daily update
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
... / ...
CommitLineData
1/* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24/* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28#include "bfd.h"
29#include "sysdep.h"
30#include "bfdlink.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/ppc64.h"
34#include "elf64-ppc.h"
35
36static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57#define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58#define TARGET_LITTLE_NAME "elf64-powerpcle"
59#define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60#define TARGET_BIG_NAME "elf64-powerpc"
61#define ELF_ARCH bfd_arch_powerpc
62#define ELF_MACHINE_CODE EM_PPC64
63#define ELF_MAXPAGESIZE 0x10000
64#define elf_info_to_howto ppc64_elf_info_to_howto
65
66#define elf_backend_want_got_sym 0
67#define elf_backend_want_plt_sym 0
68#define elf_backend_plt_alignment 3
69#define elf_backend_plt_not_loaded 1
70#define elf_backend_got_symbol_offset 0
71#define elf_backend_got_header_size 8
72#define elf_backend_can_gc_sections 1
73#define elf_backend_can_refcount 1
74#define elf_backend_rela_normal 1
75
76#define bfd_elf64_mkobject ppc64_elf_mkobject
77#define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78#define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79#define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80#define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81#define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82#define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84#define elf_backend_object_p ppc64_elf_object_p
85#define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86#define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87#define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88#define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89#define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90#define elf_backend_check_directives ppc64_elf_check_directives
91#define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92#define elf_backend_check_relocs ppc64_elf_check_relocs
93#define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94#define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95#define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96#define elf_backend_hide_symbol ppc64_elf_hide_symbol
97#define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98#define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99#define elf_backend_relocate_section ppc64_elf_relocate_section
100#define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101#define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102#define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103#define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104#define elf_backend_special_sections ppc64_elf_special_sections
105
106/* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110/* The size in bytes of an entry in the procedure linkage table. */
111#define PLT_ENTRY_SIZE 24
112
113/* The initial size of the plt reserved for the dynamic linker. */
114#define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116/* TOC base pointers offset from start of TOC. */
117#define TOC_BASE_OFF 0x8000
118
119/* Offset of tp and dtp pointers from start of TLS block. */
120#define TP_OFFSET 0x7000
121#define DTP_OFFSET 0x8000
122
123/* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126#define PLT_CALL_STUB_SIZE (7*4)
127#define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128#define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129#define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130#define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131#define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133#define BCTR 0x4e800420 /* bctr */
134
135
136#define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137#define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139#define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141/* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143#define GLINK_CALL_STUB_SIZE (16*4)
144#define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145#define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146#define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147#define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148#define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149#define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150#define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152#define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153#define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155#define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161/* Pad with this. */
162#define NOP 0x60000000
163
164/* Some other nops. */
165#define CROR_151515 0x4def7b82
166#define CROR_313131 0x4ffffb82
167
168/* .glink entries for the first 32k functions are two instructions. */
169#define LI_R0_0 0x38000000 /* li %r0,0 */
170#define B_DOT 0x48000000 /* b . */
171
172/* After that, we need two instructions to load the index, followed by
173 a branch. */
174#define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175#define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177/* Instructions used by the save and restore reg functions. */
178#define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179#define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180#define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181#define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182#define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183#define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184#define LI_R12_0 0x39800000 /* li %r12,0 */
185#define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186#define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187#define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188#define BLR 0x4e800020 /* blr */
189
190/* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194#ifndef NO_OPD_RELOCS
195#define NO_OPD_RELOCS 0
196#endif
197\f
198#define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200/* Relocation HOWTO's. */
201static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864};
1865
1866\f
1867/* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870static void
1871ppc_howto_init (void)
1872{
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884}
1885
1886static reloc_howto_type *
1887ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889{
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106};
2107
2108/* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110static void
2111ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113{
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124}
2125
2126/* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128static bfd_reloc_status_type
2129ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132{
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145}
2146
2147static bfd_reloc_status_type
2148ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151{
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168}
2169
2170static bfd_reloc_status_type
2171ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174{
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231}
2232
2233static bfd_reloc_status_type
2234ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237{
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248}
2249
2250static bfd_reloc_status_type
2251ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254{
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268}
2269
2270static bfd_reloc_status_type
2271ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274{
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291}
2292
2293static bfd_reloc_status_type
2294ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297{
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317}
2318
2319static bfd_reloc_status_type
2320ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323{
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341}
2342
2343static bfd_reloc_status_type
2344ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347{
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363}
2364
2365struct ppc64_elf_obj_tdata
2366{
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383
2384 /* A copy of relocs before they are modified for --emit-relocs. */
2385 Elf_Internal_Rela *opd_relocs;
2386};
2387
2388#define ppc64_elf_tdata(bfd) \
2389 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2390
2391#define ppc64_tlsld_got(bfd) \
2392 (&ppc64_elf_tdata (bfd)->tlsld_got)
2393
2394/* Override the generic function because we store some extras. */
2395
2396static bfd_boolean
2397ppc64_elf_mkobject (bfd *abfd)
2398{
2399 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2400 abfd->tdata.any = bfd_zalloc (abfd, amt);
2401 if (abfd->tdata.any == NULL)
2402 return FALSE;
2403 return TRUE;
2404}
2405
2406/* Return 1 if target is one of ours. */
2407
2408static bfd_boolean
2409is_ppc64_elf_target (const struct bfd_target *targ)
2410{
2411 extern const bfd_target bfd_elf64_powerpc_vec;
2412 extern const bfd_target bfd_elf64_powerpcle_vec;
2413
2414 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2415}
2416
2417/* Fix bad default arch selected for a 64 bit input bfd when the
2418 default is 32 bit. */
2419
2420static bfd_boolean
2421ppc64_elf_object_p (bfd *abfd)
2422{
2423 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2424 {
2425 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2426
2427 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2428 {
2429 /* Relies on arch after 32 bit default being 64 bit default. */
2430 abfd->arch_info = abfd->arch_info->next;
2431 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2432 }
2433 }
2434 return TRUE;
2435}
2436
2437/* Support for core dump NOTE sections. */
2438
2439static bfd_boolean
2440ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2441{
2442 size_t offset, size;
2443
2444 if (note->descsz != 504)
2445 return FALSE;
2446
2447 /* pr_cursig */
2448 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2449
2450 /* pr_pid */
2451 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2452
2453 /* pr_reg */
2454 offset = 112;
2455 size = 384;
2456
2457 /* Make a ".reg/999" section. */
2458 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2459 size, note->descpos + offset);
2460}
2461
2462static bfd_boolean
2463ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2464{
2465 if (note->descsz != 136)
2466 return FALSE;
2467
2468 elf_tdata (abfd)->core_program
2469 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2470 elf_tdata (abfd)->core_command
2471 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2472
2473 return TRUE;
2474}
2475
2476/* Merge backend specific data from an object file to the output
2477 object file when linking. */
2478
2479static bfd_boolean
2480ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2481{
2482 /* Check if we have the same endianess. */
2483 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2484 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2485 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2486 {
2487 const char *msg;
2488
2489 if (bfd_big_endian (ibfd))
2490 msg = _("%B: compiled for a big endian system "
2491 "and target is little endian");
2492 else
2493 msg = _("%B: compiled for a little endian system "
2494 "and target is big endian");
2495
2496 (*_bfd_error_handler) (msg, ibfd);
2497
2498 bfd_set_error (bfd_error_wrong_format);
2499 return FALSE;
2500 }
2501
2502 return TRUE;
2503}
2504
2505/* Add extra PPC sections. */
2506
2507static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2508{
2509 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2510 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2511 { ".plt", 4, 0, SHT_NOBITS, 0 },
2512 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2513 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2514 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2515 { NULL, 0, 0, 0, 0 }
2516};
2517
2518struct _ppc64_elf_section_data
2519{
2520 struct bfd_elf_section_data elf;
2521
2522 /* An array with one entry for each opd function descriptor. */
2523 union
2524 {
2525 /* Points to the function code section for local opd entries. */
2526 asection **func_sec;
2527 /* After editing .opd, adjust references to opd local syms. */
2528 long *adjust;
2529 } opd;
2530
2531 /* An array for toc sections, indexed by offset/8.
2532 Specifies the relocation symbol index used at a given toc offset. */
2533 unsigned *t_symndx;
2534};
2535
2536#define ppc64_elf_section_data(sec) \
2537 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2538
2539static bfd_boolean
2540ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2541{
2542 struct _ppc64_elf_section_data *sdata;
2543 bfd_size_type amt = sizeof (*sdata);
2544
2545 sdata = bfd_zalloc (abfd, amt);
2546 if (sdata == NULL)
2547 return FALSE;
2548 sec->used_by_bfd = sdata;
2549
2550 return _bfd_elf_new_section_hook (abfd, sec);
2551}
2552
2553static void *
2554get_opd_info (asection * sec)
2555{
2556 if (sec != NULL
2557 && ppc64_elf_section_data (sec) != NULL
2558 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2559 return ppc64_elf_section_data (sec)->opd.adjust;
2560 return NULL;
2561}
2562\f
2563/* Parameters for the qsort hook. */
2564static asection *synthetic_opd;
2565static bfd_boolean synthetic_relocatable;
2566
2567/* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2568
2569static int
2570compare_symbols (const void *ap, const void *bp)
2571{
2572 const asymbol *a = * (const asymbol **) ap;
2573 const asymbol *b = * (const asymbol **) bp;
2574
2575 /* Section symbols first. */
2576 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2577 return -1;
2578 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2579 return 1;
2580
2581 /* then .opd symbols. */
2582 if (a->section == synthetic_opd && b->section != synthetic_opd)
2583 return -1;
2584 if (a->section != synthetic_opd && b->section == synthetic_opd)
2585 return 1;
2586
2587 /* then other code symbols. */
2588 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2589 == (SEC_CODE | SEC_ALLOC)
2590 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2591 != (SEC_CODE | SEC_ALLOC))
2592 return -1;
2593
2594 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2595 != (SEC_CODE | SEC_ALLOC)
2596 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2597 == (SEC_CODE | SEC_ALLOC))
2598 return 1;
2599
2600 if (synthetic_relocatable)
2601 {
2602 if (a->section->id < b->section->id)
2603 return -1;
2604
2605 if (a->section->id > b->section->id)
2606 return 1;
2607 }
2608
2609 if (a->value + a->section->vma < b->value + b->section->vma)
2610 return -1;
2611
2612 if (a->value + a->section->vma > b->value + b->section->vma)
2613 return 1;
2614
2615 return 0;
2616}
2617
2618/* Search SYMS for a symbol of the given VALUE. */
2619
2620static asymbol *
2621sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2622{
2623 long mid;
2624
2625 if (id == -1)
2626 {
2627 while (lo < hi)
2628 {
2629 mid = (lo + hi) >> 1;
2630 if (syms[mid]->value + syms[mid]->section->vma < value)
2631 lo = mid + 1;
2632 else if (syms[mid]->value + syms[mid]->section->vma > value)
2633 hi = mid;
2634 else
2635 return syms[mid];
2636 }
2637 }
2638 else
2639 {
2640 while (lo < hi)
2641 {
2642 mid = (lo + hi) >> 1;
2643 if (syms[mid]->section->id < id)
2644 lo = mid + 1;
2645 else if (syms[mid]->section->id > id)
2646 hi = mid;
2647 else if (syms[mid]->value < value)
2648 lo = mid + 1;
2649 else if (syms[mid]->value > value)
2650 hi = mid;
2651 else
2652 return syms[mid];
2653 }
2654 }
2655 return NULL;
2656}
2657
2658/* Create synthetic symbols, effectively restoring "dot-symbol" function
2659 entry syms. */
2660
2661static long
2662ppc64_elf_get_synthetic_symtab (bfd *abfd,
2663 long static_count, asymbol **static_syms,
2664 long dyn_count, asymbol **dyn_syms,
2665 asymbol **ret)
2666{
2667 asymbol *s;
2668 long i;
2669 long count;
2670 char *names;
2671 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2672 asection *opd;
2673 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2674 asymbol **syms;
2675
2676 *ret = NULL;
2677
2678 opd = bfd_get_section_by_name (abfd, ".opd");
2679 if (opd == NULL)
2680 return 0;
2681
2682 symcount = static_count;
2683 if (!relocatable)
2684 symcount += dyn_count;
2685 if (symcount == 0)
2686 return 0;
2687
2688 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2689 if (syms == NULL)
2690 return 0;
2691
2692 if (!relocatable && static_count != 0 && dyn_count != 0)
2693 {
2694 /* Use both symbol tables. */
2695 memcpy (syms, static_syms, static_count * sizeof (*syms));
2696 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2697 }
2698 else if (!relocatable && static_count == 0)
2699 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2700 else
2701 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2702
2703 synthetic_opd = opd;
2704 synthetic_relocatable = relocatable;
2705 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2706
2707 if (!relocatable && symcount > 1)
2708 {
2709 long j;
2710 /* Trim duplicate syms, since we may have merged the normal and
2711 dynamic symbols. Actually, we only care about syms that have
2712 different values, so trim any with the same value. */
2713 for (i = 1, j = 1; i < symcount; ++i)
2714 if (syms[i - 1]->value + syms[i - 1]->section->vma
2715 != syms[i]->value + syms[i]->section->vma)
2716 syms[j++] = syms[i];
2717 symcount = j;
2718 }
2719
2720 i = 0;
2721 if (syms[i]->section == opd)
2722 ++i;
2723 codesecsym = i;
2724
2725 for (; i < symcount; ++i)
2726 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2727 != (SEC_CODE | SEC_ALLOC))
2728 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2729 break;
2730 codesecsymend = i;
2731
2732 for (; i < symcount; ++i)
2733 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2734 break;
2735 secsymend = i;
2736
2737 for (; i < symcount; ++i)
2738 if (syms[i]->section != opd)
2739 break;
2740 opdsymend = i;
2741
2742 for (; i < symcount; ++i)
2743 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2744 != (SEC_CODE | SEC_ALLOC))
2745 break;
2746 symcount = i;
2747
2748 count = 0;
2749 if (opdsymend == secsymend)
2750 goto done;
2751
2752 if (relocatable)
2753 {
2754 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2755 arelent *r;
2756 size_t size;
2757 long relcount;
2758
2759 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2760 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2761
2762 if (! relcount
2763 || ! (*slurp_relocs) (abfd, opd, static_syms, FALSE))
2764 goto done;
2765
2766 size = 0;
2767 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2768 {
2769 asymbol *sym;
2770
2771 while (r < opd->relocation + relcount
2772 && r->address < syms[i]->value + opd->vma)
2773 ++r;
2774
2775 if (r == opd->relocation + relcount)
2776 break;
2777
2778 if (r->address != syms[i]->value + opd->vma)
2779 continue;
2780
2781 if (r->howto->type != R_PPC64_ADDR64)
2782 continue;
2783
2784 sym = *r->sym_ptr_ptr;
2785 if (!sym_exists_at (syms, opdsymend, symcount,
2786 sym->section->id, sym->value + r->addend))
2787 {
2788 ++count;
2789 size += sizeof (asymbol);
2790 size += strlen (syms[i]->name) + 2;
2791 }
2792 }
2793
2794 s = *ret = bfd_malloc (size);
2795 if (s == NULL)
2796 {
2797 count = 0;
2798 goto done;
2799 }
2800
2801 names = (char *) (s + count);
2802
2803 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2804 {
2805 asymbol *sym;
2806
2807 while (r < opd->relocation + relcount
2808 && r->address < syms[i]->value + opd->vma)
2809 ++r;
2810
2811 if (r == opd->relocation + relcount)
2812 break;
2813
2814 if (r->address != syms[i]->value + opd->vma)
2815 continue;
2816
2817 if (r->howto->type != R_PPC64_ADDR64)
2818 continue;
2819
2820 sym = *r->sym_ptr_ptr;
2821 if (!sym_exists_at (syms, opdsymend, symcount,
2822 sym->section->id, sym->value + r->addend))
2823 {
2824 size_t len;
2825
2826 *s = *syms[i];
2827 s->section = sym->section;
2828 s->value = sym->value + r->addend;
2829 s->name = names;
2830 *names++ = '.';
2831 len = strlen (syms[i]->name);
2832 memcpy (names, syms[i]->name, len + 1);
2833 names += len + 1;
2834 s++;
2835 }
2836 }
2837 }
2838 else
2839 {
2840 bfd_byte *contents;
2841 size_t size;
2842
2843 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2844 {
2845 if (contents)
2846 {
2847 free_contents_and_exit:
2848 free (contents);
2849 }
2850 goto done;
2851 }
2852
2853 size = 0;
2854 for (i = secsymend; i < opdsymend; ++i)
2855 {
2856 bfd_vma ent;
2857
2858 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2859 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2860 {
2861 ++count;
2862 size += sizeof (asymbol);
2863 size += strlen (syms[i]->name) + 2;
2864 }
2865 }
2866
2867 s = *ret = bfd_malloc (size);
2868 if (s == NULL)
2869 {
2870 count = 0;
2871 goto free_contents_and_exit;
2872 }
2873
2874 names = (char *) (s + count);
2875
2876 for (i = secsymend; i < opdsymend; ++i)
2877 {
2878 bfd_vma ent;
2879
2880 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2881 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2882 {
2883 long lo, hi;
2884 size_t len;
2885 asection *sec = abfd->sections;
2886
2887 *s = *syms[i];
2888 lo = codesecsym;
2889 hi = codesecsymend;
2890 while (lo < hi)
2891 {
2892 long mid = (lo + hi) >> 1;
2893 if (syms[mid]->section->vma < ent)
2894 lo = mid + 1;
2895 else if (syms[mid]->section->vma > ent)
2896 hi = mid;
2897 else
2898 {
2899 sec = syms[mid]->section;
2900 break;
2901 }
2902 }
2903
2904 if (lo >= hi && lo > codesecsym)
2905 sec = syms[lo - 1]->section;
2906
2907 for (; sec != NULL; sec = sec->next)
2908 {
2909 if (sec->vma > ent)
2910 break;
2911 if ((sec->flags & SEC_ALLOC) == 0
2912 || (sec->flags & SEC_LOAD) == 0)
2913 break;
2914 if ((sec->flags & SEC_CODE) != 0)
2915 s->section = sec;
2916 }
2917 s->value = ent - s->section->vma;
2918 s->name = names;
2919 *names++ = '.';
2920 len = strlen (syms[i]->name);
2921 memcpy (names, syms[i]->name, len + 1);
2922 names += len + 1;
2923 s++;
2924 }
2925 }
2926 free (contents);
2927 }
2928
2929 done:
2930 free (syms);
2931 return count;
2932}
2933\f
2934/* The following functions are specific to the ELF linker, while
2935 functions above are used generally. Those named ppc64_elf_* are
2936 called by the main ELF linker code. They appear in this file more
2937 or less in the order in which they are called. eg.
2938 ppc64_elf_check_relocs is called early in the link process,
2939 ppc64_elf_finish_dynamic_sections is one of the last functions
2940 called.
2941
2942 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2943 functions have both a function code symbol and a function descriptor
2944 symbol. A call to foo in a relocatable object file looks like:
2945
2946 . .text
2947 . x:
2948 . bl .foo
2949 . nop
2950
2951 The function definition in another object file might be:
2952
2953 . .section .opd
2954 . foo: .quad .foo
2955 . .quad .TOC.@tocbase
2956 . .quad 0
2957 .
2958 . .text
2959 . .foo: blr
2960
2961 When the linker resolves the call during a static link, the branch
2962 unsurprisingly just goes to .foo and the .opd information is unused.
2963 If the function definition is in a shared library, things are a little
2964 different: The call goes via a plt call stub, the opd information gets
2965 copied to the plt, and the linker patches the nop.
2966
2967 . x:
2968 . bl .foo_stub
2969 . ld 2,40(1)
2970 .
2971 .
2972 . .foo_stub:
2973 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2974 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2975 . std 2,40(1) # this is the general idea
2976 . ld 11,0(12)
2977 . ld 2,8(12)
2978 . mtctr 11
2979 . ld 11,16(12)
2980 . bctr
2981 .
2982 . .section .plt
2983 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2984
2985 The "reloc ()" notation is supposed to indicate that the linker emits
2986 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2987 copying.
2988
2989 What are the difficulties here? Well, firstly, the relocations
2990 examined by the linker in check_relocs are against the function code
2991 sym .foo, while the dynamic relocation in the plt is emitted against
2992 the function descriptor symbol, foo. Somewhere along the line, we need
2993 to carefully copy dynamic link information from one symbol to the other.
2994 Secondly, the generic part of the elf linker will make .foo a dynamic
2995 symbol as is normal for most other backends. We need foo dynamic
2996 instead, at least for an application final link. However, when
2997 creating a shared library containing foo, we need to have both symbols
2998 dynamic so that references to .foo are satisfied during the early
2999 stages of linking. Otherwise the linker might decide to pull in a
3000 definition from some other object, eg. a static library.
3001
3002 Update: As of August 2004, we support a new convention. Function
3003 calls may use the function descriptor symbol, ie. "bl foo". This
3004 behaves exactly as "bl .foo". */
3005
3006/* The linker needs to keep track of the number of relocs that it
3007 decides to copy as dynamic relocs in check_relocs for each symbol.
3008 This is so that it can later discard them if they are found to be
3009 unnecessary. We store the information in a field extending the
3010 regular ELF linker hash table. */
3011
3012struct ppc_dyn_relocs
3013{
3014 struct ppc_dyn_relocs *next;
3015
3016 /* The input section of the reloc. */
3017 asection *sec;
3018
3019 /* Total number of relocs copied for the input section. */
3020 bfd_size_type count;
3021
3022 /* Number of pc-relative relocs copied for the input section. */
3023 bfd_size_type pc_count;
3024};
3025
3026/* Track GOT entries needed for a given symbol. We might need more
3027 than one got entry per symbol. */
3028struct got_entry
3029{
3030 struct got_entry *next;
3031
3032 /* The symbol addend that we'll be placing in the GOT. */
3033 bfd_vma addend;
3034
3035 /* Unlike other ELF targets, we use separate GOT entries for the same
3036 symbol referenced from different input files. This is to support
3037 automatic multiple TOC/GOT sections, where the TOC base can vary
3038 from one input file to another.
3039
3040 Point to the BFD owning this GOT entry. */
3041 bfd *owner;
3042
3043 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3044 TLS_TPREL or TLS_DTPREL for tls entries. */
3045 char tls_type;
3046
3047 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3048 union
3049 {
3050 bfd_signed_vma refcount;
3051 bfd_vma offset;
3052 } got;
3053};
3054
3055/* The same for PLT. */
3056struct plt_entry
3057{
3058 struct plt_entry *next;
3059
3060 bfd_vma addend;
3061
3062 union
3063 {
3064 bfd_signed_vma refcount;
3065 bfd_vma offset;
3066 } plt;
3067};
3068
3069/* Of those relocs that might be copied as dynamic relocs, this macro
3070 selects those that must be copied when linking a shared library,
3071 even when the symbol is local. */
3072
3073#define MUST_BE_DYN_RELOC(RTYPE) \
3074 ((RTYPE) != R_PPC64_REL32 \
3075 && (RTYPE) != R_PPC64_REL64 \
3076 && (RTYPE) != R_PPC64_REL30)
3077
3078/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3079 copying dynamic variables from a shared lib into an app's dynbss
3080 section, and instead use a dynamic relocation to point into the
3081 shared lib. With code that gcc generates, it's vital that this be
3082 enabled; In the PowerPC64 ABI, the address of a function is actually
3083 the address of a function descriptor, which resides in the .opd
3084 section. gcc uses the descriptor directly rather than going via the
3085 GOT as some other ABI's do, which means that initialized function
3086 pointers must reference the descriptor. Thus, a function pointer
3087 initialized to the address of a function in a shared library will
3088 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3089 redefines the function descriptor symbol to point to the copy. This
3090 presents a problem as a plt entry for that function is also
3091 initialized from the function descriptor symbol and the copy reloc
3092 may not be initialized first. */
3093#define ELIMINATE_COPY_RELOCS 1
3094
3095/* Section name for stubs is the associated section name plus this
3096 string. */
3097#define STUB_SUFFIX ".stub"
3098
3099/* Linker stubs.
3100 ppc_stub_long_branch:
3101 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3102 destination, but a 24 bit branch in a stub section will reach.
3103 . b dest
3104
3105 ppc_stub_plt_branch:
3106 Similar to the above, but a 24 bit branch in the stub section won't
3107 reach its destination.
3108 . addis %r12,%r2,xxx@toc@ha
3109 . ld %r11,xxx@toc@l(%r12)
3110 . mtctr %r11
3111 . bctr
3112
3113 ppc_stub_plt_call:
3114 Used to call a function in a shared library. If it so happens that
3115 the plt entry referenced crosses a 64k boundary, then an extra
3116 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3117 xxx+16 as appropriate.
3118 . addis %r12,%r2,xxx@toc@ha
3119 . std %r2,40(%r1)
3120 . ld %r11,xxx+0@toc@l(%r12)
3121 . ld %r2,xxx+8@toc@l(%r12)
3122 . mtctr %r11
3123 . ld %r11,xxx+16@toc@l(%r12)
3124 . bctr
3125
3126 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3127 code to adjust the value and save r2 to support multiple toc sections.
3128 A ppc_stub_long_branch with an r2 offset looks like:
3129 . std %r2,40(%r1)
3130 . addis %r2,%r2,off@ha
3131 . addi %r2,%r2,off@l
3132 . b dest
3133
3134 A ppc_stub_plt_branch with an r2 offset looks like:
3135 . std %r2,40(%r1)
3136 . addis %r12,%r2,xxx@toc@ha
3137 . ld %r11,xxx@toc@l(%r12)
3138 . addis %r2,%r2,off@ha
3139 . addi %r2,%r2,off@l
3140 . mtctr %r11
3141 . bctr
3142*/
3143
3144enum ppc_stub_type {
3145 ppc_stub_none,
3146 ppc_stub_long_branch,
3147 ppc_stub_long_branch_r2off,
3148 ppc_stub_plt_branch,
3149 ppc_stub_plt_branch_r2off,
3150 ppc_stub_plt_call
3151};
3152
3153struct ppc_stub_hash_entry {
3154
3155 /* Base hash table entry structure. */
3156 struct bfd_hash_entry root;
3157
3158 enum ppc_stub_type stub_type;
3159
3160 /* The stub section. */
3161 asection *stub_sec;
3162
3163 /* Offset within stub_sec of the beginning of this stub. */
3164 bfd_vma stub_offset;
3165
3166 /* Given the symbol's value and its section we can determine its final
3167 value when building the stubs (so the stub knows where to jump. */
3168 bfd_vma target_value;
3169 asection *target_section;
3170
3171 /* The symbol table entry, if any, that this was derived from. */
3172 struct ppc_link_hash_entry *h;
3173
3174 /* And the reloc addend that this was derived from. */
3175 bfd_vma addend;
3176
3177 /* Where this stub is being called from, or, in the case of combined
3178 stub sections, the first input section in the group. */
3179 asection *id_sec;
3180};
3181
3182struct ppc_branch_hash_entry {
3183
3184 /* Base hash table entry structure. */
3185 struct bfd_hash_entry root;
3186
3187 /* Offset within .branch_lt. */
3188 unsigned int offset;
3189
3190 /* Generation marker. */
3191 unsigned int iter;
3192};
3193
3194struct ppc_link_hash_entry
3195{
3196 struct elf_link_hash_entry elf;
3197
3198 /* A pointer to the most recently used stub hash entry against this
3199 symbol. */
3200 struct ppc_stub_hash_entry *stub_cache;
3201
3202 /* Track dynamic relocs copied for this symbol. */
3203 struct ppc_dyn_relocs *dyn_relocs;
3204
3205 /* Link between function code and descriptor symbols. */
3206 struct ppc_link_hash_entry *oh;
3207
3208 /* Flag function code and descriptor symbols. */
3209 unsigned int is_func:1;
3210 unsigned int is_func_descriptor:1;
3211 unsigned int fake:1;
3212
3213 /* Whether global opd/toc sym has been adjusted or not.
3214 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3215 should be set for all globals defined in any opd/toc section. */
3216 unsigned int adjust_done:1;
3217
3218 /* Set if we twiddled this symbol to weak at some stage. */
3219 unsigned int was_undefined:1;
3220
3221 /* Contexts in which symbol is used in the GOT (or TOC).
3222 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3223 corresponding relocs are encountered during check_relocs.
3224 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3225 indicate the corresponding GOT entry type is not needed.
