Fix regression introduced in "break *<EXPR>" by explicit location patches.
[deliverable/binutils-gdb.git] / bfd / elflink.c
... / ...
CommitLineData
1/* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31
32/* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35struct elf_info_failed
36{
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39};
40
41/* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44struct elf_find_verdep_info
45{
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52};
53
54static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57asection *
58_bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61{
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96}
97
98/* Define a symbol in a dynamic linkage section. */
99
100struct elf_link_hash_entry *
101_bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105{
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136}
137
138bfd_boolean
139_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140{
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197}
198\f
199/* Create a strtab to hold the dynamic symbol names. */
200static bfd_boolean
201_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202{
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216}
217
218/* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225bfd_boolean
226_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227{
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info) && !info->nointerp)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341}
342
343/* Create dynamic sections when linking against a dynamic object. */
344
345bfd_boolean
346_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347{
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435}
436\f
437/* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445bfd_boolean
446bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448{
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511}
512\f
513/* Mark a symbol dynamic. */
514
515static void
516bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519{
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || (sym != NULL
529 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
530 || (d != NULL
531 && h->root.type == bfd_link_hash_new
532 && (*d->match) (&d->head, NULL, h->root.root.string)))
533 h->dynamic = 1;
534}
535
536/* Record an assignment to a symbol made by a linker script. We need
537 this in case some dynamic object refers to this symbol. */
538
539bfd_boolean
540bfd_elf_record_link_assignment (bfd *output_bfd,
541 struct bfd_link_info *info,
542 const char *name,
543 bfd_boolean provide,
544 bfd_boolean hidden)
545{
546 struct elf_link_hash_entry *h, *hv;
547 struct elf_link_hash_table *htab;
548 const struct elf_backend_data *bed;
549
550 if (!is_elf_hash_table (info->hash))
551 return TRUE;
552
553 htab = elf_hash_table (info);
554 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
555 if (h == NULL)
556 return provide;
557
558 switch (h->root.type)
559 {
560 case bfd_link_hash_defined:
561 case bfd_link_hash_defweak:
562 case bfd_link_hash_common:
563 break;
564 case bfd_link_hash_undefweak:
565 case bfd_link_hash_undefined:
566 /* Since we're defining the symbol, don't let it seem to have not
567 been defined. record_dynamic_symbol and size_dynamic_sections
568 may depend on this. */
569 h->root.type = bfd_link_hash_new;
570 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
571 bfd_link_repair_undef_list (&htab->root);
572 break;
573 case bfd_link_hash_new:
574 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
575 h->non_elf = 0;
576 break;
577 case bfd_link_hash_indirect:
578 /* We had a versioned symbol in a dynamic library. We make the
579 the versioned symbol point to this one. */
580 bed = get_elf_backend_data (output_bfd);
581 hv = h;
582 while (hv->root.type == bfd_link_hash_indirect
583 || hv->root.type == bfd_link_hash_warning)
584 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
585 /* We don't need to update h->root.u since linker will set them
586 later. */
587 h->root.type = bfd_link_hash_undefined;
588 hv->root.type = bfd_link_hash_indirect;
589 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
591 break;
592 case bfd_link_hash_warning:
593 abort ();
594 break;
595 }
596
597 /* If this symbol is being provided by the linker script, and it is
598 currently defined by a dynamic object, but not by a regular
599 object, then mark it as undefined so that the generic linker will
600 force the correct value. */
601 if (provide
602 && h->def_dynamic
603 && !h->def_regular)
604 h->root.type = bfd_link_hash_undefined;
605
606 /* If this symbol is not being provided by the linker script, and it is
607 currently defined by a dynamic object, but not by a regular object,
608 then clear out any version information because the symbol will not be
609 associated with the dynamic object any more. */
610 if (!provide
611 && h->def_dynamic
612 && !h->def_regular)
613 h->verinfo.verdef = NULL;
614
615 h->def_regular = 1;
616
617 if (hidden)
618 {
619 bed = get_elf_backend_data (output_bfd);
620 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
621 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
622 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
623 }
624
625 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
626 and executables. */
627 if (!bfd_link_relocatable (info)
628 && h->dynindx != -1
629 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
630 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
631 h->forced_local = 1;
632
633 if ((h->def_dynamic
634 || h->ref_dynamic
635 || bfd_link_pic (info)
636 || (bfd_link_pde (info)
637 && elf_hash_table (info)->is_relocatable_executable))
638 && h->dynindx == -1)
639 {
640 if (! bfd_elf_link_record_dynamic_symbol (info, h))
641 return FALSE;
642
643 /* If this is a weak defined symbol, and we know a corresponding
644 real symbol from the same dynamic object, make sure the real
645 symbol is also made into a dynamic symbol. */
646 if (h->u.weakdef != NULL
647 && h->u.weakdef->dynindx == -1)
648 {
649 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
650 return FALSE;
651 }
652 }
653
654 return TRUE;
655}
656
657/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
658 success, and 2 on a failure caused by attempting to record a symbol
659 in a discarded section, eg. a discarded link-once section symbol. */
660
661int
662bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
663 bfd *input_bfd,
664 long input_indx)
665{
666 bfd_size_type amt;
667 struct elf_link_local_dynamic_entry *entry;
668 struct elf_link_hash_table *eht;
669 struct elf_strtab_hash *dynstr;
670 unsigned long dynstr_index;
671 char *name;
672 Elf_External_Sym_Shndx eshndx;
673 char esym[sizeof (Elf64_External_Sym)];
674
675 if (! is_elf_hash_table (info->hash))
676 return 0;
677
678 /* See if the entry exists already. */
679 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
680 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
681 return 1;
682
683 amt = sizeof (*entry);
684 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
685 if (entry == NULL)
686 return 0;
687
688 /* Go find the symbol, so that we can find it's name. */
689 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
690 1, input_indx, &entry->isym, esym, &eshndx))
691 {
692 bfd_release (input_bfd, entry);
693 return 0;
694 }
695
696 if (entry->isym.st_shndx != SHN_UNDEF
697 && entry->isym.st_shndx < SHN_LORESERVE)
698 {
699 asection *s;
700
701 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
702 if (s == NULL || bfd_is_abs_section (s->output_section))
703 {
704 /* We can still bfd_release here as nothing has done another
705 bfd_alloc. We can't do this later in this function. */
706 bfd_release (input_bfd, entry);
707 return 2;
708 }
709 }
710
711 name = (bfd_elf_string_from_elf_section
712 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
713 entry->isym.st_name));
714
715 dynstr = elf_hash_table (info)->dynstr;
716 if (dynstr == NULL)
717 {
718 /* Create a strtab to hold the dynamic symbol names. */
719 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
720 if (dynstr == NULL)
721 return 0;
722 }
723
724 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
725 if (dynstr_index == (unsigned long) -1)
726 return 0;
727 entry->isym.st_name = dynstr_index;
728
729 eht = elf_hash_table (info);
730
731 entry->next = eht->dynlocal;
732 eht->dynlocal = entry;
733 entry->input_bfd = input_bfd;
734 entry->input_indx = input_indx;
735 eht->dynsymcount++;
736
737 /* Whatever binding the symbol had before, it's now local. */
738 entry->isym.st_info
739 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
740
741 /* The dynindx will be set at the end of size_dynamic_sections. */
742
743 return 1;
744}
745
746/* Return the dynindex of a local dynamic symbol. */
747
748long
749_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
750 bfd *input_bfd,
751 long input_indx)
752{
753 struct elf_link_local_dynamic_entry *e;
754
755 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
756 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
757 return e->dynindx;
758 return -1;
759}
760
761/* This function is used to renumber the dynamic symbols, if some of
762 them are removed because they are marked as local. This is called
763 via elf_link_hash_traverse. */
764
765static bfd_boolean
766elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
767 void *data)
768{
769 size_t *count = (size_t *) data;
770
771 if (h->forced_local)
772 return TRUE;
773
774 if (h->dynindx != -1)
775 h->dynindx = ++(*count);
776
777 return TRUE;
778}
779
780
781/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
782 STB_LOCAL binding. */
783
784static bfd_boolean
785elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
786 void *data)
787{
788 size_t *count = (size_t *) data;
789
790 if (!h->forced_local)
791 return TRUE;
792
793 if (h->dynindx != -1)
794 h->dynindx = ++(*count);
795
796 return TRUE;
797}
798
799/* Return true if the dynamic symbol for a given section should be
