULL
5527 && !fdh->elf.forced_local
5528 && (info->shared
5529 || fdh->elf.def_dynamic
5530 || fdh->elf.ref_dynamic
5531 || (fdh->elf.root.type == bfd_link_hash_undefweak
5532 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5533 {
5534 if (fdh->elf.dynindx == -1)
5535 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5536 return FALSE;
5537 fdh->elf.ref_regular |= fh->elf.ref_regular;
5538 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5539 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5540 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5541 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5542 {
5543 move_plt_plist (fh, fdh);
5544 fdh->elf.needs_plt = 1;
5545 }
5546 fdh->is_func_descriptor = 1;
5547 fdh->oh = fh;
5548 fh->oh = fdh;
5549 }
5550
5551 /* Now that the info is on the function descriptor, clear the
5552 function code sym info. Any function code syms for which we
5553 don't have a definition in a regular file, we force local.
5554 This prevents a shared library from exporting syms that have
5555 been imported from another library. Function code syms that
5556 are really in the library we must leave global to prevent the
5557 linker dragging in a definition from a static library. */
5558 force_local = (!fh->elf.def_regular
5559 || fdh == NULL
5560 || !fdh->elf.def_regular
5561 || fdh->elf.forced_local);
5562 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5563
5564 return TRUE;
5565}
5566
5567/* Called near the start of bfd_elf_size_dynamic_sections. We use
5568 this hook to a) provide some gcc support functions, and b) transfer
5569 dynamic linking information gathered so far on function code symbol
5570 entries, to their corresponding function descriptor symbol entries. */
5571
5572static bfd_boolean
5573ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5574 struct bfd_link_info *info)
5575{
5576 struct ppc_link_hash_table *htab;
5577 unsigned int i;
5578 const struct sfpr_def_parms funcs[] =
5579 {
5580 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5581 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5582 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5583 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5584 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5585 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5586 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5587 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5588 { "._savef", 14, 31, savefpr, savefpr1_tail },
5589 { "._restf", 14, 31, restfpr, restfpr1_tail },
5590 { "_savevr_", 20, 31, savevr, savevr_tail },
5591 { "_restvr_", 20, 31, restvr, restvr_tail }
5592 };
5593
5594 htab = ppc_hash_table (info);
5595 if (htab->sfpr == NULL)
5596 /* We don't have any relocs. */
5597 return TRUE;
5598
5599 /* Provide any missing _save* and _rest* functions. */
5600 htab->sfpr->size = 0;
5601 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5602 if (!sfpr_define (info, &funcs[i]))
5603 return FALSE;
5604
5605 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5606
5607 if (htab->sfpr->size == 0)
5608 htab->sfpr->flags |= SEC_EXCLUDE;
5609
5610 return TRUE;
5611}
5612
5613/* Adjust a symbol defined by a dynamic object and referenced by a
5614 regular object. The current definition is in some section of the
5615 dynamic object, but we're not including those sections. We have to
5616 change the definition to something the rest of the link can
5617 understand. */
5618
5619static bfd_boolean
5620ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5621 struct elf_link_hash_entry *h)
5622{
5623 struct ppc_link_hash_table *htab;
5624 asection *s;
5625 unsigned int power_of_two;
5626
5627 htab = ppc_hash_table (info);
5628
5629 /* Deal with function syms. */
5630 if (h->type == STT_FUNC
5631 || h->needs_plt)
5632 {
5633 /* Clear procedure linkage table information for any symbol that
5634 won't need a .plt entry. */
5635 struct plt_entry *ent;
5636 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5637 if (ent->plt.refcount > 0)
5638 break;
5639 if (ent == NULL
5640 || SYMBOL_CALLS_LOCAL (info, h)
5641 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5642 && h->root.type == bfd_link_hash_undefweak))
5643 {
5644 h->plt.plist = NULL;
5645 h->needs_plt = 0;
5646 }
5647 }
5648 else
5649 h->plt.plist = NULL;
5650
5651 /* If this is a weak symbol, and there is a real definition, the
5652 processor independent code will have arranged for us to see the
5653 real definition first, and we can just use the same value. */
5654 if (h->u.weakdef != NULL)
5655 {
5656 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5657 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5658 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5659 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5660 if (ELIMINATE_COPY_RELOCS)
5661 h->non_got_ref = h->u.weakdef->non_got_ref;
5662 return TRUE;
5663 }
5664
5665 /* If we are creating a shared library, we must presume that the
5666 only references to the symbol are via the global offset table.
5667 For such cases we need not do anything here; the relocations will
5668 be handled correctly by relocate_section. */
5669 if (info->shared)
5670 return TRUE;
5671
5672 /* If there are no references to this symbol that do not use the
5673 GOT, we don't need to generate a copy reloc. */
5674 if (!h->non_got_ref)
5675 return TRUE;
5676
5677 if (ELIMINATE_COPY_RELOCS)
5678 {
5679 struct ppc_link_hash_entry * eh;
5680 struct ppc_dyn_relocs *p;
5681
5682 eh = (struct ppc_link_hash_entry *) h;
5683 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5684 {
5685 s = p->sec->output_section;
5686 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5687 break;
5688 }
5689
5690 /* If we didn't find any dynamic relocs in read-only sections, then
5691 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5692 if (p == NULL)
5693 {
5694 h->non_got_ref = 0;
5695 return TRUE;
5696 }
5697 }
5698
5699 if (h->plt.plist != NULL)
5700 {
5701 /* We should never get here, but unfortunately there are versions
5702 of gcc out there that improperly (for this ABI) put initialized
5703 function pointers, vtable refs and suchlike in read-only
5704 sections. Allow them to proceed, but warn that this might
5705 break at runtime. */
5706 (*_bfd_error_handler)
5707 (_("copy reloc against `%s' requires lazy plt linking; "
5708 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5709 h->root.root.string);
5710 }
5711
5712 /* This is a reference to a symbol defined by a dynamic object which
5713 is not a function. */
5714
5715 if (h->size == 0)
5716 {
5717 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
5718 h->root.root.string);
5719 return TRUE;
5720 }
5721
5722 /* We must allocate the symbol in our .dynbss section, which will
5723 become part of the .bss section of the executable. There will be
5724 an entry for this symbol in the .dynsym section. The dynamic
5725 object will contain position independent code, so all references
5726 from the dynamic object to this symbol will go through the global
5727 offset table. The dynamic linker will use the .dynsym entry to
5728 determine the address it must put in the global offset table, so
5729 both the dynamic object and the regular object will refer to the
5730 same memory location for the variable. */
5731
5732 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5733 to copy the initial value out of the dynamic object and into the
5734 runtime process image. We need to remember the offset into the
5735 .rela.bss section we are going to use. */
5736 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5737 {
5738 htab->relbss->size += sizeof (Elf64_External_Rela);
5739 h->needs_copy = 1;
5740 }
5741
5742 /* We need to figure out the alignment required for this symbol. I
5743 have no idea how ELF linkers handle this. */
5744 power_of_two = bfd_log2 (h->size);
5745 if (power_of_two > 4)
5746 power_of_two = 4;
5747
5748 /* Apply the required alignment. */
5749 s = htab->dynbss;
5750 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5751 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5752 {
5753 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5754 return FALSE;
5755 }
5756
5757 /* Define the symbol as being at this point in the section. */
5758 h->root.u.def.section = s;
5759 h->root.u.def.value = s->size;
5760
5761 /* Increment the section size to make room for the symbol. */
5762 s->size += h->size;
5763
5764 return TRUE;
5765}
5766
5767/* If given a function descriptor symbol, hide both the function code
5768 sym and the descriptor. */
5769static void
5770ppc64_elf_hide_symbol (struct bfd_link_info *info,
5771 struct elf_link_hash_entry *h,
5772 bfd_boolean force_local)
5773{
5774 struct ppc_link_hash_entry *eh;
5775 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5776
5777 eh = (struct ppc_link_hash_entry *) h;
5778 if (eh->is_func_descriptor)
5779 {
5780 struct ppc_link_hash_entry *fh = eh->oh;
5781
5782 if (fh == NULL)
5783 {
5784 const char *p, *q;
5785 struct ppc_link_hash_table *htab;
5786 char save;
5787
5788 /* We aren't supposed to use alloca in BFD because on
5789 systems which do not have alloca the version in libiberty
5790 calls xmalloc, which might cause the program to crash
5791 when it runs out of memory. This function doesn't have a
5792 return status, so there's no way to gracefully return an
5793 error. So cheat. We know that string[-1] can be safely
5794 accessed; It's either a string in an ELF string table,
5795 or allocated in an objalloc structure. */
5796
5797 p = eh->elf.root.root.string - 1;
5798 save = *p;
5799 *(char *) p = '.';
5800 htab = ppc_hash_table (info);
5801 fh = (struct ppc_link_hash_entry *)
5802 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5803 *(char *) p = save;
5804
5805 /* Unfortunately, if it so happens that the string we were
5806 looking for was allocated immediately before this string,
5807 then we overwrote the string terminator. That's the only
5808 reason the lookup should fail. */
5809 if (fh == NULL)
5810 {
5811 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5812 while (q >= eh->elf.root.root.string && *q == *p)
5813 --q, --p;
5814 if (q < eh->elf.root.root.string && *p == '.')
5815 fh = (struct ppc_link_hash_entry *)
5816 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5817 }
5818 if (fh != NULL)
5819 {
5820 eh->oh = fh;
5821 fh->oh = eh;
5822 }
5823 }
5824 if (fh != NULL)
5825 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5826 }
5827}
5828
5829static bfd_boolean
5830get_sym_h (struct elf_link_hash_entry **hp,
5831 Elf_Internal_Sym **symp,
5832 asection **symsecp,
5833 char **tls_maskp,
5834 Elf_Internal_Sym **locsymsp,
5835 unsigned long r_symndx,
5836 bfd *ibfd)
5837{
5838 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5839
5840 if (r_symndx >= symtab_hdr->sh_info)
5841 {
5842 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5843 struct elf_link_hash_entry *h;
5844
5845 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5846 while (h->root.type == bfd_link_hash_indirect
5847 || h->root.type == bfd_link_hash_warning)
5848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5849
5850 if (hp != NULL)
5851 *hp = h;
5852
5853 if (symp != NULL)
5854 *symp = NULL;
5855
5856 if (symsecp != NULL)
5857 {
5858 asection *symsec = NULL;
5859 if (h->root.type == bfd_link_hash_defined
5860 || h->root.type == bfd_link_hash_defweak)
5861 symsec = h->root.u.def.section;
5862 *symsecp = symsec;
5863 }
5864
5865 if (tls_maskp != NULL)
5866 {
5867 struct ppc_link_hash_entry *eh;
5868
5869 eh = (struct ppc_link_hash_entry *) h;
5870 *tls_maskp = &eh->tls_mask;
5871 }
5872 }
5873 else
5874 {
5875 Elf_Internal_Sym *sym;
5876 Elf_Internal_Sym *locsyms = *locsymsp;
5877
5878 if (locsyms == NULL)
5879 {
5880 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5881 if (locsyms == NULL)
5882 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5883 symtab_hdr->sh_info,
5884 0, NULL, NULL, NULL);
5885 if (locsyms == NULL)
5886 return FALSE;
5887 *locsymsp = locsyms;
5888 }
5889 sym = locsyms + r_symndx;
5890
5891 if (hp != NULL)
5892 *hp = NULL;
5893
5894 if (symp != NULL)
5895 *symp = sym;
5896
5897 if (symsecp != NULL)
5898 {
5899 asection *symsec = NULL;
5900 if ((sym->st_shndx != SHN_UNDEF
5901 && sym->st_shndx < SHN_LORESERVE)
5902 || sym->st_shndx > SHN_HIRESERVE)
5903 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5904 *symsecp = symsec;
5905 }
5906
5907 if (tls_maskp != NULL)
5908 {
5909 struct got_entry **lgot_ents;
5910 char *tls_mask;
5911
5912 tls_mask = NULL;
5913 lgot_ents = elf_local_got_ents (ibfd);
5914 if (lgot_ents != NULL)
5915 {
5916 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5917 tls_mask = &lgot_masks[r_symndx];
5918 }
5919 *tls_maskp = tls_mask;
5920 }
5921 }
5922 return TRUE;
5923}
5924
5925/* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5926 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5927 type suitable for optimization, and 1 otherwise. */
5928
5929static int
5930get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5931 Elf_Internal_Sym **locsymsp,
5932 const Elf_Internal_Rela *rel, bfd *ibfd)
5933{
5934 unsigned long r_symndx;
5935 int next_r;
5936 struct elf_link_hash_entry *h;
5937 Elf_Internal_Sym *sym;
5938 asection *sec;
5939 bfd_vma off;
5940
5941 r_symndx = ELF64_R_SYM (rel->r_info);
5942 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5943 return 0;
5944
5945 if ((*tls_maskp != NULL && **tls_maskp != 0)
5946 || sec == NULL
5947 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5948 return 1;
5949
5950 /* Look inside a TOC section too. */
5951 if (h != NULL)
5952 {
5953 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5954 off = h->root.u.def.value;
5955 }
5956 else
5957 off = sym->st_value;
5958 off += rel->r_addend;
5959 BFD_ASSERT (off % 8 == 0);
5960 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5961 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5962 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5963 return 0;
5964 if (toc_symndx != NULL)
5965 *toc_symndx = r_symndx;
5966 if ((h == NULL
5967 || ((h->root.type == bfd_link_hash_defined
5968 || h->root.type == bfd_link_hash_defweak)
5969 && !h->def_dynamic))
5970 && (next_r == -1 || next_r == -2))
5971 return 1 - next_r;
5972 return 1;
5973}
5974
5975/* Adjust all global syms defined in opd sections. In gcc generated
5976 code for the old ABI, these will already have been done. */
5977
5978static bfd_boolean
5979adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5980{
5981 struct ppc_link_hash_entry *eh;
5982 asection *sym_sec;
5983 long *opd_adjust;
5984
5985 if (h->root.type == bfd_link_hash_indirect)
5986 return TRUE;
5987
5988 if (h->root.type == bfd_link_hash_warning)
5989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5990
5991 if (h->root.type != bfd_link_hash_defined
5992 && h->root.type != bfd_link_hash_defweak)
5993 return TRUE;
5994
5995 eh = (struct ppc_link_hash_entry *) h;
5996 if (eh->adjust_done)
5997 return TRUE;
5998
5999 sym_sec = eh->elf.root.u.def.section;
6000 opd_adjust = get_opd_info (sym_sec);
6001 if (opd_adjust != NULL)
6002 {
6003 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
6004 if (adjust == -1)
6005 {
6006 /* This entry has been deleted. */
6007 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->u.deleted_section;
6008 if (dsec == NULL)
6009 {
6010 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6011 if (elf_discarded_section (dsec))
6012 {
6013 ppc64_elf_tdata (sym_sec->owner)->u.deleted_section = dsec;
6014 break;
6015 }
6016 }
6017 eh->elf.root.u.def.value = 0;
6018 eh->elf.root.u.def.section = dsec;
6019 }
6020 else
6021 eh->elf.root.u.def.value += adjust;
6022 eh->adjust_done = 1;
6023 }
6024 return TRUE;
6025}
6026
6027/* Handles decrementing dynamic reloc counts for the reloc specified by
6028 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6029 have already been determined. */
6030
6031static bfd_boolean
6032dec_dynrel_count (bfd_vma r_info,
6033 asection *sec,
6034 struct bfd_link_info *info,
6035 Elf_Internal_Sym **local_syms,
6036 struct elf_link_hash_entry *h,
6037 asection *sym_sec)
6038{
6039 enum elf_ppc64_reloc_type r_type;
6040 struct ppc_dyn_relocs *p;
6041 struct ppc_dyn_relocs **pp;
6042
6043 /* Can this reloc be dynamic? This switch, and later tests here
6044 should be kept in sync with the code in check_relocs. */
6045 r_type = ELF64_R_TYPE (r_info);
6046 switch (r_type)
6047 {
6048 default:
6049 return TRUE;
6050
6051 case R_PPC64_TPREL16:
6052 case R_PPC64_TPREL16_LO:
6053 case R_PPC64_TPREL16_HI:
6054 case R_PPC64_TPREL16_HA:
6055 case R_PPC64_TPREL16_DS:
6056 case R_PPC64_TPREL16_LO_DS:
6057 case R_PPC64_TPREL16_HIGHER:
6058 case R_PPC64_TPREL16_HIGHERA:
6059 case R_PPC64_TPREL16_HIGHEST:
6060 case R_PPC64_TPREL16_HIGHESTA:
6061 if (!info->shared)
6062 return TRUE;
6063
6064 case R_PPC64_TPREL64:
6065 case R_PPC64_DTPMOD64:
6066 case R_PPC64_DTPREL64:
6067 case R_PPC64_ADDR64:
6068 case R_PPC64_REL30:
6069 case R_PPC64_REL32:
6070 case R_PPC64_REL64:
6071 case R_PPC64_ADDR14:
6072 case R_PPC64_ADDR14_BRNTAKEN:
6073 case R_PPC64_ADDR14_BRTAKEN:
6074 case R_PPC64_ADDR16:
6075 case R_PPC64_ADDR16_DS:
6076 case R_PPC64_ADDR16_HA:
6077 case R_PPC64_ADDR16_HI:
6078 case R_PPC64_ADDR16_HIGHER:
6079 case R_PPC64_ADDR16_HIGHERA:
6080 case R_PPC64_ADDR16_HIGHEST:
6081 case R_PPC64_ADDR16_HIGHESTA:
6082 case R_PPC64_ADDR16_LO:
6083 case R_PPC64_ADDR16_LO_DS:
6084 case R_PPC64_ADDR24:
6085 case R_PPC64_ADDR32:
6086 case R_PPC64_UADDR16:
6087 case R_PPC64_UADDR32:
6088 case R_PPC64_UADDR64:
6089 case R_PPC64_TOC:
6090 break;
6091 }
6092
6093 if (local_syms != NULL)
6094 {
6095 unsigned long r_symndx;
6096 Elf_Internal_Sym *sym;
6097 bfd *ibfd = sec->owner;
6098
6099 r_symndx = ELF64_R_SYM (r_info);
6100 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6101 return FALSE;
6102 }
6103
6104 if ((info->shared
6105 && (MUST_BE_DYN_RELOC (r_type)
6106 || (h != NULL
6107 && (!info->symbolic
6108 || h->root.type == bfd_link_hash_defweak
6109 || !h->def_regular))))
6110 || (ELIMINATE_COPY_RELOCS
6111 && !info->shared
6112 && h != NULL
6113 && (h->root.type == bfd_link_hash_defweak
6114 || !h->def_regular)))
6115 ;
6116 else
6117 return TRUE;
6118
6119 if (h != NULL)
6120 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6121 else
6122 {
6123 if (sym_sec != NULL)
6124 {
6125 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6126 pp = (struct ppc_dyn_relocs **) vpp;
6127 }
6128 else
6129 {
6130 void *vpp = &elf_section_data (sec)->local_dynrel;
6131 pp = (struct ppc_dyn_relocs **) vpp;
6132 }
6133
6134 /* elf_gc_sweep may have already removed all dyn relocs associated
6135 with local syms for a given section. Don't report a dynreloc
6136 miscount. */
6137 if (*pp == NULL)
6138 return TRUE;
6139 }
6140
6141 while ((p = *pp) != NULL)
6142 {
6143 if (p->sec == sec)
6144 {
6145 if (!MUST_BE_DYN_RELOC (r_type))
6146 p->pc_count -= 1;
6147 p->count -= 1;
6148 if (p->count == 0)
6149 *pp = p->next;
6150 return TRUE;
6151 }
6152 pp = &p->next;
6153 }
6154
6155 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6156 sec->owner, sec);
6157 bfd_set_error (bfd_error_bad_value);
6158 return FALSE;
6159}
6160
6161/* Remove unused Official Procedure Descriptor entries. Currently we
6162 only remove those associated with functions in discarded link-once
6163 sections, or weakly defined functions that have been overridden. It
6164 would be possible to remove many more entries for statically linked
6165 applications. */
6166
6167bfd_boolean
6168ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6169 bfd_boolean no_opd_opt,
6170 bfd_boolean non_overlapping)
6171{
6172 bfd *ibfd;
6173 bfd_boolean some_edited = FALSE;
6174 asection *need_pad = NULL;
6175
6176 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6177 {
6178 asection *sec;
6179 Elf_Internal_Rela *relstart, *rel, *relend;
6180 Elf_Internal_Shdr *symtab_hdr;
6181 Elf_Internal_Sym *local_syms;
6182 struct elf_link_hash_entry **sym_hashes;
6183 bfd_vma offset;
6184 bfd_size_type amt;
6185 long *opd_adjust;
6186 bfd_boolean need_edit, add_aux_fields;
6187 bfd_size_type cnt_16b = 0;
6188
6189 sec = bfd_get_section_by_name (ibfd, ".opd");
6190 if (sec == NULL || sec->size == 0)
6191 continue;
6192
6193 amt = sec->size * sizeof (long) / 8;
6194 opd_adjust = get_opd_info (sec);
6195 if (opd_adjust == NULL)
6196 {
6197 /* check_relocs hasn't been called. Must be a ld -r link
6198 or --just-symbols object. */
6199 opd_adjust = bfd_alloc (obfd, amt);
6200 if (opd_adjust == NULL)
6201 return FALSE;
6202 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
6203 }
6204 memset (opd_adjust, 0, amt);
6205
6206 if (no_opd_opt)
6207 continue;
6208
6209 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6210 continue;
6211
6212 if (sec->output_section == bfd_abs_section_ptr)
6213 continue;
6214
6215 /* Look through the section relocs. */
6216 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6217 continue;
6218
6219 local_syms = NULL;
6220 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6221 sym_hashes = elf_sym_hashes (ibfd);
6222
6223 /* Read the relocations. */
6224 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6225 info->keep_memory);
6226 if (relstart == NULL)
6227 return FALSE;
6228
6229 /* First run through the relocs to check they are sane, and to
6230 determine whether we need to edit this opd section. */
6231 need_edit = FALSE;
6232 need_pad = sec;
6233 offset = 0;
6234 relend = relstart + sec->reloc_count;
6235 for (rel = relstart; rel < relend; )
6236 {
6237 enum elf_ppc64_reloc_type r_type;
6238 unsigned long r_symndx;
6239 asection *sym_sec;
6240 struct elf_link_hash_entry *h;
6241 Elf_Internal_Sym *sym;
6242
6243 /* .opd contains a regular array of 16 or 24 byte entries. We're
6244 only interested in the reloc pointing to a function entry
6245 point. */
6246 if (rel->r_offset != offset
6247 || rel + 1 >= relend
6248 || (rel + 1)->r_offset != offset + 8)
6249 {
6250 /* If someone messes with .opd alignment then after a
6251 "ld -r" we might have padding in the middle of .opd.