3226 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3227 a TPREL one. We use a separate flag rather than setting TPREL
3228 just for convenience in distinguishing the two cases. */
3229#define TLS_GD 1 /* GD reloc. */
3230#define TLS_LD 2 /* LD reloc. */
3231#define TLS_TPREL 4 /* TPREL reloc, => IE. */
3232#define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3233#define TLS_TLS 16 /* Any TLS reloc. */
3234#define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3235#define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3236 char tls_mask;
3237};
3238
3239/* ppc64 ELF linker hash table. */
3240
3241struct ppc_link_hash_table
3242{
3243 struct elf_link_hash_table elf;
3244
3245 /* The stub hash table. */
3246 struct bfd_hash_table stub_hash_table;
3247
3248 /* Another hash table for plt_branch stubs. */
3249 struct bfd_hash_table branch_hash_table;
3250
3251 /* Linker stub bfd. */
3252 bfd *stub_bfd;
3253
3254 /* Linker call-backs. */
3255 asection * (*add_stub_section) (const char *, asection *);
3256 void (*layout_sections_again) (void);
3257
3258 /* Array to keep track of which stub sections have been created, and
3259 information on stub grouping. */
3260 struct map_stub {
3261 /* This is the section to which stubs in the group will be attached. */
3262 asection *link_sec;
3263 /* The stub section. */
3264 asection *stub_sec;
3265 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3266 bfd_vma toc_off;
3267 } *stub_group;
3268
3269 /* Temp used when calculating TOC pointers. */
3270 bfd_vma toc_curr;
3271
3272 /* Highest input section id. */
3273 int top_id;
3274
3275 /* Highest output section index. */
3276 int top_index;
3277
3278 /* List of input sections for each output section. */
3279 asection **input_list;
3280
3281 /* Short-cuts to get to dynamic linker sections. */
3282 asection *got;
3283 asection *plt;
3284 asection *relplt;
3285 asection *dynbss;
3286 asection *relbss;
3287 asection *glink;
3288 asection *sfpr;
3289 asection *brlt;
3290 asection *relbrlt;
3291
3292 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3293 struct ppc_link_hash_entry *tls_get_addr;
3294 struct ppc_link_hash_entry *tls_get_addr_fd;
3295
3296 /* Statistics. */
3297 unsigned long stub_count[ppc_stub_plt_call];
3298
3299 /* Number of stubs against global syms. */
3300 unsigned long stub_globals;
3301
3302 /* Set if we should emit symbols for stubs. */
3303 unsigned int emit_stub_syms:1;
3304
3305 /* Support for multiple toc sections. */
3306 unsigned int no_multi_toc:1;
3307 unsigned int multi_toc_needed:1;
3308
3309 /* Set on error. */
3310 unsigned int stub_error:1;
3311
3312 /* Flag set when small branches are detected. Used to
3313 select suitable defaults for the stub group size. */
3314 unsigned int has_14bit_branch:1;
3315
3316 /* Temp used by ppc64_elf_check_directives. */
3317 unsigned int twiddled_syms:1;
3318
3319 /* Incremented every time we size stubs. */
3320 unsigned int stub_iteration;
3321
3322 /* Small local sym to section mapping cache. */
3323 struct sym_sec_cache sym_sec;
3324};
3325
3326/* Rename some of the generic section flags to better document how they
3327 are used here. */
3328#define has_toc_reloc has_gp_reloc
3329#define makes_toc_func_call need_finalize_relax
3330#define call_check_in_progress reloc_done
3331
3332/* Get the ppc64 ELF linker hash table from a link_info structure. */
3333
3334#define ppc_hash_table(p) \
3335 ((struct ppc_link_hash_table *) ((p)->hash))
3336
3337#define ppc_stub_hash_lookup(table, string, create, copy) \
3338 ((struct ppc_stub_hash_entry *) \
3339 bfd_hash_lookup ((table), (string), (create), (copy)))
3340
3341#define ppc_branch_hash_lookup(table, string, create, copy) \
3342 ((struct ppc_branch_hash_entry *) \
3343 bfd_hash_lookup ((table), (string), (create), (copy)))
3344
3345/* Create an entry in the stub hash table. */
3346
3347static struct bfd_hash_entry *
3348stub_hash_newfunc (struct bfd_hash_entry *entry,
3349 struct bfd_hash_table *table,
3350 const char *string)
3351{
3352 /* Allocate the structure if it has not already been allocated by a
3353 subclass. */
3354 if (entry == NULL)
3355 {
3356 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3357 if (entry == NULL)
3358 return entry;
3359 }
3360
3361 /* Call the allocation method of the superclass. */
3362 entry = bfd_hash_newfunc (entry, table, string);
3363 if (entry != NULL)
3364 {
3365 struct ppc_stub_hash_entry *eh;
3366
3367 /* Initialize the local fields. */
3368 eh = (struct ppc_stub_hash_entry *) entry;
3369 eh->stub_type = ppc_stub_none;
3370 eh->stub_sec = NULL;
3371 eh->stub_offset = 0;
3372 eh->target_value = 0;
3373 eh->target_section = NULL;
3374 eh->h = NULL;
3375 eh->id_sec = NULL;
3376 }
3377
3378 return entry;
3379}
3380
3381/* Create an entry in the branch hash table. */
3382
3383static struct bfd_hash_entry *
3384branch_hash_newfunc (struct bfd_hash_entry *entry,
3385 struct bfd_hash_table *table,
3386 const char *string)
3387{
3388 /* Allocate the structure if it has not already been allocated by a
3389 subclass. */
3390 if (entry == NULL)
3391 {
3392 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3393 if (entry == NULL)
3394 return entry;
3395 }
3396
3397 /* Call the allocation method of the superclass. */
3398 entry = bfd_hash_newfunc (entry, table, string);
3399 if (entry != NULL)
3400 {
3401 struct ppc_branch_hash_entry *eh;
3402
3403 /* Initialize the local fields. */
3404 eh = (struct ppc_branch_hash_entry *) entry;
3405 eh->offset = 0;
3406 eh->iter = 0;
3407 }
3408
3409 return entry;
3410}
3411
3412/* Create an entry in a ppc64 ELF linker hash table. */
3413
3414static struct bfd_hash_entry *
3415link_hash_newfunc (struct bfd_hash_entry *entry,
3416 struct bfd_hash_table *table,
3417 const char *string)
3418{
3419 /* Allocate the structure if it has not already been allocated by a
3420 subclass. */
3421 if (entry == NULL)
3422 {
3423 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3424 if (entry == NULL)
3425 return entry;
3426 }
3427
3428 /* Call the allocation method of the superclass. */
3429 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3430 if (entry != NULL)
3431 {
3432 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3433
3434 memset (&eh->stub_cache, 0,
3435 (sizeof (struct ppc_link_hash_entry)
3436 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3437 }
3438
3439 return entry;
3440}
3441
3442/* Create a ppc64 ELF linker hash table. */
3443
3444static struct bfd_link_hash_table *
3445ppc64_elf_link_hash_table_create (bfd *abfd)
3446{
3447 struct ppc_link_hash_table *htab;
3448 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3449
3450 htab = bfd_zmalloc (amt);
3451 if (htab == NULL)
3452 return NULL;
3453
3454 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3455 {
3456 free (htab);
3457 return NULL;
3458 }
3459
3460 /* Init the stub hash table too. */
3461 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3462 return NULL;
3463
3464 /* And the branch hash table. */
3465 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3466 return NULL;
3467
3468 /* Initializing two fields of the union is just cosmetic. We really
3469 only care about glist, but when compiled on a 32-bit host the
3470 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3471 debugger inspection of these fields look nicer. */
3472 htab->elf.init_refcount.refcount = 0;
3473 htab->elf.init_refcount.glist = NULL;
3474 htab->elf.init_offset.offset = 0;
3475 htab->elf.init_offset.glist = NULL;
3476
3477 return &htab->elf.root;
3478}
3479
3480/* Free the derived linker hash table. */
3481
3482static void
3483ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3484{
3485 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3486
3487 bfd_hash_table_free (&ret->stub_hash_table);
3488 bfd_hash_table_free (&ret->branch_hash_table);
3489 _bfd_generic_link_hash_table_free (hash);
3490}
3491
3492/* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3493
3494void
3495ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3496{
3497 struct ppc_link_hash_table *htab;
3498
3499 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3500
3501/* Always hook our dynamic sections into the first bfd, which is the
3502 linker created stub bfd. This ensures that the GOT header is at
3503 the start of the output TOC section. */
3504 htab = ppc_hash_table (info);
3505 htab->stub_bfd = abfd;
3506 htab->elf.dynobj = abfd;
3507}
3508
3509/* Build a name for an entry in the stub hash table. */
3510
3511static char *
3512ppc_stub_name (const asection *input_section,
3513 const asection *sym_sec,
3514 const struct ppc_link_hash_entry *h,
3515 const Elf_Internal_Rela *rel)
3516{
3517 char *stub_name;
3518 bfd_size_type len;
3519
3520 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3521 offsets from a sym as a branch target? In fact, we could
3522 probably assume the addend is always zero. */
3523 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3524
3525 if (h)
3526 {
3527 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3528 stub_name = bfd_malloc (len);
3529 if (stub_name != NULL)
3530 {
3531 sprintf (stub_name, "%08x.%s+%x",
3532 input_section->id & 0xffffffff,
3533 h->elf.root.root.string,
3534 (int) rel->r_addend & 0xffffffff);
3535 }
3536 }
3537 else
3538 {
3539 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3540 stub_name = bfd_malloc (len);
3541 if (stub_name != NULL)
3542 {
3543 sprintf (stub_name, "%08x.%x:%x+%x",
3544 input_section->id & 0xffffffff,
3545 sym_sec->id & 0xffffffff,
3546 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3547 (int) rel->r_addend & 0xffffffff);
3548 }
3549 }
3550 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3551 stub_name[len - 2] = 0;
3552 return stub_name;
3553}
3554
3555/* Look up an entry in the stub hash. Stub entries are cached because
3556 creating the stub name takes a bit of time. */
3557
3558static struct ppc_stub_hash_entry *
3559ppc_get_stub_entry (const asection *input_section,
3560 const asection *sym_sec,
3561 struct ppc_link_hash_entry *h,
3562 const Elf_Internal_Rela *rel,
3563 struct ppc_link_hash_table *htab)
3564{
3565 struct ppc_stub_hash_entry *stub_entry;
3566 const asection *id_sec;
3567
3568 /* If this input section is part of a group of sections sharing one
3569 stub section, then use the id of the first section in the group.
3570 Stub names need to include a section id, as there may well be
3571 more than one stub used to reach say, printf, and we need to
3572 distinguish between them. */
3573 id_sec = htab->stub_group[input_section->id].link_sec;
3574
3575 if (h != NULL && h->stub_cache != NULL
3576 && h->stub_cache->h == h
3577 && h->stub_cache->id_sec == id_sec)
3578 {
3579 stub_entry = h->stub_cache;
3580 }
3581 else
3582 {
3583 char *stub_name;
3584
3585 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3586 if (stub_name == NULL)
3587 return NULL;
3588
3589 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3590 stub_name, FALSE, FALSE);
3591 if (h != NULL)
3592 h->stub_cache = stub_entry;
3593
3594 free (stub_name);
3595 }
3596
3597 return stub_entry;
3598}
3599
3600/* Add a new stub entry to the stub hash. Not all fields of the new
3601 stub entry are initialised. */
3602
3603static struct ppc_stub_hash_entry *
3604ppc_add_stub (const char *stub_name,
3605 asection *section,
3606 struct ppc_link_hash_table *htab)
3607{
3608 asection *link_sec;
3609 asection *stub_sec;
3610 struct ppc_stub_hash_entry *stub_entry;
3611
3612 link_sec = htab->stub_group[section->id].link_sec;
3613 stub_sec = htab->stub_group[section->id].stub_sec;
3614 if (stub_sec == NULL)
3615 {
3616 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3617 if (stub_sec == NULL)
3618 {
3619 size_t namelen;
3620 bfd_size_type len;
3621 char *s_name;
3622
3623 namelen = strlen (link_sec->name);
3624 len = namelen + sizeof (STUB_SUFFIX);
3625 s_name = bfd_alloc (htab->stub_bfd, len);
3626 if (s_name == NULL)
3627 return NULL;
3628
3629 memcpy (s_name, link_sec->name, namelen);
3630 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3631 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3632 if (stub_sec == NULL)
3633 return NULL;
3634 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3635 }
3636 htab->stub_group[section->id].stub_sec = stub_sec;
3637 }
3638
3639 /* Enter this entry into the linker stub hash table. */
3640 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3641 TRUE, FALSE);
3642 if (stub_entry == NULL)
3643 {
3644 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3645 section->owner, stub_name);
3646 return NULL;
3647 }
3648
3649 stub_entry->stub_sec = stub_sec;
3650 stub_entry->stub_offset = 0;
3651 stub_entry->id_sec = link_sec;
3652 return stub_entry;
3653}
3654
3655/* Create sections for linker generated code. */
3656
3657static bfd_boolean
3658create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3659{
3660 struct ppc_link_hash_table *htab;
3661 flagword flags;
3662
3663 htab = ppc_hash_table (info);
3664
3665 /* Create .sfpr for code to save and restore fp regs. */
3666 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3667 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3668 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3669 if (htab->sfpr == NULL
3670 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3671 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3672 return FALSE;
3673
3674 /* Create .glink for lazy dynamic linking support. */
3675 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3676 if (htab->glink == NULL
3677 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3678 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3679 return FALSE;
3680
3681 /* Create .branch_lt for plt_branch stubs. */
3682 flags = (SEC_ALLOC | SEC_LOAD
3683 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3684 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3685 if (htab->brlt == NULL
3686 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3687 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3688 return FALSE;
3689
3690 if (info->shared || info->emitrelocations)
3691 {
3692 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3693 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3694 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3695 if (!htab->relbrlt
3696 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3697 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3698 return FALSE;
3699 }
3700 return TRUE;
3701}
3702
3703/* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3704 not already done. */
3705
3706static bfd_boolean
3707create_got_section (bfd *abfd, struct bfd_link_info *info)
3708{
3709 asection *got, *relgot;
3710 flagword flags;
3711 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3712
3713 if (!htab->got)
3714 {
3715 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3716 return FALSE;
3717
3718 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3719 if (!htab->got)
3720 abort ();
3721 }
3722
3723 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3724 | SEC_LINKER_CREATED);
3725
3726 got = bfd_make_section (abfd, ".got");
3727 if (!got
3728 || !bfd_set_section_flags (abfd, got, flags)
3729 || !bfd_set_section_alignment (abfd, got, 3))
3730 return FALSE;
3731
3732 relgot = bfd_make_section (abfd, ".rela.got");
3733 if (!relgot
3734 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3735 || ! bfd_set_section_alignment (abfd, relgot, 3))
3736 return FALSE;
3737
3738 ppc64_elf_tdata (abfd)->got = got;
3739 ppc64_elf_tdata (abfd)->relgot = relgot;
3740 return TRUE;
3741}
3742
3743/* Create the dynamic sections, and set up shortcuts. */
3744
3745static bfd_boolean
3746ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3747{
3748 struct ppc_link_hash_table *htab;
3749
3750 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3751 return FALSE;
3752
3753 htab = ppc_hash_table (info);
3754 if (!htab->got)
3755 htab->got = bfd_get_section_by_name (dynobj, ".got");
3756 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3757 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3758 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3759 if (!info->shared)
3760 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3761
3762 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3763 || (!info->shared && !htab->relbss))
3764 abort ();
3765
3766 return TRUE;
3767}
3768
3769/* Merge PLT info on FROM with that on TO. */
3770
3771static void
3772move_plt_plist (struct ppc_link_hash_entry *from,
3773 struct ppc_link_hash_entry *to)
3774{
3775 if (from->elf.plt.plist != NULL)
3776 {
3777 if (to->elf.plt.plist != NULL)
3778 {
3779 struct plt_entry **entp;
3780 struct plt_entry *ent;
3781
3782 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3783 {
3784 struct plt_entry *dent;
3785
3786 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3787 if (dent->addend == ent->addend)
3788 {
3789 dent->plt.refcount += ent->plt.refcount;
3790 *entp = ent->next;
3791 break;
3792 }
3793 if (dent == NULL)
3794 entp = &ent->next;
3795 }
3796 *entp = to->elf.plt.plist;
3797 }
3798
3799 to->elf.plt.plist = from->elf.plt.plist;
3800 from->elf.plt.plist = NULL;
3801 }
3802}
3803
3804/* Copy the extra info we tack onto an elf_link_hash_entry. */
3805
3806static void
3807ppc64_elf_copy_indirect_symbol
3808 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3809 struct elf_link_hash_entry *dir,
3810 struct elf_link_hash_entry *ind)
3811{
3812 struct ppc_link_hash_entry *edir, *eind;
3813
3814 edir = (struct ppc_link_hash_entry *) dir;
3815 eind = (struct ppc_link_hash_entry *) ind;
3816
3817 /* Copy over any dynamic relocs we may have on the indirect sym. */
3818 if (eind->dyn_relocs != NULL)
3819 {
3820 if (edir->dyn_relocs != NULL)
3821 {
3822 struct ppc_dyn_relocs **pp;
3823 struct ppc_dyn_relocs *p;
3824
3825 if (eind->elf.root.type == bfd_link_hash_indirect)
3826 abort ();
3827
3828 /* Add reloc counts against the weak sym to the strong sym
3829 list. Merge any entries against the same section. */
3830 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3831 {
3832 struct ppc_dyn_relocs *q;
3833
3834 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3835 if (q->sec == p->sec)
3836 {
3837 q->pc_count += p->pc_count;
3838 q->count += p->count;
3839 *pp = p->next;
3840 break;
3841 }
3842 if (q == NULL)
3843 pp = &p->next;
3844 }
3845 *pp = edir->dyn_relocs;
3846 }
3847
3848 edir->dyn_relocs = eind->dyn_relocs;
3849 eind->dyn_relocs = NULL;
3850 }
3851
3852 edir->is_func |= eind->is_func;
3853 edir->is_func_descriptor |= eind->is_func_descriptor;
3854 edir->tls_mask |= eind->tls_mask;
3855
3856 /* If called to transfer flags for a weakdef during processing
3857 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3858 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3859 if (!(ELIMINATE_COPY_RELOCS
3860 && eind->elf.root.type != bfd_link_hash_indirect
3861 && edir->elf.dynamic_adjusted))
3862 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3863
3864 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3865 edir->elf.ref_regular |= eind->elf.ref_regular;
3866 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3867 edir->elf.needs_plt |= eind->elf.needs_plt;
3868
3869 /* If we were called to copy over info for a weak sym, that's all. */
3870 if (eind->elf.root.type != bfd_link_hash_indirect)
3871 return;
3872
3873 /* Copy over got entries that we may have already seen to the
3874 symbol which just became indirect. */
3875 if (eind->elf.got.glist != NULL)
3876 {
3877 if (edir->elf.got.glist != NULL)
3878 {
3879 struct got_entry **entp;
3880 struct got_entry *ent;
3881
3882 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3883 {
3884 struct got_entry *dent;
3885
3886 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3887 if (dent->addend == ent->addend
3888 && dent->owner == ent->owner
3889 && dent->tls_type == ent->tls_type)
3890 {
3891 dent->got.refcount += ent->got.refcount;
3892 *entp = ent->next;
3893 break;
3894 }
3895 if (dent == NULL)
3896 entp = &ent->next;
3897 }
3898 *entp = edir->elf.got.glist;
3899 }
3900
3901 edir->elf.got.glist = eind->elf.got.glist;
3902 eind->elf.got.glist = NULL;
3903 }
3904
3905 /* And plt entries. */
3906 move_plt_plist (eind, edir);
3907
3908 if (edir->elf.dynindx == -1)
3909 {
3910 edir->elf.dynindx = eind->elf.dynindx;
3911 edir->elf.dynstr_index = eind->elf.dynstr_index;
3912 eind->elf.dynindx = -1;
3913 eind->elf.dynstr_index = 0;
3914 }
3915 else
3916 BFD_ASSERT (eind->elf.dynindx == -1);
3917}
3918
3919/* Find the function descriptor hash entry from the given function code
3920 hash entry FH. Link the entries via their OH fields. */
3921
3922static struct ppc_link_hash_entry *
3923get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3924{
3925 struct ppc_link_hash_entry *fdh = fh->oh;
3926
3927 if (fdh == NULL)
3928 {
3929 const char *fd_name = fh->elf.root.root.string + 1;
3930
3931 fdh = (struct ppc_link_hash_entry *)
3932 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3933 if (fdh != NULL)
3934 {
3935 fdh->is_func_descriptor = 1;
3936 fdh->oh = fh;
3937 fh->is_func = 1;
3938 fh->oh = fdh;
3939 }
3940 }
3941
3942 return fdh;
3943}
3944
3945/* Make a fake function descriptor sym for the code sym FH. */
3946
3947static struct ppc_link_hash_entry *
3948make_fdh (struct bfd_link_info *info,
3949 struct ppc_link_hash_entry *fh)
3950{
3951 bfd *abfd;
3952 asymbol *newsym;
3953 struct bfd_link_hash_entry *bh;
3954 struct ppc_link_hash_entry *fdh;
3955
3956 abfd = fh->elf.root.u.undef.abfd;
3957 newsym = bfd_make_empty_symbol (abfd);
3958 newsym->name = fh->elf.root.root.string + 1;
3959 newsym->section = bfd_und_section_ptr;
3960 newsym->value = 0;
3961 newsym->flags = BSF_WEAK;
3962
3963 bh = NULL;
3964 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
3965 newsym->flags, newsym->section,
3966 newsym->value, NULL, FALSE, FALSE,
3967 &bh))
3968 return NULL;
3969
3970 fdh = (struct ppc_link_hash_entry *) bh;
3971 fdh->elf.non_elf = 0;
3972 fdh->fake = 1;
3973 fdh->is_func_descriptor = 1;
3974 fdh->oh = fh;
3975 fh->is_func = 1;
3976 fh->oh = fdh;
3977 return fdh;
3978}
3979
3980/* Hacks to support old ABI code.
3981 When making function calls, old ABI code references function entry
3982 points (dot symbols), while new ABI code references the function
3983 descriptor symbol. We need to make any combination of reference and
3984 definition work together, without breaking archive linking.
3985
3986 For a defined function "foo" and an undefined call to "bar":
3987 An old object defines "foo" and ".foo", references ".bar" (possibly
3988 "bar" too).
3989 A new object defines "foo" and references "bar".
3990
3991 A new object thus has no problem with its undefined symbols being
3992 satisfied by definitions in an old object. On the other hand, the
3993 old object won't have ".bar" satisfied by a new object. */
3994
3995/* Fix function descriptor symbols defined in .opd sections to be
3996 function type. */
3997
3998static bfd_boolean
3999ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4000 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4001 Elf_Internal_Sym *isym,
4002 const char **name ATTRIBUTE_UNUSED,
4003 flagword *flags ATTRIBUTE_UNUSED,
4004 asection **sec,
4005 bfd_vma *value ATTRIBUTE_UNUSED)
4006{
4007 if (*sec != NULL
4008 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4009 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4010 return TRUE;
4011}
4012
4013/* This function makes an old ABI object reference to ".bar" cause the
4014 inclusion of a new ABI object archive that defines "bar".
4015 NAME is a symbol defined in an archive. Return a symbol in the hash
4016 table that might be satisfied by the archive symbols. */
4017
4018static struct elf_link_hash_entry *
4019ppc64_elf_archive_symbol_lookup (bfd *abfd,
4020 struct bfd_link_info *info,
4021 const char *name)
4022{
4023 struct elf_link_hash_entry *h;
4024 char *dot_name;
4025 size_t len;
4026
4027 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4028 if (h != NULL
4029 /* Don't return this sym if it is a fake function descriptor
4030 created by add_symbol_adjust. */
4031 && !(h->root.type == bfd_link_hash_undefweak
4032 && ((struct ppc_link_hash_entry *) h)->fake))
4033 return h;
4034
4035 if (name[0] == '.')
4036 return h;
4037
4038 len = strlen (name);
4039 dot_name = bfd_alloc (abfd, len + 2);
4040 if (dot_name == NULL)
4041 return (struct elf_link_hash_entry *) 0 - 1;
4042 dot_name[0] = '.';
4043 memcpy (dot_name + 1, name, len + 1);
4044 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4045 bfd_release (abfd, dot_name);
4046 return h;
4047}
4048
4049/* This function satisfies all old ABI object references to ".bar" if a
4050 new ABI object defines "bar". Well, at least, undefined dot symbols
4051 are made weak. This stops later archive searches from including an
4052 object if we already have a function descriptor definition. It also
4053 prevents the linker complaining about undefined symbols.
4054 We also check and correct mismatched symbol visibility here. The
4055 most restrictive visibility of the function descriptor and the
4056 function entry symbol is used. */
4057
4058struct add_symbol_adjust_data
4059{
4060 struct bfd_link_info *info;
4061 bfd_boolean ok;
4062};
4063
4064static bfd_boolean
4065add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4066{
4067 struct add_symbol_adjust_data *data;
4068 struct ppc_link_hash_table *htab;
4069 struct ppc_link_hash_entry *eh;
4070 struct ppc_link_hash_entry *fdh;
4071
4072 if (h->root.type == bfd_link_hash_indirect)
4073 return TRUE;
4074
4075 if (h->root.type == bfd_link_hash_warning)
4076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4077
4078 if (h->root.root.string[0] != '.')
4079 return TRUE;
4080
4081 data = inf;
4082 htab = ppc_hash_table (data->info);
4083 eh = (struct ppc_link_hash_entry *) h;
4084 fdh = get_fdh (eh, htab);
4085 if (fdh == NULL
4086 && !data->info->relocatable
4087 && (eh->elf.root.type == bfd_link_hash_undefined
4088 || eh->elf.root.type == bfd_link_hash_undefweak)
4089 && eh->elf.ref_regular)
4090 {
4091 /* Make an undefweak function descriptor sym, which is enough to
4092 pull in an --as-needed shared lib, but won't cause link
4093 errors. Archives are handled elsewhere. */
4094 fdh = make_fdh (data->info, eh);
4095 if (fdh == NULL)
4096 data->ok = FALSE;
4097 else
4098 fdh->elf.ref_regular = 1;
4099 }
4100 else if (fdh != NULL
4101 && (fdh->elf.root.type == bfd_link_hash_defined
4102 || fdh->elf.root.type == bfd_link_hash_defweak))
4103 {
4104 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4105 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4106 if (entry_vis < descr_vis)
4107 fdh->elf.other += entry_vis - descr_vis;
4108 else if (entry_vis > descr_vis)
4109 eh->elf.other += descr_vis - entry_vis;
4110
4111 if (eh->elf.root.type == bfd_link_hash_undefined)
4112 {
4113 eh->elf.root.type = bfd_link_hash_undefweak;
4114 eh->was_undefined = 1;
4115 htab->twiddled_syms = 1;
4116 }
4117 }
4118
4119 return TRUE;
4120}
4121
4122static bfd_boolean
4123ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4124 struct bfd_link_info *info)
4125{
4126 struct ppc_link_hash_table *htab;
4127 struct add_symbol_adjust_data data;
4128
4129 htab = ppc_hash_table (info);
4130 if (!is_ppc64_elf_target (htab->elf.root.creator))
4131 return TRUE;
4132
4133 data.info = info;
4134 data.ok = TRUE;
4135 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4136
4137 /* We need to fix the undefs list for any syms we have twiddled to
4138 undef_weak. */
4139 if (htab->twiddled_syms)
4140 {
4141 bfd_link_repair_undef_list (&htab->elf.root);
4142 htab->twiddled_syms = 0;
4143 }
4144 return data.ok;
4145}
4146
4147static bfd_boolean
4148update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4149 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4150{
4151 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4152 char *local_got_tls_masks;
4153
4154 if (local_got_ents == NULL)
4155 {
4156 bfd_size_type size = symtab_hdr->sh_info;
4157
4158 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4159 local_got_ents = bfd_zalloc (abfd, size);
4160 if (local_got_ents == NULL)
4161 return FALSE;
4162 elf_local_got_ents (abfd) = local_got_ents;
4163 }
4164
4165 if ((tls_type & TLS_EXPLICIT) == 0)
4166 {
4167 struct got_entry *ent;
4168
4169 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4170 if (ent->addend == r_addend
4171 && ent->owner == abfd
4172 && ent->tls_type == tls_type)
4173 break;
4174 if (ent == NULL)
4175 {
4176 bfd_size_type amt = sizeof (*ent);
4177 ent = bfd_alloc (abfd, amt);
4178 if (ent == NULL)
4179 return FALSE;
4180 ent->next = local_got_ents[r_symndx];
4181 ent->addend = r_addend;
4182 ent->owner = abfd;
4183 ent->tls_type = tls_type;
4184 ent->got.refcount = 0;
4185 local_got_ents[r_symndx] = ent;
4186 }
4187 ent->got.refcount += 1;
4188 }
4189
4190 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4191 local_got_tls_masks[r_symndx] |= tls_type;
4192 return TRUE;
4193}
4194
4195static bfd_boolean
4196update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4197{
4198 struct plt_entry *ent;
4199
4200 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4201 if (ent->addend == addend)
4202 break;
4203 if (ent == NULL)
4204 {
4205 bfd_size_type amt = sizeof (*ent);
4206 ent = bfd_alloc (abfd, amt);
4207 if (ent == NULL)
4208 return FALSE;
4209 ent->next = eh->elf.plt.plist;
4210 ent->addend = addend;
4211 ent->plt.refcount = 0;
4212 eh->elf.plt.plist = ent;
4213 }
4214 ent->plt.refcount += 1;
4215 eh->elf.needs_plt = 1;
4216 eh->is_func = 1;
4217 return TRUE;
4218}
4219
4220/* Look through the relocs for a section during the first phase, and
4221 calculate needed space in the global offset table, procedure
4222 linkage table, and dynamic reloc sections. */
4223
4224static bfd_boolean
4225ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4226 asection *sec, const Elf_Internal_Rela *relocs)
4227{
4228 struct ppc_link_hash_table *htab;
4229 Elf_Internal_Shdr *symtab_hdr;
4230 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4231 const Elf_Internal_Rela *rel;
4232 const Elf_Internal_Rela *rel_end;
4233 asection *sreloc;
4234 asection **opd_sym_map;
4235
4236 if (info->relocatable)
4237 return TRUE;
4238
4239 /* Don't do anything special with non-loaded, non-alloced sections.
4240 In particular, any relocs in such sections should not affect GOT
4241 and PLT reference counting (ie. we don't allow them to create GOT
4242 or PLT entries), there's no possibility or desire to optimize TLS
4243 relocs, and there's not much point in propagating relocs to shared
4244 libs that the dynamic linker won't relocate. */
4245 if ((sec->flags & SEC_ALLOC) == 0)
4246 return TRUE;
4247
4248 htab = ppc_hash_table (info);
4249 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4250
4251 sym_hashes = elf_sym_hashes (abfd);
4252 sym_hashes_end = (sym_hashes
4253 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4254 - symtab_hdr->sh_info);
4255
4256 sreloc = NULL;
4257 opd_sym_map = NULL;
4258 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4259 {
4260 /* Garbage collection needs some extra help with .opd sections.
4261 We don't want to necessarily keep everything referenced by
4262 relocs in .opd, as that would keep all functions. Instead,
4263 if we reference an .opd symbol (a function descriptor), we
4264 want to keep the function code symbol's section. This is
4265 easy for global symbols, but for local syms we need to keep
4266 information about the associated function section. Later, if
4267 edit_opd deletes entries, we'll use this array to adjust
4268 local syms in .opd. */
4269 union opd_info {
4270 asection *func_section;
4271 long entry_adjust;
4272 };
4273 bfd_size_type amt;
4274
4275 amt = sec->size * sizeof (union opd_info) / 8;
4276 opd_sym_map = bfd_zalloc (abfd, amt);
4277 if (opd_sym_map == NULL)
4278 return FALSE;
4279 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4280 }
4281
4282 if (htab->sfpr == NULL
4283 && !create_linkage_sections (htab->elf.dynobj, info))
4284 return FALSE;
4285
4286 rel_end = relocs + sec->reloc_count;
4287 for (rel = relocs; rel < rel_end; rel++)
4288 {
4289 unsigned long r_symndx;
4290 struct elf_link_hash_entry *h;
4291 enum elf_ppc64_reloc_type r_type;
4292 int tls_type = 0;
4293
4294 r_symndx = ELF64_R_SYM (rel->r_info);
4295 if (r_symndx < symtab_hdr->sh_info)
4296 h = NULL;
4297 else
4298 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4299
4300 r_type = ELF64_R_TYPE (rel->r_info);
4301 switch (r_type)
4302 {
4303 case R_PPC64_GOT_TLSLD16:
4304 case R_PPC64_GOT_TLSLD16_LO:
4305 case R_PPC64_GOT_TLSLD16_HI:
4306 case R_PPC64_GOT_TLSLD16_HA:
4307 ppc64_tlsld_got (abfd)->refcount += 1;
4308 tls_type = TLS_TLS | TLS_LD;
4309 goto dogottls;
4310
4311 case R_PPC64_GOT_TLSGD16:
4312 case R_PPC64_GOT_TLSGD16_LO:
4313 case R_PPC64_GOT_TLSGD16_HI:
4314 case R_PPC64_GOT_TLSGD16_HA:
4315 tls_type = TLS_TLS | TLS_GD;
4316 goto dogottls;
4317
4318 case R_PPC64_GOT_TPREL16_DS:
4319 case R_PPC64_GOT_TPREL16_LO_DS:
4320 case R_PPC64_GOT_TPREL16_HI:
4321 case R_PPC64_GOT_TPREL16_HA:
4322 if (info->shared)
4323 info->flags |= DF_STATIC_TLS;
4324 tls_type = TLS_TLS | TLS_TPREL;
4325 goto dogottls;
4326
4327 case R_PPC64_GOT_DTPREL16_DS:
4328 case R_PPC64_GOT_DTPREL16_LO_DS:
4329 case R_PPC64_GOT_DTPREL16_HI:
4330 case R_PPC64_GOT_DTPREL16_HA:
4331 tls_type = TLS_TLS | TLS_DTPREL;
4332 dogottls:
4333 sec->has_tls_reloc = 1;
4334 /* Fall thru */
4335
4336 case R_PPC64_GOT16:
4337 case R_PPC64_GOT16_DS:
4338 case R_PPC64_GOT16_HA:
4339 case R_PPC64_GOT16_HI:
4340 case R_PPC64_GOT16_LO:
4341 case R_PPC64_GOT16_LO_DS:
4342 /* This symbol requires a global offset table entry. */
4343 sec->has_toc_reloc = 1;
4344 if (ppc64_elf_tdata (abfd)->got == NULL
4345 && !create_got_section (abfd, info))
4346 return FALSE;
4347
4348 if (h != NULL)
4349 {
4350 struct ppc_link_hash_entry *eh;
4351 struct got_entry *ent;
4352
4353 eh = (struct ppc_link_hash_entry *) h;
4354 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4355 if (ent->addend == rel->r_addend
4356 && ent->owner == abfd
4357 && ent->tls_type == tls_type)
4358 break;
4359 if (ent == NULL)
4360 {
4361 bfd_size_type amt = sizeof (*ent);
4362 ent = bfd_alloc (abfd, amt);
4363 if (ent == NULL)
4364 return FALSE;
4365 ent->next = eh->elf.got.glist;
4366 ent->addend = rel->r_addend;
4367 ent->owner = abfd;
4368 ent->tls_type = tls_type;
4369 ent->got.refcount = 0;
4370 eh->elf.got.glist = ent;
4371 }
4372 ent->got.refcount += 1;
4373 eh->tls_mask |= tls_type;
4374 }
4375 else
4376 /* This is a global offset table entry for a local symbol. */
4377 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4378 rel->r_addend, tls_type))
4379 return FALSE;
4380 break;
4381
4382 case R_PPC64_PLT16_HA:
4383 case R_PPC64_PLT16_HI:
4384 case R_PPC64_PLT16_LO:
4385 case R_PPC64_PLT32:
4386 case R_PPC64_PLT64:
4387 /* This symbol requires a procedure linkage table entry. We
4388 actually build the entry in adjust_dynamic_symbol,
4389 because this might be a case of linking PIC code without
4390 linking in any dynamic objects, in which case we don't
4391 need to generate a procedure linkage table after all. */
4392 if (h == NULL)
4393 {
4394 /* It does not make sense to have a procedure linkage
4395 table entry for a local symbol. */
4396 bfd_set_error (bfd_error_bad_value);
4397 return FALSE;
4398 }
4399 else
4400 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4401 rel->r_addend))
4402 return FALSE;
4403 break;
4404
4405 /* The following relocations don't need to propagate the
4406 relocation if linking a shared object since they are
4407 section relative. */
4408 case R_PPC64_SECTOFF:
4409 case R_PPC64_SECTOFF_LO:
4410 case R_PPC64_SECTOFF_HI:
4411 case R_PPC64_SECTOFF_HA:
4412 case R_PPC64_SECTOFF_DS:
4413 case R_PPC64_SECTOFF_LO_DS:
4414 case R_PPC64_DTPREL16:
4415 case R_PPC64_DTPREL16_LO:
4416 case R_PPC64_DTPREL16_HI:
4417 case R_PPC64_DTPREL16_HA:
4418 case R_PPC64_DTPREL16_DS:
4419 case R_PPC64_DTPREL16_LO_DS:
4420 case R_PPC64_DTPREL16_HIGHER:
4421 case R_PPC64_DTPREL16_HIGHERA:
4422 case R_PPC64_DTPREL16_HIGHEST:
4423 case R_PPC64_DTPREL16_HIGHESTA:
4424 break;
4425
4426 /* Nor do these. */
4427 case R_PPC64_TOC16:
4428 case R_PPC64_TOC16_LO:
4429 case R_PPC64_TOC16_HI:
4430 case R_PPC64_TOC16_HA:
4431 case R_PPC64_TOC16_DS:
4432 case R_PPC64_TOC16_LO_DS:
4433 sec->has_toc_reloc = 1;
4434 break;
4435
4436 /* This relocation describes the C++ object vtable hierarchy.