800 omitted when creating a shared library. */
801bfd_boolean
802_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
803 struct bfd_link_info *info,
804 asection *p)
805{
806 struct elf_link_hash_table *htab;
807 asection *ip;
808
809 switch (elf_section_data (p)->this_hdr.sh_type)
810 {
811 case SHT_PROGBITS:
812 case SHT_NOBITS:
813 /* If sh_type is yet undecided, assume it could be
814 SHT_PROGBITS/SHT_NOBITS. */
815 case SHT_NULL:
816 htab = elf_hash_table (info);
817 if (p == htab->tls_sec)
818 return FALSE;
819
820 if (htab->text_index_section != NULL)
821 return p != htab->text_index_section && p != htab->data_index_section;
822
823 return (htab->dynobj != NULL
824 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
825 && ip->output_section == p);
826
827 /* There shouldn't be section relative relocations
828 against any other section. */
829 default:
830 return TRUE;
831 }
832}
833
834/* Assign dynsym indices. In a shared library we generate a section
835 symbol for each output section, which come first. Next come symbols
836 which have been forced to local binding. Then all of the back-end
837 allocated local dynamic syms, followed by the rest of the global
838 symbols. */
839
840static unsigned long
841_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
842 struct bfd_link_info *info,
843 unsigned long *section_sym_count)
844{
845 unsigned long dynsymcount = 0;
846
847 if (bfd_link_pic (info)
848 || elf_hash_table (info)->is_relocatable_executable)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
851 asection *p;
852 for (p = output_bfd->sections; p ; p = p->next)
853 if ((p->flags & SEC_EXCLUDE) == 0
854 && (p->flags & SEC_ALLOC) != 0
855 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
856 elf_section_data (p)->dynindx = ++dynsymcount;
857 else
858 elf_section_data (p)->dynindx = 0;
859 }
860 *section_sym_count = dynsymcount;
861
862 elf_link_hash_traverse (elf_hash_table (info),
863 elf_link_renumber_local_hash_table_dynsyms,
864 &dynsymcount);
865
866 if (elf_hash_table (info)->dynlocal)
867 {
868 struct elf_link_local_dynamic_entry *p;
869 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
870 p->dynindx = ++dynsymcount;
871 }
872
873 elf_link_hash_traverse (elf_hash_table (info),
874 elf_link_renumber_hash_table_dynsyms,
875 &dynsymcount);
876
877 /* There is an unused NULL entry at the head of the table which
878 we must account for in our count. Unless there weren't any
879 symbols, which means we'll have no table at all. */
880 if (dynsymcount != 0)
881 ++dynsymcount;
882
883 elf_hash_table (info)->dynsymcount = dynsymcount;
884 return dynsymcount;
885}
886
887/* Merge st_other field. */
888
889static void
890elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
891 const Elf_Internal_Sym *isym, asection *sec,
892 bfd_boolean definition, bfd_boolean dynamic)
893{
894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
895
896 /* If st_other has a processor-specific meaning, specific
897 code might be needed here. */
898 if (bed->elf_backend_merge_symbol_attribute)
899 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
900 dynamic);
901
902 if (!dynamic)
903 {
904 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
905 unsigned hvis = ELF_ST_VISIBILITY (h->other);
906
907 /* Keep the most constraining visibility. Leave the remainder
908 of the st_other field to elf_backend_merge_symbol_attribute. */
909 if (symvis - 1 < hvis - 1)
910 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
911 }
912 else if (definition
913 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
914 && (sec->flags & SEC_READONLY) == 0)
915 h->protected_def = 1;
916}
917
918/* This function is called when we want to merge a new symbol with an
919 existing symbol. It handles the various cases which arise when we
920 find a definition in a dynamic object, or when there is already a
921 definition in a dynamic object. The new symbol is described by
922 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
923 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
924 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
925 of an old common symbol. We set OVERRIDE if the old symbol is
926 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
927 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
928 to change. By OK to change, we mean that we shouldn't warn if the
929 type or size does change. */
930
931static bfd_boolean
932_bfd_elf_merge_symbol (bfd *abfd,
933 struct bfd_link_info *info,
934 const char *name,
935 Elf_Internal_Sym *sym,
936 asection **psec,
937 bfd_vma *pvalue,
938 struct elf_link_hash_entry **sym_hash,
939 bfd **poldbfd,
940 bfd_boolean *pold_weak,
941 unsigned int *pold_alignment,
942 bfd_boolean *skip,
943 bfd_boolean *override,
944 bfd_boolean *type_change_ok,
945 bfd_boolean *size_change_ok,
946 bfd_boolean *matched)
947{
948 asection *sec, *oldsec;
949 struct elf_link_hash_entry *h;
950 struct elf_link_hash_entry *hi;
951 struct elf_link_hash_entry *flip;
952 int bind;
953 bfd *oldbfd;
954 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
955 bfd_boolean newweak, oldweak, newfunc, oldfunc;
956 const struct elf_backend_data *bed;
957 char *new_version;
958
959 *skip = FALSE;
960 *override = FALSE;
961
962 sec = *psec;
963 bind = ELF_ST_BIND (sym->st_info);
964
965 if (! bfd_is_und_section (sec))
966 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
967 else
968 h = ((struct elf_link_hash_entry *)
969 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
970 if (h == NULL)
971 return FALSE;
972 *sym_hash = h;
973
974 bed = get_elf_backend_data (abfd);
975
976 /* NEW_VERSION is the symbol version of the new symbol. */
977 if (h->versioned != unversioned)
978 {
979 /* Symbol version is unknown or versioned. */
980 new_version = strrchr (name, ELF_VER_CHR);
981 if (new_version)
982 {
983 if (h->versioned == unknown)
984 {
985 if (new_version > name && new_version[-1] != ELF_VER_CHR)
986 h->versioned = versioned_hidden;
987 else
988 h->versioned = versioned;
989 }
990 new_version += 1;
991 if (new_version[0] == '\0')
992 new_version = NULL;
993 }
994 else
995 h->versioned = unversioned;
996 }
997 else
998 new_version = NULL;
999
1000 /* For merging, we only care about real symbols. But we need to make
1001 sure that indirect symbol dynamic flags are updated. */
1002 hi = h;
1003 while (h->root.type == bfd_link_hash_indirect
1004 || h->root.type == bfd_link_hash_warning)
1005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1006
1007 if (!*matched)
1008 {
1009 if (hi == h || h->root.type == bfd_link_hash_new)
1010 *matched = TRUE;
1011 else
1012 {
1013 /* OLD_HIDDEN is true if the existing symbol is only visible
1014 to the symbol with the same symbol version. NEW_HIDDEN is
1015 true if the new symbol is only visible to the symbol with
1016 the same symbol version. */
1017 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1018 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1019 if (!old_hidden && !new_hidden)
1020 /* The new symbol matches the existing symbol if both
1021 aren't hidden. */
1022 *matched = TRUE;
1023 else
1024 {
1025 /* OLD_VERSION is the symbol version of the existing
1026 symbol. */
1027 char *old_version;
1028
1029 if (h->versioned >= versioned)
1030 old_version = strrchr (h->root.root.string,
1031 ELF_VER_CHR) + 1;
1032 else
1033 old_version = NULL;
1034
1035 /* The new symbol matches the existing symbol if they
1036 have the same symbol version. */
1037 *matched = (old_version == new_version
1038 || (old_version != NULL
1039 && new_version != NULL
1040 && strcmp (old_version, new_version) == 0));
1041 }
1042 }
1043 }
1044
1045 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1046 existing symbol. */
1047
1048 oldbfd = NULL;
1049 oldsec = NULL;
1050 switch (h->root.type)
1051 {
1052 default:
1053 break;
1054
1055 case bfd_link_hash_undefined:
1056 case bfd_link_hash_undefweak:
1057 oldbfd = h->root.u.undef.abfd;
1058 break;
1059
1060 case bfd_link_hash_defined:
1061 case bfd_link_hash_defweak:
1062 oldbfd = h->root.u.def.section->owner;
1063 oldsec = h->root.u.def.section;
1064 break;
1065
1066 case bfd_link_hash_common:
1067 oldbfd = h->root.u.c.p->section->owner;
1068 oldsec = h->root.u.c.p->section;
1069 if (pold_alignment)
1070 *pold_alignment = h->root.u.c.p->alignment_power;
1071 break;
1072 }
1073 if (poldbfd && *poldbfd == NULL)
1074 *poldbfd = oldbfd;
1075
1076 /* Differentiate strong and weak symbols. */
1077 newweak = bind == STB_WEAK;
1078 oldweak = (h->root.type == bfd_link_hash_defweak
1079 || h->root.type == bfd_link_hash_undefweak);
1080 if (pold_weak)
1081 *pold_weak = oldweak;
1082
1083 /* This code is for coping with dynamic objects, and is only useful
1084 if we are doing an ELF link. */
1085 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1086 return TRUE;
1087
1088 /* We have to check it for every instance since the first few may be
1089 references and not all compilers emit symbol type for undefined
1090 symbols. */
1091 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1092
1093 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1094 respectively, is from a dynamic object. */
1095
1096 newdyn = (abfd->flags & DYNAMIC) != 0;
1097
1098 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1099 syms and defined syms in dynamic libraries respectively.
1100 ref_dynamic on the other hand can be set for a symbol defined in
1101 a dynamic library, and def_dynamic may not be set; When the
1102 definition in a dynamic lib is overridden by a definition in the
1103 executable use of the symbol in the dynamic lib becomes a
1104 reference to the executable symbol. */
1105 if (newdyn)
1106 {
1107 if (bfd_is_und_section (sec))
1108 {
1109 if (bind != STB_WEAK)
1110 {
1111 h->ref_dynamic_nonweak = 1;
1112 hi->ref_dynamic_nonweak = 1;
1113 }
1114 }
1115 else
1116 {
1117 /* Update the existing symbol only if they match. */
1118 if (*matched)
1119 h->dynamic_def = 1;
1120 hi->dynamic_def = 1;
1121 }
1122 }
1123
1124 /* If we just created the symbol, mark it as being an ELF symbol.
