corrected version
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
... / ...
CommitLineData
1/* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24/* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28#include "bfd.h"
29#include "sysdep.h"
30#include "bfdlink.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/ppc64.h"
34#include "elf64-ppc.h"
35
36static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57#define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58#define TARGET_LITTLE_NAME "elf64-powerpcle"
59#define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60#define TARGET_BIG_NAME "elf64-powerpc"
61#define ELF_ARCH bfd_arch_powerpc
62#define ELF_MACHINE_CODE EM_PPC64
63#define ELF_MAXPAGESIZE 0x10000
64#define elf_info_to_howto ppc64_elf_info_to_howto
65
66#define elf_backend_want_got_sym 0
67#define elf_backend_want_plt_sym 0
68#define elf_backend_plt_alignment 3
69#define elf_backend_plt_not_loaded 1
70#define elf_backend_got_symbol_offset 0
71#define elf_backend_got_header_size 8
72#define elf_backend_can_gc_sections 1
73#define elf_backend_can_refcount 1
74#define elf_backend_rela_normal 1
75
76#define bfd_elf64_mkobject ppc64_elf_mkobject
77#define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78#define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79#define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80#define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81#define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82#define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84#define elf_backend_object_p ppc64_elf_object_p
85#define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86#define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87#define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88#define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89#define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90#define elf_backend_check_directives ppc64_elf_check_directives
91#define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92#define elf_backend_check_relocs ppc64_elf_check_relocs
93#define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94#define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95#define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96#define elf_backend_hide_symbol ppc64_elf_hide_symbol
97#define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98#define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99#define elf_backend_relocate_section ppc64_elf_relocate_section
100#define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101#define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102#define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103#define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104#define elf_backend_special_sections ppc64_elf_special_sections
105
106/* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110/* The size in bytes of an entry in the procedure linkage table. */
111#define PLT_ENTRY_SIZE 24
112
113/* The initial size of the plt reserved for the dynamic linker. */
114#define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116/* TOC base pointers offset from start of TOC. */
117#define TOC_BASE_OFF 0x8000
118
119/* Offset of tp and dtp pointers from start of TLS block. */
120#define TP_OFFSET 0x7000
121#define DTP_OFFSET 0x8000
122
123/* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126#define PLT_CALL_STUB_SIZE (7*4)
127#define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128#define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129#define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130#define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131#define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133#define BCTR 0x4e800420 /* bctr */
134
135
136#define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137#define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139#define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141/* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143#define GLINK_CALL_STUB_SIZE (16*4)
144#define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145#define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146#define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147#define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148#define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149#define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150#define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152#define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153#define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155#define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161/* Pad with this. */
162#define NOP 0x60000000
163
164/* Some other nops. */
165#define CROR_151515 0x4def7b82
166#define CROR_313131 0x4ffffb82
167
168/* .glink entries for the first 32k functions are two instructions. */
169#define LI_R0_0 0x38000000 /* li %r0,0 */
170#define B_DOT 0x48000000 /* b . */
171
172/* After that, we need two instructions to load the index, followed by
173 a branch. */
174#define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175#define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177/* Instructions used by the save and restore reg functions. */
178#define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179#define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180#define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181#define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182#define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183#define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184#define LI_R12_0 0x39800000 /* li %r12,0 */
185#define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186#define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187#define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188#define BLR 0x4e800020 /* blr */
189
190/* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194#ifndef NO_OPD_RELOCS
195#define NO_OPD_RELOCS 0
196#endif
197\f
198#define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200/* Relocation HOWTO's. */
201static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864};
1865
1866\f
1867/* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870static void
1871ppc_howto_init (void)
1872{
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884}
1885
1886static reloc_howto_type *
1887ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889{
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106};
2107
2108/* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110static void
2111ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113{
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124}
2125
2126/* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128static bfd_reloc_status_type
2129ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132{
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145}
2146
2147static bfd_reloc_status_type
2148ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151{
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168}
2169
2170static bfd_reloc_status_type
2171ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174{
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231}
2232
2233static bfd_reloc_status_type
2234ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237{
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248}
2249
2250static bfd_reloc_status_type
2251ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254{
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268}
2269
2270static bfd_reloc_status_type
2271ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274{
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291}
2292
2293static bfd_reloc_status_type
2294ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297{
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317}
2318
2319static bfd_reloc_status_type
2320ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323{
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341}
2342
2343static bfd_reloc_status_type
2344ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347{
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363}
2364
2365struct ppc64_elf_obj_tdata
2366{
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383};
2384
2385#define ppc64_elf_tdata(bfd) \
2386 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2387
2388#define ppc64_tlsld_got(bfd) \
2389 (&ppc64_elf_tdata (bfd)->tlsld_got)
2390
2391/* Override the generic function because we store some extras. */
2392
2393static bfd_boolean
2394ppc64_elf_mkobject (bfd *abfd)
2395{
2396 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2397 abfd->tdata.any = bfd_zalloc (abfd, amt);
2398 if (abfd->tdata.any == NULL)
2399 return FALSE;
2400 return TRUE;
2401}
2402
2403/* Fix bad default arch selected for a 64 bit input bfd when the
2404 default is 32 bit. */
2405
2406static bfd_boolean
2407ppc64_elf_object_p (bfd *abfd)
2408{
2409 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2410 {
2411 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2412
2413 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2414 {
2415 /* Relies on arch after 32 bit default being 64 bit default. */
2416 abfd->arch_info = abfd->arch_info->next;
2417 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2418 }
2419 }
2420 return TRUE;
2421}
2422
2423/* Support for core dump NOTE sections. */
2424
2425static bfd_boolean
2426ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2427{
2428 size_t offset, size;
2429
2430 if (note->descsz != 504)
2431 return FALSE;
2432
2433 /* pr_cursig */
2434 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2435
2436 /* pr_pid */
2437 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2438
2439 /* pr_reg */
2440 offset = 112;
2441 size = 384;
2442
2443 /* Make a ".reg/999" section. */
2444 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2445 size, note->descpos + offset);
2446}
2447
2448static bfd_boolean
2449ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2450{
2451 if (note->descsz != 136)
2452 return FALSE;
2453
2454 elf_tdata (abfd)->core_program
2455 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2456 elf_tdata (abfd)->core_command
2457 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2458
2459 return TRUE;
2460}
2461
2462/* Merge backend specific data from an object file to the output
2463 object file when linking. */
2464
2465static bfd_boolean
2466ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2467{
2468 /* Check if we have the same endianess. */
2469 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2470 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2471 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2472 {
2473 const char *msg;
2474
2475 if (bfd_big_endian (ibfd))
2476 msg = _("%B: compiled for a big endian system "
2477 "and target is little endian");
2478 else
2479 msg = _("%B: compiled for a little endian system "
2480 "and target is big endian");
2481
2482 (*_bfd_error_handler) (msg, ibfd);
2483
2484 bfd_set_error (bfd_error_wrong_format);
2485 return FALSE;
2486 }
2487
2488 return TRUE;
2489}
2490
2491/* Add extra PPC sections. */
2492
2493static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2494{
2495 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2496 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2497 { ".plt", 4, 0, SHT_NOBITS, 0 },
2498 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2499 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2500 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2501 { NULL, 0, 0, 0, 0 }
2502};
2503
2504struct _ppc64_elf_section_data
2505{
2506 struct bfd_elf_section_data elf;
2507
2508 /* An array with one entry for each opd function descriptor. */
2509 union
2510 {
2511 /* Points to the function code section for local opd entries. */
2512 asection **func_sec;
2513 /* After editing .opd, adjust references to opd local syms. */
2514 long *adjust;
2515 } opd;
2516
2517 /* An array for toc sections, indexed by offset/8.
2518 Specifies the relocation symbol index used at a given toc offset. */
2519 unsigned *t_symndx;
2520};
2521
2522#define ppc64_elf_section_data(sec) \
2523 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2524
2525static bfd_boolean
2526ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2527{
2528 struct _ppc64_elf_section_data *sdata;
2529 bfd_size_type amt = sizeof (*sdata);
2530
2531 sdata = bfd_zalloc (abfd, amt);
2532 if (sdata == NULL)
2533 return FALSE;
2534 sec->used_by_bfd = sdata;
2535
2536 return _bfd_elf_new_section_hook (abfd, sec);
2537}
2538
2539static void *
2540get_opd_info (asection * sec)
2541{
2542 if (sec != NULL
2543 && ppc64_elf_section_data (sec) != NULL
2544 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2545 return ppc64_elf_section_data (sec)->opd.adjust;
2546 return NULL;
2547}
2548\f
2549/* Parameters for the qsort hook. */
2550static asection *synthetic_opd;
2551static bfd_boolean synthetic_relocatable;
2552
2553/* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2554
2555static int
2556compare_symbols (const void *ap, const void *bp)
2557{
2558 const asymbol *a = * (const asymbol **) ap;
2559 const asymbol *b = * (const asymbol **) bp;
2560
2561 /* Section symbols first. */
2562 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2563 return -1;
2564 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2565 return 1;
2566
2567 /* then .opd symbols. */
2568 if (a->section == synthetic_opd && b->section != synthetic_opd)
2569 return -1;
2570 if (a->section != synthetic_opd && b->section == synthetic_opd)
2571 return 1;
2572
2573 /* then other code symbols. */
2574 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2575 == (SEC_CODE | SEC_ALLOC)
2576 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2577 != (SEC_CODE | SEC_ALLOC))
2578 return -1;
2579
2580 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2581 != (SEC_CODE | SEC_ALLOC)
2582 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2583 == (SEC_CODE | SEC_ALLOC))
2584 return 1;
2585
2586 if (synthetic_relocatable)
2587 {
2588 if (a->section->id < b->section->id)
2589 return -1;
2590
2591 if (a->section->id > b->section->id)
2592 return 1;
2593 }
2594
2595 if (a->value + a->section->vma < b->value + b->section->vma)
2596 return -1;
2597
2598 if (a->value + a->section->vma > b->value + b->section->vma)
2599 return 1;
2600
2601 return 0;
2602}
2603
2604/* Search SYMS for a symbol of the given VALUE. */
2605
2606static asymbol *
2607sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2608{
2609 long mid;
2610
2611 if (id == -1)
2612 {
2613 while (lo < hi)
2614 {
2615 mid = (lo + hi) >> 1;
2616 if (syms[mid]->value + syms[mid]->section->vma < value)
2617 lo = mid + 1;
2618 else if (syms[mid]->value + syms[mid]->section->vma > value)
2619 hi = mid;
2620 else
2621 return syms[mid];
2622 }
2623 }
2624 else
2625 {
2626 while (lo < hi)
2627 {
2628 mid = (lo + hi) >> 1;
2629 if (syms[mid]->section->id < id)
2630 lo = mid + 1;
2631 else if (syms[mid]->section->id > id)
2632 hi = mid;
2633 else if (syms[mid]->value < value)
2634 lo = mid + 1;
2635 else if (syms[mid]->value > value)
2636 hi = mid;
2637 else
2638 return syms[mid];
2639 }
2640 }
2641 return NULL;
2642}
2643
2644/* Create synthetic symbols, effectively restoring "dot-symbol" function
2645 entry syms. */
2646
2647static long
2648ppc64_elf_get_synthetic_symtab (bfd *abfd, long symcount, asymbol **syms,
2649 long dynsymcount, asymbol **dynsyms,
2650 asymbol **ret)
2651{
2652 asymbol *s;
2653 long i;
2654 long count;
2655 char *names;
2656 long codesecsym, codesecsymend, secsymend, opdsymend;
2657 asection *opd;
2658 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2659 asymbol **sy = NULL;
2660
2661 *ret = NULL;
2662
2663 opd = bfd_get_section_by_name (abfd, ".opd");
2664 if (opd == NULL)
2665 return 0;
2666
2667 if (!relocatable)
2668 {
2669 if (symcount != 0 && dynsymcount != 0)
2670 {
2671 /* Use both symbol tables. */
2672 sy = bfd_malloc ((symcount + dynsymcount + 1) * sizeof (*syms));
2673 if (sy == NULL)
2674 return 0;
2675 memcpy (sy, syms, symcount * sizeof (*syms));
2676 memcpy (sy + symcount, dynsyms, (dynsymcount + 1) * sizeof (*syms));
2677 syms = sy;
2678 symcount = symcount + dynsymcount;
2679 }
2680 else if (symcount == 0)
2681 {
2682 syms = dynsyms;
2683 symcount = dynsymcount;
2684 }
2685 }
2686
2687 if (symcount == 0)
2688 return 0;
2689
2690 synthetic_opd = opd;
2691 synthetic_relocatable = relocatable;
2692 qsort (syms, symcount, sizeof (asymbol *), compare_symbols);
2693
2694 if (!relocatable && symcount > 1)
2695 {
2696 long j;
2697 /* Trim duplicate syms, since we may have merged the normal and
2698 dynamic symbols. Actually, we only care about syms that have
2699 different values, so trim any with the same value. */
2700 for (i = 1, j = 1; i < symcount; ++i)
2701 if (syms[i - 1]->value + syms[i - 1]->section->vma
2702 != syms[i]->value + syms[i]->section->vma)
2703 syms[j++] = syms[i];
2704 symcount = j;
2705 }
2706
2707 i = 0;
2708 if (syms[i]->section == opd)
2709 ++i;
2710 codesecsym = i;
2711
2712 for (; i < symcount; ++i)
2713 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2714 != (SEC_CODE | SEC_ALLOC))
2715 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2716 break;
2717 codesecsymend = i;
2718
2719 for (; i < symcount; ++i)
2720 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2721 break;
2722 secsymend = i;
2723
2724 for (; i < symcount; ++i)
2725 if (syms[i]->section != opd)
2726 break;
2727 opdsymend = i;
2728
2729 for (; i < symcount; ++i)
2730 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2731 != (SEC_CODE | SEC_ALLOC))
2732 break;
2733 symcount = i;
2734
2735 count = 0;
2736 if (opdsymend == secsymend)
2737 goto done;
2738
2739 if (relocatable)
2740 {
2741 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2742 arelent *r;
2743 size_t size;
2744 long relcount;
2745 asection *relopd;
2746
2747 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2748 relopd = opd;
2749 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2750
2751 if (! relcount
2752 || ! (*slurp_relocs) (abfd, relopd, syms, FALSE))
2753 goto done;
2754
2755 size = 0;
2756 for (i = secsymend, r = relopd->relocation; i < opdsymend; ++i)
2757 {
2758 asymbol *sym;
2759
2760 while (r < relopd->relocation + relcount
2761 && r->address < syms[i]->value + opd->vma)
2762 ++r;
2763
2764 if (r == relopd->relocation + relcount)
2765 break;
2766
2767 if (r->address != syms[i]->value + opd->vma)
2768 continue;
2769
2770 if (r->howto->type != R_PPC64_ADDR64)
2771 continue;
2772
2773 sym = *r->sym_ptr_ptr;
2774 if (!sym_exists_at (syms, opdsymend, symcount,
2775 sym->section->id, sym->value + r->addend))
2776 {
2777 ++count;
2778 size += sizeof (asymbol);
2779 size += strlen (syms[i]->name) + 2;
2780 }
2781 }
2782
2783 s = *ret = bfd_malloc (size);
2784 if (s == NULL)
2785 {
2786 count = 0;
2787 goto done;
2788 }
2789
2790 names = (char *) (s + count);
2791
2792 for (i = secsymend, r = relopd->relocation; i < opdsymend; ++i)
2793 {
2794 asymbol *sym;
2795
2796 while (r < relopd->relocation + relcount
2797 && r->address < syms[i]->value + opd->vma)
2798 ++r;
2799
2800 if (r == relopd->relocation + relcount)
2801 break;
2802
2803 if (r->address != syms[i]->value + opd->vma)
2804 continue;
2805
2806 if (r->howto->type != R_PPC64_ADDR64)
2807 continue;
2808
2809 sym = *r->sym_ptr_ptr;
2810 if (!sym_exists_at (syms, opdsymend, symcount,
2811 sym->section->id, sym->value + r->addend))
2812 {
2813 size_t len;
2814
2815 *s = *syms[i];
2816 s->section = sym->section;
2817 s->value = sym->value + r->addend;
2818 s->name = names;
2819 *names++ = '.';
2820 len = strlen (syms[i]->name);
2821 memcpy (names, syms[i]->name, len + 1);
2822 names += len + 1;
2823 s++;
2824 }
2825 }
2826 }
2827 else
2828 {
2829 bfd_byte *contents;
2830 size_t size;
2831
2832 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2833 {
2834 if (contents)
2835 {
2836 free_contents_and_exit:
2837 free (contents);
2838 }
2839 goto done;
2840 }
2841
2842 size = 0;
2843 for (i = secsymend; i < opdsymend; ++i)
2844 {
2845 bfd_vma ent;
2846
2847 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2848 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2849 {
2850 ++count;
2851 size += sizeof (asymbol);
2852 size += strlen (syms[i]->name) + 2;
2853 }
2854 }
2855
2856 s = *ret = bfd_malloc (size);
2857 if (s == NULL)
2858 {
2859 count = 0;
2860 goto free_contents_and_exit;
2861 }
2862
2863 names = (char *) (s + count);
2864
2865 for (i = secsymend; i < opdsymend; ++i)
2866 {
2867 bfd_vma ent;
2868
2869 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2870 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2871 {
2872 long lo, hi;
2873 size_t len;
2874 asection *sec = abfd->sections;
2875
2876 *s = *syms[i];
2877 lo = codesecsym;
2878 hi = codesecsymend;
2879 while (lo < hi)
2880 {
2881 long mid = (lo + hi) >> 1;
2882 if (syms[mid]->section->vma < ent)
2883 lo = mid + 1;
2884 else if (syms[mid]->section->vma > ent)
2885 hi = mid;
2886 else
2887 {
2888 sec = syms[mid]->section;
2889 break;
2890 }
2891 }
2892
2893 if (lo >= hi && lo > codesecsym)
2894 sec = syms[lo - 1]->section;
2895
2896 for (; sec != NULL; sec = sec->next)
2897 {
2898 if (sec->vma > ent)
2899 break;
2900 if ((sec->flags & SEC_ALLOC) == 0
2901 || (sec->flags & SEC_LOAD) == 0)
2902 break;
2903 if ((sec->flags & SEC_CODE) != 0)
2904 s->section = sec;
2905 }
2906 s->value = ent - s->section->vma;
2907 s->name = names;
2908 *names++ = '.';
2909 len = strlen (syms[i]->name);
2910 memcpy (names, syms[i]->name, len + 1);
2911 names += len + 1;
2912 s++;
2913 }
2914 }
2915 free (contents);
2916 }
2917
2918 done:
2919 if (sy != NULL)
2920 free (sy);
2921 return count;
2922}
2923\f
2924/* The following functions are specific to the ELF linker, while
2925 functions above are used generally. Those named ppc64_elf_* are
2926 called by the main ELF linker code. They appear in this file more
2927 or less in the order in which they are called. eg.
2928 ppc64_elf_check_relocs is called early in the link process,
2929 ppc64_elf_finish_dynamic_sections is one of the last functions
2930 called.
2931
2932 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2933 functions have both a function code symbol and a function descriptor
2934 symbol. A call to foo in a relocatable object file looks like:
2935
2936 . .text
2937 . x:
2938 . bl .foo
2939 . nop
2940
2941 The function definition in another object file might be:
2942
2943 . .section .opd
2944 . foo: .quad .foo
2945 . .quad .TOC.@tocbase
2946 . .quad 0
2947 .
2948 . .text
2949 . .foo: blr
2950
2951 When the linker resolves the call during a static link, the branch
2952 unsurprisingly just goes to .foo and the .opd information is unused.
2953 If the function definition is in a shared library, things are a little
2954 different: The call goes via a plt call stub, the opd information gets
2955 copied to the plt, and the linker patches the nop.
2956
2957 . x:
2958 . bl .foo_stub
2959 . ld 2,40(1)
2960 .
2961 .
2962 . .foo_stub:
2963 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2964 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2965 . std 2,40(1) # this is the general idea
2966 . ld 11,0(12)
2967 . ld 2,8(12)
2968 . mtctr 11
2969 . ld 11,16(12)
2970 . bctr
2971 .
2972 . .section .plt
2973 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2974
2975 The "reloc ()" notation is supposed to indicate that the linker emits
2976 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2977 copying.
2978
2979 What are the difficulties here? Well, firstly, the relocations
2980 examined by the linker in check_relocs are against the function code
2981 sym .foo, while the dynamic relocation in the plt is emitted against
2982 the function descriptor symbol, foo. Somewhere along the line, we need
2983 to carefully copy dynamic link information from one symbol to the other.
2984 Secondly, the generic part of the elf linker will make .foo a dynamic
2985 symbol as is normal for most other backends. We need foo dynamic
2986 instead, at least for an application final link. However, when
2987 creating a shared library containing foo, we need to have both symbols
2988 dynamic so that references to .foo are satisfied during the early
2989 stages of linking. Otherwise the linker might decide to pull in a
2990 definition from some other object, eg. a static library.
2991
2992 Update: As of August 2004, we support a new convention. Function
2993 calls may use the function descriptor symbol, ie. "bl foo". This
2994 behaves exactly as "bl .foo". */
2995
2996/* The linker needs to keep track of the number of relocs that it
2997 decides to copy as dynamic relocs in check_relocs for each symbol.
2998 This is so that it can later discard them if they are found to be
2999 unnecessary. We store the information in a field extending the
3000 regular ELF linker hash table. */
3001
3002struct ppc_dyn_relocs
3003{
3004 struct ppc_dyn_relocs *next;
3005
3006 /* The input section of the reloc. */
3007 asection *sec;
3008
3009 /* Total number of relocs copied for the input section. */
3010 bfd_size_type count;
3011
3012 /* Number of pc-relative relocs copied for the input section. */
3013 bfd_size_type pc_count;
3014};
3015
3016/* Track GOT entries needed for a given symbol. We might need more
3017 than one got entry per symbol. */
3018struct got_entry
3019{
3020 struct got_entry *next;
3021
3022 /* The symbol addend that we'll be placing in the GOT. */
3023 bfd_vma addend;
3024
3025 /* Unlike other ELF targets, we use separate GOT entries for the same
3026 symbol referenced from different input files. This is to support
3027 automatic multiple TOC/GOT sections, where the TOC base can vary
3028 from one input file to another.
3029
3030 Point to the BFD owning this GOT entry. */
3031 bfd *owner;
3032
3033 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3034 TLS_TPREL or TLS_DTPREL for tls entries. */
3035 char tls_type;
3036
3037 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3038 union
3039 {
3040 bfd_signed_vma refcount;
3041 bfd_vma offset;
3042 } got;
3043};
3044
3045/* The same for PLT. */
3046struct plt_entry
3047{
3048 struct plt_entry *next;
3049
3050 bfd_vma addend;
3051
3052 union
3053 {
3054 bfd_signed_vma refcount;
3055 bfd_vma offset;
3056 } plt;
3057};
3058
3059/* Of those relocs that might be copied as dynamic relocs, this macro
3060 selects those that must be copied when linking a shared library,
3061 even when the symbol is local. */
3062
3063#define MUST_BE_DYN_RELOC(RTYPE) \
3064 ((RTYPE) != R_PPC64_REL32 \
3065 && (RTYPE) != R_PPC64_REL64 \
3066 && (RTYPE) != R_PPC64_REL30)
3067
3068/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3069 copying dynamic variables from a shared lib into an app's dynbss
3070 section, and instead use a dynamic relocation to point into the
3071 shared lib. With code that gcc generates, it's vital that this be
3072 enabled; In the PowerPC64 ABI, the address of a function is actually
3073 the address of a function descriptor, which resides in the .opd
3074 section. gcc uses the descriptor directly rather than going via the
3075 GOT as some other ABI's do, which means that initialized function
3076 pointers must reference the descriptor. Thus, a function pointer
3077 initialized to the address of a function in a shared library will
3078 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3079 redefines the function descriptor symbol to point to the copy. This
3080 presents a problem as a plt entry for that function is also
3081 initialized from the function descriptor symbol and the copy reloc
3082 may not be initialized first. */
3083#define ELIMINATE_COPY_RELOCS 1
3084
3085/* Section name for stubs is the associated section name plus this
3086 string. */
3087#define STUB_SUFFIX ".stub"
3088
3089/* Linker stubs.
3090 ppc_stub_long_branch:
3091 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3092 destination, but a 24 bit branch in a stub section will reach.
3093 . b dest
3094
3095 ppc_stub_plt_branch:
3096 Similar to the above, but a 24 bit branch in the stub section won't
3097 reach its destination.
3098 . addis %r12,%r2,xxx@toc@ha
3099 . ld %r11,xxx@toc@l(%r12)
3100 . mtctr %r11
3101 . bctr
3102
3103 ppc_stub_plt_call:
3104 Used to call a function in a shared library. If it so happens that
3105 the plt entry referenced crosses a 64k boundary, then an extra
3106 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3107 xxx+16 as appropriate.
3108 . addis %r12,%r2,xxx@toc@ha
3109 . std %r2,40(%r1)
3110 . ld %r11,xxx+0@toc@l(%r12)
3111 . ld %r2,xxx+8@toc@l(%r12)
3112 . mtctr %r11
3113 . ld %r11,xxx+16@toc@l(%r12)
3114 . bctr
3115
3116 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3117 code to adjust the value and save r2 to support multiple toc sections.
3118 A ppc_stub_long_branch with an r2 offset looks like:
3119 . std %r2,40(%r1)
3120 . addis %r2,%r2,off@ha
3121 . addi %r2,%r2,off@l
3122 . b dest
3123
3124 A ppc_stub_plt_branch with an r2 offset looks like:
3125 . std %r2,40(%r1)
3126 . addis %r12,%r2,xxx@toc@ha
3127 . ld %r11,xxx@toc@l(%r12)
3128 . addis %r2,%r2,off@ha
3129 . addi %r2,%r2,off@l
3130 . mtctr %r11
3131 . bctr
3132*/
3133
3134enum ppc_stub_type {
3135 ppc_stub_none,
3136 ppc_stub_long_branch,
3137 ppc_stub_long_branch_r2off,
3138 ppc_stub_plt_branch,
3139 ppc_stub_plt_branch_r2off,
3140 ppc_stub_plt_call
3141};
3142
3143struct ppc_stub_hash_entry {
3144
3145 /* Base hash table entry structure. */
3146 struct bfd_hash_entry root;
3147
3148 enum ppc_stub_type stub_type;
3149
3150 /* The stub section. */
3151 asection *stub_sec;
3152
3153 /* Offset within stub_sec of the beginning of this stub. */
3154 bfd_vma stub_offset;
3155
3156 /* Given the symbol's value and its section we can determine its final
3157 value when building the stubs (so the stub knows where to jump. */
3158 bfd_vma target_value;
3159 asection *target_section;
3160
3161 /* The symbol table entry, if any, that this was derived from. */
3162 struct ppc_link_hash_entry *h;
3163
3164 /* And the reloc addend that this was derived from. */
3165 bfd_vma addend;
3166
3167 /* Where this stub is being called from, or, in the case of combined
3168 stub sections, the first input section in the group. */
3169 asection *id_sec;
3170};
3171
3172struct ppc_branch_hash_entry {
3173
3174 /* Base hash table entry structure. */
3175 struct bfd_hash_entry root;
3176
3177 /* Offset within .branch_lt. */
3178 unsigned int offset;
3179
3180 /* Generation marker. */
3181 unsigned int iter;
3182};
3183
3184struct ppc_link_hash_entry
3185{
3186 struct elf_link_hash_entry elf;
3187
3188 /* A pointer to the most recently used stub hash entry against this
3189 symbol. */
3190 struct ppc_stub_hash_entry *stub_cache;
3191
3192 /* Track dynamic relocs copied for this symbol. */
3193 struct ppc_dyn_relocs *dyn_relocs;
3194
3195 /* Link between function code and descriptor symbols. */
3196 struct ppc_link_hash_entry *oh;
3197
3198 /* Flag function code and descriptor symbols. */
3199 unsigned int is_func:1;
3200 unsigned int is_func_descriptor:1;
3201
3202 /* Whether global opd sym has been adjusted or not.
3203 After ppc64_elf_edit_opd has run, this flag should be set for all
3204 globals defined in any opd section. */
3205 unsigned int adjust_done:1;
3206
3207 /* Set if we twiddled this symbol to weak at some stage. */
3208 unsigned int was_undefined:1;
3209
3210 /* Contexts in which symbol is used in the GOT (or TOC).
3211 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3212 corresponding relocs are encountered during check_relocs.
3213 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3214 indicate the corresponding GOT entry type is not needed.