4437 Reconstruct it for later use during GC. */
4438 case R_PPC64_GNU_VTINHERIT:
4439 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4440 return FALSE;
4441 break;
4442
4443 /* This relocation describes which C++ vtable entries are actually
4444 used. Record for later use during GC. */
4445 case R_PPC64_GNU_VTENTRY:
4446 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4447 return FALSE;
4448 break;
4449
4450 case R_PPC64_REL14:
4451 case R_PPC64_REL14_BRTAKEN:
4452 case R_PPC64_REL14_BRNTAKEN:
4453 htab->has_14bit_branch = 1;
4454 /* Fall through. */
4455
4456 case R_PPC64_REL24:
4457 if (h != NULL)
4458 {
4459 /* We may need a .plt entry if the function this reloc
4460 refers to is in a shared lib. */
4461 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4462 rel->r_addend))
4463 return FALSE;
4464 if (h == &htab->tls_get_addr->elf
4465 || h == &htab->tls_get_addr_fd->elf)
4466 sec->has_tls_reloc = 1;
4467 else if (htab->tls_get_addr == NULL
4468 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4469 && (h->root.root.string[15] == 0
4470 || h->root.root.string[15] == '@'))
4471 {
4472 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4473 sec->has_tls_reloc = 1;
4474 }
4475 else if (htab->tls_get_addr_fd == NULL
4476 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4477 && (h->root.root.string[14] == 0
4478 || h->root.root.string[14] == '@'))
4479 {
4480 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4481 sec->has_tls_reloc = 1;
4482 }
4483 }
4484 break;
4485
4486 case R_PPC64_TPREL64:
4487 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4488 if (info->shared)
4489 info->flags |= DF_STATIC_TLS;
4490 goto dotlstoc;
4491
4492 case R_PPC64_DTPMOD64:
4493 if (rel + 1 < rel_end
4494 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4495 && rel[1].r_offset == rel->r_offset + 8)
4496 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4497 else
4498 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4499 goto dotlstoc;
4500
4501 case R_PPC64_DTPREL64:
4502 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4503 if (rel != relocs
4504 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4505 && rel[-1].r_offset == rel->r_offset - 8)
4506 /* This is the second reloc of a dtpmod, dtprel pair.
4507 Don't mark with TLS_DTPREL. */
4508 goto dodyn;
4509
4510 dotlstoc:
4511 sec->has_tls_reloc = 1;
4512 if (h != NULL)
4513 {
4514 struct ppc_link_hash_entry *eh;
4515 eh = (struct ppc_link_hash_entry *) h;
4516 eh->tls_mask |= tls_type;
4517 }
4518 else
4519 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4520 rel->r_addend, tls_type))
4521 return FALSE;
4522
4523 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4524 {
4525 /* One extra to simplify get_tls_mask. */
4526 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4527 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4528 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4529 return FALSE;
4530 }
4531 BFD_ASSERT (rel->r_offset % 8 == 0);
4532 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4533
4534 /* Mark the second slot of a GD or LD entry.
4535 -1 to indicate GD and -2 to indicate LD. */
4536 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4537 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4538 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4539 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4540 goto dodyn;
4541
4542 case R_PPC64_TPREL16:
4543 case R_PPC64_TPREL16_LO:
4544 case R_PPC64_TPREL16_HI:
4545 case R_PPC64_TPREL16_HA:
4546 case R_PPC64_TPREL16_DS:
4547 case R_PPC64_TPREL16_LO_DS:
4548 case R_PPC64_TPREL16_HIGHER:
4549 case R_PPC64_TPREL16_HIGHERA:
4550 case R_PPC64_TPREL16_HIGHEST:
4551 case R_PPC64_TPREL16_HIGHESTA:
4552 if (info->shared)
4553 {
4554 info->flags |= DF_STATIC_TLS;
4555 goto dodyn;
4556 }
4557 break;
4558
4559 case R_PPC64_ADDR64:
4560 if (opd_sym_map != NULL
4561 && rel + 1 < rel_end
4562 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4563 {
4564 if (h != NULL)
4565 {
4566 if (h->root.root.string[0] == '.'
4567 && h->root.root.string[1] != 0
4568 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4569 ;
4570 else
4571 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4572 }
4573 else
4574 {
4575 asection *s;
4576
4577 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4578 r_symndx);
4579 if (s == NULL)
4580 return FALSE;
4581 else if (s != sec)
4582 opd_sym_map[rel->r_offset / 8] = s;
4583 }
4584 }
4585 /* Fall through. */
4586
4587 case R_PPC64_REL30:
4588 case R_PPC64_REL32:
4589 case R_PPC64_REL64:
4590 case R_PPC64_ADDR14:
4591 case R_PPC64_ADDR14_BRNTAKEN:
4592 case R_PPC64_ADDR14_BRTAKEN:
4593 case R_PPC64_ADDR16:
4594 case R_PPC64_ADDR16_DS:
4595 case R_PPC64_ADDR16_HA:
4596 case R_PPC64_ADDR16_HI:
4597 case R_PPC64_ADDR16_HIGHER:
4598 case R_PPC64_ADDR16_HIGHERA:
4599 case R_PPC64_ADDR16_HIGHEST:
4600 case R_PPC64_ADDR16_HIGHESTA:
4601 case R_PPC64_ADDR16_LO:
4602 case R_PPC64_ADDR16_LO_DS:
4603 case R_PPC64_ADDR24:
4604 case R_PPC64_ADDR32:
4605 case R_PPC64_UADDR16:
4606 case R_PPC64_UADDR32:
4607 case R_PPC64_UADDR64:
4608 case R_PPC64_TOC:
4609 if (h != NULL && !info->shared)
4610 /* We may need a copy reloc. */
4611 h->non_got_ref = 1;
4612
4613 /* Don't propagate .opd relocs. */
4614 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4615 break;
4616
4617 /* If we are creating a shared library, and this is a reloc
4618 against a global symbol, or a non PC relative reloc
4619 against a local symbol, then we need to copy the reloc
4620 into the shared library. However, if we are linking with
4621 -Bsymbolic, we do not need to copy a reloc against a
4622 global symbol which is defined in an object we are
4623 including in the link (i.e., DEF_REGULAR is set). At
4624 this point we have not seen all the input files, so it is
4625 possible that DEF_REGULAR is not set now but will be set
4626 later (it is never cleared). In case of a weak definition,
4627 DEF_REGULAR may be cleared later by a strong definition in
4628 a shared library. We account for that possibility below by
4629 storing information in the dyn_relocs field of the hash
4630 table entry. A similar situation occurs when creating
4631 shared libraries and symbol visibility changes render the
4632 symbol local.
4633
4634 If on the other hand, we are creating an executable, we
4635 may need to keep relocations for symbols satisfied by a
4636 dynamic library if we manage to avoid copy relocs for the
4637 symbol. */
4638 dodyn:
4639 if ((info->shared
4640 && (MUST_BE_DYN_RELOC (r_type)
4641 || (h != NULL
4642 && (! info->symbolic
4643 || h->root.type == bfd_link_hash_defweak
4644 || !h->def_regular))))
4645 || (ELIMINATE_COPY_RELOCS
4646 && !info->shared
4647 && h != NULL
4648 && (h->root.type == bfd_link_hash_defweak
4649 || !h->def_regular)))
4650 {
4651 struct ppc_dyn_relocs *p;
4652 struct ppc_dyn_relocs **head;
4653
4654 /* We must copy these reloc types into the output file.
4655 Create a reloc section in dynobj and make room for
4656 this reloc. */
4657 if (sreloc == NULL)
4658 {
4659 const char *name;
4660 bfd *dynobj;
4661
4662 name = (bfd_elf_string_from_elf_section
4663 (abfd,
4664 elf_elfheader (abfd)->e_shstrndx,
4665 elf_section_data (sec)->rel_hdr.sh_name));
4666 if (name == NULL)
4667 return FALSE;
4668
4669 if (strncmp (name, ".rela", 5) != 0
4670 || strcmp (bfd_get_section_name (abfd, sec),
4671 name + 5) != 0)
4672 {
4673 (*_bfd_error_handler)
4674 (_("%B: bad relocation section name `%s\'"),
4675 abfd, name);
4676 bfd_set_error (bfd_error_bad_value);
4677 }
4678
4679 dynobj = htab->elf.dynobj;
4680 sreloc = bfd_get_section_by_name (dynobj, name);
4681 if (sreloc == NULL)
4682 {
4683 flagword flags;
4684
4685 sreloc = bfd_make_section (dynobj, name);
4686 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4687 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4688 if ((sec->flags & SEC_ALLOC) != 0)
4689 flags |= SEC_ALLOC | SEC_LOAD;
4690 if (sreloc == NULL
4691 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4692 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4693 return FALSE;
4694 }
4695 elf_section_data (sec)->sreloc = sreloc;
4696 }
4697
4698 /* If this is a global symbol, we count the number of
4699 relocations we need for this symbol. */
4700 if (h != NULL)
4701 {
4702 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4703 }
4704 else
4705 {
4706 /* Track dynamic relocs needed for local syms too.
4707 We really need local syms available to do this
4708 easily. Oh well. */
4709
4710 asection *s;
4711 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4712 sec, r_symndx);
4713 if (s == NULL)
4714 return FALSE;
4715
4716 head = ((struct ppc_dyn_relocs **)
4717 &elf_section_data (s)->local_dynrel);
4718 }
4719
4720 p = *head;
4721 if (p == NULL || p->sec != sec)
4722 {
4723 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4724 if (p == NULL)
4725 return FALSE;
4726 p->next = *head;
4727 *head = p;
4728 p->sec = sec;
4729 p->count = 0;
4730 p->pc_count = 0;
4731 }
4732
4733 p->count += 1;
4734 if (!MUST_BE_DYN_RELOC (r_type))
4735 p->pc_count += 1;
4736 }
4737 break;
4738
4739 default:
4740 break;
4741 }
4742 }
4743
4744 return TRUE;
4745}
4746
4747/* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4748 of the code entry point, and its section. */
4749
4750static bfd_vma
4751opd_entry_value (asection *opd_sec,
4752 bfd_vma offset,
4753 asection **code_sec,
4754 bfd_vma *code_off)
4755{
4756 bfd *opd_bfd = opd_sec->owner;
4757 Elf_Internal_Rela *relocs;
4758 Elf_Internal_Rela *lo, *hi, *look;
4759 bfd_vma val;
4760
4761 /* No relocs implies we are linking a --just-symbols object. */
4762 if (opd_sec->reloc_count == 0)
4763 {
4764 bfd_vma val;
4765
4766 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4767 return (bfd_vma) -1;
4768
4769 if (code_sec != NULL)
4770 {
4771 asection *sec, *likely = NULL;
4772 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4773 if (sec->vma <= val
4774 && (sec->flags & SEC_LOAD) != 0
4775 && (sec->flags & SEC_ALLOC) != 0)
4776 likely = sec;
4777 if (likely != NULL)
4778 {
4779 *code_sec = likely;
4780 if (code_off != NULL)
4781 *code_off = val - likely->vma;
4782 }
4783 }
4784 return val;
4785 }
4786
4787 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4788 if (relocs == NULL)
4789 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4790
4791 /* Go find the opd reloc at the sym address. */
4792 lo = relocs;
4793 BFD_ASSERT (lo != NULL);
4794 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4795 val = (bfd_vma) -1;
4796 while (lo < hi)
4797 {
4798 look = lo + (hi - lo) / 2;
4799 if (look->r_offset < offset)
4800 lo = look + 1;
4801 else if (look->r_offset > offset)
4802 hi = look;
4803 else
4804 {
4805 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4806 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4807 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4808 {
4809 unsigned long symndx = ELF64_R_SYM (look->r_info);
4810 asection *sec;
4811
4812 if (symndx < symtab_hdr->sh_info)
4813 {
4814 Elf_Internal_Sym *sym;
4815
4816 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4817 if (sym == NULL)
4818 {
4819 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4820 symtab_hdr->sh_info,
4821 0, NULL, NULL, NULL);
4822 if (sym == NULL)
4823 break;
4824 symtab_hdr->contents = (bfd_byte *) sym;
4825 }
4826
4827 sym += symndx;
4828 val = sym->st_value;
4829 sec = NULL;
4830 if ((sym->st_shndx != SHN_UNDEF
4831 && sym->st_shndx < SHN_LORESERVE)
4832 || sym->st_shndx > SHN_HIRESERVE)
4833 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4834 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4835 }
4836 else
4837 {
4838 struct elf_link_hash_entry **sym_hashes;
4839 struct elf_link_hash_entry *rh;
4840
4841 sym_hashes = elf_sym_hashes (opd_bfd);
4842 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4843 while (rh->root.type == bfd_link_hash_indirect
4844 || rh->root.type == bfd_link_hash_warning)
4845 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4846 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4847 || rh->root.type == bfd_link_hash_defweak);
4848 val = rh->root.u.def.value;
4849 sec = rh->root.u.def.section;
4850 }
4851 val += look->r_addend;
4852 if (code_off != NULL)
4853 *code_off = val;
4854 if (code_sec != NULL)
4855 *code_sec = sec;
4856 if (sec != NULL && sec->output_section != NULL)
4857 val += sec->output_section->vma + sec->output_offset;
4858 }
4859 break;
4860 }
4861 }
4862
4863 return val;
4864}
4865
4866/* Return the section that should be marked against GC for a given
4867 relocation. */
4868
4869static asection *
4870ppc64_elf_gc_mark_hook (asection *sec,
4871 struct bfd_link_info *info,
4872 Elf_Internal_Rela *rel,
4873 struct elf_link_hash_entry *h,
4874 Elf_Internal_Sym *sym)
4875{
4876 asection *rsec;
4877
4878 /* First mark all our entry sym sections. */
4879 if (info->gc_sym_list != NULL)
4880 {
4881 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4882 struct bfd_sym_chain *sym = info->gc_sym_list;
4883
4884 info->gc_sym_list = NULL;
4885 do
4886 {
4887 struct ppc_link_hash_entry *eh;
4888
4889 eh = (struct ppc_link_hash_entry *)
4890 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4891 if (eh == NULL)
4892 continue;
4893 if (eh->elf.root.type != bfd_link_hash_defined
4894 && eh->elf.root.type != bfd_link_hash_defweak)
4895 continue;
4896
4897 if (eh->is_func_descriptor
4898 && (eh->oh->elf.root.type == bfd_link_hash_defined
4899 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4900 rsec = eh->oh->elf.root.u.def.section;
4901 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4902 && opd_entry_value (eh->elf.root.u.def.section,
4903 eh->elf.root.u.def.value,
4904 &rsec, NULL) != (bfd_vma) -1)
4905 ;
4906 else
4907 continue;
4908
4909 if (!rsec->gc_mark)
4910 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4911
4912 rsec = eh->elf.root.u.def.section;
4913 if (!rsec->gc_mark)
4914 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4915
4916 sym = sym->next;
4917 }
4918 while (sym != NULL);
4919 }
4920
4921 /* Syms return NULL if we're marking .opd, so we avoid marking all
4922 function sections, as all functions are referenced in .opd. */
4923 rsec = NULL;
4924 if (get_opd_info (sec) != NULL)
4925 return rsec;
4926
4927 if (h != NULL)
4928 {
4929 enum elf_ppc64_reloc_type r_type;
4930 struct ppc_link_hash_entry *eh;
4931
4932 r_type = ELF64_R_TYPE (rel->r_info);
4933 switch (r_type)
4934 {
4935 case R_PPC64_GNU_VTINHERIT:
4936 case R_PPC64_GNU_VTENTRY:
4937 break;
4938
4939 default:
4940 switch (h->root.type)
4941 {
4942 case bfd_link_hash_defined:
4943 case bfd_link_hash_defweak:
4944 eh = (struct ppc_link_hash_entry *) h;
4945 if (eh->oh != NULL
4946 && eh->oh->is_func_descriptor
4947 && (eh->oh->elf.root.type == bfd_link_hash_defined
4948 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4949 eh = eh->oh;
4950
4951 /* Function descriptor syms cause the associated
4952 function code sym section to be marked. */
4953 if (eh->is_func_descriptor
4954 && (eh->oh->elf.root.type == bfd_link_hash_defined
4955 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4956 {
4957 /* They also mark their opd section. */
4958 if (!eh->elf.root.u.def.section->gc_mark)
4959 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4960 ppc64_elf_gc_mark_hook);
4961
4962 rsec = eh->oh->elf.root.u.def.section;
4963 }
4964 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4965 && opd_entry_value (eh->elf.root.u.def.section,
4966 eh->elf.root.u.def.value,
4967 &rsec, NULL) != (bfd_vma) -1)
4968 {
4969 if (!eh->elf.root.u.def.section->gc_mark)
4970 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4971 ppc64_elf_gc_mark_hook);
4972 }
4973 else
4974 rsec = h->root.u.def.section;
4975 break;
4976
4977 case bfd_link_hash_common:
4978 rsec = h->root.u.c.p->section;
4979 break;
4980
4981 default:
4982 break;
4983 }
4984 }
4985 }
4986 else
4987 {
4988 asection **opd_sym_section;
4989
4990 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4991 opd_sym_section = get_opd_info (rsec);
4992 if (opd_sym_section != NULL)
4993 {
4994 if (!rsec->gc_mark)
4995 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4996
4997 rsec = opd_sym_section[sym->st_value / 8];
4998 }
4999 }
5000
5001 return rsec;
5002}
5003
5004/* Update the .got, .plt. and dynamic reloc reference counts for the
5005 section being removed. */
5006
5007static bfd_boolean
5008ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5009 asection *sec, const Elf_Internal_Rela *relocs)
5010{
5011 struct ppc_link_hash_table *htab;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 struct elf_link_hash_entry **sym_hashes;
5014 struct got_entry **local_got_ents;
5015 const Elf_Internal_Rela *rel, *relend;
5016
5017 if ((sec->flags & SEC_ALLOC) == 0)
5018 return TRUE;
5019
5020 elf_section_data (sec)->local_dynrel = NULL;
5021
5022 htab = ppc_hash_table (info);
5023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5024 sym_hashes = elf_sym_hashes (abfd);
5025 local_got_ents = elf_local_got_ents (abfd);
5026
5027 relend = relocs + sec->reloc_count;
5028 for (rel = relocs; rel < relend; rel++)
5029 {
5030 unsigned long r_symndx;
5031 enum elf_ppc64_reloc_type r_type;
5032 struct elf_link_hash_entry *h = NULL;
5033 char tls_type = 0;
5034
5035 r_symndx = ELF64_R_SYM (rel->r_info);
5036 r_type = ELF64_R_TYPE (rel->r_info);
5037 if (r_symndx >= symtab_hdr->sh_info)
5038 {
5039 struct ppc_link_hash_entry *eh;
5040 struct ppc_dyn_relocs **pp;
5041 struct ppc_dyn_relocs *p;
5042
5043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5044 while (h->root.type == bfd_link_hash_indirect
5045 || h->root.type == bfd_link_hash_warning)
5046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5047 eh = (struct ppc_link_hash_entry *) h;
5048
5049 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5050 if (p->sec == sec)
5051 {
5052 /* Everything must go for SEC. */
5053 *pp = p->next;
5054 break;
5055 }
5056 }
5057
5058 switch (r_type)
5059 {
5060 case R_PPC64_GOT_TLSLD16:
5061 case R_PPC64_GOT_TLSLD16_LO:
5062 case R_PPC64_GOT_TLSLD16_HI:
5063 case R_PPC64_GOT_TLSLD16_HA:
5064 ppc64_tlsld_got (abfd)->refcount -= 1;
5065 tls_type = TLS_TLS | TLS_LD;
5066 goto dogot;
5067
5068 case R_PPC64_GOT_TLSGD16:
5069 case R_PPC64_GOT_TLSGD16_LO:
5070 case R_PPC64_GOT_TLSGD16_HI:
5071 case R_PPC64_GOT_TLSGD16_HA:
5072 tls_type = TLS_TLS | TLS_GD;
5073 goto dogot;
5074
5075 case R_PPC64_GOT_TPREL16_DS:
5076 case R_PPC64_GOT_TPREL16_LO_DS:
5077 case R_PPC64_GOT_TPREL16_HI:
5078 case R_PPC64_GOT_TPREL16_HA:
5079 tls_type = TLS_TLS | TLS_TPREL;
5080 goto dogot;
5081
5082 case R_PPC64_GOT_DTPREL16_DS:
5083 case R_PPC64_GOT_DTPREL16_LO_DS:
5084 case R_PPC64_GOT_DTPREL16_HI:
5085 case R_PPC64_GOT_DTPREL16_HA:
5086 tls_type = TLS_TLS | TLS_DTPREL;
5087 goto dogot;
5088
5089 case R_PPC64_GOT16:
5090 case R_PPC64_GOT16_DS:
5091 case R_PPC64_GOT16_HA:
5092 case R_PPC64_GOT16_HI:
5093 case R_PPC64_GOT16_LO:
5094 case R_PPC64_GOT16_LO_DS:
5095 dogot:
5096 {
5097 struct got_entry *ent;
5098
5099 if (h != NULL)
5100 ent = h->got.glist;
5101 else
5102 ent = local_got_ents[r_symndx];
5103
5104 for (; ent != NULL; ent = ent->next)
5105 if (ent->addend == rel->r_addend
5106 && ent->owner == abfd
5107 && ent->tls_type == tls_type)
5108 break;
5109 if (ent == NULL)
5110 abort ();
5111 if (ent->got.refcount > 0)
5112 ent->got.refcount -= 1;
5113 }
5114 break;
5115
5116 case R_PPC64_PLT16_HA:
5117 case R_PPC64_PLT16_HI:
5118 case R_PPC64_PLT16_LO:
5119 case R_PPC64_PLT32:
5120 case R_PPC64_PLT64:
5121 case R_PPC64_REL14:
5122 case R_PPC64_REL14_BRNTAKEN:
5123 case R_PPC64_REL14_BRTAKEN:
5124 case R_PPC64_REL24:
5125 if (h != NULL)
5126 {
5127 struct plt_entry *ent;
5128
5129 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5130 if (ent->addend == rel->r_addend)
5131 break;
5132 if (ent == NULL)
5133 abort ();
5134 if (ent->plt.refcount > 0)
5135 ent->plt.refcount -= 1;
5136 }
5137 break;
5138
5139 default:
5140 break;
5141 }
5142 }
5143 return TRUE;
5144}
5145
5146/* The maximum size of .sfpr. */
5147#define SFPR_MAX (218*4)
5148
5149struct sfpr_def_parms
5150{
5151 const char name[12];
5152 unsigned char lo, hi;
5153 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5154 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5155};
5156
5157/* Auto-generate _save*, _rest* functions in .sfpr. */
5158
5159static unsigned int
5160sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5161{
5162 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5163 unsigned int i;
5164 size_t len = strlen (parm->name);
5165 bfd_boolean writing = FALSE;
5166 char sym[16];
5167
5168 memcpy (sym, parm->name, len);
5169 sym[len + 2] = 0;
5170
5171 for (i = parm->lo; i <= parm->hi; i++)
5172 {
5173 struct elf_link_hash_entry *h;
5174
5175 sym[len + 0] = i / 10 + '0';
5176 sym[len + 1] = i % 10 + '0';
5177 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5178 if (h != NULL
5179 && !h->def_regular)
5180 {
5181 h->root.type = bfd_link_hash_defined;
5182 h->root.u.def.section = htab->sfpr;
5183 h->root.u.def.value = htab->sfpr->size;
5184 h->type = STT_FUNC;
5185 h->def_regular = 1;
5186 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5187 writing = TRUE;
5188 if (htab->sfpr->contents == NULL)
5189 {
5190 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5191 if (htab->sfpr->contents == NULL)
5192 return FALSE;
5193 }
5194 }
5195 if (writing)
5196 {
5197 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5198 if (i != parm->hi)
5199 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5200 else
5201 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5202 htab->sfpr->size = p - htab->sfpr->contents;
5203 }
5204 }
5205
5206 return TRUE;
5207}
5208
5209static bfd_byte *
5210savegpr0 (bfd *abfd, bfd_byte *p, int r)
5211{
5212 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5213 return p + 4;
5214}
5215
5216static bfd_byte *
5217savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5218{
5219 p = savegpr0 (abfd, p, r);
5220 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5221 p = p + 4;
5222 bfd_put_32 (abfd, BLR, p);
5223 return p + 4;
5224}
5225
5226static bfd_byte *
5227restgpr0 (bfd *abfd, bfd_byte *p, int r)
5228{
5229 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5230 return p + 4;
5231}
5232
5233static bfd_byte *
5234restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5235{
5236 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5237 p = p + 4;
5238 p = restgpr0 (abfd, p, r);
5239 bfd_put_32 (abfd, MTLR_R0, p);
5240 p = p + 4;
5241 if (r == 29)
5242 {
5243 p = restgpr0 (abfd, p, 30);
5244 p = restgpr0 (abfd, p, 31);
5245 }
5246 bfd_put_32 (abfd, BLR, p);
5247 return p + 4;
5248}
5249
5250static bfd_byte *
5251savegpr1 (bfd *abfd, bfd_byte *p, int r)
5252{
5253 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5254 return p + 4;
5255}
5256
5257static bfd_byte *
5258savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5259{
5260 p = savegpr1 (abfd, p, r);
5261 bfd_put_32 (abfd, BLR, p);
5262 return p + 4;
5263}
5264
5265static bfd_byte *
5266restgpr1 (bfd *abfd, bfd_byte *p, int r)
5267{
5268 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5269 return p + 4;
5270}
5271
5272static bfd_byte *
5273restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5274{
5275 p = restgpr1 (abfd, p, r);
5276 bfd_put_32 (abfd, BLR, p);
5277 return p + 4;
5278}
5279
5280static bfd_byte *
5281savefpr (bfd *abfd, bfd_byte *p, int r)
5282{
5283 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5284 return p + 4;
5285}
5286
5287static bfd_byte *
5288savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5289{
5290 p = savefpr (abfd, p, r);
5291 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5292 p = p + 4;
5293 bfd_put_32 (abfd, BLR, p);
5294 return p + 4;
5295}
5296
5297static bfd_byte *
5298restfpr (bfd *abfd, bfd_byte *p, int r)
5299{
5300 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5301 return p + 4;
5302}
5303
5304static bfd_byte *
5305restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5306{
5307 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5308 p = p + 4;
5309 p = restfpr (abfd, p, r);
5310 bfd_put_32 (abfd, MTLR_R0, p);
5311 p = p + 4;
5312 if (r == 29)
5313 {
5314 p = restfpr (abfd, p, 30);
5315 p = restfpr (abfd, p, 31);
5316 }
5317 bfd_put_32 (abfd, BLR, p);
5318 return p + 4;
5319}
5320
5321static bfd_byte *
5322savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5323{
5324 p = savefpr (abfd, p, r);
5325 bfd_put_32 (abfd, BLR, p);
5326 return p + 4;
5327}
5328
5329static bfd_byte *
5330restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5331{
5332 p = restfpr (abfd, p, r);
5333 bfd_put_32 (abfd, BLR, p);
5334 return p + 4;
5335}
5336
5337static bfd_byte *
5338savevr (bfd *abfd, bfd_byte *p, int r)
5339{
5340 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5341 p = p + 4;
5342 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5343 return p + 4;
5344}
5345
5346static bfd_byte *
5347savevr_tail (bfd *abfd, bfd_byte *p, int r)
5348{
5349 p = savevr (abfd, p, r);
5350 bfd_put_32 (abfd, BLR, p);
5351 return p + 4;
5352}
5353
5354static bfd_byte *
5355restvr (bfd *abfd, bfd_byte *p, int r)
5356{
5357 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5358 p = p + 4;
5359 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5360 return p + 4;
5361}
5362
5363static bfd_byte *
5364restvr_tail (bfd *abfd, bfd_byte *p, int r)
5365{
5366 p = restvr (abfd, p, r);
5367 bfd_put_32 (abfd, BLR, p);
5368 return p + 4;
5369}
5370
5371/* Called via elf_link_hash_traverse to transfer dynamic linking
5372 information on function code symbol entries to their corresponding
5373 function descriptor symbol entries. */
5374
5375static bfd_boolean
5376func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5377{
5378 struct bfd_link_info *info;
5379 struct ppc_link_hash_table *htab;
5380 struct plt_entry *ent;
5381 struct ppc_link_hash_entry *fh;
5382 struct ppc_link_hash_entry *fdh;
5383 bfd_boolean force_local;
5384
5385 fh = (struct ppc_link_hash_entry *) h;
5386 if (fh->elf.root.type == bfd_link_hash_indirect)
5387 return TRUE;
5388
5389 if (fh->elf.root.type == bfd_link_hash_warning)
5390 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5391
5392 info = inf;
5393 htab = ppc_hash_table (info);
5394
5395 /* Resolve undefined references to dot-symbols as the value
5396 in the function descriptor, if we have one in a regular object.
5397 This is to satisfy cases like ".quad .foo". Calls to functions
5398 in dynamic objects are handled elsewhere. */
5399 if (fh->elf.root.type == bfd_link_hash_undefweak
5400 && fh->was_undefined
5401 && (fh->oh->elf.root.type == bfd_link_hash_defined
5402 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5403 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5404 && opd_entry_value (fh->oh->elf.root.u.def.section,
5405 fh->oh->elf.root.u.def.value,
5406 &fh->elf.root.u.def.section,
5407 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5408 {
5409 fh->elf.root.type = fh->oh->elf.root.type;
5410 fh->elf.forced_local = 1;
5411 }
5412
5413 /* If this is a function code symbol, transfer dynamic linking
5414 information to the function descriptor symbol. */
5415 if (!fh->is_func)
5416 return TRUE;
5417
5418 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5419 if (ent->plt.refcount > 0)
5420 break;
5421 if (ent == NULL
5422 || fh->elf.root.root.string[0] != '.'
5423 || fh->elf.root.root.string[1] == '\0')
5424 return TRUE;
5425
5426 /* Find the corresponding function descriptor symbol. Create it
5427 as undefined if necessary. */
5428
5429 fdh = get_fdh (fh, htab);
5430 if (fdh != NULL)
5431 while (fdh->elf.root.type == bfd_link_hash_indirect
5432 || fdh->elf.root.type == bfd_link_hash_warning)
5433 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5434
5435 if (fdh == NULL
5436 && info->shared
5437 && (fh->elf.root.type == bfd_link_hash_undefined
5438 || fh->elf.root.type == bfd_link_hash_undefweak))
5439 {
5440 fdh = make_fdh (info, fh);
5441 if (fdh == NULL)
5442 return FALSE;
5443 }
5444
5445 /* Fake function descriptors are made undefweak. If the function
5446 code symbol is strong undefined, make the fake sym the same. */
5447
5448 if (fdh != NULL
5449 && fdh->fake
5450 && fdh->elf.root.type == bfd_link_hash_undefweak
5451 && fh->elf.root.type == bfd_link_hash_undefined)
5452 {
5453 fdh->elf.root.type = bfd_link_hash_undefined;
5454 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5455 }
5456
5457 if (fdh != NULL
5458 && !fdh->elf.forced_local
5459 && (info->shared
5460 || fdh->elf.def_dynamic
5461 || fdh->elf.ref_dynamic
5462 || (fdh->elf.root.type == bfd_link_hash_undefweak
5463 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5464 {
5465 if (fdh->elf.dynindx == -1)
5466 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5467 return FALSE;
5468 fdh->elf.ref_regular |= fh->elf.ref_regular;
5469 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5470 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5471 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5472 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5473 {
5474 move_plt_plist (fh, fdh);
5475 fdh->elf.needs_plt = 1;
5476 }
5477 fdh->is_func_descriptor = 1;
5478 fdh->oh = fh;
5479 fh->oh = fdh;
5480 }
5481
5482 /* Now that the info is on the function descriptor, clear the
5483 function code sym info. Any function code syms for which we
5484 don't have a definition in a regular file, we force local.