1125 Other than that, there is nothing to do--there is no merge issue
1126 with a newly defined symbol--so we just return. */
1127
1128 if (h->root.type == bfd_link_hash_new)
1129 {
1130 h->non_elf = 0;
1131 return TRUE;
1132 }
1133
1134 /* In cases involving weak versioned symbols, we may wind up trying
1135 to merge a symbol with itself. Catch that here, to avoid the
1136 confusion that results if we try to override a symbol with
1137 itself. The additional tests catch cases like
1138 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1139 dynamic object, which we do want to handle here. */
1140 if (abfd == oldbfd
1141 && (newweak || oldweak)
1142 && ((abfd->flags & DYNAMIC) == 0
1143 || !h->def_regular))
1144 return TRUE;
1145
1146 olddyn = FALSE;
1147 if (oldbfd != NULL)
1148 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1149 else if (oldsec != NULL)
1150 {
1151 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1152 indices used by MIPS ELF. */
1153 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1154 }
1155
1156 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1157 respectively, appear to be a definition rather than reference. */
1158
1159 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1160
1161 olddef = (h->root.type != bfd_link_hash_undefined
1162 && h->root.type != bfd_link_hash_undefweak
1163 && h->root.type != bfd_link_hash_common);
1164
1165 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1166 respectively, appear to be a function. */
1167
1168 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1169 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1170
1171 oldfunc = (h->type != STT_NOTYPE
1172 && bed->is_function_type (h->type));
1173
1174 /* When we try to create a default indirect symbol from the dynamic
1175 definition with the default version, we skip it if its type and
1176 the type of existing regular definition mismatch. */
1177 if (pold_alignment == NULL
1178 && newdyn
1179 && newdef
1180 && !olddyn
1181 && (((olddef || h->root.type == bfd_link_hash_common)
1182 && ELF_ST_TYPE (sym->st_info) != h->type
1183 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1184 && h->type != STT_NOTYPE
1185 && !(newfunc && oldfunc))
1186 || (olddef
1187 && ((h->type == STT_GNU_IFUNC)
1188 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1189 {
1190 *skip = TRUE;
1191 return TRUE;
1192 }
1193
1194 /* Check TLS symbols. We don't check undefined symbols introduced
1195 by "ld -u" which have no type (and oldbfd NULL), and we don't
1196 check symbols from plugins because they also have no type. */
1197 if (oldbfd != NULL
1198 && (oldbfd->flags & BFD_PLUGIN) == 0
1199 && (abfd->flags & BFD_PLUGIN) == 0
1200 && ELF_ST_TYPE (sym->st_info) != h->type
1201 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1202 {
1203 bfd *ntbfd, *tbfd;
1204 bfd_boolean ntdef, tdef;
1205 asection *ntsec, *tsec;
1206
1207 if (h->type == STT_TLS)
1208 {
1209 ntbfd = abfd;
1210 ntsec = sec;
1211 ntdef = newdef;
1212 tbfd = oldbfd;
1213 tsec = oldsec;
1214 tdef = olddef;
1215 }
1216 else
1217 {
1218 ntbfd = oldbfd;
1219 ntsec = oldsec;
1220 ntdef = olddef;
1221 tbfd = abfd;
1222 tsec = sec;
1223 tdef = newdef;
1224 }
1225
1226 if (tdef && ntdef)
1227 (*_bfd_error_handler)
1228 (_("%s: TLS definition in %B section %A "
1229 "mismatches non-TLS definition in %B section %A"),
1230 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1231 else if (!tdef && !ntdef)
1232 (*_bfd_error_handler)
1233 (_("%s: TLS reference in %B "
1234 "mismatches non-TLS reference in %B"),
1235 tbfd, ntbfd, h->root.root.string);
1236 else if (tdef)
1237 (*_bfd_error_handler)
1238 (_("%s: TLS definition in %B section %A "
1239 "mismatches non-TLS reference in %B"),
1240 tbfd, tsec, ntbfd, h->root.root.string);
1241 else
1242 (*_bfd_error_handler)
1243 (_("%s: TLS reference in %B "
1244 "mismatches non-TLS definition in %B section %A"),
1245 tbfd, ntbfd, ntsec, h->root.root.string);
1246
1247 bfd_set_error (bfd_error_bad_value);
1248 return FALSE;
1249 }
1250
1251 /* If the old symbol has non-default visibility, we ignore the new
1252 definition from a dynamic object. */
1253 if (newdyn
1254 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1255 && !bfd_is_und_section (sec))
1256 {
1257 *skip = TRUE;
1258 /* Make sure this symbol is dynamic. */
1259 h->ref_dynamic = 1;
1260 hi->ref_dynamic = 1;
1261 /* A protected symbol has external availability. Make sure it is
1262 recorded as dynamic.
1263
1264 FIXME: Should we check type and size for protected symbol? */
1265 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1266 return bfd_elf_link_record_dynamic_symbol (info, h);
1267 else
1268 return TRUE;
1269 }
1270 else if (!newdyn
1271 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1272 && h->def_dynamic)
1273 {
1274 /* If the new symbol with non-default visibility comes from a
1275 relocatable file and the old definition comes from a dynamic
1276 object, we remove the old definition. */
1277 if (hi->root.type == bfd_link_hash_indirect)
1278 {
1279 /* Handle the case where the old dynamic definition is
1280 default versioned. We need to copy the symbol info from
1281 the symbol with default version to the normal one if it
1282 was referenced before. */
1283 if (h->ref_regular)
1284 {
1285 hi->root.type = h->root.type;
1286 h->root.type = bfd_link_hash_indirect;
1287 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1288
1289 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1290 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1291 {
1292 /* If the new symbol is hidden or internal, completely undo
1293 any dynamic link state. */
1294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1295 h->forced_local = 0;
1296 h->ref_dynamic = 0;
1297 }
1298 else
1299 h->ref_dynamic = 1;
1300
1301 h->def_dynamic = 0;
1302 /* FIXME: Should we check type and size for protected symbol? */
1303 h->size = 0;
1304 h->type = 0;
1305
1306 h = hi;
1307 }
1308 else
1309 h = hi;
1310 }
1311
1312 /* If the old symbol was undefined before, then it will still be
1313 on the undefs list. If the new symbol is undefined or
1314 common, we can't make it bfd_link_hash_new here, because new
1315 undefined or common symbols will be added to the undefs list
1316 by _bfd_generic_link_add_one_symbol. Symbols may not be
1317 added twice to the undefs list. Also, if the new symbol is
1318 undefweak then we don't want to lose the strong undef. */
1319 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 {
1321 h->root.type = bfd_link_hash_undefined;
1322 h->root.u.undef.abfd = abfd;
1323 }
1324 else
1325 {
1326 h->root.type = bfd_link_hash_new;
1327 h->root.u.undef.abfd = NULL;
1328 }
1329
1330 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1331 {
1332 /* If the new symbol is hidden or internal, completely undo
1333 any dynamic link state. */
1334 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1335 h->forced_local = 0;
1336 h->ref_dynamic = 0;
1337 }
1338 else
1339 h->ref_dynamic = 1;
1340 h->def_dynamic = 0;
1341 /* FIXME: Should we check type and size for protected symbol? */
1342 h->size = 0;
1343 h->type = 0;
1344 return TRUE;
1345 }
1346
1347 /* If a new weak symbol definition comes from a regular file and the
1348 old symbol comes from a dynamic library, we treat the new one as
1349 strong. Similarly, an old weak symbol definition from a regular
1350 file is treated as strong when the new symbol comes from a dynamic
1351 library. Further, an old weak symbol from a dynamic library is
1352 treated as strong if the new symbol is from a dynamic library.
1353 This reflects the way glibc's ld.so works.
1354
1355 Do this before setting *type_change_ok or *size_change_ok so that
1356 we warn properly when dynamic library symbols are overridden. */
1357
1358 if (newdef && !newdyn && olddyn)
1359 newweak = FALSE;
1360 if (olddef && newdyn)
1361 oldweak = FALSE;
1362
1363 /* Allow changes between different types of function symbol. */
1364 if (newfunc && oldfunc)
1365 *type_change_ok = TRUE;
1366
1367 /* It's OK to change the type if either the existing symbol or the
1368 new symbol is weak. A type change is also OK if the old symbol
1369 is undefined and the new symbol is defined. */
1370
1371 if (oldweak
1372 || newweak
1373 || (newdef
1374 && h->root.type == bfd_link_hash_undefined))
1375 *type_change_ok = TRUE;
1376
1377 /* It's OK to change the size if either the existing symbol or the
1378 new symbol is weak, or if the old symbol is undefined. */
1379
1380 if (*type_change_ok
1381 || h->root.type == bfd_link_hash_undefined)
1382 *size_change_ok = TRUE;
1383
1384 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1385 symbol, respectively, appears to be a common symbol in a dynamic
1386 object. If a symbol appears in an uninitialized section, and is
1387 not weak, and is not a function, then it may be a common symbol
1388 which was resolved when the dynamic object was created. We want
1389 to treat such symbols specially, because they raise special
1390 considerations when setting the symbol size: if the symbol
1391 appears as a common symbol in a regular object, and the size in
1392 the regular object is larger, we must make sure that we use the
1393 larger size. This problematic case can always be avoided in C,
1394 but it must be handled correctly when using Fortran shared
1395 libraries.