3215 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3216 a TPREL one. We use a separate flag rather than setting TPREL
3217 just for convenience in distinguishing the two cases. */
3218#define TLS_GD 1 /* GD reloc. */
3219#define TLS_LD 2 /* LD reloc. */
3220#define TLS_TPREL 4 /* TPREL reloc, => IE. */
3221#define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3222#define TLS_TLS 16 /* Any TLS reloc. */
3223#define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3224#define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3225 char tls_mask;
3226};
3227
3228/* ppc64 ELF linker hash table. */
3229
3230struct ppc_link_hash_table
3231{
3232 struct elf_link_hash_table elf;
3233
3234 /* The stub hash table. */
3235 struct bfd_hash_table stub_hash_table;
3236
3237 /* Another hash table for plt_branch stubs. */
3238 struct bfd_hash_table branch_hash_table;
3239
3240 /* Linker stub bfd. */
3241 bfd *stub_bfd;
3242
3243 /* Linker call-backs. */
3244 asection * (*add_stub_section) (const char *, asection *);
3245 void (*layout_sections_again) (void);
3246
3247 /* Array to keep track of which stub sections have been created, and
3248 information on stub grouping. */
3249 struct map_stub {
3250 /* This is the section to which stubs in the group will be attached. */
3251 asection *link_sec;
3252 /* The stub section. */
3253 asection *stub_sec;
3254 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3255 bfd_vma toc_off;
3256 } *stub_group;
3257
3258 /* Temp used when calculating TOC pointers. */
3259 bfd_vma toc_curr;
3260
3261 /* Highest input section id. */
3262 int top_id;
3263
3264 /* Highest output section index. */
3265 int top_index;
3266
3267 /* List of input sections for each output section. */
3268 asection **input_list;
3269
3270 /* Short-cuts to get to dynamic linker sections. */
3271 asection *got;
3272 asection *plt;
3273 asection *relplt;
3274 asection *dynbss;
3275 asection *relbss;
3276 asection *glink;
3277 asection *sfpr;
3278 asection *brlt;
3279 asection *relbrlt;
3280
3281 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3282 struct ppc_link_hash_entry *tls_get_addr;
3283 struct ppc_link_hash_entry *tls_get_addr_fd;
3284
3285 /* Statistics. */
3286 unsigned long stub_count[ppc_stub_plt_call];
3287
3288 /* Set if we should emit symbols for stubs. */
3289 unsigned int emit_stub_syms:1;
3290
3291 /* Set on error. */
3292 unsigned int stub_error:1;
3293
3294 /* Flag set when small branches are detected. Used to
3295 select suitable defaults for the stub group size. */
3296 unsigned int has_14bit_branch:1;
3297
3298 /* Temp used by ppc64_elf_check_directives. */
3299 unsigned int twiddled_syms:1;
3300
3301 /* Incremented every time we size stubs. */
3302 unsigned int stub_iteration;
3303
3304 /* Small local sym to section mapping cache. */
3305 struct sym_sec_cache sym_sec;
3306};
3307
3308/* Get the ppc64 ELF linker hash table from a link_info structure. */
3309
3310#define ppc_hash_table(p) \
3311 ((struct ppc_link_hash_table *) ((p)->hash))
3312
3313#define ppc_stub_hash_lookup(table, string, create, copy) \
3314 ((struct ppc_stub_hash_entry *) \
3315 bfd_hash_lookup ((table), (string), (create), (copy)))
3316
3317#define ppc_branch_hash_lookup(table, string, create, copy) \
3318 ((struct ppc_branch_hash_entry *) \
3319 bfd_hash_lookup ((table), (string), (create), (copy)))
3320
3321/* Create an entry in the stub hash table. */
3322
3323static struct bfd_hash_entry *
3324stub_hash_newfunc (struct bfd_hash_entry *entry,
3325 struct bfd_hash_table *table,
3326 const char *string)
3327{
3328 /* Allocate the structure if it has not already been allocated by a
3329 subclass. */
3330 if (entry == NULL)
3331 {
3332 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3333 if (entry == NULL)
3334 return entry;
3335 }
3336
3337 /* Call the allocation method of the superclass. */
3338 entry = bfd_hash_newfunc (entry, table, string);
3339 if (entry != NULL)
3340 {
3341 struct ppc_stub_hash_entry *eh;
3342
3343 /* Initialize the local fields. */
3344 eh = (struct ppc_stub_hash_entry *) entry;
3345 eh->stub_type = ppc_stub_none;
3346 eh->stub_sec = NULL;
3347 eh->stub_offset = 0;
3348 eh->target_value = 0;
3349 eh->target_section = NULL;
3350 eh->h = NULL;
3351 eh->id_sec = NULL;
3352 }
3353
3354 return entry;
3355}
3356
3357/* Create an entry in the branch hash table. */
3358
3359static struct bfd_hash_entry *
3360branch_hash_newfunc (struct bfd_hash_entry *entry,
3361 struct bfd_hash_table *table,
3362 const char *string)
3363{
3364 /* Allocate the structure if it has not already been allocated by a
3365 subclass. */
3366 if (entry == NULL)
3367 {
3368 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3369 if (entry == NULL)
3370 return entry;
3371 }
3372
3373 /* Call the allocation method of the superclass. */
3374 entry = bfd_hash_newfunc (entry, table, string);
3375 if (entry != NULL)
3376 {
3377 struct ppc_branch_hash_entry *eh;
3378
3379 /* Initialize the local fields. */
3380 eh = (struct ppc_branch_hash_entry *) entry;
3381 eh->offset = 0;
3382 eh->iter = 0;
3383 }
3384
3385 return entry;
3386}
3387
3388/* Create an entry in a ppc64 ELF linker hash table. */
3389
3390static struct bfd_hash_entry *
3391link_hash_newfunc (struct bfd_hash_entry *entry,
3392 struct bfd_hash_table *table,
3393 const char *string)
3394{
3395 /* Allocate the structure if it has not already been allocated by a
3396 subclass. */
3397 if (entry == NULL)
3398 {
3399 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3400 if (entry == NULL)
3401 return entry;
3402 }
3403
3404 /* Call the allocation method of the superclass. */
3405 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3406 if (entry != NULL)
3407 {
3408 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3409
3410 eh->stub_cache = NULL;
3411 eh->dyn_relocs = NULL;
3412 eh->oh = NULL;
3413 eh->is_func = 0;
3414 eh->is_func_descriptor = 0;
3415 eh->adjust_done = 0;
3416 eh->was_undefined = 0;
3417 eh->tls_mask = 0;
3418 }
3419
3420 return entry;
3421}
3422
3423/* Create a ppc64 ELF linker hash table. */
3424
3425static struct bfd_link_hash_table *
3426ppc64_elf_link_hash_table_create (bfd *abfd)
3427{
3428 struct ppc_link_hash_table *htab;
3429 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3430
3431 htab = bfd_zmalloc (amt);
3432 if (htab == NULL)
3433 return NULL;
3434
3435 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3436 {
3437 free (htab);
3438 return NULL;
3439 }
3440
3441 /* Init the stub hash table too. */
3442 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3443 return NULL;
3444
3445 /* And the branch hash table. */
3446 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3447 return NULL;
3448
3449 /* Initializing two fields of the union is just cosmetic. We really
3450 only care about glist, but when compiled on a 32-bit host the
3451 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3452 debugger inspection of these fields look nicer. */
3453 htab->elf.init_refcount.refcount = 0;
3454 htab->elf.init_refcount.glist = NULL;
3455 htab->elf.init_offset.offset = 0;
3456 htab->elf.init_offset.glist = NULL;
3457
3458 return &htab->elf.root;
3459}
3460
3461/* Free the derived linker hash table. */
3462
3463static void
3464ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3465{
3466 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3467
3468 bfd_hash_table_free (&ret->stub_hash_table);
3469 bfd_hash_table_free (&ret->branch_hash_table);
3470 _bfd_generic_link_hash_table_free (hash);
3471}
3472
3473/* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3474
3475void
3476ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3477{
3478 struct ppc_link_hash_table *htab;
3479
3480 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3481
3482/* Always hook our dynamic sections into the first bfd, which is the
3483 linker created stub bfd. This ensures that the GOT header is at
3484 the start of the output TOC section. */
3485 htab = ppc_hash_table (info);
3486 htab->stub_bfd = abfd;
3487 htab->elf.dynobj = abfd;
3488}
3489
3490/* Build a name for an entry in the stub hash table. */
3491
3492static char *
3493ppc_stub_name (const asection *input_section,
3494 const asection *sym_sec,
3495 const struct ppc_link_hash_entry *h,
3496 const Elf_Internal_Rela *rel)
3497{
3498 char *stub_name;
3499 bfd_size_type len;
3500
3501 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3502 offsets from a sym as a branch target? In fact, we could
3503 probably assume the addend is always zero. */
3504 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3505
3506 if (h)
3507 {
3508 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3509 stub_name = bfd_malloc (len);
3510 if (stub_name != NULL)
3511 {
3512 sprintf (stub_name, "%08x.%s+%x",
3513 input_section->id & 0xffffffff,
3514 h->elf.root.root.string,
3515 (int) rel->r_addend & 0xffffffff);
3516 }
3517 }
3518 else
3519 {
3520 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3521 stub_name = bfd_malloc (len);
3522 if (stub_name != NULL)
3523 {
3524 sprintf (stub_name, "%08x.%x:%x+%x",
3525 input_section->id & 0xffffffff,
3526 sym_sec->id & 0xffffffff,
3527 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3528 (int) rel->r_addend & 0xffffffff);
3529 }
3530 }
3531 return stub_name;
3532}
3533
3534/* Look up an entry in the stub hash. Stub entries are cached because
3535 creating the stub name takes a bit of time. */
3536
3537static struct ppc_stub_hash_entry *
3538ppc_get_stub_entry (const asection *input_section,
3539 const asection *sym_sec,
3540 struct ppc_link_hash_entry *h,
3541 const Elf_Internal_Rela *rel,
3542 struct ppc_link_hash_table *htab)
3543{
3544 struct ppc_stub_hash_entry *stub_entry;
3545 const asection *id_sec;
3546
3547 /* If this input section is part of a group of sections sharing one
3548 stub section, then use the id of the first section in the group.
3549 Stub names need to include a section id, as there may well be
3550 more than one stub used to reach say, printf, and we need to
3551 distinguish between them. */
3552 id_sec = htab->stub_group[input_section->id].link_sec;
3553
3554 if (h != NULL && h->stub_cache != NULL
3555 && h->stub_cache->h == h
3556 && h->stub_cache->id_sec == id_sec)
3557 {
3558 stub_entry = h->stub_cache;
3559 }
3560 else
3561 {
3562 char *stub_name;
3563
3564 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3565 if (stub_name == NULL)
3566 return NULL;
3567
3568 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3569 stub_name, FALSE, FALSE);
3570 if (h != NULL)
3571 h->stub_cache = stub_entry;
3572
3573 free (stub_name);
3574 }
3575
3576 return stub_entry;
3577}
3578
3579/* Add a new stub entry to the stub hash. Not all fields of the new
3580 stub entry are initialised. */
3581
3582static struct ppc_stub_hash_entry *
3583ppc_add_stub (const char *stub_name,
3584 asection *section,
3585 struct ppc_link_hash_table *htab)
3586{
3587 asection *link_sec;
3588 asection *stub_sec;
3589 struct ppc_stub_hash_entry *stub_entry;
3590
3591 link_sec = htab->stub_group[section->id].link_sec;
3592 stub_sec = htab->stub_group[section->id].stub_sec;
3593 if (stub_sec == NULL)
3594 {
3595 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3596 if (stub_sec == NULL)
3597 {
3598 size_t namelen;
3599 bfd_size_type len;
3600 char *s_name;
3601
3602 namelen = strlen (link_sec->name);
3603 len = namelen + sizeof (STUB_SUFFIX);
3604 s_name = bfd_alloc (htab->stub_bfd, len);
3605 if (s_name == NULL)
3606 return NULL;
3607
3608 memcpy (s_name, link_sec->name, namelen);
3609 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3610 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3611 if (stub_sec == NULL)
3612 return NULL;
3613 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3614 }
3615 htab->stub_group[section->id].stub_sec = stub_sec;
3616 }
3617
3618 /* Enter this entry into the linker stub hash table. */
3619 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3620 TRUE, FALSE);
3621 if (stub_entry == NULL)
3622 {
3623 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3624 section->owner, stub_name);
3625 return NULL;
3626 }
3627
3628 stub_entry->stub_sec = stub_sec;
3629 stub_entry->stub_offset = 0;
3630 stub_entry->id_sec = link_sec;
3631 return stub_entry;
3632}
3633
3634/* Create sections for linker generated code. */
3635
3636static bfd_boolean
3637create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3638{
3639 struct ppc_link_hash_table *htab;
3640 flagword flags;
3641
3642 htab = ppc_hash_table (info);
3643
3644 /* Create .sfpr for code to save and restore fp regs. */
3645 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3646 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3647 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3648 if (htab->sfpr == NULL
3649 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3650 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3651 return FALSE;
3652
3653 /* Create .glink for lazy dynamic linking support. */
3654 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3655 if (htab->glink == NULL
3656 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3657 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3658 return FALSE;
3659
3660 /* Create .branch_lt for plt_branch stubs. */
3661 flags = (SEC_ALLOC | SEC_LOAD
3662 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3663 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3664 if (htab->brlt == NULL
3665 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3666 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3667 return FALSE;
3668
3669 if (info->shared)
3670 {
3671 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3672 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3673 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3674 if (!htab->relbrlt
3675 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3676 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3677 return FALSE;
3678 }
3679 return TRUE;
3680}
3681
3682/* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3683 not already done. */
3684
3685static bfd_boolean
3686create_got_section (bfd *abfd, struct bfd_link_info *info)
3687{
3688 asection *got, *relgot;
3689 flagword flags;
3690 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3691
3692 if (!htab->got)
3693 {
3694 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3695 return FALSE;
3696
3697 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3698 if (!htab->got)
3699 abort ();
3700 }
3701
3702 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3703 | SEC_LINKER_CREATED);
3704
3705 got = bfd_make_section (abfd, ".got");
3706 if (!got
3707 || !bfd_set_section_flags (abfd, got, flags)
3708 || !bfd_set_section_alignment (abfd, got, 3))
3709 return FALSE;
3710
3711 relgot = bfd_make_section (abfd, ".rela.got");
3712 if (!relgot
3713 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3714 || ! bfd_set_section_alignment (abfd, relgot, 3))
3715 return FALSE;
3716
3717 ppc64_elf_tdata (abfd)->got = got;
3718 ppc64_elf_tdata (abfd)->relgot = relgot;
3719 return TRUE;
3720}
3721
3722/* Create the dynamic sections, and set up shortcuts. */
3723
3724static bfd_boolean
3725ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3726{
3727 struct ppc_link_hash_table *htab;
3728
3729 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3730 return FALSE;
3731
3732 htab = ppc_hash_table (info);
3733 if (!htab->got)
3734 htab->got = bfd_get_section_by_name (dynobj, ".got");
3735 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3736 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3737 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3738 if (!info->shared)
3739 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3740
3741 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3742 || (!info->shared && !htab->relbss))
3743 abort ();
3744
3745 return TRUE;
3746}
3747
3748/* Copy the extra info we tack onto an elf_link_hash_entry. */
3749
3750static void
3751ppc64_elf_copy_indirect_symbol
3752 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3753 struct elf_link_hash_entry *dir,
3754 struct elf_link_hash_entry *ind)
3755{
3756 struct ppc_link_hash_entry *edir, *eind;
3757 flagword mask;
3758
3759 edir = (struct ppc_link_hash_entry *) dir;
3760 eind = (struct ppc_link_hash_entry *) ind;
3761
3762 /* Copy over any dynamic relocs we may have on the indirect sym. */
3763 if (eind->dyn_relocs != NULL)
3764 {
3765 if (edir->dyn_relocs != NULL)
3766 {
3767 struct ppc_dyn_relocs **pp;
3768 struct ppc_dyn_relocs *p;
3769
3770 if (eind->elf.root.type == bfd_link_hash_indirect)
3771 abort ();
3772
3773 /* Add reloc counts against the weak sym to the strong sym
3774 list. Merge any entries against the same section. */
3775 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3776 {
3777 struct ppc_dyn_relocs *q;
3778
3779 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3780 if (q->sec == p->sec)
3781 {
3782 q->pc_count += p->pc_count;
3783 q->count += p->count;
3784 *pp = p->next;
3785 break;
3786 }
3787 if (q == NULL)
3788 pp = &p->next;
3789 }
3790 *pp = edir->dyn_relocs;
3791 }
3792
3793 edir->dyn_relocs = eind->dyn_relocs;
3794 eind->dyn_relocs = NULL;
3795 }
3796
3797 edir->is_func |= eind->is_func;
3798 edir->is_func_descriptor |= eind->is_func_descriptor;
3799 edir->tls_mask |= eind->tls_mask;
3800
3801 mask = (ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR
3802 | ELF_LINK_HASH_REF_REGULAR_NONWEAK | ELF_LINK_NON_GOT_REF
3803 | ELF_LINK_HASH_NEEDS_PLT);
3804 /* If called to transfer flags for a weakdef during processing
3805 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
3806 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3807 if (ELIMINATE_COPY_RELOCS
3808 && eind->elf.root.type != bfd_link_hash_indirect
3809 && (edir->elf.elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3810 mask &= ~ELF_LINK_NON_GOT_REF;
3811
3812 edir->elf.elf_link_hash_flags |= eind->elf.elf_link_hash_flags & mask;
3813
3814 /* If we were called to copy over info for a weak sym, that's all. */
3815 if (eind->elf.root.type != bfd_link_hash_indirect)
3816 return;
3817
3818 /* Copy over got entries that we may have already seen to the
3819 symbol which just became indirect. */
3820 if (eind->elf.got.glist != NULL)
3821 {
3822 if (edir->elf.got.glist != NULL)
3823 {
3824 struct got_entry **entp;
3825 struct got_entry *ent;
3826
3827 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3828 {
3829 struct got_entry *dent;
3830
3831 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3832 if (dent->addend == ent->addend
3833 && dent->owner == ent->owner
3834 && dent->tls_type == ent->tls_type)
3835 {
3836 dent->got.refcount += ent->got.refcount;
3837 *entp = ent->next;
3838 break;
3839 }
3840 if (dent == NULL)
3841 entp = &ent->next;
3842 }
3843 *entp = edir->elf.got.glist;
3844 }
3845
3846 edir->elf.got.glist = eind->elf.got.glist;
3847 eind->elf.got.glist = NULL;
3848 }
3849
3850 /* And plt entries. */
3851 if (eind->elf.plt.plist != NULL)
3852 {
3853 if (edir->elf.plt.plist != NULL)
3854 {
3855 struct plt_entry **entp;
3856 struct plt_entry *ent;
3857
3858 for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
3859 {
3860 struct plt_entry *dent;
3861
3862 for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
3863 if (dent->addend == ent->addend)
3864 {
3865 dent->plt.refcount += ent->plt.refcount;
3866 *entp = ent->next;
3867 break;
3868 }
3869 if (dent == NULL)
3870 entp = &ent->next;
3871 }
3872 *entp = edir->elf.plt.plist;
3873 }
3874
3875 edir->elf.plt.plist = eind->elf.plt.plist;
3876 eind->elf.plt.plist = NULL;
3877 }
3878
3879 if (edir->elf.dynindx == -1)
3880 {
3881 edir->elf.dynindx = eind->elf.dynindx;
3882 edir->elf.dynstr_index = eind->elf.dynstr_index;
3883 eind->elf.dynindx = -1;
3884 eind->elf.dynstr_index = 0;
3885 }
3886 else
3887 BFD_ASSERT (eind->elf.dynindx == -1);
3888}
3889
3890/* Find the function descriptor hash entry from the given function code
3891 hash entry FH. Link the entries via their OH fields. */
3892
3893static struct ppc_link_hash_entry *
3894get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3895{
3896 struct ppc_link_hash_entry *fdh = fh->oh;
3897
3898 if (fdh == NULL)
3899 {
3900 const char *fd_name = fh->elf.root.root.string + 1;
3901
3902 fdh = (struct ppc_link_hash_entry *)
3903 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3904 if (fdh != NULL)
3905 {
3906 fdh->is_func_descriptor = 1;
3907 fdh->oh = fh;
3908 fh->is_func = 1;
3909 fh->oh = fdh;
3910 }
3911 }
3912
3913 return fdh;
3914}
3915
3916/* Hacks to support old ABI code.
3917 When making function calls, old ABI code references function entry
3918 points (dot symbols), while new ABI code references the function
3919 descriptor symbol. We need to make any combination of reference and
3920 definition work together, without breaking archive linking.
3921
3922 For a defined function "foo" and an undefined call to "bar":
3923 An old object defines "foo" and ".foo", references ".bar" (possibly
3924 "bar" too).
3925 A new object defines "foo" and references "bar".
3926
3927 A new object thus has no problem with its undefined symbols being
3928 satisfied by definitions in an old object. On the other hand, the
3929 old object won't have ".bar" satisfied by a new object. */
3930
3931/* Fix function descriptor symbols defined in .opd sections to be
3932 function type. */
3933
3934static bfd_boolean
3935ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
3936 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3937 Elf_Internal_Sym *isym,
3938 const char **name ATTRIBUTE_UNUSED,
3939 flagword *flags ATTRIBUTE_UNUSED,
3940 asection **sec,
3941 bfd_vma *value ATTRIBUTE_UNUSED)
3942{
3943 if (*sec != NULL
3944 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
3945 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3946 return TRUE;
3947}
3948
3949/* This function makes an old ABI object reference to ".bar" cause the
3950 inclusion of a new ABI object archive that defines "bar". */
3951
3952static struct elf_link_hash_entry *
3953ppc64_elf_archive_symbol_lookup (bfd *abfd,
3954 struct bfd_link_info *info,
3955 const char *name)
3956{
3957 struct elf_link_hash_entry *h;
3958 char *dot_name;
3959 size_t len;
3960
3961 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
3962 if (h != NULL)
3963 return h;
3964
3965 if (name[0] == '.')
3966 return h;
3967
3968 len = strlen (name);
3969 dot_name = bfd_alloc (abfd, len + 2);
3970 if (dot_name == NULL)
3971 return (struct elf_link_hash_entry *) 0 - 1;
3972 dot_name[0] = '.';
3973 memcpy (dot_name + 1, name, len + 1);
3974 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
3975 bfd_release (abfd, dot_name);
3976 return h;
3977}
3978
3979/* This function satisfies all old ABI object references to ".bar" if a
3980 new ABI object defines "bar". Well, at least, undefined dot symbols
3981 are made weak. This stops later archive searches from including an
3982 object if we already have a function descriptor definition. It also
3983 prevents the linker complaining about undefined symbols.
3984 We also check and correct mismatched symbol visibility here. The
3985 most restrictive visibility of the function descriptor and the
3986 function entry symbol is used. */
3987
3988static bfd_boolean
3989add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
3990{
3991 struct bfd_link_info *info;
3992 struct ppc_link_hash_table *htab;
3993 struct ppc_link_hash_entry *eh;
3994 struct ppc_link_hash_entry *fdh;
3995
3996 if (h->root.type == bfd_link_hash_indirect)
3997 return TRUE;
3998
3999 if (h->root.type == bfd_link_hash_warning)
4000 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4001
4002 if (h->root.root.string[0] != '.')
4003 return TRUE;
4004
4005 info = inf;
4006 htab = ppc_hash_table (info);
4007 eh = (struct ppc_link_hash_entry *) h;
4008 fdh = get_fdh (eh, htab);
4009 if (fdh != NULL)
4010 {
4011 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4012 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4013 if (entry_vis < descr_vis)
4014 fdh->elf.other += entry_vis - descr_vis;
4015 else if (entry_vis > descr_vis)
4016 eh->elf.other += descr_vis - entry_vis;
4017
4018 if (eh->elf.root.type == bfd_link_hash_undefined)
4019 {
4020 eh->elf.root.type = bfd_link_hash_undefweak;
4021 eh->was_undefined = 1;
4022 htab->twiddled_syms = 1;
4023 }
4024 }
4025
4026 return TRUE;
4027}
4028
4029static bfd_boolean
4030ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4031 struct bfd_link_info *info)
4032{
4033 struct ppc_link_hash_table *htab;
4034 extern const bfd_target bfd_elf64_powerpc_vec;
4035 extern const bfd_target bfd_elf64_powerpcle_vec;
4036
4037 htab = ppc_hash_table (info);
4038 if (htab->elf.root.creator != &bfd_elf64_powerpc_vec
4039 && htab->elf.root.creator != &bfd_elf64_powerpcle_vec)
4040 return TRUE;
4041
4042 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, info);
4043
4044 /* We need to fix the undefs list for any syms we have twiddled to
4045 undef_weak. */
4046 if (htab->twiddled_syms)
4047 {
4048 struct bfd_link_hash_entry **pun;
4049
4050 pun = &htab->elf.root.undefs;
4051 while (*pun != NULL)
4052 {
4053 struct bfd_link_hash_entry *h = *pun;
4054
4055 if (h->type != bfd_link_hash_undefined
4056 && h->type != bfd_link_hash_common)
4057 {
4058 *pun = h->und_next;
4059 h->und_next = NULL;
4060 if (h == htab->elf.root.undefs_tail)
4061 {
4062 if (pun == &htab->elf.root.undefs)
4063 htab->elf.root.undefs_tail = NULL;
4064 else
4065 /* pun points at an und_next field. Go back to
4066 the start of the link_hash_entry. */
4067 htab->elf.root.undefs_tail = (struct bfd_link_hash_entry *)
4068 ((char *) pun - ((char *) &h->und_next - (char *) h));
4069 break;
4070 }
4071 }
4072 else
4073 pun = &h->und_next;
4074 }
4075
4076 htab->twiddled_syms = 0;
4077 }
4078 return TRUE;
4079}
4080
4081static bfd_boolean
4082update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4083 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4084{
4085 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4086 char *local_got_tls_masks;
4087
4088 if (local_got_ents == NULL)
4089 {
4090 bfd_size_type size = symtab_hdr->sh_info;
4091
4092 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4093 local_got_ents = bfd_zalloc (abfd, size);
4094 if (local_got_ents == NULL)
4095 return FALSE;
4096 elf_local_got_ents (abfd) = local_got_ents;
4097 }
4098
4099 if ((tls_type & TLS_EXPLICIT) == 0)
4100 {
4101 struct got_entry *ent;
4102
4103 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4104 if (ent->addend == r_addend
4105 && ent->owner == abfd
4106 && ent->tls_type == tls_type)
4107 break;
4108 if (ent == NULL)
4109 {
4110 bfd_size_type amt = sizeof (*ent);
4111 ent = bfd_alloc (abfd, amt);
4112 if (ent == NULL)
4113 return FALSE;
4114 ent->next = local_got_ents[r_symndx];
4115 ent->addend = r_addend;
4116 ent->owner = abfd;
4117 ent->tls_type = tls_type;
4118 ent->got.refcount = 0;
4119 local_got_ents[r_symndx] = ent;
4120 }
4121 ent->got.refcount += 1;
4122 }
4123
4124 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4125 local_got_tls_masks[r_symndx] |= tls_type;
4126 return TRUE;
4127}
4128
4129static bfd_boolean
4130update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4131{
4132 struct plt_entry *ent;
4133
4134 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4135 if (ent->addend == addend)
4136 break;
4137 if (ent == NULL)
4138 {
4139 bfd_size_type amt = sizeof (*ent);
4140 ent = bfd_alloc (abfd, amt);
4141 if (ent == NULL)
4142 return FALSE;
4143 ent->next = eh->elf.plt.plist;
4144 ent->addend = addend;
4145 ent->plt.refcount = 0;
4146 eh->elf.plt.plist = ent;
4147 }
4148 ent->plt.refcount += 1;
4149 eh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
4150 eh->is_func = 1;
4151 return TRUE;
4152}
4153
4154/* Look through the relocs for a section during the first phase, and
4155 calculate needed space in the global offset table, procedure
4156 linkage table, and dynamic reloc sections. */
4157
4158static bfd_boolean
4159ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4160 asection *sec, const Elf_Internal_Rela *relocs)
4161{
4162 struct ppc_link_hash_table *htab;
4163 Elf_Internal_Shdr *symtab_hdr;
4164 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4165 const Elf_Internal_Rela *rel;
4166 const Elf_Internal_Rela *rel_end;
4167 asection *sreloc;
4168 asection **opd_sym_map;
4169
4170 if (info->relocatable)
4171 return TRUE;
4172
4173 /* Don't do anything special with non-loaded, non-alloced sections.
4174 In particular, any relocs in such sections should not affect GOT
4175 and PLT reference counting (ie. we don't allow them to create GOT
4176 or PLT entries), there's no possibility or desire to optimize TLS
4177 relocs, and there's not much point in propagating relocs to shared
4178 libs that the dynamic linker won't relocate. */
4179 if ((sec->flags & SEC_ALLOC) == 0)
4180 return TRUE;
4181
4182 htab = ppc_hash_table (info);
4183 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4184
4185 sym_hashes = elf_sym_hashes (abfd);
4186 sym_hashes_end = (sym_hashes
4187 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4188 - symtab_hdr->sh_info);
4189
4190 sreloc = NULL;
4191 opd_sym_map = NULL;
4192 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4193 {
4194 /* Garbage collection needs some extra help with .opd sections.