5485 This prevents a shared library from exporting syms that have
5486 been imported from another library. Function code syms that
5487 are really in the library we must leave global to prevent the
5488 linker dragging in a definition from a static library. */
5489 force_local
5490 = (info->shared
5491 && (!fh->elf.def_regular
5492 || fdh == NULL
5493 || !fdh->elf.def_regular
5494 || fdh->elf.forced_local));
5495 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5496
5497 return TRUE;
5498}
5499
5500/* Called near the start of bfd_elf_size_dynamic_sections. We use
5501 this hook to a) provide some gcc support functions, and b) transfer
5502 dynamic linking information gathered so far on function code symbol
5503 entries, to their corresponding function descriptor symbol entries. */
5504
5505static bfd_boolean
5506ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5507 struct bfd_link_info *info)
5508{
5509 struct ppc_link_hash_table *htab;
5510 unsigned int i;
5511 const struct sfpr_def_parms funcs[] =
5512 {
5513 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5514 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5515 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5516 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5517 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5518 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5519 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5520 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5521 { "._savef", 14, 31, savefpr, savefpr1_tail },
5522 { "._restf", 14, 31, restfpr, restfpr1_tail },
5523 { "_savevr_", 20, 31, savevr, savevr_tail },
5524 { "_restvr_", 20, 31, restvr, restvr_tail }
5525 };
5526
5527 htab = ppc_hash_table (info);
5528 if (htab->sfpr == NULL)
5529 /* We don't have any relocs. */
5530 return TRUE;
5531
5532 /* Provide any missing _save* and _rest* functions. */
5533 htab->sfpr->size = 0;
5534 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5535 if (!sfpr_define (info, &funcs[i]))
5536 return FALSE;
5537
5538 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5539
5540 if (htab->sfpr->size == 0)
5541 _bfd_strip_section_from_output (info, htab->sfpr);
5542
5543 return TRUE;
5544}
5545
5546/* Adjust a symbol defined by a dynamic object and referenced by a
5547 regular object. The current definition is in some section of the
5548 dynamic object, but we're not including those sections. We have to
5549 change the definition to something the rest of the link can
5550 understand. */
5551
5552static bfd_boolean
5553ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5554 struct elf_link_hash_entry *h)
5555{
5556 struct ppc_link_hash_table *htab;
5557 asection *s;
5558 unsigned int power_of_two;
5559
5560 htab = ppc_hash_table (info);
5561
5562 /* Deal with function syms. */
5563 if (h->type == STT_FUNC
5564 || h->needs_plt)
5565 {
5566 /* Clear procedure linkage table information for any symbol that
5567 won't need a .plt entry. */
5568 struct plt_entry *ent;
5569 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5570 if (ent->plt.refcount > 0)
5571 break;
5572 if (ent == NULL
5573 || SYMBOL_CALLS_LOCAL (info, h)
5574 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5575 && h->root.type == bfd_link_hash_undefweak))
5576 {
5577 h->plt.plist = NULL;
5578 h->needs_plt = 0;
5579 }
5580 }
5581 else
5582 h->plt.plist = NULL;
5583
5584 /* If this is a weak symbol, and there is a real definition, the
5585 processor independent code will have arranged for us to see the
5586 real definition first, and we can just use the same value. */
5587 if (h->u.weakdef != NULL)
5588 {
5589 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5590 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5591 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5592 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5593 if (ELIMINATE_COPY_RELOCS)
5594 h->non_got_ref = h->u.weakdef->non_got_ref;
5595 return TRUE;
5596 }
5597
5598 /* If we are creating a shared library, we must presume that the
5599 only references to the symbol are via the global offset table.
5600 For such cases we need not do anything here; the relocations will
5601 be handled correctly by relocate_section. */
5602 if (info->shared)
5603 return TRUE;
5604
5605 /* If there are no references to this symbol that do not use the
5606 GOT, we don't need to generate a copy reloc. */
5607 if (!h->non_got_ref)
5608 return TRUE;
5609
5610 if (ELIMINATE_COPY_RELOCS)
5611 {
5612 struct ppc_link_hash_entry * eh;
5613 struct ppc_dyn_relocs *p;
5614
5615 eh = (struct ppc_link_hash_entry *) h;
5616 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5617 {
5618 s = p->sec->output_section;
5619 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5620 break;
5621 }
5622
5623 /* If we didn't find any dynamic relocs in read-only sections, then
5624 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5625 if (p == NULL)
5626 {
5627 h->non_got_ref = 0;
5628 return TRUE;
5629 }
5630 }
5631
5632 if (h->plt.plist != NULL)
5633 {
5634 /* We should never get here, but unfortunately there are versions
5635 of gcc out there that improperly (for this ABI) put initialized
5636 function pointers, vtable refs and suchlike in read-only
5637 sections. Allow them to proceed, but warn that this might
5638 break at runtime. */
5639 (*_bfd_error_handler)
5640 (_("copy reloc against `%s' requires lazy plt linking; "
5641 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5642 h->root.root.string);
5643 }
5644
5645 /* This is a reference to a symbol defined by a dynamic object which
5646 is not a function. */
5647
5648 /* We must allocate the symbol in our .dynbss section, which will
5649 become part of the .bss section of the executable. There will be
5650 an entry for this symbol in the .dynsym section. The dynamic
5651 object will contain position independent code, so all references
5652 from the dynamic object to this symbol will go through the global
5653 offset table. The dynamic linker will use the .dynsym entry to
5654 determine the address it must put in the global offset table, so
5655 both the dynamic object and the regular object will refer to the
5656 same memory location for the variable. */
5657
5658 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5659 to copy the initial value out of the dynamic object and into the
5660 runtime process image. We need to remember the offset into the
5661 .rela.bss section we are going to use. */
5662 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5663 {
5664 htab->relbss->size += sizeof (Elf64_External_Rela);
5665 h->needs_copy = 1;
5666 }
5667
5668 /* We need to figure out the alignment required for this symbol. I
5669 have no idea how ELF linkers handle this. */
5670 power_of_two = bfd_log2 (h->size);
5671 if (power_of_two > 4)
5672 power_of_two = 4;
5673
5674 /* Apply the required alignment. */
5675 s = htab->dynbss;
5676 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5677 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5678 {
5679 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5680 return FALSE;
5681 }
5682
5683 /* Define the symbol as being at this point in the section. */
5684 h->root.u.def.section = s;
5685 h->root.u.def.value = s->size;
5686
5687 /* Increment the section size to make room for the symbol. */
5688 s->size += h->size;
5689
5690 return TRUE;
5691}
5692
5693/* If given a function descriptor symbol, hide both the function code
5694 sym and the descriptor. */
5695static void
5696ppc64_elf_hide_symbol (struct bfd_link_info *info,
5697 struct elf_link_hash_entry *h,
5698 bfd_boolean force_local)
5699{
5700 struct ppc_link_hash_entry *eh;
5701 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5702
5703 eh = (struct ppc_link_hash_entry *) h;
5704 if (eh->is_func_descriptor)
5705 {
5706 struct ppc_link_hash_entry *fh = eh->oh;
5707
5708 if (fh == NULL)
5709 {
5710 const char *p, *q;
5711 struct ppc_link_hash_table *htab;
5712 char save;
5713
5714 /* We aren't supposed to use alloca in BFD because on
5715 systems which do not have alloca the version in libiberty
5716 calls xmalloc, which might cause the program to crash
5717 when it runs out of memory. This function doesn't have a
5718 return status, so there's no way to gracefully return an
5719 error. So cheat. We know that string[-1] can be safely
5720 accessed; It's either a string in an ELF string table,
5721 or allocated in an objalloc structure. */
5722
5723 p = eh->elf.root.root.string - 1;
5724 save = *p;
5725 *(char *) p = '.';
5726 htab = ppc_hash_table (info);
5727 fh = (struct ppc_link_hash_entry *)
5728 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5729 *(char *) p = save;
5730
5731 /* Unfortunately, if it so happens that the string we were
5732 looking for was allocated immediately before this string,
5733 then we overwrote the string terminator. That's the only
5734 reason the lookup should fail. */
5735 if (fh == NULL)
5736 {
5737 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5738 while (q >= eh->elf.root.root.string && *q == *p)
5739 --q, --p;
5740 if (q < eh->elf.root.root.string && *p == '.')
5741 fh = (struct ppc_link_hash_entry *)
5742 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5743 }
5744 if (fh != NULL)
5745 {
5746 eh->oh = fh;
5747 fh->oh = eh;
5748 }
5749 }
5750 if (fh != NULL)
5751 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5752 }
5753}
5754
5755static bfd_boolean
5756get_sym_h (struct elf_link_hash_entry **hp,
5757 Elf_Internal_Sym **symp,
5758 asection **symsecp,
5759 char **tls_maskp,
5760 Elf_Internal_Sym **locsymsp,
5761 unsigned long r_symndx,
5762 bfd *ibfd)
5763{
5764 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5765
5766 if (r_symndx >= symtab_hdr->sh_info)
5767 {
5768 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5769 struct elf_link_hash_entry *h;
5770
5771 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5772 while (h->root.type == bfd_link_hash_indirect
5773 || h->root.type == bfd_link_hash_warning)
5774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5775
5776 if (hp != NULL)
5777 *hp = h;
5778
5779 if (symp != NULL)
5780 *symp = NULL;
5781
5782 if (symsecp != NULL)
5783 {
5784 asection *symsec = NULL;
5785 if (h->root.type == bfd_link_hash_defined
5786 || h->root.type == bfd_link_hash_defweak)
5787 symsec = h->root.u.def.section;
5788 *symsecp = symsec;
5789 }
5790
5791 if (tls_maskp != NULL)
5792 {
5793 struct ppc_link_hash_entry *eh;
5794
5795 eh = (struct ppc_link_hash_entry *) h;
5796 *tls_maskp = &eh->tls_mask;
5797 }
5798 }
5799 else
5800 {
5801 Elf_Internal_Sym *sym;
5802 Elf_Internal_Sym *locsyms = *locsymsp;
5803
5804 if (locsyms == NULL)
5805 {
5806 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5807 if (locsyms == NULL)
5808 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5809 symtab_hdr->sh_info,
5810 0, NULL, NULL, NULL);
5811 if (locsyms == NULL)
5812 return FALSE;
5813 *locsymsp = locsyms;
5814 }
5815 sym = locsyms + r_symndx;
5816
5817 if (hp != NULL)
5818 *hp = NULL;
5819
5820 if (symp != NULL)
5821 *symp = sym;
5822
5823 if (symsecp != NULL)
5824 {
5825 asection *symsec = NULL;
5826 if ((sym->st_shndx != SHN_UNDEF
5827 && sym->st_shndx < SHN_LORESERVE)
5828 || sym->st_shndx > SHN_HIRESERVE)
5829 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5830 *symsecp = symsec;
5831 }
5832
5833 if (tls_maskp != NULL)
5834 {
5835 struct got_entry **lgot_ents;
5836 char *tls_mask;
5837
5838 tls_mask = NULL;
5839 lgot_ents = elf_local_got_ents (ibfd);
5840 if (lgot_ents != NULL)
5841 {
5842 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5843 tls_mask = &lgot_masks[r_symndx];
5844 }
5845 *tls_maskp = tls_mask;
5846 }
5847 }
5848 return TRUE;
5849}
5850
5851/* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5852 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5853 type suitable for optimization, and 1 otherwise. */
5854
5855static int
5856get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5857 Elf_Internal_Sym **locsymsp,
5858 const Elf_Internal_Rela *rel, bfd *ibfd)
5859{
5860 unsigned long r_symndx;
5861 int next_r;
5862 struct elf_link_hash_entry *h;
5863 Elf_Internal_Sym *sym;
5864 asection *sec;
5865 bfd_vma off;
5866
5867 r_symndx = ELF64_R_SYM (rel->r_info);
5868 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5869 return 0;
5870
5871 if ((*tls_maskp != NULL && **tls_maskp != 0)
5872 || sec == NULL
5873 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5874 return 1;
5875
5876 /* Look inside a TOC section too. */
5877 if (h != NULL)
5878 {
5879 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5880 off = h->root.u.def.value;
5881 }
5882 else
5883 off = sym->st_value;
5884 off += rel->r_addend;
5885 BFD_ASSERT (off % 8 == 0);
5886 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5887 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5888 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5889 return 0;
5890 if (toc_symndx != NULL)
5891 *toc_symndx = r_symndx;
5892 if ((h == NULL
5893 || ((h->root.type == bfd_link_hash_defined
5894 || h->root.type == bfd_link_hash_defweak)
5895 && !h->def_dynamic))
5896 && (next_r == -1 || next_r == -2))
5897 return 1 - next_r;
5898 return 1;
5899}
5900
5901/* Adjust all global syms defined in opd sections. In gcc generated
5902 code for the old ABI, these will already have been done. */
5903
5904static bfd_boolean
5905adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5906{
5907 struct ppc_link_hash_entry *eh;
5908 asection *sym_sec;
5909 long *opd_adjust;
5910
5911 if (h->root.type == bfd_link_hash_indirect)
5912 return TRUE;
5913
5914 if (h->root.type == bfd_link_hash_warning)
5915 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5916
5917 if (h->root.type != bfd_link_hash_defined
5918 && h->root.type != bfd_link_hash_defweak)
5919 return TRUE;
5920
5921 eh = (struct ppc_link_hash_entry *) h;
5922 if (eh->adjust_done)
5923 return TRUE;
5924
5925 sym_sec = eh->elf.root.u.def.section;
5926 opd_adjust = get_opd_info (sym_sec);
5927 if (opd_adjust != NULL)
5928 {
5929 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5930 if (adjust == -1)
5931 {
5932 /* This entry has been deleted. */
5933 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5934 if (dsec == NULL)
5935 {
5936 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5937 if (elf_discarded_section (dsec))
5938 {
5939 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5940 break;
5941 }
5942 }
5943 eh->elf.root.u.def.value = 0;
5944 eh->elf.root.u.def.section = dsec;
5945 }
5946 else
5947 eh->elf.root.u.def.value += adjust;
5948 eh->adjust_done = 1;
5949 }
5950 return TRUE;
5951}
5952
5953/* Remove unused Official Procedure Descriptor entries. Currently we
5954 only remove those associated with functions in discarded link-once
5955 sections, or weakly defined functions that have been overridden. It
5956 would be possible to remove many more entries for statically linked
5957 applications. */
5958
5959bfd_boolean
5960ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5961 bfd_boolean non_overlapping)
5962{
5963 bfd *ibfd;
5964 bfd_boolean some_edited = FALSE;
5965 asection *need_pad = NULL;
5966
5967 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5968 {
5969 asection *sec;
5970 Elf_Internal_Rela *relstart, *rel, *relend;
5971 Elf_Internal_Shdr *symtab_hdr;
5972 Elf_Internal_Sym *local_syms;
5973 struct elf_link_hash_entry **sym_hashes;
5974 bfd_vma offset;
5975 bfd_size_type amt;
5976 long *opd_adjust;
5977 bfd_boolean need_edit, add_aux_fields;
5978 bfd_size_type cnt_16b = 0;
5979
5980 sec = bfd_get_section_by_name (ibfd, ".opd");
5981 if (sec == NULL)
5982 continue;
5983
5984 amt = sec->size * sizeof (long) / 8;
5985 opd_adjust = get_opd_info (sec);
5986 if (opd_adjust == NULL)
5987 {
5988 /* check_relocs hasn't been called. Must be a ld -r link
5989 or --just-symbols object. */
5990 opd_adjust = bfd_zalloc (obfd, amt);
5991 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5992 }
5993 memset (opd_adjust, 0, amt);
5994
5995 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
5996 continue;
5997
5998 if (sec->output_section == bfd_abs_section_ptr)
5999 continue;
6000
6001 /* Look through the section relocs. */
6002 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6003 continue;
6004
6005 local_syms = NULL;
6006 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6007 sym_hashes = elf_sym_hashes (ibfd);
6008
6009 /* Read the relocations. */
6010 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6011 info->keep_memory);
6012 if (relstart == NULL)
6013 return FALSE;
6014
6015 /* First run through the relocs to check they are sane, and to
6016 determine whether we need to edit this opd section. */
6017 need_edit = FALSE;
6018 need_pad = sec;
6019 offset = 0;
6020 relend = relstart + sec->reloc_count;
6021 for (rel = relstart; rel < relend; )
6022 {
6023 enum elf_ppc64_reloc_type r_type;
6024 unsigned long r_symndx;
6025 asection *sym_sec;
6026 struct elf_link_hash_entry *h;
6027 Elf_Internal_Sym *sym;
6028
6029 /* .opd contains a regular array of 16 or 24 byte entries. We're
6030 only interested in the reloc pointing to a function entry
6031 point. */
6032 if (rel->r_offset != offset
6033 || rel + 1 >= relend
6034 || (rel + 1)->r_offset != offset + 8)
6035 {
6036 /* If someone messes with .opd alignment then after a
6037 "ld -r" we might have padding in the middle of .opd.
6038 Also, there's nothing to prevent someone putting
6039 something silly in .opd with the assembler. No .opd
6040 optimization for them! */
6041 broken_opd:
6042 (*_bfd_error_handler)
6043 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6044 need_edit = FALSE;
6045 break;
6046 }
6047
6048 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6049 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6050 {
6051 (*_bfd_error_handler)
6052 (_("%B: unexpected reloc type %u in .opd section"),
6053 ibfd, r_type);
6054 need_edit = FALSE;
6055 break;
6056 }
6057
6058 r_symndx = ELF64_R_SYM (rel->r_info);
6059 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6060 r_symndx, ibfd))
6061 goto error_ret;
6062
6063 if (sym_sec == NULL || sym_sec->owner == NULL)
6064 {
6065 const char *sym_name;
6066 if (h != NULL)
6067 sym_name = h->root.root.string;
6068 else
6069 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym);
6070
6071 (*_bfd_error_handler)
6072 (_("%B: undefined sym `%s' in .opd section"),
6073 ibfd, sym_name);
6074 need_edit = FALSE;
6075 break;
6076 }
6077
6078 /* opd entries are always for functions defined in the
6079 current input bfd. If the symbol isn't defined in the
6080 input bfd, then we won't be using the function in this
6081 bfd; It must be defined in a linkonce section in another
6082 bfd, or is weak. It's also possible that we are
6083 discarding the function due to a linker script /DISCARD/,
6084 which we test for via the output_section. */
6085 if (sym_sec->owner != ibfd
6086 || sym_sec->output_section == bfd_abs_section_ptr)
6087 need_edit = TRUE;
6088
6089 rel += 2;
6090 if (rel == relend
6091 || (rel + 1 == relend && rel->r_offset == offset + 16))
6092 {
6093 if (sec->size == offset + 24)
6094 {
6095 need_pad = NULL;
6096 break;
6097 }
6098 if (rel == relend && sec->size == offset + 16)
6099 {
6100 cnt_16b++;
6101 break;
6102 }
6103 goto broken_opd;
6104 }
6105
6106 if (rel->r_offset == offset + 24)
6107 offset += 24;
6108 else if (rel->r_offset != offset + 16)
6109 goto broken_opd;
6110 else if (rel + 1 < relend
6111 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6112 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6113 {
6114 offset += 16;
6115 cnt_16b++;
6116 }
6117 else if (rel + 2 < relend
6118 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6119 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6120 {
6121 offset += 24;
6122 rel += 1;
6123 }
6124 else
6125 goto broken_opd;
6126 }
6127
6128 add_aux_fields = non_overlapping && cnt_16b > 0;
6129
6130 if (need_edit || add_aux_fields)
6131 {
6132 Elf_Internal_Rela *write_rel;
6133 bfd_byte *rptr, *wptr;
6134 bfd_byte *new_contents = NULL;
6135 bfd_boolean skip;
6136 long opd_ent_size;
6137
6138 /* This seems a waste of time as input .opd sections are all
6139 zeros as generated by gcc, but I suppose there's no reason
6140 this will always be so. We might start putting something in
6141 the third word of .opd entries. */
6142 if ((sec->flags & SEC_IN_MEMORY) == 0)
6143 {
6144 bfd_byte *loc;
6145 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6146 {
6147 if (loc != NULL)
6148 free (loc);
6149 error_ret:
6150 if (local_syms != NULL
6151 && symtab_hdr->contents != (unsigned char *) local_syms)
6152 free (local_syms);
6153 if (elf_section_data (sec)->relocs != relstart)
6154 free (relstart);
6155 return FALSE;
6156 }
6157 sec->contents = loc;
6158 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6159 }
6160
6161 elf_section_data (sec)->relocs = relstart;
6162
6163 wptr = sec->contents;
6164 rptr = sec->contents;
6165 new_contents = sec->contents;
6166
6167 if (add_aux_fields)
6168 {
6169 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6170 if (new_contents == NULL)
6171 return FALSE;
6172 need_pad = FALSE;
6173 wptr = new_contents;
6174 }
6175
6176 write_rel = relstart;
6177 skip = FALSE;
6178 offset = 0;
6179 opd_ent_size = 0;
6180 for (rel = relstart; rel < relend; rel++)
6181 {
6182 unsigned long r_symndx;
6183 asection *sym_sec;
6184 struct elf_link_hash_entry *h;
6185 Elf_Internal_Sym *sym;
6186
6187 r_symndx = ELF64_R_SYM (rel->r_info);
6188 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6189 r_symndx, ibfd))
6190 goto error_ret;
6191
6192 if (rel->r_offset == offset)
6193 {
6194 struct ppc_link_hash_entry *fdh = NULL;
6195
6196 /* See if the .opd entry is full 24 byte or
6197 16 byte (with fd_aux entry overlapped with next
6198 fd_func). */
6199 opd_ent_size = 24;
6200 if ((rel + 2 == relend && sec->size == offset + 16)
6201 || (rel + 3 < relend
6202 && rel[2].r_offset == offset + 16
6203 && rel[3].r_offset == offset + 24
6204 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6205 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6206 opd_ent_size = 16;
6207
6208 if (h != NULL
6209 && h->root.root.string[0] == '.')
6210 {
6211 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6212 ppc_hash_table (info));
6213 if (fdh != NULL
6214 && fdh->elf.root.type != bfd_link_hash_defined
6215 && fdh->elf.root.type != bfd_link_hash_defweak)
6216 fdh = NULL;
6217 }
6218
6219 skip = (sym_sec->owner != ibfd
6220 || sym_sec->output_section == bfd_abs_section_ptr);
6221 if (skip)
6222 {
6223 if (fdh != NULL && sym_sec->owner == ibfd)
6224 {
6225 /* Arrange for the function descriptor sym
6226 to be dropped. */
6227 fdh->elf.root.u.def.value = 0;
6228 fdh->elf.root.u.def.section = sym_sec;
6229 }
6230 opd_adjust[rel->r_offset / 8] = -1;
6231 }
6232 else
6233 {
6234 /* We'll be keeping this opd entry. */
6235
6236 if (fdh != NULL)
6237 {
6238 /* Redefine the function descriptor symbol to
6239 this location in the opd section. It is
6240 necessary to update the value here rather
6241 than using an array of adjustments as we do
6242 for local symbols, because various places
6243 in the generic ELF code use the value
6244 stored in u.def.value. */
6245 fdh->elf.root.u.def.value = wptr - new_contents;
6246 fdh->adjust_done = 1;
6247 }
6248
6249 /* Local syms are a bit tricky. We could
6250 tweak them as they can be cached, but
6251 we'd need to look through the local syms
6252 for the function descriptor sym which we
6253 don't have at the moment. So keep an
6254 array of adjustments. */
6255 opd_adjust[rel->r_offset / 8]
6256 = (wptr - new_contents) - (rptr - sec->contents);
6257
6258 if (wptr != rptr)
6259 memcpy (wptr, rptr, opd_ent_size);
6260 wptr += opd_ent_size;
6261 if (add_aux_fields && opd_ent_size == 16)
6262 {
6263 memset (wptr, '\0', 8);
6264 wptr += 8;
6265 }
6266 }
6267 rptr += opd_ent_size;
6268 offset += opd_ent_size;
6269 }
6270
6271 if (skip)
6272 {
6273 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6274 if (info->shared)
6275 {
6276 /* We won't be needing dynamic relocs here. */
6277 struct ppc_dyn_relocs **pp;
6278 struct ppc_dyn_relocs *p;
6279
6280 if (h != NULL)
6281 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6282 else if (sym_sec != NULL)
6283 pp = ((struct ppc_dyn_relocs **)
6284 &elf_section_data (sym_sec)->local_dynrel);
6285 else
6286 pp = ((struct ppc_dyn_relocs **)
6287 &elf_section_data (sec)->local_dynrel);
6288 while ((p = *pp) != NULL)
6289 {
6290 if (p->sec == sec)
6291 {
6292 p->count -= 1;
6293 if (p->count == 0)
6294 *pp = p->next;
6295 break;
6296 }
6297 pp = &p->next;
6298 }
6299 }
6300 }
6301 else
6302 {
6303 /* We need to adjust any reloc offsets to point to the
6304 new opd entries. While we're at it, we may as well
6305 remove redundant relocs. */
6306 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6307 if (write_rel != rel)
6308 memcpy (write_rel, rel, sizeof (*rel));
6309 ++write_rel;
6310 }
6311 }
6312
6313 sec->size = wptr - new_contents;
6314 sec->reloc_count = write_rel - relstart;
6315 if (add_aux_fields)
6316 {
6317 free (sec->contents);
6318 sec->contents = new_contents;
6319 }
6320
6321 /* Fudge the size too, as this is used later in
6322 elf_bfd_final_link if we are emitting relocs. */
6323 elf_section_data (sec)->rel_hdr.sh_size
6324 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6325 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6326 some_edited = TRUE;
6327 }
6328 else if (elf_section_data (sec)->relocs != relstart)
6329 free (relstart);
6330
6331 if (local_syms != NULL
6332 && symtab_hdr->contents != (unsigned char *) local_syms)
6333 {
6334 if (!info->keep_memory)
6335 free (local_syms);
6336 else
6337 symtab_hdr->contents = (unsigned char *) local_syms;
6338 }
6339 }
6340
6341 if (some_edited)
6342 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6343
6344 /* If we are doing a final link and the last .opd entry is just 16 byte
6345 long, add a 8 byte padding after it. */
6346 if (need_pad != NULL && !info->relocatable)
6347 {
6348 bfd_byte *p;
6349
6350 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6351 {
6352 BFD_ASSERT (need_pad->size > 0);
6353
6354 p = bfd_malloc (need_pad->size + 8);
6355 if (p == NULL)
6356 return FALSE;
6357
6358 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6359 p, 0, need_pad->size))
6360 return FALSE;
6361
6362 need_pad->contents = p;
6363 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6364 }
6365 else
6366 {
6367 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6368 if (p == NULL)
6369 return FALSE;
6370
6371 need_pad->contents = p;
6372 }
6373
6374 memset (need_pad->contents + need_pad->size, 0, 8);
6375 need_pad->size += 8;
6376 }
6377
6378 return TRUE;
6379}
6380
6381/* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6382
6383asection *
6384ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6385{
6386 struct ppc_link_hash_table *htab;
6387
6388 htab = ppc_hash_table (info);
6389 if (htab->tls_get_addr != NULL)
6390 {
6391 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6392
6393 while (h->elf.root.type == bfd_link_hash_indirect
6394 || h->elf.root.type == bfd_link_hash_warning)
6395 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6396
6397 htab->tls_get_addr = h;
6398
6399 if (htab->tls_get_addr_fd == NULL
6400 && h->oh != NULL
6401 && h->oh->is_func_descriptor
6402 && (h->oh->elf.root.type == bfd_link_hash_defined
6403 || h->oh->elf.root.type == bfd_link_hash_defweak))
6404 htab->tls_get_addr_fd = h->oh;
6405 }
6406
6407 if (htab->tls_get_addr_fd != NULL)
6408 {
6409 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6410
6411 while (h->elf.root.type == bfd_link_hash_indirect
6412 || h->elf.root.type == bfd_link_hash_warning)
6413 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6414
6415 htab->tls_get_addr_fd = h;
6416 }
6417
6418 return _bfd_elf_tls_setup (obfd, info);
6419}
6420
6421/* Run through all the TLS relocs looking for optimization
6422 opportunities. The linker has been hacked (see ppc64elf.em) to do
6423 a preliminary section layout so that we know the TLS segment
6424 offsets. We can't optimize earlier because some optimizations need
6425 to know the tp offset, and we need to optimize before allocating
6426 dynamic relocations. */
6427
6428bfd_boolean
6429ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6430{
6431 bfd *ibfd;
6432 asection *sec;
6433 struct ppc_link_hash_table *htab;
6434
6435 if (info->relocatable || info->shared)
6436 return TRUE;
6437
6438 htab = ppc_hash_table (info);
6439 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6440 {
6441 Elf_Internal_Sym *locsyms = NULL;
6442
6443 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6444 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6445 {
6446 Elf_Internal_Rela *relstart, *rel, *relend;
6447 int expecting_tls_get_addr;
6448
6449 /* Read the relocations. */
6450 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6451 info->keep_memory);
6452 if (relstart == NULL)
6453 return FALSE;
6454
6455 expecting_tls_get_addr = 0;
6456 relend = relstart + sec->reloc_count;
6457 for (rel = relstart; rel < relend; rel++)
6458 {
6459 enum elf_ppc64_reloc_type r_type;
6460 unsigned long r_symndx;
6461 struct elf_link_hash_entry *h;
6462 Elf_Internal_Sym *sym;
6463 asection *sym_sec;
6464 char *tls_mask;
6465 char tls_set, tls_clear, tls_type = 0;
6466 bfd_vma value;
6467 bfd_boolean ok_tprel, is_local;
6468
6469 r_symndx = ELF64_R_SYM (rel->r_info);
6470 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6471 r_symndx, ibfd))
6472 {
6473 err_free_rel:
6474 if (elf_section_data (sec)->relocs != relstart)
6475 free (relstart);
6476 if (locsyms != NULL
6477 && (elf_tdata (ibfd)->symtab_hdr.contents
6478 != (unsigned char *) locsyms))
6479 free (locsyms);
6480 return FALSE;
6481 }
6482
6483 if (h != NULL)
6484 {
6485 if (h->root.type != bfd_link_hash_defined
6486 && h->root.type != bfd_link_hash_defweak)
6487 continue;
6488 value = h->root.u.def.value;
6489 }
6490 else
6491 /* Symbols referenced by TLS relocs must be of type
6492 STT_TLS. So no need for .opd local sym adjust. */
6493 value = sym->st_value;
6494
6495 ok_tprel = FALSE;
6496 is_local = FALSE;
6497 if (h == NULL
6498 || !h->def_dynamic)
6499 {
6500 is_local = TRUE;
6501 value += sym_sec->output_offset;
6502 value += sym_sec->output_section->vma;
6503 value -= htab->elf.tls_sec->vma;
6504 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6505 < (bfd_vma) 1 << 32);
6506 }
6507
6508 r_type = ELF64_R_TYPE (rel->r_info);
6509 switch (r_type)
6510 {
6511 case R_PPC64_GOT_TLSLD16:
6512 case R_PPC64_GOT_TLSLD16_LO:
6513 case R_PPC64_GOT_TLSLD16_HI:
6514 case R_PPC64_GOT_TLSLD16_HA:
6515 /* These relocs should never be against a symbol
6516 defined in a shared lib. Leave them alone if
6517 that turns out to be the case. */
6518 ppc64_tlsld_got (ibfd)->refcount -= 1;
6519 if (!is_local)
6520 continue;
6521
6522 /* LD -> LE */
6523 tls_set = 0;
6524 tls_clear = TLS_LD;
6525 tls_type = TLS_TLS | TLS_LD;
6526 expecting_tls_get_addr = 1;
6527 break;
6528
6529 case R_PPC64_GOT_TLSGD16:
6530 case R_PPC64_GOT_TLSGD16_LO:
6531 case R_PPC64_GOT_TLSGD16_HI:
6532 case R_PPC64_GOT_TLSGD16_HA:
6533 if (ok_tprel)
6534 /* GD -> LE */
6535 tls_set = 0;
6536 else
6537 /* GD -> IE */
6538 tls_set = TLS_TLS | TLS_TPRELGD;
6539 tls_clear = TLS_GD;
6540 tls_type = TLS_TLS | TLS_GD;
6541 expecting_tls_get_addr = 1;
6542 break;
6543
6544 case R_PPC64_GOT_TPREL16_DS:
6545 case R_PPC64_GOT_TPREL16_LO_DS:
6546 case R_PPC64_GOT_TPREL16_HI:
6547 case R_PPC64_GOT_TPREL16_HA:
6548 expecting_tls_get_addr = 0;
6549 if (ok_tprel)
6550 {
6551 /* IE -> LE */
6552 tls_set = 0;
6553 tls_clear = TLS_TPREL;
6554 tls_type = TLS_TLS | TLS_TPREL;
6555 break;
6556 }
6557 else
6558 continue;
6559
6560 case R_PPC64_REL14:
6561 case R_PPC64_REL14_BRTAKEN:
6562 case R_PPC64_REL14_BRNTAKEN:
6563 case R_PPC64_REL24:
6564 if (h != NULL
6565 && (h == &htab->tls_get_addr->elf
6566 || h == &htab->tls_get_addr_fd->elf))
6567 {
6568 if (!expecting_tls_get_addr
6569 && rel != relstart
6570 && ((ELF64_R_TYPE (rel[-1].r_info)
6571 == R_PPC64_TOC16)
6572 || (ELF64_R_TYPE (rel[-1].r_info)
6573 == R_PPC64_TOC16_LO)))
6574 {
6575 /* Check for toc tls entries. */
6576 char *toc_tls;
6577 int retval;
6578
6579 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6580 rel - 1, ibfd);
6581 if (retval == 0)
6582 goto err_free_rel;
6583 if (toc_tls != NULL)
6584 expecting_tls_get_addr = retval > 1;
6585 }
6586
6587 if (expecting_tls_get_addr)
6588 {
6589 struct plt_entry *ent;
6590 for (ent = h->plt.plist; ent; ent = ent->next)
6591 if (ent->addend == 0)
6592 {
6593 if (ent->plt.refcount > 0)
6594 ent->plt.refcount -= 1;
6595 break;
6596 }
6597 }
6598 }
6599 expecting_tls_get_addr = 0;
6600 continue;
6601
6602 case R_PPC64_TPREL64:
6603 expecting_tls_get_addr = 0;
6604 if (ok_tprel)
6605 {
6606 /* IE -> LE */
6607 tls_set = TLS_EXPLICIT;
6608 tls_clear = TLS_TPREL;
6609 break;
6610 }
6611 else
6612 continue;
6613
6614 case R_PPC64_DTPMOD64:
6615 expecting_tls_get_addr = 0;
6616 if (rel + 1 < relend
6617 && (rel[1].r_info
6618 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6619 && rel[1].r_offset == rel->r_offset + 8)
6620 {
6621 if (ok_tprel)
6622 /* GD -> LE */
6623 tls_set = TLS_EXPLICIT | TLS_GD;
6624 else
6625 /* GD -> IE */
6626 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6627 tls_clear = TLS_GD;
6628 }
6629 else
6630 {
6631 if (!is_local)
6632 continue;
6633
6634 /* LD -> LE */
6635 tls_set = TLS_EXPLICIT;
6636 tls_clear = TLS_LD;
6637 }
6638 break;
6639
6640 default:
6641 expecting_tls_get_addr = 0;
6642 continue;
6643 }
6644
6645 if ((tls_set & TLS_EXPLICIT) == 0)
6646 {
6647 struct got_entry *ent;
6648
6649 /* Adjust got entry for this reloc. */
6650 if (h != NULL)
6651 ent = h->got.glist;
6652 else
6653 ent = elf_local_got_ents (ibfd)[r_symndx];
6654
6655 for (; ent != NULL; ent = ent->next)
6656 if (ent->addend == rel->r_addend
6657 && ent->owner == ibfd
6658 && ent->tls_type == tls_type)
6659 break;
6660 if (ent == NULL)
6661 abort ();
6662
6663 if (tls_set == 0)
6664 {
6665 /* We managed to get rid of a got entry. */
6666 if (ent->got.refcount > 0)
6667 ent->got.refcount -= 1;
6668 }
6669 }
6670 else if (h != NULL)
6671 {
6672 struct ppc_link_hash_entry * eh;
6673 struct ppc_dyn_relocs **pp;
6674 struct ppc_dyn_relocs *p;
6675
6676 /* Adjust dynamic relocs. */
6677 eh = (struct ppc_link_hash_entry *) h;
6678 for (pp = &eh->dyn_relocs;
6679 (p = *pp) != NULL;
6680 pp = &p->next)
6681 if (p->sec == sec)
6682 {
6683 /* If we got rid of a DTPMOD/DTPREL reloc
6684 pair then we'll lose one or two dyn
6685 relocs. */
6686 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6687 p->count -= 1;
6688 p->count -= 1;
6689 if (p->count == 0)
6690 *pp = p->next;
6691 break;
6692 }
6693 }
6694
6695 *tls_mask |= tls_set;
6696 *tls_mask &= ~tls_clear;
6697 }
6698
6699 if (elf_section_data (sec)->relocs != relstart)
6700 free (relstart);
6701 }
6702
6703 if (locsyms != NULL
6704 && (elf_tdata (ibfd)->symtab_hdr.contents
6705 != (unsigned char *) locsyms))
6706 {
6707 if (!info->keep_memory)
6708 free (locsyms);
6709 else
6710 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6711 }
6712 }
6713 return TRUE;
6714}
6715
6716/* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6717 the values of any global symbols in a toc section that has been
6718 edited. Globals in toc sections should be a rarity, so this function
6719 sets a flag if any are found in toc sections other than the one just
6720 edited, so that futher hash table traversals can be avoided. */
6721
6722struct adjust_toc_info
6723{
6724 asection *toc;
6725 unsigned long *skip;
6726 bfd_boolean global_toc_syms;
6727};
6728
6729static bfd_boolean
6730adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6731{
6732 struct ppc_link_hash_entry *eh;
6733 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6734
6735 if (h->root.type == bfd_link_hash_indirect)
6736 return TRUE;
6737
6738 if (h->root.type == bfd_link_hash_warning)
6739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6740
6741 if (h->root.type != bfd_link_hash_defined
6742 && h->root.type != bfd_link_hash_defweak)
6743 return TRUE;
6744
6745 eh = (struct ppc_link_hash_entry *) h;
6746 if (eh->adjust_done)
6747 return TRUE;
6748
6749 if (eh->elf.root.u.def.section == toc_inf->toc)
6750 {
6751 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6752 if (skip != (unsigned long) -1)
6753 eh->elf.root.u.def.value -= skip;
6754 else
6755 {
6756 (*_bfd_error_handler)
6757 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6758 eh->elf.root.u.def.section = &bfd_abs_section;
6759 eh->elf.root.u.def.value = 0;
6760 }
6761 eh->adjust_done = 1;
6762 }
6763 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6764 toc_inf->global_toc_syms = TRUE;
6765
6766 return TRUE;
6767}
6768
6769/* Examine all relocs referencing .toc sections in order to remove
6770 unused .toc entries. */
6771
6772bfd_boolean
6773ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6774{
6775 bfd *ibfd;
6776 struct adjust_toc_info toc_inf;
6777
6778 toc_inf.global_toc_syms = TRUE;
6779 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6780 {
6781 asection *toc, *sec;
6782 Elf_Internal_Shdr *symtab_hdr;
6783 Elf_Internal_Sym *local_syms;
6784 struct elf_link_hash_entry **sym_hashes;
6785 Elf_Internal_Rela *relstart, *rel;
6786 unsigned long *skip, *drop;
6787 unsigned char *used;
6788 unsigned char *keep, last, some_unused;
6789
6790 toc = bfd_get_section_by_name (ibfd, ".toc");
6791 if (toc == NULL
6792 || toc->size == 0
6793 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6794 || elf_discarded_section (toc))
6795 continue;
6796
6797 local_syms = NULL;
6798 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6799 sym_hashes = elf_sym_hashes (ibfd);
6800
6801 /* Look at sections dropped from the final link. */
6802 skip = NULL;
6803 relstart = NULL;
6804 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6805 {
6806 if (sec->reloc_count == 0
6807 || !elf_discarded_section (sec)
6808 || get_opd_info (sec)
6809 || (sec->flags & SEC_ALLOC) == 0
6810 || (sec->flags & SEC_DEBUGGING) != 0)
6811 continue;
6812
6813 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6814 if (relstart == NULL)
6815 goto error_ret;
6816
6817 /* Run through the relocs to see which toc entries might be
6818 unused. */
6819 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6820 {
6821 enum elf_ppc64_reloc_type r_type;
6822 unsigned long r_symndx;
6823 asection *sym_sec;
6824 struct elf_link_hash_entry *h;
6825 Elf_Internal_Sym *sym;
6826 bfd_vma val;
6827
6828 r_type = ELF64_R_TYPE (rel->r_info);
6829 switch (r_type)
6830 {
6831 default:
6832 continue;
6833
6834 case R_PPC64_TOC16:
6835 case R_PPC64_TOC16_LO:
6836 case R_PPC64_TOC16_HI:
6837 case R_PPC64_TOC16_HA:
6838 case R_PPC64_TOC16_DS:
6839 case R_PPC64_TOC16_LO_DS:
6840 break;
6841 }
6842
6843 r_symndx = ELF64_R_SYM (rel->r_info);
6844 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6845 r_symndx, ibfd))
6846 goto error_ret;
6847
6848 if (sym_sec != toc)
6849 continue;
6850
6851 if (h != NULL)
6852 val = h->root.u.def.value;
6853 else
6854 val = sym->st_value;
6855 val += rel->r_addend;
6856
6857 if (val >= toc->size)
6858 continue;
6859
6860 /* Anything in the toc ought to be aligned to 8 bytes.