1396
1397 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1398 likewise for OLDDYNCOMMON and OLDDEF.
1399
1400 Note that this test is just a heuristic, and that it is quite
1401 possible to have an uninitialized symbol in a shared object which
1402 is really a definition, rather than a common symbol. This could
1403 lead to some minor confusion when the symbol really is a common
1404 symbol in some regular object. However, I think it will be
1405 harmless. */
1406
1407 if (newdyn
1408 && newdef
1409 && !newweak
1410 && (sec->flags & SEC_ALLOC) != 0
1411 && (sec->flags & SEC_LOAD) == 0
1412 && sym->st_size > 0
1413 && !newfunc)
1414 newdyncommon = TRUE;
1415 else
1416 newdyncommon = FALSE;
1417
1418 if (olddyn
1419 && olddef
1420 && h->root.type == bfd_link_hash_defined
1421 && h->def_dynamic
1422 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1423 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1424 && h->size > 0
1425 && !oldfunc)
1426 olddyncommon = TRUE;
1427 else
1428 olddyncommon = FALSE;
1429
1430 /* We now know everything about the old and new symbols. We ask the
1431 backend to check if we can merge them. */
1432 if (bed->merge_symbol != NULL)
1433 {
1434 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1435 return FALSE;
1436 sec = *psec;
1437 }
1438
1439 /* If both the old and the new symbols look like common symbols in a
1440 dynamic object, set the size of the symbol to the larger of the
1441 two. */
1442
1443 if (olddyncommon
1444 && newdyncommon
1445 && sym->st_size != h->size)
1446 {
1447 /* Since we think we have two common symbols, issue a multiple
1448 common warning if desired. Note that we only warn if the
1449 size is different. If the size is the same, we simply let
1450 the old symbol override the new one as normally happens with
1451 symbols defined in dynamic objects. */
1452
1453 if (! ((*info->callbacks->multiple_common)
1454 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1455 return FALSE;
1456
1457 if (sym->st_size > h->size)
1458 h->size = sym->st_size;
1459
1460 *size_change_ok = TRUE;
1461 }
1462
1463 /* If we are looking at a dynamic object, and we have found a
1464 definition, we need to see if the symbol was already defined by
1465 some other object. If so, we want to use the existing
1466 definition, and we do not want to report a multiple symbol
1467 definition error; we do this by clobbering *PSEC to be
1468 bfd_und_section_ptr.
1469
1470 We treat a common symbol as a definition if the symbol in the
1471 shared library is a function, since common symbols always
1472 represent variables; this can cause confusion in principle, but
1473 any such confusion would seem to indicate an erroneous program or
1474 shared library. We also permit a common symbol in a regular
1475 object to override a weak symbol in a shared object. */
1476
1477 if (newdyn
1478 && newdef
1479 && (olddef
1480 || (h->root.type == bfd_link_hash_common
1481 && (newweak || newfunc))))
1482 {
1483 *override = TRUE;
1484 newdef = FALSE;
1485 newdyncommon = FALSE;
1486
1487 *psec = sec = bfd_und_section_ptr;
1488 *size_change_ok = TRUE;
1489
1490 /* If we get here when the old symbol is a common symbol, then
1491 we are explicitly letting it override a weak symbol or
1492 function in a dynamic object, and we don't want to warn about
1493 a type change. If the old symbol is a defined symbol, a type
1494 change warning may still be appropriate. */
1495
1496 if (h->root.type == bfd_link_hash_common)
1497 *type_change_ok = TRUE;
1498 }
1499
1500 /* Handle the special case of an old common symbol merging with a
1501 new symbol which looks like a common symbol in a shared object.
1502 We change *PSEC and *PVALUE to make the new symbol look like a
1503 common symbol, and let _bfd_generic_link_add_one_symbol do the
1504 right thing. */
1505
1506 if (newdyncommon
1507 && h->root.type == bfd_link_hash_common)
1508 {
1509 *override = TRUE;
1510 newdef = FALSE;
1511 newdyncommon = FALSE;
1512 *pvalue = sym->st_size;
1513 *psec = sec = bed->common_section (oldsec);
1514 *size_change_ok = TRUE;
1515 }
1516
1517 /* Skip weak definitions of symbols that are already defined. */
1518 if (newdef && olddef && newweak)
1519 {
1520 /* Don't skip new non-IR weak syms. */
1521 if (!(oldbfd != NULL
1522 && (oldbfd->flags & BFD_PLUGIN) != 0
1523 && (abfd->flags & BFD_PLUGIN) == 0))
1524 {
1525 newdef = FALSE;
1526 *skip = TRUE;
1527 }
1528
1529 /* Merge st_other. If the symbol already has a dynamic index,
1530 but visibility says it should not be visible, turn it into a
1531 local symbol. */
1532 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1533 if (h->dynindx != -1)
1534 switch (ELF_ST_VISIBILITY (h->other))
1535 {
1536 case STV_INTERNAL:
1537 case STV_HIDDEN:
1538 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1539 break;
1540 }
1541 }
1542
1543 /* If the old symbol is from a dynamic object, and the new symbol is
1544 a definition which is not from a dynamic object, then the new
1545 symbol overrides the old symbol. Symbols from regular files
1546 always take precedence over symbols from dynamic objects, even if
1547 they are defined after the dynamic object in the link.
1548
1549 As above, we again permit a common symbol in a regular object to
1550 override a definition in a shared object if the shared object
1551 symbol is a function or is weak. */
1552
1553 flip = NULL;
1554 if (!newdyn
1555 && (newdef
1556 || (bfd_is_com_section (sec)
1557 && (oldweak || oldfunc)))
1558 && olddyn
1559 && olddef
1560 && h->def_dynamic)
1561 {
1562 /* Change the hash table entry to undefined, and let
1563 _bfd_generic_link_add_one_symbol do the right thing with the
1564 new definition. */
1565
1566 h->root.type = bfd_link_hash_undefined;
1567 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569
1570 olddef = FALSE;
1571 olddyncommon = FALSE;
1572
1573 /* We again permit a type change when a common symbol may be
1574 overriding a function. */
1575
1576 if (bfd_is_com_section (sec))
1577 {
1578 if (oldfunc)
1579 {
1580 /* If a common symbol overrides a function, make sure
1581 that it isn't defined dynamically nor has type
1582 function. */
1583 h->def_dynamic = 0;
1584 h->type = STT_NOTYPE;
1585 }
1586 *type_change_ok = TRUE;
1587 }
1588
1589 if (hi->root.type == bfd_link_hash_indirect)
1590 flip = hi;
1591 else
1592 /* This union may have been set to be non-NULL when this symbol
1593 was seen in a dynamic object. We must force the union to be
1594 NULL, so that it is correct for a regular symbol. */
1595 h->verinfo.vertree = NULL;
1596 }
1597
1598 /* Handle the special case of a new common symbol merging with an
1599 old symbol that looks like it might be a common symbol defined in
1600 a shared object. Note that we have already handled the case in
1601 which a new common symbol should simply override the definition
1602 in the shared library. */
1603
1604 if (! newdyn
1605 && bfd_is_com_section (sec)
1606 && olddyncommon)
1607 {
1608 /* It would be best if we could set the hash table entry to a
1609 common symbol, but we don't know what to use for the section
1610 or the alignment. */
1611 if (! ((*info->callbacks->multiple_common)
1612 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1613 return FALSE;
1614
1615 /* If the presumed common symbol in the dynamic object is
1616 larger, pretend that the new symbol has its size. */
1617
1618 if (h->size > *pvalue)
1619 *pvalue = h->size;
1620
1621 /* We need to remember the alignment required by the symbol
1622 in the dynamic object. */
1623 BFD_ASSERT (pold_alignment);
1624 *pold_alignment = h->root.u.def.section->alignment_power;
1625
1626 olddef = FALSE;
1627 olddyncommon = FALSE;
1628
1629 h->root.type = bfd_link_hash_undefined;
1630 h->root.u.undef.abfd = h->root.u.def.section->owner;
1631
1632 *size_change_ok = TRUE;
1633 *type_change_ok = TRUE;
1634
1635 if (hi->root.type == bfd_link_hash_indirect)
1636 flip = hi;
1637 else
1638 h->verinfo.vertree = NULL;
1639 }
1640
1641 if (flip != NULL)
1642 {
1643 /* Handle the case where we had a versioned symbol in a dynamic
1644 library and now find a definition in a normal object. In this
1645 case, we make the versioned symbol point to the normal one. */
1646 flip->root.type = h->root.type;
1647 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1650 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1651 if (h->def_dynamic)
1652 {
1653 h->def_dynamic = 0;
1654 flip->ref_dynamic = 1;
1655 }
1656 }
1657
1658 return TRUE;
1659}
1660
1661/* This function is called to create an indirect symbol from the
1662 default for the symbol with the default version if needed. The
1663 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1664 set DYNSYM if the new indirect symbol is dynamic. */
1665