4195 We don't want to necessarily keep everything referenced by
4196 relocs in .opd, as that would keep all functions. Instead,
4197 if we reference an .opd symbol (a function descriptor), we
4198 want to keep the function code symbol's section. This is
4199 easy for global symbols, but for local syms we need to keep
4200 information about the associated function section. Later, if
4201 edit_opd deletes entries, we'll use this array to adjust
4202 local syms in .opd. */
4203 union opd_info {
4204 asection *func_section;
4205 long entry_adjust;
4206 };
4207 bfd_size_type amt;
4208
4209 amt = sec->size * sizeof (union opd_info) / 8;
4210 opd_sym_map = bfd_zalloc (abfd, amt);
4211 if (opd_sym_map == NULL)
4212 return FALSE;
4213 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4214 }
4215
4216 if (htab->sfpr == NULL
4217 && !create_linkage_sections (htab->elf.dynobj, info))
4218 return FALSE;
4219
4220 rel_end = relocs + sec->reloc_count;
4221 for (rel = relocs; rel < rel_end; rel++)
4222 {
4223 unsigned long r_symndx;
4224 struct elf_link_hash_entry *h;
4225 enum elf_ppc64_reloc_type r_type;
4226 int tls_type = 0;
4227
4228 r_symndx = ELF64_R_SYM (rel->r_info);
4229 if (r_symndx < symtab_hdr->sh_info)
4230 h = NULL;
4231 else
4232 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4233
4234 r_type = ELF64_R_TYPE (rel->r_info);
4235 switch (r_type)
4236 {
4237 case R_PPC64_GOT_TLSLD16:
4238 case R_PPC64_GOT_TLSLD16_LO:
4239 case R_PPC64_GOT_TLSLD16_HI:
4240 case R_PPC64_GOT_TLSLD16_HA:
4241 ppc64_tlsld_got (abfd)->refcount += 1;
4242 tls_type = TLS_TLS | TLS_LD;
4243 goto dogottls;
4244
4245 case R_PPC64_GOT_TLSGD16:
4246 case R_PPC64_GOT_TLSGD16_LO:
4247 case R_PPC64_GOT_TLSGD16_HI:
4248 case R_PPC64_GOT_TLSGD16_HA:
4249 tls_type = TLS_TLS | TLS_GD;
4250 goto dogottls;
4251
4252 case R_PPC64_GOT_TPREL16_DS:
4253 case R_PPC64_GOT_TPREL16_LO_DS:
4254 case R_PPC64_GOT_TPREL16_HI:
4255 case R_PPC64_GOT_TPREL16_HA:
4256 if (info->shared)
4257 info->flags |= DF_STATIC_TLS;
4258 tls_type = TLS_TLS | TLS_TPREL;
4259 goto dogottls;
4260
4261 case R_PPC64_GOT_DTPREL16_DS:
4262 case R_PPC64_GOT_DTPREL16_LO_DS:
4263 case R_PPC64_GOT_DTPREL16_HI:
4264 case R_PPC64_GOT_DTPREL16_HA:
4265 tls_type = TLS_TLS | TLS_DTPREL;
4266 dogottls:
4267 sec->has_tls_reloc = 1;
4268 /* Fall thru */
4269
4270 case R_PPC64_GOT16:
4271 case R_PPC64_GOT16_DS:
4272 case R_PPC64_GOT16_HA:
4273 case R_PPC64_GOT16_HI:
4274 case R_PPC64_GOT16_LO:
4275 case R_PPC64_GOT16_LO_DS:
4276 /* This symbol requires a global offset table entry. */
4277 sec->has_gp_reloc = 1;
4278 if (ppc64_elf_tdata (abfd)->got == NULL
4279 && !create_got_section (abfd, info))
4280 return FALSE;
4281
4282 if (h != NULL)
4283 {
4284 struct ppc_link_hash_entry *eh;
4285 struct got_entry *ent;
4286
4287 eh = (struct ppc_link_hash_entry *) h;
4288 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4289 if (ent->addend == rel->r_addend
4290 && ent->owner == abfd
4291 && ent->tls_type == tls_type)
4292 break;
4293 if (ent == NULL)
4294 {
4295 bfd_size_type amt = sizeof (*ent);
4296 ent = bfd_alloc (abfd, amt);
4297 if (ent == NULL)
4298 return FALSE;
4299 ent->next = eh->elf.got.glist;
4300 ent->addend = rel->r_addend;
4301 ent->owner = abfd;
4302 ent->tls_type = tls_type;
4303 ent->got.refcount = 0;
4304 eh->elf.got.glist = ent;
4305 }
4306 ent->got.refcount += 1;
4307 eh->tls_mask |= tls_type;
4308 }
4309 else
4310 /* This is a global offset table entry for a local symbol. */
4311 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4312 rel->r_addend, tls_type))
4313 return FALSE;
4314 break;
4315
4316 case R_PPC64_PLT16_HA:
4317 case R_PPC64_PLT16_HI:
4318 case R_PPC64_PLT16_LO:
4319 case R_PPC64_PLT32:
4320 case R_PPC64_PLT64:
4321 /* This symbol requires a procedure linkage table entry. We
4322 actually build the entry in adjust_dynamic_symbol,
4323 because this might be a case of linking PIC code without
4324 linking in any dynamic objects, in which case we don't
4325 need to generate a procedure linkage table after all. */
4326 if (h == NULL)
4327 {
4328 /* It does not make sense to have a procedure linkage
4329 table entry for a local symbol. */
4330 bfd_set_error (bfd_error_bad_value);
4331 return FALSE;
4332 }
4333 else
4334 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4335 rel->r_addend))
4336 return FALSE;
4337 break;
4338
4339 /* The following relocations don't need to propagate the
4340 relocation if linking a shared object since they are
4341 section relative. */
4342 case R_PPC64_SECTOFF:
4343 case R_PPC64_SECTOFF_LO:
4344 case R_PPC64_SECTOFF_HI:
4345 case R_PPC64_SECTOFF_HA:
4346 case R_PPC64_SECTOFF_DS:
4347 case R_PPC64_SECTOFF_LO_DS:
4348 case R_PPC64_DTPREL16:
4349 case R_PPC64_DTPREL16_LO:
4350 case R_PPC64_DTPREL16_HI:
4351 case R_PPC64_DTPREL16_HA:
4352 case R_PPC64_DTPREL16_DS:
4353 case R_PPC64_DTPREL16_LO_DS:
4354 case R_PPC64_DTPREL16_HIGHER:
4355 case R_PPC64_DTPREL16_HIGHERA:
4356 case R_PPC64_DTPREL16_HIGHEST:
4357 case R_PPC64_DTPREL16_HIGHESTA:
4358 break;
4359
4360 /* Nor do these. */
4361 case R_PPC64_TOC16:
4362 case R_PPC64_TOC16_LO:
4363 case R_PPC64_TOC16_HI:
4364 case R_PPC64_TOC16_HA:
4365 case R_PPC64_TOC16_DS:
4366 case R_PPC64_TOC16_LO_DS:
4367 sec->has_gp_reloc = 1;
4368 break;
4369
4370 /* This relocation describes the C++ object vtable hierarchy.
4371 Reconstruct it for later use during GC. */
4372 case R_PPC64_GNU_VTINHERIT:
4373 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4374 return FALSE;
4375 break;
4376
4377 /* This relocation describes which C++ vtable entries are actually
4378 used. Record for later use during GC. */
4379 case R_PPC64_GNU_VTENTRY:
4380 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4381 return FALSE;
4382 break;
4383
4384 case R_PPC64_REL14:
4385 case R_PPC64_REL14_BRTAKEN:
4386 case R_PPC64_REL14_BRNTAKEN:
4387 htab->has_14bit_branch = 1;
4388 /* Fall through. */
4389
4390 case R_PPC64_REL24:
4391 if (h != NULL)
4392 {
4393 /* We may need a .plt entry if the function this reloc
4394 refers to is in a shared lib. */
4395 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4396 rel->r_addend))
4397 return FALSE;
4398 if (h == &htab->tls_get_addr->elf
4399 || h == &htab->tls_get_addr_fd->elf)
4400 sec->has_tls_reloc = 1;
4401 else if (htab->tls_get_addr == NULL
4402 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4403 && (h->root.root.string[15] == 0
4404 || h->root.root.string[15] == '@'))
4405 {
4406 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4407 sec->has_tls_reloc = 1;
4408 }
4409 else if (htab->tls_get_addr_fd == NULL
4410 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4411 && (h->root.root.string[14] == 0
4412 || h->root.root.string[14] == '@'))
4413 {
4414 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4415 sec->has_tls_reloc = 1;
4416 }
4417 }
4418 break;
4419
4420 case R_PPC64_TPREL64:
4421 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4422 if (info->shared)
4423 info->flags |= DF_STATIC_TLS;
4424 goto dotlstoc;
4425
4426 case R_PPC64_DTPMOD64:
4427 if (rel + 1 < rel_end
4428 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4429 && rel[1].r_offset == rel->r_offset + 8)
4430 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4431 else
4432 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4433 goto dotlstoc;
4434
4435 case R_PPC64_DTPREL64:
4436 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4437 if (rel != relocs
4438 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4439 && rel[-1].r_offset == rel->r_offset - 8)
4440 /* This is the second reloc of a dtpmod, dtprel pair.
4441 Don't mark with TLS_DTPREL. */
4442 goto dodyn;
4443
4444 dotlstoc:
4445 sec->has_tls_reloc = 1;
4446 if (h != NULL)
4447 {
4448 struct ppc_link_hash_entry *eh;
4449 eh = (struct ppc_link_hash_entry *) h;
4450 eh->tls_mask |= tls_type;
4451 }
4452 else
4453 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4454 rel->r_addend, tls_type))
4455 return FALSE;
4456
4457 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4458 {
4459 /* One extra to simplify get_tls_mask. */
4460 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4461 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4462 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4463 return FALSE;
4464 }
4465 BFD_ASSERT (rel->r_offset % 8 == 0);
4466 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4467
4468 /* Mark the second slot of a GD or LD entry.
4469 -1 to indicate GD and -2 to indicate LD. */
4470 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4471 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4472 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4473 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4474 goto dodyn;
4475
4476 case R_PPC64_TPREL16:
4477 case R_PPC64_TPREL16_LO:
4478 case R_PPC64_TPREL16_HI:
4479 case R_PPC64_TPREL16_HA:
4480 case R_PPC64_TPREL16_DS:
4481 case R_PPC64_TPREL16_LO_DS:
4482 case R_PPC64_TPREL16_HIGHER:
4483 case R_PPC64_TPREL16_HIGHERA:
4484 case R_PPC64_TPREL16_HIGHEST:
4485 case R_PPC64_TPREL16_HIGHESTA:
4486 if (info->shared)
4487 {
4488 info->flags |= DF_STATIC_TLS;
4489 goto dodyn;
4490 }
4491 break;
4492
4493 case R_PPC64_ADDR64:
4494 if (opd_sym_map != NULL
4495 && rel + 1 < rel_end
4496 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4497 {
4498 if (h != NULL)
4499 {
4500 if (h->root.root.string[0] == '.'
4501 && h->root.root.string[1] != 0
4502 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4503 ;
4504 else
4505 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4506 }
4507 else
4508 {
4509 asection *s;
4510
4511 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4512 r_symndx);
4513 if (s == NULL)
4514 return FALSE;
4515 else if (s != sec)
4516 opd_sym_map[rel->r_offset / 8] = s;
4517 }
4518 }
4519 /* Fall through. */
4520
4521 case R_PPC64_REL30:
4522 case R_PPC64_REL32:
4523 case R_PPC64_REL64:
4524 case R_PPC64_ADDR14:
4525 case R_PPC64_ADDR14_BRNTAKEN:
4526 case R_PPC64_ADDR14_BRTAKEN:
4527 case R_PPC64_ADDR16:
4528 case R_PPC64_ADDR16_DS:
4529 case R_PPC64_ADDR16_HA:
4530 case R_PPC64_ADDR16_HI:
4531 case R_PPC64_ADDR16_HIGHER:
4532 case R_PPC64_ADDR16_HIGHERA:
4533 case R_PPC64_ADDR16_HIGHEST:
4534 case R_PPC64_ADDR16_HIGHESTA:
4535 case R_PPC64_ADDR16_LO:
4536 case R_PPC64_ADDR16_LO_DS:
4537 case R_PPC64_ADDR24:
4538 case R_PPC64_ADDR32:
4539 case R_PPC64_UADDR16:
4540 case R_PPC64_UADDR32:
4541 case R_PPC64_UADDR64:
4542 case R_PPC64_TOC:
4543 if (h != NULL && !info->shared)
4544 /* We may need a copy reloc. */
4545 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
4546
4547 /* Don't propagate .opd relocs. */
4548 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4549 break;
4550
4551 /* If we are creating a shared library, and this is a reloc
4552 against a global symbol, or a non PC relative reloc
4553 against a local symbol, then we need to copy the reloc
4554 into the shared library. However, if we are linking with
4555 -Bsymbolic, we do not need to copy a reloc against a
4556 global symbol which is defined in an object we are
4557 including in the link (i.e., DEF_REGULAR is set). At
4558 this point we have not seen all the input files, so it is
4559 possible that DEF_REGULAR is not set now but will be set
4560 later (it is never cleared). In case of a weak definition,
4561 DEF_REGULAR may be cleared later by a strong definition in
4562 a shared library. We account for that possibility below by
4563 storing information in the dyn_relocs field of the hash
4564 table entry. A similar situation occurs when creating
4565 shared libraries and symbol visibility changes render the
4566 symbol local.
4567
4568 If on the other hand, we are creating an executable, we
4569 may need to keep relocations for symbols satisfied by a
4570 dynamic library if we manage to avoid copy relocs for the
4571 symbol. */
4572 dodyn:
4573 if ((info->shared
4574 && (MUST_BE_DYN_RELOC (r_type)
4575 || (h != NULL
4576 && (! info->symbolic
4577 || h->root.type == bfd_link_hash_defweak
4578 || (h->elf_link_hash_flags
4579 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4580 || (ELIMINATE_COPY_RELOCS
4581 && !info->shared
4582 && h != NULL
4583 && (h->root.type == bfd_link_hash_defweak
4584 || (h->elf_link_hash_flags
4585 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
4586 {
4587 struct ppc_dyn_relocs *p;
4588 struct ppc_dyn_relocs **head;
4589
4590 /* We must copy these reloc types into the output file.
4591 Create a reloc section in dynobj and make room for
4592 this reloc. */
4593 if (sreloc == NULL)
4594 {
4595 const char *name;
4596 bfd *dynobj;
4597
4598 name = (bfd_elf_string_from_elf_section
4599 (abfd,
4600 elf_elfheader (abfd)->e_shstrndx,
4601 elf_section_data (sec)->rel_hdr.sh_name));
4602 if (name == NULL)
4603 return FALSE;
4604
4605 if (strncmp (name, ".rela", 5) != 0
4606 || strcmp (bfd_get_section_name (abfd, sec),
4607 name + 5) != 0)
4608 {
4609 (*_bfd_error_handler)
4610 (_("%B: bad relocation section name `%s\'"),
4611 abfd, name);
4612 bfd_set_error (bfd_error_bad_value);
4613 }
4614
4615 dynobj = htab->elf.dynobj;
4616 sreloc = bfd_get_section_by_name (dynobj, name);
4617 if (sreloc == NULL)
4618 {
4619 flagword flags;
4620
4621 sreloc = bfd_make_section (dynobj, name);
4622 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4623 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4624 if ((sec->flags & SEC_ALLOC) != 0)
4625 flags |= SEC_ALLOC | SEC_LOAD;
4626 if (sreloc == NULL
4627 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4628 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4629 return FALSE;
4630 }
4631 elf_section_data (sec)->sreloc = sreloc;
4632 }
4633
4634 /* If this is a global symbol, we count the number of
4635 relocations we need for this symbol. */
4636 if (h != NULL)
4637 {
4638 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4639 }
4640 else
4641 {
4642 /* Track dynamic relocs needed for local syms too.
4643 We really need local syms available to do this
4644 easily. Oh well. */
4645
4646 asection *s;
4647 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4648 sec, r_symndx);
4649 if (s == NULL)
4650 return FALSE;
4651
4652 head = ((struct ppc_dyn_relocs **)
4653 &elf_section_data (s)->local_dynrel);
4654 }
4655
4656 p = *head;
4657 if (p == NULL || p->sec != sec)
4658 {
4659 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4660 if (p == NULL)
4661 return FALSE;
4662 p->next = *head;
4663 *head = p;
4664 p->sec = sec;
4665 p->count = 0;
4666 p->pc_count = 0;
4667 }
4668
4669 p->count += 1;
4670 if (!MUST_BE_DYN_RELOC (r_type))
4671 p->pc_count += 1;
4672 }
4673 break;
4674
4675 default:
4676 break;
4677 }
4678 }
4679
4680 return TRUE;
4681}
4682
4683/* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4684 of the code entry point, and its section. */
4685
4686static bfd_vma
4687opd_entry_value (asection *opd_sec,
4688 bfd_vma offset,
4689 asection **code_sec,
4690 bfd_vma *code_off)
4691{
4692 bfd *opd_bfd = opd_sec->owner;
4693 Elf_Internal_Rela *lo, *hi, *look;
4694
4695 /* Go find the opd reloc at the sym address. */
4696 lo = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4697 BFD_ASSERT (lo != NULL);
4698 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4699
4700 while (lo < hi)
4701 {
4702 look = lo + (hi - lo) / 2;
4703 if (look->r_offset < offset)
4704 lo = look + 1;
4705 else if (look->r_offset > offset)
4706 hi = look;
4707 else
4708 {
4709 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4710 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4711 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4712 {
4713 unsigned long symndx = ELF64_R_SYM (look->r_info);
4714 bfd_vma val;
4715 asection *sec;
4716
4717 if (symndx < symtab_hdr->sh_info)
4718 {
4719 Elf_Internal_Sym *sym;
4720
4721 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4722 if (sym == NULL)
4723 {
4724 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4725 symtab_hdr->sh_info,
4726 0, NULL, NULL, NULL);
4727 if (sym == NULL)
4728 return (bfd_vma) -1;
4729 symtab_hdr->contents = (bfd_byte *) sym;
4730 }
4731
4732 sym += symndx;
4733 val = sym->st_value;
4734 sec = NULL;
4735 if ((sym->st_shndx != SHN_UNDEF
4736 && sym->st_shndx < SHN_LORESERVE)
4737 || sym->st_shndx > SHN_HIRESERVE)
4738 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4739 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4740 }
4741 else
4742 {
4743 struct elf_link_hash_entry **sym_hashes;
4744 struct elf_link_hash_entry *rh;
4745
4746 sym_hashes = elf_sym_hashes (opd_bfd);
4747 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4748 while (rh->root.type == bfd_link_hash_indirect
4749 || rh->root.type == bfd_link_hash_warning)
4750 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4751 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4752 || rh->root.type == bfd_link_hash_defweak);
4753 val = rh->root.u.def.value;
4754 sec = rh->root.u.def.section;
4755 }
4756 val += look->r_addend;
4757 if (code_off != NULL)
4758 *code_off = val;
4759 if (code_sec != NULL)
4760 *code_sec = sec;
4761 if (sec != NULL && sec->output_section != NULL)
4762 val += sec->output_section->vma + sec->output_offset;
4763 return val;
4764 }
4765 break;
4766 }
4767 }
4768 return (bfd_vma) -1;
4769}
4770
4771/* Return the section that should be marked against GC for a given
4772 relocation. */
4773
4774static asection *
4775ppc64_elf_gc_mark_hook (asection *sec,
4776 struct bfd_link_info *info,
4777 Elf_Internal_Rela *rel,
4778 struct elf_link_hash_entry *h,
4779 Elf_Internal_Sym *sym)
4780{
4781 asection *rsec;
4782
4783 /* First mark all our entry sym sections. */
4784 if (info->gc_sym_list != NULL)
4785 {
4786 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4787 struct bfd_sym_chain *sym = info->gc_sym_list;
4788
4789 info->gc_sym_list = NULL;
4790 do
4791 {
4792 struct ppc_link_hash_entry *eh;
4793
4794 eh = (struct ppc_link_hash_entry *)
4795 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4796 if (eh == NULL)
4797 continue;
4798 if (eh->elf.root.type != bfd_link_hash_defined
4799 && eh->elf.root.type != bfd_link_hash_defweak)
4800 continue;
4801
4802 if (eh->is_func_descriptor)
4803 rsec = eh->oh->elf.root.u.def.section;
4804 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4805 && opd_entry_value (eh->elf.root.u.def.section,
4806 eh->elf.root.u.def.value,
4807 &rsec, NULL) != (bfd_vma) -1)
4808 ;
4809 else
4810 continue;
4811
4812 if (!rsec->gc_mark)
4813 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4814
4815 rsec = eh->elf.root.u.def.section;
4816 if (!rsec->gc_mark)
4817 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4818
4819 sym = sym->next;
4820 }
4821 while (sym != NULL);
4822 }
4823
4824 /* Syms return NULL if we're marking .opd, so we avoid marking all
4825 function sections, as all functions are referenced in .opd. */
4826 rsec = NULL;
4827 if (get_opd_info (sec) != NULL)
4828 return rsec;
4829
4830 if (h != NULL)
4831 {
4832 enum elf_ppc64_reloc_type r_type;
4833 struct ppc_link_hash_entry *eh;
4834
4835 r_type = ELF64_R_TYPE (rel->r_info);
4836 switch (r_type)
4837 {
4838 case R_PPC64_GNU_VTINHERIT:
4839 case R_PPC64_GNU_VTENTRY:
4840 break;
4841
4842 default:
4843 switch (h->root.type)
4844 {
4845 case bfd_link_hash_defined:
4846 case bfd_link_hash_defweak:
4847 eh = (struct ppc_link_hash_entry *) h;
4848 if (eh->oh != NULL && eh->oh->is_func_descriptor)
4849 eh = eh->oh;
4850
4851 /* Function descriptor syms cause the associated
4852 function code sym section to be marked. */
4853 if (eh->is_func_descriptor)
4854 {
4855 /* They also mark their opd section. */
4856 if (!eh->elf.root.u.def.section->gc_mark)
4857 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4858 ppc64_elf_gc_mark_hook);
4859
4860 rsec = eh->oh->elf.root.u.def.section;
4861 }
4862 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4863 && opd_entry_value (eh->elf.root.u.def.section,
4864 eh->elf.root.u.def.value,
4865 &rsec, NULL) != (bfd_vma) -1)
4866 {
4867 if (!eh->elf.root.u.def.section->gc_mark)
4868 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4869 ppc64_elf_gc_mark_hook);
4870 }
4871 else
4872 rsec = h->root.u.def.section;
4873 break;
4874
4875 case bfd_link_hash_common:
4876 rsec = h->root.u.c.p->section;
4877 break;
4878
4879 default:
4880 break;
4881 }
4882 }
4883 }
4884 else
4885 {
4886 asection **opd_sym_section;
4887
4888 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4889 opd_sym_section = get_opd_info (rsec);
4890 if (opd_sym_section != NULL)
4891 {
4892 if (!rsec->gc_mark)
4893 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4894
4895 rsec = opd_sym_section[sym->st_value / 8];
4896 }
4897 }
4898
4899 return rsec;
4900}
4901
4902/* Update the .got, .plt. and dynamic reloc reference counts for the
4903 section being removed. */
4904
4905static bfd_boolean
4906ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4907 asection *sec, const Elf_Internal_Rela *relocs)
4908{
4909 struct ppc_link_hash_table *htab;
4910 Elf_Internal_Shdr *symtab_hdr;
4911 struct elf_link_hash_entry **sym_hashes;
4912 struct got_entry **local_got_ents;
4913 const Elf_Internal_Rela *rel, *relend;
4914
4915 if ((sec->flags & SEC_ALLOC) == 0)
4916 return TRUE;
4917
4918 elf_section_data (sec)->local_dynrel = NULL;
4919
4920 htab = ppc_hash_table (info);
4921 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4922 sym_hashes = elf_sym_hashes (abfd);
4923 local_got_ents = elf_local_got_ents (abfd);
4924
4925 relend = relocs + sec->reloc_count;
4926 for (rel = relocs; rel < relend; rel++)
4927 {
4928 unsigned long r_symndx;
4929 enum elf_ppc64_reloc_type r_type;
4930 struct elf_link_hash_entry *h = NULL;
4931 char tls_type = 0;
4932
4933 r_symndx = ELF64_R_SYM (rel->r_info);
4934 r_type = ELF64_R_TYPE (rel->r_info);
4935 if (r_symndx >= symtab_hdr->sh_info)
4936 {
4937 struct ppc_link_hash_entry *eh;
4938 struct ppc_dyn_relocs **pp;
4939 struct ppc_dyn_relocs *p;
4940
4941 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4942 eh = (struct ppc_link_hash_entry *) h;
4943
4944 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4945 if (p->sec == sec)
4946 {
4947 /* Everything must go for SEC. */
4948 *pp = p->next;
4949 break;
4950 }
4951 }
4952
4953 switch (r_type)
4954 {
4955 case R_PPC64_GOT_TLSLD16:
4956 case R_PPC64_GOT_TLSLD16_LO:
4957 case R_PPC64_GOT_TLSLD16_HI:
4958 case R_PPC64_GOT_TLSLD16_HA:
4959 ppc64_tlsld_got (abfd)->refcount -= 1;
4960 tls_type = TLS_TLS | TLS_LD;
4961 goto dogot;
4962
4963 case R_PPC64_GOT_TLSGD16:
4964 case R_PPC64_GOT_TLSGD16_LO:
4965 case R_PPC64_GOT_TLSGD16_HI:
4966 case R_PPC64_GOT_TLSGD16_HA:
4967 tls_type = TLS_TLS | TLS_GD;
4968 goto dogot;
4969
4970 case R_PPC64_GOT_TPREL16_DS:
4971 case R_PPC64_GOT_TPREL16_LO_DS:
4972 case R_PPC64_GOT_TPREL16_HI:
4973 case R_PPC64_GOT_TPREL16_HA:
4974 tls_type = TLS_TLS | TLS_TPREL;
4975 goto dogot;
4976
4977 case R_PPC64_GOT_DTPREL16_DS:
4978 case R_PPC64_GOT_DTPREL16_LO_DS:
4979 case R_PPC64_GOT_DTPREL16_HI:
4980 case R_PPC64_GOT_DTPREL16_HA:
4981 tls_type = TLS_TLS | TLS_DTPREL;
4982 goto dogot;
4983
4984 case R_PPC64_GOT16:
4985 case R_PPC64_GOT16_DS:
4986 case R_PPC64_GOT16_HA:
4987 case R_PPC64_GOT16_HI:
4988 case R_PPC64_GOT16_LO:
4989 case R_PPC64_GOT16_LO_DS:
4990 dogot:
4991 {
4992 struct got_entry *ent;
4993
4994 if (h != NULL)
4995 ent = h->got.glist;
4996 else
4997 ent = local_got_ents[r_symndx];
4998
4999 for (; ent != NULL; ent = ent->next)
5000 if (ent->addend == rel->r_addend
5001 && ent->owner == abfd
5002 && ent->tls_type == tls_type)
5003 break;
5004 if (ent == NULL)
5005 abort ();
5006 if (ent->got.refcount > 0)
5007 ent->got.refcount -= 1;
5008 }
5009 break;
5010
5011 case R_PPC64_PLT16_HA:
5012 case R_PPC64_PLT16_HI:
5013 case R_PPC64_PLT16_LO:
5014 case R_PPC64_PLT32:
5015 case R_PPC64_PLT64:
5016 case R_PPC64_REL14:
5017 case R_PPC64_REL14_BRNTAKEN:
5018 case R_PPC64_REL14_BRTAKEN:
5019 case R_PPC64_REL24:
5020 if (h != NULL)
5021 {
5022 struct plt_entry *ent;
5023
5024 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5025 if (ent->addend == rel->r_addend)
5026 break;
5027 if (ent == NULL)
5028 abort ();
5029 if (ent->plt.refcount > 0)
5030 ent->plt.refcount -= 1;
5031 }
5032 break;
5033
5034 default:
5035 break;
5036 }
5037 }
5038 return TRUE;
5039}
5040
5041/* The maximum size of .sfpr. */
5042#define SFPR_MAX (218*4)
5043
5044struct sfpr_def_parms
5045{
5046 const char name[12];
5047 unsigned char lo, hi;
5048 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5049 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5050};
5051
5052/* Auto-generate _save*, _rest* functions in .sfpr. */
5053
5054static unsigned int
5055sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5056{
5057 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5058 unsigned int i;
5059 size_t len = strlen (parm->name);
5060 bfd_boolean writing = FALSE;
5061 char sym[16];
5062
5063 memcpy (sym, parm->name, len);
5064 sym[len + 2] = 0;
5065
5066 for (i = parm->lo; i <= parm->hi; i++)
5067 {
5068 struct elf_link_hash_entry *h;
5069
5070 sym[len + 0] = i / 10 + '0';
5071 sym[len + 1] = i % 10 + '0';
5072 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5073 if (h != NULL
5074 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5075 {
5076 h->root.type = bfd_link_hash_defined;
5077 h->root.u.def.section = htab->sfpr;
5078 h->root.u.def.value = htab->sfpr->size;
5079 h->type = STT_FUNC;
5080 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5081 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5082 writing = TRUE;
5083 if (htab->sfpr->contents == NULL)
5084 {
5085 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5086 if (htab->sfpr->contents == NULL)
5087 return FALSE;
5088 }
5089 }
5090 if (writing)
5091 {
5092 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5093 if (i != parm->hi)
5094 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5095 else
5096 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5097 htab->sfpr->size = p - htab->sfpr->contents;
5098 }
5099 }
5100
5101 return TRUE;
5102}
5103
5104static bfd_byte *
5105savegpr0 (bfd *abfd, bfd_byte *p, int r)
5106{
5107 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5108 return p + 4;
5109}
5110
5111static bfd_byte *
5112savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5113{
5114 p = savegpr0 (abfd, p, r);
5115 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5116 p = p + 4;
5117 bfd_put_32 (abfd, BLR, p);
5118 return p + 4;
5119}
5120
5121static bfd_byte *
5122restgpr0 (bfd *abfd, bfd_byte *p, int r)
5123{
5124 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5125 return p + 4;
5126}
5127
5128static bfd_byte *
5129restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5130{
5131 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5132 p = p + 4;
5133 p = restgpr0 (abfd, p, r);
5134 bfd_put_32 (abfd, MTLR_R0, p);
5135 p = p + 4;
5136 if (r == 29)
5137 {
5138 p = restgpr0 (abfd, p, 30);
5139 p = restgpr0 (abfd, p, 31);
5140 }
5141 bfd_put_32 (abfd, BLR, p);
5142 return p + 4;
5143}
5144
5145static bfd_byte *
5146savegpr1 (bfd *abfd, bfd_byte *p, int r)
5147{
5148 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5149 return p + 4;
5150}
5151
5152static bfd_byte *
5153savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5154{
5155 p = savegpr1 (abfd, p, r);
5156 bfd_put_32 (abfd, BLR, p);
5157 return p + 4;
5158}
5159
5160static bfd_byte *
5161restgpr1 (bfd *abfd, bfd_byte *p, int r)
5162{
5163 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5164 return p + 4;
5165}
5166
5167static bfd_byte *
5168restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5169{
5170 p = restgpr1 (abfd, p, r);
5171 bfd_put_32 (abfd, BLR, p);
5172 return p + 4;
5173}
5174
5175static bfd_byte *
5176savefpr (bfd *abfd, bfd_byte *p, int r)
5177{
5178 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5179 return p + 4;
5180}
5181
5182static bfd_byte *
5183savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5184{
5185 p = savefpr (abfd, p, r);
5186 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5187 p = p + 4;
5188 bfd_put_32 (abfd, BLR, p);
5189 return p + 4;
5190}
5191
5192static bfd_byte *
5193restfpr (bfd *abfd, bfd_byte *p, int r)
5194{
5195 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5196 return p + 4;
5197}
5198
5199static bfd_byte *
5200restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5201{
5202 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5203 p = p + 4;
5204 p = restfpr (abfd, p, r);
5205 bfd_put_32 (abfd, MTLR_R0, p);
5206 p = p + 4;
5207 if (r == 29)
5208 {
5209 p = restfpr (abfd, p, 30);
5210 p = restfpr (abfd, p, 31);
5211 }
5212 bfd_put_32 (abfd, BLR, p);
5213 return p + 4;
5214}
5215
5216static bfd_byte *
5217savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5218{
5219 p = savefpr (abfd, p, r);
5220 bfd_put_32 (abfd, BLR, p);
5221 return p + 4;
5222}
5223
5224static bfd_byte *
5225restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5226{
5227 p = restfpr (abfd, p, r);
5228 bfd_put_32 (abfd, BLR, p);
5229 return p + 4;
5230}
5231
5232static bfd_byte *
5233savevr (bfd *abfd, bfd_byte *p, int r)
5234{
5235 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5236 p = p + 4;
5237 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5238 return p + 4;
5239}
5240
5241static bfd_byte *
5242savevr_tail (bfd *abfd, bfd_byte *p, int r)
5243{
5244 p = savevr (abfd, p, r);
5245 bfd_put_32 (abfd, BLR, p);
5246 return p + 4;
5247}
5248
5249static bfd_byte *
5250restvr (bfd *abfd, bfd_byte *p, int r)
5251{
5252 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5253 p = p + 4;
5254 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5255 return p + 4;
5256}
5257
5258static bfd_byte *
5259restvr_tail (bfd *abfd, bfd_byte *p, int r)
5260{
5261 p = restvr (abfd, p, r);
5262 bfd_put_32 (abfd, BLR, p);
5263 return p + 4;
5264}
5265
5266/* Called via elf_link_hash_traverse to transfer dynamic linking
5267 information on function code symbol entries to their corresponding
5268 function descriptor symbol entries. */
5269
5270static bfd_boolean
5271func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5272{
5273 struct bfd_link_info *info;
5274 struct ppc_link_hash_table *htab;
5275 struct plt_entry *ent;
5276 struct ppc_link_hash_entry *fh;
5277 struct ppc_link_hash_entry *fdh;
5278 bfd_boolean force_local;
5279
5280 fh = (struct ppc_link_hash_entry *) h;
5281 if (fh->elf.root.type == bfd_link_hash_indirect)
5282 return TRUE;
5283
5284 if (fh->elf.root.type == bfd_link_hash_warning)
5285 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5286
5287 info = inf;
5288 htab = ppc_hash_table (info);
5289
5290 /* Resolve undefined references to dot-symbols as the value
5291 in the function descriptor, if we have one in a regular object.