6861 If not, don't mark as unused. */
6862 if (val & 7)
6863 continue;
6864
6865 if (skip == NULL)
6866 {
6867 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
6868 if (skip == NULL)
6869 goto error_ret;
6870 }
6871
6872 skip[val >> 3] = 1;
6873 }
6874
6875 if (elf_section_data (sec)->relocs != relstart)
6876 free (relstart);
6877 }
6878
6879 if (skip == NULL)
6880 continue;
6881
6882 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
6883 if (used == NULL)
6884 {
6885 error_ret:
6886 if (local_syms != NULL
6887 && symtab_hdr->contents != (unsigned char *) local_syms)
6888 free (local_syms);
6889 if (sec != NULL
6890 && relstart != NULL
6891 && elf_section_data (sec)->relocs != relstart)
6892 free (relstart);
6893 if (skip != NULL)
6894 free (skip);
6895 return FALSE;
6896 }
6897
6898 /* Now check all kept sections that might reference the toc. */
6899 for (sec = ibfd->sections;
6900 sec != NULL;
6901 /* Check the toc itself last. */
6902 sec = (sec == toc ? NULL
6903 : sec->next == toc && sec->next->next ? sec->next->next
6904 : sec->next == NULL ? toc
6905 : sec->next))
6906 {
6907 int repeat;
6908
6909 if (sec->reloc_count == 0
6910 || elf_discarded_section (sec)
6911 || get_opd_info (sec)
6912 || (sec->flags & SEC_ALLOC) == 0
6913 || (sec->flags & SEC_DEBUGGING) != 0)
6914 continue;
6915
6916 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
6917 if (relstart == NULL)
6918 goto error_ret;
6919
6920 /* Mark toc entries referenced as used. */
6921 repeat = 0;
6922 do
6923 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6924 {
6925 enum elf_ppc64_reloc_type r_type;
6926 unsigned long r_symndx;
6927 asection *sym_sec;
6928 struct elf_link_hash_entry *h;
6929 Elf_Internal_Sym *sym;
6930 bfd_vma val;
6931
6932 r_type = ELF64_R_TYPE (rel->r_info);
6933 switch (r_type)
6934 {
6935 case R_PPC64_TOC16:
6936 case R_PPC64_TOC16_LO:
6937 case R_PPC64_TOC16_HI:
6938 case R_PPC64_TOC16_HA:
6939 case R_PPC64_TOC16_DS:
6940 case R_PPC64_TOC16_LO_DS:
6941 /* In case we're taking addresses of toc entries. */
6942 case R_PPC64_ADDR64:
6943 break;
6944
6945 default:
6946 continue;
6947 }
6948
6949 r_symndx = ELF64_R_SYM (rel->r_info);
6950 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6951 r_symndx, ibfd))
6952 {
6953 free (used);
6954 goto error_ret;
6955 }
6956
6957 if (sym_sec != toc)
6958 continue;
6959
6960 if (h != NULL)
6961 val = h->root.u.def.value;
6962 else
6963 val = sym->st_value;
6964 val += rel->r_addend;
6965
6966 if (val >= toc->size)
6967 continue;
6968
6969 /* For the toc section, we only mark as used if
6970 this entry itself isn't unused. */
6971 if (sec == toc
6972 && !used[val >> 3]
6973 && (used[rel->r_offset >> 3]
6974 || !skip[rel->r_offset >> 3]))
6975 /* Do all the relocs again, to catch reference
6976 chains. */
6977 repeat = 1;
6978
6979 used[val >> 3] = 1;
6980 }
6981 while (repeat);
6982 }
6983
6984 /* Merge the used and skip arrays. Assume that TOC
6985 doublewords not appearing as either used or unused belong
6986 to to an entry more than one doubleword in size. */
6987 for (drop = skip, keep = used, last = 0, some_unused = 0;
6988 drop < skip + (toc->size + 7) / 8;
6989 ++drop, ++keep)
6990 {
6991 if (*keep)
6992 {
6993 *drop = 0;
6994 last = 0;
6995 }
6996 else if (*drop)
6997 {
6998 some_unused = 1;
6999 last = 1;
7000 }
7001 else
7002 *drop = last;
7003 }
7004
7005 free (used);
7006
7007 if (some_unused)
7008 {
7009 bfd_byte *contents, *src;
7010 unsigned long off;
7011
7012 /* Shuffle the toc contents, and at the same time convert the
7013 skip array from booleans into offsets. */
7014 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7015 goto error_ret;
7016
7017 elf_section_data (toc)->this_hdr.contents = contents;
7018
7019 for (src = contents, off = 0, drop = skip;
7020 src < contents + toc->size;
7021 src += 8, ++drop)
7022 {
7023 if (*drop)
7024 {
7025 *drop = (unsigned long) -1;
7026 off += 8;
7027 }
7028 else if (off != 0)
7029 {
7030 *drop = off;
7031 memcpy (src - off, src, 8);
7032 }
7033 }
7034 toc->rawsize = toc->size;
7035 toc->size = src - contents - off;
7036
7037 if (toc->reloc_count != 0)
7038 {
7039 Elf_Internal_Rela *wrel;
7040 bfd_size_type sz;
7041
7042 /* Read toc relocs. */
7043 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7044 TRUE);
7045 if (relstart == NULL)
7046 goto error_ret;
7047
7048 /* Remove unused toc relocs, and adjust those we keep. */
7049 wrel = relstart;
7050 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7051 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7052 {
7053 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7054 wrel->r_info = rel->r_info;
7055 wrel->r_addend = rel->r_addend;
7056 ++wrel;
7057 }
7058 toc->reloc_count = wrel - relstart;
7059 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7060 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7061 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7062 }
7063
7064 /* Adjust addends for relocs against the toc section sym. */
7065 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7066 {
7067 if (sec->reloc_count == 0
7068 || elf_discarded_section (sec))
7069 continue;
7070
7071 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7072 TRUE);
7073 if (relstart == NULL)
7074 goto error_ret;
7075
7076 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7077 {
7078 enum elf_ppc64_reloc_type r_type;
7079 unsigned long r_symndx;
7080 asection *sym_sec;
7081 struct elf_link_hash_entry *h;
7082 Elf_Internal_Sym *sym;
7083
7084 r_type = ELF64_R_TYPE (rel->r_info);
7085 switch (r_type)
7086 {
7087 default:
7088 continue;
7089
7090 case R_PPC64_TOC16:
7091 case R_PPC64_TOC16_LO:
7092 case R_PPC64_TOC16_HI:
7093 case R_PPC64_TOC16_HA:
7094 case R_PPC64_TOC16_DS:
7095 case R_PPC64_TOC16_LO_DS:
7096 case R_PPC64_ADDR64:
7097 break;
7098 }
7099
7100 r_symndx = ELF64_R_SYM (rel->r_info);
7101 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7102 r_symndx, ibfd))
7103 goto error_ret;
7104
7105 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7106 continue;
7107
7108 rel->r_addend -= skip[rel->r_addend >> 3];
7109 }
7110 }
7111
7112 /* We shouldn't have local or global symbols defined in the TOC,
7113 but handle them anyway. */
7114 if (local_syms != NULL)
7115 {
7116 Elf_Internal_Sym *sym;
7117
7118 for (sym = local_syms;
7119 sym < local_syms + symtab_hdr->sh_info;
7120 ++sym)
7121 if (sym->st_shndx != SHN_UNDEF
7122 && (sym->st_shndx < SHN_LORESERVE
7123 || sym->st_shndx > SHN_HIRESERVE)
7124 && sym->st_value != 0
7125 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7126 {
7127 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7128 sym->st_value -= skip[sym->st_value >> 3];
7129 else
7130 {
7131 (*_bfd_error_handler)
7132 (_("%s defined in removed toc entry"),
7133 bfd_elf_sym_name (ibfd, symtab_hdr, sym));
7134 sym->st_value = 0;
7135 sym->st_shndx = SHN_ABS;
7136 }
7137 symtab_hdr->contents = (unsigned char *) local_syms;
7138 }
7139 }
7140
7141 /* Finally, adjust any global syms defined in the toc. */
7142 if (toc_inf.global_toc_syms)
7143 {
7144 toc_inf.toc = toc;
7145 toc_inf.skip = skip;
7146 toc_inf.global_toc_syms = FALSE;
7147 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7148 &toc_inf);
7149 }
7150 }
7151
7152 if (local_syms != NULL
7153 && symtab_hdr->contents != (unsigned char *) local_syms)
7154 {
7155 if (!info->keep_memory)
7156 free (local_syms);
7157 else
7158 symtab_hdr->contents = (unsigned char *) local_syms;
7159 }
7160 free (skip);
7161 }
7162
7163 return TRUE;
7164}
7165
7166/* Allocate space in .plt, .got and associated reloc sections for
7167 dynamic relocs. */
7168
7169static bfd_boolean
7170allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7171{
7172 struct bfd_link_info *info;
7173 struct ppc_link_hash_table *htab;
7174 asection *s;
7175 struct ppc_link_hash_entry *eh;
7176 struct ppc_dyn_relocs *p;
7177 struct got_entry *gent;
7178
7179 if (h->root.type == bfd_link_hash_indirect)
7180 return TRUE;
7181
7182 if (h->root.type == bfd_link_hash_warning)
7183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7184
7185 info = (struct bfd_link_info *) inf;
7186 htab = ppc_hash_table (info);
7187
7188 if (htab->elf.dynamic_sections_created
7189 && h->dynindx != -1
7190 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7191 {
7192 struct plt_entry *pent;
7193 bfd_boolean doneone = FALSE;
7194 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7195 if (pent->plt.refcount > 0)
7196 {
7197 /* If this is the first .plt entry, make room for the special
7198 first entry. */
7199 s = htab->plt;
7200 if (s->size == 0)
7201 s->size += PLT_INITIAL_ENTRY_SIZE;
7202
7203 pent->plt.offset = s->size;
7204
7205 /* Make room for this entry. */
7206 s->size += PLT_ENTRY_SIZE;
7207
7208 /* Make room for the .glink code. */
7209 s = htab->glink;
7210 if (s->size == 0)
7211 s->size += GLINK_CALL_STUB_SIZE;
7212 /* We need bigger stubs past index 32767. */
7213 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7214 s->size += 4;
7215 s->size += 2*4;
7216
7217 /* We also need to make an entry in the .rela.plt section. */
7218 s = htab->relplt;
7219 s->size += sizeof (Elf64_External_Rela);
7220 doneone = TRUE;
7221 }
7222 else
7223 pent->plt.offset = (bfd_vma) -1;
7224 if (!doneone)
7225 {
7226 h->plt.plist = NULL;
7227 h->needs_plt = 0;
7228 }
7229 }
7230 else
7231 {
7232 h->plt.plist = NULL;
7233 h->needs_plt = 0;
7234 }
7235
7236 eh = (struct ppc_link_hash_entry *) h;
7237 /* Run through the TLS GD got entries first if we're changing them
7238 to TPREL. */
7239 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7240 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7241 if (gent->got.refcount > 0
7242 && (gent->tls_type & TLS_GD) != 0)
7243 {
7244 /* This was a GD entry that has been converted to TPREL. If
7245 there happens to be a TPREL entry we can use that one. */
7246 struct got_entry *ent;
7247 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7248 if (ent->got.refcount > 0
7249 && (ent->tls_type & TLS_TPREL) != 0
7250 && ent->addend == gent->addend
7251 && ent->owner == gent->owner)
7252 {
7253 gent->got.refcount = 0;
7254 break;
7255 }
7256
7257 /* If not, then we'll be using our own TPREL entry. */
7258 if (gent->got.refcount != 0)
7259 gent->tls_type = TLS_TLS | TLS_TPREL;
7260 }
7261
7262 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7263 if (gent->got.refcount > 0)
7264 {
7265 bfd_boolean dyn;
7266
7267 /* Make sure this symbol is output as a dynamic symbol.
7268 Undefined weak syms won't yet be marked as dynamic,
7269 nor will all TLS symbols. */
7270 if (h->dynindx == -1
7271 && !h->forced_local)
7272 {
7273 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7274 return FALSE;
7275 }
7276
7277 if ((gent->tls_type & TLS_LD) != 0
7278 && !h->def_dynamic)
7279 {
7280 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7281 continue;
7282 }
7283
7284 s = ppc64_elf_tdata (gent->owner)->got;
7285 gent->got.offset = s->size;
7286 s->size
7287 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7288 dyn = htab->elf.dynamic_sections_created;
7289 if ((info->shared
7290 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7291 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7292 || h->root.type != bfd_link_hash_undefweak))
7293 ppc64_elf_tdata (gent->owner)->relgot->size
7294 += (gent->tls_type & eh->tls_mask & TLS_GD
7295 ? 2 * sizeof (Elf64_External_Rela)
7296 : sizeof (Elf64_External_Rela));
7297 }
7298 else
7299 gent->got.offset = (bfd_vma) -1;
7300
7301 if (eh->dyn_relocs == NULL)
7302 return TRUE;
7303
7304 /* In the shared -Bsymbolic case, discard space allocated for
7305 dynamic pc-relative relocs against symbols which turn out to be
7306 defined in regular objects. For the normal shared case, discard
7307 space for relocs that have become local due to symbol visibility
7308 changes. */
7309
7310 if (info->shared)
7311 {
7312 /* Relocs that use pc_count are those that appear on a call insn,
7313 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7314 generated via assembly. We want calls to protected symbols to
7315 resolve directly to the function rather than going via the plt.
7316 If people want function pointer comparisons to work as expected
7317 then they should avoid writing weird assembly. */
7318 if (SYMBOL_CALLS_LOCAL (info, h))
7319 {
7320 struct ppc_dyn_relocs **pp;
7321
7322 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7323 {
7324 p->count -= p->pc_count;
7325 p->pc_count = 0;
7326 if (p->count == 0)
7327 *pp = p->next;
7328 else
7329 pp = &p->next;
7330 }
7331 }
7332
7333 /* Also discard relocs on undefined weak syms with non-default
7334 visibility. */
7335 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7336 && h->root.type == bfd_link_hash_undefweak)
7337 eh->dyn_relocs = NULL;
7338 }
7339 else if (ELIMINATE_COPY_RELOCS)
7340 {
7341 /* For the non-shared case, discard space for relocs against
7342 symbols which turn out to need copy relocs or are not
7343 dynamic. */
7344
7345 if (!h->non_got_ref
7346 && h->def_dynamic
7347 && !h->def_regular)
7348 {
7349 /* Make sure this symbol is output as a dynamic symbol.
7350 Undefined weak syms won't yet be marked as dynamic. */
7351 if (h->dynindx == -1
7352 && !h->forced_local)
7353 {
7354 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7355 return FALSE;
7356 }
7357
7358 /* If that succeeded, we know we'll be keeping all the
7359 relocs. */
7360 if (h->dynindx != -1)
7361 goto keep;
7362 }
7363
7364 eh->dyn_relocs = NULL;
7365
7366 keep: ;
7367 }
7368
7369 /* Finally, allocate space. */
7370 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7371 {
7372 asection *sreloc = elf_section_data (p->sec)->sreloc;
7373 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7374 }
7375
7376 return TRUE;
7377}
7378
7379/* Find any dynamic relocs that apply to read-only sections. */
7380
7381static bfd_boolean
7382readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7383{
7384 struct ppc_link_hash_entry *eh;
7385 struct ppc_dyn_relocs *p;
7386
7387 if (h->root.type == bfd_link_hash_warning)
7388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7389
7390 eh = (struct ppc_link_hash_entry *) h;
7391 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7392 {
7393 asection *s = p->sec->output_section;
7394
7395 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7396 {
7397 struct bfd_link_info *info = inf;
7398
7399 info->flags |= DF_TEXTREL;
7400
7401 /* Not an error, just cut short the traversal. */
7402 return FALSE;
7403 }
7404 }
7405 return TRUE;
7406}
7407
7408/* Set the sizes of the dynamic sections. */
7409
7410static bfd_boolean
7411ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7412 struct bfd_link_info *info)
7413{
7414 struct ppc_link_hash_table *htab;
7415 bfd *dynobj;
7416 asection *s;
7417 bfd_boolean relocs;
7418 bfd *ibfd;
7419
7420 htab = ppc_hash_table (info);
7421 dynobj = htab->elf.dynobj;
7422 if (dynobj == NULL)
7423 abort ();
7424
7425 if (htab->elf.dynamic_sections_created)
7426 {
7427 /* Set the contents of the .interp section to the interpreter. */
7428 if (info->executable)
7429 {
7430 s = bfd_get_section_by_name (dynobj, ".interp");
7431 if (s == NULL)
7432 abort ();
7433 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7434 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7435 }
7436 }
7437
7438 /* Set up .got offsets for local syms, and space for local dynamic
7439 relocs. */
7440 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7441 {
7442 struct got_entry **lgot_ents;
7443 struct got_entry **end_lgot_ents;
7444 char *lgot_masks;
7445 bfd_size_type locsymcount;
7446 Elf_Internal_Shdr *symtab_hdr;
7447 asection *srel;
7448
7449 if (!is_ppc64_elf_target (ibfd->xvec))
7450 continue;
7451
7452 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7453 {
7454 s = ppc64_elf_tdata (ibfd)->got;
7455 ppc64_tlsld_got (ibfd)->offset = s->size;
7456 s->size += 16;
7457 if (info->shared)
7458 {
7459 srel = ppc64_elf_tdata (ibfd)->relgot;
7460 srel->size += sizeof (Elf64_External_Rela);
7461 }
7462 }
7463 else
7464 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7465
7466 for (s = ibfd->sections; s != NULL; s = s->next)
7467 {
7468 struct ppc_dyn_relocs *p;
7469
7470 for (p = *((struct ppc_dyn_relocs **)
7471 &elf_section_data (s)->local_dynrel);
7472 p != NULL;
7473 p = p->next)
7474 {
7475 if (!bfd_is_abs_section (p->sec)
7476 && bfd_is_abs_section (p->sec->output_section))
7477 {
7478 /* Input section has been discarded, either because
7479 it is a copy of a linkonce section or due to
7480 linker script /DISCARD/, so we'll be discarding
7481 the relocs too. */
7482 }
7483 else if (p->count != 0)
7484 {
7485 srel = elf_section_data (p->sec)->sreloc;
7486 srel->size += p->count * sizeof (Elf64_External_Rela);
7487 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7488 info->flags |= DF_TEXTREL;
7489 }
7490 }
7491 }
7492
7493 lgot_ents = elf_local_got_ents (ibfd);
7494 if (!lgot_ents)
7495 continue;
7496
7497 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7498 locsymcount = symtab_hdr->sh_info;
7499 end_lgot_ents = lgot_ents + locsymcount;
7500 lgot_masks = (char *) end_lgot_ents;
7501 s = ppc64_elf_tdata (ibfd)->got;
7502 srel = ppc64_elf_tdata (ibfd)->relgot;
7503 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7504 {
7505 struct got_entry *ent;
7506
7507 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7508 if (ent->got.refcount > 0)
7509 {
7510 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7511 {
7512 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7513 {
7514 ppc64_tlsld_got (ibfd)->offset = s->size;
7515 s->size += 16;
7516 if (info->shared)
7517 srel->size += sizeof (Elf64_External_Rela);
7518 }
7519 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7520 }
7521 else
7522 {
7523 ent->got.offset = s->size;
7524 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7525 {
7526 s->size += 16;
7527 if (info->shared)
7528 srel->size += 2 * sizeof (Elf64_External_Rela);
7529 }
7530 else
7531 {
7532 s->size += 8;
7533 if (info->shared)
7534 srel->size += sizeof (Elf64_External_Rela);
7535 }
7536 }
7537 }
7538 else
7539 ent->got.offset = (bfd_vma) -1;
7540 }
7541 }
7542
7543 /* Allocate global sym .plt and .got entries, and space for global
7544 sym dynamic relocs. */
7545 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7546
7547 /* We now have determined the sizes of the various dynamic sections.
7548 Allocate memory for them. */
7549 relocs = FALSE;
7550 for (s = dynobj->sections; s != NULL; s = s->next)
7551 {
7552 if ((s->flags & SEC_LINKER_CREATED) == 0)
7553 continue;
7554
7555 if (s == htab->brlt || s == htab->relbrlt)
7556 /* These haven't been allocated yet; don't strip. */
7557 continue;
7558 else if (s == htab->got
7559 || s == htab->plt
7560 || s == htab->glink)
7561 {
7562 /* Strip this section if we don't need it; see the
7563 comment below. */
7564 }
7565 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7566 {
7567 if (s->size == 0)
7568 {
7569 /* If we don't need this section, strip it from the
7570 output file. This is mostly to handle .rela.bss and
7571 .rela.plt. We must create both sections in
7572 create_dynamic_sections, because they must be created
7573 before the linker maps input sections to output
7574 sections. The linker does that before
7575 adjust_dynamic_symbol is called, and it is that
7576 function which decides whether anything needs to go
7577 into these sections. */
7578 }
7579 else
7580 {
7581 if (s != htab->relplt)
7582 relocs = TRUE;
7583
7584 /* We use the reloc_count field as a counter if we need
7585 to copy relocs into the output file. */
7586 s->reloc_count = 0;
7587 }
7588 }
7589 else
7590 {
7591 /* It's not one of our sections, so don't allocate space. */
7592 continue;
7593 }
7594
7595 if (s->size == 0)
7596 {
7597 _bfd_strip_section_from_output (info, s);
7598 continue;
7599 }
7600
7601 /* .plt is in the bss section. We don't initialise it. */
7602 if (s == htab->plt)
7603 continue;
7604
7605 /* Allocate memory for the section contents. We use bfd_zalloc
7606 here in case unused entries are not reclaimed before the
7607 section's contents are written out. This should not happen,
7608 but this way if it does we get a R_PPC64_NONE reloc in .rela
7609 sections instead of garbage.