6252 Also, there's nothing to prevent someone putting
6253 something silly in .opd with the assembler. No .opd
6254 optimization for them! */
6255 broken_opd:
6256 (*_bfd_error_handler)
6257 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6258 need_edit = FALSE;
6259 break;
6260 }
6261
6262 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6263 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6264 {
6265 (*_bfd_error_handler)
6266 (_("%B: unexpected reloc type %u in .opd section"),
6267 ibfd, r_type);
6268 need_edit = FALSE;
6269 break;
6270 }
6271
6272 r_symndx = ELF64_R_SYM (rel->r_info);
6273 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6274 r_symndx, ibfd))
6275 goto error_ret;
6276
6277 if (sym_sec == NULL || sym_sec->owner == NULL)
6278 {
6279 const char *sym_name;
6280 if (h != NULL)
6281 sym_name = h->root.root.string;
6282 else
6283 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6284 sym_sec);
6285
6286 (*_bfd_error_handler)
6287 (_("%B: undefined sym `%s' in .opd section"),
6288 ibfd, sym_name);
6289 need_edit = FALSE;
6290 break;
6291 }
6292
6293 /* opd entries are always for functions defined in the
6294 current input bfd. If the symbol isn't defined in the
6295 input bfd, then we won't be using the function in this
6296 bfd; It must be defined in a linkonce section in another
6297 bfd, or is weak. It's also possible that we are
6298 discarding the function due to a linker script /DISCARD/,
6299 which we test for via the output_section. */
6300 if (sym_sec->owner != ibfd
6301 || sym_sec->output_section == bfd_abs_section_ptr)
6302 need_edit = TRUE;
6303
6304 rel += 2;
6305 if (rel == relend
6306 || (rel + 1 == relend && rel->r_offset == offset + 16))
6307 {
6308 if (sec->size == offset + 24)
6309 {
6310 need_pad = NULL;
6311 break;
6312 }
6313 if (rel == relend && sec->size == offset + 16)
6314 {
6315 cnt_16b++;
6316 break;
6317 }
6318 goto broken_opd;
6319 }
6320
6321 if (rel->r_offset == offset + 24)
6322 offset += 24;
6323 else if (rel->r_offset != offset + 16)
6324 goto broken_opd;
6325 else if (rel + 1 < relend
6326 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6327 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6328 {
6329 offset += 16;
6330 cnt_16b++;
6331 }
6332 else if (rel + 2 < relend
6333 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6334 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6335 {
6336 offset += 24;
6337 rel += 1;
6338 }
6339 else
6340 goto broken_opd;
6341 }
6342
6343 add_aux_fields = non_overlapping && cnt_16b > 0;
6344
6345 if (need_edit || add_aux_fields)
6346 {
6347 Elf_Internal_Rela *write_rel;
6348 bfd_byte *rptr, *wptr;
6349 bfd_byte *new_contents = NULL;
6350 bfd_boolean skip;
6351 long opd_ent_size;
6352
6353 /* This seems a waste of time as input .opd sections are all
6354 zeros as generated by gcc, but I suppose there's no reason
6355 this will always be so. We might start putting something in
6356 the third word of .opd entries. */
6357 if ((sec->flags & SEC_IN_MEMORY) == 0)
6358 {
6359 bfd_byte *loc;
6360 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6361 {
6362 if (loc != NULL)
6363 free (loc);
6364 error_ret:
6365 if (local_syms != NULL
6366 && symtab_hdr->contents != (unsigned char *) local_syms)
6367 free (local_syms);
6368 if (elf_section_data (sec)->relocs != relstart)
6369 free (relstart);
6370 return FALSE;
6371 }
6372 sec->contents = loc;
6373 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6374 }
6375
6376 elf_section_data (sec)->relocs = relstart;
6377
6378 new_contents = sec->contents;
6379 if (add_aux_fields)
6380 {
6381 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6382 if (new_contents == NULL)
6383 return FALSE;
6384 need_pad = FALSE;
6385 }
6386 wptr = new_contents;
6387 rptr = sec->contents;
6388
6389 write_rel = relstart;
6390 skip = FALSE;
6391 offset = 0;
6392 opd_ent_size = 0;
6393 for (rel = relstart; rel < relend; rel++)
6394 {
6395 unsigned long r_symndx;
6396 asection *sym_sec;
6397 struct elf_link_hash_entry *h;
6398 Elf_Internal_Sym *sym;
6399
6400 r_symndx = ELF64_R_SYM (rel->r_info);
6401 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6402 r_symndx, ibfd))
6403 goto error_ret;
6404
6405 if (rel->r_offset == offset)
6406 {
6407 struct ppc_link_hash_entry *fdh = NULL;
6408
6409 /* See if the .opd entry is full 24 byte or
6410 16 byte (with fd_aux entry overlapped with next
6411 fd_func). */
6412 opd_ent_size = 24;
6413 if ((rel + 2 == relend && sec->size == offset + 16)
6414 || (rel + 3 < relend
6415 && rel[2].r_offset == offset + 16
6416 && rel[3].r_offset == offset + 24
6417 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6418 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6419 opd_ent_size = 16;
6420
6421 if (h != NULL
6422 && h->root.root.string[0] == '.')
6423 {
6424 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6425 ppc_hash_table (info));
6426 if (fdh != NULL
6427 && fdh->elf.root.type != bfd_link_hash_defined
6428 && fdh->elf.root.type != bfd_link_hash_defweak)
6429 fdh = NULL;
6430 }
6431
6432 skip = (sym_sec->owner != ibfd
6433 || sym_sec->output_section == bfd_abs_section_ptr);
6434 if (skip)
6435 {
6436 if (fdh != NULL && sym_sec->owner == ibfd)
6437 {
6438 /* Arrange for the function descriptor sym
6439 to be dropped. */
6440 fdh->elf.root.u.def.value = 0;
6441 fdh->elf.root.u.def.section = sym_sec;
6442 }
6443 opd_adjust[rel->r_offset / 8] = -1;
6444 }
6445 else
6446 {
6447 /* We'll be keeping this opd entry. */
6448
6449 if (fdh != NULL)
6450 {
6451 /* Redefine the function descriptor symbol to
6452 this location in the opd section. It is
6453 necessary to update the value here rather
6454 than using an array of adjustments as we do
6455 for local symbols, because various places
6456 in the generic ELF code use the value
6457 stored in u.def.value. */
6458 fdh->elf.root.u.def.value = wptr - new_contents;
6459 fdh->adjust_done = 1;
6460 }
6461
6462 /* Local syms are a bit tricky. We could
6463 tweak them as they can be cached, but
6464 we'd need to look through the local syms
6465 for the function descriptor sym which we
6466 don't have at the moment. So keep an
6467 array of adjustments. */
6468 opd_adjust[rel->r_offset / 8]
6469 = (wptr - new_contents) - (rptr - sec->contents);
6470
6471 if (wptr != rptr)
6472 memcpy (wptr, rptr, opd_ent_size);
6473 wptr += opd_ent_size;
6474 if (add_aux_fields && opd_ent_size == 16)
6475 {
6476 memset (wptr, '\0', 8);
6477 wptr += 8;
6478 }
6479 }
6480 rptr += opd_ent_size;
6481 offset += opd_ent_size;
6482 }
6483
6484 if (skip)
6485 {
6486 if (!NO_OPD_RELOCS
6487 && !info->relocatable
6488 && !dec_dynrel_count (rel->r_info, sec, info,
6489 NULL, h, sym_sec))
6490 goto error_ret;
6491 }
6492 else
6493 {
6494 /* We need to adjust any reloc offsets to point to the
6495 new opd entries. While we're at it, we may as well
6496 remove redundant relocs. */
6497 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6498 if (write_rel != rel)
6499 memcpy (write_rel, rel, sizeof (*rel));
6500 ++write_rel;
6501 }
6502 }
6503
6504 sec->size = wptr - new_contents;
6505 sec->reloc_count = write_rel - relstart;
6506 if (add_aux_fields)
6507 {
6508 free (sec->contents);
6509 sec->contents = new_contents;
6510 }
6511
6512 /* Fudge the size too, as this is used later in
6513 elf_bfd_final_link if we are emitting relocs. */
6514 elf_section_data (sec)->rel_hdr.sh_size
6515 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6516 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6517 some_edited = TRUE;
6518 }
6519 else if (elf_section_data (sec)->relocs != relstart)
6520 free (relstart);
6521
6522 if (local_syms != NULL
6523 && symtab_hdr->contents != (unsigned char *) local_syms)
6524 {
6525 if (!info->keep_memory)
6526 free (local_syms);
6527 else
6528 symtab_hdr->contents = (unsigned char *) local_syms;
6529 }
6530 }
6531
6532 if (some_edited)
6533 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6534
6535 /* If we are doing a final link and the last .opd entry is just 16 byte
6536 long, add a 8 byte padding after it. */
6537 if (need_pad != NULL && !info->relocatable)
6538 {
6539 bfd_byte *p;
6540
6541 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6542 {
6543 BFD_ASSERT (need_pad->size > 0);
6544
6545 p = bfd_malloc (need_pad->size + 8);
6546 if (p == NULL)
6547 return FALSE;
6548
6549 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6550 p, 0, need_pad->size))
6551 return FALSE;
6552
6553 need_pad->contents = p;
6554 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6555 }
6556 else
6557 {
6558 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6559 if (p == NULL)
6560 return FALSE;
6561
6562 need_pad->contents = p;
6563 }
6564
6565 memset (need_pad->contents + need_pad->size, 0, 8);
6566 need_pad->size += 8;
6567 }
6568
6569 return TRUE;
6570}
6571
6572/* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6573
6574asection *
6575ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6576{
6577 struct ppc_link_hash_table *htab;
6578
6579 htab = ppc_hash_table (info);
6580 if (htab->tls_get_addr != NULL)
6581 {
6582 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6583
6584 while (h->elf.root.type == bfd_link_hash_indirect
6585 || h->elf.root.type == bfd_link_hash_warning)
6586 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6587
6588 htab->tls_get_addr = h;
6589
6590 if (htab->tls_get_addr_fd == NULL
6591 && h->oh != NULL
6592 && h->oh->is_func_descriptor
6593 && (h->oh->elf.root.type == bfd_link_hash_defined
6594 || h->oh->elf.root.type == bfd_link_hash_defweak))
6595 htab->tls_get_addr_fd = h->oh;
6596 }
6597
6598 if (htab->tls_get_addr_fd != NULL)
6599 {
6600 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6601
6602 while (h->elf.root.type == bfd_link_hash_indirect
6603 || h->elf.root.type == bfd_link_hash_warning)
6604 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6605
6606 htab->tls_get_addr_fd = h;
6607 }
6608
6609 return _bfd_elf_tls_setup (obfd, info);
6610}
6611
6612/* Run through all the TLS relocs looking for optimization
6613 opportunities. The linker has been hacked (see ppc64elf.em) to do
6614 a preliminary section layout so that we know the TLS segment
6615 offsets. We can't optimize earlier because some optimizations need
6616 to know the tp offset, and we need to optimize before allocating
6617 dynamic relocations. */
6618
6619bfd_boolean
6620ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6621{
6622 bfd *ibfd;
6623 asection *sec;
6624 struct ppc_link_hash_table *htab;
6625
6626 if (info->relocatable || info->shared)
6627 return TRUE;
6628
6629 htab = ppc_hash_table (info);
6630 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6631 {
6632 Elf_Internal_Sym *locsyms = NULL;
6633
6634 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6635 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6636 {
6637 Elf_Internal_Rela *relstart, *rel, *relend;
6638 int expecting_tls_get_addr;
6639
6640 /* Read the relocations. */
6641 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6642 info->keep_memory);
6643 if (relstart == NULL)
6644 return FALSE;
6645
6646 expecting_tls_get_addr = 0;
6647 relend = relstart + sec->reloc_count;
6648 for (rel = relstart; rel < relend; rel++)
6649 {
6650 enum elf_ppc64_reloc_type r_type;
6651 unsigned long r_symndx;
6652 struct elf_link_hash_entry *h;
6653 Elf_Internal_Sym *sym;
6654 asection *sym_sec;
6655 char *tls_mask;
6656 char tls_set, tls_clear, tls_type = 0;
6657 bfd_vma value;
6658 bfd_boolean ok_tprel, is_local;
6659
6660 r_symndx = ELF64_R_SYM (rel->r_info);
6661 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6662 r_symndx, ibfd))
6663 {
6664 err_free_rel:
6665 if (elf_section_data (sec)->relocs != relstart)
6666 free (relstart);
6667 if (locsyms != NULL
6668 && (elf_tdata (ibfd)->symtab_hdr.contents
6669 != (unsigned char *) locsyms))
6670 free (locsyms);
6671 return FALSE;
6672 }
6673
6674 if (h != NULL)
6675 {
6676 if (h->root.type != bfd_link_hash_defined
6677 && h->root.type != bfd_link_hash_defweak)
6678 continue;
6679 value = h->root.u.def.value;
6680 }
6681 else
6682 /* Symbols referenced by TLS relocs must be of type
6683 STT_TLS. So no need for .opd local sym adjust. */
6684 value = sym->st_value;
6685
6686 ok_tprel = FALSE;
6687 is_local = FALSE;
6688 if (h == NULL
6689 || !h->def_dynamic)
6690 {
6691 is_local = TRUE;
6692 value += sym_sec->output_offset;
6693 value += sym_sec->output_section->vma;
6694 value -= htab->elf.tls_sec->vma;
6695 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6696 < (bfd_vma) 1 << 32);
6697 }
6698
6699 r_type = ELF64_R_TYPE (rel->r_info);
6700 switch (r_type)
6701 {
6702 case R_PPC64_GOT_TLSLD16:
6703 case R_PPC64_GOT_TLSLD16_LO:
6704 case R_PPC64_GOT_TLSLD16_HI:
6705 case R_PPC64_GOT_TLSLD16_HA:
6706 /* These relocs should never be against a symbol
6707 defined in a shared lib. Leave them alone if
6708 that turns out to be the case. */
6709 ppc64_tlsld_got (ibfd)->refcount -= 1;
6710 if (!is_local)
6711 continue;
6712
6713 /* LD -> LE */
6714 tls_set = 0;
6715 tls_clear = TLS_LD;
6716 tls_type = TLS_TLS | TLS_LD;
6717 expecting_tls_get_addr = 1;
6718 break;
6719
6720 case R_PPC64_GOT_TLSGD16:
6721 case R_PPC64_GOT_TLSGD16_LO:
6722 case R_PPC64_GOT_TLSGD16_HI:
6723 case R_PPC64_GOT_TLSGD16_HA:
6724 if (ok_tprel)
6725 /* GD -> LE */
6726 tls_set = 0;
6727 else
6728 /* GD -> IE */
6729 tls_set = TLS_TLS | TLS_TPRELGD;
6730 tls_clear = TLS_GD;
6731 tls_type = TLS_TLS | TLS_GD;
6732 expecting_tls_get_addr = 1;
6733 break;
6734
6735 case R_PPC64_GOT_TPREL16_DS:
6736 case R_PPC64_GOT_TPREL16_LO_DS:
6737 case R_PPC64_GOT_TPREL16_HI:
6738 case R_PPC64_GOT_TPREL16_HA:
6739 expecting_tls_get_addr = 0;
6740 if (ok_tprel)
6741 {
6742 /* IE -> LE */
6743 tls_set = 0;
6744 tls_clear = TLS_TPREL;
6745 tls_type = TLS_TLS | TLS_TPREL;
6746 break;
6747 }
6748 else
6749 continue;
6750
6751 case R_PPC64_REL14:
6752 case R_PPC64_REL14_BRTAKEN:
6753 case R_PPC64_REL14_BRNTAKEN:
6754 case R_PPC64_REL24:
6755 if (h != NULL
6756 && (h == &htab->tls_get_addr->elf
6757 || h == &htab->tls_get_addr_fd->elf))
6758 {
6759 if (!expecting_tls_get_addr
6760 && rel != relstart
6761 && ((ELF64_R_TYPE (rel[-1].r_info)
6762 == R_PPC64_TOC16)
6763 || (ELF64_R_TYPE (rel[-1].r_info)
6764 == R_PPC64_TOC16_LO)))
6765 {
6766 /* Check for toc tls entries. */
6767 char *toc_tls;
6768 int retval;
6769
6770 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6771 rel - 1, ibfd);
6772 if (retval == 0)
6773 goto err_free_rel;
6774 if (toc_tls != NULL)
6775 expecting_tls_get_addr = retval > 1;
6776 }
6777
6778 if (expecting_tls_get_addr)
6779 {
6780 struct plt_entry *ent;
6781 for (ent = h->plt.plist; ent; ent = ent->next)
6782 if (ent->addend == 0)
6783 {
6784 if (ent->plt.refcount > 0)
6785 ent->plt.refcount -= 1;
6786 break;
6787 }
6788 }
6789 }
6790 expecting_tls_get_addr = 0;
6791 continue;
6792
6793 case R_PPC64_TPREL64:
6794 expecting_tls_get_addr = 0;
6795 if (ok_tprel)
6796 {
6797 /* IE -> LE */
6798 tls_set = TLS_EXPLICIT;
6799 tls_clear = TLS_TPREL;
6800 break;
6801 }
6802 else
6803 continue;
6804
6805 case R_PPC64_DTPMOD64:
6806 expecting_tls_get_addr = 0;
6807 if (rel + 1 < relend
6808 && (rel[1].r_info
6809 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6810 && rel[1].r_offset == rel->r_offset + 8)
6811 {
6812 if (ok_tprel)
6813 /* GD -> LE */
6814 tls_set = TLS_EXPLICIT | TLS_GD;
6815 else
6816 /* GD -> IE */
6817 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6818 tls_clear = TLS_GD;
6819 }
6820 else
6821 {
6822 if (!is_local)
6823 continue;
6824
6825 /* LD -> LE */
6826 tls_set = TLS_EXPLICIT;
6827 tls_clear = TLS_LD;
6828 }
6829 break;
6830
6831 default:
6832 expecting_tls_get_addr = 0;
6833 continue;
6834 }
6835
6836 if ((tls_set & TLS_EXPLICIT) == 0)
6837 {
6838 struct got_entry *ent;
6839
6840 /* Adjust got entry for this reloc. */
6841 if (h != NULL)
6842 ent = h->got.glist;
6843 else
6844 ent = elf_local_got_ents (ibfd)[r_symndx];
6845
6846 for (; ent != NULL; ent = ent->next)
6847 if (ent->addend == rel->r_addend
6848 && ent->owner == ibfd
6849 && ent->tls_type == tls_type)
6850 break;
6851 if (ent == NULL)
6852 abort ();
6853
6854 if (tls_set == 0)
6855 {
6856 /* We managed to get rid of a got entry. */
6857 if (ent->got.refcount > 0)
6858 ent->got.refcount -= 1;
6859 }
6860 }
6861 else
6862 {
6863 /* If we got rid of a DTPMOD/DTPREL reloc pair then
6864 we'll lose one or two dyn relocs. */
6865 if (!dec_dynrel_count (rel->r_info, sec, info,
6866 NULL, h, sym_sec))
6867 return FALSE;
6868
6869 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6870 {
6871 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
6872 NULL, h, sym_sec))
6873 return FALSE;
6874 }
6875 }
6876
6877 *tls_mask |= tls_set;
6878 *tls_mask &= ~tls_clear;
6879 }
6880
6881 if (elf_section_data (sec)->relocs != relstart)
6882 free (relstart);
6883 }
6884
6885 if (locsyms != NULL
6886 && (elf_tdata (ibfd)->symtab_hdr.contents
6887 != (unsigned char *) locsyms))
6888 {
6889 if (!info->keep_memory)
6890 free (locsyms);
6891 else
6892 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6893 }
6894 }
6895 return TRUE;
6896}
6897
6898/* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6899 the values of any global symbols in a toc section that has been
6900 edited. Globals in toc sections should be a rarity, so this function
6901 sets a flag if any are found in toc sections other than the one just
6902 edited, so that futher hash table traversals can be avoided. */
6903
6904struct adjust_toc_info
6905{
6906 asection *toc;
6907 unsigned long *skip;
6908 bfd_boolean global_toc_syms;
6909};
6910
6911static bfd_boolean
6912adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6913{
6914 struct ppc_link_hash_entry *eh;
6915 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6916
6917 if (h->root.type == bfd_link_hash_indirect)
6918 return TRUE;
6919
6920 if (h->root.type == bfd_link_hash_warning)
6921 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6922
6923 if (h->root.type != bfd_link_hash_defined
6924 && h->root.type != bfd_link_hash_defweak)
6925 return TRUE;
6926
6927 eh = (struct ppc_link_hash_entry *) h;
6928 if (eh->adjust_done)
6929 return TRUE;
6930
6931 if (eh->elf.root.u.def.section == toc_inf->toc)
6932 {
6933 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6934 if (skip != (unsigned long) -1)
6935 eh->elf.root.u.def.value -= skip;
6936 else
6937 {
6938 (*_bfd_error_handler)
6939 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6940 eh->elf.root.u.def.section = &bfd_abs_section;
6941 eh->elf.root.u.def.value = 0;
6942 }
6943 eh->adjust_done = 1;
6944 }
6945 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6946 toc_inf->global_toc_syms = TRUE;
6947
6948 return TRUE;
6949}
6950
6951/* Examine all relocs referencing .toc sections in order to remove
6952 unused .toc entries. */
6953
6954bfd_boolean
6955ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6956{
6957 bfd *ibfd;
6958 struct adjust_toc_info toc_inf;
6959
6960 toc_inf.global_toc_syms = TRUE;
6961 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6962 {
6963 asection *toc, *sec;
6964 Elf_Internal_Shdr *symtab_hdr;
6965 Elf_Internal_Sym *local_syms;
6966 struct elf_link_hash_entry **sym_hashes;
6967 Elf_Internal_Rela *relstart, *rel;
6968 unsigned long *skip, *drop;
6969 unsigned char *used;
6970 unsigned char *keep, last, some_unused;
6971
6972 toc = bfd_get_section_by_name (ibfd, ".toc");
6973 if (toc == NULL
6974 || toc->size == 0
6975 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6976 || elf_discarded_section (toc))
6977 continue;
6978
6979 local_syms = NULL;
6980 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6981 sym_hashes = elf_sym_hashes (ibfd);
6982
6983 /* Look at sections dropped from the final link. */
6984 skip = NULL;
6985 relstart = NULL;
6986 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6987 {
6988 if (sec->reloc_count == 0
6989 || !elf_discarded_section (sec)
6990 || get_opd_info (sec)
6991 || (sec->flags & SEC_ALLOC) == 0
6992 || (sec->flags & SEC_DEBUGGING) != 0)
6993 continue;
6994
6995 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6996 if (relstart == NULL)
6997 goto error_ret;
6998
6999 /* Run through the relocs to see which toc entries might be
7000 unused. */
7001 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7002 {
7003 enum elf_ppc64_reloc_type r_type;
7004 unsigned long r_symndx;
7005 asection *sym_sec;
7006 struct elf_link_hash_entry *h;
7007 Elf_Internal_Sym *sym;
7008 bfd_vma val;
7009
7010 r_type = ELF64_R_TYPE (rel->r_info);
7011 switch (r_type)
7012 {
7013 default:
7014 continue;
7015
7016 case R_PPC64_TOC16:
7017 case R_PPC64_TOC16_LO:
7018 case R_PPC64_TOC16_HI:
7019 case R_PPC64_TOC16_HA:
7020 case R_PPC64_TOC16_DS:
7021 case R_PPC64_TOC16_LO_DS:
7022 break;
7023 }
7024
7025 r_symndx = ELF64_R_SYM (rel->r_info);
7026 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7027 r_symndx, ibfd))
7028 goto error_ret;
7029
7030 if (sym_sec != toc)
7031 continue;
7032
7033 if (h != NULL)
7034 val = h->root.u.def.value;
7035 else
7036 val = sym->st_value;
7037 val += rel->r_addend;
7038
7039 if (val >= toc->size)
7040 continue;
7041
7042 /* Anything in the toc ought to be aligned to 8 bytes.