5292 This is to satisfy cases like ".quad .foo". Calls to functions
5293 in dynamic objects are handled elsewhere. */
5294 if (fh->elf.root.type == bfd_link_hash_undefweak
5295 && fh->was_undefined
5296 && (fh->oh->elf.root.type == bfd_link_hash_defined
5297 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5298 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5299 && opd_entry_value (fh->oh->elf.root.u.def.section,
5300 fh->oh->elf.root.u.def.value,
5301 &fh->elf.root.u.def.section,
5302 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5303 {
5304 fh->elf.root.type = fh->oh->elf.root.type;
5305 fh->elf.elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
5306 }
5307
5308 /* If this is a function code symbol, transfer dynamic linking
5309 information to the function descriptor symbol. */
5310 if (!fh->is_func)
5311 return TRUE;
5312
5313 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5314 if (ent->plt.refcount > 0)
5315 break;
5316 if (ent == NULL
5317 || fh->elf.root.root.string[0] != '.'
5318 || fh->elf.root.root.string[1] == '\0')
5319 return TRUE;
5320
5321 /* Find the corresponding function descriptor symbol. Create it
5322 as undefined if necessary. */
5323
5324 fdh = get_fdh (fh, htab);
5325 if (fdh != NULL)
5326 while (fdh->elf.root.type == bfd_link_hash_indirect
5327 || fdh->elf.root.type == bfd_link_hash_warning)
5328 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5329
5330 if (fdh == NULL
5331 && info->shared
5332 && (fh->elf.root.type == bfd_link_hash_undefined
5333 || fh->elf.root.type == bfd_link_hash_undefweak))
5334 {
5335 bfd *abfd;
5336 asymbol *newsym;
5337 struct bfd_link_hash_entry *bh;
5338
5339 abfd = fh->elf.root.u.undef.abfd;
5340 newsym = bfd_make_empty_symbol (abfd);
5341 newsym->name = fh->elf.root.root.string + 1;
5342 newsym->section = bfd_und_section_ptr;
5343 newsym->value = 0;
5344 newsym->flags = BSF_OBJECT;
5345 if (fh->elf.root.type == bfd_link_hash_undefweak)
5346 newsym->flags |= BSF_WEAK;
5347
5348 bh = &fdh->elf.root;
5349 if ( !(_bfd_generic_link_add_one_symbol
5350 (info, abfd, newsym->name, newsym->flags,
5351 newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
5352 {
5353 return FALSE;
5354 }
5355 fdh = (struct ppc_link_hash_entry *) bh;
5356 fdh->elf.elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5357 fdh->elf.size = 24;
5358 fdh->elf.type = STT_OBJECT;
5359 }
5360
5361 if (fdh != NULL
5362 && (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
5363 && (info->shared
5364 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5365 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5366 || (fdh->elf.root.type == bfd_link_hash_undefweak
5367 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5368 {
5369 if (fdh->elf.dynindx == -1)
5370 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5371 return FALSE;
5372 fdh->elf.elf_link_hash_flags
5373 |= (fh->elf.elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
5374 | ELF_LINK_HASH_REF_DYNAMIC
5375 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
5376 | ELF_LINK_NON_GOT_REF));
5377 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5378 {
5379 struct plt_entry **ep = &fdh->elf.plt.plist;
5380 while (*ep != NULL)
5381 ep = &(*ep)->next;
5382 *ep = fh->elf.plt.plist;
5383 fh->elf.plt.plist = NULL;
5384 fdh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5385 }
5386 fdh->is_func_descriptor = 1;
5387 fdh->oh = fh;
5388 fh->oh = fdh;
5389 }
5390
5391 /* Now that the info is on the function descriptor, clear the
5392 function code sym info. Any function code syms for which we
5393 don't have a definition in a regular file, we force local.
5394 This prevents a shared library from exporting syms that have
5395 been imported from another library. Function code syms that
5396 are really in the library we must leave global to prevent the
5397 linker dragging in a definition from a static library. */
5398 force_local
5399 = (info->shared
5400 && ((fh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5401 || fdh == NULL
5402 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5403 || (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0));
5404 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5405
5406 return TRUE;
5407}
5408
5409/* Called near the start of bfd_elf_size_dynamic_sections. We use
5410 this hook to a) provide some gcc support functions, and b) transfer
5411 dynamic linking information gathered so far on function code symbol
5412 entries, to their corresponding function descriptor symbol entries. */
5413
5414static bfd_boolean
5415ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5416 struct bfd_link_info *info)
5417{
5418 struct ppc_link_hash_table *htab;
5419 unsigned int i;
5420 const struct sfpr_def_parms funcs[] =
5421 {
5422 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5423 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5424 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5425 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5426 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5427 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5428 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5429 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5430 { "._savef", 14, 31, savefpr, savefpr1_tail },
5431 { "._restf", 14, 31, restfpr, restfpr1_tail },
5432 { "_savevr_", 20, 31, savevr, savevr_tail },
5433 { "_restvr_", 20, 31, restvr, restvr_tail }
5434 };
5435
5436 htab = ppc_hash_table (info);
5437 if (htab->sfpr == NULL)
5438 /* We don't have any relocs. */
5439 return TRUE;
5440
5441 /* Provide any missing _save* and _rest* functions. */
5442 htab->sfpr->size = 0;
5443 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5444 if (!sfpr_define (info, &funcs[i]))
5445 return FALSE;
5446
5447 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5448
5449 if (htab->sfpr->size == 0)
5450 _bfd_strip_section_from_output (info, htab->sfpr);
5451
5452 return TRUE;
5453}
5454
5455/* Adjust a symbol defined by a dynamic object and referenced by a
5456 regular object. The current definition is in some section of the
5457 dynamic object, but we're not including those sections. We have to
5458 change the definition to something the rest of the link can
5459 understand. */
5460
5461static bfd_boolean
5462ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5463 struct elf_link_hash_entry *h)
5464{
5465 struct ppc_link_hash_table *htab;
5466 asection *s;
5467 unsigned int power_of_two;
5468
5469 htab = ppc_hash_table (info);
5470
5471 /* Deal with function syms. */
5472 if (h->type == STT_FUNC
5473 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5474 {
5475 /* Clear procedure linkage table information for any symbol that
5476 won't need a .plt entry. */
5477 struct plt_entry *ent;
5478 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5479 if (ent->plt.refcount > 0)
5480 break;
5481 if (ent == NULL
5482 || SYMBOL_CALLS_LOCAL (info, h)
5483 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5484 && h->root.type == bfd_link_hash_undefweak))
5485 {
5486 h->plt.plist = NULL;
5487 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
5488 }
5489 }
5490 else
5491 h->plt.plist = NULL;
5492
5493 /* If this is a weak symbol, and there is a real definition, the
5494 processor independent code will have arranged for us to see the
5495 real definition first, and we can just use the same value. */
5496 if (h->weakdef != NULL)
5497 {
5498 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5499 || h->weakdef->root.type == bfd_link_hash_defweak);
5500 h->root.u.def.section = h->weakdef->root.u.def.section;
5501 h->root.u.def.value = h->weakdef->root.u.def.value;
5502 if (ELIMINATE_COPY_RELOCS)
5503 h->elf_link_hash_flags
5504 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
5505 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
5506 return TRUE;
5507 }
5508
5509 /* If we are creating a shared library, we must presume that the
5510 only references to the symbol are via the global offset table.
5511 For such cases we need not do anything here; the relocations will
5512 be handled correctly by relocate_section. */
5513 if (info->shared)
5514 return TRUE;
5515
5516 /* If there are no references to this symbol that do not use the
5517 GOT, we don't need to generate a copy reloc. */
5518 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
5519 return TRUE;
5520
5521 if (ELIMINATE_COPY_RELOCS)
5522 {
5523 struct ppc_link_hash_entry * eh;
5524 struct ppc_dyn_relocs *p;
5525
5526 eh = (struct ppc_link_hash_entry *) h;
5527 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5528 {
5529 s = p->sec->output_section;
5530 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5531 break;
5532 }
5533
5534 /* If we didn't find any dynamic relocs in read-only sections, then
5535 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5536 if (p == NULL)
5537 {
5538 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
5539 return TRUE;
5540 }
5541 }
5542
5543 if (h->plt.plist != NULL)
5544 {
5545 /* We should never get here, but unfortunately there are versions
5546 of gcc out there that improperly (for this ABI) put initialized
5547 function pointers, vtable refs and suchlike in read-only
5548 sections. Allow them to proceed, but warn that this might
5549 break at runtime. */
5550 (*_bfd_error_handler)
5551 (_("copy reloc against `%s' requires lazy plt linking; "
5552 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5553 h->root.root.string);
5554 }
5555
5556 /* This is a reference to a symbol defined by a dynamic object which
5557 is not a function. */
5558
5559 /* We must allocate the symbol in our .dynbss section, which will
5560 become part of the .bss section of the executable. There will be
5561 an entry for this symbol in the .dynsym section. The dynamic
5562 object will contain position independent code, so all references
5563 from the dynamic object to this symbol will go through the global
5564 offset table. The dynamic linker will use the .dynsym entry to
5565 determine the address it must put in the global offset table, so
5566 both the dynamic object and the regular object will refer to the
5567 same memory location for the variable. */
5568
5569 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5570 to copy the initial value out of the dynamic object and into the
5571 runtime process image. We need to remember the offset into the
5572 .rela.bss section we are going to use. */
5573 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5574 {
5575 htab->relbss->size += sizeof (Elf64_External_Rela);
5576 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
5577 }
5578
5579 /* We need to figure out the alignment required for this symbol. I
5580 have no idea how ELF linkers handle this. */
5581 power_of_two = bfd_log2 (h->size);
5582 if (power_of_two > 4)
5583 power_of_two = 4;
5584
5585 /* Apply the required alignment. */
5586 s = htab->dynbss;
5587 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5588 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5589 {
5590 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5591 return FALSE;
5592 }
5593
5594 /* Define the symbol as being at this point in the section. */
5595 h->root.u.def.section = s;
5596 h->root.u.def.value = s->size;
5597
5598 /* Increment the section size to make room for the symbol. */
5599 s->size += h->size;
5600
5601 return TRUE;
5602}
5603
5604/* If given a function descriptor symbol, hide both the function code
5605 sym and the descriptor. */
5606static void
5607ppc64_elf_hide_symbol (struct bfd_link_info *info,
5608 struct elf_link_hash_entry *h,
5609 bfd_boolean force_local)
5610{
5611 struct ppc_link_hash_entry *eh;
5612 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5613
5614 eh = (struct ppc_link_hash_entry *) h;
5615 if (eh->is_func_descriptor)
5616 {
5617 struct ppc_link_hash_entry *fh = eh->oh;
5618
5619 if (fh == NULL)
5620 {
5621 const char *p, *q;
5622 struct ppc_link_hash_table *htab;
5623 char save;
5624
5625 /* We aren't supposed to use alloca in BFD because on
5626 systems which do not have alloca the version in libiberty
5627 calls xmalloc, which might cause the program to crash
5628 when it runs out of memory. This function doesn't have a
5629 return status, so there's no way to gracefully return an
5630 error. So cheat. We know that string[-1] can be safely
5631 accessed; It's either a string in an ELF string table,
5632 or allocated in an objalloc structure. */
5633
5634 p = eh->elf.root.root.string - 1;
5635 save = *p;
5636 *(char *) p = '.';
5637 htab = ppc_hash_table (info);
5638 fh = (struct ppc_link_hash_entry *)
5639 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5640 *(char *) p = save;
5641
5642 /* Unfortunately, if it so happens that the string we were
5643 looking for was allocated immediately before this string,
5644 then we overwrote the string terminator. That's the only
5645 reason the lookup should fail. */
5646 if (fh == NULL)
5647 {
5648 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5649 while (q >= eh->elf.root.root.string && *q == *p)
5650 --q, --p;
5651 if (q < eh->elf.root.root.string && *p == '.')
5652 fh = (struct ppc_link_hash_entry *)
5653 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5654 }
5655 if (fh != NULL)
5656 {
5657 eh->oh = fh;
5658 fh->oh = eh;
5659 }
5660 }
5661 if (fh != NULL)
5662 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5663 }
5664}
5665
5666static bfd_boolean
5667get_sym_h (struct elf_link_hash_entry **hp,
5668 Elf_Internal_Sym **symp,
5669 asection **symsecp,
5670 char **tls_maskp,
5671 Elf_Internal_Sym **locsymsp,
5672 unsigned long r_symndx,
5673 bfd *ibfd)
5674{
5675 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5676
5677 if (r_symndx >= symtab_hdr->sh_info)
5678 {
5679 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5680 struct elf_link_hash_entry *h;
5681
5682 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5683 while (h->root.type == bfd_link_hash_indirect
5684 || h->root.type == bfd_link_hash_warning)
5685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5686
5687 if (hp != NULL)
5688 *hp = h;
5689
5690 if (symp != NULL)
5691 *symp = NULL;
5692
5693 if (symsecp != NULL)
5694 {
5695 asection *symsec = NULL;
5696 if (h->root.type == bfd_link_hash_defined
5697 || h->root.type == bfd_link_hash_defweak)
5698 symsec = h->root.u.def.section;
5699 *symsecp = symsec;
5700 }
5701
5702 if (tls_maskp != NULL)
5703 {
5704 struct ppc_link_hash_entry *eh;
5705
5706 eh = (struct ppc_link_hash_entry *) h;
5707 *tls_maskp = &eh->tls_mask;
5708 }
5709 }
5710 else
5711 {
5712 Elf_Internal_Sym *sym;
5713 Elf_Internal_Sym *locsyms = *locsymsp;
5714
5715 if (locsyms == NULL)
5716 {
5717 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5718 if (locsyms == NULL)
5719 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5720 symtab_hdr->sh_info,
5721 0, NULL, NULL, NULL);
5722 if (locsyms == NULL)
5723 return FALSE;
5724 *locsymsp = locsyms;
5725 }
5726 sym = locsyms + r_symndx;
5727
5728 if (hp != NULL)
5729 *hp = NULL;
5730
5731 if (symp != NULL)
5732 *symp = sym;
5733
5734 if (symsecp != NULL)
5735 {
5736 asection *symsec = NULL;
5737 if ((sym->st_shndx != SHN_UNDEF
5738 && sym->st_shndx < SHN_LORESERVE)
5739 || sym->st_shndx > SHN_HIRESERVE)
5740 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5741 *symsecp = symsec;
5742 }
5743
5744 if (tls_maskp != NULL)
5745 {
5746 struct got_entry **lgot_ents;
5747 char *tls_mask;
5748
5749 tls_mask = NULL;
5750 lgot_ents = elf_local_got_ents (ibfd);
5751 if (lgot_ents != NULL)
5752 {
5753 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5754 tls_mask = &lgot_masks[r_symndx];
5755 }
5756 *tls_maskp = tls_mask;
5757 }
5758 }
5759 return TRUE;
5760}
5761
5762/* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5763 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5764 type suitable for optimization, and 1 otherwise. */
5765
5766static int
5767get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5768 Elf_Internal_Sym **locsymsp,
5769 const Elf_Internal_Rela *rel, bfd *ibfd)
5770{
5771 unsigned long r_symndx;
5772 int next_r;
5773 struct elf_link_hash_entry *h;
5774 Elf_Internal_Sym *sym;
5775 asection *sec;
5776 bfd_vma off;
5777
5778 r_symndx = ELF64_R_SYM (rel->r_info);
5779 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5780 return 0;
5781
5782 if ((*tls_maskp != NULL && **tls_maskp != 0)
5783 || sec == NULL
5784 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5785 return 1;
5786
5787 /* Look inside a TOC section too. */
5788 if (h != NULL)
5789 {
5790 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5791 off = h->root.u.def.value;
5792 }
5793 else
5794 off = sym->st_value;
5795 off += rel->r_addend;
5796 BFD_ASSERT (off % 8 == 0);
5797 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5798 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5799 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5800 return 0;
5801 if (toc_symndx != NULL)
5802 *toc_symndx = r_symndx;
5803 if ((h == NULL
5804 || ((h->root.type == bfd_link_hash_defined
5805 || h->root.type == bfd_link_hash_defweak)
5806 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
5807 && (next_r == -1 || next_r == -2))
5808 return 1 - next_r;
5809 return 1;
5810}
5811
5812/* Adjust all global syms defined in opd sections. In gcc generated
5813 code for the old ABI, these will already have been done. */
5814
5815static bfd_boolean
5816adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5817{
5818 struct ppc_link_hash_entry *eh;
5819 asection *sym_sec;
5820 long *opd_adjust;
5821
5822 if (h->root.type == bfd_link_hash_indirect)
5823 return TRUE;
5824
5825 if (h->root.type == bfd_link_hash_warning)
5826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5827
5828 if (h->root.type != bfd_link_hash_defined
5829 && h->root.type != bfd_link_hash_defweak)
5830 return TRUE;
5831
5832 eh = (struct ppc_link_hash_entry *) h;
5833 if (eh->adjust_done)
5834 return TRUE;
5835
5836 sym_sec = eh->elf.root.u.def.section;
5837 opd_adjust = get_opd_info (sym_sec);
5838 if (opd_adjust != NULL)
5839 {
5840 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5841 if (adjust == -1)
5842 {
5843 /* This entry has been deleted. */
5844 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5845 if (dsec == NULL)
5846 {
5847 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5848 if (elf_discarded_section (dsec))
5849 {
5850 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5851 break;
5852 }
5853 }
5854 eh->elf.root.u.def.value = 0;
5855 eh->elf.root.u.def.section = dsec;
5856 }
5857 else
5858 eh->elf.root.u.def.value += adjust;
5859 eh->adjust_done = 1;
5860 }
5861 return TRUE;
5862}
5863
5864/* Remove unused Official Procedure Descriptor entries. Currently we
5865 only remove those associated with functions in discarded link-once
5866 sections, or weakly defined functions that have been overridden. It
5867 would be possible to remove many more entries for statically linked
5868 applications. */
5869
5870bfd_boolean
5871ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5872 bfd_boolean non_overlapping)
5873{
5874 bfd *ibfd;
5875 bfd_boolean some_edited = FALSE;
5876 asection *need_pad = NULL;
5877
5878 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5879 {
5880 asection *sec;
5881 Elf_Internal_Rela *relstart, *rel, *relend;
5882 Elf_Internal_Shdr *symtab_hdr;
5883 Elf_Internal_Sym *local_syms;
5884 struct elf_link_hash_entry **sym_hashes;
5885 bfd_vma offset;
5886 bfd_size_type amt;
5887 long *opd_adjust;
5888 bfd_boolean need_edit, add_aux_fields;
5889 bfd_size_type cnt_16b = 0;
5890
5891 sec = bfd_get_section_by_name (ibfd, ".opd");
5892 if (sec == NULL)
5893 continue;
5894
5895 amt = sec->size * sizeof (long) / 8;
5896 opd_adjust = get_opd_info (sec);
5897 if (opd_adjust == NULL)
5898 {
5899 /* Must be a ld -r link. ie. check_relocs hasn't been
5900 called. */
5901 opd_adjust = bfd_zalloc (obfd, amt);
5902 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5903 }
5904 memset (opd_adjust, 0, amt);
5905
5906 if (sec->output_section == bfd_abs_section_ptr)
5907 continue;
5908
5909 /* Look through the section relocs. */
5910 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
5911 continue;
5912
5913 local_syms = NULL;
5914 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5915 sym_hashes = elf_sym_hashes (ibfd);
5916
5917 /* Read the relocations. */
5918 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
5919 info->keep_memory);
5920 if (relstart == NULL)
5921 return FALSE;
5922
5923 /* First run through the relocs to check they are sane, and to
5924 determine whether we need to edit this opd section. */
5925 need_edit = FALSE;
5926 need_pad = sec;
5927 offset = 0;
5928 relend = relstart + sec->reloc_count;
5929 for (rel = relstart; rel < relend; )
5930 {
5931 enum elf_ppc64_reloc_type r_type;
5932 unsigned long r_symndx;
5933 asection *sym_sec;
5934 struct elf_link_hash_entry *h;
5935 Elf_Internal_Sym *sym;
5936
5937 /* .opd contains a regular array of 16 or 24 byte entries. We're
5938 only interested in the reloc pointing to a function entry
5939 point. */
5940 if (rel->r_offset != offset
5941 || rel + 1 >= relend
5942 || (rel + 1)->r_offset != offset + 8)
5943 {
5944 /* If someone messes with .opd alignment then after a
5945 "ld -r" we might have padding in the middle of .opd.
5946 Also, there's nothing to prevent someone putting
5947 something silly in .opd with the assembler. No .opd
5948 optimization for them! */
5949 broken_opd:
5950 (*_bfd_error_handler)
5951 (_("%B: .opd is not a regular array of opd entries"), ibfd);
5952 need_edit = FALSE;
5953 break;
5954 }
5955
5956 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
5957 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
5958 {
5959 (*_bfd_error_handler)
5960 (_("%B: unexpected reloc type %u in .opd section"),
5961 ibfd, r_type);
5962 need_edit = FALSE;
5963 break;
5964 }
5965
5966 r_symndx = ELF64_R_SYM (rel->r_info);
5967 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
5968 r_symndx, ibfd))
5969 goto error_ret;
5970
5971 if (sym_sec == NULL || sym_sec->owner == NULL)
5972 {
5973 const char *sym_name;
5974 if (h != NULL)
5975 sym_name = h->root.root.string;
5976 else
5977 sym_name = bfd_elf_local_sym_name (ibfd, sym);
5978
5979 (*_bfd_error_handler)
5980 (_("%B: undefined sym `%s' in .opd section"),
5981 ibfd, sym_name);
5982 need_edit = FALSE;
5983 break;
5984 }
5985
5986 /* opd entries are always for functions defined in the
5987 current input bfd. If the symbol isn't defined in the
5988 input bfd, then we won't be using the function in this
5989 bfd; It must be defined in a linkonce section in another
5990 bfd, or is weak. It's also possible that we are
5991 discarding the function due to a linker script /DISCARD/,
5992 which we test for via the output_section. */
5993 if (sym_sec->owner != ibfd
5994 || sym_sec->output_section == bfd_abs_section_ptr)
5995 need_edit = TRUE;
5996
5997 rel += 2;
5998 if (rel == relend
5999 || (rel + 1 == relend && rel->r_offset == offset + 16))
6000 {
6001 if (sec->size == offset + 24)
6002 {
6003 need_pad = NULL;
6004 break;
6005 }
6006 if (rel == relend && sec->size == offset + 16)
6007 {
6008 cnt_16b++;
6009 break;
6010 }
6011 goto broken_opd;
6012 }
6013
6014 if (rel->r_offset == offset + 24)
6015 offset += 24;
6016 else if (rel->r_offset != offset + 16)
6017 goto broken_opd;
6018 else if (rel + 1 < relend
6019 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6020 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6021 {
6022 offset += 16;
6023 cnt_16b++;
6024 }
6025 else if (rel + 2 < relend
6026 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6027 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6028 {
6029 offset += 24;
6030 rel += 1;
6031 }
6032 else
6033 goto broken_opd;
6034 }
6035
6036 add_aux_fields = non_overlapping && cnt_16b > 0;
6037
6038 if (need_edit || add_aux_fields)
6039 {
6040 Elf_Internal_Rela *write_rel;
6041 bfd_byte *rptr, *wptr;
6042 bfd_byte *new_contents = NULL;
6043 bfd_boolean skip;
6044 long opd_ent_size;
6045
6046 /* This seems a waste of time as input .opd sections are all
6047 zeros as generated by gcc, but I suppose there's no reason
6048 this will always be so. We might start putting something in
6049 the third word of .opd entries. */
6050 if ((sec->flags & SEC_IN_MEMORY) == 0)
6051 {
6052 bfd_byte *loc;
6053 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6054 {
6055 if (loc != NULL)
6056 free (loc);
6057 error_ret:
6058 if (local_syms != NULL
6059 && symtab_hdr->contents != (unsigned char *) local_syms)
6060 free (local_syms);
6061 if (elf_section_data (sec)->relocs != relstart)
6062 free (relstart);
6063 return FALSE;
6064 }
6065 sec->contents = loc;
6066 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6067 }
6068
6069 elf_section_data (sec)->relocs = relstart;
6070
6071 wptr = sec->contents;
6072 rptr = sec->contents;
6073 new_contents = sec->contents;
6074
6075 if (add_aux_fields)
6076 {
6077 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6078 if (new_contents == NULL)
6079 return FALSE;
6080 need_pad = FALSE;
6081 wptr = new_contents;
6082 }
6083
6084 write_rel = relstart;
6085 skip = FALSE;
6086 offset = 0;
6087 opd_ent_size = 0;
6088 for (rel = relstart; rel < relend; rel++)
6089 {
6090 unsigned long r_symndx;
6091 asection *sym_sec;
6092 struct elf_link_hash_entry *h;
6093 Elf_Internal_Sym *sym;
6094
6095 r_symndx = ELF64_R_SYM (rel->r_info);
6096 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6097 r_symndx, ibfd))
6098 goto error_ret;
6099
6100 if (rel->r_offset == offset)
6101 {
6102 struct ppc_link_hash_entry *fdh = NULL;
6103
6104 /* See if the .opd entry is full 24 byte or
6105 16 byte (with fd_aux entry overlapped with next
6106 fd_func). */
6107 opd_ent_size = 24;
6108 if ((rel + 2 == relend && sec->size == offset + 16)
6109 || (rel + 3 < relend
6110 && rel[2].r_offset == offset + 16
6111 && rel[3].r_offset == offset + 24
6112 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6113 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6114 opd_ent_size = 16;
6115
6116 if (h != NULL
6117 && h->root.root.string[0] == '.')