7610 We also rely on the section contents being zero when writing
7611 the GOT. */
7612 s->contents = bfd_zalloc (dynobj, s->size);
7613 if (s->contents == NULL)
7614 return FALSE;
7615 }
7616
7617 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7618 {
7619 if (!is_ppc64_elf_target (ibfd->xvec))
7620 continue;
7621
7622 s = ppc64_elf_tdata (ibfd)->got;
7623 if (s != NULL && s != htab->got)
7624 {
7625 if (s->size == 0)
7626 _bfd_strip_section_from_output (info, s);
7627 else
7628 {
7629 s->contents = bfd_zalloc (ibfd, s->size);
7630 if (s->contents == NULL)
7631 return FALSE;
7632 }
7633 }
7634 s = ppc64_elf_tdata (ibfd)->relgot;
7635 if (s != NULL)
7636 {
7637 if (s->size == 0)
7638 _bfd_strip_section_from_output (info, s);
7639 else
7640 {
7641 s->contents = bfd_zalloc (ibfd, s->size);
7642 if (s->contents == NULL)
7643 return FALSE;
7644 relocs = TRUE;
7645 s->reloc_count = 0;
7646 }
7647 }
7648 }
7649
7650 if (htab->elf.dynamic_sections_created)
7651 {
7652 /* Add some entries to the .dynamic section. We fill in the
7653 values later, in ppc64_elf_finish_dynamic_sections, but we
7654 must add the entries now so that we get the correct size for
7655 the .dynamic section. The DT_DEBUG entry is filled in by the
7656 dynamic linker and used by the debugger. */
7657#define add_dynamic_entry(TAG, VAL) \
7658 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7659
7660 if (info->executable)
7661 {
7662 if (!add_dynamic_entry (DT_DEBUG, 0))
7663 return FALSE;
7664 }
7665
7666 if (htab->plt != NULL && htab->plt->size != 0)
7667 {
7668 if (!add_dynamic_entry (DT_PLTGOT, 0)
7669 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7670 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7671 || !add_dynamic_entry (DT_JMPREL, 0)
7672 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7673 return FALSE;
7674 }
7675
7676 if (NO_OPD_RELOCS)
7677 {
7678 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7679 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7680 return FALSE;
7681 }
7682
7683 if (relocs)
7684 {
7685 if (!add_dynamic_entry (DT_RELA, 0)
7686 || !add_dynamic_entry (DT_RELASZ, 0)
7687 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7688 return FALSE;
7689
7690 /* If any dynamic relocs apply to a read-only section,
7691 then we need a DT_TEXTREL entry. */
7692 if ((info->flags & DF_TEXTREL) == 0)
7693 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7694
7695 if ((info->flags & DF_TEXTREL) != 0)
7696 {
7697 if (!add_dynamic_entry (DT_TEXTREL, 0))
7698 return FALSE;
7699 }
7700 }
7701 }
7702#undef add_dynamic_entry
7703
7704 return TRUE;
7705}
7706
7707/* Determine the type of stub needed, if any, for a call. */
7708
7709static inline enum ppc_stub_type
7710ppc_type_of_stub (asection *input_sec,
7711 const Elf_Internal_Rela *rel,
7712 struct ppc_link_hash_entry **hash,
7713 bfd_vma destination)
7714{
7715 struct ppc_link_hash_entry *h = *hash;
7716 bfd_vma location;
7717 bfd_vma branch_offset;
7718 bfd_vma max_branch_offset;
7719 enum elf_ppc64_reloc_type r_type;
7720
7721 if (h != NULL)
7722 {
7723 if (h->oh != NULL
7724 && h->oh->is_func_descriptor)
7725 h = h->oh;
7726
7727 if (h->elf.dynindx != -1)
7728 {
7729 struct plt_entry *ent;
7730
7731 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7732 if (ent->addend == rel->r_addend
7733 && ent->plt.offset != (bfd_vma) -1)
7734 {
7735 *hash = h;
7736 return ppc_stub_plt_call;
7737 }
7738 }
7739
7740 if (!(h->elf.root.type == bfd_link_hash_defined
7741 || h->elf.root.type == bfd_link_hash_defweak)
7742 || h->elf.root.u.def.section->output_section == NULL)
7743 return ppc_stub_none;
7744 }
7745
7746 /* Determine where the call point is. */
7747 location = (input_sec->output_offset
7748 + input_sec->output_section->vma
7749 + rel->r_offset);
7750
7751 branch_offset = destination - location;
7752 r_type = ELF64_R_TYPE (rel->r_info);
7753
7754 /* Determine if a long branch stub is needed. */
7755 max_branch_offset = 1 << 25;
7756 if (r_type != R_PPC64_REL24)
7757 max_branch_offset = 1 << 15;
7758
7759 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7760 /* We need a stub. Figure out whether a long_branch or plt_branch
7761 is needed later. */
7762 return ppc_stub_long_branch;
7763
7764 return ppc_stub_none;
7765}
7766
7767/* Build a .plt call stub. */
7768
7769static inline bfd_byte *
7770build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7771{
7772#define PPC_LO(v) ((v) & 0xffff)
7773#define PPC_HI(v) (((v) >> 16) & 0xffff)
7774#define PPC_HA(v) PPC_HI ((v) + 0x8000)
7775
7776 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7777 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7778 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7779 if (PPC_HA (offset + 8) != PPC_HA (offset))
7780 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7781 offset += 8;
7782 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7783 if (PPC_HA (offset + 8) != PPC_HA (offset))
7784 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7785 offset += 8;
7786 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7787 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7788 bfd_put_32 (obfd, BCTR, p), p += 4;
7789 return p;
7790}
7791
7792static bfd_boolean
7793ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7794{
7795 struct ppc_stub_hash_entry *stub_entry;
7796 struct ppc_branch_hash_entry *br_entry;
7797 struct bfd_link_info *info;
7798 struct ppc_link_hash_table *htab;
7799 bfd_byte *loc;
7800 bfd_byte *p;
7801 unsigned int indx;
7802 struct plt_entry *ent;
7803 bfd_vma dest, off;
7804 int size;
7805
7806 /* Massage our args to the form they really have. */
7807 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7808 info = in_arg;
7809
7810 htab = ppc_hash_table (info);
7811
7812 /* Make a note of the offset within the stubs for this entry. */
7813 stub_entry->stub_offset = stub_entry->stub_sec->size;
7814 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7815
7816 htab->stub_count[stub_entry->stub_type - 1] += 1;
7817 switch (stub_entry->stub_type)
7818 {
7819 case ppc_stub_long_branch:
7820 case ppc_stub_long_branch_r2off:
7821 /* Branches are relative. This is where we are going to. */
7822 off = dest = (stub_entry->target_value
7823 + stub_entry->target_section->output_offset
7824 + stub_entry->target_section->output_section->vma);
7825
7826 /* And this is where we are coming from. */
7827 off -= (stub_entry->stub_offset
7828 + stub_entry->stub_sec->output_offset
7829 + stub_entry->stub_sec->output_section->vma);
7830
7831 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7832 size = 4;
7833 else
7834 {
7835 bfd_vma r2off;
7836
7837 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7838 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7839 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7840 loc += 4;
7841 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7842 loc += 4;
7843 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7844 loc += 4;
7845 off -= 12;
7846 size = 16;
7847 }
7848 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7849
7850 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7851
7852 if (info->emitrelocations)
7853 {
7854 Elf_Internal_Rela *relocs, *r;
7855 struct bfd_elf_section_data *elfsec_data;
7856
7857 elfsec_data = elf_section_data (stub_entry->stub_sec);
7858 relocs = elfsec_data->relocs;
7859 if (relocs == NULL)
7860 {
7861 bfd_size_type relsize;
7862 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
7863 relocs = bfd_alloc (htab->stub_bfd, relsize);
7864 if (relocs == NULL)
7865 return FALSE;
7866 elfsec_data->relocs = relocs;
7867 elfsec_data->rel_hdr.sh_size = relsize;
7868 elfsec_data->rel_hdr.sh_entsize = 24;
7869 stub_entry->stub_sec->reloc_count = 0;
7870 }
7871 r = relocs + stub_entry->stub_sec->reloc_count;
7872 stub_entry->stub_sec->reloc_count += 1;
7873 r->r_offset = loc - stub_entry->stub_sec->contents;
7874 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
7875 r->r_addend = dest;
7876 if (stub_entry->h != NULL)
7877 {
7878 struct elf_link_hash_entry **hashes;
7879 unsigned long symndx;
7880 struct ppc_link_hash_entry *h;
7881
7882 hashes = elf_sym_hashes (htab->stub_bfd);
7883 if (hashes == NULL)
7884 {
7885 bfd_size_type hsize;
7886
7887 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
7888 hashes = bfd_zalloc (htab->stub_bfd, hsize);
7889 if (hashes == NULL)
7890 return FALSE;
7891 elf_sym_hashes (htab->stub_bfd) = hashes;
7892 htab->stub_globals = 1;
7893 }
7894 symndx = htab->stub_globals++;
7895 h = stub_entry->h;
7896 hashes[symndx] = &h->elf;
7897 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
7898 if (h->oh != NULL && h->oh->is_func)
7899 h = h->oh;
7900 if (h->elf.root.u.def.section != stub_entry->target_section)
7901 /* H is an opd symbol. The addend must be zero. */
7902 r->r_addend = 0;
7903 else
7904 {
7905 off = (h->elf.root.u.def.value
7906 + h->elf.root.u.def.section->output_offset
7907 + h->elf.root.u.def.section->output_section->vma);
7908 r->r_addend -= off;
7909 }
7910 }
7911 }
7912 break;
7913
7914 case ppc_stub_plt_branch:
7915 case ppc_stub_plt_branch_r2off:
7916 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7917 stub_entry->root.string + 9,
7918 FALSE, FALSE);
7919 if (br_entry == NULL)
7920 {
7921 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7922 stub_entry->root.string + 9);
7923 htab->stub_error = TRUE;
7924 return FALSE;
7925 }
7926
7927 off = (stub_entry->target_value
7928 + stub_entry->target_section->output_offset
7929 + stub_entry->target_section->output_section->vma);
7930
7931 bfd_put_64 (htab->brlt->owner, off,
7932 htab->brlt->contents + br_entry->offset);
7933
7934 if (htab->relbrlt != NULL)
7935 {
7936 /* Create a reloc for the branch lookup table entry. */
7937 Elf_Internal_Rela rela;
7938 bfd_byte *rl;
7939
7940 rela.r_offset = (br_entry->offset
7941 + htab->brlt->output_offset
7942 + htab->brlt->output_section->vma);
7943 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7944 rela.r_addend = off;
7945
7946 rl = htab->relbrlt->contents;
7947 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7948 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7949 }
7950
7951 off = (br_entry->offset
7952 + htab->brlt->output_offset
7953 + htab->brlt->output_section->vma
7954 - elf_gp (htab->brlt->output_section->owner)
7955 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7956
7957 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7958 {
7959 (*_bfd_error_handler)
7960 (_("linkage table error against `%s'"),
7961 stub_entry->root.string);
7962 bfd_set_error (bfd_error_bad_value);
7963 htab->stub_error = TRUE;
7964 return FALSE;
7965 }
7966
7967 indx = off;
7968 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7969 {
7970 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7971 loc += 4;
7972 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7973 size = 16;
7974 }
7975 else
7976 {
7977 bfd_vma r2off;
7978
7979 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7980 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7981 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7982 loc += 4;
7983 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7984 loc += 4;
7985 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7986 loc += 4;
7987 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7988 loc += 4;
7989 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7990 size = 28;
7991 }
7992 loc += 4;
7993 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7994 loc += 4;
7995 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7996 break;
7997
7998 case ppc_stub_plt_call:
7999 /* Do the best we can for shared libraries built without
8000 exporting ".foo" for each "foo". This can happen when symbol
8001 versioning scripts strip all bar a subset of symbols. */
8002 if (stub_entry->h->oh != NULL
8003 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8004 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8005 {
8006 /* Point the symbol at the stub. There may be multiple stubs,
8007 we don't really care; The main thing is to make this sym
8008 defined somewhere. Maybe defining the symbol in the stub
8009 section is a silly idea. If we didn't do this, htab->top_id
8010 could disappear. */
8011 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8012 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8013 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8014 }
8015
8016 /* Now build the stub. */
8017 off = (bfd_vma) -1;
8018 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8019 if (ent->addend == stub_entry->addend)
8020 {
8021 off = ent->plt.offset;
8022 break;
8023 }
8024 if (off >= (bfd_vma) -2)
8025 abort ();
8026
8027 off &= ~ (bfd_vma) 1;
8028 off += (htab->plt->output_offset
8029 + htab->plt->output_section->vma
8030 - elf_gp (htab->plt->output_section->owner)
8031 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8032
8033 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8034 {
8035 (*_bfd_error_handler)
8036 (_("linkage table error against `%s'"),
8037 stub_entry->h->elf.root.root.string);
8038 bfd_set_error (bfd_error_bad_value);
8039 htab->stub_error = TRUE;
8040 return FALSE;
8041 }
8042
8043 p = build_plt_stub (htab->stub_bfd, loc, off);
8044 size = p - loc;
8045 break;
8046
8047 default:
8048 BFD_FAIL ();
8049 return FALSE;
8050 }
8051
8052 stub_entry->stub_sec->size += size;
8053
8054 if (htab->emit_stub_syms)
8055 {
8056 struct elf_link_hash_entry *h;
8057 size_t len1, len2;
8058 char *name;
8059 const char *const stub_str[] = { "long_branch",
8060 "long_branch_r2off",
8061 "plt_branch",
8062 "plt_branch_r2off",
8063 "plt_call" };
8064
8065 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8066 len2 = strlen (stub_entry->root.string);
8067 name = bfd_malloc (len1 + len2 + 2);
8068 if (name == NULL)
8069 return FALSE;
8070 memcpy (name, stub_entry->root.string, 9);
8071 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8072 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8073 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8074 if (h == NULL)
8075 return FALSE;
8076 if (h->root.type == bfd_link_hash_new)
8077 {
8078 h->root.type = bfd_link_hash_defined;
8079 h->root.u.def.section = stub_entry->stub_sec;
8080 h->root.u.def.value = stub_entry->stub_offset;
8081 h->ref_regular = 1;
8082 h->def_regular = 1;
8083 h->ref_regular_nonweak = 1;
8084 h->forced_local = 1;
8085 h->non_elf = 0;
8086 }
8087 }
8088
8089 return TRUE;
8090}
8091
8092/* As above, but don't actually build the stub. Just bump offset so
8093 we know stub section sizes, and select plt_branch stubs where
8094 long_branch stubs won't do. */
8095
8096static bfd_boolean
8097ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8098{
8099 struct ppc_stub_hash_entry *stub_entry;
8100 struct bfd_link_info *info;
8101 struct ppc_link_hash_table *htab;
8102 bfd_vma off;
8103 int size;
8104
8105 /* Massage our args to the form they really have. */
8106 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8107 info = in_arg;
8108
8109 htab = ppc_hash_table (info);
8110
8111 if (stub_entry->stub_type == ppc_stub_plt_call)
8112 {
8113 struct plt_entry *ent;
8114 off = (bfd_vma) -1;
8115 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8116 if (ent->addend == stub_entry->addend)
8117 {
8118 off = ent->plt.offset & ~(bfd_vma) 1;
8119 break;
8120 }
8121 if (off >= (bfd_vma) -2)
8122 abort ();
8123 off += (htab->plt->output_offset
8124 + htab->plt->output_section->vma
8125 - elf_gp (htab->plt->output_section->owner)
8126 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8127
8128 size = PLT_CALL_STUB_SIZE;
8129 if (PPC_HA (off + 16) != PPC_HA (off))
8130 size += 4;
8131 }
8132 else
8133 {
8134 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8135 variants. */
8136 off = (stub_entry->target_value
8137 + stub_entry->target_section->output_offset
8138 + stub_entry->target_section->output_section->vma);
8139 off -= (stub_entry->stub_sec->size
8140 + stub_entry->stub_sec->output_offset
8141 + stub_entry->stub_sec->output_section->vma);
8142
8143 /* Reset the stub type from the plt variant in case we now
8144 can reach with a shorter stub. */
8145 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8146 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8147
8148 size = 4;
8149 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8150 {
8151 off -= 12;
8152 size = 16;
8153 }
8154
8155 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8156 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8157 {
8158 struct ppc_branch_hash_entry *br_entry;
8159
8160 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8161 stub_entry->root.string + 9,
8162 TRUE, FALSE);
8163 if (br_entry == NULL)
8164 {
8165 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8166 stub_entry->root.string + 9);
8167 htab->stub_error = TRUE;
8168 return FALSE;
8169 }
8170
8171 if (br_entry->iter != htab->stub_iteration)
8172 {
8173 br_entry->iter = htab->stub_iteration;
8174 br_entry->offset = htab->brlt->size;
8175 htab->brlt->size += 8;
8176
8177 if (htab->relbrlt != NULL)
8178 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8179 }
8180
8181 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8182 size = 16;
8183 if (stub_entry->stub_type != ppc_stub_plt_branch)
8184 size = 28;
8185 }
8186
8187 if (info->emitrelocations
8188 && (stub_entry->stub_type == ppc_stub_long_branch
8189 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8190 stub_entry->stub_sec->reloc_count += 1;
8191 }
8192
8193 stub_entry->stub_sec->size += size;
8194 return TRUE;
8195}
8196
8197/* Set up various things so that we can make a list of input sections
8198 for each output section included in the link. Returns -1 on error,
8199 0 when no stubs will be needed, and 1 on success. */
8200
8201int
8202ppc64_elf_setup_section_lists (bfd *output_bfd,
8203 struct bfd_link_info *info,
8204 int no_multi_toc)
8205{
8206 bfd *input_bfd;
8207 int top_id, top_index, id;
8208 asection *section;
8209 asection **input_list;
8210 bfd_size_type amt;
8211 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8212
8213 htab->no_multi_toc = no_multi_toc;
8214
8215 if (htab->brlt == NULL)
8216 return 0;
8217
8218 /* Find the top input section id. */
8219 for (input_bfd = info->input_bfds, top_id = 3;
8220 input_bfd != NULL;
8221 input_bfd = input_bfd->link_next)
8222 {
8223 for (section = input_bfd->sections;
8224 section != NULL;
8225 section = section->next)
8226 {
8227 if (top_id < section->id)
8228 top_id = section->id;
8229 }
8230 }
8231
8232 htab->top_id = top_id;
8233 amt = sizeof (struct map_stub) * (top_id + 1);
8234 htab->stub_group = bfd_zmalloc (amt);
8235 if (htab->stub_group == NULL)
8236 return -1;
8237
8238 /* Set toc_off for com, und, abs and ind sections. */
8239 for (id = 0; id < 3; id++)
8240 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8241
8242 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8243
8244 /* We can't use output_bfd->section_count here to find the top output
8245 section index as some sections may have been removed, and
8246 _bfd_strip_section_from_output doesn't renumber the indices. */
8247 for (section = output_bfd->sections, top_index = 0;
8248 section != NULL;
8249 section = section->next)
8250 {
8251 if (top_index < section->index)
8252 top_index = section->index;
8253 }
8254
8255 htab->top_index = top_index;
8256 amt = sizeof (asection *) * (top_index + 1);
8257 input_list = bfd_zmalloc (amt);
8258 htab->input_list = input_list;
8259 if (input_list == NULL)
8260 return -1;
8261
8262 return 1;
8263}
8264
8265/* The linker repeatedly calls this function for each TOC input section
8266 and linker generated GOT section. Group input bfds such that the toc
8267 within a group is less than 64k in size. Will break with cute linker
8268 scripts that play games with dot in the output toc section. */
8269
8270void
8271ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8272{
8273 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8274
8275 if (!htab->no_multi_toc)
8276 {
8277 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8278 bfd_vma off = addr - htab->toc_curr;
8279
8280 if (off + isec->size > 0x10000)
8281 htab->toc_curr = addr;
8282
8283 elf_gp (isec->owner) = (htab->toc_curr
8284 - elf_gp (isec->output_section->owner)
8285 + TOC_BASE_OFF);
8286 }
8287}
8288
8289/* Called after the last call to the above function. */
8290
8291void
8292ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8293{
8294 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8295
8296 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8297
8298 /* toc_curr tracks the TOC offset used for code sections below in
8299 ppc64_elf_next_input_section. Start off at 0x8000. */
8300 htab->toc_curr = TOC_BASE_OFF;
8301}
8302
8303/* No toc references were found in ISEC. If the code in ISEC makes no
8304 calls, then there's no need to use toc adjusting stubs when branching
8305 into ISEC. Actually, indirect calls from ISEC are OK as they will
8306 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8307 needed, and 2 if a cyclical call-graph was found but no other reason
8308 for a stub was detected. If called from the top level, a return of
8309 2 means the same as a return of 0. */
8310
8311static int
8312toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8313{
8314 Elf_Internal_Rela *relstart, *rel;
8315 Elf_Internal_Sym *local_syms;
8316 int ret;
8317 struct ppc_link_hash_table *htab;
8318
8319 /* We know none of our code bearing sections will need toc stubs. */
8320 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8321 return 0;
8322
8323 if (isec->size == 0)
8324 return 0;
8325
8326 if (isec->output_section == NULL)
8327 return 0;
8328
8329 /* Hack for linux kernel. .fixup contains branches, but only back to
8330 the function that hit an exception. */
8331 if (strcmp (isec->name, ".fixup") == 0)
8332 return 0;
8333
8334 if (isec->reloc_count == 0)
8335 return 0;
8336
8337 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8338 info->keep_memory);
8339 if (relstart == NULL)
8340 return -1;
8341
8342 /* Look for branches to outside of this section. */
8343 local_syms = NULL;
8344 ret = 0;
8345 htab = ppc_hash_table (info);
8346 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8347 {
8348 enum elf_ppc64_reloc_type r_type;
8349 unsigned long r_symndx;
8350 struct elf_link_hash_entry *h;
8351 Elf_Internal_Sym *sym;
8352 asection *sym_sec;
8353 long *opd_adjust;
8354 bfd_vma sym_value;
8355 bfd_vma dest;
8356
8357 r_type = ELF64_R_TYPE (rel->r_info);
8358 if (r_type != R_PPC64_REL24
8359 && r_type != R_PPC64_REL14
8360 && r_type != R_PPC64_REL14_BRTAKEN
8361 && r_type != R_PPC64_REL14_BRNTAKEN)
8362 continue;
8363
8364 r_symndx = ELF64_R_SYM (rel->r_info);
8365 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8366 isec->owner))
8367 {
8368 ret = -1;
8369 break;
8370 }
8371
8372 /* Calls to dynamic lib functions go through a plt call stub
8373 that uses r2. Branches to undefined symbols might be a call
8374 using old-style dot symbols that can be satisfied by a plt
8375 call into a new-style dynamic library. */
8376 if (sym_sec == NULL)
8377 {
8378 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8379 if (eh != NULL
8380 && eh->oh != NULL
8381 && eh->oh->elf.plt.plist != NULL)
8382 {
8383 ret = 1;
8384 break;
8385 }
8386
8387 /* Ignore other undefined symbols. */
8388 continue;
8389 }
8390
8391 /* Assume branches to other sections not included in the link need
8392 stubs too, to cover -R and absolute syms. */
8393 if (sym_sec->output_section == NULL)
8394 {
8395 ret = 1;
8396 break;
8397 }
8398
8399 if (h == NULL)
8400 sym_value = sym->st_value;
8401 else
8402 {
8403 if (h->root.type != bfd_link_hash_defined
8404 && h->root.type != bfd_link_hash_defweak)
8405 abort ();
8406 sym_value = h->root.u.def.value;
8407 }
8408 sym_value += rel->r_addend;
8409
8410 /* If this branch reloc uses an opd sym, find the code section. */
8411 opd_adjust = get_opd_info (sym_sec);
8412 if (opd_adjust != NULL)
8413 {
8414 if (h == NULL)
8415 {
8416 long adjust;
8417
8418 adjust = opd_adjust[sym->st_value / 8];
8419 if (adjust == -1)
8420 /* Assume deleted functions won't ever be called. */
8421 continue;
8422 sym_value += adjust;
8423 }
8424
8425 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8426 if (dest == (bfd_vma) -1)
8427 continue;
8428 }
8429 else
8430 dest = (sym_value
8431 + sym_sec->output_offset
8432 + sym_sec->output_section->vma);
8433
8434 /* Ignore branch to self. */
8435 if (sym_sec == isec)
8436 continue;
8437
8438 /* If the called function uses the toc, we need a stub. */
8439 if (sym_sec->has_toc_reloc
8440 || sym_sec->makes_toc_func_call)
8441 {
8442 ret = 1;
8443 break;
8444 }
8445
8446 /* Assume any branch that needs a long branch stub might in fact
8447 need a plt_branch stub. A plt_branch stub uses r2. */
8448 else if (dest - (isec->output_offset
8449 + isec->output_section->vma
8450 + rel->r_offset) + (1 << 25) >= (2 << 25))
8451 {
8452 ret = 1;
8453 break;
8454 }
8455
8456 /* If calling back to a section in the process of being tested, we
8457 can't say for sure that no toc adjusting stubs are needed, so
8458 don't return zero. */
8459 else if (sym_sec->call_check_in_progress)
8460 ret = 2;
8461
8462 /* Branches to another section that itself doesn't have any TOC
8463 references are OK. Recursively call ourselves to check. */
8464 else if (sym_sec->id <= htab->top_id
8465 && htab->stub_group[sym_sec->id].toc_off == 0)
8466 {
8467 int recur;
8468
8469 /* Mark current section as indeterminate, so that other
8470 sections that call back to current won't be marked as
8471 known. */
8472 isec->call_check_in_progress = 1;
8473 recur = toc_adjusting_stub_needed (info, sym_sec);
8474 isec->call_check_in_progress = 0;
8475
8476 if (recur < 0)
8477 {
8478 /* An error. Exit. */
8479 ret = -1;
8480 break;
8481 }
8482 else if (recur <= 1)
8483 {
8484 /* Known result. Mark as checked and set section flag. */
8485 htab->stub_group[sym_sec->id].toc_off = 1;
8486 if (recur != 0)
8487 {
8488 sym_sec->makes_toc_func_call = 1;
8489 ret = 1;
8490 break;
8491 }
8492 }
8493 else
8494 {
8495 /* Unknown result. Continue checking. */
8496 ret = 2;
8497 }
8498 }
8499 }
8500
8501 if (local_syms != NULL
8502 && (elf_tdata (isec->owner)->symtab_hdr.contents
8503 != (unsigned char *) local_syms))
8504 free (local_syms);
8505 if (elf_section_data (isec)->relocs != relstart)
8506 free (relstart);
8507
8508 return ret;
8509}
8510
8511/* The linker repeatedly calls this function for each input section,
8512 in the order that input sections are linked into output sections.
8513 Build lists of input sections to determine groupings between which
8514 we may insert linker stubs. */
8515
8516bfd_boolean
8517ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8518{
8519 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8520
8521 if ((isec->output_section->flags & SEC_CODE) != 0
8522 && isec->output_section->index <= htab->top_index)
8523 {
8524 asection **list = htab->input_list + isec->output_section->index;
8525 /* Steal the link_sec pointer for our list. */
8526#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8527 /* This happens to make the list in reverse order,
8528 which is what we want. */
8529 PREV_SEC (isec) = *list;
8530 *list = isec;
8531 }
8532
8533 if (htab->multi_toc_needed)
8534 {
8535 /* If a code section has a function that uses the TOC then we need
8536 to use the right TOC (obviously). Also, make sure that .opd gets
8537 the correct TOC value for R_PPC64_TOC relocs that don't have or
8538 can't find their function symbol (shouldn't ever happen now). */
8539 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8540 {
8541 if (elf_gp (isec->owner) != 0)
8542 htab->toc_curr = elf_gp (isec->owner);
8543 }
8544 else if (htab->stub_group[isec->id].toc_off == 0)
8545 {
8546 int ret = toc_adjusting_stub_needed (info, isec);
8547 if (ret < 0)
8548 return FALSE;
8549 else
8550 isec->makes_toc_func_call = ret & 1;
8551 }
8552 }
8553
8554 /* Functions that don't use the TOC can belong in any TOC group.
8555 Use the last TOC base. This happens to make _init and _fini
8556 pasting work. */
8557 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8558 return TRUE;
8559}
8560
8561/* See whether we can group stub sections together. Grouping stub
8562 sections may result in fewer stubs. More importantly, we need to
8563 put all .init* and .fini* stubs at the beginning of the .init or
8564 .fini output sections respectively, because glibc splits the
8565 _init and _fini functions into multiple parts. Putting a stub in
8566 the middle of a function is not a good idea. */
8567
8568static void
8569group_sections (struct ppc_link_hash_table *htab,
8570 bfd_size_type stub_group_size,
8571 bfd_boolean stubs_always_before_branch)
8572{
8573 asection **list = htab->input_list + htab->top_index;
8574 do
8575 {
8576 asection *tail = *list;
8577 while (tail != NULL)
8578 {
8579 asection *curr;
8580 asection *prev;
8581 bfd_size_type total;
8582 bfd_boolean big_sec;
8583 bfd_vma curr_toc;
8584
8585 curr = tail;
8586 total = tail->size;
8587 big_sec = total >= stub_group_size;
8588 curr_toc = htab->stub_group[tail->id].toc_off;
8589
8590 while ((prev = PREV_SEC (curr)) != NULL
8591 && ((total += curr->output_offset - prev->output_offset)
8592 < stub_group_size)
8593 && htab->stub_group[prev->id].toc_off == curr_toc)
8594 curr = prev;
8595
8596 /* OK, the size from the start of CURR to the end is less
8597 than stub_group_size and thus can be handled by one stub
8598 section. (or the tail section is itself larger than
8599 stub_group_size, in which case we may be toast.) We
8600 should really be keeping track of the total size of stubs
8601 added here, as stubs contribute to the final output
8602 section size. That's a little tricky, and this way will
8603 only break if stubs added make the total size more than
8604 2^25, ie. for the default stub_group_size, if stubs total
8605 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8606 do
8607 {
8608 prev = PREV_SEC (tail);
8609 /* Set up this stub group. */
8610 htab->stub_group[tail->id].link_sec = curr;
8611 }
8612 while (tail != curr && (tail = prev) != NULL);
8613
8614 /* But wait, there's more! Input sections up to stub_group_size
8615 bytes before the stub section can be handled by it too.
8616 Don't do this if we have a really large section after the
8617 stubs, as adding more stubs increases the chance that
8618 branches may not reach into the stub section. */
8619 if (!stubs_always_before_branch && !big_sec)
8620 {
8621 total = 0;
8622 while (prev != NULL
8623 && ((total += tail->output_offset - prev->output_offset)
8624 < stub_group_size)
8625 && htab->stub_group[prev->id].toc_off == curr_toc)
8626 {
8627 tail = prev;
8628 prev = PREV_SEC (tail);
8629 htab->stub_group[tail->id].link_sec = curr;
8630 }
8631 }
8632 tail = prev;
8633 }
8634 }
8635 while (list-- != htab->input_list);
8636 free (htab->input_list);
8637#undef PREV_SEC
8638}
8639
8640/* Determine and set the size of the stub section for a final link.
8641
8642 The basic idea here is to examine all the relocations looking for
8643 PC-relative calls to a target that is unreachable with a "bl"
8644 instruction. */
8645
8646bfd_boolean
8647ppc64_elf_size_stubs (bfd *output_bfd,
8648 struct bfd_link_info *info,
8649 bfd_signed_vma group_size,
8650 asection *(*add_stub_section) (const char *, asection *),
8651 void (*layout_sections_again) (void))
8652{
8653 bfd_size_type stub_group_size;
8654 bfd_boolean stubs_always_before_branch;
8655 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8656
8657 /* Stash our params away. */
8658 htab->add_stub_section = add_stub_section;
8659 htab->layout_sections_again = layout_sections_again;
8660 stubs_always_before_branch = group_size < 0;
8661 if (group_size < 0)
8662 stub_group_size = -group_size;
8663 else
8664 stub_group_size = group_size;
8665 if (stub_group_size == 1)
8666 {
8667 /* Default values. */
8668 if (stubs_always_before_branch)
8669 {
8670 stub_group_size = 0x1e00000;
8671 if (htab->has_14bit_branch)
8672 stub_group_size = 0x7800;
8673 }
8674 else
8675 {
8676 stub_group_size = 0x1c00000;
8677 if (htab->has_14bit_branch)
8678 stub_group_size = 0x7000;
8679 }
8680 }
8681
8682 group_sections (htab, stub_group_size, stubs_always_before_branch);
8683
8684 while (1)
8685 {
8686 bfd *input_bfd;
8687 unsigned int bfd_indx;
8688 asection *stub_sec;
8689 bfd_boolean stub_changed;
8690
8691 htab->stub_iteration += 1;
8692 stub_changed = FALSE;
8693
8694 for (input_bfd = info->input_bfds, bfd_indx = 0;
8695 input_bfd != NULL;
8696 input_bfd = input_bfd->link_next, bfd_indx++)
8697 {
8698 Elf_Internal_Shdr *symtab_hdr;
8699 asection *section;
8700 Elf_Internal_Sym *local_syms = NULL;
8701
8702 /* We'll need the symbol table in a second. */
8703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8704 if (symtab_hdr->sh_info == 0)
8705 continue;
8706
8707 /* Walk over each section attached to the input bfd. */
8708 for (section = input_bfd->sections;
8709 section != NULL;
8710 section = section->next)
8711 {
8712 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8713
8714 /* If there aren't any relocs, then there's nothing more
8715 to do. */
8716 if ((section->flags & SEC_RELOC) == 0
8717 || section->reloc_count == 0)
8718 continue;
8719
8720 /* If this section is a link-once section that will be
8721 discarded, then don't create any stubs. */
8722 if (section->output_section == NULL
8723 || section->output_section->owner != output_bfd)
8724 continue;
8725
8726 /* Get the relocs. */
8727 internal_relocs
8728 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8729 info->keep_memory);
8730 if (internal_relocs == NULL)
8731 goto error_ret_free_local;
8732
8733 /* Now examine each relocation. */
8734 irela = internal_relocs;
8735 irelaend = irela + section->reloc_count;
8736 for (; irela < irelaend; irela++)
8737 {
8738 enum elf_ppc64_reloc_type r_type;
8739 unsigned int r_indx;
8740 enum ppc_stub_type stub_type;
8741 struct ppc_stub_hash_entry *stub_entry;
8742 asection *sym_sec, *code_sec;
8743 bfd_vma sym_value;
8744 bfd_vma destination;
8745 bfd_boolean ok_dest;
8746 struct ppc_link_hash_entry *hash;
8747 struct ppc_link_hash_entry *fdh;
8748 struct elf_link_hash_entry *h;
8749 Elf_Internal_Sym *sym;
8750 char *stub_name;
8751 const asection *id_sec;
8752 long *opd_adjust;
8753
8754 r_type = ELF64_R_TYPE (irela->r_info);
8755 r_indx = ELF64_R_SYM (irela->r_info);
8756
8757 if (r_type >= R_PPC64_max)
8758 {
8759 bfd_set_error (bfd_error_bad_value);
8760 goto error_ret_free_internal;
8761 }
8762
8763 /* Only look for stubs on branch instructions. */
8764 if (r_type != R_PPC64_REL24
8765 && r_type != R_PPC64_REL14
8766 && r_type != R_PPC64_REL14_BRTAKEN
8767 && r_type != R_PPC64_REL14_BRNTAKEN)
8768 continue;
8769
8770 /* Now determine the call target, its name, value,
8771 section. */
8772 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8773 r_indx, input_bfd))
8774 goto error_ret_free_internal;
8775 hash = (struct ppc_link_hash_entry *) h;
8776
8777 ok_dest = FALSE;
8778 fdh = NULL;
8779 if (hash == NULL)
8780 {
8781 sym_value = sym->st_value;
8782 ok_dest = TRUE;
8783 }
8784 else
8785 {
8786 sym_value = 0;
8787 /* Recognise an old ABI func code entry sym, and
8788 use the func descriptor sym instead. */
8789 if (hash->elf.root.type == bfd_link_hash_undefweak
8790 && hash->elf.root.root.string[0] == '.'
8791 && (fdh = get_fdh (hash, htab)) != NULL)
8792 {
8793 if (fdh->elf.root.type == bfd_link_hash_defined
8794 || fdh->elf.root.type == bfd_link_hash_defweak)
8795 {
8796 sym_sec = fdh->elf.root.u.def.section;
8797 sym_value = fdh->elf.root.u.def.value;
8798 if (sym_sec->output_section != NULL)
8799 ok_dest = TRUE;
8800 }
8801 else
8802 fdh = NULL;
8803 }
8804 else if (hash->elf.root.type == bfd_link_hash_defined
8805 || hash->elf.root.type == bfd_link_hash_defweak)
8806 {
8807 sym_value = hash->elf.root.u.def.value;
8808 if (sym_sec->output_section != NULL)
8809 ok_dest = TRUE;
8810 }
8811 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8812 ;
8813 else if (hash->elf.root.type == bfd_link_hash_undefined)
8814 ;
8815 else
8816 {
8817 bfd_set_error (bfd_error_bad_value);
8818 goto error_ret_free_internal;
8819 }
8820 }
8821
8822 destination = 0;
8823 if (ok_dest)
8824 {
8825 sym_value += irela->r_addend;
8826 destination = (sym_value
8827 + sym_sec->output_offset
8828 + sym_sec->output_section->vma);
8829 }
8830
8831 code_sec = sym_sec;
8832 opd_adjust = get_opd_info (sym_sec);
8833 if (opd_adjust != NULL)
8834 {
8835 bfd_vma dest;
8836
8837 if (hash == NULL)
8838 {
8839 long adjust = opd_adjust[sym_value / 8];
8840 if (adjust == -1)
8841 continue;
8842 sym_value += adjust;
8843 }
8844 dest = opd_entry_value (sym_sec, sym_value,
8845 &code_sec, &sym_value);
8846 if (dest != (bfd_vma) -1)
8847 {
8848 destination = dest;
8849 if (fdh != NULL)
8850 {
8851 /* Fixup old ABI sym to point at code
8852 entry. */
8853 hash->elf.root.type = bfd_link_hash_defweak;
8854 hash->elf.root.u.def.section = code_sec;
8855 hash->elf.root.u.def.value = sym_value;
8856 }
8857 }
8858 }
8859
8860 /* Determine what (if any) linker stub is needed. */
8861 stub_type = ppc_type_of_stub (section, irela, &hash,
8862 destination);
8863
8864 if (stub_type != ppc_stub_plt_call)
8865 {
8866 /* Check whether we need a TOC adjusting stub.