7043 If not, don't mark as unused. */
7044 if (val & 7)
7045 continue;
7046
7047 if (skip == NULL)
7048 {
7049 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7050 if (skip == NULL)
7051 goto error_ret;
7052 }
7053
7054 skip[val >> 3] = 1;
7055 }
7056
7057 if (elf_section_data (sec)->relocs != relstart)
7058 free (relstart);
7059 }
7060
7061 if (skip == NULL)
7062 continue;
7063
7064 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7065 if (used == NULL)
7066 {
7067 error_ret:
7068 if (local_syms != NULL
7069 && symtab_hdr->contents != (unsigned char *) local_syms)
7070 free (local_syms);
7071 if (sec != NULL
7072 && relstart != NULL
7073 && elf_section_data (sec)->relocs != relstart)
7074 free (relstart);
7075 if (skip != NULL)
7076 free (skip);
7077 return FALSE;
7078 }
7079
7080 /* Now check all kept sections that might reference the toc. */
7081 for (sec = ibfd->sections;
7082 sec != NULL;
7083 /* Check the toc itself last. */
7084 sec = (sec == toc ? NULL
7085 : sec->next == toc && sec->next->next ? sec->next->next
7086 : sec->next == NULL ? toc
7087 : sec->next))
7088 {
7089 int repeat;
7090
7091 if (sec->reloc_count == 0
7092 || elf_discarded_section (sec)
7093 || get_opd_info (sec)
7094 || (sec->flags & SEC_ALLOC) == 0
7095 || (sec->flags & SEC_DEBUGGING) != 0)
7096 continue;
7097
7098 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7099 if (relstart == NULL)
7100 goto error_ret;
7101
7102 /* Mark toc entries referenced as used. */
7103 repeat = 0;
7104 do
7105 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7106 {
7107 enum elf_ppc64_reloc_type r_type;
7108 unsigned long r_symndx;
7109 asection *sym_sec;
7110 struct elf_link_hash_entry *h;
7111 Elf_Internal_Sym *sym;
7112 bfd_vma val;
7113
7114 r_type = ELF64_R_TYPE (rel->r_info);
7115 switch (r_type)
7116 {
7117 case R_PPC64_TOC16:
7118 case R_PPC64_TOC16_LO:
7119 case R_PPC64_TOC16_HI:
7120 case R_PPC64_TOC16_HA:
7121 case R_PPC64_TOC16_DS:
7122 case R_PPC64_TOC16_LO_DS:
7123 /* In case we're taking addresses of toc entries. */
7124 case R_PPC64_ADDR64:
7125 break;
7126
7127 default:
7128 continue;
7129 }
7130
7131 r_symndx = ELF64_R_SYM (rel->r_info);
7132 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7133 r_symndx, ibfd))
7134 {
7135 free (used);
7136 goto error_ret;
7137 }
7138
7139 if (sym_sec != toc)
7140 continue;
7141
7142 if (h != NULL)
7143 val = h->root.u.def.value;
7144 else
7145 val = sym->st_value;
7146 val += rel->r_addend;
7147
7148 if (val >= toc->size)
7149 continue;
7150
7151 /* For the toc section, we only mark as used if
7152 this entry itself isn't unused. */
7153 if (sec == toc
7154 && !used[val >> 3]
7155 && (used[rel->r_offset >> 3]
7156 || !skip[rel->r_offset >> 3]))
7157 /* Do all the relocs again, to catch reference
7158 chains. */
7159 repeat = 1;
7160
7161 used[val >> 3] = 1;
7162 }
7163 while (repeat);
7164 }
7165
7166 /* Merge the used and skip arrays. Assume that TOC
7167 doublewords not appearing as either used or unused belong
7168 to to an entry more than one doubleword in size. */
7169 for (drop = skip, keep = used, last = 0, some_unused = 0;
7170 drop < skip + (toc->size + 7) / 8;
7171 ++drop, ++keep)
7172 {
7173 if (*keep)
7174 {
7175 *drop = 0;
7176 last = 0;
7177 }
7178 else if (*drop)
7179 {
7180 some_unused = 1;
7181 last = 1;
7182 }
7183 else
7184 *drop = last;
7185 }
7186
7187 free (used);
7188
7189 if (some_unused)
7190 {
7191 bfd_byte *contents, *src;
7192 unsigned long off;
7193
7194 /* Shuffle the toc contents, and at the same time convert the
7195 skip array from booleans into offsets. */
7196 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7197 goto error_ret;
7198
7199 elf_section_data (toc)->this_hdr.contents = contents;
7200
7201 for (src = contents, off = 0, drop = skip;
7202 src < contents + toc->size;
7203 src += 8, ++drop)
7204 {
7205 if (*drop)
7206 {
7207 *drop = (unsigned long) -1;
7208 off += 8;
7209 }
7210 else if (off != 0)
7211 {
7212 *drop = off;
7213 memcpy (src - off, src, 8);
7214 }
7215 }
7216 toc->rawsize = toc->size;
7217 toc->size = src - contents - off;
7218
7219 if (toc->reloc_count != 0)
7220 {
7221 Elf_Internal_Rela *wrel;
7222 bfd_size_type sz;
7223
7224 /* Read toc relocs. */
7225 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7226 TRUE);
7227 if (relstart == NULL)
7228 goto error_ret;
7229
7230 /* Remove unused toc relocs, and adjust those we keep. */
7231 wrel = relstart;
7232 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7233 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7234 {
7235 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7236 wrel->r_info = rel->r_info;
7237 wrel->r_addend = rel->r_addend;
7238 ++wrel;
7239 }
7240 else if (!dec_dynrel_count (rel->r_info, toc, info,
7241 &local_syms, NULL, NULL))
7242 goto error_ret;
7243
7244 toc->reloc_count = wrel - relstart;
7245 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7246 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7247 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7248 }
7249
7250 /* Adjust addends for relocs against the toc section sym. */
7251 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7252 {
7253 if (sec->reloc_count == 0
7254 || elf_discarded_section (sec))
7255 continue;
7256
7257 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7258 TRUE);
7259 if (relstart == NULL)
7260 goto error_ret;
7261
7262 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7263 {
7264 enum elf_ppc64_reloc_type r_type;
7265 unsigned long r_symndx;
7266 asection *sym_sec;
7267 struct elf_link_hash_entry *h;
7268 Elf_Internal_Sym *sym;
7269
7270 r_type = ELF64_R_TYPE (rel->r_info);
7271 switch (r_type)
7272 {
7273 default:
7274 continue;
7275
7276 case R_PPC64_TOC16:
7277 case R_PPC64_TOC16_LO:
7278 case R_PPC64_TOC16_HI:
7279 case R_PPC64_TOC16_HA:
7280 case R_PPC64_TOC16_DS:
7281 case R_PPC64_TOC16_LO_DS:
7282 case R_PPC64_ADDR64:
7283 break;
7284 }
7285
7286 r_symndx = ELF64_R_SYM (rel->r_info);
7287 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7288 r_symndx, ibfd))
7289 goto error_ret;
7290
7291 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7292 continue;
7293
7294 rel->r_addend -= skip[rel->r_addend >> 3];
7295 }
7296 }
7297
7298 /* We shouldn't have local or global symbols defined in the TOC,
7299 but handle them anyway. */
7300 if (local_syms != NULL)
7301 {
7302 Elf_Internal_Sym *sym;
7303
7304 for (sym = local_syms;
7305 sym < local_syms + symtab_hdr->sh_info;
7306 ++sym)
7307 if (sym->st_shndx != SHN_UNDEF
7308 && (sym->st_shndx < SHN_LORESERVE
7309 || sym->st_shndx > SHN_HIRESERVE)
7310 && sym->st_value != 0
7311 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7312 {
7313 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7314 sym->st_value -= skip[sym->st_value >> 3];
7315 else
7316 {
7317 (*_bfd_error_handler)
7318 (_("%s defined in removed toc entry"),
7319 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7320 NULL));
7321 sym->st_value = 0;
7322 sym->st_shndx = SHN_ABS;
7323 }
7324 symtab_hdr->contents = (unsigned char *) local_syms;
7325 }
7326 }
7327
7328 /* Finally, adjust any global syms defined in the toc. */
7329 if (toc_inf.global_toc_syms)
7330 {
7331 toc_inf.toc = toc;
7332 toc_inf.skip = skip;
7333 toc_inf.global_toc_syms = FALSE;
7334 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7335 &toc_inf);
7336 }
7337 }
7338
7339 if (local_syms != NULL
7340 && symtab_hdr->contents != (unsigned char *) local_syms)
7341 {
7342 if (!info->keep_memory)
7343 free (local_syms);
7344 else
7345 symtab_hdr->contents = (unsigned char *) local_syms;
7346 }
7347 free (skip);
7348 }
7349
7350 return TRUE;
7351}
7352
7353/* Allocate space in .plt, .got and associated reloc sections for
7354 dynamic relocs. */
7355
7356static bfd_boolean
7357allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7358{
7359 struct bfd_link_info *info;
7360 struct ppc_link_hash_table *htab;
7361 asection *s;
7362 struct ppc_link_hash_entry *eh;
7363 struct ppc_dyn_relocs *p;
7364 struct got_entry *gent;
7365
7366 if (h->root.type == bfd_link_hash_indirect)
7367 return TRUE;
7368
7369 if (h->root.type == bfd_link_hash_warning)
7370 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7371
7372 info = (struct bfd_link_info *) inf;
7373 htab = ppc_hash_table (info);
7374
7375 if (htab->elf.dynamic_sections_created
7376 && h->dynindx != -1
7377 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7378 {
7379 struct plt_entry *pent;
7380 bfd_boolean doneone = FALSE;
7381 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7382 if (pent->plt.refcount > 0)
7383 {
7384 /* If this is the first .plt entry, make room for the special
7385 first entry. */
7386 s = htab->plt;
7387 if (s->size == 0)
7388 s->size += PLT_INITIAL_ENTRY_SIZE;
7389
7390 pent->plt.offset = s->size;
7391
7392 /* Make room for this entry. */
7393 s->size += PLT_ENTRY_SIZE;
7394
7395 /* Make room for the .glink code. */
7396 s = htab->glink;
7397 if (s->size == 0)
7398 s->size += GLINK_CALL_STUB_SIZE;
7399 /* We need bigger stubs past index 32767. */
7400 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7401 s->size += 4;
7402 s->size += 2*4;
7403
7404 /* We also need to make an entry in the .rela.plt section. */
7405 s = htab->relplt;
7406 s->size += sizeof (Elf64_External_Rela);
7407 doneone = TRUE;
7408 }
7409 else
7410 pent->plt.offset = (bfd_vma) -1;
7411 if (!doneone)
7412 {
7413 h->plt.plist = NULL;
7414 h->needs_plt = 0;
7415 }
7416 }
7417 else
7418 {
7419 h->plt.plist = NULL;
7420 h->needs_plt = 0;
7421 }
7422
7423 eh = (struct ppc_link_hash_entry *) h;
7424 /* Run through the TLS GD got entries first if we're changing them
7425 to TPREL. */
7426 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7427 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7428 if (gent->got.refcount > 0
7429 && (gent->tls_type & TLS_GD) != 0)
7430 {
7431 /* This was a GD entry that has been converted to TPREL. If
7432 there happens to be a TPREL entry we can use that one. */
7433 struct got_entry *ent;
7434 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7435 if (ent->got.refcount > 0
7436 && (ent->tls_type & TLS_TPREL) != 0
7437 && ent->addend == gent->addend
7438 && ent->owner == gent->owner)
7439 {
7440 gent->got.refcount = 0;
7441 break;
7442 }
7443
7444 /* If not, then we'll be using our own TPREL entry. */
7445 if (gent->got.refcount != 0)
7446 gent->tls_type = TLS_TLS | TLS_TPREL;
7447 }
7448
7449 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7450 if (gent->got.refcount > 0)
7451 {
7452 bfd_boolean dyn;
7453
7454 /* Make sure this symbol is output as a dynamic symbol.
7455 Undefined weak syms won't yet be marked as dynamic,
7456 nor will all TLS symbols. */
7457 if (h->dynindx == -1
7458 && !h->forced_local)
7459 {
7460 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7461 return FALSE;
7462 }
7463
7464 if ((gent->tls_type & TLS_LD) != 0
7465 && !h->def_dynamic)
7466 {
7467 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7468 continue;
7469 }
7470
7471 s = ppc64_elf_tdata (gent->owner)->got;
7472 gent->got.offset = s->size;
7473 s->size
7474 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7475 dyn = htab->elf.dynamic_sections_created;
7476 if ((info->shared
7477 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7478 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7479 || h->root.type != bfd_link_hash_undefweak))
7480 ppc64_elf_tdata (gent->owner)->relgot->size
7481 += (gent->tls_type & eh->tls_mask & TLS_GD
7482 ? 2 * sizeof (Elf64_External_Rela)
7483 : sizeof (Elf64_External_Rela));
7484 }
7485 else
7486 gent->got.offset = (bfd_vma) -1;
7487
7488 if (eh->dyn_relocs == NULL)
7489 return TRUE;
7490
7491 /* In the shared -Bsymbolic case, discard space allocated for
7492 dynamic pc-relative relocs against symbols which turn out to be
7493 defined in regular objects. For the normal shared case, discard
7494 space for relocs that have become local due to symbol visibility
7495 changes. */
7496
7497 if (info->shared)
7498 {
7499 /* Relocs that use pc_count are those that appear on a call insn,
7500 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7501 generated via assembly. We want calls to protected symbols to
7502 resolve directly to the function rather than going via the plt.
7503 If people want function pointer comparisons to work as expected
7504 then they should avoid writing weird assembly. */
7505 if (SYMBOL_CALLS_LOCAL (info, h))
7506 {
7507 struct ppc_dyn_relocs **pp;
7508
7509 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7510 {
7511 p->count -= p->pc_count;
7512 p->pc_count = 0;
7513 if (p->count == 0)
7514 *pp = p->next;
7515 else
7516 pp = &p->next;
7517 }
7518 }
7519
7520 /* Also discard relocs on undefined weak syms with non-default
7521 visibility. */
7522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7523 && h->root.type == bfd_link_hash_undefweak)
7524 eh->dyn_relocs = NULL;
7525 }
7526 else if (ELIMINATE_COPY_RELOCS)
7527 {
7528 /* For the non-shared case, discard space for relocs against
7529 symbols which turn out to need copy relocs or are not
7530 dynamic. */
7531
7532 if (!h->non_got_ref
7533 && h->def_dynamic
7534 && !h->def_regular)
7535 {
7536 /* Make sure this symbol is output as a dynamic symbol.
7537 Undefined weak syms won't yet be marked as dynamic. */
7538 if (h->dynindx == -1
7539 && !h->forced_local)
7540 {
7541 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7542 return FALSE;
7543 }
7544
7545 /* If that succeeded, we know we'll be keeping all the
7546 relocs. */
7547 if (h->dynindx != -1)
7548 goto keep;
7549 }
7550
7551 eh->dyn_relocs = NULL;
7552
7553 keep: ;
7554 }
7555
7556 /* Finally, allocate space. */
7557 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7558 {
7559 asection *sreloc = elf_section_data (p->sec)->sreloc;
7560 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7561 }
7562
7563 return TRUE;
7564}
7565
7566/* Find any dynamic relocs that apply to read-only sections. */
7567
7568static bfd_boolean
7569readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7570{
7571 struct ppc_link_hash_entry *eh;
7572 struct ppc_dyn_relocs *p;
7573
7574 if (h->root.type == bfd_link_hash_warning)
7575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7576
7577 eh = (struct ppc_link_hash_entry *) h;
7578 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7579 {
7580 asection *s = p->sec->output_section;
7581
7582 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7583 {
7584 struct bfd_link_info *info = inf;
7585
7586 info->flags |= DF_TEXTREL;
7587
7588 /* Not an error, just cut short the traversal. */
7589 return FALSE;
7590 }
7591 }
7592 return TRUE;
7593}
7594
7595/* Set the sizes of the dynamic sections. */
7596
7597static bfd_boolean
7598ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7599 struct bfd_link_info *info)
7600{
7601 struct ppc_link_hash_table *htab;
7602 bfd *dynobj;
7603 asection *s;
7604 bfd_boolean relocs;
7605 bfd *ibfd;
7606
7607 htab = ppc_hash_table (info);
7608 dynobj = htab->elf.dynobj;
7609 if (dynobj == NULL)
7610 abort ();
7611
7612 if (htab->elf.dynamic_sections_created)
7613 {
7614 /* Set the contents of the .interp section to the interpreter. */
7615 if (info->executable)
7616 {
7617 s = bfd_get_section_by_name (dynobj, ".interp");
7618 if (s == NULL)
7619 abort ();
7620 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7621 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7622 }
7623 }
7624
7625 /* Set up .got offsets for local syms, and space for local dynamic
7626 relocs. */
7627 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7628 {
7629 struct got_entry **lgot_ents;
7630 struct got_entry **end_lgot_ents;
7631 char *lgot_masks;
7632 bfd_size_type locsymcount;
7633 Elf_Internal_Shdr *symtab_hdr;
7634 asection *srel;
7635
7636 if (!is_ppc64_elf_target (ibfd->xvec))
7637 continue;
7638
7639 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7640 {
7641 s = ppc64_elf_tdata (ibfd)->got;
7642 ppc64_tlsld_got (ibfd)->offset = s->size;
7643 s->size += 16;
7644 if (info->shared)
7645 {
7646 srel = ppc64_elf_tdata (ibfd)->relgot;
7647 srel->size += sizeof (Elf64_External_Rela);
7648 }
7649 }
7650 else
7651 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7652
7653 for (s = ibfd->sections; s != NULL; s = s->next)
7654 {
7655 struct ppc_dyn_relocs *p;
7656
7657 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
7658 {
7659 if (!bfd_is_abs_section (p->sec)
7660 && bfd_is_abs_section (p->sec->output_section))
7661 {
7662 /* Input section has been discarded, either because
7663 it is a copy of a linkonce section or due to
7664 linker script /DISCARD/, so we'll be discarding
7665 the relocs too. */
7666 }
7667 else if (p->count != 0)
7668 {
7669 srel = elf_section_data (p->sec)->sreloc;
7670 srel->size += p->count * sizeof (Elf64_External_Rela);
7671 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7672 info->flags |= DF_TEXTREL;
7673 }
7674 }
7675 }
7676
7677 lgot_ents = elf_local_got_ents (ibfd);
7678 if (!lgot_ents)
7679 continue;
7680
7681 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7682 locsymcount = symtab_hdr->sh_info;
7683 end_lgot_ents = lgot_ents + locsymcount;
7684 lgot_masks = (char *) end_lgot_ents;
7685 s = ppc64_elf_tdata (ibfd)->got;
7686 srel = ppc64_elf_tdata (ibfd)->relgot;
7687 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7688 {
7689 struct got_entry *ent;
7690
7691 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7692 if (ent->got.refcount > 0)
7693 {
7694 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7695 {
7696 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7697 {
7698 ppc64_tlsld_got (ibfd)->offset = s->size;
7699 s->size += 16;
7700 if (info->shared)
7701 srel->size += sizeof (Elf64_External_Rela);
7702 }
7703 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7704 }
7705 else
7706 {
7707 ent->got.offset = s->size;
7708 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7709 {
7710 s->size += 16;
7711 if (info->shared)
7712 srel->size += 2 * sizeof (Elf64_External_Rela);
7713 }
7714 else
7715 {
7716 s->size += 8;
7717 if (info->shared)
7718 srel->size += sizeof (Elf64_External_Rela);
7719 }
7720 }
7721 }
7722 else
7723 ent->got.offset = (bfd_vma) -1;
7724 }
7725 }
7726
7727 /* Allocate global sym .plt and .got entries, and space for global
7728 sym dynamic relocs. */
7729 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7730
7731 /* We now have determined the sizes of the various dynamic sections.