6118 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6119 ppc_hash_table (info));
6120
6121 skip = (sym_sec->owner != ibfd
6122 || sym_sec->output_section == bfd_abs_section_ptr);
6123 if (skip)
6124 {
6125 if (fdh != NULL && sym_sec->owner == ibfd)
6126 {
6127 /* Arrange for the function descriptor sym
6128 to be dropped. */
6129 fdh->elf.root.u.def.value = 0;
6130 fdh->elf.root.u.def.section = sym_sec;
6131 }
6132 opd_adjust[rel->r_offset / 8] = -1;
6133 }
6134 else
6135 {
6136 /* We'll be keeping this opd entry. */
6137
6138 if (fdh != NULL)
6139 {
6140 /* Redefine the function descriptor symbol to
6141 this location in the opd section. It is
6142 necessary to update the value here rather
6143 than using an array of adjustments as we do
6144 for local symbols, because various places
6145 in the generic ELF code use the value
6146 stored in u.def.value. */
6147 fdh->elf.root.u.def.value = wptr - new_contents;
6148 fdh->adjust_done = 1;
6149 }
6150
6151 /* Local syms are a bit tricky. We could
6152 tweak them as they can be cached, but
6153 we'd need to look through the local syms
6154 for the function descriptor sym which we
6155 don't have at the moment. So keep an
6156 array of adjustments. */
6157 opd_adjust[rel->r_offset / 8]
6158 = (wptr - new_contents) - (rptr - sec->contents);
6159
6160 if (wptr != rptr)
6161 memcpy (wptr, rptr, opd_ent_size);
6162 wptr += opd_ent_size;
6163 if (add_aux_fields && opd_ent_size == 16)
6164 {
6165 memset (wptr, '\0', 8);
6166 wptr += 8;
6167 }
6168 }
6169 rptr += opd_ent_size;
6170 offset += opd_ent_size;
6171 }
6172
6173 if (skip)
6174 {
6175 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6176 if (info->shared)
6177 {
6178 /* We won't be needing dynamic relocs here. */
6179 struct ppc_dyn_relocs **pp;
6180 struct ppc_dyn_relocs *p;
6181
6182 if (h != NULL)
6183 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6184 else if (sym_sec != NULL)
6185 pp = ((struct ppc_dyn_relocs **)
6186 &elf_section_data (sym_sec)->local_dynrel);
6187 else
6188 pp = ((struct ppc_dyn_relocs **)
6189 &elf_section_data (sec)->local_dynrel);
6190 while ((p = *pp) != NULL)
6191 {
6192 if (p->sec == sec)
6193 {
6194 p->count -= 1;
6195 if (p->count == 0)
6196 *pp = p->next;
6197 break;
6198 }
6199 pp = &p->next;
6200 }
6201 }
6202 }
6203 else
6204 {
6205 /* We need to adjust any reloc offsets to point to the
6206 new opd entries. While we're at it, we may as well
6207 remove redundant relocs. */
6208 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6209 if (write_rel != rel)
6210 memcpy (write_rel, rel, sizeof (*rel));
6211 ++write_rel;
6212 }
6213 }
6214
6215 sec->size = wptr - new_contents;
6216 sec->reloc_count = write_rel - relstart;
6217 if (add_aux_fields)
6218 {
6219 free (sec->contents);
6220 sec->contents = new_contents;
6221 }
6222
6223 /* Fudge the size too, as this is used later in
6224 elf_bfd_final_link if we are emitting relocs. */
6225 elf_section_data (sec)->rel_hdr.sh_size
6226 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6227 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6228 some_edited = TRUE;
6229 }
6230 else if (elf_section_data (sec)->relocs != relstart)
6231 free (relstart);
6232
6233 if (local_syms != NULL
6234 && symtab_hdr->contents != (unsigned char *) local_syms)
6235 {
6236 if (!info->keep_memory)
6237 free (local_syms);
6238 else
6239 symtab_hdr->contents = (unsigned char *) local_syms;
6240 }
6241 }
6242
6243 if (some_edited)
6244 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6245
6246 /* If we are doing a final link and the last .opd entry is just 16 byte
6247 long, add a 8 byte padding after it. */
6248 if (need_pad != NULL && !info->relocatable)
6249 {
6250 bfd_byte *p;
6251
6252 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6253 {
6254 BFD_ASSERT (need_pad->size > 0);
6255
6256 p = bfd_malloc (need_pad->size + 8);
6257 if (p == NULL)
6258 return FALSE;
6259
6260 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6261 p, 0, need_pad->size))
6262 return FALSE;
6263
6264 need_pad->contents = p;
6265 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6266 }
6267 else
6268 {
6269 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6270 if (p == NULL)
6271 return FALSE;
6272
6273 need_pad->contents = p;
6274 }
6275
6276 memset (need_pad->contents + need_pad->size, 0, 8);
6277 need_pad->size += 8;
6278 }
6279
6280 return TRUE;
6281}
6282
6283/* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6284
6285asection *
6286ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6287{
6288 struct ppc_link_hash_table *htab;
6289
6290 htab = ppc_hash_table (info);
6291 if (htab->tls_get_addr != NULL)
6292 {
6293 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6294
6295 while (h->elf.root.type == bfd_link_hash_indirect
6296 || h->elf.root.type == bfd_link_hash_warning)
6297 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6298
6299 htab->tls_get_addr = h;
6300
6301 if (htab->tls_get_addr_fd == NULL
6302 && h->oh != NULL
6303 && h->oh->is_func_descriptor)
6304 htab->tls_get_addr_fd = h->oh;
6305 }
6306
6307 if (htab->tls_get_addr_fd != NULL)
6308 {
6309 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6310
6311 while (h->elf.root.type == bfd_link_hash_indirect
6312 || h->elf.root.type == bfd_link_hash_warning)
6313 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6314
6315 htab->tls_get_addr_fd = h;
6316 }
6317
6318 return _bfd_elf_tls_setup (obfd, info);
6319}
6320
6321/* Run through all the TLS relocs looking for optimization
6322 opportunities. The linker has been hacked (see ppc64elf.em) to do
6323 a preliminary section layout so that we know the TLS segment
6324 offsets. We can't optimize earlier because some optimizations need
6325 to know the tp offset, and we need to optimize before allocating
6326 dynamic relocations. */
6327
6328bfd_boolean
6329ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6330{
6331 bfd *ibfd;
6332 asection *sec;
6333 struct ppc_link_hash_table *htab;
6334
6335 if (info->relocatable || info->shared)
6336 return TRUE;
6337
6338 htab = ppc_hash_table (info);
6339 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6340 {
6341 Elf_Internal_Sym *locsyms = NULL;
6342
6343 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6344 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6345 {
6346 Elf_Internal_Rela *relstart, *rel, *relend;
6347 int expecting_tls_get_addr;
6348
6349 /* Read the relocations. */
6350 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6351 info->keep_memory);
6352 if (relstart == NULL)
6353 return FALSE;
6354
6355 expecting_tls_get_addr = 0;
6356 relend = relstart + sec->reloc_count;
6357 for (rel = relstart; rel < relend; rel++)
6358 {
6359 enum elf_ppc64_reloc_type r_type;
6360 unsigned long r_symndx;
6361 struct elf_link_hash_entry *h;
6362 Elf_Internal_Sym *sym;
6363 asection *sym_sec;
6364 char *tls_mask;
6365 char tls_set, tls_clear, tls_type = 0;
6366 bfd_vma value;
6367 bfd_boolean ok_tprel, is_local;
6368
6369 r_symndx = ELF64_R_SYM (rel->r_info);
6370 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6371 r_symndx, ibfd))
6372 {
6373 err_free_rel:
6374 if (elf_section_data (sec)->relocs != relstart)
6375 free (relstart);
6376 if (locsyms != NULL
6377 && (elf_tdata (ibfd)->symtab_hdr.contents
6378 != (unsigned char *) locsyms))
6379 free (locsyms);
6380 return FALSE;
6381 }
6382
6383 if (h != NULL)
6384 {
6385 if (h->root.type != bfd_link_hash_defined
6386 && h->root.type != bfd_link_hash_defweak)
6387 continue;
6388 value = h->root.u.def.value;
6389 }
6390 else
6391 /* Symbols referenced by TLS relocs must be of type
6392 STT_TLS. So no need for .opd local sym adjust. */
6393 value = sym->st_value;
6394
6395 ok_tprel = FALSE;
6396 is_local = FALSE;
6397 if (h == NULL
6398 || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6399 {
6400 is_local = TRUE;
6401 value += sym_sec->output_offset;
6402 value += sym_sec->output_section->vma;
6403 value -= htab->elf.tls_sec->vma;
6404 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6405 < (bfd_vma) 1 << 32);
6406 }
6407
6408 r_type = ELF64_R_TYPE (rel->r_info);
6409 switch (r_type)
6410 {
6411 case R_PPC64_GOT_TLSLD16:
6412 case R_PPC64_GOT_TLSLD16_LO:
6413 case R_PPC64_GOT_TLSLD16_HI:
6414 case R_PPC64_GOT_TLSLD16_HA:
6415 /* These relocs should never be against a symbol
6416 defined in a shared lib. Leave them alone if
6417 that turns out to be the case. */
6418 ppc64_tlsld_got (ibfd)->refcount -= 1;
6419 if (!is_local)
6420 continue;
6421
6422 /* LD -> LE */
6423 tls_set = 0;
6424 tls_clear = TLS_LD;
6425 tls_type = TLS_TLS | TLS_LD;
6426 expecting_tls_get_addr = 1;
6427 break;
6428
6429 case R_PPC64_GOT_TLSGD16:
6430 case R_PPC64_GOT_TLSGD16_LO:
6431 case R_PPC64_GOT_TLSGD16_HI:
6432 case R_PPC64_GOT_TLSGD16_HA:
6433 if (ok_tprel)
6434 /* GD -> LE */
6435 tls_set = 0;
6436 else
6437 /* GD -> IE */
6438 tls_set = TLS_TLS | TLS_TPRELGD;
6439 tls_clear = TLS_GD;
6440 tls_type = TLS_TLS | TLS_GD;
6441 expecting_tls_get_addr = 1;
6442 break;
6443
6444 case R_PPC64_GOT_TPREL16_DS:
6445 case R_PPC64_GOT_TPREL16_LO_DS:
6446 case R_PPC64_GOT_TPREL16_HI:
6447 case R_PPC64_GOT_TPREL16_HA:
6448 expecting_tls_get_addr = 0;
6449 if (ok_tprel)
6450 {
6451 /* IE -> LE */
6452 tls_set = 0;
6453 tls_clear = TLS_TPREL;
6454 tls_type = TLS_TLS | TLS_TPREL;
6455 break;
6456 }
6457 else
6458 continue;
6459
6460 case R_PPC64_REL14:
6461 case R_PPC64_REL14_BRTAKEN:
6462 case R_PPC64_REL14_BRNTAKEN:
6463 case R_PPC64_REL24:
6464 if (h != NULL
6465 && (h == &htab->tls_get_addr->elf
6466 || h == &htab->tls_get_addr_fd->elf))
6467 {
6468 if (!expecting_tls_get_addr
6469 && rel != relstart
6470 && ((ELF64_R_TYPE (rel[-1].r_info)
6471 == R_PPC64_TOC16)
6472 || (ELF64_R_TYPE (rel[-1].r_info)
6473 == R_PPC64_TOC16_LO)))
6474 {
6475 /* Check for toc tls entries. */
6476 char *toc_tls;
6477 int retval;
6478
6479 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6480 rel - 1, ibfd);
6481 if (retval == 0)
6482 goto err_free_rel;
6483 if (toc_tls != NULL)
6484 expecting_tls_get_addr = retval > 1;
6485 }
6486
6487 if (expecting_tls_get_addr)
6488 {
6489 struct plt_entry *ent;
6490 for (ent = h->plt.plist; ent; ent = ent->next)
6491 if (ent->addend == 0)
6492 {
6493 if (ent->plt.refcount > 0)
6494 ent->plt.refcount -= 1;
6495 break;
6496 }
6497 }
6498 }
6499 expecting_tls_get_addr = 0;
6500 continue;
6501
6502 case R_PPC64_TPREL64:
6503 expecting_tls_get_addr = 0;
6504 if (ok_tprel)
6505 {
6506 /* IE -> LE */
6507 tls_set = TLS_EXPLICIT;
6508 tls_clear = TLS_TPREL;
6509 break;
6510 }
6511 else
6512 continue;
6513
6514 case R_PPC64_DTPMOD64:
6515 expecting_tls_get_addr = 0;
6516 if (rel + 1 < relend
6517 && (rel[1].r_info
6518 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6519 && rel[1].r_offset == rel->r_offset + 8)
6520 {
6521 if (ok_tprel)
6522 /* GD -> LE */
6523 tls_set = TLS_EXPLICIT | TLS_GD;
6524 else
6525 /* GD -> IE */
6526 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6527 tls_clear = TLS_GD;
6528 }
6529 else
6530 {
6531 if (!is_local)
6532 continue;
6533
6534 /* LD -> LE */
6535 tls_set = TLS_EXPLICIT;
6536 tls_clear = TLS_LD;
6537 }
6538 break;
6539
6540 default:
6541 expecting_tls_get_addr = 0;
6542 continue;
6543 }
6544
6545 if ((tls_set & TLS_EXPLICIT) == 0)
6546 {
6547 struct got_entry *ent;
6548
6549 /* Adjust got entry for this reloc. */
6550 if (h != NULL)
6551 ent = h->got.glist;
6552 else
6553 ent = elf_local_got_ents (ibfd)[r_symndx];
6554
6555 for (; ent != NULL; ent = ent->next)
6556 if (ent->addend == rel->r_addend
6557 && ent->owner == ibfd
6558 && ent->tls_type == tls_type)
6559 break;
6560 if (ent == NULL)
6561 abort ();
6562
6563 if (tls_set == 0)
6564 {
6565 /* We managed to get rid of a got entry. */
6566 if (ent->got.refcount > 0)
6567 ent->got.refcount -= 1;
6568 }
6569 }
6570 else if (h != NULL)
6571 {
6572 struct ppc_link_hash_entry * eh;
6573 struct ppc_dyn_relocs **pp;
6574 struct ppc_dyn_relocs *p;
6575
6576 /* Adjust dynamic relocs. */
6577 eh = (struct ppc_link_hash_entry *) h;
6578 for (pp = &eh->dyn_relocs;
6579 (p = *pp) != NULL;
6580 pp = &p->next)
6581 if (p->sec == sec)
6582 {
6583 /* If we got rid of a DTPMOD/DTPREL reloc
6584 pair then we'll lose one or two dyn
6585 relocs. */
6586 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6587 p->count -= 1;
6588 p->count -= 1;
6589 if (p->count == 0)
6590 *pp = p->next;
6591 break;
6592 }
6593 }
6594
6595 *tls_mask |= tls_set;
6596 *tls_mask &= ~tls_clear;
6597 }
6598
6599 if (elf_section_data (sec)->relocs != relstart)
6600 free (relstart);
6601 }
6602
6603 if (locsyms != NULL
6604 && (elf_tdata (ibfd)->symtab_hdr.contents
6605 != (unsigned char *) locsyms))
6606 {
6607 if (!info->keep_memory)
6608 free (locsyms);
6609 else
6610 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6611 }
6612 }
6613 return TRUE;
6614}
6615
6616/* Allocate space in .plt, .got and associated reloc sections for
6617 dynamic relocs. */
6618
6619static bfd_boolean
6620allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6621{
6622 struct bfd_link_info *info;
6623 struct ppc_link_hash_table *htab;
6624 asection *s;
6625 struct ppc_link_hash_entry *eh;
6626 struct ppc_dyn_relocs *p;
6627 struct got_entry *gent;
6628
6629 if (h->root.type == bfd_link_hash_indirect)
6630 return TRUE;
6631
6632 if (h->root.type == bfd_link_hash_warning)
6633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6634
6635 info = (struct bfd_link_info *) inf;
6636 htab = ppc_hash_table (info);
6637
6638 if (htab->elf.dynamic_sections_created
6639 && h->dynindx != -1
6640 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
6641 {
6642 struct plt_entry *pent;
6643 bfd_boolean doneone = FALSE;
6644 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6645 if (pent->plt.refcount > 0)
6646 {
6647 /* If this is the first .plt entry, make room for the special
6648 first entry. */
6649 s = htab->plt;
6650 if (s->size == 0)
6651 s->size += PLT_INITIAL_ENTRY_SIZE;
6652
6653 pent->plt.offset = s->size;
6654
6655 /* Make room for this entry. */
6656 s->size += PLT_ENTRY_SIZE;
6657
6658 /* Make room for the .glink code. */
6659 s = htab->glink;
6660 if (s->size == 0)
6661 s->size += GLINK_CALL_STUB_SIZE;
6662 /* We need bigger stubs past index 32767. */
6663 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
6664 s->size += 4;
6665 s->size += 2*4;
6666
6667 /* We also need to make an entry in the .rela.plt section. */
6668 s = htab->relplt;
6669 s->size += sizeof (Elf64_External_Rela);
6670 doneone = TRUE;
6671 }
6672 else
6673 pent->plt.offset = (bfd_vma) -1;
6674 if (!doneone)
6675 {
6676 h->plt.plist = NULL;
6677 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6678 }
6679 }
6680 else
6681 {
6682 h->plt.plist = NULL;
6683 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6684 }
6685
6686 eh = (struct ppc_link_hash_entry *) h;
6687 /* Run through the TLS GD got entries first if we're changing them
6688 to TPREL. */
6689 if ((eh->tls_mask & TLS_TPRELGD) != 0)
6690 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6691 if (gent->got.refcount > 0
6692 && (gent->tls_type & TLS_GD) != 0)
6693 {
6694 /* This was a GD entry that has been converted to TPREL. If
6695 there happens to be a TPREL entry we can use that one. */
6696 struct got_entry *ent;
6697 for (ent = h->got.glist; ent != NULL; ent = ent->next)
6698 if (ent->got.refcount > 0
6699 && (ent->tls_type & TLS_TPREL) != 0
6700 && ent->addend == gent->addend
6701 && ent->owner == gent->owner)
6702 {
6703 gent->got.refcount = 0;
6704 break;
6705 }
6706
6707 /* If not, then we'll be using our own TPREL entry. */
6708 if (gent->got.refcount != 0)
6709 gent->tls_type = TLS_TLS | TLS_TPREL;
6710 }
6711
6712 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6713 if (gent->got.refcount > 0)
6714 {
6715 bfd_boolean dyn;
6716
6717 /* Make sure this symbol is output as a dynamic symbol.
6718 Undefined weak syms won't yet be marked as dynamic,
6719 nor will all TLS symbols. */
6720 if (h->dynindx == -1
6721 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6722 {
6723 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6724 return FALSE;
6725 }
6726
6727 if ((gent->tls_type & TLS_LD) != 0
6728 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6729 {
6730 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
6731 continue;
6732 }
6733
6734 s = ppc64_elf_tdata (gent->owner)->got;
6735 gent->got.offset = s->size;
6736 s->size
6737 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
6738 dyn = htab->elf.dynamic_sections_created;
6739 if ((info->shared
6740 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
6741 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6742 || h->root.type != bfd_link_hash_undefweak))
6743 ppc64_elf_tdata (gent->owner)->relgot->size
6744 += (gent->tls_type & eh->tls_mask & TLS_GD
6745 ? 2 * sizeof (Elf64_External_Rela)
6746 : sizeof (Elf64_External_Rela));
6747 }
6748 else
6749 gent->got.offset = (bfd_vma) -1;
6750
6751 if (eh->dyn_relocs == NULL)
6752 return TRUE;
6753
6754 /* In the shared -Bsymbolic case, discard space allocated for
6755 dynamic pc-relative relocs against symbols which turn out to be
6756 defined in regular objects. For the normal shared case, discard
6757 space for relocs that have become local due to symbol visibility
6758 changes. */
6759
6760 if (info->shared)
6761 {
6762 /* Relocs that use pc_count are those that appear on a call insn,
6763 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
6764 generated via assembly. We want calls to protected symbols to
6765 resolve directly to the function rather than going via the plt.
6766 If people want function pointer comparisons to work as expected
6767 then they should avoid writing weird assembly. */
6768 if (SYMBOL_CALLS_LOCAL (info, h))
6769 {
6770 struct ppc_dyn_relocs **pp;
6771
6772 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
6773 {
6774 p->count -= p->pc_count;
6775 p->pc_count = 0;
6776 if (p->count == 0)
6777 *pp = p->next;
6778 else
6779 pp = &p->next;
6780 }
6781 }
6782
6783 /* Also discard relocs on undefined weak syms with non-default
6784 visibility. */
6785 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6786 && h->root.type == bfd_link_hash_undefweak)
6787 eh->dyn_relocs = NULL;
6788 }
6789 else if (ELIMINATE_COPY_RELOCS)
6790 {
6791 /* For the non-shared case, discard space for relocs against
6792 symbols which turn out to need copy relocs or are not
6793 dynamic. */
6794
6795 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
6796 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6797 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6798 {
6799 /* Make sure this symbol is output as a dynamic symbol.
6800 Undefined weak syms won't yet be marked as dynamic. */
6801 if (h->dynindx == -1
6802 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6803 {
6804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6805 return FALSE;
6806 }
6807
6808 /* If that succeeded, we know we'll be keeping all the
6809 relocs. */
6810 if (h->dynindx != -1)
6811 goto keep;
6812 }
6813
6814 eh->dyn_relocs = NULL;
6815
6816 keep: ;
6817 }
6818
6819 /* Finally, allocate space. */
6820 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6821 {
6822 asection *sreloc = elf_section_data (p->sec)->sreloc;
6823 sreloc->size += p->count * sizeof (Elf64_External_Rela);
6824 }
6825
6826 return TRUE;
6827}
6828
6829/* Find any dynamic relocs that apply to read-only sections. */
6830
6831static bfd_boolean
6832readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6833{
6834 struct ppc_link_hash_entry *eh;
6835 struct ppc_dyn_relocs *p;
6836
6837 if (h->root.type == bfd_link_hash_warning)
6838 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6839
6840 eh = (struct ppc_link_hash_entry *) h;
6841 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6842 {
6843 asection *s = p->sec->output_section;
6844
6845 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6846 {
6847 struct bfd_link_info *info = inf;
6848
6849 info->flags |= DF_TEXTREL;
6850
6851 /* Not an error, just cut short the traversal. */
6852 return FALSE;
6853 }
6854 }
6855 return TRUE;
6856}
6857
6858/* Set the sizes of the dynamic sections. */
6859
6860static bfd_boolean
6861ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6862 struct bfd_link_info *info)
6863{
6864 struct ppc_link_hash_table *htab;
6865 bfd *dynobj;
6866 asection *s;
6867 bfd_boolean relocs;
6868 bfd *ibfd;
6869
6870 htab = ppc_hash_table (info);
6871 dynobj = htab->elf.dynobj;
6872 if (dynobj == NULL)
6873 abort ();
6874
6875 if (htab->elf.dynamic_sections_created)
6876 {
6877 /* Set the contents of the .interp section to the interpreter. */
6878 if (info->executable)
6879 {
6880 s = bfd_get_section_by_name (dynobj, ".interp");
6881 if (s == NULL)
6882 abort ();
6883 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6884 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6885 }
6886 }
6887
6888 /* Set up .got offsets for local syms, and space for local dynamic
6889 relocs. */
6890 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6891 {
6892 struct got_entry **lgot_ents;
6893 struct got_entry **end_lgot_ents;
6894 char *lgot_masks;
6895 bfd_size_type locsymcount;
6896 Elf_Internal_Shdr *symtab_hdr;
6897 asection *srel;
6898
6899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
6900 continue;
6901
6902 if (ppc64_tlsld_got (ibfd)->refcount > 0)
6903 {
6904 s = ppc64_elf_tdata (ibfd)->got;
6905 ppc64_tlsld_got (ibfd)->offset = s->size;
6906 s->size += 16;
6907 if (info->shared)
6908 {
6909 srel = ppc64_elf_tdata (ibfd)->relgot;
6910 srel->size += sizeof (Elf64_External_Rela);
6911 }
6912 }
6913 else
6914 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
6915
6916 for (s = ibfd->sections; s != NULL; s = s->next)
6917 {
6918 struct ppc_dyn_relocs *p;
6919
6920 for (p = *((struct ppc_dyn_relocs **)
6921 &elf_section_data (s)->local_dynrel);
6922 p != NULL;
6923 p = p->next)
6924 {
6925 if (!bfd_is_abs_section (p->sec)
6926 && bfd_is_abs_section (p->sec->output_section))
6927 {
6928 /* Input section has been discarded, either because
6929 it is a copy of a linkonce section or due to
6930 linker script /DISCARD/, so we'll be discarding
6931 the relocs too. */
6932 }
6933 else if (p->count != 0)
6934 {
6935 srel = elf_section_data (p->sec)->sreloc;
6936 srel->size += p->count * sizeof (Elf64_External_Rela);
6937 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6938 info->flags |= DF_TEXTREL;
6939 }
6940 }
6941 }
6942
6943 lgot_ents = elf_local_got_ents (ibfd);
6944 if (!lgot_ents)
6945 continue;
6946
6947 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6948 locsymcount = symtab_hdr->sh_info;
6949 end_lgot_ents = lgot_ents + locsymcount;
6950 lgot_masks = (char *) end_lgot_ents;
6951 s = ppc64_elf_tdata (ibfd)->got;
6952 srel = ppc64_elf_tdata (ibfd)->relgot;
6953 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
6954 {
6955 struct got_entry *ent;
6956
6957 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
6958 if (ent->got.refcount > 0)
6959 {
6960 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
6961 {
6962 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
6963 {
6964 ppc64_tlsld_got (ibfd)->offset = s->size;
6965 s->size += 16;
6966 if (info->shared)
6967 srel->size += sizeof (Elf64_External_Rela);
6968 }
6969 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
6970 }
6971 else
6972 {
6973 ent->got.offset = s->size;
6974 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
6975 {
6976 s->size += 16;
6977 if (info->shared)
6978 srel->size += 2 * sizeof (Elf64_External_Rela);
6979 }
6980 else
6981 {
6982 s->size += 8;
6983 if (info->shared)
6984 srel->size += sizeof (Elf64_External_Rela);
6985 }
6986 }
6987 }
6988 else
6989 ent->got.offset = (bfd_vma) -1;
6990 }
6991 }
6992
6993 /* Allocate global sym .plt and .got entries, and space for global
6994 sym dynamic relocs. */
6995 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
6996
6997 /* We now have determined the sizes of the various dynamic sections.
6998 Allocate memory for them. */
6999 relocs = FALSE;
7000 for (s = dynobj->sections; s != NULL; s = s->next)
7001 {
7002 if ((s->flags & SEC_LINKER_CREATED) == 0)
7003 continue;
7004
7005 if (s == htab->brlt || s == htab->relbrlt)
7006 /* These haven't been allocated yet; don't strip. */
7007 continue;
7008 else if (s == htab->got
7009 || s == htab->plt
7010 || s == htab->glink)
7011 {
7012 /* Strip this section if we don't need it; see the
7013 comment below. */
7014 }
7015 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7016 {
7017 if (s->size == 0)
7018 {
7019 /* If we don't need this section, strip it from the
7020 output file. This is mostly to handle .rela.bss and
7021 .rela.plt. We must create both sections in
7022 create_dynamic_sections, because they must be created
7023 before the linker maps input sections to output
7024 sections. The linker does that before
7025 adjust_dynamic_symbol is called, and it is that
7026 function which decides whether anything needs to go
7027 into these sections. */
7028 }
7029 else
7030 {
7031 if (s != htab->relplt)
7032 relocs = TRUE;
7033
7034 /* We use the reloc_count field as a counter if we need
7035 to copy relocs into the output file. */
7036 s->reloc_count = 0;
7037 }
7038 }
7039 else
7040 {
7041 /* It's not one of our sections, so don't allocate space. */
7042 continue;
7043 }
7044
7045 if (s->size == 0)
7046 {
7047 _bfd_strip_section_from_output (info, s);
7048 continue;
7049 }
7050
7051 /* .plt is in the bss section. We don't initialise it. */
7052 if (s == htab->plt)
7053 continue;
7054
7055 /* Allocate memory for the section contents. We use bfd_zalloc
7056 here in case unused entries are not reclaimed before the
7057 section's contents are written out. This should not happen,
7058 but this way if it does we get a R_PPC64_NONE reloc in .rela
7059 sections instead of garbage.