1666static bfd_boolean
1667_bfd_elf_add_default_symbol (bfd *abfd,
1668 struct bfd_link_info *info,
1669 struct elf_link_hash_entry *h,
1670 const char *name,
1671 Elf_Internal_Sym *sym,
1672 asection *sec,
1673 bfd_vma value,
1674 bfd **poldbfd,
1675 bfd_boolean *dynsym)
1676{
1677 bfd_boolean type_change_ok;
1678 bfd_boolean size_change_ok;
1679 bfd_boolean skip;
1680 char *shortname;
1681 struct elf_link_hash_entry *hi;
1682 struct bfd_link_hash_entry *bh;
1683 const struct elf_backend_data *bed;
1684 bfd_boolean collect;
1685 bfd_boolean dynamic;
1686 bfd_boolean override;
1687 char *p;
1688 size_t len, shortlen;
1689 asection *tmp_sec;
1690 bfd_boolean matched;
1691
1692 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1693 return TRUE;
1694
1695 /* If this symbol has a version, and it is the default version, we
1696 create an indirect symbol from the default name to the fully
1697 decorated name. This will cause external references which do not
1698 specify a version to be bound to this version of the symbol. */
1699 p = strchr (name, ELF_VER_CHR);
1700 if (h->versioned == unknown)
1701 {
1702 if (p == NULL)
1703 {
1704 h->versioned = unversioned;
1705 return TRUE;
1706 }
1707 else
1708 {
1709 if (p[1] != ELF_VER_CHR)
1710 {
1711 h->versioned = versioned_hidden;
1712 return TRUE;
1713 }
1714 else
1715 h->versioned = versioned;
1716 }
1717 }
1718 else
1719 {
1720 /* PR ld/19073: We may see an unversioned definition after the
1721 default version. */
1722 if (p == NULL)
1723 return TRUE;
1724 }
1725
1726 bed = get_elf_backend_data (abfd);
1727 collect = bed->collect;
1728 dynamic = (abfd->flags & DYNAMIC) != 0;
1729
1730 shortlen = p - name;
1731 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1732 if (shortname == NULL)
1733 return FALSE;
1734 memcpy (shortname, name, shortlen);
1735 shortname[shortlen] = '\0';
1736
1737 /* We are going to create a new symbol. Merge it with any existing
1738 symbol with this name. For the purposes of the merge, act as
1739 though we were defining the symbol we just defined, although we
1740 actually going to define an indirect symbol. */
1741 type_change_ok = FALSE;
1742 size_change_ok = FALSE;
1743 matched = TRUE;
1744 tmp_sec = sec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1746 &hi, poldbfd, NULL, NULL, &skip, &override,
1747 &type_change_ok, &size_change_ok, &matched))
1748 return FALSE;
1749
1750 if (skip)
1751 goto nondefault;
1752
1753 if (! override)
1754 {
1755 /* Add the default symbol if not performing a relocatable link. */
1756 if (! bfd_link_relocatable (info))
1757 {
1758 bh = &hi->root;
1759 if (! (_bfd_generic_link_add_one_symbol
1760 (info, abfd, shortname, BSF_INDIRECT,
1761 bfd_ind_section_ptr,
1762 0, name, FALSE, collect, &bh)))
1763 return FALSE;
1764 hi = (struct elf_link_hash_entry *) bh;
1765 }
1766 }
1767 else
1768 {
1769 /* In this case the symbol named SHORTNAME is overriding the
1770 indirect symbol we want to add. We were planning on making
1771 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1772 is the name without a version. NAME is the fully versioned
1773 name, and it is the default version.
1774
1775 Overriding means that we already saw a definition for the
1776 symbol SHORTNAME in a regular object, and it is overriding
1777 the symbol defined in the dynamic object.
1778
1779 When this happens, we actually want to change NAME, the
1780 symbol we just added, to refer to SHORTNAME. This will cause
1781 references to NAME in the shared object to become references
1782 to SHORTNAME in the regular object. This is what we expect
1783 when we override a function in a shared object: that the
1784 references in the shared object will be mapped to the
1785 definition in the regular object. */
1786
1787 while (hi->root.type == bfd_link_hash_indirect
1788 || hi->root.type == bfd_link_hash_warning)
1789 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1790
1791 h->root.type = bfd_link_hash_indirect;
1792 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1793 if (h->def_dynamic)
1794 {
1795 h->def_dynamic = 0;
1796 hi->ref_dynamic = 1;
1797 if (hi->ref_regular
1798 || hi->def_regular)
1799 {
1800 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1801 return FALSE;
1802 }
1803 }
1804
1805 /* Now set HI to H, so that the following code will set the
1806 other fields correctly. */
1807 hi = h;
1808 }
1809
1810 /* Check if HI is a warning symbol. */
1811 if (hi->root.type == bfd_link_hash_warning)
1812 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1813
1814 /* If there is a duplicate definition somewhere, then HI may not
1815 point to an indirect symbol. We will have reported an error to
1816 the user in that case. */
1817
1818 if (hi->root.type == bfd_link_hash_indirect)
1819 {
1820 struct elf_link_hash_entry *ht;
1821
1822 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1823 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1824
1825 /* A reference to the SHORTNAME symbol from a dynamic library
1826 will be satisfied by the versioned symbol at runtime. In
1827 effect, we have a reference to the versioned symbol. */
1828 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1829 hi->dynamic_def |= ht->dynamic_def;
1830
1831 /* See if the new flags lead us to realize that the symbol must
1832 be dynamic. */
1833 if (! *dynsym)
1834 {
1835 if (! dynamic)
1836 {
1837 if (! bfd_link_executable (info)
1838 || hi->def_dynamic
1839 || hi->ref_dynamic)
1840 *dynsym = TRUE;
1841 }
1842 else
1843 {
1844 if (hi->ref_regular)
1845 *dynsym = TRUE;
1846 }
1847 }
1848 }
1849
1850 /* We also need to define an indirection from the nondefault version
1851 of the symbol. */
1852
1853nondefault:
1854 len = strlen (name);
1855 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1856 if (shortname == NULL)
1857 return FALSE;
1858 memcpy (shortname, name, shortlen);
1859 memcpy (shortname + shortlen, p + 1, len - shortlen);
1860
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = FALSE;
1863 size_change_ok = FALSE;
1864 tmp_sec = sec;
1865 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1866 &hi, poldbfd, NULL, NULL, &skip, &override,
1867 &type_change_ok, &size_change_ok, &matched))
1868 return FALSE;
1869
1870 if (skip)
1871 return TRUE;
1872
1873 if (override)
1874 {
1875 /* Here SHORTNAME is a versioned name, so we don't expect to see
1876 the type of override we do in the case above unless it is
1877 overridden by a versioned definition. */
1878 if (hi->root.type != bfd_link_hash_defined
1879 && hi->root.type != bfd_link_hash_defweak)
1880 (*_bfd_error_handler)
1881 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1882 abfd, shortname);
1883 }
1884 else
1885 {
1886 bh = &hi->root;
1887 if (! (_bfd_generic_link_add_one_symbol
1888 (info, abfd, shortname, BSF_INDIRECT,
1889 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1890 return FALSE;
1891 hi = (struct elf_link_hash_entry *) bh;
1892
1893 /* If there is a duplicate definition somewhere, then HI may not
1894 point to an indirect symbol. We will have reported an error
1895 to the user in that case. */
1896
1897 if (hi->root.type == bfd_link_hash_indirect)
1898 {
1899 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1900 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1901 hi->dynamic_def |= h->dynamic_def;
1902
1903 /* See if the new flags lead us to realize that the symbol
1904 must be dynamic. */
1905 if (! *dynsym)
1906 {
1907 if (! dynamic)
1908 {
1909 if (! bfd_link_executable (info)
1910 || hi->ref_dynamic)
1911 *dynsym = TRUE;
1912 }
1913 else
1914 {
1915 if (hi->ref_regular)
1916 *dynsym = TRUE;
1917 }
1918 }
1919 }
1920 }
1921
1922 return TRUE;
1923}
1924\f
1925/* This routine is used to export all defined symbols into the dynamic
1926 symbol table. It is called via elf_link_hash_traverse. */
1927
1928static bfd_boolean
1929_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1930{
1931 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1932
1933 /* Ignore indirect symbols. These are added by the versioning code. */
1934 if (h->root.type == bfd_link_hash_indirect)
1935 return TRUE;
1936
1937 /* Ignore this if we won't export it. */
1938 if (!eif->info->export_dynamic && !h->dynamic)
1939 return TRUE;
1940
1941 if (h->dynindx == -1
1942 && (h->def_regular || h->ref_regular)
1943 && ! bfd_hide_sym_by_version (eif->info->version_info,
1944 h->root.root.string))
1945 {
1946 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1947 {
1948 eif->failed = TRUE;
1949 return FALSE;
1950 }
1951 }
1952
1953 return TRUE;
1954}
1955\f
1956/* Look through the symbols which are defined in other shared
1957 libraries and referenced here. Update the list of version
1958 dependencies. This will be put into the .gnu.version_r section.