7732 Allocate memory for them. */
7733 relocs = FALSE;
7734 for (s = dynobj->sections; s != NULL; s = s->next)
7735 {
7736 if ((s->flags & SEC_LINKER_CREATED) == 0)
7737 continue;
7738
7739 if (s == htab->brlt || s == htab->relbrlt)
7740 /* These haven't been allocated yet; don't strip. */
7741 continue;
7742 else if (s == htab->got
7743 || s == htab->plt
7744 || s == htab->glink
7745 || s == htab->dynbss)
7746 {
7747 /* Strip this section if we don't need it; see the
7748 comment below. */
7749 }
7750 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7751 {
7752 if (s->size != 0)
7753 {
7754 if (s != htab->relplt)
7755 relocs = TRUE;
7756
7757 /* We use the reloc_count field as a counter if we need
7758 to copy relocs into the output file. */
7759 s->reloc_count = 0;
7760 }
7761 }
7762 else
7763 {
7764 /* It's not one of our sections, so don't allocate space. */
7765 continue;
7766 }
7767
7768 if (s->size == 0)
7769 {
7770 /* If we don't need this section, strip it from the
7771 output file. This is mostly to handle .rela.bss and
7772 .rela.plt. We must create both sections in
7773 create_dynamic_sections, because they must be created
7774 before the linker maps input sections to output
7775 sections. The linker does that before
7776 adjust_dynamic_symbol is called, and it is that
7777 function which decides whether anything needs to go
7778 into these sections. */
7779 s->flags |= SEC_EXCLUDE;
7780 continue;
7781 }
7782
7783 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7784 continue;
7785
7786 /* Allocate memory for the section contents. We use bfd_zalloc
7787 here in case unused entries are not reclaimed before the
7788 section's contents are written out. This should not happen,
7789 but this way if it does we get a R_PPC64_NONE reloc in .rela
7790 sections instead of garbage.
7791 We also rely on the section contents being zero when writing
7792 the GOT. */
7793 s->contents = bfd_zalloc (dynobj, s->size);
7794 if (s->contents == NULL)
7795 return FALSE;
7796 }
7797
7798 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7799 {
7800 if (!is_ppc64_elf_target (ibfd->xvec))
7801 continue;
7802
7803 s = ppc64_elf_tdata (ibfd)->got;
7804 if (s != NULL && s != htab->got)
7805 {
7806 if (s->size == 0)
7807 s->flags |= SEC_EXCLUDE;
7808 else
7809 {
7810 s->contents = bfd_zalloc (ibfd, s->size);
7811 if (s->contents == NULL)
7812 return FALSE;
7813 }
7814 }
7815 s = ppc64_elf_tdata (ibfd)->relgot;
7816 if (s != NULL)
7817 {
7818 if (s->size == 0)
7819 s->flags |= SEC_EXCLUDE;
7820 else
7821 {
7822 s->contents = bfd_zalloc (ibfd, s->size);
7823 if (s->contents == NULL)
7824 return FALSE;
7825 relocs = TRUE;
7826 s->reloc_count = 0;
7827 }
7828 }
7829 }
7830
7831 if (htab->elf.dynamic_sections_created)
7832 {
7833 /* Add some entries to the .dynamic section. We fill in the
7834 values later, in ppc64_elf_finish_dynamic_sections, but we
7835 must add the entries now so that we get the correct size for
7836 the .dynamic section. The DT_DEBUG entry is filled in by the
7837 dynamic linker and used by the debugger. */
7838#define add_dynamic_entry(TAG, VAL) \
7839 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7840
7841 if (info->executable)
7842 {
7843 if (!add_dynamic_entry (DT_DEBUG, 0))
7844 return FALSE;
7845 }
7846
7847 if (htab->plt != NULL && htab->plt->size != 0)
7848 {
7849 if (!add_dynamic_entry (DT_PLTGOT, 0)
7850 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7851 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7852 || !add_dynamic_entry (DT_JMPREL, 0)
7853 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7854 return FALSE;
7855 }
7856
7857 if (NO_OPD_RELOCS)
7858 {
7859 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7860 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7861 return FALSE;
7862 }
7863
7864 if (relocs)
7865 {
7866 if (!add_dynamic_entry (DT_RELA, 0)
7867 || !add_dynamic_entry (DT_RELASZ, 0)
7868 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7869 return FALSE;
7870
7871 /* If any dynamic relocs apply to a read-only section,
7872 then we need a DT_TEXTREL entry. */
7873 if ((info->flags & DF_TEXTREL) == 0)
7874 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7875
7876 if ((info->flags & DF_TEXTREL) != 0)
7877 {
7878 if (!add_dynamic_entry (DT_TEXTREL, 0))
7879 return FALSE;
7880 }
7881 }
7882 }
7883#undef add_dynamic_entry
7884
7885 return TRUE;
7886}
7887
7888/* Determine the type of stub needed, if any, for a call. */
7889
7890static inline enum ppc_stub_type
7891ppc_type_of_stub (asection *input_sec,
7892 const Elf_Internal_Rela *rel,
7893 struct ppc_link_hash_entry **hash,
7894 bfd_vma destination)
7895{
7896 struct ppc_link_hash_entry *h = *hash;
7897 bfd_vma location;
7898 bfd_vma branch_offset;
7899 bfd_vma max_branch_offset;
7900 enum elf_ppc64_reloc_type r_type;
7901
7902 if (h != NULL)
7903 {
7904 struct ppc_link_hash_entry *fdh = h;
7905 if (fdh->oh != NULL
7906 && fdh->oh->is_func_descriptor)
7907 fdh = fdh->oh;
7908
7909 if (fdh->elf.dynindx != -1)
7910 {
7911 struct plt_entry *ent;
7912
7913 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
7914 if (ent->addend == rel->r_addend
7915 && ent->plt.offset != (bfd_vma) -1)
7916 {
7917 *hash = fdh;
7918 return ppc_stub_plt_call;
7919 }
7920 }
7921
7922 /* Here, we know we don't have a plt entry. If we don't have a
7923 either a defined function descriptor or a defined entry symbol
7924 in a regular object file, then it is pointless trying to make
7925 any other type of stub. */
7926 if (!((fdh->elf.root.type == bfd_link_hash_defined
7927 || fdh->elf.root.type == bfd_link_hash_defweak)
7928 && fdh->elf.root.u.def.section->output_section != NULL)
7929 && !((h->elf.root.type == bfd_link_hash_defined
7930 || h->elf.root.type == bfd_link_hash_defweak)
7931 && h->elf.root.u.def.section->output_section != NULL))
7932 return ppc_stub_none;
7933 }
7934
7935 /* Determine where the call point is. */
7936 location = (input_sec->output_offset
7937 + input_sec->output_section->vma
7938 + rel->r_offset);
7939
7940 branch_offset = destination - location;
7941 r_type = ELF64_R_TYPE (rel->r_info);
7942
7943 /* Determine if a long branch stub is needed. */
7944 max_branch_offset = 1 << 25;
7945 if (r_type != R_PPC64_REL24)
7946 max_branch_offset = 1 << 15;
7947
7948 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7949 /* We need a stub. Figure out whether a long_branch or plt_branch
7950 is needed later. */
7951 return ppc_stub_long_branch;
7952
7953 return ppc_stub_none;
7954}
7955
7956/* Build a .plt call stub. */
7957
7958static inline bfd_byte *
7959build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7960{
7961#define PPC_LO(v) ((v) & 0xffff)
7962#define PPC_HI(v) (((v) >> 16) & 0xffff)
7963#define PPC_HA(v) PPC_HI ((v) + 0x8000)
7964
7965 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7966 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7967 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7968 if (PPC_HA (offset + 8) != PPC_HA (offset))
7969 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7970 offset += 8;
7971 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7972 if (PPC_HA (offset + 8) != PPC_HA (offset))
7973 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7974 offset += 8;
7975 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7976 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7977 bfd_put_32 (obfd, BCTR, p), p += 4;
7978 return p;
7979}
7980
7981static bfd_boolean
7982ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7983{
7984 struct ppc_stub_hash_entry *stub_entry;
7985 struct ppc_branch_hash_entry *br_entry;
7986 struct bfd_link_info *info;
7987 struct ppc_link_hash_table *htab;
7988 bfd_byte *loc;
7989 bfd_byte *p;
7990 unsigned int indx;
7991 struct plt_entry *ent;
7992 bfd_vma dest, off;
7993 int size;
7994
7995 /* Massage our args to the form they really have. */
7996 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7997 info = in_arg;
7998
7999 htab = ppc_hash_table (info);
8000
8001 /* Make a note of the offset within the stubs for this entry. */
8002 stub_entry->stub_offset = stub_entry->stub_sec->size;
8003 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
8004
8005 htab->stub_count[stub_entry->stub_type - 1] += 1;
8006 switch (stub_entry->stub_type)
8007 {
8008 case ppc_stub_long_branch:
8009 case ppc_stub_long_branch_r2off:
8010 /* Branches are relative. This is where we are going to. */
8011 off = dest = (stub_entry->target_value
8012 + stub_entry->target_section->output_offset
8013 + stub_entry->target_section->output_section->vma);
8014
8015 /* And this is where we are coming from. */
8016 off -= (stub_entry->stub_offset
8017 + stub_entry->stub_sec->output_offset
8018 + stub_entry->stub_sec->output_section->vma);
8019
8020 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
8021 size = 4;
8022 else
8023 {
8024 bfd_vma r2off;
8025
8026 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8027 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8028 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8029 loc += 4;
8030 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8031 loc += 4;
8032 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8033 loc += 4;
8034 off -= 12;
8035 size = 16;
8036 }
8037 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8038
8039 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8040 {
8041 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8042 stub_entry->root.string);
8043 htab->stub_error = TRUE;
8044 return FALSE;
8045 }
8046
8047 if (info->emitrelocations)
8048 {
8049 Elf_Internal_Rela *relocs, *r;
8050 struct bfd_elf_section_data *elfsec_data;
8051
8052 elfsec_data = elf_section_data (stub_entry->stub_sec);
8053 relocs = elfsec_data->relocs;
8054 if (relocs == NULL)
8055 {
8056 bfd_size_type relsize;
8057 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
8058 relocs = bfd_alloc (htab->stub_bfd, relsize);
8059 if (relocs == NULL)
8060 return FALSE;
8061 elfsec_data->relocs = relocs;
8062 elfsec_data->rel_hdr.sh_size = relsize;
8063 elfsec_data->rel_hdr.sh_entsize = 24;
8064 stub_entry->stub_sec->reloc_count = 0;
8065 }
8066 r = relocs + stub_entry->stub_sec->reloc_count;
8067 stub_entry->stub_sec->reloc_count += 1;
8068 r->r_offset = loc - stub_entry->stub_sec->contents;
8069 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8070 r->r_addend = dest;
8071 if (stub_entry->h != NULL)
8072 {
8073 struct elf_link_hash_entry **hashes;
8074 unsigned long symndx;
8075 struct ppc_link_hash_entry *h;
8076
8077 hashes = elf_sym_hashes (htab->stub_bfd);
8078 if (hashes == NULL)
8079 {
8080 bfd_size_type hsize;
8081
8082 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8083 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8084 if (hashes == NULL)
8085 return FALSE;
8086 elf_sym_hashes (htab->stub_bfd) = hashes;
8087 htab->stub_globals = 1;
8088 }
8089 symndx = htab->stub_globals++;
8090 h = stub_entry->h;
8091 hashes[symndx] = &h->elf;
8092 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8093 if (h->oh != NULL && h->oh->is_func)
8094 h = h->oh;
8095 if (h->elf.root.u.def.section != stub_entry->target_section)
8096 /* H is an opd symbol. The addend must be zero. */
8097 r->r_addend = 0;
8098 else
8099 {
8100 off = (h->elf.root.u.def.value
8101 + h->elf.root.u.def.section->output_offset
8102 + h->elf.root.u.def.section->output_section->vma);
8103 r->r_addend -= off;
8104 }
8105 }
8106 }
8107 break;
8108
8109 case ppc_stub_plt_branch:
8110 case ppc_stub_plt_branch_r2off:
8111 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8112 stub_entry->root.string + 9,
8113 FALSE, FALSE);
8114 if (br_entry == NULL)
8115 {
8116 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8117 stub_entry->root.string);
8118 htab->stub_error = TRUE;
8119 return FALSE;
8120 }
8121
8122 off = (stub_entry->target_value
8123 + stub_entry->target_section->output_offset
8124 + stub_entry->target_section->output_section->vma);
8125
8126 bfd_put_64 (htab->brlt->owner, off,
8127 htab->brlt->contents + br_entry->offset);
8128
8129 if (htab->relbrlt != NULL)
8130 {
8131 /* Create a reloc for the branch lookup table entry. */
8132 Elf_Internal_Rela rela;
8133 bfd_byte *rl;
8134
8135 rela.r_offset = (br_entry->offset
8136 + htab->brlt->output_offset
8137 + htab->brlt->output_section->vma);
8138 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8139 rela.r_addend = off;
8140
8141 rl = htab->relbrlt->contents;
8142 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8143 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8144 }
8145
8146 off = (br_entry->offset
8147 + htab->brlt->output_offset
8148 + htab->brlt->output_section->vma
8149 - elf_gp (htab->brlt->output_section->owner)
8150 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8151
8152 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8153 {
8154 (*_bfd_error_handler)
8155 (_("linkage table error against `%s'"),
8156 stub_entry->root.string);
8157 bfd_set_error (bfd_error_bad_value);
8158 htab->stub_error = TRUE;
8159 return FALSE;
8160 }
8161
8162 indx = off;
8163 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8164 {
8165 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8166 loc += 4;
8167 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8168 size = 16;
8169 }
8170 else
8171 {
8172 bfd_vma r2off;
8173
8174 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8175 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8176 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8177 loc += 4;
8178 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8179 loc += 4;
8180 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8181 loc += 4;
8182 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8183 loc += 4;
8184 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8185 size = 28;
8186 }
8187 loc += 4;
8188 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8189 loc += 4;
8190 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8191 break;
8192
8193 case ppc_stub_plt_call:
8194 /* Do the best we can for shared libraries built without
8195 exporting ".foo" for each "foo". This can happen when symbol
8196 versioning scripts strip all bar a subset of symbols. */
8197 if (stub_entry->h->oh != NULL
8198 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8199 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8200 {
8201 /* Point the symbol at the stub. There may be multiple stubs,
8202 we don't really care; The main thing is to make this sym
8203 defined somewhere. Maybe defining the symbol in the stub
8204 section is a silly idea. If we didn't do this, htab->top_id
8205 could disappear. */
8206 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8207 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8208 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8209 }
8210
8211 /* Now build the stub. */
8212 off = (bfd_vma) -1;
8213 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8214 if (ent->addend == stub_entry->addend)
8215 {
8216 off = ent->plt.offset;
8217 break;
8218 }
8219 if (off >= (bfd_vma) -2)
8220 abort ();
8221
8222 off &= ~ (bfd_vma) 1;
8223 off += (htab->plt->output_offset
8224 + htab->plt->output_section->vma
8225 - elf_gp (htab->plt->output_section->owner)
8226 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8227
8228 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8229 {
8230 (*_bfd_error_handler)
8231 (_("linkage table error against `%s'"),
8232 stub_entry->h->elf.root.root.string);
8233 bfd_set_error (bfd_error_bad_value);
8234 htab->stub_error = TRUE;
8235 return FALSE;
8236 }
8237
8238 p = build_plt_stub (htab->stub_bfd, loc, off);
8239 size = p - loc;
8240 break;
8241
8242 default:
8243 BFD_FAIL ();
8244 return FALSE;
8245 }
8246
8247 stub_entry->stub_sec->size += size;
8248
8249 if (htab->emit_stub_syms)
8250 {
8251 struct elf_link_hash_entry *h;
8252 size_t len1, len2;
8253 char *name;
8254 const char *const stub_str[] = { "long_branch",
8255 "long_branch_r2off",
8256 "plt_branch",
8257 "plt_branch_r2off",
8258 "plt_call" };
8259
8260 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8261 len2 = strlen (stub_entry->root.string);
8262 name = bfd_malloc (len1 + len2 + 2);
8263 if (name == NULL)
8264 return FALSE;
8265 memcpy (name, stub_entry->root.string, 9);
8266 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8267 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8268 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8269 if (h == NULL)
8270 return FALSE;
8271 if (h->root.type == bfd_link_hash_new)
8272 {
8273 h->root.type = bfd_link_hash_defined;
8274 h->root.u.def.section = stub_entry->stub_sec;
8275 h->root.u.def.value = stub_entry->stub_offset;
8276 h->ref_regular = 1;
8277 h->def_regular = 1;
8278 h->ref_regular_nonweak = 1;
8279 h->forced_local = 1;
8280 h->non_elf = 0;
8281 }
8282 }
8283
8284 return TRUE;
8285}
8286
8287/* As above, but don't actually build the stub. Just bump offset so
8288 we know stub section sizes, and select plt_branch stubs where
8289 long_branch stubs won't do. */
8290
8291static bfd_boolean
8292ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8293{
8294 struct ppc_stub_hash_entry *stub_entry;
8295 struct bfd_link_info *info;
8296 struct ppc_link_hash_table *htab;
8297 bfd_vma off;
8298 int size;
8299
8300 /* Massage our args to the form they really have. */
8301 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8302 info = in_arg;
8303
8304 htab = ppc_hash_table (info);
8305
8306 if (stub_entry->stub_type == ppc_stub_plt_call)
8307 {
8308 struct plt_entry *ent;
8309 off = (bfd_vma) -1;
8310 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8311 if (ent->addend == stub_entry->addend)
8312 {
8313 off = ent->plt.offset & ~(bfd_vma) 1;
8314 break;
8315 }
8316 if (off >= (bfd_vma) -2)
8317 abort ();
8318 off += (htab->plt->output_offset
8319 + htab->plt->output_section->vma
8320 - elf_gp (htab->plt->output_section->owner)
8321 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8322
8323 size = PLT_CALL_STUB_SIZE;
8324 if (PPC_HA (off + 16) != PPC_HA (off))
8325 size += 4;
8326 }
8327 else
8328 {
8329 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8330 variants. */
8331 off = (stub_entry->target_value
8332 + stub_entry->target_section->output_offset
8333 + stub_entry->target_section->output_section->vma);
8334 off -= (stub_entry->stub_sec->size
8335 + stub_entry->stub_sec->output_offset
8336 + stub_entry->stub_sec->output_section->vma);
8337
8338 /* Reset the stub type from the plt variant in case we now
8339 can reach with a shorter stub. */
8340 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8341 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8342
8343 size = 4;
8344 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8345 {
8346 off -= 12;
8347 size = 16;
8348 }
8349
8350 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8351 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8352 {
8353 struct ppc_branch_hash_entry *br_entry;
8354
8355 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8356 stub_entry->root.string + 9,
8357 TRUE, FALSE);
8358 if (br_entry == NULL)
8359 {
8360 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8361 stub_entry->root.string);
8362 htab->stub_error = TRUE;
8363 return FALSE;
8364 }
8365
8366 if (br_entry->iter != htab->stub_iteration)
8367 {
8368 br_entry->iter = htab->stub_iteration;
8369 br_entry->offset = htab->brlt->size;
8370 htab->brlt->size += 8;
8371
8372 if (htab->relbrlt != NULL)
8373 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8374 }
8375
8376 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8377 size = 16;
8378 if (stub_entry->stub_type != ppc_stub_plt_branch)
8379 size = 28;
8380 }
8381
8382 if (info->emitrelocations
8383 && (stub_entry->stub_type == ppc_stub_long_branch
8384 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8385 stub_entry->stub_sec->reloc_count += 1;