8867 Since the linker pastes together pieces from
8868 different object files when creating the
8869 _init and _fini functions, it may be that a
8870 call to what looks like a local sym is in
8871 fact a call needing a TOC adjustment. */
8872 if (code_sec != NULL
8873 && code_sec->output_section != NULL
8874 && (htab->stub_group[code_sec->id].toc_off
8875 != htab->stub_group[section->id].toc_off)
8876 && (code_sec->has_toc_reloc
8877 || code_sec->makes_toc_func_call))
8878 stub_type = ppc_stub_long_branch_r2off;
8879 }
8880
8881 if (stub_type == ppc_stub_none)
8882 continue;
8883
8884 /* __tls_get_addr calls might be eliminated. */
8885 if (stub_type != ppc_stub_plt_call
8886 && hash != NULL
8887 && (hash == htab->tls_get_addr
8888 || hash == htab->tls_get_addr_fd)
8889 && section->has_tls_reloc
8890 && irela != internal_relocs)
8891 {
8892 /* Get tls info. */
8893 char *tls_mask;
8894
8895 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8896 irela - 1, input_bfd))
8897 goto error_ret_free_internal;
8898 if (*tls_mask != 0)
8899 continue;
8900 }
8901
8902 /* Support for grouping stub sections. */
8903 id_sec = htab->stub_group[section->id].link_sec;
8904
8905 /* Get the name of this stub. */
8906 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8907 if (!stub_name)
8908 goto error_ret_free_internal;
8909
8910 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8911 stub_name, FALSE, FALSE);
8912 if (stub_entry != NULL)
8913 {
8914 /* The proper stub has already been created. */
8915 free (stub_name);
8916 continue;
8917 }
8918
8919 stub_entry = ppc_add_stub (stub_name, section, htab);
8920 if (stub_entry == NULL)
8921 {
8922 free (stub_name);
8923 error_ret_free_internal:
8924 if (elf_section_data (section)->relocs == NULL)
8925 free (internal_relocs);
8926 error_ret_free_local:
8927 if (local_syms != NULL
8928 && (symtab_hdr->contents
8929 != (unsigned char *) local_syms))
8930 free (local_syms);
8931 return FALSE;
8932 }
8933
8934 stub_entry->stub_type = stub_type;
8935 stub_entry->target_value = sym_value;
8936 stub_entry->target_section = code_sec;
8937 stub_entry->h = hash;
8938 stub_entry->addend = irela->r_addend;
8939
8940 if (stub_entry->h != NULL)
8941 htab->stub_globals += 1;
8942
8943 stub_changed = TRUE;
8944 }
8945
8946 /* We're done with the internal relocs, free them. */
8947 if (elf_section_data (section)->relocs != internal_relocs)
8948 free (internal_relocs);
8949 }
8950
8951 if (local_syms != NULL
8952 && symtab_hdr->contents != (unsigned char *) local_syms)
8953 {
8954 if (!info->keep_memory)
8955 free (local_syms);
8956 else
8957 symtab_hdr->contents = (unsigned char *) local_syms;
8958 }
8959 }
8960
8961 if (!stub_changed)
8962 break;
8963
8964 /* OK, we've added some stubs. Find out the new size of the
8965 stub sections. */
8966 for (stub_sec = htab->stub_bfd->sections;
8967 stub_sec != NULL;
8968 stub_sec = stub_sec->next)
8969 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8970 {
8971 stub_sec->size = 0;
8972 stub_sec->reloc_count = 0;
8973 }
8974
8975 htab->brlt->size = 0;
8976 if (htab->relbrlt != NULL)
8977 htab->relbrlt->size = 0;
8978
8979 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8980
8981 /* Ask the linker to do its stuff. */
8982 (*htab->layout_sections_again) ();
8983 }
8984
8985 /* It would be nice to strip .branch_lt from the output if the
8986 section is empty, but it's too late. If we strip sections here,
8987 the dynamic symbol table is corrupted since the section symbol
8988 for the stripped section isn't written. */
8989
8990 return TRUE;
8991}
8992
8993/* Called after we have determined section placement. If sections
8994 move, we'll be called again. Provide a value for TOCstart. */
8995
8996bfd_vma
8997ppc64_elf_toc (bfd *obfd)
8998{
8999 asection *s;
9000 bfd_vma TOCstart;
9001
9002 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9003 order. The TOC starts where the first of these sections starts. */
9004 s = bfd_get_section_by_name (obfd, ".got");
9005 if (s == NULL)
9006 s = bfd_get_section_by_name (obfd, ".toc");
9007 if (s == NULL)
9008 s = bfd_get_section_by_name (obfd, ".tocbss");
9009 if (s == NULL)
9010 s = bfd_get_section_by_name (obfd, ".plt");
9011 if (s == NULL)
9012 {
9013 /* This may happen for
9014 o references to TOC base (SYM@toc / TOC[tc0]) without a
9015 .toc directive
9016 o bad linker script
9017 o --gc-sections and empty TOC sections
9018
9019 FIXME: Warn user? */
9020
9021 /* Look for a likely section. We probably won't even be
9022 using TOCstart. */
9023 for (s = obfd->sections; s != NULL; s = s->next)
9024 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9025 == (SEC_ALLOC | SEC_SMALL_DATA))
9026 break;
9027 if (s == NULL)
9028 for (s = obfd->sections; s != NULL; s = s->next)
9029 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9030 == (SEC_ALLOC | SEC_SMALL_DATA))
9031 break;
9032 if (s == NULL)
9033 for (s = obfd->sections; s != NULL; s = s->next)
9034 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9035 break;
9036 if (s == NULL)
9037 for (s = obfd->sections; s != NULL; s = s->next)
9038 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9039 break;
9040 }
9041
9042 TOCstart = 0;
9043 if (s != NULL)
9044 TOCstart = s->output_section->vma + s->output_offset;
9045
9046 return TOCstart;
9047}
9048
9049/* Build all the stubs associated with the current output file.
9050 The stubs are kept in a hash table attached to the main linker
9051 hash table. This function is called via gldelf64ppc_finish. */
9052
9053bfd_boolean
9054ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9055 struct bfd_link_info *info,
9056 char **stats)
9057{
9058 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9059 asection *stub_sec;
9060 bfd_byte *p;
9061 int stub_sec_count = 0;
9062
9063 htab->emit_stub_syms = emit_stub_syms;
9064
9065 /* Allocate memory to hold the linker stubs. */
9066 for (stub_sec = htab->stub_bfd->sections;
9067 stub_sec != NULL;
9068 stub_sec = stub_sec->next)
9069 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9070 && stub_sec->size != 0)
9071 {
9072 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9073 if (stub_sec->contents == NULL)
9074 return FALSE;
9075 /* We want to check that built size is the same as calculated
9076 size. rawsize is a convenient location to use. */
9077 stub_sec->rawsize = stub_sec->size;
9078 stub_sec->size = 0;
9079 }
9080
9081 if (htab->plt != NULL)
9082 {
9083 unsigned int indx;
9084 bfd_vma plt0;
9085
9086 /* Build the .glink plt call stub. */
9087 plt0 = (htab->plt->output_section->vma
9088 + htab->plt->output_offset
9089 - (htab->glink->output_section->vma
9090 + htab->glink->output_offset
9091 + GLINK_CALL_STUB_SIZE));
9092 if (plt0 + 0x80008000 > 0xffffffff)
9093 {
9094 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9095 bfd_set_error (bfd_error_bad_value);
9096 return FALSE;
9097 }
9098
9099 if (htab->emit_stub_syms)
9100 {
9101 struct elf_link_hash_entry *h;
9102 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9103 if (h == NULL)
9104 return FALSE;
9105 if (h->root.type == bfd_link_hash_new)
9106 {
9107 h->root.type = bfd_link_hash_defined;
9108 h->root.u.def.section = htab->glink;
9109 h->root.u.def.value = 0;
9110 h->ref_regular = 1;
9111 h->def_regular = 1;
9112 h->ref_regular_nonweak = 1;
9113 h->forced_local = 1;
9114 h->non_elf = 0;
9115 }
9116 }
9117 p = htab->glink->contents;
9118 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9119 p += 4;
9120 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9121 p += 4;
9122 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9123 p += 4;
9124 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9125 p += 4;
9126 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9127 p += 4;
9128 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9129 p += 4;
9130 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9131 p += 4;
9132 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9133 p += 4;
9134 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9135 p += 4;
9136 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9137 p += 4;
9138 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9139 p += 4;
9140 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9141 p += 4;
9142 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9143 p += 4;
9144 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9145 p += 4;
9146 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9147 p += 4;
9148 bfd_put_32 (htab->glink->owner, BCTR, p);
9149 p += 4;
9150
9151 /* Build the .glink lazy link call stubs. */
9152 indx = 0;
9153 while (p < htab->glink->contents + htab->glink->size)
9154 {
9155 if (indx < 0x8000)
9156 {
9157 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9158 p += 4;
9159 }
9160 else
9161 {
9162 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9163 p += 4;
9164 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9165 p += 4;
9166 }
9167 bfd_put_32 (htab->glink->owner,
9168 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9169 indx++;
9170 p += 4;
9171 }
9172 htab->glink->rawsize = p - htab->glink->contents;
9173 }
9174
9175 if (htab->brlt->size != 0)
9176 {
9177 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9178 htab->brlt->size);
9179 if (htab->brlt->contents == NULL)
9180 return FALSE;
9181 }
9182 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9183 {
9184 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9185 htab->relbrlt->size);
9186 if (htab->relbrlt->contents == NULL)
9187 return FALSE;
9188 }
9189
9190 /* Build the stubs as directed by the stub hash table. */
9191 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9192
9193 for (stub_sec = htab->stub_bfd->sections;
9194 stub_sec != NULL;
9195 stub_sec = stub_sec->next)
9196 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9197 {
9198 stub_sec_count += 1;
9199 if (stub_sec->rawsize != stub_sec->size)
9200 break;
9201 }
9202
9203 if (stub_sec != NULL
9204 || htab->glink->rawsize != htab->glink->size)
9205 {
9206 htab->stub_error = TRUE;
9207 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9208 }
9209
9210 if (htab->stub_error)
9211 return FALSE;
9212
9213 if (stats != NULL)
9214 {
9215 *stats = bfd_malloc (500);
9216 if (*stats == NULL)
9217 return FALSE;
9218
9219 sprintf (*stats, _("linker stubs in %u group%s\n"
9220 " branch %lu\n"
9221 " toc adjust %lu\n"
9222 " long branch %lu\n"
9223 " long toc adj %lu\n"
9224 " plt call %lu"),
9225 stub_sec_count,
9226 stub_sec_count == 1 ? "" : "s",
9227 htab->stub_count[ppc_stub_long_branch - 1],
9228 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9229 htab->stub_count[ppc_stub_plt_branch - 1],
9230 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9231 htab->stub_count[ppc_stub_plt_call - 1]);
9232 }
9233 return TRUE;
9234}
9235
9236/* This function undoes the changes made by add_symbol_adjust. */
9237
9238static bfd_boolean
9239undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9240{
9241 struct ppc_link_hash_entry *eh;
9242
9243 if (h->root.type == bfd_link_hash_indirect)
9244 return TRUE;
9245
9246 if (h->root.type == bfd_link_hash_warning)
9247 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9248
9249 eh = (struct ppc_link_hash_entry *) h;
9250 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9251 return TRUE;
9252
9253 eh->elf.root.type = bfd_link_hash_undefined;
9254 return TRUE;
9255}
9256
9257void
9258ppc64_elf_restore_symbols (struct bfd_link_info *info)
9259{
9260 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9261 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9262}
9263
9264/* The RELOCATE_SECTION function is called by the ELF backend linker
9265 to handle the relocations for a section.
9266
9267 The relocs are always passed as Rela structures; if the section
9268 actually uses Rel structures, the r_addend field will always be
9269 zero.
9270
9271 This function is responsible for adjust the section contents as
9272 necessary, and (if using Rela relocs and generating a
9273 relocatable output file) adjusting the reloc addend as
9274 necessary.
9275
9276 This function does not have to worry about setting the reloc
9277 address or the reloc symbol index.
9278
9279 LOCAL_SYMS is a pointer to the swapped in local symbols.
9280
9281 LOCAL_SECTIONS is an array giving the section in the input file
9282 corresponding to the st_shndx field of each local symbol.
9283
9284 The global hash table entry for the global symbols can be found
9285 via elf_sym_hashes (input_bfd).
9286
9287 When generating relocatable output, this function must handle
9288 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9289 going to be the section symbol corresponding to the output
9290 section, which means that the addend must be adjusted
9291 accordingly. */
9292
9293static bfd_boolean
9294ppc64_elf_relocate_section (bfd *output_bfd,
9295 struct bfd_link_info *info,
9296 bfd *input_bfd,
9297 asection *input_section,
9298 bfd_byte *contents,
9299 Elf_Internal_Rela *relocs,
9300 Elf_Internal_Sym *local_syms,
9301 asection **local_sections)
9302{
9303 struct ppc_link_hash_table *htab;
9304 Elf_Internal_Shdr *symtab_hdr;
9305 struct elf_link_hash_entry **sym_hashes;
9306 Elf_Internal_Rela *rel;
9307 Elf_Internal_Rela *relend;
9308 Elf_Internal_Rela outrel;
9309 bfd_byte *loc;
9310 struct got_entry **local_got_ents;
9311 bfd_vma TOCstart;
9312 bfd_boolean ret = TRUE;
9313 bfd_boolean is_opd;
9314 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9315 bfd_boolean is_power4 = FALSE;
9316
9317 if (info->relocatable)
9318 return TRUE;
9319
9320 /* Initialize howto table if needed. */
9321 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9322 ppc_howto_init ();
9323
9324 htab = ppc_hash_table (info);
9325
9326 /* Don't relocate stub sections. */
9327 if (input_section->owner == htab->stub_bfd)
9328 return TRUE;
9329
9330 local_got_ents = elf_local_got_ents (input_bfd);
9331 TOCstart = elf_gp (output_bfd);
9332 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9333 sym_hashes = elf_sym_hashes (input_bfd);
9334 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9335
9336 rel = relocs;
9337 relend = relocs + input_section->reloc_count;
9338 for (; rel < relend; rel++)
9339 {
9340 enum elf_ppc64_reloc_type r_type;
9341 bfd_vma addend;
9342 bfd_reloc_status_type r;
9343 Elf_Internal_Sym *sym;
9344 asection *sec;
9345 struct elf_link_hash_entry *h_elf;
9346 struct ppc_link_hash_entry *h;
9347 struct ppc_link_hash_entry *fdh;
9348 const char *sym_name;
9349 unsigned long r_symndx, toc_symndx;
9350 char tls_mask, tls_gd, tls_type;
9351 char sym_type;
9352 bfd_vma relocation;
9353 bfd_boolean unresolved_reloc;
9354 bfd_boolean warned;
9355 unsigned long insn, mask;
9356 struct ppc_stub_hash_entry *stub_entry;
9357 bfd_vma max_br_offset;
9358 bfd_vma from;
9359
9360 r_type = ELF64_R_TYPE (rel->r_info);
9361 r_symndx = ELF64_R_SYM (rel->r_info);
9362
9363 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9364 symbol of the previous ADDR64 reloc. The symbol gives us the
9365 proper TOC base to use. */
9366 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9367 && rel != relocs
9368 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9369 && is_opd)
9370 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9371
9372 sym = NULL;
9373 sec = NULL;
9374 h_elf = NULL;
9375 sym_name = NULL;
9376 unresolved_reloc = FALSE;
9377 warned = FALSE;
9378
9379 if (r_symndx < symtab_hdr->sh_info)
9380 {
9381 /* It's a local symbol. */
9382 long *opd_adjust;
9383
9384 sym = local_syms + r_symndx;
9385 sec = local_sections[r_symndx];
9386 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
9387 sym_type = ELF64_ST_TYPE (sym->st_info);
9388 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9389 opd_adjust = get_opd_info (sec);
9390 if (opd_adjust != NULL)
9391 {
9392 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9393 if (adjust == -1)
9394 relocation = 0;
9395 else
9396 relocation += adjust;
9397 }
9398 }
9399 else
9400 {
9401 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9402 r_symndx, symtab_hdr, sym_hashes,
9403 h_elf, sec, relocation,
9404 unresolved_reloc, warned);
9405 sym_name = h_elf->root.root.string;
9406 sym_type = h_elf->type;
9407 }
9408 h = (struct ppc_link_hash_entry *) h_elf;
9409
9410 /* TLS optimizations. Replace instruction sequences and relocs
9411 based on information we collected in tls_optimize. We edit
9412 RELOCS so that --emit-relocs will output something sensible
9413 for the final instruction stream. */
9414 tls_mask = 0;
9415 tls_gd = 0;
9416 toc_symndx = 0;
9417 if (IS_PPC64_TLS_RELOC (r_type))
9418 {
9419 if (h != NULL)
9420 tls_mask = h->tls_mask;
9421 else if (local_got_ents != NULL)
9422 {
9423 char *lgot_masks;
9424 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9425 tls_mask = lgot_masks[r_symndx];
9426 }
9427 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9428 {
9429 /* Check for toc tls entries. */
9430 char *toc_tls;
9431
9432 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9433 rel, input_bfd))
9434 return FALSE;
9435
9436 if (toc_tls)
9437 tls_mask = *toc_tls;
9438 }
9439 }
9440
9441 /* Check that tls relocs are used with tls syms, and non-tls
9442 relocs are used with non-tls syms. */
9443 if (r_symndx != 0
9444 && r_type != R_PPC64_NONE
9445 && (h == NULL
9446 || h->elf.root.type == bfd_link_hash_defined
9447 || h->elf.root.type == bfd_link_hash_defweak)
9448 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9449 {
9450 if (r_type == R_PPC64_TLS && tls_mask != 0)
9451 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9452 ;
9453 else
9454 (*_bfd_error_handler)
9455 (sym_type == STT_TLS
9456 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9457 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9458 input_bfd,
9459 input_section,
9460 (long) rel->r_offset,
9461 ppc64_elf_howto_table[r_type]->name,
9462 sym_name);
9463 }
9464
9465 /* Ensure reloc mapping code below stays sane. */
9466 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9467 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9468 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9469 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9470 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9471 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9472 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9473 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9474 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9475 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9476 abort ();
9477
9478 switch (r_type)
9479 {
9480 default:
9481 break;
9482
9483 case R_PPC64_TOC16:
9484 case R_PPC64_TOC16_LO:
9485 case R_PPC64_TOC16_DS:
9486 case R_PPC64_TOC16_LO_DS:
9487 {
9488 /* Check for toc tls entries. */
9489 char *toc_tls;
9490 int retval;
9491
9492 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9493 rel, input_bfd);
9494 if (retval == 0)
9495 return FALSE;
9496
9497 if (toc_tls)
9498 {
9499 tls_mask = *toc_tls;
9500 if (r_type == R_PPC64_TOC16_DS
9501 || r_type == R_PPC64_TOC16_LO_DS)
9502 {
9503 if (tls_mask != 0
9504 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9505 goto toctprel;
9506 }
9507 else
9508 {
9509 /* If we found a GD reloc pair, then we might be
9510 doing a GD->IE transition. */
9511 if (retval == 2)
9512 {
9513 tls_gd = TLS_TPRELGD;
9514 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9515 goto tls_get_addr_check;
9516 }
9517 else if (retval == 3)
9518 {
9519 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9520 goto tls_get_addr_check;
9521 }
9522 }
9523 }
9524 }
9525 break;
9526
9527 case R_PPC64_GOT_TPREL16_DS:
9528 case R_PPC64_GOT_TPREL16_LO_DS:
9529 if (tls_mask != 0
9530 && (tls_mask & TLS_TPREL) == 0)
9531 {
9532 toctprel:
9533 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9534 insn &= 31 << 21;
9535 insn |= 0x3c0d0000; /* addis 0,13,0 */
9536 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9537 r_type = R_PPC64_TPREL16_HA;
9538 if (toc_symndx != 0)
9539 {
9540 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9541 /* We changed the symbol. Start over in order to
9542 get h, sym, sec etc. right. */
9543 rel--;
9544 continue;
9545 }
9546 else
9547 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9548 }
9549 break;
9550
9551 case R_PPC64_TLS:
9552 if (tls_mask != 0
9553 && (tls_mask & TLS_TPREL) == 0)
9554 {
9555 bfd_vma rtra;
9556 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9557 if ((insn & ((0x3f << 26) | (31 << 11)))
9558 == ((31 << 26) | (13 << 11)))
9559 rtra = insn & ((1 << 26) - (1 << 16));
9560 else if ((insn & ((0x3f << 26) | (31 << 16)))
9561 == ((31 << 26) | (13 << 16)))
9562 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9563 else
9564 abort ();
9565 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9566 /* add -> addi. */
9567 insn = 14 << 26;
9568 else if ((insn & (31 << 1)) == 23 << 1
9569 && ((insn & (31 << 6)) < 14 << 6
9570 || ((insn & (31 << 6)) >= 16 << 6
9571 && (insn & (31 << 6)) < 24 << 6)))
9572 /* load and store indexed -> dform. */
9573 insn = (32 | ((insn >> 6) & 31)) << 26;
9574 else if ((insn & (31 << 1)) == 21 << 1
9575 && (insn & (0x1a << 6)) == 0)
9576 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9577 insn = (((58 | ((insn >> 6) & 4)) << 26)
9578 | ((insn >> 6) & 1));
9579 else if ((insn & (31 << 1)) == 21 << 1
9580 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9581 /* lwax -> lwa. */
9582 insn = (58 << 26) | 2;
9583 else
9584 abort ();
9585 insn |= rtra;
9586 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9587 /* Was PPC64_TLS which sits on insn boundary, now
9588 PPC64_TPREL16_LO which is at insn+2. */
9589 rel->r_offset += 2;
9590 r_type = R_PPC64_TPREL16_LO;
9591 if (toc_symndx != 0)
9592 {
9593 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9594 /* We changed the symbol. Start over in order to
9595 get h, sym, sec etc. right. */
9596 rel--;
9597 continue;
9598 }
9599 else
9600 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9601 }
9602 break;
9603
9604 case R_PPC64_GOT_TLSGD16_HI:
9605 case R_PPC64_GOT_TLSGD16_HA:
9606 tls_gd = TLS_TPRELGD;
9607 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9608 goto tls_gdld_hi;
9609 break;
9610
9611 case R_PPC64_GOT_TLSLD16_HI:
9612 case R_PPC64_GOT_TLSLD16_HA:
9613 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9614 {
9615 tls_gdld_hi:
9616 if ((tls_mask & tls_gd) != 0)
9617 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9618 + R_PPC64_GOT_TPREL16_DS);
9619 else
9620 {
9621 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9622 rel->r_offset -= 2;
9623 r_type = R_PPC64_NONE;
9624 }
9625 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9626 }
9627 break;
9628
9629 case R_PPC64_GOT_TLSGD16:
9630 case R_PPC64_GOT_TLSGD16_LO:
9631 tls_gd = TLS_TPRELGD;
9632 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9633 goto tls_get_addr_check;
9634 break;
9635
9636 case R_PPC64_GOT_TLSLD16:
9637 case R_PPC64_GOT_TLSLD16_LO:
9638 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9639 {
9640 tls_get_addr_check:
9641 if (rel + 1 < relend)
9642 {
9643 enum elf_ppc64_reloc_type r_type2;
9644 unsigned long r_symndx2;
9645 struct elf_link_hash_entry *h2;
9646 bfd_vma insn1, insn2, insn3;
9647 bfd_vma offset;
9648
9649 /* The next instruction should be a call to
9650 __tls_get_addr. Peek at the reloc to be sure. */
9651 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9652 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9653 if (r_symndx2 < symtab_hdr->sh_info
9654 || (r_type2 != R_PPC64_REL14
9655 && r_type2 != R_PPC64_REL14_BRTAKEN
9656 && r_type2 != R_PPC64_REL14_BRNTAKEN
9657 && r_type2 != R_PPC64_REL24))
9658 break;
9659
9660 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9661 while (h2->root.type == bfd_link_hash_indirect
9662 || h2->root.type == bfd_link_hash_warning)
9663 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9664 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9665 && h2 != &htab->tls_get_addr_fd->elf))
9666 break;
9667
9668 /* OK, it checks out. Replace the call. */
9669 offset = rel[1].r_offset;
9670 insn1 = bfd_get_32 (output_bfd,
9671 contents + rel->r_offset - 2);
9672 insn3 = bfd_get_32 (output_bfd,
9673 contents + offset + 4);
9674 if ((tls_mask & tls_gd) != 0)
9675 {
9676 /* IE */
9677 insn1 &= (1 << 26) - (1 << 2);
9678 insn1 |= 58 << 26; /* ld */
9679 insn2 = 0x7c636a14; /* add 3,3,13 */
9680 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9681 if ((tls_mask & TLS_EXPLICIT) == 0)
9682 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9683 + R_PPC64_GOT_TPREL16_DS);
9684 else
9685 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9686 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9687 }
9688 else
9689 {
9690 /* LE */
9691 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9692 insn2 = 0x38630000; /* addi 3,3,0 */
9693 if (tls_gd == 0)
9694 {
9695 /* Was an LD reloc. */
9696 r_symndx = 0;
9697 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9698 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9699 }
9700 else if (toc_symndx != 0)
9701 r_symndx = toc_symndx;
9702 r_type = R_PPC64_TPREL16_HA;
9703 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9704 rel[1].r_info = ELF64_R_INFO (r_symndx,
9705 R_PPC64_TPREL16_LO);
9706 rel[1].r_offset += 2;
9707 }
9708 if (insn3 == NOP
9709 || insn3 == CROR_151515 || insn3 == CROR_313131)
9710 {
9711 insn3 = insn2;
9712 insn2 = NOP;
9713 rel[1].r_offset += 4;
9714 }
9715 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9716 bfd_put_32 (output_bfd, insn2, contents + offset);
9717 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9718 if (tls_gd == 0 || toc_symndx != 0)
9719 {
9720 /* We changed the symbol. Start over in order
9721 to get h, sym, sec etc. right. */
9722 rel--;
9723 continue;
9724 }
9725 }
9726 }
9727 break;
9728
9729 case R_PPC64_DTPMOD64:
9730 if (rel + 1 < relend
9731 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9732 && rel[1].r_offset == rel->r_offset + 8)
9733 {
9734 if ((tls_mask & TLS_GD) == 0)
9735 {
9736 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9737 if ((tls_mask & TLS_TPRELGD) != 0)
9738 r_type = R_PPC64_TPREL64;
9739 else
9740 {
9741 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9742 r_type = R_PPC64_NONE;
9743 }
9744 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9745 }
9746 }
9747 else
9748 {
9749 if ((tls_mask & TLS_LD) == 0)
9750 {
9751 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9752 r_type = R_PPC64_NONE;
9753 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9754 }
9755 }
9756 break;
9757
9758 case R_PPC64_TPREL64:
9759 if ((tls_mask & TLS_TPREL) == 0)
9760 {
9761 r_type = R_PPC64_NONE;
9762 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9763 }
9764 break;
9765 }
9766
9767 /* Handle other relocations that tweak non-addend part of insn. */
9768 insn = 0;
9769 max_br_offset = 1 << 25;
9770 addend = rel->r_addend;
9771 switch (r_type)
9772 {
9773 default:
9774 break;
9775
9776 /* Branch taken prediction relocations. */
9777 case R_PPC64_ADDR14_BRTAKEN:
9778 case R_PPC64_REL14_BRTAKEN:
9779 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9780 /* Fall thru. */
9781
9782 /* Branch not taken prediction relocations. */
9783 case R_PPC64_ADDR14_BRNTAKEN:
9784 case R_PPC64_REL14_BRNTAKEN:
9785 insn |= bfd_get_32 (output_bfd,
9786 contents + rel->r_offset) & ~(0x01 << 21);
9787 /* Fall thru. */
9788
9789 case R_PPC64_REL14:
9790 max_br_offset = 1 << 15;
9791 /* Fall thru. */
9792
9793 case R_PPC64_REL24:
9794 /* Calls to functions with a different TOC, such as calls to
9795 shared objects, need to alter the TOC pointer. This is
9796 done using a linkage stub. A REL24 branching to these
9797 linkage stubs needs to be followed by a nop, as the nop
9798 will be replaced with an instruction to restore the TOC
9799 base pointer. */
9800 stub_entry = NULL;
9801 fdh = h;
9802 if (((h != NULL
9803 && (((fdh = h->oh) != NULL
9804 && fdh->elf.plt.plist != NULL)
9805 || (fdh = h)->elf.plt.plist != NULL))
9806 || (sec != NULL
9807 && sec->output_section != NULL
9808 && sec->id <= htab->top_id
9809 && (htab->stub_group[sec->id].toc_off
9810 != htab->stub_group[input_section->id].toc_off)))
9811 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9812 rel, htab)) != NULL
9813 && (stub_entry->stub_type == ppc_stub_plt_call
9814 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9815 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9816 {
9817 bfd_boolean can_plt_call = FALSE;
9818
9819 if (rel->r_offset + 8 <= input_section->size)
9820 {
9821 unsigned long nop;
9822 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9823 if (nop == NOP
9824 || nop == CROR_151515 || nop == CROR_313131)
9825 {
9826 bfd_put_32 (input_bfd, LD_R2_40R1,
9827 contents + rel->r_offset + 4);
9828 can_plt_call = TRUE;
9829 }
9830 }
9831
9832 if (!can_plt_call)
9833 {
9834 if (stub_entry->stub_type == ppc_stub_plt_call)
9835 {
9836 /* If this is a plain branch rather than a branch
9837 and link, don't require a nop. */
9838 unsigned long br;
9839 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9840 if ((br & 1) == 0)
9841 can_plt_call = TRUE;
9842 }
9843 else if (h != NULL
9844 && strcmp (h->elf.root.root.string,
9845 ".__libc_start_main") == 0)
9846 {
9847 /* Allow crt1 branch to go via a toc adjusting stub. */
9848 can_plt_call = TRUE;
9849 }
9850 else
9851 {
9852 if (strcmp (input_section->output_section->name,
9853 ".init") == 0
9854 || strcmp (input_section->output_section->name,
9855 ".fini") == 0)
9856 (*_bfd_error_handler)
9857 (_("%B(%A+0x%lx): automatic multiple TOCs "
9858 "not supported using your crt files; "
9859 "recompile with -mminimal-toc or upgrade gcc"),
9860 input_bfd,
9861 input_section,
9862 (long) rel->r_offset);
9863 else
9864 (*_bfd_error_handler)
9865 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9866 "does not allow automatic multiple TOCs; "
9867 "recompile with -mminimal-toc or "
9868 "-fno-optimize-sibling-calls, "
9869 "or make `%s' extern"),
9870 input_bfd,
9871 input_section,
9872 (long) rel->r_offset,
9873 sym_name,
9874 sym_name);
9875 bfd_set_error (bfd_error_bad_value);
9876 ret = FALSE;
9877 }
9878 }
9879
9880 if (can_plt_call
9881 && stub_entry->stub_type == ppc_stub_plt_call)
9882 unresolved_reloc = FALSE;
9883 }
9884
9885 if (stub_entry == NULL
9886 && get_opd_info (sec) != NULL)
9887 {
9888 /* The branch destination is the value of the opd entry. */
9889 bfd_vma off = (relocation - sec->output_section->vma
9890 - sec->output_offset + rel->r_addend);
9891 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9892 if (dest != (bfd_vma) -1)
9893 {
9894 relocation = dest;
9895 addend = 0;
9896 }
9897 }
9898
9899 /* If the branch is out of reach we ought to have a long
9900 branch stub. */
9901 from = (rel->r_offset
9902 + input_section->output_offset
9903 + input_section->output_section->vma);
9904
9905 if (stub_entry == NULL
9906 && (relocation + rel->r_addend - from + max_br_offset
9907 >= 2 * max_br_offset)
9908 && r_type != R_PPC64_ADDR14_BRTAKEN
9909 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9910 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9911 htab);
9912
9913 if (stub_entry != NULL)
9914 {
9915 /* Munge up the value and addend so that we call the stub
9916 rather than the procedure directly. */
9917 relocation = (stub_entry->stub_offset
9918 + stub_entry->stub_sec->output_offset
9919 + stub_entry->stub_sec->output_section->vma);
9920 addend = 0;
9921 }
9922
9923 if (insn != 0)
9924 {
9925 if (is_power4)
9926 {
9927 /* Set 'a' bit. This is 0b00010 in BO field for branch
9928 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9929 for branch on CTR insns (BO == 1a00t or 1a01t). */
9930 if ((insn & (0x14 << 21)) == (0x04 << 21))
9931 insn |= 0x02 << 21;
9932 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9933 insn |= 0x08 << 21;
9934 else
9935 break;
9936 }
9937 else
9938 {
9939 /* Invert 'y' bit if not the default. */
9940 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9941 insn ^= 0x01 << 21;
9942 }
9943
9944 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9945 }
9946
9947 /* NOP out calls to undefined weak functions.