1959 This function is called via elf_link_hash_traverse. */
1960
1961static bfd_boolean
1962_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1963 void *data)
1964{
1965 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1966 Elf_Internal_Verneed *t;
1967 Elf_Internal_Vernaux *a;
1968 bfd_size_type amt;
1969
1970 /* We only care about symbols defined in shared objects with version
1971 information. */
1972 if (!h->def_dynamic
1973 || h->def_regular
1974 || h->dynindx == -1
1975 || h->verinfo.verdef == NULL
1976 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1977 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1978 return TRUE;
1979
1980 /* See if we already know about this version. */
1981 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1982 t != NULL;
1983 t = t->vn_nextref)
1984 {
1985 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1986 continue;
1987
1988 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1989 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1990 return TRUE;
1991
1992 break;
1993 }
1994
1995 /* This is a new version. Add it to tree we are building. */
1996
1997 if (t == NULL)
1998 {
1999 amt = sizeof *t;
2000 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2001 if (t == NULL)
2002 {
2003 rinfo->failed = TRUE;
2004 return FALSE;
2005 }
2006
2007 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2008 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2009 elf_tdata (rinfo->info->output_bfd)->verref = t;
2010 }
2011
2012 amt = sizeof *a;
2013 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2014 if (a == NULL)
2015 {
2016 rinfo->failed = TRUE;
2017 return FALSE;
2018 }
2019
2020 /* Note that we are copying a string pointer here, and testing it
2021 above. If bfd_elf_string_from_elf_section is ever changed to
2022 discard the string data when low in memory, this will have to be
2023 fixed. */
2024 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2025
2026 a->vna_flags = h->verinfo.verdef->vd_flags;
2027 a->vna_nextptr = t->vn_auxptr;
2028
2029 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2030 ++rinfo->vers;
2031
2032 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2033
2034 t->vn_auxptr = a;
2035
2036 return TRUE;
2037}
2038
2039/* Figure out appropriate versions for all the symbols. We may not
2040 have the version number script until we have read all of the input
2041 files, so until that point we don't know which symbols should be
2042 local. This function is called via elf_link_hash_traverse. */
2043
2044static bfd_boolean
2045_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2046{
2047 struct elf_info_failed *sinfo;
2048 struct bfd_link_info *info;
2049 const struct elf_backend_data *bed;
2050 struct elf_info_failed eif;
2051 char *p;
2052 bfd_size_type amt;
2053
2054 sinfo = (struct elf_info_failed *) data;
2055 info = sinfo->info;
2056
2057 /* Fix the symbol flags. */
2058 eif.failed = FALSE;
2059 eif.info = info;
2060 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2061 {
2062 if (eif.failed)
2063 sinfo->failed = TRUE;
2064 return FALSE;
2065 }
2066
2067 /* We only need version numbers for symbols defined in regular
2068 objects. */
2069 if (!h->def_regular)
2070 return TRUE;
2071
2072 bed = get_elf_backend_data (info->output_bfd);
2073 p = strchr (h->root.root.string, ELF_VER_CHR);
2074 if (p != NULL && h->verinfo.vertree == NULL)
2075 {
2076 struct bfd_elf_version_tree *t;
2077
2078 ++p;
2079 if (*p == ELF_VER_CHR)
2080 ++p;
2081
2082 /* If there is no version string, we can just return out. */
2083 if (*p == '\0')
2084 return TRUE;
2085
2086 /* Look for the version. If we find it, it is no longer weak. */
2087 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2088 {
2089 if (strcmp (t->name, p) == 0)
2090 {
2091 size_t len;
2092 char *alc;
2093 struct bfd_elf_version_expr *d;
2094
2095 len = p - h->root.root.string;
2096 alc = (char *) bfd_malloc (len);
2097 if (alc == NULL)
2098 {
2099 sinfo->failed = TRUE;
2100 return FALSE;
2101 }
2102 memcpy (alc, h->root.root.string, len - 1);
2103 alc[len - 1] = '\0';
2104 if (alc[len - 2] == ELF_VER_CHR)
2105 alc[len - 2] = '\0';
2106
2107 h->verinfo.vertree = t;
2108 t->used = TRUE;
2109 d = NULL;
2110
2111 if (t->globals.list != NULL)
2112 d = (*t->match) (&t->globals, NULL, alc);
2113
2114 /* See if there is anything to force this symbol to
2115 local scope. */
2116 if (d == NULL && t->locals.list != NULL)
2117 {
2118 d = (*t->match) (&t->locals, NULL, alc);
2119 if (d != NULL
2120 && h->dynindx != -1
2121 && ! info->export_dynamic)
2122 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2123 }
2124
2125 free (alc);
2126 break;
2127 }
2128 }
2129
2130 /* If we are building an application, we need to create a
2131 version node for this version. */
2132 if (t == NULL && bfd_link_executable (info))
2133 {
2134 struct bfd_elf_version_tree **pp;
2135 int version_index;
2136
2137 /* If we aren't going to export this symbol, we don't need
2138 to worry about it. */
2139 if (h->dynindx == -1)
2140 return TRUE;
2141
2142 amt = sizeof *t;
2143 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2144 if (t == NULL)
2145 {
2146 sinfo->failed = TRUE;
2147 return FALSE;
2148 }
2149
2150 t->name = p;
2151 t->name_indx = (unsigned int) -1;
2152 t->used = TRUE;
2153
2154 version_index = 1;
2155 /* Don't count anonymous version tag. */
2156 if (sinfo->info->version_info != NULL
2157 && sinfo->info->version_info->vernum == 0)
2158 version_index = 0;
2159 for (pp = &sinfo->info->version_info;
2160 *pp != NULL;
2161 pp = &(*pp)->next)
2162 ++version_index;
2163 t->vernum = version_index;
2164
2165 *pp = t;
2166
2167 h->verinfo.vertree = t;
2168 }
2169 else if (t == NULL)
2170 {
2171 /* We could not find the version for a symbol when
2172 generating a shared archive. Return an error. */
2173 (*_bfd_error_handler)
2174 (_("%B: version node not found for symbol %s"),
2175 info->output_bfd, h->root.root.string);
2176 bfd_set_error (bfd_error_bad_value);
2177 sinfo->failed = TRUE;
2178 return FALSE;
2179 }
2180 }
2181
2182 /* If we don't have a version for this symbol, see if we can find
2183 something. */
2184 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2185 {
2186 bfd_boolean hide;
2187
2188 h->verinfo.vertree
2189 = bfd_find_version_for_sym (sinfo->info->version_info,
2190 h->root.root.string, &hide);
2191 if (h->verinfo.vertree != NULL && hide)
2192 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2193 }
2194
2195 return TRUE;
2196}
2197\f
2198/* Read and swap the relocs from the section indicated by SHDR. This
2199 may be either a REL or a RELA section. The relocations are
2200 translated into RELA relocations and stored in INTERNAL_RELOCS,
2201 which should have already been allocated to contain enough space.
2202 The EXTERNAL_RELOCS are a buffer where the external form of the
2203 relocations should be stored.