8386 }
8387
8388 stub_entry->stub_sec->size += size;
8389 return TRUE;
8390}
8391
8392/* Set up various things so that we can make a list of input sections
8393 for each output section included in the link. Returns -1 on error,
8394 0 when no stubs will be needed, and 1 on success. */
8395
8396int
8397ppc64_elf_setup_section_lists (bfd *output_bfd,
8398 struct bfd_link_info *info,
8399 int no_multi_toc)
8400{
8401 bfd *input_bfd;
8402 int top_id, top_index, id;
8403 asection *section;
8404 asection **input_list;
8405 bfd_size_type amt;
8406 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8407
8408 htab->no_multi_toc = no_multi_toc;
8409
8410 if (htab->brlt == NULL)
8411 return 0;
8412
8413 /* Find the top input section id. */
8414 for (input_bfd = info->input_bfds, top_id = 3;
8415 input_bfd != NULL;
8416 input_bfd = input_bfd->link_next)
8417 {
8418 for (section = input_bfd->sections;
8419 section != NULL;
8420 section = section->next)
8421 {
8422 if (top_id < section->id)
8423 top_id = section->id;
8424 }
8425 }
8426
8427 htab->top_id = top_id;
8428 amt = sizeof (struct map_stub) * (top_id + 1);
8429 htab->stub_group = bfd_zmalloc (amt);
8430 if (htab->stub_group == NULL)
8431 return -1;
8432
8433 /* Set toc_off for com, und, abs and ind sections. */
8434 for (id = 0; id < 3; id++)
8435 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8436
8437 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8438
8439 /* We can't use output_bfd->section_count here to find the top output
8440 section index as some sections may have been removed, and
8441 strip_excluded_output_sections doesn't renumber the indices. */
8442 for (section = output_bfd->sections, top_index = 0;
8443 section != NULL;
8444 section = section->next)
8445 {
8446 if (top_index < section->index)
8447 top_index = section->index;
8448 }
8449
8450 htab->top_index = top_index;
8451 amt = sizeof (asection *) * (top_index + 1);
8452 input_list = bfd_zmalloc (amt);
8453 htab->input_list = input_list;
8454 if (input_list == NULL)
8455 return -1;
8456
8457 return 1;
8458}
8459
8460/* The linker repeatedly calls this function for each TOC input section
8461 and linker generated GOT section. Group input bfds such that the toc
8462 within a group is less than 64k in size. Will break with cute linker
8463 scripts that play games with dot in the output toc section. */
8464
8465void
8466ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8467{
8468 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8469
8470 if (!htab->no_multi_toc)
8471 {
8472 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8473 bfd_vma off = addr - htab->toc_curr;
8474
8475 if (off + isec->size > 0x10000)
8476 htab->toc_curr = addr;
8477
8478 elf_gp (isec->owner) = (htab->toc_curr
8479 - elf_gp (isec->output_section->owner)
8480 + TOC_BASE_OFF);
8481 }
8482}
8483
8484/* Called after the last call to the above function. */
8485
8486void
8487ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8488{
8489 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8490
8491 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8492
8493 /* toc_curr tracks the TOC offset used for code sections below in
8494 ppc64_elf_next_input_section. Start off at 0x8000. */
8495 htab->toc_curr = TOC_BASE_OFF;
8496}
8497
8498/* No toc references were found in ISEC. If the code in ISEC makes no
8499 calls, then there's no need to use toc adjusting stubs when branching
8500 into ISEC. Actually, indirect calls from ISEC are OK as they will
8501 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8502 needed, and 2 if a cyclical call-graph was found but no other reason
8503 for a stub was detected. If called from the top level, a return of
8504 2 means the same as a return of 0. */
8505
8506static int
8507toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8508{
8509 Elf_Internal_Rela *relstart, *rel;
8510 Elf_Internal_Sym *local_syms;
8511 int ret;
8512 struct ppc_link_hash_table *htab;
8513
8514 /* We know none of our code bearing sections will need toc stubs. */
8515 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8516 return 0;
8517
8518 if (isec->size == 0)
8519 return 0;
8520
8521 if (isec->output_section == NULL)
8522 return 0;
8523
8524 /* Hack for linux kernel. .fixup contains branches, but only back to
8525 the function that hit an exception. */
8526 if (strcmp (isec->name, ".fixup") == 0)
8527 return 0;
8528
8529 if (isec->reloc_count == 0)
8530 return 0;
8531
8532 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8533 info->keep_memory);
8534 if (relstart == NULL)
8535 return -1;
8536
8537 /* Look for branches to outside of this section. */
8538 local_syms = NULL;
8539 ret = 0;
8540 htab = ppc_hash_table (info);
8541 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8542 {
8543 enum elf_ppc64_reloc_type r_type;
8544 unsigned long r_symndx;
8545 struct elf_link_hash_entry *h;
8546 Elf_Internal_Sym *sym;
8547 asection *sym_sec;
8548 long *opd_adjust;
8549 bfd_vma sym_value;
8550 bfd_vma dest;
8551
8552 r_type = ELF64_R_TYPE (rel->r_info);
8553 if (r_type != R_PPC64_REL24
8554 && r_type != R_PPC64_REL14
8555 && r_type != R_PPC64_REL14_BRTAKEN
8556 && r_type != R_PPC64_REL14_BRNTAKEN)
8557 continue;
8558
8559 r_symndx = ELF64_R_SYM (rel->r_info);
8560 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8561 isec->owner))
8562 {
8563 ret = -1;
8564 break;
8565 }
8566
8567 /* Calls to dynamic lib functions go through a plt call stub
8568 that uses r2. Branches to undefined symbols might be a call
8569 using old-style dot symbols that can be satisfied by a plt
8570 call into a new-style dynamic library. */
8571 if (sym_sec == NULL)
8572 {
8573 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8574 if (eh != NULL
8575 && eh->oh != NULL
8576 && eh->oh->elf.plt.plist != NULL)
8577 {
8578 ret = 1;
8579 break;
8580 }
8581
8582 /* Ignore other undefined symbols. */
8583 continue;
8584 }
8585
8586 /* Assume branches to other sections not included in the link need
8587 stubs too, to cover -R and absolute syms. */
8588 if (sym_sec->output_section == NULL)
8589 {
8590 ret = 1;
8591 break;
8592 }
8593
8594 if (h == NULL)
8595 sym_value = sym->st_value;
8596 else
8597 {
8598 if (h->root.type != bfd_link_hash_defined
8599 && h->root.type != bfd_link_hash_defweak)
8600 abort ();
8601 sym_value = h->root.u.def.value;
8602 }
8603 sym_value += rel->r_addend;
8604
8605 /* If this branch reloc uses an opd sym, find the code section. */
8606 opd_adjust = get_opd_info (sym_sec);
8607 if (opd_adjust != NULL)
8608 {
8609 if (h == NULL)
8610 {
8611 long adjust;
8612
8613 adjust = opd_adjust[sym->st_value / 8];
8614 if (adjust == -1)
8615 /* Assume deleted functions won't ever be called. */
8616 continue;
8617 sym_value += adjust;
8618 }
8619
8620 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8621 if (dest == (bfd_vma) -1)
8622 continue;
8623 }
8624 else
8625 dest = (sym_value
8626 + sym_sec->output_offset
8627 + sym_sec->output_section->vma);
8628
8629 /* Ignore branch to self. */
8630 if (sym_sec == isec)
8631 continue;
8632
8633 /* If the called function uses the toc, we need a stub. */
8634 if (sym_sec->has_toc_reloc
8635 || sym_sec->makes_toc_func_call)
8636 {
8637 ret = 1;
8638 break;
8639 }
8640
8641 /* Assume any branch that needs a long branch stub might in fact
8642 need a plt_branch stub. A plt_branch stub uses r2. */
8643 else if (dest - (isec->output_offset
8644 + isec->output_section->vma
8645 + rel->r_offset) + (1 << 25) >= (2 << 25))
8646 {
8647 ret = 1;
8648 break;
8649 }
8650
8651 /* If calling back to a section in the process of being tested, we
8652 can't say for sure that no toc adjusting stubs are needed, so
8653 don't return zero. */
8654 else if (sym_sec->call_check_in_progress)
8655 ret = 2;
8656
8657 /* Branches to another section that itself doesn't have any TOC
8658 references are OK. Recursively call ourselves to check. */
8659 else if (sym_sec->id <= htab->top_id
8660 && htab->stub_group[sym_sec->id].toc_off == 0)
8661 {
8662 int recur;
8663
8664 /* Mark current section as indeterminate, so that other
8665 sections that call back to current won't be marked as
8666 known. */
8667 isec->call_check_in_progress = 1;
8668 recur = toc_adjusting_stub_needed (info, sym_sec);
8669 isec->call_check_in_progress = 0;
8670
8671 if (recur < 0)
8672 {
8673 /* An error. Exit. */
8674 ret = -1;
8675 break;
8676 }
8677 else if (recur <= 1)
8678 {
8679 /* Known result. Mark as checked and set section flag. */
8680 htab->stub_group[sym_sec->id].toc_off = 1;
8681 if (recur != 0)
8682 {
8683 sym_sec->makes_toc_func_call = 1;
8684 ret = 1;
8685 break;
8686 }
8687 }
8688 else
8689 {
8690 /* Unknown result. Continue checking. */
8691 ret = 2;
8692 }
8693 }
8694 }
8695
8696 if (local_syms != NULL
8697 && (elf_tdata (isec->owner)->symtab_hdr.contents
8698 != (unsigned char *) local_syms))
8699 free (local_syms);
8700 if (elf_section_data (isec)->relocs != relstart)
8701 free (relstart);
8702
8703 return ret;
8704}
8705
8706/* The linker repeatedly calls this function for each input section,
8707 in the order that input sections are linked into output sections.
8708 Build lists of input sections to determine groupings between which
8709 we may insert linker stubs. */
8710
8711bfd_boolean
8712ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8713{
8714 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8715
8716 if ((isec->output_section->flags & SEC_CODE) != 0
8717 && isec->output_section->index <= htab->top_index)
8718 {
8719 asection **list = htab->input_list + isec->output_section->index;
8720 /* Steal the link_sec pointer for our list. */
8721#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8722 /* This happens to make the list in reverse order,
8723 which is what we want. */
8724 PREV_SEC (isec) = *list;
8725 *list = isec;
8726 }
8727
8728 if (htab->multi_toc_needed)
8729 {
8730 /* If a code section has a function that uses the TOC then we need
8731 to use the right TOC (obviously). Also, make sure that .opd gets
8732 the correct TOC value for R_PPC64_TOC relocs that don't have or
8733 can't find their function symbol (shouldn't ever happen now). */
8734 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8735 {
8736 if (elf_gp (isec->owner) != 0)
8737 htab->toc_curr = elf_gp (isec->owner);
8738 }
8739 else if (htab->stub_group[isec->id].toc_off == 0)
8740 {
8741 int ret = toc_adjusting_stub_needed (info, isec);
8742 if (ret < 0)
8743 return FALSE;
8744 else
8745 isec->makes_toc_func_call = ret & 1;
8746 }
8747 }
8748
8749 /* Functions that don't use the TOC can belong in any TOC group.
8750 Use the last TOC base. This happens to make _init and _fini
8751 pasting work. */
8752 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8753 return TRUE;
8754}
8755
8756/* See whether we can group stub sections together. Grouping stub
8757 sections may result in fewer stubs. More importantly, we need to
8758 put all .init* and .fini* stubs at the beginning of the .init or
8759 .fini output sections respectively, because glibc splits the
8760 _init and _fini functions into multiple parts. Putting a stub in
8761 the middle of a function is not a good idea. */
8762
8763static void
8764group_sections (struct ppc_link_hash_table *htab,
8765 bfd_size_type stub_group_size,
8766 bfd_boolean stubs_always_before_branch)
8767{
8768 asection **list = htab->input_list + htab->top_index;
8769 do
8770 {
8771 asection *tail = *list;
8772 while (tail != NULL)
8773 {
8774 asection *curr;
8775 asection *prev;
8776 bfd_size_type total;
8777 bfd_boolean big_sec;
8778 bfd_vma curr_toc;
8779
8780 curr = tail;
8781 total = tail->size;
8782 big_sec = total > stub_group_size;
8783 if (big_sec)
8784 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
8785 tail->owner, tail);
8786 curr_toc = htab->stub_group[tail->id].toc_off;
8787
8788 while ((prev = PREV_SEC (curr)) != NULL
8789 && ((total += curr->output_offset - prev->output_offset)
8790 < stub_group_size)
8791 && htab->stub_group[prev->id].toc_off == curr_toc)
8792 curr = prev;
8793
8794 /* OK, the size from the start of CURR to the end is less
8795 than stub_group_size and thus can be handled by one stub
8796 section. (or the tail section is itself larger than
8797 stub_group_size, in which case we may be toast.) We
8798 should really be keeping track of the total size of stubs
8799 added here, as stubs contribute to the final output
8800 section size. That's a little tricky, and this way will
8801 only break if stubs added make the total size more than
8802 2^25, ie. for the default stub_group_size, if stubs total
8803 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8804 do
8805 {
8806 prev = PREV_SEC (tail);
8807 /* Set up this stub group. */
8808 htab->stub_group[tail->id].link_sec = curr;
8809 }
8810 while (tail != curr && (tail = prev) != NULL);
8811
8812 /* But wait, there's more! Input sections up to stub_group_size
8813 bytes before the stub section can be handled by it too.
8814 Don't do this if we have a really large section after the
8815 stubs, as adding more stubs increases the chance that
8816 branches may not reach into the stub section. */
8817 if (!stubs_always_before_branch && !big_sec)
8818 {
8819 total = 0;
8820 while (prev != NULL
8821 && ((total += tail->output_offset - prev->output_offset)
8822 < stub_group_size)
8823 && htab->stub_group[prev->id].toc_off == curr_toc)
8824 {
8825 tail = prev;
8826 prev = PREV_SEC (tail);
8827 htab->stub_group[tail->id].link_sec = curr;
8828 }
8829 }
8830 tail = prev;
8831 }
8832 }
8833 while (list-- != htab->input_list);
8834 free (htab->input_list);
8835#undef PREV_SEC
8836}
8837
8838/* Determine and set the size of the stub section for a final link.
8839
8840 The basic idea here is to examine all the relocations looking for
8841 PC-relative calls to a target that is unreachable with a "bl"
8842 instruction. */
8843
8844bfd_boolean
8845ppc64_elf_size_stubs (bfd *output_bfd,
8846 struct bfd_link_info *info,
8847 bfd_signed_vma group_size,
8848 asection *(*add_stub_section) (const char *, asection *),
8849 void (*layout_sections_again) (void))
8850{
8851 bfd_size_type stub_group_size;
8852 bfd_boolean stubs_always_before_branch;
8853 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8854
8855 /* Stash our params away. */
8856 htab->add_stub_section = add_stub_section;
8857 htab->layout_sections_again = layout_sections_again;
8858 stubs_always_before_branch = group_size < 0;
8859 if (group_size < 0)
8860 stub_group_size = -group_size;
8861 else
8862 stub_group_size = group_size;
8863 if (stub_group_size == 1)
8864 {
8865 /* Default values. */
8866 if (stubs_always_before_branch)
8867 {
8868 stub_group_size = 0x1e00000;
8869 if (htab->has_14bit_branch)
8870 stub_group_size = 0x7800;
8871 }
8872 else
8873 {
8874 stub_group_size = 0x1c00000;
8875 if (htab->has_14bit_branch)
8876 stub_group_size = 0x7000;
8877 }
8878 }
8879
8880 group_sections (htab, stub_group_size, stubs_always_before_branch);
8881
8882 while (1)
8883 {
8884 bfd *input_bfd;
8885 unsigned int bfd_indx;
8886 asection *stub_sec;
8887
8888 htab->stub_iteration += 1;
8889
8890 for (input_bfd = info->input_bfds, bfd_indx = 0;
8891 input_bfd != NULL;
8892 input_bfd = input_bfd->link_next, bfd_indx++)
8893 {
8894 Elf_Internal_Shdr *symtab_hdr;
8895 asection *section;
8896 Elf_Internal_Sym *local_syms = NULL;
8897
8898 /* We'll need the symbol table in a second. */
8899 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8900 if (symtab_hdr->sh_info == 0)
8901 continue;
8902
8903 /* Walk over each section attached to the input bfd. */
8904 for (section = input_bfd->sections;
8905 section != NULL;
8906 section = section->next)
8907 {
8908 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8909
8910 /* If there aren't any relocs, then there's nothing more
8911 to do. */
8912 if ((section->flags & SEC_RELOC) == 0
8913 || section->reloc_count == 0)
8914 continue;
8915
8916 /* If this section is a link-once section that will be
8917 discarded, then don't create any stubs. */
8918 if (section->output_section == NULL
8919 || section->output_section->owner != output_bfd)
8920 continue;
8921
8922 /* Get the relocs. */
8923 internal_relocs
8924 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8925 info->keep_memory);
8926 if (internal_relocs == NULL)
8927 goto error_ret_free_local;
8928
8929 /* Now examine each relocation. */
8930 irela = internal_relocs;
8931 irelaend = irela + section->reloc_count;
8932 for (; irela < irelaend; irela++)
8933 {
8934 enum elf_ppc64_reloc_type r_type;
8935 unsigned int r_indx;
8936 enum ppc_stub_type stub_type;
8937 struct ppc_stub_hash_entry *stub_entry;
8938 asection *sym_sec, *code_sec;
8939 bfd_vma sym_value;
8940 bfd_vma destination;
8941 bfd_boolean ok_dest;
8942 struct ppc_link_hash_entry *hash;
8943 struct ppc_link_hash_entry *fdh;
8944 struct elf_link_hash_entry *h;
8945 Elf_Internal_Sym *sym;
8946 char *stub_name;
8947 const asection *id_sec;
8948 long *opd_adjust;
8949
8950 r_type = ELF64_R_TYPE (irela->r_info);
8951 r_indx = ELF64_R_SYM (irela->r_info);
8952
8953 if (r_type >= R_PPC64_max)
8954 {
8955 bfd_set_error (bfd_error_bad_value);
8956 goto error_ret_free_internal;
8957 }
8958
8959 /* Only look for stubs on branch instructions. */
8960 if (r_type != R_PPC64_REL24
8961 && r_type != R_PPC64_REL14
8962 && r_type != R_PPC64_REL14_BRTAKEN
8963 && r_type != R_PPC64_REL14_BRNTAKEN)
8964 continue;
8965
8966 /* Now determine the call target, its name, value,
8967 section. */
8968 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8969 r_indx, input_bfd))
8970 goto error_ret_free_internal;
8971 hash = (struct ppc_link_hash_entry *) h;
8972
8973 ok_dest = FALSE;
8974 fdh = NULL;
8975 sym_value = 0;
8976 if (hash == NULL)
8977 {
8978 sym_value = sym->st_value;
8979 ok_dest = TRUE;
8980 }
8981 else if (hash->elf.root.type == bfd_link_hash_defined
8982 || hash->elf.root.type == bfd_link_hash_defweak)
8983 {
8984 sym_value = hash->elf.root.u.def.value;
8985 if (sym_sec->output_section != NULL)
8986 ok_dest = TRUE;
8987 }
8988 else if (hash->elf.root.type == bfd_link_hash_undefweak
8989 || hash->elf.root.type == bfd_link_hash_undefined)
8990 {
8991 /* Recognise an old ABI func code entry sym, and
8992 use the func descriptor sym instead if it is
8993 defined. */
8994 if (hash->elf.root.root.string[0] == '.'
8995 && (fdh = get_fdh (hash, htab)) != NULL)
8996 {
8997 if (fdh->elf.root.type == bfd_link_hash_defined
8998 || fdh->elf.root.type == bfd_link_hash_defweak)
8999 {
9000 sym_sec = fdh->elf.root.u.def.section;
9001 sym_value = fdh->elf.root.u.def.value;
9002 if (sym_sec->output_section != NULL)
9003 ok_dest = TRUE;
9004 }
9005 else
9006 fdh = NULL;
9007 }
9008 }
9009 else
9010 {
9011 bfd_set_error (bfd_error_bad_value);
9012 goto error_ret_free_internal;
9013 }
9014
9015 destination = 0;
9016 if (ok_dest)
9017 {
9018 sym_value += irela->r_addend;
9019 destination = (sym_value
9020 + sym_sec->output_offset
9021 + sym_sec->output_section->vma);
9022 }
9023
9024 code_sec = sym_sec;
9025 opd_adjust = get_opd_info (sym_sec);
9026 if (opd_adjust != NULL)
9027 {
9028 bfd_vma dest;
9029
9030 if (hash == NULL)
9031 {
9032 long adjust = opd_adjust[sym_value / 8];
9033 if (adjust == -1)
9034 continue;
9035 sym_value += adjust;
9036 }
9037 dest = opd_entry_value (sym_sec, sym_value,
9038 &code_sec, &sym_value);
9039 if (dest != (bfd_vma) -1)
9040 {
9041 destination = dest;
9042 if (fdh != NULL)
9043 {
9044 /* Fixup old ABI sym to point at code
9045 entry. */
9046 hash->elf.root.type = bfd_link_hash_defweak;
9047 hash->elf.root.u.def.section = code_sec;
9048 hash->elf.root.u.def.value = sym_value;
9049 }
9050 }
9051 }
9052
9053 /* Determine what (if any) linker stub is needed. */
9054 stub_type = ppc_type_of_stub (section, irela, &hash,
9055 destination);
9056
9057 if (stub_type != ppc_stub_plt_call)
9058 {
9059 /* Check whether we need a TOC adjusting stub.