7060 We also rely on the section contents being zero when writing
7061 the GOT. */
7062 s->contents = bfd_zalloc (dynobj, s->size);
7063 if (s->contents == NULL)
7064 return FALSE;
7065 }
7066
7067 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7068 {
7069 s = ppc64_elf_tdata (ibfd)->got;
7070 if (s != NULL && s != htab->got)
7071 {
7072 if (s->size == 0)
7073 _bfd_strip_section_from_output (info, s);
7074 else
7075 {
7076 s->contents = bfd_zalloc (ibfd, s->size);
7077 if (s->contents == NULL)
7078 return FALSE;
7079 }
7080 }
7081 s = ppc64_elf_tdata (ibfd)->relgot;
7082 if (s != NULL)
7083 {
7084 if (s->size == 0)
7085 _bfd_strip_section_from_output (info, s);
7086 else
7087 {
7088 s->contents = bfd_zalloc (ibfd, s->size);
7089 if (s->contents == NULL)
7090 return FALSE;
7091 relocs = TRUE;
7092 s->reloc_count = 0;
7093 }
7094 }
7095 }
7096
7097 if (htab->elf.dynamic_sections_created)
7098 {
7099 /* Add some entries to the .dynamic section. We fill in the
7100 values later, in ppc64_elf_finish_dynamic_sections, but we
7101 must add the entries now so that we get the correct size for
7102 the .dynamic section. The DT_DEBUG entry is filled in by the
7103 dynamic linker and used by the debugger. */
7104#define add_dynamic_entry(TAG, VAL) \
7105 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7106
7107 if (info->executable)
7108 {
7109 if (!add_dynamic_entry (DT_DEBUG, 0))
7110 return FALSE;
7111 }
7112
7113 if (htab->plt != NULL && htab->plt->size != 0)
7114 {
7115 if (!add_dynamic_entry (DT_PLTGOT, 0)
7116 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7117 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7118 || !add_dynamic_entry (DT_JMPREL, 0)
7119 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7120 return FALSE;
7121 }
7122
7123 if (NO_OPD_RELOCS)
7124 {
7125 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7126 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7127 return FALSE;
7128 }
7129
7130 if (relocs)
7131 {
7132 if (!add_dynamic_entry (DT_RELA, 0)
7133 || !add_dynamic_entry (DT_RELASZ, 0)
7134 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7135 return FALSE;
7136
7137 /* If any dynamic relocs apply to a read-only section,
7138 then we need a DT_TEXTREL entry. */
7139 if ((info->flags & DF_TEXTREL) == 0)
7140 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7141
7142 if ((info->flags & DF_TEXTREL) != 0)
7143 {
7144 if (!add_dynamic_entry (DT_TEXTREL, 0))
7145 return FALSE;
7146 }
7147 }
7148 }
7149#undef add_dynamic_entry
7150
7151 return TRUE;
7152}
7153
7154/* Determine the type of stub needed, if any, for a call. */
7155
7156static inline enum ppc_stub_type
7157ppc_type_of_stub (asection *input_sec,
7158 const Elf_Internal_Rela *rel,
7159 struct ppc_link_hash_entry **hash,
7160 bfd_vma destination)
7161{
7162 struct ppc_link_hash_entry *h = *hash;
7163 bfd_vma location;
7164 bfd_vma branch_offset;
7165 bfd_vma max_branch_offset;
7166 enum elf_ppc64_reloc_type r_type;
7167
7168 if (h != NULL)
7169 {
7170 if (h->oh != NULL
7171 && h->oh->is_func_descriptor)
7172 h = h->oh;
7173
7174 if (h->elf.dynindx != -1)
7175 {
7176 struct plt_entry *ent;
7177
7178 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7179 if (ent->addend == rel->r_addend
7180 && ent->plt.offset != (bfd_vma) -1)
7181 {
7182 *hash = h;
7183 return ppc_stub_plt_call;
7184 }
7185 }
7186
7187 if (!(h->elf.root.type == bfd_link_hash_defined
7188 || h->elf.root.type == bfd_link_hash_defweak)
7189 || h->elf.root.u.def.section->output_section == NULL)
7190 return ppc_stub_none;
7191 }
7192
7193 /* Determine where the call point is. */
7194 location = (input_sec->output_offset
7195 + input_sec->output_section->vma
7196 + rel->r_offset);
7197
7198 branch_offset = destination - location;
7199 r_type = ELF64_R_TYPE (rel->r_info);
7200
7201 /* Determine if a long branch stub is needed. */
7202 max_branch_offset = 1 << 25;
7203 if (r_type != R_PPC64_REL24)
7204 max_branch_offset = 1 << 15;
7205
7206 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7207 /* We need a stub. Figure out whether a long_branch or plt_branch
7208 is needed later. */
7209 return ppc_stub_long_branch;
7210
7211 return ppc_stub_none;
7212}
7213
7214/* Build a .plt call stub. */
7215
7216static inline bfd_byte *
7217build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7218{
7219#define PPC_LO(v) ((v) & 0xffff)
7220#define PPC_HI(v) (((v) >> 16) & 0xffff)
7221#define PPC_HA(v) PPC_HI ((v) + 0x8000)
7222
7223 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7224 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7225 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7226 if (PPC_HA (offset + 8) != PPC_HA (offset))
7227 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7228 offset += 8;
7229 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7230 if (PPC_HA (offset + 8) != PPC_HA (offset))
7231 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7232 offset += 8;
7233 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7234 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7235 bfd_put_32 (obfd, BCTR, p), p += 4;
7236 return p;
7237}
7238
7239static bfd_boolean
7240ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7241{
7242 struct ppc_stub_hash_entry *stub_entry;
7243 struct ppc_branch_hash_entry *br_entry;
7244 struct bfd_link_info *info;
7245 struct ppc_link_hash_table *htab;
7246 bfd_byte *loc;
7247 bfd_byte *p;
7248 unsigned int indx;
7249 struct plt_entry *ent;
7250 bfd_vma off;
7251 int size;
7252
7253 /* Massage our args to the form they really have. */
7254 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7255 info = in_arg;
7256
7257 htab = ppc_hash_table (info);
7258
7259 /* Make a note of the offset within the stubs for this entry. */
7260 stub_entry->stub_offset = stub_entry->stub_sec->size;
7261 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7262
7263 htab->stub_count[stub_entry->stub_type - 1] += 1;
7264 switch (stub_entry->stub_type)
7265 {
7266 case ppc_stub_long_branch:
7267 case ppc_stub_long_branch_r2off:
7268 /* Branches are relative. This is where we are going to. */
7269 off = (stub_entry->target_value
7270 + stub_entry->target_section->output_offset
7271 + stub_entry->target_section->output_section->vma);
7272
7273 /* And this is where we are coming from. */
7274 off -= (stub_entry->stub_offset
7275 + stub_entry->stub_sec->output_offset
7276 + stub_entry->stub_sec->output_section->vma);
7277
7278 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7279 size = 4;
7280 else
7281 {
7282 bfd_vma r2off;
7283
7284 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7285 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7286 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7287 loc += 4;
7288 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7289 loc += 4;
7290 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7291 loc += 4;
7292 off -= 12;
7293 size = 16;
7294 }
7295 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7296
7297 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7298 break;
7299
7300 case ppc_stub_plt_branch:
7301 case ppc_stub_plt_branch_r2off:
7302 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7303 stub_entry->root.string + 9,
7304 FALSE, FALSE);
7305 if (br_entry == NULL)
7306 {
7307 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7308 stub_entry->root.string + 9);
7309 htab->stub_error = TRUE;
7310 return FALSE;
7311 }
7312
7313 off = (stub_entry->target_value
7314 + stub_entry->target_section->output_offset
7315 + stub_entry->target_section->output_section->vma);
7316
7317 bfd_put_64 (htab->brlt->owner, off,
7318 htab->brlt->contents + br_entry->offset);
7319
7320 if (info->shared)
7321 {
7322 /* Create a reloc for the branch lookup table entry. */
7323 Elf_Internal_Rela rela;
7324 bfd_byte *rl;
7325
7326 rela.r_offset = (br_entry->offset
7327 + htab->brlt->output_offset
7328 + htab->brlt->output_section->vma);
7329 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7330 rela.r_addend = off;
7331
7332 rl = htab->relbrlt->contents;
7333 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7334 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7335 }
7336
7337 off = (br_entry->offset
7338 + htab->brlt->output_offset
7339 + htab->brlt->output_section->vma
7340 - elf_gp (htab->brlt->output_section->owner)
7341 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7342
7343 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7344 {
7345 (*_bfd_error_handler)
7346 (_("linkage table error against `%s'"),
7347 stub_entry->root.string);
7348 bfd_set_error (bfd_error_bad_value);
7349 htab->stub_error = TRUE;
7350 return FALSE;
7351 }
7352
7353 indx = off;
7354 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7355 {
7356 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7357 loc += 4;
7358 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7359 size = 16;
7360 }
7361 else
7362 {
7363 bfd_vma r2off;
7364
7365 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7366 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7367 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7368 loc += 4;
7369 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7370 loc += 4;
7371 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7372 loc += 4;
7373 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7374 loc += 4;
7375 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7376 size = 28;
7377 }
7378 loc += 4;
7379 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7380 loc += 4;
7381 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7382 break;
7383
7384 case ppc_stub_plt_call:
7385 /* Do the best we can for shared libraries built without
7386 exporting ".foo" for each "foo". This can happen when symbol
7387 versioning scripts strip all bar a subset of symbols. */
7388 if (stub_entry->h->oh != NULL
7389 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
7390 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
7391 {
7392 /* Point the symbol at the stub. There may be multiple stubs,
7393 we don't really care; The main thing is to make this sym
7394 defined somewhere. Maybe defining the symbol in the stub
7395 section is a silly idea. If we didn't do this, htab->top_id
7396 could disappear. */
7397 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
7398 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
7399 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
7400 }
7401
7402 /* Now build the stub. */
7403 off = (bfd_vma) -1;
7404 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7405 if (ent->addend == stub_entry->addend)
7406 {
7407 off = ent->plt.offset;
7408 break;
7409 }
7410 if (off >= (bfd_vma) -2)
7411 abort ();
7412
7413 off &= ~ (bfd_vma) 1;
7414 off += (htab->plt->output_offset
7415 + htab->plt->output_section->vma
7416 - elf_gp (htab->plt->output_section->owner)
7417 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7418
7419 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7420 {
7421 (*_bfd_error_handler)
7422 (_("linkage table error against `%s'"),
7423 stub_entry->h->elf.root.root.string);
7424 bfd_set_error (bfd_error_bad_value);
7425 htab->stub_error = TRUE;
7426 return FALSE;
7427 }
7428
7429 p = build_plt_stub (htab->stub_bfd, loc, off);
7430 size = p - loc;
7431 break;
7432
7433 default:
7434 BFD_FAIL ();
7435 return FALSE;
7436 }
7437
7438 stub_entry->stub_sec->size += size;
7439
7440 if (htab->emit_stub_syms
7441 && !(stub_entry->stub_type == ppc_stub_plt_call
7442 && stub_entry->h->oh != NULL
7443 && stub_entry->h->oh->elf.root.type == bfd_link_hash_defined
7444 && stub_entry->h->oh->elf.root.u.def.section == stub_entry->stub_sec
7445 && stub_entry->h->oh->elf.root.u.def.value == stub_entry->stub_offset))
7446 {
7447 struct elf_link_hash_entry *h;
7448 h = elf_link_hash_lookup (&htab->elf, stub_entry->root.string,
7449 TRUE, FALSE, FALSE);
7450 if (h == NULL)
7451 return FALSE;
7452 if (h->root.type == bfd_link_hash_new)
7453 {
7454 h->root.type = bfd_link_hash_defined;
7455 h->root.u.def.section = stub_entry->stub_sec;
7456 h->root.u.def.value = stub_entry->stub_offset;
7457 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
7458 | ELF_LINK_HASH_DEF_REGULAR
7459 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
7460 | ELF_LINK_FORCED_LOCAL);
7461 }
7462 }
7463
7464 return TRUE;
7465}
7466
7467/* As above, but don't actually build the stub. Just bump offset so
7468 we know stub section sizes, and select plt_branch stubs where
7469 long_branch stubs won't do. */
7470
7471static bfd_boolean
7472ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7473{
7474 struct ppc_stub_hash_entry *stub_entry;
7475 struct bfd_link_info *info;
7476 struct ppc_link_hash_table *htab;
7477 bfd_vma off;
7478 int size;
7479
7480 /* Massage our args to the form they really have. */
7481 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7482 info = in_arg;
7483
7484 htab = ppc_hash_table (info);
7485
7486 if (stub_entry->stub_type == ppc_stub_plt_call)
7487 {
7488 struct plt_entry *ent;
7489 off = (bfd_vma) -1;
7490 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7491 if (ent->addend == stub_entry->addend)
7492 {
7493 off = ent->plt.offset & ~(bfd_vma) 1;
7494 break;
7495 }
7496 if (off >= (bfd_vma) -2)
7497 abort ();
7498 off += (htab->plt->output_offset
7499 + htab->plt->output_section->vma
7500 - elf_gp (htab->plt->output_section->owner)
7501 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7502
7503 size = PLT_CALL_STUB_SIZE;
7504 if (PPC_HA (off + 16) != PPC_HA (off))
7505 size += 4;
7506 }
7507 else
7508 {
7509 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
7510 variants. */
7511 off = (stub_entry->target_value
7512 + stub_entry->target_section->output_offset
7513 + stub_entry->target_section->output_section->vma);
7514 off -= (stub_entry->stub_sec->size
7515 + stub_entry->stub_sec->output_offset
7516 + stub_entry->stub_sec->output_section->vma);
7517
7518 /* Reset the stub type from the plt variant in case we now
7519 can reach with a shorter stub. */
7520 if (stub_entry->stub_type >= ppc_stub_plt_branch)
7521 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
7522
7523 size = 4;
7524 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
7525 {
7526 off -= 12;
7527 size = 16;
7528 }
7529
7530 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
7531 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
7532 {
7533 struct ppc_branch_hash_entry *br_entry;
7534
7535 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7536 stub_entry->root.string + 9,
7537 TRUE, FALSE);
7538 if (br_entry == NULL)
7539 {
7540 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
7541 stub_entry->root.string + 9);
7542 htab->stub_error = TRUE;
7543 return FALSE;
7544 }
7545
7546 if (br_entry->iter != htab->stub_iteration)
7547 {
7548 br_entry->iter = htab->stub_iteration;
7549 br_entry->offset = htab->brlt->size;
7550 htab->brlt->size += 8;
7551
7552 if (info->shared)
7553 htab->relbrlt->size += sizeof (Elf64_External_Rela);
7554 }
7555
7556 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
7557 size = 16;
7558 if (stub_entry->stub_type != ppc_stub_plt_branch)
7559 size = 28;
7560 }
7561 }
7562
7563 stub_entry->stub_sec->size += size;
7564 return TRUE;
7565}
7566
7567/* Set up various things so that we can make a list of input sections
7568 for each output section included in the link. Returns -1 on error,
7569 0 when no stubs will be needed, and 1 on success. */
7570
7571int
7572ppc64_elf_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
7573{
7574 bfd *input_bfd;
7575 int top_id, top_index, id;
7576 asection *section;
7577 asection **input_list;
7578 bfd_size_type amt;
7579 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7580
7581 if (htab->brlt == NULL)
7582 return 0;
7583
7584 /* Find the top input section id. */
7585 for (input_bfd = info->input_bfds, top_id = 3;
7586 input_bfd != NULL;
7587 input_bfd = input_bfd->link_next)
7588 {
7589 for (section = input_bfd->sections;
7590 section != NULL;
7591 section = section->next)
7592 {
7593 if (top_id < section->id)
7594 top_id = section->id;
7595 }
7596 }
7597
7598 htab->top_id = top_id;
7599 amt = sizeof (struct map_stub) * (top_id + 1);
7600 htab->stub_group = bfd_zmalloc (amt);
7601 if (htab->stub_group == NULL)
7602 return -1;
7603
7604 /* Set toc_off for com, und, abs and ind sections. */
7605 for (id = 0; id < 3; id++)
7606 htab->stub_group[id].toc_off = TOC_BASE_OFF;
7607
7608 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
7609
7610 /* We can't use output_bfd->section_count here to find the top output
7611 section index as some sections may have been removed, and
7612 _bfd_strip_section_from_output doesn't renumber the indices. */
7613 for (section = output_bfd->sections, top_index = 0;
7614 section != NULL;
7615 section = section->next)
7616 {
7617 if (top_index < section->index)
7618 top_index = section->index;
7619 }
7620
7621 htab->top_index = top_index;
7622 amt = sizeof (asection *) * (top_index + 1);
7623 input_list = bfd_zmalloc (amt);
7624 htab->input_list = input_list;
7625 if (input_list == NULL)
7626 return -1;
7627
7628 return 1;
7629}
7630
7631/* The linker repeatedly calls this function for each TOC input section
7632 and linker generated GOT section. Group input bfds such that the toc
7633 within a group is less than 64k in size. Will break with cute linker
7634 scripts that play games with dot in the output toc section. */
7635
7636void
7637ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
7638{
7639 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7640 bfd_vma addr = isec->output_offset + isec->output_section->vma;
7641 bfd_vma off = addr - htab->toc_curr;
7642
7643 if (off + isec->size > 0x10000)
7644 htab->toc_curr = addr;
7645
7646 elf_gp (isec->owner) = (htab->toc_curr
7647 - elf_gp (isec->output_section->owner)
7648 + TOC_BASE_OFF);
7649}
7650
7651/* Called after the last call to the above function. */
7652
7653void
7654ppc64_elf_reinit_toc (bfd *output_bfd ATTRIBUTE_UNUSED,
7655 struct bfd_link_info *info)
7656{
7657 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7658
7659 /* toc_curr tracks the TOC offset used for code sections below in
7660 ppc64_elf_next_input_section. Start off at 0x8000. */
7661 htab->toc_curr = TOC_BASE_OFF;
7662}
7663
7664/* No toc references were found in ISEC. If the code in ISEC makes no
7665 calls, then there's no need to use toc adjusting stubs when branching
7666 into ISEC. Actually, indirect calls from ISEC are OK as they will
7667 load r2. */
7668
7669static int
7670toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
7671{
7672 bfd_byte *contents;
7673 bfd_size_type i;
7674 int ret;
7675 int branch_ok;
7676
7677 /* We know none of our code bearing sections will need toc stubs. */
7678 if ((isec->flags & SEC_LINKER_CREATED) != 0)
7679 return 0;
7680
7681 if (isec->size == 0)
7682 return 0;
7683
7684 /* Hack for linux kernel. .fixup contains branches, but only back to
7685 the function that hit an exception. */
7686 branch_ok = strcmp (isec->name, ".fixup") == 0;
7687
7688 contents = elf_section_data (isec)->this_hdr.contents;
7689 if (contents == NULL)
7690 {
7691 if (!bfd_malloc_and_get_section (isec->owner, isec, &contents))
7692 {
7693 if (contents != NULL)
7694 free (contents);
7695 return -1;
7696 }
7697 if (info->keep_memory)
7698 elf_section_data (isec)->this_hdr.contents = contents;
7699 }
7700
7701 /* Code scan, because we don't necessarily have relocs on calls to
7702 static functions. */
7703 ret = 0;
7704 for (i = 0; i < isec->size; i += 4)
7705 {
7706 unsigned long insn = bfd_get_32 (isec->owner, contents + i);
7707 /* Is this a branch? */
7708 if ((insn & (0x3f << 26)) == (18 << 26)
7709 /* If branch and link, it's a function call. */
7710 && ((insn & 1) != 0
7711 /* Sibling calls use a plain branch. I don't know a way
7712 of deciding whether a branch is really a sibling call. */
7713 || !branch_ok))
7714 {
7715 ret = 1;
7716 break;
7717 }
7718 }
7719
7720 if (elf_section_data (isec)->this_hdr.contents != contents)
7721 free (contents);
7722 return ret;
7723}
7724
7725/* The linker repeatedly calls this function for each input section,
7726 in the order that input sections are linked into output sections.
7727 Build lists of input sections to determine groupings between which
7728 we may insert linker stubs. */
7729
7730bfd_boolean
7731ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
7732{
7733 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7734 int ret;
7735
7736 if ((isec->output_section->flags & SEC_CODE) != 0
7737 && isec->output_section->index <= htab->top_index)
7738 {
7739 asection **list = htab->input_list + isec->output_section->index;
7740 /* Steal the link_sec pointer for our list. */
7741#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
7742 /* This happens to make the list in reverse order,
7743 which is what we want. */
7744 PREV_SEC (isec) = *list;
7745 *list = isec;
7746 }
7747
7748 /* If a code section has a function that uses the TOC then we need
7749 to use the right TOC (obviously). Also, make sure that .opd gets
7750 the correct TOC value for R_PPC64_TOC relocs that don't have or
7751 can't find their function symbol (shouldn't ever happen now). */
7752 if (isec->has_gp_reloc || (isec->flags & SEC_CODE) == 0)
7753 {
7754 if (elf_gp (isec->owner) != 0)
7755 htab->toc_curr = elf_gp (isec->owner);
7756 }
7757 else if ((ret = toc_adjusting_stub_needed (info, isec)) < 0)
7758 return FALSE;
7759 else
7760 isec->has_gp_reloc = ret;
7761
7762 /* Functions that don't use the TOC can belong in any TOC group.
7763 Use the last TOC base. This happens to make _init and _fini
7764 pasting work. */
7765 htab->stub_group[isec->id].toc_off = htab->toc_curr;
7766 return TRUE;
7767}
7768
7769/* See whether we can group stub sections together. Grouping stub
7770 sections may result in fewer stubs. More importantly, we need to
7771 put all .init* and .fini* stubs at the beginning of the .init or
7772 .fini output sections respectively, because glibc splits the
7773 _init and _fini functions into multiple parts. Putting a stub in
7774 the middle of a function is not a good idea. */
7775
7776static void
7777group_sections (struct ppc_link_hash_table *htab,
7778 bfd_size_type stub_group_size,
7779 bfd_boolean stubs_always_before_branch)
7780{
7781 asection **list = htab->input_list + htab->top_index;
7782 do
7783 {
7784 asection *tail = *list;
7785 while (tail != NULL)
7786 {
7787 asection *curr;
7788 asection *prev;
7789 bfd_size_type total;
7790 bfd_boolean big_sec;
7791 bfd_vma curr_toc;
7792
7793 curr = tail;
7794 total = tail->size;
7795 big_sec = total >= stub_group_size;
7796 curr_toc = htab->stub_group[tail->id].toc_off;
7797
7798 while ((prev = PREV_SEC (curr)) != NULL
7799 && ((total += curr->output_offset - prev->output_offset)
7800 < stub_group_size)
7801 && htab->stub_group[prev->id].toc_off == curr_toc)
7802 curr = prev;
7803
7804 /* OK, the size from the start of CURR to the end is less
7805 than stub_group_size and thus can be handled by one stub
7806 section. (or the tail section is itself larger than
7807 stub_group_size, in which case we may be toast.) We
7808 should really be keeping track of the total size of stubs
7809 added here, as stubs contribute to the final output
7810 section size. That's a little tricky, and this way will
7811 only break if stubs added make the total size more than
7812 2^25, ie. for the default stub_group_size, if stubs total
7813 more than 2097152 bytes, or nearly 75000 plt call stubs. */
7814 do
7815 {
7816 prev = PREV_SEC (tail);
7817 /* Set up this stub group. */
7818 htab->stub_group[tail->id].link_sec = curr;
7819 }
7820 while (tail != curr && (tail = prev) != NULL);
7821
7822 /* But wait, there's more! Input sections up to stub_group_size
7823 bytes before the stub section can be handled by it too.
7824 Don't do this if we have a really large section after the
7825 stubs, as adding more stubs increases the chance that
7826 branches may not reach into the stub section. */
7827 if (!stubs_always_before_branch && !big_sec)
7828 {
7829 total = 0;
7830 while (prev != NULL
7831 && ((total += tail->output_offset - prev->output_offset)
7832 < stub_group_size)
7833 && htab->stub_group[prev->id].toc_off == curr_toc)
7834 {
7835 tail = prev;
7836 prev = PREV_SEC (tail);
7837 htab->stub_group[tail->id].link_sec = curr;
7838 }
7839 }
7840 tail = prev;
7841 }
7842 }
7843 while (list-- != htab->input_list);
7844 free (htab->input_list);
7845#undef PREV_SEC
7846}
7847
7848/* Determine and set the size of the stub section for a final link.
7849
7850 The basic idea here is to examine all the relocations looking for
7851 PC-relative calls to a target that is unreachable with a "bl"
7852 instruction. */
7853
7854bfd_boolean
7855ppc64_elf_size_stubs (bfd *output_bfd,
7856 struct bfd_link_info *info,
7857 bfd_signed_vma group_size,
7858 asection *(*add_stub_section) (const char *, asection *),
7859 void (*layout_sections_again) (void))
7860{
7861 bfd_size_type stub_group_size;
7862 bfd_boolean stubs_always_before_branch;
7863 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7864
7865 /* Stash our params away. */
7866 htab->add_stub_section = add_stub_section;
7867 htab->layout_sections_again = layout_sections_again;
7868 stubs_always_before_branch = group_size < 0;
7869 if (group_size < 0)
7870 stub_group_size = -group_size;
7871 else
7872 stub_group_size = group_size;
7873 if (stub_group_size == 1)
7874 {
7875 /* Default values. */
7876 if (stubs_always_before_branch)
7877 {
7878 stub_group_size = 0x1e00000;
7879 if (htab->has_14bit_branch)
7880 stub_group_size = 0x7800;
7881 }
7882 else
7883 {
7884 stub_group_size = 0x1c00000;
7885 if (htab->has_14bit_branch)
7886 stub_group_size = 0x7000;
7887 }
7888 }
7889
7890 group_sections (htab, stub_group_size, stubs_always_before_branch);
7891
7892 while (1)
7893 {
7894 bfd *input_bfd;
7895 unsigned int bfd_indx;
7896 asection *stub_sec;
7897 bfd_boolean stub_changed;
7898
7899 htab->stub_iteration += 1;
7900 stub_changed = FALSE;
7901
7902 for (input_bfd = info->input_bfds, bfd_indx = 0;
7903 input_bfd != NULL;
7904 input_bfd = input_bfd->link_next, bfd_indx++)
7905 {
7906 Elf_Internal_Shdr *symtab_hdr;
7907 asection *section;
7908 Elf_Internal_Sym *local_syms = NULL;
7909
7910 /* We'll need the symbol table in a second. */
7911 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7912 if (symtab_hdr->sh_info == 0)
7913 continue;
7914
7915 /* Walk over each section attached to the input bfd. */
7916 for (section = input_bfd->sections;
7917 section != NULL;
7918 section = section->next)
7919 {
7920 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
7921
7922 /* If there aren't any relocs, then there's nothing more
7923 to do. */
7924 if ((section->flags & SEC_RELOC) == 0
7925 || section->reloc_count == 0)
7926 continue;
7927
7928 /* If this section is a link-once section that will be
7929 discarded, then don't create any stubs. */
7930 if (section->output_section == NULL
7931 || section->output_section->owner != output_bfd)
7932 continue;
7933
7934 /* Get the relocs. */
7935 internal_relocs
7936 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
7937 info->keep_memory);
7938 if (internal_relocs == NULL)
7939 goto error_ret_free_local;
7940
7941 /* Now examine each relocation. */
7942 irela = internal_relocs;
7943 irelaend = irela + section->reloc_count;
7944 for (; irela < irelaend; irela++)
7945 {
7946 enum elf_ppc64_reloc_type r_type;
7947 unsigned int r_indx;
7948 enum ppc_stub_type stub_type;
7949 struct ppc_stub_hash_entry *stub_entry;
7950 asection *sym_sec, *code_sec;
7951 bfd_vma sym_value;
7952 bfd_vma destination;
7953 bfd_boolean ok_dest;
7954 struct ppc_link_hash_entry *hash;
7955 struct ppc_link_hash_entry *fdh;
7956 struct elf_link_hash_entry *h;
7957 Elf_Internal_Sym *sym;
7958 char *stub_name;
7959 const asection *id_sec;
7960 long *opd_adjust;
7961
7962 r_type = ELF64_R_TYPE (irela->r_info);
7963 r_indx = ELF64_R_SYM (irela->r_info);
7964
7965 if (r_type >= R_PPC64_max)
7966 {
7967 bfd_set_error (bfd_error_bad_value);
7968 goto error_ret_free_internal;
7969 }
7970
7971 /* Only look for stubs on branch instructions. */
7972 if (r_type != R_PPC64_REL24
7973 && r_type != R_PPC64_REL14
7974 && r_type != R_PPC64_REL14_BRTAKEN
7975 && r_type != R_PPC64_REL14_BRNTAKEN)
7976 continue;
7977
7978 /* Now determine the call target, its name, value,
7979 section. */
7980 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7981 r_indx, input_bfd))
7982 goto error_ret_free_internal;
7983 hash = (struct ppc_link_hash_entry *) h;
7984
7985 ok_dest = FALSE;
7986 fdh = NULL;
7987 if (hash == NULL)
7988 {
7989 sym_value = sym->st_value;
7990 ok_dest = TRUE;
7991 }
7992 else
7993 {
7994 sym_value = 0;
7995 /* Recognise an old ABI func code entry sym, and
7996 use the func descriptor sym instead. */
7997 if (hash->elf.root.type == bfd_link_hash_undefweak
7998 && hash->elf.root.root.string[0] == '.'
7999 && (fdh = get_fdh (hash, htab)) != NULL)
8000 {
8001 if (fdh->elf.root.type == bfd_link_hash_defined
8002 || fdh->elf.root.type == bfd_link_hash_defweak)
8003 {
8004 sym_sec = fdh->elf.root.u.def.section;
8005 sym_value = fdh->elf.root.u.def.value;
8006 if (sym_sec->output_section != NULL)
8007 ok_dest = TRUE;
8008 }
8009 else
8010 fdh = NULL;
8011 }
8012 else if (hash->elf.root.type == bfd_link_hash_defined
8013 || hash->elf.root.type == bfd_link_hash_defweak)
8014 {
8015 sym_value = hash->elf.root.u.def.value;
8016 if (sym_sec->output_section != NULL)
8017 ok_dest = TRUE;
8018 }
8019 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8020 ;
8021 else if (hash->elf.root.type == bfd_link_hash_undefined)
8022 ;
8023 else
8024 {
8025 bfd_set_error (bfd_error_bad_value);
8026 goto error_ret_free_internal;
8027 }
8028 }
8029
8030 destination = 0;
8031 if (ok_dest)
8032 {
8033 sym_value += irela->r_addend;
8034 destination = (sym_value
8035 + sym_sec->output_offset
8036 + sym_sec->output_section->vma);
8037 }
8038
8039 code_sec = sym_sec;
8040 opd_adjust = get_opd_info (sym_sec);
8041 if (opd_adjust != NULL)
8042 {
8043 bfd_vma dest;
8044
8045 if (hash == NULL)
8046 {
8047 long adjust = opd_adjust[sym_value / 8];
8048 if (adjust == -1)
8049 continue;
8050 sym_value += adjust;
8051 }
8052 dest = opd_entry_value (sym_sec, sym_value,
8053 &code_sec, &sym_value);
8054 if (dest != (bfd_vma) -1)
8055 {
8056 destination = dest;
8057 if (fdh != NULL)
8058 {
8059 /* Fixup old ABI sym to point at code
8060 entry. */
8061 hash->elf.root.type = bfd_link_hash_defweak;
8062 hash->elf.root.u.def.section = code_sec;
8063 hash->elf.root.u.def.value = sym_value;
8064 }
8065 }
8066 }
8067
8068 /* Determine what (if any) linker stub is needed. */
8069 stub_type = ppc_type_of_stub (section, irela, &hash,
8070 destination);
8071
8072 if (stub_type != ppc_stub_plt_call)
8073 {
8074 /* Check whether we need a TOC adjusting stub.
8075 Since the linker pastes together pieces from
8076 different object files when creating the
8077 _init and _fini functions, it may be that a
8078 call to what looks like a local sym is in
8079 fact a call needing a TOC adjustment. */
8080 if (code_sec != NULL
8081 && code_sec->output_section != NULL
8082 && (htab->stub_group[code_sec->id].toc_off
8083 != htab->stub_group[section->id].toc_off)
8084 && code_sec->has_gp_reloc
8085 && section->has_gp_reloc)
8086 stub_type = ppc_stub_long_branch_r2off;
8087 }
8088
8089 if (stub_type == ppc_stub_none)
8090 continue;
8091
8092 /* __tls_get_addr calls might be eliminated. */
8093 if (stub_type != ppc_stub_plt_call
8094 && hash != NULL
8095 && (hash == htab->tls_get_addr
8096 || hash == htab->tls_get_addr_fd)
8097 && section->has_tls_reloc
8098 && irela != internal_relocs)
8099 {
8100 /* Get tls info. */
8101 char *tls_mask;
8102
8103 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8104 irela - 1, input_bfd))
8105 goto error_ret_free_internal;
8106 if (*tls_mask != 0)
8107 continue;
8108 }
8109
8110 /* Support for grouping stub sections. */
8111 id_sec = htab->stub_group[section->id].link_sec;
8112
8113 /* Get the name of this stub. */
8114 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8115 if (!stub_name)
8116 goto error_ret_free_internal;
8117
8118 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8119 stub_name, FALSE, FALSE);
8120 if (stub_entry != NULL)
8121 {
8122 /* The proper stub has already been created. */
8123 free (stub_name);
8124 continue;
8125 }
8126
8127 stub_entry = ppc_add_stub (stub_name, section, htab);
8128 if (stub_entry == NULL)
8129 {
8130 free (stub_name);
8131 error_ret_free_internal:
8132 if (elf_section_data (section)->relocs == NULL)
8133 free (internal_relocs);
8134 error_ret_free_local:
8135 if (local_syms != NULL
8136 && (symtab_hdr->contents
8137 != (unsigned char *) local_syms))
8138 free (local_syms);
8139 return FALSE;
8140 }
8141
8142 stub_entry->stub_type = stub_type;
8143 stub_entry->target_value = sym_value;
8144 stub_entry->target_section = code_sec;
8145 stub_entry->h = hash;
8146 stub_entry->addend = irela->r_addend;
8147 stub_changed = TRUE;
8148 }
8149
8150 /* We're done with the internal relocs, free them. */
8151 if (elf_section_data (section)->relocs != internal_relocs)
8152 free (internal_relocs);
8153 }
8154
8155 if (local_syms != NULL
8156 && symtab_hdr->contents != (unsigned char *) local_syms)
8157 {
8158 if (!info->keep_memory)
8159 free (local_syms);
8160 else
8161 symtab_hdr->contents = (unsigned char *) local_syms;
8162 }
8163 }
8164
8165 if (!stub_changed)
8166 break;
8167
8168 /* OK, we've added some stubs. Find out the new size of the
8169 stub sections. */
8170 for (stub_sec = htab->stub_bfd->sections;
8171 stub_sec != NULL;
8172 stub_sec = stub_sec->next)
8173 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8174 stub_sec->size = 0;
8175
8176 htab->brlt->size = 0;
8177 if (info->shared)
8178 htab->relbrlt->size = 0;
8179
8180 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8181
8182 /* Ask the linker to do its stuff. */
8183 (*htab->layout_sections_again) ();
8184 }
8185
8186 /* It would be nice to strip .branch_lt from the output if the
8187 section is empty, but it's too late. If we strip sections here,
8188 the dynamic symbol table is corrupted since the section symbol
8189 for the stripped section isn't written. */
8190
8191 return TRUE;
8192}
8193
8194/* Called after we have determined section placement. If sections
8195 move, we'll be called again. Provide a value for TOCstart. */
8196
8197bfd_vma
8198ppc64_elf_toc (bfd *obfd)
8199{
8200 asection *s;
8201 bfd_vma TOCstart;
8202
8203 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
8204 order. The TOC starts where the first of these sections starts. */
8205 s = bfd_get_section_by_name (obfd, ".got");
8206 if (s == NULL)
8207 s = bfd_get_section_by_name (obfd, ".toc");
8208 if (s == NULL)
8209 s = bfd_get_section_by_name (obfd, ".tocbss");
8210 if (s == NULL)
8211 s = bfd_get_section_by_name (obfd, ".plt");
8212 if (s == NULL)
8213 {
8214 /* This may happen for
8215 o references to TOC base (SYM@toc / TOC[tc0]) without a
8216 .toc directive
8217 o bad linker script
8218 o --gc-sections and empty TOC sections
8219
8220 FIXME: Warn user? */
8221
8222 /* Look for a likely section. We probably won't even be
8223 using TOCstart. */
8224 for (s = obfd->sections; s != NULL; s = s->next)
8225 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
8226 == (SEC_ALLOC | SEC_SMALL_DATA))
8227 break;
8228 if (s == NULL)
8229 for (s = obfd->sections; s != NULL; s = s->next)
8230 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
8231 == (SEC_ALLOC | SEC_SMALL_DATA))
8232 break;
8233 if (s == NULL)
8234 for (s = obfd->sections; s != NULL; s = s->next)
8235 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
8236 break;
8237 if (s == NULL)
8238 for (s = obfd->sections; s != NULL; s = s->next)
8239 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
8240 break;
8241 }
8242
8243 TOCstart = 0;
8244 if (s != NULL)
8245 TOCstart = s->output_section->vma + s->output_offset;
8246
8247 return TOCstart;
8248}
8249
8250/* Build all the stubs associated with the current output file.