2204
2205 Returns FALSE if something goes wrong. */
2206
2207static bfd_boolean
2208elf_link_read_relocs_from_section (bfd *abfd,
2209 asection *sec,
2210 Elf_Internal_Shdr *shdr,
2211 void *external_relocs,
2212 Elf_Internal_Rela *internal_relocs)
2213{
2214 const struct elf_backend_data *bed;
2215 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2216 const bfd_byte *erela;
2217 const bfd_byte *erelaend;
2218 Elf_Internal_Rela *irela;
2219 Elf_Internal_Shdr *symtab_hdr;
2220 size_t nsyms;
2221
2222 /* Position ourselves at the start of the section. */
2223 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2224 return FALSE;
2225
2226 /* Read the relocations. */
2227 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2228 return FALSE;
2229
2230 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2231 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2232
2233 bed = get_elf_backend_data (abfd);
2234
2235 /* Convert the external relocations to the internal format. */
2236 if (shdr->sh_entsize == bed->s->sizeof_rel)
2237 swap_in = bed->s->swap_reloc_in;
2238 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2239 swap_in = bed->s->swap_reloca_in;
2240 else
2241 {
2242 bfd_set_error (bfd_error_wrong_format);
2243 return FALSE;
2244 }
2245
2246 erela = (const bfd_byte *) external_relocs;
2247 erelaend = erela + shdr->sh_size;
2248 irela = internal_relocs;
2249 while (erela < erelaend)
2250 {
2251 bfd_vma r_symndx;
2252
2253 (*swap_in) (abfd, erela, irela);
2254 r_symndx = ELF32_R_SYM (irela->r_info);
2255 if (bed->s->arch_size == 64)
2256 r_symndx >>= 24;
2257 if (nsyms > 0)
2258 {
2259 if ((size_t) r_symndx >= nsyms)
2260 {
2261 (*_bfd_error_handler)
2262 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2263 " for offset 0x%lx in section `%A'"),
2264 abfd, sec,
2265 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2266 bfd_set_error (bfd_error_bad_value);
2267 return FALSE;
2268 }
2269 }
2270 else if (r_symndx != STN_UNDEF)
2271 {
2272 (*_bfd_error_handler)
2273 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2274 " when the object file has no symbol table"),
2275 abfd, sec,
2276 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2277 bfd_set_error (bfd_error_bad_value);
2278 return FALSE;
2279 }
2280 irela += bed->s->int_rels_per_ext_rel;
2281 erela += shdr->sh_entsize;
2282 }
2283
2284 return TRUE;
2285}
2286
2287/* Read and swap the relocs for a section O. They may have been
2288 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2289 not NULL, they are used as buffers to read into. They are known to
2290 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2291 the return value is allocated using either malloc or bfd_alloc,
2292 according to the KEEP_MEMORY argument. If O has two relocation
2293 sections (both REL and RELA relocations), then the REL_HDR
2294 relocations will appear first in INTERNAL_RELOCS, followed by the
2295 RELA_HDR relocations. */
2296
2297Elf_Internal_Rela *
2298_bfd_elf_link_read_relocs (bfd *abfd,
2299 asection *o,
2300 void *external_relocs,
2301 Elf_Internal_Rela *internal_relocs,
2302 bfd_boolean keep_memory)
2303{
2304 void *alloc1 = NULL;
2305 Elf_Internal_Rela *alloc2 = NULL;
2306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2307 struct bfd_elf_section_data *esdo = elf_section_data (o);
2308 Elf_Internal_Rela *internal_rela_relocs;
2309
2310 if (esdo->relocs != NULL)
2311 return esdo->relocs;
2312
2313 if (o->reloc_count == 0)
2314 return NULL;
2315
2316 if (internal_relocs == NULL)
2317 {
2318 bfd_size_type size;
2319
2320 size = o->reloc_count;
2321 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2322 if (keep_memory)
2323 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2324 else
2325 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2326 if (internal_relocs == NULL)
2327 goto error_return;
2328 }
2329
2330 if (external_relocs == NULL)
2331 {
2332 bfd_size_type size = 0;
2333
2334 if (esdo->rel.hdr)
2335 size += esdo->rel.hdr->sh_size;
2336 if (esdo->rela.hdr)
2337 size += esdo->rela.hdr->sh_size;
2338
2339 alloc1 = bfd_malloc (size);
2340 if (alloc1 == NULL)
2341 goto error_return;
2342 external_relocs = alloc1;
2343 }
2344
2345 internal_rela_relocs = internal_relocs;
2346 if (esdo->rel.hdr)
2347 {
2348 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2349 external_relocs,
2350 internal_relocs))
2351 goto error_return;
2352 external_relocs = (((bfd_byte *) external_relocs)
2353 + esdo->rel.hdr->sh_size);
2354 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2355 * bed->s->int_rels_per_ext_rel);
2356 }
2357
2358 if (esdo->rela.hdr
2359 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2360 external_relocs,
2361 internal_rela_relocs)))
2362 goto error_return;
2363
2364 /* Cache the results for next time, if we can. */
2365 if (keep_memory)
2366 esdo->relocs = internal_relocs;
2367
2368 if (alloc1 != NULL)
2369 free (alloc1);
2370
2371 /* Don't free alloc2, since if it was allocated we are passing it
2372 back (under the name of internal_relocs). */
2373
2374 return internal_relocs;
2375
2376 error_return:
2377 if (alloc1 != NULL)
2378 free (alloc1);
2379 if (alloc2 != NULL)
2380 {
2381 if (keep_memory)
2382 bfd_release (abfd, alloc2);
2383 else
2384 free (alloc2);
2385 }
2386 return NULL;
2387}
2388
2389/* Compute the size of, and allocate space for, REL_HDR which is the
2390 section header for a section containing relocations for O. */
2391
2392static bfd_boolean
2393_bfd_elf_link_size_reloc_section (bfd *abfd,
2394 struct bfd_elf_section_reloc_data *reldata)
2395{
2396 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2397
2398 /* That allows us to calculate the size of the section. */
2399 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2400
2401 /* The contents field must last into write_object_contents, so we
2402 allocate it with bfd_alloc rather than malloc. Also since we
2403 cannot be sure that the contents will actually be filled in,
2404 we zero the allocated space. */
2405 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2406 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2407 return FALSE;
2408
2409 if (reldata->hashes == NULL && reldata->count)
2410 {
2411 struct elf_link_hash_entry **p;
2412
2413 p = ((struct elf_link_hash_entry **)
2414 bfd_zmalloc (reldata->count * sizeof (*p)));
2415 if (p == NULL)
2416 return FALSE;
2417
2418 reldata->hashes = p;
2419 }
2420
2421 return TRUE;
2422}
2423
2424/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2425 originated from the section given by INPUT_REL_HDR) to the
2426 OUTPUT_BFD. */
2427
2428bfd_boolean
2429_bfd_elf_link_output_relocs (bfd *output_bfd,
2430 asection *input_section,
2431 Elf_Internal_Shdr *input_rel_hdr,
2432 Elf_Internal_Rela *internal_relocs,
2433 struct elf_link_hash_entry **rel_hash
2434 ATTRIBUTE_UNUSED)
2435{
2436 Elf_Internal_Rela *irela;
2437 Elf_Internal_Rela *irelaend;
2438 bfd_byte *erel;
2439 struct bfd_elf_section_reloc_data *output_reldata;
2440 asection *output_section;
2441 const struct elf_backend_data *bed;
2442 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2443 struct bfd_elf_section_data *esdo;
2444
2445 output_section = input_section->output_section;
2446
2447 bed = get_elf_backend_data (output_bfd);
2448 esdo = elf_section_data (output_section);
2449 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2450 {
2451 output_reldata = &esdo->rel;
2452 swap_out = bed->s->swap_reloc_out;
2453 }
2454 else if (esdo->rela.hdr
2455 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2456 {
2457 output_reldata = &esdo->rela;
2458 swap_out = bed->s->swap_reloca_out;
2459 }
2460 else
2461 {
2462 (*_bfd_error_handler)
2463 (_("%B: relocation size mismatch in %B section %A"),
2464 output_bfd, input_section->owner, input_section);
2465 bfd_set_error (bfd_error_wrong_format);
2466 return FALSE;
2467 }
2468
2469 erel = output_reldata->hdr->contents;
2470 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2471 irela = internal_relocs;
2472 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2473 * bed->s->int_rels_per_ext_rel);
2474 while (irela < irelaend)
2475 {
2476 (*swap_out) (output_bfd, irela, erel);
2477 irela += bed->s->int_rels_per_ext_rel;
2478 erel += input_rel_hdr->sh_entsize;
2479 }
2480
2481 /* Bump the counter, so that we know where to add the next set of
2482 relocations. */
2483 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2484
2485 return TRUE;
2486}
2487\f
2488/* Make weak undefined symbols in PIE dynamic. */
2489
2490bfd_boolean
2491_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2492 struct elf_link_hash_entry *h)
2493{
2494 if (bfd_link_pie (info)
2495 && h->dynindx == -1
2496 && h->root.type == bfd_link_hash_undefweak)
2497 return bfd_elf_link_record_dynamic_symbol (info, h);
2498
2499 return TRUE;
2500}
2501
2502/* Fix up the flags for a symbol. This handles various cases which
2503 can only be fixed after all the input files are seen. This is
2504 currently called by both adjust_dynamic_symbol and
2505 assign_sym_version, which is unnecessary but perhaps more robust in
2506 the face of future changes. */
2507
2508static bfd_boolean
2509_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2510 struct elf_info_failed *eif)
2511{
2512 const struct elf_backend_data *bed;
2513
2514 /* If this symbol was mentioned in a non-ELF file, try to set
2515 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2516 permit a non-ELF file to correctly refer to a symbol defined in
2517 an ELF dynamic object. */
2518 if (h->non_elf)
2519 {
2520 while (h->root.type == bfd_link_hash_indirect)
2521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2522
2523 if (h->root.type != bfd_link_hash_defined
2524 && h->root.type != bfd_link_hash_defweak)
2525 {
2526 h->ref_regular = 1;
2527 h->ref_regular_nonweak = 1;
2528 }
2529 else
2530 {
2531 if (h->root.u.def.section->owner != NULL
2532 && (bfd_get_flavour (h->root.u.def.section->owner)
2533 == bfd_target_elf_flavour))
2534 {
2535 h->ref_regular = 1;
2536 h->ref_regular_nonweak = 1;
2537 }
2538 else
2539 h->def_regular = 1;
2540 }
2541
2542 if (h->dynindx == -1
2543 && (h->def_dynamic
2544 || h->ref_dynamic))
2545 {
2546 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2547 {
2548 eif->failed = TRUE;
2549 return FALSE;
2550 }
2551 }
2552 }
2553 else
2554 {
2555 /* Unfortunately, NON_ELF is only correct if the symbol
2556 was first seen in a non-ELF file. Fortunately, if the symbol
2557 was first seen in an ELF file, we're probably OK unless the
2558 symbol was defined in a non-ELF file. Catch that case here.