9060 Since the linker pastes together pieces from
9061 different object files when creating the
9062 _init and _fini functions, it may be that a
9063 call to what looks like a local sym is in
9064 fact a call needing a TOC adjustment. */
9065 if (code_sec != NULL
9066 && code_sec->output_section != NULL
9067 && (htab->stub_group[code_sec->id].toc_off
9068 != htab->stub_group[section->id].toc_off)
9069 && (code_sec->has_toc_reloc
9070 || code_sec->makes_toc_func_call))
9071 stub_type = ppc_stub_long_branch_r2off;
9072 }
9073
9074 if (stub_type == ppc_stub_none)
9075 continue;
9076
9077 /* __tls_get_addr calls might be eliminated. */
9078 if (stub_type != ppc_stub_plt_call
9079 && hash != NULL
9080 && (hash == htab->tls_get_addr
9081 || hash == htab->tls_get_addr_fd)
9082 && section->has_tls_reloc
9083 && irela != internal_relocs)
9084 {
9085 /* Get tls info. */
9086 char *tls_mask;
9087
9088 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9089 irela - 1, input_bfd))
9090 goto error_ret_free_internal;
9091 if (*tls_mask != 0)
9092 continue;
9093 }
9094
9095 /* Support for grouping stub sections. */
9096 id_sec = htab->stub_group[section->id].link_sec;
9097
9098 /* Get the name of this stub. */
9099 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9100 if (!stub_name)
9101 goto error_ret_free_internal;
9102
9103 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9104 stub_name, FALSE, FALSE);
9105 if (stub_entry != NULL)
9106 {
9107 /* The proper stub has already been created. */
9108 free (stub_name);
9109 continue;
9110 }
9111
9112 stub_entry = ppc_add_stub (stub_name, section, htab);
9113 if (stub_entry == NULL)
9114 {
9115 free (stub_name);
9116 error_ret_free_internal:
9117 if (elf_section_data (section)->relocs == NULL)
9118 free (internal_relocs);
9119 error_ret_free_local:
9120 if (local_syms != NULL
9121 && (symtab_hdr->contents
9122 != (unsigned char *) local_syms))
9123 free (local_syms);
9124 return FALSE;
9125 }
9126
9127 stub_entry->stub_type = stub_type;
9128 stub_entry->target_value = sym_value;
9129 stub_entry->target_section = code_sec;
9130 stub_entry->h = hash;
9131 stub_entry->addend = irela->r_addend;
9132
9133 if (stub_entry->h != NULL)
9134 htab->stub_globals += 1;
9135 }
9136
9137 /* We're done with the internal relocs, free them. */
9138 if (elf_section_data (section)->relocs != internal_relocs)
9139 free (internal_relocs);
9140 }
9141
9142 if (local_syms != NULL
9143 && symtab_hdr->contents != (unsigned char *) local_syms)
9144 {
9145 if (!info->keep_memory)
9146 free (local_syms);
9147 else
9148 symtab_hdr->contents = (unsigned char *) local_syms;
9149 }
9150 }
9151
9152 /* We may have added some stubs. Find out the new size of the
9153 stub sections. */
9154 for (stub_sec = htab->stub_bfd->sections;
9155 stub_sec != NULL;
9156 stub_sec = stub_sec->next)
9157 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9158 {
9159 stub_sec->rawsize = stub_sec->size;
9160 stub_sec->size = 0;
9161 stub_sec->reloc_count = 0;
9162 }
9163
9164 htab->brlt->size = 0;
9165 if (htab->relbrlt != NULL)
9166 htab->relbrlt->size = 0;
9167
9168 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9169
9170 for (stub_sec = htab->stub_bfd->sections;
9171 stub_sec != NULL;
9172 stub_sec = stub_sec->next)
9173 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9174 && stub_sec->rawsize != stub_sec->size)
9175 break;
9176
9177 /* Exit from this loop when no stubs have been added, and no stubs
9178 have changed size. */
9179 if (stub_sec == NULL)
9180 break;
9181
9182 /* Ask the linker to do its stuff. */
9183 (*htab->layout_sections_again) ();
9184 }
9185
9186 /* It would be nice to strip htab->brlt from the output if the
9187 section is empty, but it's too late. If we strip sections here,
9188 the dynamic symbol table is corrupted since the section symbol
9189 for the stripped section isn't written. */
9190
9191 return TRUE;
9192}
9193
9194/* Called after we have determined section placement. If sections
9195 move, we'll be called again. Provide a value for TOCstart. */
9196
9197bfd_vma
9198ppc64_elf_toc (bfd *obfd)
9199{
9200 asection *s;
9201 bfd_vma TOCstart;
9202
9203 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9204 order. The TOC starts where the first of these sections starts. */
9205 s = bfd_get_section_by_name (obfd, ".got");
9206 if (s == NULL)
9207 s = bfd_get_section_by_name (obfd, ".toc");
9208 if (s == NULL)
9209 s = bfd_get_section_by_name (obfd, ".tocbss");
9210 if (s == NULL)
9211 s = bfd_get_section_by_name (obfd, ".plt");
9212 if (s == NULL)
9213 {
9214 /* This may happen for
9215 o references to TOC base (SYM@toc / TOC[tc0]) without a
9216 .toc directive
9217 o bad linker script
9218 o --gc-sections and empty TOC sections
9219
9220 FIXME: Warn user? */
9221
9222 /* Look for a likely section. We probably won't even be
9223 using TOCstart. */
9224 for (s = obfd->sections; s != NULL; s = s->next)
9225 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9226 == (SEC_ALLOC | SEC_SMALL_DATA))
9227 break;
9228 if (s == NULL)
9229 for (s = obfd->sections; s != NULL; s = s->next)
9230 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9231 == (SEC_ALLOC | SEC_SMALL_DATA))
9232 break;
9233 if (s == NULL)
9234 for (s = obfd->sections; s != NULL; s = s->next)
9235 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9236 break;
9237 if (s == NULL)
9238 for (s = obfd->sections; s != NULL; s = s->next)
9239 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9240 break;
9241 }
9242
9243 TOCstart = 0;
9244 if (s != NULL)
9245 TOCstart = s->output_section->vma + s->output_offset;
9246
9247 return TOCstart;
9248}
9249
9250/* Build all the stubs associated with the current output file.
9251 The stubs are kept in a hash table attached to the main linker
9252 hash table. This function is called via gldelf64ppc_finish. */
9253
9254bfd_boolean
9255ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9256 struct bfd_link_info *info,
9257 char **stats)
9258{
9259 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9260 asection *stub_sec;
9261 bfd_byte *p;
9262 int stub_sec_count = 0;
9263
9264 htab->emit_stub_syms = emit_stub_syms;
9265
9266 /* Allocate memory to hold the linker stubs. */
9267 for (stub_sec = htab->stub_bfd->sections;
9268 stub_sec != NULL;
9269 stub_sec = stub_sec->next)
9270 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9271 && stub_sec->size != 0)
9272 {
9273 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9274 if (stub_sec->contents == NULL)
9275 return FALSE;
9276 /* We want to check that built size is the same as calculated
9277 size. rawsize is a convenient location to use. */
9278 stub_sec->rawsize = stub_sec->size;
9279 stub_sec->size = 0;
9280 }
9281
9282 if (htab->plt != NULL)
9283 {
9284 unsigned int indx;
9285 bfd_vma plt0;
9286
9287 /* Build the .glink plt call stub. */
9288 plt0 = (htab->plt->output_section->vma
9289 + htab->plt->output_offset
9290 - (htab->glink->output_section->vma
9291 + htab->glink->output_offset
9292 + GLINK_CALL_STUB_SIZE));
9293 if (plt0 + 0x80008000 > 0xffffffff)
9294 {
9295 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9296 bfd_set_error (bfd_error_bad_value);
9297 return FALSE;
9298 }
9299
9300 if (htab->emit_stub_syms)
9301 {
9302 struct elf_link_hash_entry *h;
9303 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9304 if (h == NULL)
9305 return FALSE;
9306 if (h->root.type == bfd_link_hash_new)
9307 {
9308 h->root.type = bfd_link_hash_defined;
9309 h->root.u.def.section = htab->glink;
9310 h->root.u.def.value = 0;
9311 h->ref_regular = 1;
9312 h->def_regular = 1;
9313 h->ref_regular_nonweak = 1;
9314 h->forced_local = 1;
9315 h->non_elf = 0;
9316 }
9317 }
9318 p = htab->glink->contents;
9319 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9320 p += 4;
9321 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9322 p += 4;
9323 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9324 p += 4;
9325 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9326 p += 4;
9327 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9328 p += 4;
9329 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9330 p += 4;
9331 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9332 p += 4;
9333 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9334 p += 4;
9335 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9336 p += 4;
9337 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9338 p += 4;
9339 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9340 p += 4;
9341 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9342 p += 4;
9343 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9344 p += 4;
9345 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9346 p += 4;
9347 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9348 p += 4;
9349 bfd_put_32 (htab->glink->owner, BCTR, p);
9350 p += 4;
9351
9352 /* Build the .glink lazy link call stubs. */
9353 indx = 0;
9354 while (p < htab->glink->contents + htab->glink->size)
9355 {
9356 if (indx < 0x8000)
9357 {
9358 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9359 p += 4;
9360 }
9361 else
9362 {
9363 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9364 p += 4;
9365 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9366 p += 4;
9367 }
9368 bfd_put_32 (htab->glink->owner,
9369 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9370 indx++;
9371 p += 4;
9372 }
9373 htab->glink->rawsize = p - htab->glink->contents;
9374 }
9375
9376 if (htab->brlt->size != 0)
9377 {
9378 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9379 htab->brlt->size);
9380 if (htab->brlt->contents == NULL)
9381 return FALSE;
9382 }
9383 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9384 {
9385 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9386 htab->relbrlt->size);
9387 if (htab->relbrlt->contents == NULL)
9388 return FALSE;
9389 }
9390
9391 /* Build the stubs as directed by the stub hash table. */
9392 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9393
9394 for (stub_sec = htab->stub_bfd->sections;
9395 stub_sec != NULL;
9396 stub_sec = stub_sec->next)
9397 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9398 {
9399 stub_sec_count += 1;
9400 if (stub_sec->rawsize != stub_sec->size)
9401 break;
9402 }
9403
9404 if (stub_sec != NULL
9405 || htab->glink->rawsize != htab->glink->size)
9406 {
9407 htab->stub_error = TRUE;
9408 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9409 }
9410
9411 if (htab->stub_error)
9412 return FALSE;
9413
9414 if (stats != NULL)
9415 {
9416 *stats = bfd_malloc (500);
9417 if (*stats == NULL)
9418 return FALSE;
9419
9420 sprintf (*stats, _("linker stubs in %u group%s\n"
9421 " branch %lu\n"
9422 " toc adjust %lu\n"
9423 " long branch %lu\n"
9424 " long toc adj %lu\n"
9425 " plt call %lu"),
9426 stub_sec_count,
9427 stub_sec_count == 1 ? "" : "s",
9428 htab->stub_count[ppc_stub_long_branch - 1],
9429 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9430 htab->stub_count[ppc_stub_plt_branch - 1],
9431 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9432 htab->stub_count[ppc_stub_plt_call - 1]);
9433 }
9434 return TRUE;
9435}
9436
9437/* This function undoes the changes made by add_symbol_adjust. */
9438
9439static bfd_boolean
9440undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9441{
9442 struct ppc_link_hash_entry *eh;
9443
9444 if (h->root.type == bfd_link_hash_indirect)
9445 return TRUE;
9446
9447 if (h->root.type == bfd_link_hash_warning)
9448 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9449
9450 eh = (struct ppc_link_hash_entry *) h;
9451 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9452 return TRUE;
9453
9454 eh->elf.root.type = bfd_link_hash_undefined;
9455 return TRUE;
9456}
9457
9458void
9459ppc64_elf_restore_symbols (struct bfd_link_info *info)
9460{
9461 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9462 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9463}
9464
9465/* What to do when ld finds relocations against symbols defined in
9466 discarded sections. */
9467
9468static unsigned int
9469ppc64_elf_action_discarded (asection *sec)
9470{
9471 if (strcmp (".opd", sec->name) == 0)
9472 return 0;
9473
9474 if (strcmp (".toc", sec->name) == 0)
9475 return 0;
9476
9477 return _bfd_elf_default_action_discarded (sec);
9478}
9479
9480/* The RELOCATE_SECTION function is called by the ELF backend linker
9481 to handle the relocations for a section.
9482
9483 The relocs are always passed as Rela structures; if the section
9484 actually uses Rel structures, the r_addend field will always be
9485 zero.
9486
9487 This function is responsible for adjust the section contents as
9488 necessary, and (if using Rela relocs and generating a
9489 relocatable output file) adjusting the reloc addend as
9490 necessary.
9491
9492 This function does not have to worry about setting the reloc
9493 address or the reloc symbol index.
9494
9495 LOCAL_SYMS is a pointer to the swapped in local symbols.
9496
9497 LOCAL_SECTIONS is an array giving the section in the input file
9498 corresponding to the st_shndx field of each local symbol.
9499
9500 The global hash table entry for the global symbols can be found
9501 via elf_sym_hashes (input_bfd).
9502
9503 When generating relocatable output, this function must handle
9504 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9505 going to be the section symbol corresponding to the output
9506 section, which means that the addend must be adjusted
9507 accordingly. */
9508
9509static bfd_boolean
9510ppc64_elf_relocate_section (bfd *output_bfd,
9511 struct bfd_link_info *info,
9512 bfd *input_bfd,
9513 asection *input_section,
9514 bfd_byte *contents,
9515 Elf_Internal_Rela *relocs,
9516 Elf_Internal_Sym *local_syms,
9517 asection **local_sections)
9518{
9519 struct ppc_link_hash_table *htab;
9520 Elf_Internal_Shdr *symtab_hdr;
9521 struct elf_link_hash_entry **sym_hashes;
9522 Elf_Internal_Rela *rel;
9523 Elf_Internal_Rela *relend;
9524 Elf_Internal_Rela outrel;
9525 bfd_byte *loc;
9526 struct got_entry **local_got_ents;
9527 bfd_vma TOCstart;
9528 bfd_boolean ret = TRUE;
9529 bfd_boolean is_opd;
9530 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9531 bfd_boolean is_power4 = FALSE;
9532
9533 if (info->relocatable)
9534 return TRUE;
9535
9536 /* Initialize howto table if needed. */
9537 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9538 ppc_howto_init ();
9539
9540 htab = ppc_hash_table (info);
9541
9542 /* Don't relocate stub sections. */
9543 if (input_section->owner == htab->stub_bfd)
9544 return TRUE;
9545
9546 local_got_ents = elf_local_got_ents (input_bfd);
9547 TOCstart = elf_gp (output_bfd);
9548 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9549 sym_hashes = elf_sym_hashes (input_bfd);
9550 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9551
9552 rel = relocs;
9553 relend = relocs + input_section->reloc_count;
9554 for (; rel < relend; rel++)
9555 {
9556 enum elf_ppc64_reloc_type r_type;
9557 bfd_vma addend;
9558 bfd_reloc_status_type r;
9559 Elf_Internal_Sym *sym;
9560 asection *sec;
9561 struct elf_link_hash_entry *h_elf;
9562 struct ppc_link_hash_entry *h;
9563 struct ppc_link_hash_entry *fdh;
9564 const char *sym_name;
9565 unsigned long r_symndx, toc_symndx;
9566 char tls_mask, tls_gd, tls_type;
9567 char sym_type;
9568 bfd_vma relocation;
9569 bfd_boolean unresolved_reloc;
9570 bfd_boolean warned;
9571 unsigned long insn, mask;
9572 struct ppc_stub_hash_entry *stub_entry;
9573 bfd_vma max_br_offset;
9574 bfd_vma from;
9575
9576 r_type = ELF64_R_TYPE (rel->r_info);
9577 r_symndx = ELF64_R_SYM (rel->r_info);
9578
9579 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9580 symbol of the previous ADDR64 reloc. The symbol gives us the
9581 proper TOC base to use. */
9582 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9583 && rel != relocs
9584 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9585 && is_opd)
9586 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9587
9588 sym = NULL;
9589 sec = NULL;
9590 h_elf = NULL;
9591 sym_name = NULL;
9592 unresolved_reloc = FALSE;
9593 warned = FALSE;
9594
9595 if (r_symndx < symtab_hdr->sh_info)
9596 {
9597 /* It's a local symbol. */
9598 long *opd_adjust;
9599
9600 sym = local_syms + r_symndx;
9601 sec = local_sections[r_symndx];
9602 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
9603 sym_type = ELF64_ST_TYPE (sym->st_info);
9604 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9605 opd_adjust = get_opd_info (sec);
9606 if (opd_adjust != NULL)
9607 {
9608 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9609 if (adjust == -1)
9610 relocation = 0;
9611 else
9612 relocation += adjust;
9613 }
9614 }
9615 else
9616 {
9617 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9618 r_symndx, symtab_hdr, sym_hashes,
9619 h_elf, sec, relocation,
9620 unresolved_reloc, warned);
9621 sym_name = h_elf->root.root.string;
9622 sym_type = h_elf->type;
9623 }
9624 h = (struct ppc_link_hash_entry *) h_elf;
9625
9626 /* TLS optimizations. Replace instruction sequences and relocs
9627 based on information we collected in tls_optimize. We edit
9628 RELOCS so that --emit-relocs will output something sensible
9629 for the final instruction stream. */
9630 tls_mask = 0;
9631 tls_gd = 0;
9632 toc_symndx = 0;
9633 if (IS_PPC64_TLS_RELOC (r_type))
9634 {
9635 if (h != NULL)
9636 tls_mask = h->tls_mask;
9637 else if (local_got_ents != NULL)
9638 {
9639 char *lgot_masks;
9640 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9641 tls_mask = lgot_masks[r_symndx];
9642 }
9643 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9644 {
9645 /* Check for toc tls entries. */
9646 char *toc_tls;
9647
9648 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9649 rel, input_bfd))
9650 return FALSE;
9651
9652 if (toc_tls)
9653 tls_mask = *toc_tls;
9654 }
9655 }
9656
9657 /* Check that tls relocs are used with tls syms, and non-tls
9658 relocs are used with non-tls syms. */
9659 if (r_symndx != 0
9660 && r_type != R_PPC64_NONE
9661 && (h == NULL
9662 || h->elf.root.type == bfd_link_hash_defined
9663 || h->elf.root.type == bfd_link_hash_defweak)
9664 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9665 {
9666 if (r_type == R_PPC64_TLS && tls_mask != 0)
9667 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9668 ;
9669 else
9670 (*_bfd_error_handler)
9671 (sym_type == STT_TLS
9672 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9673 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9674 input_bfd,
9675 input_section,
9676 (long) rel->r_offset,
9677 ppc64_elf_howto_table[r_type]->name,
9678 sym_name);
9679 }
9680
9681 /* Ensure reloc mapping code below stays sane. */
9682 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9683 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9684 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9685 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9686 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9687 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9688 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9689 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9690 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9691 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9692 abort ();
9693
9694 switch (r_type)
9695 {
9696 default:
9697 break;
9698
9699 case R_PPC64_TOC16:
9700 case R_PPC64_TOC16_LO:
9701 case R_PPC64_TOC16_DS:
9702 case R_PPC64_TOC16_LO_DS:
9703 {
9704 /* Check for toc tls entries. */
9705 char *toc_tls;
9706 int retval;
9707
9708 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9709 rel, input_bfd);
9710 if (retval == 0)
9711 return FALSE;
9712
9713 if (toc_tls)
9714 {
9715 tls_mask = *toc_tls;
9716 if (r_type == R_PPC64_TOC16_DS
9717 || r_type == R_PPC64_TOC16_LO_DS)
9718 {
9719 if (tls_mask != 0
9720 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9721 goto toctprel;
9722 }
9723 else
9724 {
9725 /* If we found a GD reloc pair, then we might be
9726 doing a GD->IE transition. */
9727 if (retval == 2)
9728 {
9729 tls_gd = TLS_TPRELGD;
9730 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9731 goto tls_get_addr_check;
9732 }
9733 else if (retval == 3)
9734 {
9735 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9736 goto tls_get_addr_check;
9737 }
9738 }
9739 }
9740 }
9741 break;
9742
9743 case R_PPC64_GOT_TPREL16_DS:
9744 case R_PPC64_GOT_TPREL16_LO_DS:
9745 if (tls_mask != 0
9746 && (tls_mask & TLS_TPREL) == 0)
9747 {
9748 toctprel:
9749 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9750 insn &= 31 << 21;
9751 insn |= 0x3c0d0000; /* addis 0,13,0 */