8251 The stubs are kept in a hash table attached to the main linker
8252 hash table. This function is called via gldelf64ppc_finish. */
8253
8254bfd_boolean
8255ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
8256 struct bfd_link_info *info,
8257 char **stats)
8258{
8259 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8260 asection *stub_sec;
8261 bfd_byte *p;
8262 int stub_sec_count = 0;
8263
8264 htab->emit_stub_syms = emit_stub_syms;
8265
8266 /* Allocate memory to hold the linker stubs. */
8267 for (stub_sec = htab->stub_bfd->sections;
8268 stub_sec != NULL;
8269 stub_sec = stub_sec->next)
8270 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
8271 && stub_sec->size != 0)
8272 {
8273 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
8274 if (stub_sec->contents == NULL)
8275 return FALSE;
8276 /* We want to check that built size is the same as calculated
8277 size. rawsize is a convenient location to use. */
8278 stub_sec->rawsize = stub_sec->size;
8279 stub_sec->size = 0;
8280 }
8281
8282 if (htab->plt != NULL)
8283 {
8284 unsigned int indx;
8285 bfd_vma plt0;
8286
8287 /* Build the .glink plt call stub. */
8288 plt0 = (htab->plt->output_section->vma
8289 + htab->plt->output_offset
8290 - (htab->glink->output_section->vma
8291 + htab->glink->output_offset
8292 + GLINK_CALL_STUB_SIZE));
8293 if (plt0 + 0x80008000 > 0xffffffff)
8294 {
8295 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
8296 bfd_set_error (bfd_error_bad_value);
8297 return FALSE;
8298 }
8299
8300 if (htab->emit_stub_syms)
8301 {
8302 struct elf_link_hash_entry *h;
8303 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
8304 if (h == NULL)
8305 return FALSE;
8306 if (h->root.type == bfd_link_hash_new)
8307 {
8308 h->root.type = bfd_link_hash_defined;
8309 h->root.u.def.section = htab->glink;
8310 h->root.u.def.value = 0;
8311 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
8312 | ELF_LINK_HASH_DEF_REGULAR
8313 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
8314 | ELF_LINK_FORCED_LOCAL);
8315 }
8316 }
8317 p = htab->glink->contents;
8318 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
8319 p += 4;
8320 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
8321 p += 4;
8322 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
8323 p += 4;
8324 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8325 p += 4;
8326 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
8327 p += 4;
8328 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
8329 p += 4;
8330 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
8331 p += 4;
8332 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8333 p += 4;
8334 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
8335 p += 4;
8336 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
8337 p += 4;
8338 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
8339 p += 4;
8340 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
8341 p += 4;
8342 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
8343 p += 4;
8344 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
8345 p += 4;
8346 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
8347 p += 4;
8348 bfd_put_32 (htab->glink->owner, BCTR, p);
8349 p += 4;
8350
8351 /* Build the .glink lazy link call stubs. */
8352 indx = 0;
8353 while (p < htab->glink->contents + htab->glink->size)
8354 {
8355 if (indx < 0x8000)
8356 {
8357 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
8358 p += 4;
8359 }
8360 else
8361 {
8362 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
8363 p += 4;
8364 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
8365 p += 4;
8366 }
8367 bfd_put_32 (htab->glink->owner,
8368 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
8369 indx++;
8370 p += 4;
8371 }
8372 htab->glink->rawsize = p - htab->glink->contents;
8373 }
8374
8375 if (htab->brlt->size != 0)
8376 {
8377 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
8378 htab->brlt->size);
8379 if (htab->brlt->contents == NULL)
8380 return FALSE;
8381 }
8382 if (info->shared && htab->relbrlt->size != 0)
8383 {
8384 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
8385 htab->relbrlt->size);
8386 if (htab->relbrlt->contents == NULL)
8387 return FALSE;
8388 }
8389
8390 /* Build the stubs as directed by the stub hash table. */
8391 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
8392
8393 for (stub_sec = htab->stub_bfd->sections;
8394 stub_sec != NULL;
8395 stub_sec = stub_sec->next)
8396 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8397 {
8398 stub_sec_count += 1;
8399 if (stub_sec->rawsize != stub_sec->size)
8400 break;
8401 }
8402
8403 if (stub_sec != NULL
8404 || htab->glink->rawsize != htab->glink->size)
8405 {
8406 htab->stub_error = TRUE;
8407 (*_bfd_error_handler) (_("stubs don't match calculated size"));
8408 }
8409
8410 if (htab->stub_error)
8411 return FALSE;
8412
8413 if (stats != NULL)
8414 {
8415 *stats = bfd_malloc (500);
8416 if (*stats == NULL)
8417 return FALSE;
8418
8419 sprintf (*stats, _("linker stubs in %u groups\n"
8420 " branch %lu\n"
8421 " toc adjust %lu\n"
8422 " long branch %lu\n"
8423 " long toc adj %lu\n"
8424 " plt call %lu"),
8425 stub_sec_count,
8426 htab->stub_count[ppc_stub_long_branch - 1],
8427 htab->stub_count[ppc_stub_long_branch_r2off - 1],
8428 htab->stub_count[ppc_stub_plt_branch - 1],
8429 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
8430 htab->stub_count[ppc_stub_plt_call - 1]);
8431 }
8432 return TRUE;
8433}
8434
8435/* This function undoes the changes made by add_symbol_adjust. */
8436
8437static bfd_boolean
8438undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
8439{
8440 struct ppc_link_hash_entry *eh;
8441
8442 if (h->root.type == bfd_link_hash_indirect)
8443 return TRUE;
8444
8445 if (h->root.type == bfd_link_hash_warning)
8446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8447
8448 eh = (struct ppc_link_hash_entry *) h;
8449 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
8450 return TRUE;
8451
8452 eh->elf.root.type = bfd_link_hash_undefined;
8453 return TRUE;
8454}
8455
8456void
8457ppc64_elf_restore_symbols (struct bfd_link_info *info)
8458{
8459 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8460 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
8461}
8462
8463/* The RELOCATE_SECTION function is called by the ELF backend linker
8464 to handle the relocations for a section.
8465
8466 The relocs are always passed as Rela structures; if the section
8467 actually uses Rel structures, the r_addend field will always be
8468 zero.
8469
8470 This function is responsible for adjust the section contents as
8471 necessary, and (if using Rela relocs and generating a
8472 relocatable output file) adjusting the reloc addend as
8473 necessary.
8474
8475 This function does not have to worry about setting the reloc
8476 address or the reloc symbol index.
8477
8478 LOCAL_SYMS is a pointer to the swapped in local symbols.
8479
8480 LOCAL_SECTIONS is an array giving the section in the input file
8481 corresponding to the st_shndx field of each local symbol.
8482
8483 The global hash table entry for the global symbols can be found
8484 via elf_sym_hashes (input_bfd).
8485
8486 When generating relocatable output, this function must handle
8487 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
8488 going to be the section symbol corresponding to the output
8489 section, which means that the addend must be adjusted
8490 accordingly. */
8491
8492static bfd_boolean
8493ppc64_elf_relocate_section (bfd *output_bfd,
8494 struct bfd_link_info *info,
8495 bfd *input_bfd,
8496 asection *input_section,
8497 bfd_byte *contents,
8498 Elf_Internal_Rela *relocs,
8499 Elf_Internal_Sym *local_syms,
8500 asection **local_sections)
8501{
8502 struct ppc_link_hash_table *htab;
8503 Elf_Internal_Shdr *symtab_hdr;
8504 struct elf_link_hash_entry **sym_hashes;
8505 Elf_Internal_Rela *rel;
8506 Elf_Internal_Rela *relend;
8507 Elf_Internal_Rela outrel;
8508 bfd_byte *loc;
8509 struct got_entry **local_got_ents;
8510 bfd_vma TOCstart;
8511 bfd_boolean ret = TRUE;
8512 bfd_boolean is_opd;
8513 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
8514 bfd_boolean is_power4 = FALSE;
8515
8516 if (info->relocatable)
8517 return TRUE;
8518
8519 /* Initialize howto table if needed. */
8520 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8521 ppc_howto_init ();
8522
8523 htab = ppc_hash_table (info);
8524 local_got_ents = elf_local_got_ents (input_bfd);
8525 TOCstart = elf_gp (output_bfd);
8526 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8527 sym_hashes = elf_sym_hashes (input_bfd);
8528 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
8529
8530 rel = relocs;
8531 relend = relocs + input_section->reloc_count;
8532 for (; rel < relend; rel++)
8533 {
8534 enum elf_ppc64_reloc_type r_type;
8535 bfd_vma addend;
8536 bfd_reloc_status_type r;
8537 Elf_Internal_Sym *sym;
8538 asection *sec;
8539 struct elf_link_hash_entry *h_elf;
8540 struct ppc_link_hash_entry *h;
8541 struct ppc_link_hash_entry *fdh;
8542 const char *sym_name;
8543 unsigned long r_symndx, toc_symndx;
8544 char tls_mask, tls_gd, tls_type;
8545 char sym_type;
8546 bfd_vma relocation;
8547 bfd_boolean unresolved_reloc;
8548 bfd_boolean warned;
8549 unsigned long insn, mask;
8550 struct ppc_stub_hash_entry *stub_entry;
8551 bfd_vma max_br_offset;
8552 bfd_vma from;
8553
8554 r_type = ELF64_R_TYPE (rel->r_info);
8555 r_symndx = ELF64_R_SYM (rel->r_info);
8556
8557 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
8558 symbol of the previous ADDR64 reloc. The symbol gives us the
8559 proper TOC base to use. */
8560 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
8561 && rel != relocs
8562 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
8563 && is_opd)
8564 r_symndx = ELF64_R_SYM (rel[-1].r_info);
8565
8566 sym = NULL;
8567 sec = NULL;
8568 h_elf = NULL;
8569 sym_name = NULL;
8570 unresolved_reloc = FALSE;
8571 warned = FALSE;
8572
8573 if (r_symndx < symtab_hdr->sh_info)
8574 {
8575 /* It's a local symbol. */
8576 long *opd_adjust;
8577
8578 sym = local_syms + r_symndx;
8579 sec = local_sections[r_symndx];
8580 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
8581 sym_type = ELF64_ST_TYPE (sym->st_info);
8582 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8583 opd_adjust = get_opd_info (sec);
8584 if (opd_adjust != NULL)
8585 {
8586 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
8587 if (adjust == -1)
8588 relocation = 0;
8589 else
8590 relocation += adjust;
8591 }
8592 }
8593 else
8594 {
8595 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8596 r_symndx, symtab_hdr, sym_hashes,
8597 h_elf, sec, relocation,
8598 unresolved_reloc, warned);
8599 sym_name = h_elf->root.root.string;
8600 sym_type = h_elf->type;
8601 }
8602 h = (struct ppc_link_hash_entry *) h_elf;
8603
8604 /* TLS optimizations. Replace instruction sequences and relocs
8605 based on information we collected in tls_optimize. We edit
8606 RELOCS so that --emit-relocs will output something sensible
8607 for the final instruction stream. */
8608 tls_mask = 0;
8609 tls_gd = 0;
8610 toc_symndx = 0;
8611 if (IS_PPC64_TLS_RELOC (r_type))
8612 {
8613 if (h != NULL)
8614 tls_mask = h->tls_mask;
8615 else if (local_got_ents != NULL)
8616 {
8617 char *lgot_masks;
8618 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
8619 tls_mask = lgot_masks[r_symndx];
8620 }
8621 if (tls_mask == 0 && r_type == R_PPC64_TLS)
8622 {
8623 /* Check for toc tls entries. */
8624 char *toc_tls;
8625
8626 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8627 rel, input_bfd))
8628 return FALSE;
8629
8630 if (toc_tls)
8631 tls_mask = *toc_tls;
8632 }
8633 }
8634
8635 /* Check that tls relocs are used with tls syms, and non-tls
8636 relocs are used with non-tls syms. */
8637 if (r_symndx != 0
8638 && r_type != R_PPC64_NONE
8639 && (h == NULL
8640 || h->elf.root.type == bfd_link_hash_defined
8641 || h->elf.root.type == bfd_link_hash_defweak)
8642 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8643 {
8644 if (r_type == R_PPC64_TLS && tls_mask != 0)
8645 /* R_PPC64_TLS is OK against a symbol in the TOC. */
8646 ;
8647 else
8648 (*_bfd_error_handler)
8649 (sym_type == STT_TLS
8650 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8651 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
8652 input_bfd,
8653 input_section,
8654 (long) rel->r_offset,
8655 ppc64_elf_howto_table[r_type]->name,
8656 sym_name);
8657 }
8658
8659 /* Ensure reloc mapping code below stays sane. */
8660 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
8661 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
8662 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
8663 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
8664 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
8665 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
8666 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
8667 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
8668 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
8669 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
8670 abort ();
8671
8672 switch (r_type)
8673 {
8674 default:
8675 break;
8676
8677 case R_PPC64_TOC16:
8678 case R_PPC64_TOC16_LO:
8679 case R_PPC64_TOC16_DS:
8680 case R_PPC64_TOC16_LO_DS:
8681 {
8682 /* Check for toc tls entries. */
8683 char *toc_tls;
8684 int retval;
8685
8686 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8687 rel, input_bfd);
8688 if (retval == 0)
8689 return FALSE;
8690
8691 if (toc_tls)
8692 {
8693 tls_mask = *toc_tls;
8694 if (r_type == R_PPC64_TOC16_DS
8695 || r_type == R_PPC64_TOC16_LO_DS)
8696 {
8697 if (tls_mask != 0
8698 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
8699 goto toctprel;
8700 }
8701 else
8702 {
8703 /* If we found a GD reloc pair, then we might be
8704 doing a GD->IE transition. */
8705 if (retval == 2)
8706 {
8707 tls_gd = TLS_TPRELGD;
8708 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8709 goto tls_get_addr_check;
8710 }
8711 else if (retval == 3)
8712 {
8713 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8714 goto tls_get_addr_check;
8715 }
8716 }
8717 }
8718 }
8719 break;
8720
8721 case R_PPC64_GOT_TPREL16_DS:
8722 case R_PPC64_GOT_TPREL16_LO_DS:
8723 if (tls_mask != 0
8724 && (tls_mask & TLS_TPREL) == 0)
8725 {
8726 toctprel:
8727 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
8728 insn &= 31 << 21;
8729 insn |= 0x3c0d0000; /* addis 0,13,0 */
8730 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
8731 r_type = R_PPC64_TPREL16_HA;
8732 if (toc_symndx != 0)
8733 {
8734 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8735 /* We changed the symbol. Start over in order to
8736 get h, sym, sec etc. right. */
8737 rel--;
8738 continue;
8739 }
8740 else
8741 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8742 }
8743 break;
8744
8745 case R_PPC64_TLS:
8746 if (tls_mask != 0
8747 && (tls_mask & TLS_TPREL) == 0)
8748 {
8749 bfd_vma rtra;
8750 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
8751 if ((insn & ((0x3f << 26) | (31 << 11)))
8752 == ((31 << 26) | (13 << 11)))
8753 rtra = insn & ((1 << 26) - (1 << 16));
8754 else if ((insn & ((0x3f << 26) | (31 << 16)))
8755 == ((31 << 26) | (13 << 16)))
8756 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
8757 else
8758 abort ();
8759 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
8760 /* add -> addi. */
8761 insn = 14 << 26;
8762 else if ((insn & (31 << 1)) == 23 << 1
8763 && ((insn & (31 << 6)) < 14 << 6
8764 || ((insn & (31 << 6)) >= 16 << 6
8765 && (insn & (31 << 6)) < 24 << 6)))
8766 /* load and store indexed -> dform. */
8767 insn = (32 | ((insn >> 6) & 31)) << 26;
8768 else if ((insn & (31 << 1)) == 21 << 1
8769 && (insn & (0x1a << 6)) == 0)
8770 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
8771 insn = (((58 | ((insn >> 6) & 4)) << 26)
8772 | ((insn >> 6) & 1));
8773 else if ((insn & (31 << 1)) == 21 << 1
8774 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
8775 /* lwax -> lwa. */
8776 insn = (58 << 26) | 2;
8777 else
8778 abort ();
8779 insn |= rtra;
8780 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
8781 /* Was PPC64_TLS which sits on insn boundary, now
8782 PPC64_TPREL16_LO which is at insn+2. */
8783 rel->r_offset += 2;
8784 r_type = R_PPC64_TPREL16_LO;
8785 if (toc_symndx != 0)
8786 {
8787 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8788 /* We changed the symbol. Start over in order to
8789 get h, sym, sec etc. right. */
8790 rel--;
8791 continue;
8792 }
8793 else
8794 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8795 }
8796 break;
8797
8798 case R_PPC64_GOT_TLSGD16_HI:
8799 case R_PPC64_GOT_TLSGD16_HA:
8800 tls_gd = TLS_TPRELGD;
8801 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8802 goto tls_gdld_hi;
8803 break;
8804
8805 case R_PPC64_GOT_TLSLD16_HI:
8806 case R_PPC64_GOT_TLSLD16_HA:
8807 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8808 {
8809 tls_gdld_hi:
8810 if ((tls_mask & tls_gd) != 0)
8811 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8812 + R_PPC64_GOT_TPREL16_DS);
8813 else
8814 {
8815 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
8816 rel->r_offset -= 2;
8817 r_type = R_PPC64_NONE;
8818 }
8819 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8820 }
8821 break;
8822
8823 case R_PPC64_GOT_TLSGD16:
8824 case R_PPC64_GOT_TLSGD16_LO:
8825 tls_gd = TLS_TPRELGD;
8826 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8827 goto tls_get_addr_check;
8828 break;
8829
8830 case R_PPC64_GOT_TLSLD16:
8831 case R_PPC64_GOT_TLSLD16_LO:
8832 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8833 {
8834 tls_get_addr_check:
8835 if (rel + 1 < relend)
8836 {
8837 enum elf_ppc64_reloc_type r_type2;
8838 unsigned long r_symndx2;
8839 struct elf_link_hash_entry *h2;
8840 bfd_vma insn1, insn2, insn3;
8841 bfd_vma offset;
8842
8843 /* The next instruction should be a call to
8844 __tls_get_addr. Peek at the reloc to be sure. */
8845 r_type2 = ELF64_R_TYPE (rel[1].r_info);
8846 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
8847 if (r_symndx2 < symtab_hdr->sh_info
8848 || (r_type2 != R_PPC64_REL14
8849 && r_type2 != R_PPC64_REL14_BRTAKEN
8850 && r_type2 != R_PPC64_REL14_BRNTAKEN
8851 && r_type2 != R_PPC64_REL24))
8852 break;
8853
8854 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
8855 while (h2->root.type == bfd_link_hash_indirect
8856 || h2->root.type == bfd_link_hash_warning)
8857 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
8858 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
8859 && h2 != &htab->tls_get_addr_fd->elf))
8860 break;
8861
8862 /* OK, it checks out. Replace the call. */
8863 offset = rel[1].r_offset;
8864 insn1 = bfd_get_32 (output_bfd,
8865 contents + rel->r_offset - 2);
8866 insn3 = bfd_get_32 (output_bfd,
8867 contents + offset + 4);
8868 if ((tls_mask & tls_gd) != 0)
8869 {
8870 /* IE */
8871 insn1 &= (1 << 26) - (1 << 2);
8872 insn1 |= 58 << 26; /* ld */
8873 insn2 = 0x7c636a14; /* add 3,3,13 */
8874 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
8875 if ((tls_mask & TLS_EXPLICIT) == 0)
8876 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8877 + R_PPC64_GOT_TPREL16_DS);
8878 else
8879 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
8880 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8881 }
8882 else
8883 {
8884 /* LE */
8885 insn1 = 0x3c6d0000; /* addis 3,13,0 */
8886 insn2 = 0x38630000; /* addi 3,3,0 */
8887 if (tls_gd == 0)
8888 {
8889 /* Was an LD reloc. */
8890 r_symndx = 0;
8891 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8892 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8893 }
8894 else if (toc_symndx != 0)
8895 r_symndx = toc_symndx;
8896 r_type = R_PPC64_TPREL16_HA;
8897 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8898 rel[1].r_info = ELF64_R_INFO (r_symndx,
8899 R_PPC64_TPREL16_LO);
8900 rel[1].r_offset += 2;
8901 }
8902 if (insn3 == NOP
8903 || insn3 == CROR_151515 || insn3 == CROR_313131)
8904 {
8905 insn3 = insn2;
8906 insn2 = NOP;
8907 rel[1].r_offset += 4;
8908 }
8909 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
8910 bfd_put_32 (output_bfd, insn2, contents + offset);
8911 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
8912 if (tls_gd == 0 || toc_symndx != 0)
8913 {
8914 /* We changed the symbol. Start over in order
8915 to get h, sym, sec etc. right. */
8916 rel--;
8917 continue;
8918 }
8919 }
8920 }
8921 break;
8922
8923 case R_PPC64_DTPMOD64:
8924 if (rel + 1 < relend
8925 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
8926 && rel[1].r_offset == rel->r_offset + 8)
8927 {
8928 if ((tls_mask & TLS_GD) == 0)
8929 {
8930 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
8931 if ((tls_mask & TLS_TPRELGD) != 0)
8932 r_type = R_PPC64_TPREL64;
8933 else
8934 {
8935 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8936 r_type = R_PPC64_NONE;
8937 }
8938 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8939 }
8940 }
8941 else
8942 {
8943 if ((tls_mask & TLS_LD) == 0)
8944 {
8945 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8946 r_type = R_PPC64_NONE;
8947 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8948 }
8949 }
8950 break;
8951
8952 case R_PPC64_TPREL64:
8953 if ((tls_mask & TLS_TPREL) == 0)
8954 {
8955 r_type = R_PPC64_NONE;
8956 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8957 }
8958 break;
8959 }
8960
8961 /* Handle other relocations that tweak non-addend part of insn. */
8962 insn = 0;
8963 max_br_offset = 1 << 25;
8964 addend = rel->r_addend;
8965 switch (r_type)
8966 {
8967 default:
8968 break;
8969
8970 /* Branch taken prediction relocations. */
8971 case R_PPC64_ADDR14_BRTAKEN:
8972 case R_PPC64_REL14_BRTAKEN:
8973 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
8974 /* Fall thru. */
8975
8976 /* Branch not taken prediction relocations. */
8977 case R_PPC64_ADDR14_BRNTAKEN:
8978 case R_PPC64_REL14_BRNTAKEN:
8979 insn |= bfd_get_32 (output_bfd,
8980 contents + rel->r_offset) & ~(0x01 << 21);
8981 /* Fall thru. */
8982
8983 case R_PPC64_REL14:
8984 max_br_offset = 1 << 15;
8985 /* Fall thru. */
8986
8987 case R_PPC64_REL24:
8988 /* Calls to functions with a different TOC, such as calls to
8989 shared objects, need to alter the TOC pointer. This is
8990 done using a linkage stub. A REL24 branching to these
8991 linkage stubs needs to be followed by a nop, as the nop
8992 will be replaced with an instruction to restore the TOC
8993 base pointer. */
8994 stub_entry = NULL;
8995 fdh = h;
8996 if (((h != NULL
8997 && (((fdh = h->oh) != NULL
8998 && fdh->elf.plt.plist != NULL)
8999 || (fdh = h)->elf.plt.plist != NULL))
9000 || (sec != NULL
9001 && sec->output_section != NULL
9002 && sec->id <= htab->top_id
9003 && (htab->stub_group[sec->id].toc_off
9004 != htab->stub_group[input_section->id].toc_off)))
9005 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9006 rel, htab)) != NULL
9007 && (stub_entry->stub_type == ppc_stub_plt_call
9008 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9009 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9010 {
9011 bfd_boolean can_plt_call = FALSE;
9012
9013 if (rel->r_offset + 8 <= input_section->size)
9014 {
9015 unsigned long nop;
9016 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9017 if (nop == NOP
9018 || nop == CROR_151515 || nop == CROR_313131)
9019 {
9020 bfd_put_32 (input_bfd, LD_R2_40R1,
9021 contents + rel->r_offset + 4);
9022 can_plt_call = TRUE;
9023 }
9024 }
9025
9026 if (!can_plt_call)
9027 {
9028 if (stub_entry->stub_type == ppc_stub_plt_call)
9029 {
9030 /* If this is a plain branch rather than a branch
9031 and link, don't require a nop. */
9032 unsigned long br;
9033 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9034 if ((br & 1) == 0)
9035 can_plt_call = TRUE;
9036 }
9037 else if (h != NULL
9038 && strcmp (h->elf.root.root.string,
9039 ".__libc_start_main") == 0)
9040 {
9041 /* Allow crt1 branch to go via a toc adjusting stub. */
9042 can_plt_call = TRUE;
9043 }
9044 else
9045 {
9046 if (strcmp (input_section->output_section->name,
9047 ".init") == 0
9048 || strcmp (input_section->output_section->name,
9049 ".fini") == 0)
9050 (*_bfd_error_handler)
9051 (_("%B(%A+0x%lx): automatic multiple TOCs "
9052 "not supported using your crt files; "
9053 "recompile with -mminimal-toc or upgrade gcc"),
9054 input_bfd,
9055 input_section,
9056 (long) rel->r_offset);
9057 else
9058 (*_bfd_error_handler)
9059 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9060 "does not allow automatic multiple TOCs; "
9061 "recompile with -mminimal-toc or "
9062 "-fno-optimize-sibling-calls, "
9063 "or make `%s' extern"),
9064 input_bfd,
9065 input_section,
9066 (long) rel->r_offset,
9067 sym_name,
9068 sym_name);
9069 bfd_set_error (bfd_error_bad_value);
9070 ret = FALSE;
9071 }
9072 }
9073
9074 if (can_plt_call
9075 && stub_entry->stub_type == ppc_stub_plt_call)
9076 unresolved_reloc = FALSE;
9077 }
9078
9079 if (stub_entry == NULL
9080 && get_opd_info (sec) != NULL)
9081 {
9082 /* The branch destination is the value of the opd entry. */
9083 bfd_vma off = (relocation - sec->output_section->vma
9084 - sec->output_offset + rel->r_addend);
9085 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9086 if (dest != (bfd_vma) -1)
9087 {
9088 relocation = dest;
9089 addend = 0;
9090 }
9091 }
9092
9093 /* If the branch is out of reach we ought to have a long
9094 branch stub. */
9095 from = (rel->r_offset
9096 + input_section->output_offset
9097 + input_section->output_section->vma);
9098
9099 if (stub_entry == NULL
9100 && (relocation + rel->r_addend - from + max_br_offset
9101 >= 2 * max_br_offset)
9102 && r_type != R_PPC64_ADDR14_BRTAKEN
9103 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9104 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9105 htab);
9106
9107 if (stub_entry != NULL)
9108 {
9109 /* Munge up the value and addend so that we call the stub
9110 rather than the procedure directly. */
9111 relocation = (stub_entry->stub_offset
9112 + stub_entry->stub_sec->output_offset
9113 + stub_entry->stub_sec->output_section->vma);
9114 addend = 0;
9115 }
9116
9117 if (insn != 0)
9118 {
9119 if (is_power4)
9120 {
9121 /* Set 'a' bit. This is 0b00010 in BO field for branch
9122 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9123 for branch on CTR insns (BO == 1a00t or 1a01t). */
9124 if ((insn & (0x14 << 21)) == (0x04 << 21))
9125 insn |= 0x02 << 21;
9126 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9127 insn |= 0x08 << 21;
9128 else
9129 break;
9130 }
9131 else
9132 {
9133 /* Invert 'y' bit if not the default. */
9134 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9135 insn ^= 0x01 << 21;
9136 }
9137
9138 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9139 }
9140
9141 /* NOP out calls to undefined weak functions.