9948 We can thus call a weak function without first
9949 checking whether the function is defined. */
9950 else if (h != NULL
9951 && h->elf.root.type == bfd_link_hash_undefweak
9952 && r_type == R_PPC64_REL24
9953 && relocation == 0
9954 && rel->r_addend == 0)
9955 {
9956 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9957 continue;
9958 }
9959 break;
9960 }
9961
9962 /* Set `addend'. */
9963 tls_type = 0;
9964 switch (r_type)
9965 {
9966 default:
9967 (*_bfd_error_handler)
9968 (_("%B: unknown relocation type %d for symbol %s"),
9969 input_bfd, (int) r_type, sym_name);
9970
9971 bfd_set_error (bfd_error_bad_value);
9972 ret = FALSE;
9973 continue;
9974
9975 case R_PPC64_NONE:
9976 case R_PPC64_TLS:
9977 case R_PPC64_GNU_VTINHERIT:
9978 case R_PPC64_GNU_VTENTRY:
9979 continue;
9980
9981 /* GOT16 relocations. Like an ADDR16 using the symbol's
9982 address in the GOT as relocation value instead of the
9983 symbol's value itself. Also, create a GOT entry for the
9984 symbol and put the symbol value there. */
9985 case R_PPC64_GOT_TLSGD16:
9986 case R_PPC64_GOT_TLSGD16_LO:
9987 case R_PPC64_GOT_TLSGD16_HI:
9988 case R_PPC64_GOT_TLSGD16_HA:
9989 tls_type = TLS_TLS | TLS_GD;
9990 goto dogot;
9991
9992 case R_PPC64_GOT_TLSLD16:
9993 case R_PPC64_GOT_TLSLD16_LO:
9994 case R_PPC64_GOT_TLSLD16_HI:
9995 case R_PPC64_GOT_TLSLD16_HA:
9996 tls_type = TLS_TLS | TLS_LD;
9997 goto dogot;
9998
9999 case R_PPC64_GOT_TPREL16_DS:
10000 case R_PPC64_GOT_TPREL16_LO_DS:
10001 case R_PPC64_GOT_TPREL16_HI:
10002 case R_PPC64_GOT_TPREL16_HA:
10003 tls_type = TLS_TLS | TLS_TPREL;
10004 goto dogot;
10005
10006 case R_PPC64_GOT_DTPREL16_DS:
10007 case R_PPC64_GOT_DTPREL16_LO_DS:
10008 case R_PPC64_GOT_DTPREL16_HI:
10009 case R_PPC64_GOT_DTPREL16_HA:
10010 tls_type = TLS_TLS | TLS_DTPREL;
10011 goto dogot;
10012
10013 case R_PPC64_GOT16:
10014 case R_PPC64_GOT16_LO:
10015 case R_PPC64_GOT16_HI:
10016 case R_PPC64_GOT16_HA:
10017 case R_PPC64_GOT16_DS:
10018 case R_PPC64_GOT16_LO_DS:
10019 dogot:
10020 {
10021 /* Relocation is to the entry for this symbol in the global
10022 offset table. */
10023 asection *got;
10024 bfd_vma *offp;
10025 bfd_vma off;
10026 unsigned long indx = 0;
10027
10028 if (tls_type == (TLS_TLS | TLS_LD)
10029 && (h == NULL
10030 || !h->elf.def_dynamic))
10031 offp = &ppc64_tlsld_got (input_bfd)->offset;
10032 else
10033 {
10034 struct got_entry *ent;
10035
10036 if (h != NULL)
10037 {
10038 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10039 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10040 &h->elf)
10041 || (info->shared
10042 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10043 /* This is actually a static link, or it is a
10044 -Bsymbolic link and the symbol is defined
10045 locally, or the symbol was forced to be local
10046 because of a version file. */
10047 ;
10048 else
10049 {
10050 indx = h->elf.dynindx;
10051 unresolved_reloc = FALSE;
10052 }
10053 ent = h->elf.got.glist;
10054 }
10055 else
10056 {
10057 if (local_got_ents == NULL)
10058 abort ();
10059 ent = local_got_ents[r_symndx];
10060 }
10061
10062 for (; ent != NULL; ent = ent->next)
10063 if (ent->addend == rel->r_addend
10064 && ent->owner == input_bfd
10065 && ent->tls_type == tls_type)
10066 break;
10067 if (ent == NULL)
10068 abort ();
10069 offp = &ent->got.offset;
10070 }
10071
10072 got = ppc64_elf_tdata (input_bfd)->got;
10073 if (got == NULL)
10074 abort ();
10075
10076 /* The offset must always be a multiple of 8. We use the
10077 least significant bit to record whether we have already
10078 processed this entry. */
10079 off = *offp;
10080 if ((off & 1) != 0)
10081 off &= ~1;
10082 else
10083 {
10084 /* Generate relocs for the dynamic linker, except in
10085 the case of TLSLD where we'll use one entry per
10086 module. */
10087 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10088
10089 *offp = off | 1;
10090 if ((info->shared || indx != 0)
10091 && (h == NULL
10092 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10093 || h->elf.root.type != bfd_link_hash_undefweak))
10094 {
10095 outrel.r_offset = (got->output_section->vma
10096 + got->output_offset
10097 + off);
10098 outrel.r_addend = rel->r_addend;
10099 if (tls_type & (TLS_LD | TLS_GD))
10100 {
10101 outrel.r_addend = 0;
10102 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10103 if (tls_type == (TLS_TLS | TLS_GD))
10104 {
10105 loc = relgot->contents;
10106 loc += (relgot->reloc_count++
10107 * sizeof (Elf64_External_Rela));
10108 bfd_elf64_swap_reloca_out (output_bfd,
10109 &outrel, loc);
10110 outrel.r_offset += 8;
10111 outrel.r_addend = rel->r_addend;
10112 outrel.r_info
10113 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10114 }
10115 }
10116 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10117 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10118 else if (tls_type == (TLS_TLS | TLS_TPREL))
10119 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10120 else if (indx == 0)
10121 {
10122 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10123
10124 /* Write the .got section contents for the sake
10125 of prelink. */
10126 loc = got->contents + off;
10127 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10128 loc);
10129 }
10130 else
10131 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10132
10133 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10134 {
10135 outrel.r_addend += relocation;
10136 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10137 outrel.r_addend -= htab->elf.tls_sec->vma;
10138 }
10139 loc = relgot->contents;
10140 loc += (relgot->reloc_count++
10141 * sizeof (Elf64_External_Rela));
10142 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10143 }
10144
10145 /* Init the .got section contents here if we're not
10146 emitting a reloc. */
10147 else
10148 {
10149 relocation += rel->r_addend;
10150 if (tls_type == (TLS_TLS | TLS_LD))
10151 relocation = 1;
10152 else if (tls_type != 0)
10153 {
10154 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10155 if (tls_type == (TLS_TLS | TLS_TPREL))
10156 relocation += DTP_OFFSET - TP_OFFSET;
10157
10158 if (tls_type == (TLS_TLS | TLS_GD))
10159 {
10160 bfd_put_64 (output_bfd, relocation,
10161 got->contents + off + 8);
10162 relocation = 1;
10163 }
10164 }
10165
10166 bfd_put_64 (output_bfd, relocation,
10167 got->contents + off);
10168 }
10169 }
10170
10171 if (off >= (bfd_vma) -2)
10172 abort ();
10173
10174 relocation = got->output_offset + off;
10175
10176 /* TOC base (r2) is TOC start plus 0x8000. */
10177 addend = -TOC_BASE_OFF;
10178 }
10179 break;
10180
10181 case R_PPC64_PLT16_HA:
10182 case R_PPC64_PLT16_HI:
10183 case R_PPC64_PLT16_LO:
10184 case R_PPC64_PLT32:
10185 case R_PPC64_PLT64:
10186 /* Relocation is to the entry for this symbol in the
10187 procedure linkage table. */
10188
10189 /* Resolve a PLT reloc against a local symbol directly,
10190 without using the procedure linkage table. */
10191 if (h == NULL)
10192 break;
10193
10194 /* It's possible that we didn't make a PLT entry for this
10195 symbol. This happens when statically linking PIC code,
10196 or when using -Bsymbolic. Go find a match if there is a
10197 PLT entry. */
10198 if (htab->plt != NULL)
10199 {
10200 struct plt_entry *ent;
10201 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10202 if (ent->addend == rel->r_addend
10203 && ent->plt.offset != (bfd_vma) -1)
10204 {
10205 relocation = (htab->plt->output_section->vma
10206 + htab->plt->output_offset
10207 + ent->plt.offset);
10208 unresolved_reloc = FALSE;
10209 }
10210 }
10211 break;
10212
10213 case R_PPC64_TOC:
10214 /* Relocation value is TOC base. */
10215 relocation = TOCstart;
10216 if (r_symndx == 0)
10217 relocation += htab->stub_group[input_section->id].toc_off;
10218 else if (unresolved_reloc)
10219 ;
10220 else if (sec != NULL && sec->id <= htab->top_id)
10221 relocation += htab->stub_group[sec->id].toc_off;
10222 else
10223 unresolved_reloc = TRUE;
10224 goto dodyn2;
10225
10226 /* TOC16 relocs. We want the offset relative to the TOC base,
10227 which is the address of the start of the TOC plus 0x8000.
10228 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10229 in this order. */
10230 case R_PPC64_TOC16:
10231 case R_PPC64_TOC16_LO:
10232 case R_PPC64_TOC16_HI:
10233 case R_PPC64_TOC16_DS:
10234 case R_PPC64_TOC16_LO_DS:
10235 case R_PPC64_TOC16_HA:
10236 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10237 break;
10238
10239 /* Relocate against the beginning of the section. */
10240 case R_PPC64_SECTOFF:
10241 case R_PPC64_SECTOFF_LO:
10242 case R_PPC64_SECTOFF_HI:
10243 case R_PPC64_SECTOFF_DS:
10244 case R_PPC64_SECTOFF_LO_DS:
10245 case R_PPC64_SECTOFF_HA:
10246 if (sec != NULL)
10247 addend -= sec->output_section->vma;
10248 break;
10249
10250 case R_PPC64_REL14:
10251 case R_PPC64_REL14_BRNTAKEN:
10252 case R_PPC64_REL14_BRTAKEN:
10253 case R_PPC64_REL24:
10254 break;
10255
10256 case R_PPC64_TPREL16:
10257 case R_PPC64_TPREL16_LO:
10258 case R_PPC64_TPREL16_HI:
10259 case R_PPC64_TPREL16_HA:
10260 case R_PPC64_TPREL16_DS:
10261 case R_PPC64_TPREL16_LO_DS:
10262 case R_PPC64_TPREL16_HIGHER:
10263 case R_PPC64_TPREL16_HIGHERA:
10264 case R_PPC64_TPREL16_HIGHEST:
10265 case R_PPC64_TPREL16_HIGHESTA:
10266 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10267 if (info->shared)
10268 /* The TPREL16 relocs shouldn't really be used in shared
10269 libs as they will result in DT_TEXTREL being set, but
10270 support them anyway. */
10271 goto dodyn;
10272 break;
10273
10274 case R_PPC64_DTPREL16:
10275 case R_PPC64_DTPREL16_LO:
10276 case R_PPC64_DTPREL16_HI:
10277 case R_PPC64_DTPREL16_HA:
10278 case R_PPC64_DTPREL16_DS:
10279 case R_PPC64_DTPREL16_LO_DS:
10280 case R_PPC64_DTPREL16_HIGHER:
10281 case R_PPC64_DTPREL16_HIGHERA:
10282 case R_PPC64_DTPREL16_HIGHEST:
10283 case R_PPC64_DTPREL16_HIGHESTA:
10284 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10285 break;
10286
10287 case R_PPC64_DTPMOD64:
10288 relocation = 1;
10289 addend = 0;
10290 goto dodyn;
10291
10292 case R_PPC64_TPREL64:
10293 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10294 goto dodyn;
10295
10296 case R_PPC64_DTPREL64:
10297 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10298 /* Fall thru */
10299
10300 /* Relocations that may need to be propagated if this is a
10301 dynamic object. */
10302 case R_PPC64_REL30:
10303 case R_PPC64_REL32:
10304 case R_PPC64_REL64:
10305 case R_PPC64_ADDR14:
10306 case R_PPC64_ADDR14_BRNTAKEN:
10307 case R_PPC64_ADDR14_BRTAKEN:
10308 case R_PPC64_ADDR16:
10309 case R_PPC64_ADDR16_DS:
10310 case R_PPC64_ADDR16_HA:
10311 case R_PPC64_ADDR16_HI:
10312 case R_PPC64_ADDR16_HIGHER:
10313 case R_PPC64_ADDR16_HIGHERA:
10314 case R_PPC64_ADDR16_HIGHEST:
10315 case R_PPC64_ADDR16_HIGHESTA:
10316 case R_PPC64_ADDR16_LO:
10317 case R_PPC64_ADDR16_LO_DS:
10318 case R_PPC64_ADDR24:
10319 case R_PPC64_ADDR32:
10320 case R_PPC64_ADDR64:
10321 case R_PPC64_UADDR16:
10322 case R_PPC64_UADDR32:
10323 case R_PPC64_UADDR64:
10324 /* r_symndx will be zero only for relocs against symbols
10325 from removed linkonce sections, or sections discarded by
10326 a linker script. */
10327 dodyn:
10328 if (r_symndx == 0)
10329 break;
10330 /* Fall thru. */
10331
10332 dodyn2:
10333 if ((input_section->flags & SEC_ALLOC) == 0)
10334 break;
10335
10336 if (NO_OPD_RELOCS && is_opd)
10337 break;
10338
10339 if ((info->shared
10340 && (h == NULL
10341 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10342 || h->elf.root.type != bfd_link_hash_undefweak)
10343 && (MUST_BE_DYN_RELOC (r_type)
10344 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10345 || (ELIMINATE_COPY_RELOCS
10346 && !info->shared
10347 && h != NULL
10348 && h->elf.dynindx != -1
10349 && !h->elf.non_got_ref
10350 && h->elf.def_dynamic
10351 && !h->elf.def_regular))
10352 {
10353 Elf_Internal_Rela outrel;
10354 bfd_boolean skip, relocate;
10355 asection *sreloc;
10356 bfd_byte *loc;
10357 bfd_vma out_off;
10358
10359 /* When generating a dynamic object, these relocations
10360 are copied into the output file to be resolved at run
10361 time. */
10362
10363 skip = FALSE;
10364 relocate = FALSE;
10365
10366 out_off = _bfd_elf_section_offset (output_bfd, info,
10367 input_section, rel->r_offset);
10368 if (out_off == (bfd_vma) -1)
10369 skip = TRUE;
10370 else if (out_off == (bfd_vma) -2)
10371 skip = TRUE, relocate = TRUE;
10372 out_off += (input_section->output_section->vma
10373 + input_section->output_offset);
10374 outrel.r_offset = out_off;
10375 outrel.r_addend = rel->r_addend;
10376
10377 /* Optimize unaligned reloc use. */
10378 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10379 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10380 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10381 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10382 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10383 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10384 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10385 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10386 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10387
10388 if (skip)
10389 memset (&outrel, 0, sizeof outrel);
10390 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10391 && !is_opd
10392 && r_type != R_PPC64_TOC)
10393 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10394 else
10395 {
10396 /* This symbol is local, or marked to become local,
10397 or this is an opd section reloc which must point
10398 at a local function. */
10399 outrel.r_addend += relocation;
10400 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10401 {
10402 if (is_opd && h != NULL)
10403 {
10404 /* Lie about opd entries. This case occurs
10405 when building shared libraries and we
10406 reference a function in another shared
10407 lib. The same thing happens for a weak
10408 definition in an application that's
10409 overridden by a strong definition in a
10410 shared lib. (I believe this is a generic
10411 bug in binutils handling of weak syms.)
10412 In these cases we won't use the opd
10413 entry in this lib. */
10414 unresolved_reloc = FALSE;
10415 }
10416 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10417
10418 /* We need to relocate .opd contents for ld.so.
10419 Prelink also wants simple and consistent rules
10420 for relocs. This make all RELATIVE relocs have
10421 *r_offset equal to r_addend. */
10422 relocate = TRUE;
10423 }
10424 else
10425 {
10426 long indx = 0;
10427
10428 if (bfd_is_abs_section (sec))
10429 ;
10430 else if (sec == NULL || sec->owner == NULL)
10431 {
10432 bfd_set_error (bfd_error_bad_value);
10433 return FALSE;
10434 }
10435 else
10436 {
10437 asection *osec;
10438
10439 osec = sec->output_section;
10440 indx = elf_section_data (osec)->dynindx;
10441
10442 /* We are turning this relocation into one
10443 against a section symbol, so subtract out
10444 the output section's address but not the
10445 offset of the input section in the output
10446 section. */
10447 outrel.r_addend -= osec->vma;
10448 }
10449
10450 outrel.r_info = ELF64_R_INFO (indx, r_type);
10451 }
10452 }
10453
10454 sreloc = elf_section_data (input_section)->sreloc;
10455 if (sreloc == NULL)
10456 abort ();
10457
10458 loc = sreloc->contents;
10459 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10460 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10461
10462 /* If this reloc is against an external symbol, it will
10463 be computed at runtime, so there's no need to do
10464 anything now. However, for the sake of prelink ensure
10465 that the section contents are a known value. */
10466 if (! relocate)
10467 {
10468 unresolved_reloc = FALSE;
10469 /* The value chosen here is quite arbitrary as ld.so
10470 ignores section contents except for the special
10471 case of .opd where the contents might be accessed
10472 before relocation. Choose zero, as that won't
10473 cause reloc overflow. */
10474 relocation = 0;
10475 addend = 0;
10476 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10477 to improve backward compatibility with older
10478 versions of ld. */
10479 if (r_type == R_PPC64_ADDR64)
10480 addend = outrel.r_addend;
10481 /* Adjust pc_relative relocs to have zero in *r_offset. */
10482 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10483 addend = (input_section->output_section->vma
10484 + input_section->output_offset
10485 + rel->r_offset);
10486 }
10487 }
10488 break;
10489
10490 case R_PPC64_COPY:
10491 case R_PPC64_GLOB_DAT:
10492 case R_PPC64_JMP_SLOT:
10493 case R_PPC64_RELATIVE:
10494 /* We shouldn't ever see these dynamic relocs in relocatable
10495 files. */
10496 /* Fall through. */
10497
10498 case R_PPC64_PLTGOT16:
10499 case R_PPC64_PLTGOT16_DS:
10500 case R_PPC64_PLTGOT16_HA:
10501 case R_PPC64_PLTGOT16_HI:
10502 case R_PPC64_PLTGOT16_LO:
10503 case R_PPC64_PLTGOT16_LO_DS:
10504 case R_PPC64_PLTREL32:
10505 case R_PPC64_PLTREL64:
10506 /* These ones haven't been implemented yet. */
10507
10508 (*_bfd_error_handler)
10509 (_("%B: relocation %s is not supported for symbol %s."),
10510 input_bfd,
10511 ppc64_elf_howto_table[r_type]->name, sym_name);
10512
10513 bfd_set_error (bfd_error_invalid_operation);
10514 ret = FALSE;
10515 continue;
10516 }
10517
10518 /* Do any further special processing. */
10519 switch (r_type)
10520 {
10521 default:
10522 break;
10523
10524 case R_PPC64_ADDR16_HA:
10525 case R_PPC64_ADDR16_HIGHERA:
10526 case R_PPC64_ADDR16_HIGHESTA:
10527 case R_PPC64_GOT16_HA:
10528 case R_PPC64_PLTGOT16_HA:
10529 case R_PPC64_PLT16_HA:
10530 case R_PPC64_TOC16_HA:
10531 case R_PPC64_SECTOFF_HA:
10532 case R_PPC64_TPREL16_HA:
10533 case R_PPC64_DTPREL16_HA:
10534 case R_PPC64_GOT_TLSGD16_HA:
10535 case R_PPC64_GOT_TLSLD16_HA:
10536 case R_PPC64_GOT_TPREL16_HA:
10537 case R_PPC64_GOT_DTPREL16_HA:
10538 case R_PPC64_TPREL16_HIGHER:
10539 case R_PPC64_TPREL16_HIGHERA:
10540 case R_PPC64_TPREL16_HIGHEST:
10541 case R_PPC64_TPREL16_HIGHESTA:
10542 case R_PPC64_DTPREL16_HIGHER:
10543 case R_PPC64_DTPREL16_HIGHERA:
10544 case R_PPC64_DTPREL16_HIGHEST:
10545 case R_PPC64_DTPREL16_HIGHESTA:
10546 /* It's just possible that this symbol is a weak symbol
10547 that's not actually defined anywhere. In that case,
10548 'sec' would be NULL, and we should leave the symbol
10549 alone (it will be set to zero elsewhere in the link). */
10550 if (sec != NULL)
10551 /* Add 0x10000 if sign bit in 0:15 is set.
10552 Bits 0:15 are not used. */
10553 addend += 0x8000;
10554 break;
10555
10556 case R_PPC64_ADDR16_DS:
10557 case R_PPC64_ADDR16_LO_DS:
10558 case R_PPC64_GOT16_DS:
10559 case R_PPC64_GOT16_LO_DS:
10560 case R_PPC64_PLT16_LO_DS:
10561 case R_PPC64_SECTOFF_DS:
10562 case R_PPC64_SECTOFF_LO_DS:
10563 case R_PPC64_TOC16_DS:
10564 case R_PPC64_TOC16_LO_DS:
10565 case R_PPC64_PLTGOT16_DS:
10566 case R_PPC64_PLTGOT16_LO_DS:
10567 case R_PPC64_GOT_TPREL16_DS:
10568 case R_PPC64_GOT_TPREL16_LO_DS:
10569 case R_PPC64_GOT_DTPREL16_DS:
10570 case R_PPC64_GOT_DTPREL16_LO_DS:
10571 case R_PPC64_TPREL16_DS:
10572 case R_PPC64_TPREL16_LO_DS:
10573 case R_PPC64_DTPREL16_DS:
10574 case R_PPC64_DTPREL16_LO_DS:
10575 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10576 mask = 3;
10577 /* If this reloc is against an lq insn, then the value must be
10578 a multiple of 16. This is somewhat of a hack, but the
10579 "correct" way to do this by defining _DQ forms of all the
10580 _DS relocs bloats all reloc switches in this file. It
10581 doesn't seem to make much sense to use any of these relocs
10582 in data, so testing the insn should be safe. */
10583 if ((insn & (0x3f << 26)) == (56u << 26))
10584 mask = 15;
10585 if (((relocation + addend) & mask) != 0)
10586 {
10587 (*_bfd_error_handler)
10588 (_("%B: error: relocation %s not a multiple of %d"),
10589 input_bfd,
10590 ppc64_elf_howto_table[r_type]->name,
10591 mask + 1);
10592 bfd_set_error (bfd_error_bad_value);
10593 ret = FALSE;
10594 continue;
10595 }
10596 break;
10597 }
10598
10599 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10600 because such sections are not SEC_ALLOC and thus ld.so will
10601 not process them. */
10602 if (unresolved_reloc
10603 && !((input_section->flags & SEC_DEBUGGING) != 0
10604 && h->elf.def_dynamic))
10605 {
10606 (*_bfd_error_handler)
10607 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10608 input_bfd,
10609 input_section,
10610 (long) rel->r_offset,
10611 ppc64_elf_howto_table[(int) r_type]->name,
10612 h->elf.root.root.string);
10613 ret = FALSE;
10614 }
10615
10616 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10617 input_bfd,
10618 input_section,
10619 contents,
10620 rel->r_offset,
10621 relocation,
10622 addend);
10623
10624 if (r != bfd_reloc_ok)
10625 {
10626 if (sym_name == NULL)
10627 sym_name = "(null)";
10628 if (r == bfd_reloc_overflow)
10629 {
10630 if (warned)
10631 continue;
10632 if (h != NULL
10633 && h->elf.root.type == bfd_link_hash_undefweak
10634 && ppc64_elf_howto_table[r_type]->pc_relative)
10635 {
10636 /* Assume this is a call protected by other code that
10637 detects the symbol is undefined. If this is the case,
10638 we can safely ignore the overflow. If not, the
10639 program is hosed anyway, and a little warning isn't
10640 going to help. */
10641
10642 continue;
10643 }
10644
10645 if (!((*info->callbacks->reloc_overflow)
10646 (info, (h ? &h->elf.root : NULL), sym_name,
10647 ppc64_elf_howto_table[r_type]->name,
10648 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10649 return FALSE;
10650 }
10651 else
10652 {
10653 (*_bfd_error_handler)
10654 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10655 input_bfd,
10656 input_section,
10657 (long) rel->r_offset,
10658 ppc64_elf_howto_table[r_type]->name,
10659 sym_name,
10660 (int) r);
10661 ret = FALSE;
10662 }
10663 }
10664 }
10665
10666 /* If we're emitting relocations, then shortly after this function
10667 returns, reloc offsets and addends for this section will be
10668 adjusted. Worse, reloc symbol indices will be for the output
10669 file rather than the input. Save a copy of the relocs for
10670 opd_entry_value. */
10671 if (is_opd && info->emitrelocations)
10672 {
10673 bfd_size_type amt;
10674 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10675 rel = bfd_alloc (input_bfd, amt);
10676 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10677 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10678 if (rel == NULL)
10679 return FALSE;
10680 memcpy (rel, relocs, amt);
10681 }
10682 return ret;
10683}
10684
10685/* Adjust the value of any local symbols in opd sections. */
10686
10687static bfd_boolean
10688ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10689 const char *name ATTRIBUTE_UNUSED,
10690 Elf_Internal_Sym *elfsym,
10691 asection *input_sec,
10692 struct elf_link_hash_entry *h)
10693{
10694 long *opd_adjust, adjust;
10695 bfd_vma value;
10696
10697 if (h != NULL)
10698 return TRUE;
10699
10700 opd_adjust = get_opd_info (input_sec);
10701 if (opd_adjust == NULL)
10702 return TRUE;
10703
10704 value = elfsym->st_value - input_sec->output_offset;
10705 if (!info->relocatable)
10706 value -= input_sec->output_section->vma;
10707
10708 adjust = opd_adjust[value / 8];
10709 if (adjust == -1)
10710 elfsym->st_value = 0;
10711 else
10712 elfsym->st_value += adjust;
10713 return TRUE;
10714}
10715
10716/* Finish up dynamic symbol handling. We set the contents of various
10717 dynamic sections here. */
10718
10719static bfd_boolean
10720ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10721 struct bfd_link_info *info,
10722 struct elf_link_hash_entry *h,
10723 Elf_Internal_Sym *sym)
10724{
10725 struct ppc_link_hash_table *htab;
10726 bfd *dynobj;
10727 struct plt_entry *ent;
10728 Elf_Internal_Rela rela;
10729 bfd_byte *loc;
10730
10731 htab = ppc_hash_table (info);
10732 dynobj = htab->elf.dynobj;
10733
10734 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10735 if (ent->plt.offset != (bfd_vma) -1)
10736 {
10737 /* This symbol has an entry in the procedure linkage
10738 table. Set it up. */
10739
10740 if (htab->plt == NULL
10741 || htab->relplt == NULL
10742 || htab->glink == NULL)
10743 abort ();
10744
10745 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10746 fill in the PLT entry. */
10747 rela.r_offset = (htab->plt->output_section->vma
10748 + htab->plt->output_offset
10749 + ent->plt.offset);
10750 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10751 rela.r_addend = ent->addend;
10752
10753 loc = htab->relplt->contents;
10754 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10755 * sizeof (Elf64_External_Rela));
10756 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10757 }
10758
10759 if (h->needs_copy)
10760 {
10761 Elf_Internal_Rela rela;
10762 bfd_byte *loc;
10763
10764 /* This symbol needs a copy reloc. Set it up. */
10765
10766 if (h->dynindx == -1
10767 || (h->root.type != bfd_link_hash_defined
10768 && h->root.type != bfd_link_hash_defweak)
10769 || htab->relbss == NULL)
10770 abort ();
10771
10772 rela.r_offset = (h->root.u.def.value
10773 + h->root.u.def.section->output_section->vma
10774 + h->root.u.def.section->output_offset);
10775 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10776 rela.r_addend = 0;
10777 loc = htab->relbss->contents;
10778 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10779 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10780 }
10781
10782 /* Mark some specially defined symbols as absolute. */
10783 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10784 sym->st_shndx = SHN_ABS;
10785
10786 return TRUE;
10787}
10788
10789/* Used to decide how to sort relocs in an optimal manner for the
10790 dynamic linker, before writing them out. */
10791
10792static enum elf_reloc_type_class
10793ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10794{
10795 enum elf_ppc64_reloc_type r_type;
10796
10797 r_type = ELF64_R_TYPE (rela->r_info);
10798 switch (r_type)
10799 {
10800 case R_PPC64_RELATIVE:
10801 return reloc_class_relative;
10802 case R_PPC64_JMP_SLOT:
10803 return reloc_class_plt;
10804 case R_PPC64_COPY:
10805 return reloc_class_copy;
10806 default:
10807 return reloc_class_normal;
10808 }
10809}
10810
10811/* Finish up the dynamic sections. */
10812
10813static bfd_boolean
10814ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10815 struct bfd_link_info *info)
10816{
10817 struct ppc_link_hash_table *htab;
10818 bfd *dynobj;
10819 asection *sdyn;
10820
10821 htab = ppc_hash_table (info);
10822 dynobj = htab->elf.dynobj;
10823 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10824
10825 if (htab->elf.dynamic_sections_created)
10826 {
10827 Elf64_External_Dyn *dyncon, *dynconend;
10828
10829 if (sdyn == NULL || htab->got == NULL)
10830 abort ();
10831
10832 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10833 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10834 for (; dyncon < dynconend; dyncon++)
10835 {
10836 Elf_Internal_Dyn dyn;
10837 asection *s;
10838
10839 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10840
10841 switch (dyn.d_tag)
10842 {
10843 default:
10844 continue;
10845
10846 case DT_PPC64_GLINK:
10847 s = htab->glink;
10848 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10849 /* We stupidly defined DT_PPC64_GLINK to be the start
10850 of glink rather than the first entry point, which is
10851 what ld.so needs, and now have a bigger stub to
10852 support automatic multiple TOCs. */
10853 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10854 break;
10855
10856 case DT_PPC64_OPD:
10857 s = bfd_get_section_by_name (output_bfd, ".opd");
10858 if (s == NULL)
10859 continue;
10860 dyn.d_un.d_ptr = s->vma;
10861 break;
10862
10863 case DT_PPC64_OPDSZ:
10864 s = bfd_get_section_by_name (output_bfd, ".opd");
10865 if (s == NULL)
10866 continue;
10867 dyn.d_un.d_val = s->size;
10868 break;
10869
10870 case DT_PLTGOT:
10871 s = htab->plt;
10872 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10873 break;
10874
10875 case DT_JMPREL:
10876 s = htab->relplt;
10877 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10878 break;
10879
10880 case DT_PLTRELSZ:
10881 dyn.d_un.d_val = htab->relplt->size;
10882 break;
10883
10884 case DT_RELASZ:
10885 /* Don't count procedure linkage table relocs in the
10886 overall reloc count. */
10887 s = htab->relplt;
10888 if (s == NULL)
10889 continue;
10890 dyn.d_un.d_val -= s->size;
10891 break;
10892
10893 case DT_RELA:
10894 /* We may not be using the standard ELF linker script.
10895 If .rela.plt is the first .rela section, we adjust
10896 DT_RELA to not include it. */
10897 s = htab->relplt;
10898 if (s == NULL)
10899 continue;
10900 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10901 continue;
10902 dyn.d_un.d_ptr += s->size;
10903 break;
10904 }
10905
10906 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10907 }
10908 }
10909
10910 if (htab->got != NULL && htab->got->size != 0)
10911 {
10912 /* Fill in the first entry in the global offset table.
10913 We use it to hold the link-time TOCbase. */
10914 bfd_put_64 (output_bfd,
10915 elf_gp (output_bfd) + TOC_BASE_OFF,
10916 htab->got->contents);
10917
10918 /* Set .got entry size. */
10919 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10920 }
10921
10922 if (htab->plt != NULL && htab->plt->size != 0)
10923 {
10924 /* Set .plt entry size. */
10925 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10926 = PLT_ENTRY_SIZE;
10927 }
10928
10929 /* We need to handle writing out multiple GOT sections ourselves,
10930 since we didn't add them to DYNOBJ. We know dynobj is the first
10931 bfd. */
10932 while ((dynobj = dynobj->link_next) != NULL)
10933 {
10934 asection *s;
10935
10936 if (!is_ppc64_elf_target (dynobj->xvec))
10937 continue;
10938
10939 s = ppc64_elf_tdata (dynobj)->got;
10940 if (s != NULL
10941 && s->size != 0
10942 && s->output_section != bfd_abs_section_ptr
10943 && !bfd_set_section_contents (output_bfd, s->output_section,
10944 s->contents, s->output_offset,
10945 s->size))
10946 return FALSE;
10947 s = ppc64_elf_tdata (dynobj)->relgot;
10948 if (s != NULL
10949 && s->size != 0
10950 && s->output_section != bfd_abs_section_ptr
10951 && !bfd_set_section_contents (output_bfd, s->output_section,
10952 s->contents, s->output_offset,
10953 s->size))
10954 return FALSE;
10955 }
10956
10957 return TRUE;
10958}
10959
10960#include "elf64-target.h"
This page took 0.066791 seconds and 4 git commands to generate.