9752 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9753 r_type = R_PPC64_TPREL16_HA;
9754 if (toc_symndx != 0)
9755 {
9756 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9757 /* We changed the symbol. Start over in order to
9758 get h, sym, sec etc. right. */
9759 rel--;
9760 continue;
9761 }
9762 else
9763 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9764 }
9765 break;
9766
9767 case R_PPC64_TLS:
9768 if (tls_mask != 0
9769 && (tls_mask & TLS_TPREL) == 0)
9770 {
9771 bfd_vma rtra;
9772 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9773 if ((insn & ((0x3f << 26) | (31 << 11)))
9774 == ((31 << 26) | (13 << 11)))
9775 rtra = insn & ((1 << 26) - (1 << 16));
9776 else if ((insn & ((0x3f << 26) | (31 << 16)))
9777 == ((31 << 26) | (13 << 16)))
9778 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9779 else
9780 abort ();
9781 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9782 /* add -> addi. */
9783 insn = 14 << 26;
9784 else if ((insn & (31 << 1)) == 23 << 1
9785 && ((insn & (31 << 6)) < 14 << 6
9786 || ((insn & (31 << 6)) >= 16 << 6
9787 && (insn & (31 << 6)) < 24 << 6)))
9788 /* load and store indexed -> dform. */
9789 insn = (32 | ((insn >> 6) & 31)) << 26;
9790 else if ((insn & (31 << 1)) == 21 << 1
9791 && (insn & (0x1a << 6)) == 0)
9792 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9793 insn = (((58 | ((insn >> 6) & 4)) << 26)
9794 | ((insn >> 6) & 1));
9795 else if ((insn & (31 << 1)) == 21 << 1
9796 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9797 /* lwax -> lwa. */
9798 insn = (58 << 26) | 2;
9799 else
9800 abort ();
9801 insn |= rtra;
9802 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9803 /* Was PPC64_TLS which sits on insn boundary, now
9804 PPC64_TPREL16_LO which is at insn+2. */
9805 rel->r_offset += 2;
9806 r_type = R_PPC64_TPREL16_LO;
9807 if (toc_symndx != 0)
9808 {
9809 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9810 /* We changed the symbol. Start over in order to
9811 get h, sym, sec etc. right. */
9812 rel--;
9813 continue;
9814 }
9815 else
9816 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9817 }
9818 break;
9819
9820 case R_PPC64_GOT_TLSGD16_HI:
9821 case R_PPC64_GOT_TLSGD16_HA:
9822 tls_gd = TLS_TPRELGD;
9823 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9824 goto tls_gdld_hi;
9825 break;
9826
9827 case R_PPC64_GOT_TLSLD16_HI:
9828 case R_PPC64_GOT_TLSLD16_HA:
9829 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9830 {
9831 tls_gdld_hi:
9832 if ((tls_mask & tls_gd) != 0)
9833 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9834 + R_PPC64_GOT_TPREL16_DS);
9835 else
9836 {
9837 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9838 rel->r_offset -= 2;
9839 r_type = R_PPC64_NONE;
9840 }
9841 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9842 }
9843 break;
9844
9845 case R_PPC64_GOT_TLSGD16:
9846 case R_PPC64_GOT_TLSGD16_LO:
9847 tls_gd = TLS_TPRELGD;
9848 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9849 goto tls_get_addr_check;
9850 break;
9851
9852 case R_PPC64_GOT_TLSLD16:
9853 case R_PPC64_GOT_TLSLD16_LO:
9854 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9855 {
9856 tls_get_addr_check:
9857 if (rel + 1 < relend)
9858 {
9859 enum elf_ppc64_reloc_type r_type2;
9860 unsigned long r_symndx2;
9861 struct elf_link_hash_entry *h2;
9862 bfd_vma insn1, insn2, insn3;
9863 bfd_vma offset;
9864
9865 /* The next instruction should be a call to
9866 __tls_get_addr. Peek at the reloc to be sure. */
9867 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9868 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9869 if (r_symndx2 < symtab_hdr->sh_info
9870 || (r_type2 != R_PPC64_REL14
9871 && r_type2 != R_PPC64_REL14_BRTAKEN
9872 && r_type2 != R_PPC64_REL14_BRNTAKEN
9873 && r_type2 != R_PPC64_REL24))
9874 break;
9875
9876 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9877 while (h2->root.type == bfd_link_hash_indirect
9878 || h2->root.type == bfd_link_hash_warning)
9879 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9880 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9881 && h2 != &htab->tls_get_addr_fd->elf))
9882 break;
9883
9884 /* OK, it checks out. Replace the call. */
9885 offset = rel[1].r_offset;
9886 insn1 = bfd_get_32 (output_bfd,
9887 contents + rel->r_offset - 2);
9888 insn3 = bfd_get_32 (output_bfd,
9889 contents + offset + 4);
9890 if ((tls_mask & tls_gd) != 0)
9891 {
9892 /* IE */
9893 insn1 &= (1 << 26) - (1 << 2);
9894 insn1 |= 58 << 26; /* ld */
9895 insn2 = 0x7c636a14; /* add 3,3,13 */
9896 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9897 if ((tls_mask & TLS_EXPLICIT) == 0)
9898 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9899 + R_PPC64_GOT_TPREL16_DS);
9900 else
9901 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9902 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9903 }
9904 else
9905 {
9906 /* LE */
9907 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9908 insn2 = 0x38630000; /* addi 3,3,0 */
9909 if (tls_gd == 0)
9910 {
9911 /* Was an LD reloc. */
9912 r_symndx = 0;
9913 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9914 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9915 }
9916 else if (toc_symndx != 0)
9917 r_symndx = toc_symndx;
9918 r_type = R_PPC64_TPREL16_HA;
9919 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9920 rel[1].r_info = ELF64_R_INFO (r_symndx,
9921 R_PPC64_TPREL16_LO);
9922 rel[1].r_offset += 2;
9923 }
9924 if (insn3 == NOP
9925 || insn3 == CROR_151515 || insn3 == CROR_313131)
9926 {
9927 insn3 = insn2;
9928 insn2 = NOP;
9929 rel[1].r_offset += 4;
9930 }
9931 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9932 bfd_put_32 (output_bfd, insn2, contents + offset);
9933 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9934 if (tls_gd == 0 || toc_symndx != 0)
9935 {
9936 /* We changed the symbol. Start over in order
9937 to get h, sym, sec etc. right. */
9938 rel--;
9939 continue;
9940 }
9941 }
9942 }
9943 break;
9944
9945 case R_PPC64_DTPMOD64:
9946 if (rel + 1 < relend
9947 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9948 && rel[1].r_offset == rel->r_offset + 8)
9949 {
9950 if ((tls_mask & TLS_GD) == 0)
9951 {
9952 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9953 if ((tls_mask & TLS_TPRELGD) != 0)
9954 r_type = R_PPC64_TPREL64;
9955 else
9956 {
9957 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9958 r_type = R_PPC64_NONE;
9959 }
9960 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9961 }
9962 }
9963 else
9964 {
9965 if ((tls_mask & TLS_LD) == 0)
9966 {
9967 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9968 r_type = R_PPC64_NONE;
9969 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9970 }
9971 }
9972 break;
9973
9974 case R_PPC64_TPREL64:
9975 if ((tls_mask & TLS_TPREL) == 0)
9976 {
9977 r_type = R_PPC64_NONE;
9978 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9979 }
9980 break;
9981 }
9982
9983 /* Handle other relocations that tweak non-addend part of insn. */
9984 insn = 0;
9985 max_br_offset = 1 << 25;
9986 addend = rel->r_addend;
9987 switch (r_type)
9988 {
9989 default:
9990 break;
9991
9992 /* Branch taken prediction relocations. */
9993 case R_PPC64_ADDR14_BRTAKEN:
9994 case R_PPC64_REL14_BRTAKEN:
9995 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9996 /* Fall thru. */
9997
9998 /* Branch not taken prediction relocations. */
9999 case R_PPC64_ADDR14_BRNTAKEN:
10000 case R_PPC64_REL14_BRNTAKEN:
10001 insn |= bfd_get_32 (output_bfd,
10002 contents + rel->r_offset) & ~(0x01 << 21);
10003 /* Fall thru. */
10004
10005 case R_PPC64_REL14:
10006 max_br_offset = 1 << 15;
10007 /* Fall thru. */
10008
10009 case R_PPC64_REL24:
10010 /* Calls to functions with a different TOC, such as calls to
10011 shared objects, need to alter the TOC pointer. This is
10012 done using a linkage stub. A REL24 branching to these
10013 linkage stubs needs to be followed by a nop, as the nop
10014 will be replaced with an instruction to restore the TOC
10015 base pointer. */
10016 stub_entry = NULL;
10017 fdh = h;
10018 if (((h != NULL
10019 && (((fdh = h->oh) != NULL
10020 && fdh->elf.plt.plist != NULL)
10021 || (fdh = h)->elf.plt.plist != NULL))
10022 || (sec != NULL
10023 && sec->output_section != NULL
10024 && sec->id <= htab->top_id
10025 && (htab->stub_group[sec->id].toc_off
10026 != htab->stub_group[input_section->id].toc_off)))
10027 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10028 rel, htab)) != NULL
10029 && (stub_entry->stub_type == ppc_stub_plt_call
10030 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10031 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10032 {
10033 bfd_boolean can_plt_call = FALSE;
10034
10035 if (rel->r_offset + 8 <= input_section->size)
10036 {
10037 unsigned long nop;
10038 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10039 if (nop == NOP
10040 || nop == CROR_151515 || nop == CROR_313131)
10041 {
10042 bfd_put_32 (input_bfd, LD_R2_40R1,
10043 contents + rel->r_offset + 4);
10044 can_plt_call = TRUE;
10045 }
10046 }
10047
10048 if (!can_plt_call)
10049 {
10050 if (stub_entry->stub_type == ppc_stub_plt_call)
10051 {
10052 /* If this is a plain branch rather than a branch
10053 and link, don't require a nop. */
10054 unsigned long br;
10055 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10056 if ((br & 1) == 0)
10057 can_plt_call = TRUE;
10058 else
10059 stub_entry = NULL;
10060 }
10061 else if (h != NULL
10062 && strcmp (h->elf.root.root.string,
10063 ".__libc_start_main") == 0)
10064 {
10065 /* Allow crt1 branch to go via a toc adjusting stub. */
10066 can_plt_call = TRUE;
10067 }
10068 else
10069 {
10070 if (strcmp (input_section->output_section->name,
10071 ".init") == 0
10072 || strcmp (input_section->output_section->name,
10073 ".fini") == 0)
10074 (*_bfd_error_handler)
10075 (_("%B(%A+0x%lx): automatic multiple TOCs "
10076 "not supported using your crt files; "
10077 "recompile with -mminimal-toc or upgrade gcc"),
10078 input_bfd,
10079 input_section,
10080 (long) rel->r_offset);
10081 else
10082 (*_bfd_error_handler)
10083 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10084 "does not allow automatic multiple TOCs; "
10085 "recompile with -mminimal-toc or "
10086 "-fno-optimize-sibling-calls, "
10087 "or make `%s' extern"),
10088 input_bfd,
10089 input_section,
10090 (long) rel->r_offset,
10091 sym_name,
10092 sym_name);
10093 bfd_set_error (bfd_error_bad_value);
10094 ret = FALSE;
10095 }
10096 }
10097
10098 if (can_plt_call
10099 && stub_entry->stub_type == ppc_stub_plt_call)
10100 unresolved_reloc = FALSE;
10101 }
10102
10103 if (stub_entry == NULL
10104 && get_opd_info (sec) != NULL)
10105 {
10106 /* The branch destination is the value of the opd entry. */
10107 bfd_vma off = (relocation - sec->output_section->vma
10108 - sec->output_offset + rel->r_addend);
10109 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10110 if (dest != (bfd_vma) -1)
10111 {
10112 relocation = dest;
10113 addend = 0;
10114 }
10115 }
10116
10117 /* If the branch is out of reach we ought to have a long
10118 branch stub. */
10119 from = (rel->r_offset
10120 + input_section->output_offset
10121 + input_section->output_section->vma);
10122
10123 if (stub_entry == NULL
10124 && (relocation + rel->r_addend - from + max_br_offset
10125 >= 2 * max_br_offset)
10126 && r_type != R_PPC64_ADDR14_BRTAKEN
10127 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10128 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10129 htab);
10130
10131 if (stub_entry != NULL)
10132 {
10133 /* Munge up the value and addend so that we call the stub
10134 rather than the procedure directly. */
10135 relocation = (stub_entry->stub_offset
10136 + stub_entry->stub_sec->output_offset
10137 + stub_entry->stub_sec->output_section->vma);
10138 addend = 0;
10139 }
10140
10141 if (insn != 0)
10142 {
10143 if (is_power4)
10144 {
10145 /* Set 'a' bit. This is 0b00010 in BO field for branch
10146 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10147 for branch on CTR insns (BO == 1a00t or 1a01t). */
10148 if ((insn & (0x14 << 21)) == (0x04 << 21))
10149 insn |= 0x02 << 21;
10150 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10151 insn |= 0x08 << 21;
10152 else
10153 break;
10154 }
10155 else
10156 {
10157 /* Invert 'y' bit if not the default. */
10158 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10159 insn ^= 0x01 << 21;
10160 }
10161
10162 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10163 }
10164
10165 /* NOP out calls to undefined weak functions.
10166 We can thus call a weak function without first
10167 checking whether the function is defined. */
10168 else if (h != NULL
10169 && h->elf.root.type == bfd_link_hash_undefweak
10170 && r_type == R_PPC64_REL24
10171 && relocation == 0
10172 && rel->r_addend == 0)
10173 {
10174 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10175 continue;
10176 }
10177 break;
10178 }
10179
10180 /* Set `addend'. */
10181 tls_type = 0;
10182 switch (r_type)
10183 {
10184 default:
10185 (*_bfd_error_handler)
10186 (_("%B: unknown relocation type %d for symbol %s"),
10187 input_bfd, (int) r_type, sym_name);
10188
10189 bfd_set_error (bfd_error_bad_value);
10190 ret = FALSE;
10191 continue;
10192
10193 case R_PPC64_NONE:
10194 case R_PPC64_TLS:
10195 case R_PPC64_GNU_VTINHERIT:
10196 case R_PPC64_GNU_VTENTRY:
10197 continue;
10198
10199 /* GOT16 relocations. Like an ADDR16 using the symbol's
10200 address in the GOT as relocation value instead of the
10201 symbol's value itself. Also, create a GOT entry for the
10202 symbol and put the symbol value there. */
10203 case R_PPC64_GOT_TLSGD16:
10204 case R_PPC64_GOT_TLSGD16_LO:
10205 case R_PPC64_GOT_TLSGD16_HI:
10206 case R_PPC64_GOT_TLSGD16_HA:
10207 tls_type = TLS_TLS | TLS_GD;
10208 goto dogot;
10209
10210 case R_PPC64_GOT_TLSLD16:
10211 case R_PPC64_GOT_TLSLD16_LO:
10212 case R_PPC64_GOT_TLSLD16_HI:
10213 case R_PPC64_GOT_TLSLD16_HA:
10214 tls_type = TLS_TLS | TLS_LD;
10215 goto dogot;
10216
10217 case R_PPC64_GOT_TPREL16_DS:
10218 case R_PPC64_GOT_TPREL16_LO_DS:
10219 case R_PPC64_GOT_TPREL16_HI:
10220 case R_PPC64_GOT_TPREL16_HA:
10221 tls_type = TLS_TLS | TLS_TPREL;
10222 goto dogot;
10223
10224 case R_PPC64_GOT_DTPREL16_DS:
10225 case R_PPC64_GOT_DTPREL16_LO_DS:
10226 case R_PPC64_GOT_DTPREL16_HI:
10227 case R_PPC64_GOT_DTPREL16_HA:
10228 tls_type = TLS_TLS | TLS_DTPREL;
10229 goto dogot;
10230
10231 case R_PPC64_GOT16:
10232 case R_PPC64_GOT16_LO:
10233 case R_PPC64_GOT16_HI:
10234 case R_PPC64_GOT16_HA:
10235 case R_PPC64_GOT16_DS:
10236 case R_PPC64_GOT16_LO_DS:
10237 dogot:
10238 {
10239 /* Relocation is to the entry for this symbol in the global
10240 offset table. */
10241 asection *got;
10242 bfd_vma *offp;
10243 bfd_vma off;
10244 unsigned long indx = 0;
10245
10246 if (tls_type == (TLS_TLS | TLS_LD)
10247 && (h == NULL
10248 || !h->elf.def_dynamic))
10249 offp = &ppc64_tlsld_got (input_bfd)->offset;
10250 else
10251 {
10252 struct got_entry *ent;
10253
10254 if (h != NULL)
10255 {
10256 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10257 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10258 &h->elf)
10259 || (info->shared
10260 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10261 /* This is actually a static link, or it is a
10262 -Bsymbolic link and the symbol is defined
10263 locally, or the symbol was forced to be local
10264 because of a version file. */
10265 ;
10266 else
10267 {
10268 indx = h->elf.dynindx;
10269 unresolved_reloc = FALSE;
10270 }
10271 ent = h->elf.got.glist;
10272 }
10273 else
10274 {
10275 if (local_got_ents == NULL)
10276 abort ();
10277 ent = local_got_ents[r_symndx];
10278 }
10279
10280 for (; ent != NULL; ent = ent->next)
10281 if (ent->addend == rel->r_addend
10282 && ent->owner == input_bfd
10283 && ent->tls_type == tls_type)
10284 break;
10285 if (ent == NULL)
10286 abort ();
10287 offp = &ent->got.offset;
10288 }
10289
10290 got = ppc64_elf_tdata (input_bfd)->got;
10291 if (got == NULL)
10292 abort ();
10293
10294 /* The offset must always be a multiple of 8. We use the
10295 least significant bit to record whether we have already
10296 processed this entry. */
10297 off = *offp;
10298 if ((off & 1) != 0)
10299 off &= ~1;
10300 else
10301 {
10302 /* Generate relocs for the dynamic linker, except in
10303 the case of TLSLD where we'll use one entry per
10304 module. */
10305 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10306
10307 *offp = off | 1;
10308 if ((info->shared || indx != 0)
10309 && (h == NULL
10310 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10311 || h->elf.root.type != bfd_link_hash_undefweak))
10312 {
10313 outrel.r_offset = (got->output_section->vma
10314 + got->output_offset
10315 + off);
10316 outrel.r_addend = rel->r_addend;
10317 if (tls_type & (TLS_LD | TLS_GD))
10318 {
10319 outrel.r_addend = 0;
10320 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10321 if (tls_type == (TLS_TLS | TLS_GD))
10322 {
10323 loc = relgot->contents;
10324 loc += (relgot->reloc_count++
10325 * sizeof (Elf64_External_Rela));
10326 bfd_elf64_swap_reloca_out (output_bfd,
10327 &outrel, loc);
10328 outrel.r_offset += 8;
10329 outrel.r_addend = rel->r_addend;
10330 outrel.r_info
10331 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10332 }
10333 }
10334 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10335 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10336 else if (tls_type == (TLS_TLS | TLS_TPREL))
10337 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10338 else if (indx == 0)
10339 {
10340 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10341
10342 /* Write the .got section contents for the sake
10343 of prelink. */
10344 loc = got->contents + off;
10345 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10346 loc);
10347 }
10348 else
10349 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10350
10351 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10352 {
10353 outrel.r_addend += relocation;
10354 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10355 outrel.r_addend -= htab->elf.tls_sec->vma;
10356 }
10357 loc = relgot->contents;
10358 loc += (relgot->reloc_count++
10359 * sizeof (Elf64_External_Rela));
10360 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10361 }
10362
10363 /* Init the .got section contents here if we're not
10364 emitting a reloc. */
10365 else
10366 {
10367 relocation += rel->r_addend;
10368 if (tls_type == (TLS_TLS | TLS_LD))
10369 relocation = 1;
10370 else if (tls_type != 0)
10371 {
10372 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10373 if (tls_type == (TLS_TLS | TLS_TPREL))
10374 relocation += DTP_OFFSET - TP_OFFSET;
10375
10376 if (tls_type == (TLS_TLS | TLS_GD))
10377 {
10378 bfd_put_64 (output_bfd, relocation,
10379 got->contents + off + 8);
10380 relocation = 1;
10381 }
10382 }
10383
10384 bfd_put_64 (output_bfd, relocation,
10385 got->contents + off);
10386 }
10387 }
10388
10389 if (off >= (bfd_vma) -2)
10390 abort ();
10391
10392 relocation = got->output_offset + off;
10393
10394 /* TOC base (r2) is TOC start plus 0x8000. */
10395 addend = -TOC_BASE_OFF;
10396 }
10397 break;
10398
10399 case R_PPC64_PLT16_HA:
10400 case R_PPC64_PLT16_HI:
10401 case R_PPC64_PLT16_LO:
10402 case R_PPC64_PLT32:
10403 case R_PPC64_PLT64:
10404 /* Relocation is to the entry for this symbol in the
10405 procedure linkage table. */
10406
10407 /* Resolve a PLT reloc against a local symbol directly,
10408 without using the procedure linkage table. */
10409 if (h == NULL)
10410 break;
10411
10412 /* It's possible that we didn't make a PLT entry for this
10413 symbol. This happens when statically linking PIC code,
10414 or when using -Bsymbolic. Go find a match if there is a
10415 PLT entry. */
10416 if (htab->plt != NULL)
10417 {
10418 struct plt_entry *ent;
10419 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10420 if (ent->addend == rel->r_addend
10421 && ent->plt.offset != (bfd_vma) -1)
10422 {
10423 relocation = (htab->plt->output_section->vma
10424 + htab->plt->output_offset
10425 + ent->plt.offset);
10426 unresolved_reloc = FALSE;
10427 }
10428 }
10429 break;
10430
10431 case R_PPC64_TOC:
10432 /* Relocation value is TOC base. */
10433 relocation = TOCstart;
10434 if (r_symndx == 0)
10435 relocation += htab->stub_group[input_section->id].toc_off;
10436 else if (unresolved_reloc)
10437 ;
10438 else if (sec != NULL && sec->id <= htab->top_id)
10439 relocation += htab->stub_group[sec->id].toc_off;
10440 else
10441 unresolved_reloc = TRUE;
10442 goto dodyn2;
10443
10444 /* TOC16 relocs. We want the offset relative to the TOC base,
10445 which is the address of the start of the TOC plus 0x8000.