9142 We can thus call a weak function without first
9143 checking whether the function is defined. */
9144 else if (h != NULL
9145 && h->elf.root.type == bfd_link_hash_undefweak
9146 && r_type == R_PPC64_REL24
9147 && relocation == 0
9148 && rel->r_addend == 0)
9149 {
9150 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9151 continue;
9152 }
9153 break;
9154 }
9155
9156 /* Set `addend'. */
9157 tls_type = 0;
9158 switch (r_type)
9159 {
9160 default:
9161 (*_bfd_error_handler)
9162 (_("%B: unknown relocation type %d for symbol %s"),
9163 input_bfd, (int) r_type, sym_name);
9164
9165 bfd_set_error (bfd_error_bad_value);
9166 ret = FALSE;
9167 continue;
9168
9169 case R_PPC64_NONE:
9170 case R_PPC64_TLS:
9171 case R_PPC64_GNU_VTINHERIT:
9172 case R_PPC64_GNU_VTENTRY:
9173 continue;
9174
9175 /* GOT16 relocations. Like an ADDR16 using the symbol's
9176 address in the GOT as relocation value instead of the
9177 symbol's value itself. Also, create a GOT entry for the
9178 symbol and put the symbol value there. */
9179 case R_PPC64_GOT_TLSGD16:
9180 case R_PPC64_GOT_TLSGD16_LO:
9181 case R_PPC64_GOT_TLSGD16_HI:
9182 case R_PPC64_GOT_TLSGD16_HA:
9183 tls_type = TLS_TLS | TLS_GD;
9184 goto dogot;
9185
9186 case R_PPC64_GOT_TLSLD16:
9187 case R_PPC64_GOT_TLSLD16_LO:
9188 case R_PPC64_GOT_TLSLD16_HI:
9189 case R_PPC64_GOT_TLSLD16_HA:
9190 tls_type = TLS_TLS | TLS_LD;
9191 goto dogot;
9192
9193 case R_PPC64_GOT_TPREL16_DS:
9194 case R_PPC64_GOT_TPREL16_LO_DS:
9195 case R_PPC64_GOT_TPREL16_HI:
9196 case R_PPC64_GOT_TPREL16_HA:
9197 tls_type = TLS_TLS | TLS_TPREL;
9198 goto dogot;
9199
9200 case R_PPC64_GOT_DTPREL16_DS:
9201 case R_PPC64_GOT_DTPREL16_LO_DS:
9202 case R_PPC64_GOT_DTPREL16_HI:
9203 case R_PPC64_GOT_DTPREL16_HA:
9204 tls_type = TLS_TLS | TLS_DTPREL;
9205 goto dogot;
9206
9207 case R_PPC64_GOT16:
9208 case R_PPC64_GOT16_LO:
9209 case R_PPC64_GOT16_HI:
9210 case R_PPC64_GOT16_HA:
9211 case R_PPC64_GOT16_DS:
9212 case R_PPC64_GOT16_LO_DS:
9213 dogot:
9214 {
9215 /* Relocation is to the entry for this symbol in the global
9216 offset table. */
9217 asection *got;
9218 bfd_vma *offp;
9219 bfd_vma off;
9220 unsigned long indx = 0;
9221
9222 if (tls_type == (TLS_TLS | TLS_LD)
9223 && (h == NULL
9224 || (h->elf.elf_link_hash_flags
9225 & ELF_LINK_HASH_DEF_DYNAMIC) == 0))
9226 offp = &ppc64_tlsld_got (input_bfd)->offset;
9227 else
9228 {
9229 struct got_entry *ent;
9230
9231 if (h != NULL)
9232 {
9233 bfd_boolean dyn = htab->elf.dynamic_sections_created;
9234 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
9235 &h->elf)
9236 || (info->shared
9237 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
9238 /* This is actually a static link, or it is a
9239 -Bsymbolic link and the symbol is defined
9240 locally, or the symbol was forced to be local
9241 because of a version file. */
9242 ;
9243 else
9244 {
9245 indx = h->elf.dynindx;
9246 unresolved_reloc = FALSE;
9247 }
9248 ent = h->elf.got.glist;
9249 }
9250 else
9251 {
9252 if (local_got_ents == NULL)
9253 abort ();
9254 ent = local_got_ents[r_symndx];
9255 }
9256
9257 for (; ent != NULL; ent = ent->next)
9258 if (ent->addend == rel->r_addend
9259 && ent->owner == input_bfd
9260 && ent->tls_type == tls_type)
9261 break;
9262 if (ent == NULL)
9263 abort ();
9264 offp = &ent->got.offset;
9265 }
9266
9267 got = ppc64_elf_tdata (input_bfd)->got;
9268 if (got == NULL)
9269 abort ();
9270
9271 /* The offset must always be a multiple of 8. We use the
9272 least significant bit to record whether we have already
9273 processed this entry. */
9274 off = *offp;
9275 if ((off & 1) != 0)
9276 off &= ~1;
9277 else
9278 {
9279 /* Generate relocs for the dynamic linker, except in
9280 the case of TLSLD where we'll use one entry per
9281 module. */
9282 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
9283
9284 *offp = off | 1;
9285 if ((info->shared || indx != 0)
9286 && (h == NULL
9287 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9288 || h->elf.root.type != bfd_link_hash_undefweak))
9289 {
9290 outrel.r_offset = (got->output_section->vma
9291 + got->output_offset
9292 + off);
9293 outrel.r_addend = rel->r_addend;
9294 if (tls_type & (TLS_LD | TLS_GD))
9295 {
9296 outrel.r_addend = 0;
9297 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
9298 if (tls_type == (TLS_TLS | TLS_GD))
9299 {
9300 loc = relgot->contents;
9301 loc += (relgot->reloc_count++
9302 * sizeof (Elf64_External_Rela));
9303 bfd_elf64_swap_reloca_out (output_bfd,
9304 &outrel, loc);
9305 outrel.r_offset += 8;
9306 outrel.r_addend = rel->r_addend;
9307 outrel.r_info
9308 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9309 }
9310 }
9311 else if (tls_type == (TLS_TLS | TLS_DTPREL))
9312 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9313 else if (tls_type == (TLS_TLS | TLS_TPREL))
9314 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
9315 else if (indx == 0)
9316 {
9317 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
9318
9319 /* Write the .got section contents for the sake
9320 of prelink. */
9321 loc = got->contents + off;
9322 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
9323 loc);
9324 }
9325 else
9326 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
9327
9328 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
9329 {
9330 outrel.r_addend += relocation;
9331 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
9332 outrel.r_addend -= htab->elf.tls_sec->vma;
9333 }
9334 loc = relgot->contents;
9335 loc += (relgot->reloc_count++
9336 * sizeof (Elf64_External_Rela));
9337 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9338 }
9339
9340 /* Init the .got section contents here if we're not
9341 emitting a reloc. */
9342 else
9343 {
9344 relocation += rel->r_addend;
9345 if (tls_type == (TLS_TLS | TLS_LD))
9346 relocation = 1;
9347 else if (tls_type != 0)
9348 {
9349 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
9350 if (tls_type == (TLS_TLS | TLS_TPREL))
9351 relocation += DTP_OFFSET - TP_OFFSET;
9352
9353 if (tls_type == (TLS_TLS | TLS_GD))
9354 {
9355 bfd_put_64 (output_bfd, relocation,
9356 got->contents + off + 8);
9357 relocation = 1;
9358 }
9359 }
9360
9361 bfd_put_64 (output_bfd, relocation,
9362 got->contents + off);
9363 }
9364 }
9365
9366 if (off >= (bfd_vma) -2)
9367 abort ();
9368
9369 relocation = got->output_offset + off;
9370
9371 /* TOC base (r2) is TOC start plus 0x8000. */
9372 addend = -TOC_BASE_OFF;
9373 }
9374 break;
9375
9376 case R_PPC64_PLT16_HA:
9377 case R_PPC64_PLT16_HI:
9378 case R_PPC64_PLT16_LO:
9379 case R_PPC64_PLT32:
9380 case R_PPC64_PLT64:
9381 /* Relocation is to the entry for this symbol in the
9382 procedure linkage table. */
9383
9384 /* Resolve a PLT reloc against a local symbol directly,
9385 without using the procedure linkage table. */
9386 if (h == NULL)
9387 break;
9388
9389 /* It's possible that we didn't make a PLT entry for this
9390 symbol. This happens when statically linking PIC code,
9391 or when using -Bsymbolic. Go find a match if there is a
9392 PLT entry. */
9393 if (htab->plt != NULL)
9394 {
9395 struct plt_entry *ent;
9396 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
9397 if (ent->addend == rel->r_addend
9398 && ent->plt.offset != (bfd_vma) -1)
9399 {
9400 relocation = (htab->plt->output_section->vma
9401 + htab->plt->output_offset
9402 + ent->plt.offset);
9403 unresolved_reloc = FALSE;
9404 }
9405 }
9406 break;
9407
9408 case R_PPC64_TOC:
9409 /* Relocation value is TOC base. */
9410 relocation = TOCstart;
9411 if (r_symndx == 0)
9412 relocation += htab->stub_group[input_section->id].toc_off;
9413 else if (unresolved_reloc)
9414 ;
9415 else if (sec != NULL && sec->id <= htab->top_id)
9416 relocation += htab->stub_group[sec->id].toc_off;
9417 else
9418 unresolved_reloc = TRUE;
9419 goto dodyn2;
9420
9421 /* TOC16 relocs. We want the offset relative to the TOC base,
9422 which is the address of the start of the TOC plus 0x8000.
9423 The TOC consists of sections .got, .toc, .tocbss, and .plt,
9424 in this order. */
9425 case R_PPC64_TOC16:
9426 case R_PPC64_TOC16_LO:
9427 case R_PPC64_TOC16_HI:
9428 case R_PPC64_TOC16_DS:
9429 case R_PPC64_TOC16_LO_DS:
9430 case R_PPC64_TOC16_HA:
9431 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
9432 break;
9433
9434 /* Relocate against the beginning of the section. */
9435 case R_PPC64_SECTOFF:
9436 case R_PPC64_SECTOFF_LO:
9437 case R_PPC64_SECTOFF_HI:
9438 case R_PPC64_SECTOFF_DS:
9439 case R_PPC64_SECTOFF_LO_DS:
9440 case R_PPC64_SECTOFF_HA:
9441 if (sec != NULL)
9442 addend -= sec->output_section->vma;
9443 break;
9444
9445 case R_PPC64_REL14:
9446 case R_PPC64_REL14_BRNTAKEN:
9447 case R_PPC64_REL14_BRTAKEN:
9448 case R_PPC64_REL24:
9449 break;
9450
9451 case R_PPC64_TPREL16:
9452 case R_PPC64_TPREL16_LO:
9453 case R_PPC64_TPREL16_HI:
9454 case R_PPC64_TPREL16_HA:
9455 case R_PPC64_TPREL16_DS:
9456 case R_PPC64_TPREL16_LO_DS:
9457 case R_PPC64_TPREL16_HIGHER:
9458 case R_PPC64_TPREL16_HIGHERA:
9459 case R_PPC64_TPREL16_HIGHEST:
9460 case R_PPC64_TPREL16_HIGHESTA:
9461 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9462 if (info->shared)
9463 /* The TPREL16 relocs shouldn't really be used in shared
9464 libs as they will result in DT_TEXTREL being set, but
9465 support them anyway. */
9466 goto dodyn;
9467 break;
9468
9469 case R_PPC64_DTPREL16:
9470 case R_PPC64_DTPREL16_LO:
9471 case R_PPC64_DTPREL16_HI:
9472 case R_PPC64_DTPREL16_HA:
9473 case R_PPC64_DTPREL16_DS:
9474 case R_PPC64_DTPREL16_LO_DS:
9475 case R_PPC64_DTPREL16_HIGHER:
9476 case R_PPC64_DTPREL16_HIGHERA:
9477 case R_PPC64_DTPREL16_HIGHEST:
9478 case R_PPC64_DTPREL16_HIGHESTA:
9479 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9480 break;
9481
9482 case R_PPC64_DTPMOD64:
9483 relocation = 1;
9484 addend = 0;
9485 goto dodyn;
9486
9487 case R_PPC64_TPREL64:
9488 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9489 goto dodyn;
9490
9491 case R_PPC64_DTPREL64:
9492 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9493 /* Fall thru */
9494
9495 /* Relocations that may need to be propagated if this is a
9496 dynamic object. */
9497 case R_PPC64_REL30:
9498 case R_PPC64_REL32:
9499 case R_PPC64_REL64:
9500 case R_PPC64_ADDR14:
9501 case R_PPC64_ADDR14_BRNTAKEN:
9502 case R_PPC64_ADDR14_BRTAKEN:
9503 case R_PPC64_ADDR16:
9504 case R_PPC64_ADDR16_DS:
9505 case R_PPC64_ADDR16_HA:
9506 case R_PPC64_ADDR16_HI:
9507 case R_PPC64_ADDR16_HIGHER:
9508 case R_PPC64_ADDR16_HIGHERA:
9509 case R_PPC64_ADDR16_HIGHEST:
9510 case R_PPC64_ADDR16_HIGHESTA:
9511 case R_PPC64_ADDR16_LO:
9512 case R_PPC64_ADDR16_LO_DS:
9513 case R_PPC64_ADDR24:
9514 case R_PPC64_ADDR32:
9515 case R_PPC64_ADDR64:
9516 case R_PPC64_UADDR16:
9517 case R_PPC64_UADDR32:
9518 case R_PPC64_UADDR64:
9519 /* r_symndx will be zero only for relocs against symbols
9520 from removed linkonce sections, or sections discarded by
9521 a linker script. */
9522 dodyn:
9523 if (r_symndx == 0)
9524 break;
9525 /* Fall thru. */
9526
9527 dodyn2:
9528 if ((input_section->flags & SEC_ALLOC) == 0)
9529 break;
9530
9531 if (NO_OPD_RELOCS && is_opd)
9532 break;
9533
9534 if ((info->shared
9535 && (h == NULL
9536 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9537 || h->elf.root.type != bfd_link_hash_undefweak)
9538 && (MUST_BE_DYN_RELOC (r_type)
9539 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
9540 || (ELIMINATE_COPY_RELOCS
9541 && !info->shared
9542 && h != NULL
9543 && h->elf.dynindx != -1
9544 && !(h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF)
9545 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
9546 && !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
9547 {
9548 Elf_Internal_Rela outrel;
9549 bfd_boolean skip, relocate;
9550 asection *sreloc;
9551 bfd_byte *loc;
9552 bfd_vma out_off;
9553
9554 /* When generating a dynamic object, these relocations
9555 are copied into the output file to be resolved at run
9556 time. */
9557
9558 skip = FALSE;
9559 relocate = FALSE;
9560
9561 out_off = _bfd_elf_section_offset (output_bfd, info,
9562 input_section, rel->r_offset);
9563 if (out_off == (bfd_vma) -1)
9564 skip = TRUE;
9565 else if (out_off == (bfd_vma) -2)
9566 skip = TRUE, relocate = TRUE;
9567 out_off += (input_section->output_section->vma
9568 + input_section->output_offset);
9569 outrel.r_offset = out_off;
9570 outrel.r_addend = rel->r_addend;
9571
9572 /* Optimize unaligned reloc use. */
9573 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
9574 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
9575 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
9576 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
9577 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
9578 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
9579 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
9580 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
9581 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
9582
9583 if (skip)
9584 memset (&outrel, 0, sizeof outrel);
9585 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
9586 && !is_opd
9587 && r_type != R_PPC64_TOC)
9588 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
9589 else
9590 {
9591 /* This symbol is local, or marked to become local,
9592 or this is an opd section reloc which must point
9593 at a local function. */
9594 outrel.r_addend += relocation;
9595 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
9596 {
9597 if (is_opd && h != NULL)
9598 {
9599 /* Lie about opd entries. This case occurs
9600 when building shared libraries and we
9601 reference a function in another shared
9602 lib. The same thing happens for a weak
9603 definition in an application that's
9604 overridden by a strong definition in a
9605 shared lib. (I believe this is a generic
9606 bug in binutils handling of weak syms.)
9607 In these cases we won't use the opd
9608 entry in this lib. */
9609 unresolved_reloc = FALSE;
9610 }
9611 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
9612
9613 /* We need to relocate .opd contents for ld.so.
9614 Prelink also wants simple and consistent rules
9615 for relocs. This make all RELATIVE relocs have
9616 *r_offset equal to r_addend. */
9617 relocate = TRUE;
9618 }
9619 else
9620 {
9621 long indx = 0;
9622
9623 if (bfd_is_abs_section (sec))
9624 ;
9625 else if (sec == NULL || sec->owner == NULL)
9626 {
9627 bfd_set_error (bfd_error_bad_value);
9628 return FALSE;
9629 }
9630 else
9631 {
9632 asection *osec;
9633
9634 osec = sec->output_section;
9635 indx = elf_section_data (osec)->dynindx;
9636
9637 /* We are turning this relocation into one
9638 against a section symbol, so subtract out
9639 the output section's address but not the
9640 offset of the input section in the output
9641 section. */
9642 outrel.r_addend -= osec->vma;
9643 }
9644
9645 outrel.r_info = ELF64_R_INFO (indx, r_type);
9646 }
9647 }
9648
9649 sreloc = elf_section_data (input_section)->sreloc;
9650 if (sreloc == NULL)
9651 abort ();
9652
9653 loc = sreloc->contents;
9654 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
9655 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9656
9657 /* If this reloc is against an external symbol, it will
9658 be computed at runtime, so there's no need to do
9659 anything now. However, for the sake of prelink ensure
9660 that the section contents are a known value. */
9661 if (! relocate)
9662 {
9663 unresolved_reloc = FALSE;
9664 /* The value chosen here is quite arbitrary as ld.so
9665 ignores section contents except for the special
9666 case of .opd where the contents might be accessed
9667 before relocation. Choose zero, as that won't
9668 cause reloc overflow. */
9669 relocation = 0;
9670 addend = 0;
9671 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
9672 to improve backward compatibility with older
9673 versions of ld. */
9674 if (r_type == R_PPC64_ADDR64)
9675 addend = outrel.r_addend;
9676 /* Adjust pc_relative relocs to have zero in *r_offset. */
9677 else if (ppc64_elf_howto_table[r_type]->pc_relative)
9678 addend = (input_section->output_section->vma
9679 + input_section->output_offset
9680 + rel->r_offset);
9681 }
9682 }
9683 break;
9684
9685 case R_PPC64_COPY:
9686 case R_PPC64_GLOB_DAT:
9687 case R_PPC64_JMP_SLOT:
9688 case R_PPC64_RELATIVE:
9689 /* We shouldn't ever see these dynamic relocs in relocatable
9690 files. */
9691 /* Fall through. */
9692
9693 case R_PPC64_PLTGOT16:
9694 case R_PPC64_PLTGOT16_DS:
9695 case R_PPC64_PLTGOT16_HA:
9696 case R_PPC64_PLTGOT16_HI:
9697 case R_PPC64_PLTGOT16_LO:
9698 case R_PPC64_PLTGOT16_LO_DS:
9699 case R_PPC64_PLTREL32:
9700 case R_PPC64_PLTREL64:
9701 /* These ones haven't been implemented yet. */
9702
9703 (*_bfd_error_handler)
9704 (_("%B: relocation %s is not supported for symbol %s."),
9705 input_bfd,
9706 ppc64_elf_howto_table[r_type]->name, sym_name);
9707
9708 bfd_set_error (bfd_error_invalid_operation);
9709 ret = FALSE;
9710 continue;
9711 }
9712
9713 /* Do any further special processing. */
9714 switch (r_type)
9715 {
9716 default:
9717 break;
9718
9719 case R_PPC64_ADDR16_HA:
9720 case R_PPC64_ADDR16_HIGHERA:
9721 case R_PPC64_ADDR16_HIGHESTA:
9722 case R_PPC64_GOT16_HA:
9723 case R_PPC64_PLTGOT16_HA:
9724 case R_PPC64_PLT16_HA:
9725 case R_PPC64_TOC16_HA:
9726 case R_PPC64_SECTOFF_HA:
9727 case R_PPC64_TPREL16_HA:
9728 case R_PPC64_DTPREL16_HA:
9729 case R_PPC64_GOT_TLSGD16_HA:
9730 case R_PPC64_GOT_TLSLD16_HA:
9731 case R_PPC64_GOT_TPREL16_HA:
9732 case R_PPC64_GOT_DTPREL16_HA:
9733 case R_PPC64_TPREL16_HIGHER:
9734 case R_PPC64_TPREL16_HIGHERA:
9735 case R_PPC64_TPREL16_HIGHEST:
9736 case R_PPC64_TPREL16_HIGHESTA:
9737 case R_PPC64_DTPREL16_HIGHER:
9738 case R_PPC64_DTPREL16_HIGHERA:
9739 case R_PPC64_DTPREL16_HIGHEST:
9740 case R_PPC64_DTPREL16_HIGHESTA:
9741 /* It's just possible that this symbol is a weak symbol
9742 that's not actually defined anywhere. In that case,
9743 'sec' would be NULL, and we should leave the symbol
9744 alone (it will be set to zero elsewhere in the link). */
9745 if (sec != NULL)
9746 /* Add 0x10000 if sign bit in 0:15 is set.
9747 Bits 0:15 are not used. */
9748 addend += 0x8000;
9749 break;
9750
9751 case R_PPC64_ADDR16_DS:
9752 case R_PPC64_ADDR16_LO_DS:
9753 case R_PPC64_GOT16_DS:
9754 case R_PPC64_GOT16_LO_DS:
9755 case R_PPC64_PLT16_LO_DS:
9756 case R_PPC64_SECTOFF_DS:
9757 case R_PPC64_SECTOFF_LO_DS:
9758 case R_PPC64_TOC16_DS:
9759 case R_PPC64_TOC16_LO_DS:
9760 case R_PPC64_PLTGOT16_DS:
9761 case R_PPC64_PLTGOT16_LO_DS:
9762 case R_PPC64_GOT_TPREL16_DS:
9763 case R_PPC64_GOT_TPREL16_LO_DS:
9764 case R_PPC64_GOT_DTPREL16_DS:
9765 case R_PPC64_GOT_DTPREL16_LO_DS:
9766 case R_PPC64_TPREL16_DS:
9767 case R_PPC64_TPREL16_LO_DS:
9768 case R_PPC64_DTPREL16_DS:
9769 case R_PPC64_DTPREL16_LO_DS:
9770 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
9771 mask = 3;
9772 /* If this reloc is against an lq insn, then the value must be
9773 a multiple of 16. This is somewhat of a hack, but the
9774 "correct" way to do this by defining _DQ forms of all the
9775 _DS relocs bloats all reloc switches in this file. It
9776 doesn't seem to make much sense to use any of these relocs
9777 in data, so testing the insn should be safe. */
9778 if ((insn & (0x3f << 26)) == (56u << 26))
9779 mask = 15;
9780 if (((relocation + addend) & mask) != 0)
9781 {
9782 (*_bfd_error_handler)
9783 (_("%B: error: relocation %s not a multiple of %d"),
9784 input_bfd,
9785 ppc64_elf_howto_table[r_type]->name,
9786 mask + 1);
9787 bfd_set_error (bfd_error_bad_value);
9788 ret = FALSE;
9789 continue;
9790 }
9791 break;
9792 }
9793
9794 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9795 because such sections are not SEC_ALLOC and thus ld.so will
9796 not process them. */
9797 if (unresolved_reloc
9798 && !((input_section->flags & SEC_DEBUGGING) != 0
9799 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
9800 {
9801 (*_bfd_error_handler)
9802 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9803 input_bfd,
9804 input_section,
9805 (long) rel->r_offset,
9806 ppc64_elf_howto_table[(int) r_type]->name,
9807 h->elf.root.root.string);
9808 ret = FALSE;
9809 }
9810
9811 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
9812 input_bfd,
9813 input_section,
9814 contents,
9815 rel->r_offset,
9816 relocation,
9817 addend);
9818
9819 if (r != bfd_reloc_ok)
9820 {
9821 if (sym_name == NULL)
9822 sym_name = "(null)";
9823 if (r == bfd_reloc_overflow)
9824 {
9825 if (warned)
9826 continue;
9827 if (h != NULL
9828 && h->elf.root.type == bfd_link_hash_undefweak
9829 && ppc64_elf_howto_table[r_type]->pc_relative)
9830 {
9831 /* Assume this is a call protected by other code that
9832 detects the symbol is undefined. If this is the case,
9833 we can safely ignore the overflow. If not, the
9834 program is hosed anyway, and a little warning isn't
9835 going to help. */
9836
9837 continue;
9838 }
9839
9840 if (!((*info->callbacks->reloc_overflow)
9841 (info, sym_name, ppc64_elf_howto_table[r_type]->name,
9842 rel->r_addend, input_bfd, input_section, rel->r_offset)))
9843 return FALSE;
9844 }
9845 else
9846 {
9847 (*_bfd_error_handler)
9848 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
9849 input_bfd,
9850 input_section,
9851 (long) rel->r_offset,
9852 ppc64_elf_howto_table[r_type]->name,
9853 sym_name,
9854 (int) r);
9855 ret = FALSE;
9856 }
9857 }
9858 }
9859
9860 return ret;
9861}
9862
9863/* Adjust the value of any local symbols in opd sections. */
9864
9865static bfd_boolean
9866ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
9867 const char *name ATTRIBUTE_UNUSED,
9868 Elf_Internal_Sym *elfsym,
9869 asection *input_sec,
9870 struct elf_link_hash_entry *h)
9871{
9872 long *opd_adjust, adjust;
9873 bfd_vma value;
9874
9875 if (h != NULL)
9876 return TRUE;
9877
9878 opd_adjust = get_opd_info (input_sec);
9879 if (opd_adjust == NULL)
9880 return TRUE;
9881
9882 value = elfsym->st_value - input_sec->output_offset;
9883 if (!info->relocatable)
9884 value -= input_sec->output_section->vma;
9885
9886 adjust = opd_adjust[value / 8];
9887 if (adjust == -1)
9888 elfsym->st_value = 0;
9889 else
9890 elfsym->st_value += adjust;
9891 return TRUE;
9892}
9893
9894/* Finish up dynamic symbol handling. We set the contents of various
9895 dynamic sections here. */
9896
9897static bfd_boolean
9898ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
9899 struct bfd_link_info *info,
9900 struct elf_link_hash_entry *h,
9901 Elf_Internal_Sym *sym)
9902{
9903 struct ppc_link_hash_table *htab;
9904 bfd *dynobj;
9905 struct plt_entry *ent;
9906 Elf_Internal_Rela rela;
9907 bfd_byte *loc;
9908
9909 htab = ppc_hash_table (info);
9910 dynobj = htab->elf.dynobj;
9911
9912 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
9913 if (ent->plt.offset != (bfd_vma) -1)
9914 {
9915 /* This symbol has an entry in the procedure linkage
9916 table. Set it up. */
9917
9918 if (htab->plt == NULL
9919 || htab->relplt == NULL
9920 || htab->glink == NULL)
9921 abort ();
9922
9923 /* Create a JMP_SLOT reloc to inform the dynamic linker to
9924 fill in the PLT entry. */
9925 rela.r_offset = (htab->plt->output_section->vma
9926 + htab->plt->output_offset
9927 + ent->plt.offset);
9928 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
9929 rela.r_addend = ent->addend;
9930
9931 loc = htab->relplt->contents;
9932 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
9933 * sizeof (Elf64_External_Rela));
9934 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9935 }
9936
9937 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
9938 {
9939 Elf_Internal_Rela rela;
9940 bfd_byte *loc;
9941
9942 /* This symbol needs a copy reloc. Set it up. */
9943
9944 if (h->dynindx == -1
9945 || (h->root.type != bfd_link_hash_defined
9946 && h->root.type != bfd_link_hash_defweak)
9947 || htab->relbss == NULL)
9948 abort ();
9949
9950 rela.r_offset = (h->root.u.def.value
9951 + h->root.u.def.section->output_section->vma
9952 + h->root.u.def.section->output_offset);
9953 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
9954 rela.r_addend = 0;
9955 loc = htab->relbss->contents;
9956 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
9957 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9958 }
9959
9960 /* Mark some specially defined symbols as absolute. */
9961 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
9962 sym->st_shndx = SHN_ABS;
9963
9964 return TRUE;
9965}
9966
9967/* Used to decide how to sort relocs in an optimal manner for the
9968 dynamic linker, before writing them out. */
9969
9970static enum elf_reloc_type_class
9971ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
9972{
9973 enum elf_ppc64_reloc_type r_type;
9974
9975 r_type = ELF64_R_TYPE (rela->r_info);
9976 switch (r_type)
9977 {
9978 case R_PPC64_RELATIVE:
9979 return reloc_class_relative;
9980 case R_PPC64_JMP_SLOT:
9981 return reloc_class_plt;
9982 case R_PPC64_COPY:
9983 return reloc_class_copy;
9984 default:
9985 return reloc_class_normal;
9986 }
9987}
9988
9989/* Finish up the dynamic sections. */
9990
9991static bfd_boolean
9992ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
9993 struct bfd_link_info *info)
9994{
9995 struct ppc_link_hash_table *htab;
9996 bfd *dynobj;
9997 asection *sdyn;
9998
9999 htab = ppc_hash_table (info);
10000 dynobj = htab->elf.dynobj;
10001 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10002
10003 if (htab->elf.dynamic_sections_created)
10004 {
10005 Elf64_External_Dyn *dyncon, *dynconend;
10006
10007 if (sdyn == NULL || htab->got == NULL)
10008 abort ();
10009
10010 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10011 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10012 for (; dyncon < dynconend; dyncon++)
10013 {
10014 Elf_Internal_Dyn dyn;
10015 asection *s;
10016
10017 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10018
10019 switch (dyn.d_tag)
10020 {
10021 default:
10022 continue;
10023
10024 case DT_PPC64_GLINK:
10025 s = htab->glink;
10026 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10027 /* We stupidly defined DT_PPC64_GLINK to be the start
10028 of glink rather than the first entry point, which is
10029 what ld.so needs, and now have a bigger stub to
10030 support automatic multiple TOCs. */
10031 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10032 break;
10033
10034 case DT_PPC64_OPD:
10035 s = bfd_get_section_by_name (output_bfd, ".opd");
10036 if (s == NULL)
10037 continue;
10038 dyn.d_un.d_ptr = s->vma;
10039 break;
10040
10041 case DT_PPC64_OPDSZ:
10042 s = bfd_get_section_by_name (output_bfd, ".opd");
10043 if (s == NULL)
10044 continue;
10045 dyn.d_un.d_val = s->size;
10046 break;
10047
10048 case DT_PLTGOT:
10049 s = htab->plt;
10050 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10051 break;
10052
10053 case DT_JMPREL:
10054 s = htab->relplt;
10055 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10056 break;
10057
10058 case DT_PLTRELSZ:
10059 dyn.d_un.d_val = htab->relplt->size;
10060 break;
10061
10062 case DT_RELASZ:
10063 /* Don't count procedure linkage table relocs in the
10064 overall reloc count. */
10065 s = htab->relplt;
10066 if (s == NULL)
10067 continue;
10068 dyn.d_un.d_val -= s->size;
10069 break;
10070
10071 case DT_RELA:
10072 /* We may not be using the standard ELF linker script.
10073 If .rela.plt is the first .rela section, we adjust
10074 DT_RELA to not include it. */
10075 s = htab->relplt;
10076 if (s == NULL)
10077 continue;
10078 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10079 continue;
10080 dyn.d_un.d_ptr += s->size;
10081 break;
10082 }
10083
10084 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10085 }
10086 }
10087
10088 if (htab->got != NULL && htab->got->size != 0)
10089 {
10090 /* Fill in the first entry in the global offset table.
10091 We use it to hold the link-time TOCbase. */
10092 bfd_put_64 (output_bfd,
10093 elf_gp (output_bfd) + TOC_BASE_OFF,
10094 htab->got->contents);
10095
10096 /* Set .got entry size. */
10097 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10098 }
10099
10100 if (htab->plt != NULL && htab->plt->size != 0)
10101 {
10102 /* Set .plt entry size. */
10103 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10104 = PLT_ENTRY_SIZE;
10105 }
10106
10107 /* We need to handle writing out multiple GOT sections ourselves,
10108 since we didn't add them to DYNOBJ. */
10109 while ((dynobj = dynobj->link_next) != NULL)
10110 {
10111 asection *s;
10112 s = ppc64_elf_tdata (dynobj)->got;
10113 if (s != NULL
10114 && s->size != 0
10115 && s->output_section != bfd_abs_section_ptr
10116 && !bfd_set_section_contents (output_bfd, s->output_section,
10117 s->contents, s->output_offset,
10118 s->size))
10119 return FALSE;
10120 s = ppc64_elf_tdata (dynobj)->relgot;
10121 if (s != NULL
10122 && s->size != 0
10123 && s->output_section != bfd_abs_section_ptr
10124 && !bfd_set_section_contents (output_bfd, s->output_section,
10125 s->contents, s->output_offset,
10126 s->size))
10127 return FALSE;
10128 }
10129
10130 return TRUE;
10131}
10132
10133#include "elf64-target.h"
This page took 0.064812 seconds and 4 git commands to generate.