10446 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10447 in this order. */
10448 case R_PPC64_TOC16:
10449 case R_PPC64_TOC16_LO:
10450 case R_PPC64_TOC16_HI:
10451 case R_PPC64_TOC16_DS:
10452 case R_PPC64_TOC16_LO_DS:
10453 case R_PPC64_TOC16_HA:
10454 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10455 break;
10456
10457 /* Relocate against the beginning of the section. */
10458 case R_PPC64_SECTOFF:
10459 case R_PPC64_SECTOFF_LO:
10460 case R_PPC64_SECTOFF_HI:
10461 case R_PPC64_SECTOFF_DS:
10462 case R_PPC64_SECTOFF_LO_DS:
10463 case R_PPC64_SECTOFF_HA:
10464 if (sec != NULL)
10465 addend -= sec->output_section->vma;
10466 break;
10467
10468 case R_PPC64_REL14:
10469 case R_PPC64_REL14_BRNTAKEN:
10470 case R_PPC64_REL14_BRTAKEN:
10471 case R_PPC64_REL24:
10472 break;
10473
10474 case R_PPC64_TPREL16:
10475 case R_PPC64_TPREL16_LO:
10476 case R_PPC64_TPREL16_HI:
10477 case R_PPC64_TPREL16_HA:
10478 case R_PPC64_TPREL16_DS:
10479 case R_PPC64_TPREL16_LO_DS:
10480 case R_PPC64_TPREL16_HIGHER:
10481 case R_PPC64_TPREL16_HIGHERA:
10482 case R_PPC64_TPREL16_HIGHEST:
10483 case R_PPC64_TPREL16_HIGHESTA:
10484 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10485 if (info->shared)
10486 /* The TPREL16 relocs shouldn't really be used in shared
10487 libs as they will result in DT_TEXTREL being set, but
10488 support them anyway. */
10489 goto dodyn;
10490 break;
10491
10492 case R_PPC64_DTPREL16:
10493 case R_PPC64_DTPREL16_LO:
10494 case R_PPC64_DTPREL16_HI:
10495 case R_PPC64_DTPREL16_HA:
10496 case R_PPC64_DTPREL16_DS:
10497 case R_PPC64_DTPREL16_LO_DS:
10498 case R_PPC64_DTPREL16_HIGHER:
10499 case R_PPC64_DTPREL16_HIGHERA:
10500 case R_PPC64_DTPREL16_HIGHEST:
10501 case R_PPC64_DTPREL16_HIGHESTA:
10502 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10503 break;
10504
10505 case R_PPC64_DTPMOD64:
10506 relocation = 1;
10507 addend = 0;
10508 goto dodyn;
10509
10510 case R_PPC64_TPREL64:
10511 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10512 goto dodyn;
10513
10514 case R_PPC64_DTPREL64:
10515 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10516 /* Fall thru */
10517
10518 /* Relocations that may need to be propagated if this is a
10519 dynamic object. */
10520 case R_PPC64_REL30:
10521 case R_PPC64_REL32:
10522 case R_PPC64_REL64:
10523 case R_PPC64_ADDR14:
10524 case R_PPC64_ADDR14_BRNTAKEN:
10525 case R_PPC64_ADDR14_BRTAKEN:
10526 case R_PPC64_ADDR16:
10527 case R_PPC64_ADDR16_DS:
10528 case R_PPC64_ADDR16_HA:
10529 case R_PPC64_ADDR16_HI:
10530 case R_PPC64_ADDR16_HIGHER:
10531 case R_PPC64_ADDR16_HIGHERA:
10532 case R_PPC64_ADDR16_HIGHEST:
10533 case R_PPC64_ADDR16_HIGHESTA:
10534 case R_PPC64_ADDR16_LO:
10535 case R_PPC64_ADDR16_LO_DS:
10536 case R_PPC64_ADDR24:
10537 case R_PPC64_ADDR32:
10538 case R_PPC64_ADDR64:
10539 case R_PPC64_UADDR16:
10540 case R_PPC64_UADDR32:
10541 case R_PPC64_UADDR64:
10542 /* r_symndx will be zero only for relocs against symbols
10543 from removed linkonce sections, or sections discarded by
10544 a linker script. */
10545 dodyn:
10546 if (r_symndx == 0)
10547 break;
10548 /* Fall thru. */
10549
10550 dodyn2:
10551 if ((input_section->flags & SEC_ALLOC) == 0)
10552 break;
10553
10554 if (NO_OPD_RELOCS && is_opd)
10555 break;
10556
10557 if ((info->shared
10558 && (h == NULL
10559 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10560 || h->elf.root.type != bfd_link_hash_undefweak)
10561 && (MUST_BE_DYN_RELOC (r_type)
10562 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10563 || (ELIMINATE_COPY_RELOCS
10564 && !info->shared
10565 && h != NULL
10566 && h->elf.dynindx != -1
10567 && !h->elf.non_got_ref
10568 && h->elf.def_dynamic
10569 && !h->elf.def_regular))
10570 {
10571 Elf_Internal_Rela outrel;
10572 bfd_boolean skip, relocate;
10573 asection *sreloc;
10574 bfd_byte *loc;
10575 bfd_vma out_off;
10576
10577 /* When generating a dynamic object, these relocations
10578 are copied into the output file to be resolved at run
10579 time. */
10580
10581 skip = FALSE;
10582 relocate = FALSE;
10583
10584 out_off = _bfd_elf_section_offset (output_bfd, info,
10585 input_section, rel->r_offset);
10586 if (out_off == (bfd_vma) -1)
10587 skip = TRUE;
10588 else if (out_off == (bfd_vma) -2)
10589 skip = TRUE, relocate = TRUE;
10590 out_off += (input_section->output_section->vma
10591 + input_section->output_offset);
10592 outrel.r_offset = out_off;
10593 outrel.r_addend = rel->r_addend;
10594
10595 /* Optimize unaligned reloc use. */
10596 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10597 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10598 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10599 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10600 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10601 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10602 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10603 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10604 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10605
10606 if (skip)
10607 memset (&outrel, 0, sizeof outrel);
10608 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10609 && !is_opd
10610 && r_type != R_PPC64_TOC)
10611 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10612 else
10613 {
10614 /* This symbol is local, or marked to become local,
10615 or this is an opd section reloc which must point
10616 at a local function. */
10617 outrel.r_addend += relocation;
10618 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10619 {
10620 if (is_opd && h != NULL)
10621 {
10622 /* Lie about opd entries. This case occurs
10623 when building shared libraries and we
10624 reference a function in another shared
10625 lib. The same thing happens for a weak
10626 definition in an application that's
10627 overridden by a strong definition in a
10628 shared lib. (I believe this is a generic
10629 bug in binutils handling of weak syms.)
10630 In these cases we won't use the opd
10631 entry in this lib. */
10632 unresolved_reloc = FALSE;
10633 }
10634 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10635
10636 /* We need to relocate .opd contents for ld.so.
10637 Prelink also wants simple and consistent rules
10638 for relocs. This make all RELATIVE relocs have
10639 *r_offset equal to r_addend. */
10640 relocate = TRUE;
10641 }
10642 else
10643 {
10644 long indx = 0;
10645
10646 if (bfd_is_abs_section (sec))
10647 ;
10648 else if (sec == NULL || sec->owner == NULL)
10649 {
10650 bfd_set_error (bfd_error_bad_value);
10651 return FALSE;
10652 }
10653 else
10654 {
10655 asection *osec;
10656
10657 osec = sec->output_section;
10658 indx = elf_section_data (osec)->dynindx;
10659
10660 /* We are turning this relocation into one
10661 against a section symbol, so subtract out
10662 the output section's address but not the
10663 offset of the input section in the output
10664 section. */
10665 outrel.r_addend -= osec->vma;
10666 }
10667
10668 outrel.r_info = ELF64_R_INFO (indx, r_type);
10669 }
10670 }
10671
10672 sreloc = elf_section_data (input_section)->sreloc;
10673 if (sreloc == NULL)
10674 abort ();
10675
10676 loc = sreloc->contents;
10677 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10678 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10679
10680 /* If this reloc is against an external symbol, it will
10681 be computed at runtime, so there's no need to do
10682 anything now. However, for the sake of prelink ensure
10683 that the section contents are a known value. */
10684 if (! relocate)
10685 {
10686 unresolved_reloc = FALSE;
10687 /* The value chosen here is quite arbitrary as ld.so
10688 ignores section contents except for the special
10689 case of .opd where the contents might be accessed
10690 before relocation. Choose zero, as that won't
10691 cause reloc overflow. */
10692 relocation = 0;
10693 addend = 0;
10694 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10695 to improve backward compatibility with older
10696 versions of ld. */
10697 if (r_type == R_PPC64_ADDR64)
10698 addend = outrel.r_addend;
10699 /* Adjust pc_relative relocs to have zero in *r_offset. */
10700 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10701 addend = (input_section->output_section->vma
10702 + input_section->output_offset
10703 + rel->r_offset);
10704 }
10705 }
10706 break;
10707
10708 case R_PPC64_COPY:
10709 case R_PPC64_GLOB_DAT:
10710 case R_PPC64_JMP_SLOT:
10711 case R_PPC64_RELATIVE:
10712 /* We shouldn't ever see these dynamic relocs in relocatable
10713 files. */
10714 /* Fall through. */
10715
10716 case R_PPC64_PLTGOT16:
10717 case R_PPC64_PLTGOT16_DS:
10718 case R_PPC64_PLTGOT16_HA:
10719 case R_PPC64_PLTGOT16_HI:
10720 case R_PPC64_PLTGOT16_LO:
10721 case R_PPC64_PLTGOT16_LO_DS:
10722 case R_PPC64_PLTREL32:
10723 case R_PPC64_PLTREL64:
10724 /* These ones haven't been implemented yet. */
10725
10726 (*_bfd_error_handler)
10727 (_("%B: relocation %s is not supported for symbol %s."),
10728 input_bfd,
10729 ppc64_elf_howto_table[r_type]->name, sym_name);
10730
10731 bfd_set_error (bfd_error_invalid_operation);
10732 ret = FALSE;
10733 continue;
10734 }
10735
10736 /* Do any further special processing. */
10737 switch (r_type)
10738 {
10739 default:
10740 break;
10741
10742 case R_PPC64_ADDR16_HA:
10743 case R_PPC64_ADDR16_HIGHERA:
10744 case R_PPC64_ADDR16_HIGHESTA:
10745 case R_PPC64_GOT16_HA:
10746 case R_PPC64_PLTGOT16_HA:
10747 case R_PPC64_PLT16_HA:
10748 case R_PPC64_TOC16_HA:
10749 case R_PPC64_SECTOFF_HA:
10750 case R_PPC64_TPREL16_HA:
10751 case R_PPC64_DTPREL16_HA:
10752 case R_PPC64_GOT_TLSGD16_HA:
10753 case R_PPC64_GOT_TLSLD16_HA:
10754 case R_PPC64_GOT_TPREL16_HA:
10755 case R_PPC64_GOT_DTPREL16_HA:
10756 case R_PPC64_TPREL16_HIGHER:
10757 case R_PPC64_TPREL16_HIGHERA:
10758 case R_PPC64_TPREL16_HIGHEST:
10759 case R_PPC64_TPREL16_HIGHESTA:
10760 case R_PPC64_DTPREL16_HIGHER:
10761 case R_PPC64_DTPREL16_HIGHERA:
10762 case R_PPC64_DTPREL16_HIGHEST:
10763 case R_PPC64_DTPREL16_HIGHESTA:
10764 /* It's just possible that this symbol is a weak symbol
10765 that's not actually defined anywhere. In that case,
10766 'sec' would be NULL, and we should leave the symbol
10767 alone (it will be set to zero elsewhere in the link). */
10768 if (sec != NULL)
10769 /* Add 0x10000 if sign bit in 0:15 is set.
10770 Bits 0:15 are not used. */
10771 addend += 0x8000;
10772 break;
10773
10774 case R_PPC64_ADDR16_DS:
10775 case R_PPC64_ADDR16_LO_DS:
10776 case R_PPC64_GOT16_DS:
10777 case R_PPC64_GOT16_LO_DS:
10778 case R_PPC64_PLT16_LO_DS:
10779 case R_PPC64_SECTOFF_DS:
10780 case R_PPC64_SECTOFF_LO_DS:
10781 case R_PPC64_TOC16_DS:
10782 case R_PPC64_TOC16_LO_DS:
10783 case R_PPC64_PLTGOT16_DS:
10784 case R_PPC64_PLTGOT16_LO_DS:
10785 case R_PPC64_GOT_TPREL16_DS:
10786 case R_PPC64_GOT_TPREL16_LO_DS:
10787 case R_PPC64_GOT_DTPREL16_DS:
10788 case R_PPC64_GOT_DTPREL16_LO_DS:
10789 case R_PPC64_TPREL16_DS:
10790 case R_PPC64_TPREL16_LO_DS:
10791 case R_PPC64_DTPREL16_DS:
10792 case R_PPC64_DTPREL16_LO_DS:
10793 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10794 mask = 3;
10795 /* If this reloc is against an lq insn, then the value must be
10796 a multiple of 16. This is somewhat of a hack, but the
10797 "correct" way to do this by defining _DQ forms of all the
10798 _DS relocs bloats all reloc switches in this file. It
10799 doesn't seem to make much sense to use any of these relocs
10800 in data, so testing the insn should be safe. */
10801 if ((insn & (0x3f << 26)) == (56u << 26))
10802 mask = 15;
10803 if (((relocation + addend) & mask) != 0)
10804 {
10805 (*_bfd_error_handler)
10806 (_("%B: error: relocation %s not a multiple of %d"),
10807 input_bfd,
10808 ppc64_elf_howto_table[r_type]->name,
10809 mask + 1);
10810 bfd_set_error (bfd_error_bad_value);
10811 ret = FALSE;
10812 continue;
10813 }
10814 break;
10815 }
10816
10817 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10818 because such sections are not SEC_ALLOC and thus ld.so will
10819 not process them. */
10820 if (unresolved_reloc
10821 && !((input_section->flags & SEC_DEBUGGING) != 0
10822 && h->elf.def_dynamic))
10823 {
10824 (*_bfd_error_handler)
10825 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10826 input_bfd,
10827 input_section,
10828 (long) rel->r_offset,
10829 ppc64_elf_howto_table[(int) r_type]->name,
10830 h->elf.root.root.string);
10831 ret = FALSE;
10832 }
10833
10834 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10835 input_bfd,
10836 input_section,
10837 contents,
10838 rel->r_offset,
10839 relocation,
10840 addend);
10841
10842 if (r != bfd_reloc_ok)
10843 {
10844 if (sym_name == NULL)
10845 sym_name = "(null)";
10846 if (r == bfd_reloc_overflow)
10847 {
10848 if (warned)
10849 continue;
10850 if (h != NULL
10851 && h->elf.root.type == bfd_link_hash_undefweak
10852 && ppc64_elf_howto_table[r_type]->pc_relative)
10853 {
10854 /* Assume this is a call protected by other code that
10855 detects the symbol is undefined. If this is the case,
10856 we can safely ignore the overflow. If not, the
10857 program is hosed anyway, and a little warning isn't
10858 going to help. */
10859
10860 continue;
10861 }
10862
10863 if (!((*info->callbacks->reloc_overflow)
10864 (info, (h ? &h->elf.root : NULL), sym_name,
10865 ppc64_elf_howto_table[r_type]->name,
10866 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10867 return FALSE;
10868 }
10869 else
10870 {
10871 (*_bfd_error_handler)
10872 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10873 input_bfd,
10874 input_section,
10875 (long) rel->r_offset,
10876 ppc64_elf_howto_table[r_type]->name,
10877 sym_name,
10878 (int) r);
10879 ret = FALSE;
10880 }
10881 }
10882 }
10883
10884 /* If we're emitting relocations, then shortly after this function
10885 returns, reloc offsets and addends for this section will be
10886 adjusted. Worse, reloc symbol indices will be for the output
10887 file rather than the input. Save a copy of the relocs for
10888 opd_entry_value. */
10889 if (is_opd && info->emitrelocations)
10890 {
10891 bfd_size_type amt;
10892 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10893 rel = bfd_alloc (input_bfd, amt);
10894 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10895 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10896 if (rel == NULL)
10897 return FALSE;
10898 memcpy (rel, relocs, amt);
10899 }
10900 return ret;
10901}
10902
10903/* Adjust the value of any local symbols in opd sections. */
10904
10905static bfd_boolean
10906ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10907 const char *name ATTRIBUTE_UNUSED,
10908 Elf_Internal_Sym *elfsym,
10909 asection *input_sec,
10910 struct elf_link_hash_entry *h)
10911{
10912 long *opd_adjust, adjust;
10913 bfd_vma value;
10914
10915 if (h != NULL)
10916 return TRUE;
10917
10918 opd_adjust = get_opd_info (input_sec);
10919 if (opd_adjust == NULL)
10920 return TRUE;
10921
10922 value = elfsym->st_value - input_sec->output_offset;
10923 if (!info->relocatable)
10924 value -= input_sec->output_section->vma;
10925
10926 adjust = opd_adjust[value / 8];
10927 if (adjust == -1)
10928 elfsym->st_value = 0;
10929 else
10930 elfsym->st_value += adjust;
10931 return TRUE;
10932}
10933
10934/* Finish up dynamic symbol handling. We set the contents of various
10935 dynamic sections here. */
10936
10937static bfd_boolean
10938ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10939 struct bfd_link_info *info,
10940 struct elf_link_hash_entry *h,
10941 Elf_Internal_Sym *sym)
10942{
10943 struct ppc_link_hash_table *htab;
10944 bfd *dynobj;
10945 struct plt_entry *ent;
10946 Elf_Internal_Rela rela;
10947 bfd_byte *loc;
10948
10949 htab = ppc_hash_table (info);
10950 dynobj = htab->elf.dynobj;
10951
10952 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10953 if (ent->plt.offset != (bfd_vma) -1)
10954 {
10955 /* This symbol has an entry in the procedure linkage
10956 table. Set it up. */
10957
10958 if (htab->plt == NULL
10959 || htab->relplt == NULL
10960 || htab->glink == NULL)
10961 abort ();
10962
10963 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10964 fill in the PLT entry. */
10965 rela.r_offset = (htab->plt->output_section->vma
10966 + htab->plt->output_offset
10967 + ent->plt.offset);
10968 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10969 rela.r_addend = ent->addend;
10970
10971 loc = htab->relplt->contents;
10972 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10973 * sizeof (Elf64_External_Rela));
10974 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10975 }
10976
10977 if (h->needs_copy)
10978 {
10979 Elf_Internal_Rela rela;
10980 bfd_byte *loc;
10981
10982 /* This symbol needs a copy reloc. Set it up. */
10983
10984 if (h->dynindx == -1
10985 || (h->root.type != bfd_link_hash_defined
10986 && h->root.type != bfd_link_hash_defweak)
10987 || htab->relbss == NULL)
10988 abort ();
10989
10990 rela.r_offset = (h->root.u.def.value
10991 + h->root.u.def.section->output_section->vma
10992 + h->root.u.def.section->output_offset);
10993 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10994 rela.r_addend = 0;
10995 loc = htab->relbss->contents;
10996 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10997 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10998 }
10999
11000 /* Mark some specially defined symbols as absolute. */
11001 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
11002 sym->st_shndx = SHN_ABS;
11003
11004 return TRUE;
11005}
11006
11007/* Used to decide how to sort relocs in an optimal manner for the
11008 dynamic linker, before writing them out. */
11009
11010static enum elf_reloc_type_class
11011ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
11012{
11013 enum elf_ppc64_reloc_type r_type;
11014
11015 r_type = ELF64_R_TYPE (rela->r_info);
11016 switch (r_type)
11017 {
11018 case R_PPC64_RELATIVE:
11019 return reloc_class_relative;
11020 case R_PPC64_JMP_SLOT:
11021 return reloc_class_plt;
11022 case R_PPC64_COPY:
11023 return reloc_class_copy;
11024 default:
11025 return reloc_class_normal;
11026 }
11027}
11028
11029/* Finish up the dynamic sections. */
11030
11031static bfd_boolean
11032ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11033 struct bfd_link_info *info)
11034{
11035 struct ppc_link_hash_table *htab;
11036 bfd *dynobj;
11037 asection *sdyn;
11038
11039 htab = ppc_hash_table (info);
11040 dynobj = htab->elf.dynobj;
11041 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11042
11043 if (htab->elf.dynamic_sections_created)
11044 {
11045 Elf64_External_Dyn *dyncon, *dynconend;
11046
11047 if (sdyn == NULL || htab->got == NULL)
11048 abort ();
11049
11050 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11051 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11052 for (; dyncon < dynconend; dyncon++)
11053 {
11054 Elf_Internal_Dyn dyn;
11055 asection *s;
11056
11057 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11058
11059 switch (dyn.d_tag)
11060 {
11061 default:
11062 continue;
11063
11064 case DT_PPC64_GLINK:
11065 s = htab->glink;
11066 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11067 /* We stupidly defined DT_PPC64_GLINK to be the start
11068 of glink rather than the first entry point, which is
11069 what ld.so needs, and now have a bigger stub to
11070 support automatic multiple TOCs. */
11071 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11072 break;
11073
11074 case DT_PPC64_OPD:
11075 s = bfd_get_section_by_name (output_bfd, ".opd");
11076 if (s == NULL)
11077 continue;
11078 dyn.d_un.d_ptr = s->vma;
11079 break;
11080
11081 case DT_PPC64_OPDSZ:
11082 s = bfd_get_section_by_name (output_bfd, ".opd");
11083 if (s == NULL)
11084 continue;
11085 dyn.d_un.d_val = s->size;
11086 break;
11087
11088 case DT_PLTGOT:
11089 s = htab->plt;
11090 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11091 break;
11092
11093 case DT_JMPREL:
11094 s = htab->relplt;
11095 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11096 break;
11097
11098 case DT_PLTRELSZ:
11099 dyn.d_un.d_val = htab->relplt->size;
11100 break;
11101
11102 case DT_RELASZ:
11103 /* Don't count procedure linkage table relocs in the
11104 overall reloc count. */
11105 s = htab->relplt;
11106 if (s == NULL)
11107 continue;
11108 dyn.d_un.d_val -= s->size;
11109 break;
11110
11111 case DT_RELA:
11112 /* We may not be using the standard ELF linker script.
11113 If .rela.plt is the first .rela section, we adjust
11114 DT_RELA to not include it. */
11115 s = htab->relplt;
11116 if (s == NULL)
11117 continue;
11118 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11119 continue;
11120 dyn.d_un.d_ptr += s->size;
11121 break;
11122 }
11123
11124 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11125 }
11126 }
11127
11128 if (htab->got != NULL && htab->got->size != 0)
11129 {
11130 /* Fill in the first entry in the global offset table.
11131 We use it to hold the link-time TOCbase. */
11132 bfd_put_64 (output_bfd,
11133 elf_gp (output_bfd) + TOC_BASE_OFF,
11134 htab->got->contents);
11135
11136 /* Set .got entry size. */
11137 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11138 }
11139
11140 if (htab->plt != NULL && htab->plt->size != 0)
11141 {
11142 /* Set .plt entry size. */
11143 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11144 = PLT_ENTRY_SIZE;
11145 }
11146
11147 /* We need to handle writing out multiple GOT sections ourselves,
11148 since we didn't add them to DYNOBJ. We know dynobj is the first
11149 bfd. */
11150 while ((dynobj = dynobj->link_next) != NULL)
11151 {
11152 asection *s;
11153
11154 if (!is_ppc64_elf_target (dynobj->xvec))
11155 continue;
11156
11157 s = ppc64_elf_tdata (dynobj)->got;
11158 if (s != NULL
11159 && s->size != 0
11160 && s->output_section != bfd_abs_section_ptr
11161 && !bfd_set_section_contents (output_bfd, s->output_section,
11162 s->contents, s->output_offset,
11163 s->size))
11164 return FALSE;
11165 s = ppc64_elf_tdata (dynobj)->relgot;
11166 if (s != NULL
11167 && s->size != 0
11168 && s->output_section != bfd_abs_section_ptr
11169 && !bfd_set_section_contents (output_bfd, s->output_section,
11170 s->contents, s->output_offset,
11171 s->size))
11172 return FALSE;
11173 }
11174
11175 return TRUE;
11176}
11177
11178#include "elf64-target.h"
This page took 0.063105 seconds and 4 git commands to generate.