2559 FIXME: We're still in trouble if the symbol was first seen in
2560 a dynamic object, and then later in a non-ELF regular object. */
2561 if ((h->root.type == bfd_link_hash_defined
2562 || h->root.type == bfd_link_hash_defweak)
2563 && !h->def_regular
2564 && (h->root.u.def.section->owner != NULL
2565 ? (bfd_get_flavour (h->root.u.def.section->owner)
2566 != bfd_target_elf_flavour)
2567 : (bfd_is_abs_section (h->root.u.def.section)
2568 && !h->def_dynamic)))
2569 h->def_regular = 1;
2570 }
2571
2572 /* Backend specific symbol fixup. */
2573 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2574 if (bed->elf_backend_fixup_symbol
2575 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2576 return FALSE;
2577
2578 /* If this is a final link, and the symbol was defined as a common
2579 symbol in a regular object file, and there was no definition in
2580 any dynamic object, then the linker will have allocated space for
2581 the symbol in a common section but the DEF_REGULAR
2582 flag will not have been set. */
2583 if (h->root.type == bfd_link_hash_defined
2584 && !h->def_regular
2585 && h->ref_regular
2586 && !h->def_dynamic
2587 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2588 h->def_regular = 1;
2589
2590 /* If -Bsymbolic was used (which means to bind references to global
2591 symbols to the definition within the shared object), and this
2592 symbol was defined in a regular object, then it actually doesn't
2593 need a PLT entry. Likewise, if the symbol has non-default
2594 visibility. If the symbol has hidden or internal visibility, we
2595 will force it local. */
2596 if (h->needs_plt
2597 && bfd_link_pic (eif->info)
2598 && is_elf_hash_table (eif->info->hash)
2599 && (SYMBOLIC_BIND (eif->info, h)
2600 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2601 && h->def_regular)
2602 {
2603 bfd_boolean force_local;
2604
2605 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2606 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2607 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2608 }
2609
2610 /* If a weak undefined symbol has non-default visibility, we also
2611 hide it from the dynamic linker. */
2612 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2613 && h->root.type == bfd_link_hash_undefweak)
2614 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2615
2616 /* If this is a weak defined symbol in a dynamic object, and we know
2617 the real definition in the dynamic object, copy interesting flags
2618 over to the real definition. */
2619 if (h->u.weakdef != NULL)
2620 {
2621 /* If the real definition is defined by a regular object file,
2622 don't do anything special. See the longer description in
2623 _bfd_elf_adjust_dynamic_symbol, below. */
2624 if (h->u.weakdef->def_regular)
2625 h->u.weakdef = NULL;
2626 else
2627 {
2628 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2629
2630 while (h->root.type == bfd_link_hash_indirect)
2631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2632
2633 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2634 || h->root.type == bfd_link_hash_defweak);
2635 BFD_ASSERT (weakdef->def_dynamic);
2636 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2637 || weakdef->root.type == bfd_link_hash_defweak);
2638 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2639 }
2640 }
2641
2642 return TRUE;
2643}
2644
2645/* Make the backend pick a good value for a dynamic symbol. This is
2646 called via elf_link_hash_traverse, and also calls itself
2647 recursively. */
2648
2649static bfd_boolean
2650_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2651{
2652 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2653 bfd *dynobj;
2654 const struct elf_backend_data *bed;
2655
2656 if (! is_elf_hash_table (eif->info->hash))
2657 return FALSE;
2658
2659 /* Ignore indirect symbols. These are added by the versioning code. */
2660 if (h->root.type == bfd_link_hash_indirect)
2661 return TRUE;
2662
2663 /* Fix the symbol flags. */
2664 if (! _bfd_elf_fix_symbol_flags (h, eif))
2665 return FALSE;
2666
2667 /* If this symbol does not require a PLT entry, and it is not
2668 defined by a dynamic object, or is not referenced by a regular
2669 object, ignore it. We do have to handle a weak defined symbol,
2670 even if no regular object refers to it, if we decided to add it
2671 to the dynamic symbol table. FIXME: Do we normally need to worry
2672 about symbols which are defined by one dynamic object and
2673 referenced by another one? */
2674 if (!h->needs_plt
2675 && h->type != STT_GNU_IFUNC
2676 && (h->def_regular
2677 || !h->def_dynamic
2678 || (!h->ref_regular
2679 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2680 {
2681 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2682 return TRUE;
2683 }
2684
2685 /* If we've already adjusted this symbol, don't do it again. This
2686 can happen via a recursive call. */
2687 if (h->dynamic_adjusted)
2688 return TRUE;
2689
2690 /* Don't look at this symbol again. Note that we must set this
2691 after checking the above conditions, because we may look at a
2692 symbol once, decide not to do anything, and then get called
2693 recursively later after REF_REGULAR is set below. */
2694 h->dynamic_adjusted = 1;
2695
2696 /* If this is a weak definition, and we know a real definition, and
2697 the real symbol is not itself defined by a regular object file,
2698 then get a good value for the real definition. We handle the
2699 real symbol first, for the convenience of the backend routine.
2700
2701 Note that there is a confusing case here. If the real definition
2702 is defined by a regular object file, we don't get the real symbol
2703 from the dynamic object, but we do get the weak symbol. If the
2704 processor backend uses a COPY reloc, then if some routine in the
2705 dynamic object changes the real symbol, we will not see that
2706 change in the corresponding weak symbol. This is the way other
2707 ELF linkers work as well, and seems to be a result of the shared
2708 library model.
2709
2710 I will clarify this issue. Most SVR4 shared libraries define the
2711 variable _timezone and define timezone as a weak synonym. The
2712 tzset call changes _timezone. If you write
2713 extern int timezone;
2714 int _timezone = 5;
2715 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2716 you might expect that, since timezone is a synonym for _timezone,
2717 the same number will print both times. However, if the processor
2718 backend uses a COPY reloc, then actually timezone will be copied
2719 into your process image, and, since you define _timezone
2720 yourself, _timezone will not. Thus timezone and _timezone will
2721 wind up at different memory locations. The tzset call will set
2722 _timezone, leaving timezone unchanged. */
2723
2724 if (h->u.weakdef != NULL)
2725 {
2726 /* If we get to this point, there is an implicit reference to
2727 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2728 h->u.weakdef->ref_regular = 1;
2729
2730 /* Ensure that the backend adjust_dynamic_symbol function sees
2731 H->U.WEAKDEF before H by recursively calling ourselves. */
2732 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2733 return FALSE;
2734 }
2735
2736 /* If a symbol has no type and no size and does not require a PLT
2737 entry, then we are probably about to do the wrong thing here: we
2738 are probably going to create a COPY reloc for an empty object.
2739 This case can arise when a shared object is built with assembly
2740 code, and the assembly code fails to set the symbol type. */
2741 if (h->size == 0
2742 && h->type == STT_NOTYPE
2743 && !h->needs_plt)
2744 (*_bfd_error_handler)
2745 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2746 h->root.root.string);
2747
2748 dynobj = elf_hash_table (eif->info)->dynobj;
2749 bed = get_elf_backend_data (dynobj);
2750
2751 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2752 {
2753 eif->failed = TRUE;
2754 return FALSE;
2755 }
2756
2757 return TRUE;
2758}
2759
2760/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2761 DYNBSS. */
2762
2763bfd_boolean
2764_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2765 struct elf_link_hash_entry *h,
2766 asection *dynbss)
2767{
2768 unsigned int power_of_two;
2769 bfd_vma mask;
2770 asection *sec = h->root.u.def.section;
2771
2772 /* The section aligment of definition is the maximum alignment
2773 requirement of symbols defined in the section. Since we don't
2774 know the symbol alignment requirement, we start with the
2775 maximum alignment and check low bits of the symbol address
2776 for the minimum alignment. */
2777 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2778 mask = ((bfd_vma) 1 << power_of_two) - 1;
2779 while ((h->root.u.def.value & mask) != 0)
2780 {
2781 mask >>= 1;
2782 --power_of_two;
2783 }
2784
2785 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2786 dynbss))
2787 {
2788 /* Adjust the section alignment if needed. */
2789 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2790 power_of_two))
2791 return FALSE;
2792 }
2793
2794 /* We make sure that the symbol will be aligned properly. */
2795 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2796
2797 /* Define the symbol as being at this point in DYNBSS. */
2798 h->root.u.def.section = dynbss;
2799 h->root.u.def.value = dynbss->size;
2800
2801 /* Increment the size of DYNBSS to make room for the symbol. */
2802 dynbss->size += h->size;
2803
2804 /* No error if extern_protected_data is true. */
2805 if (h->protected_def
2806 && (!info->extern_protected_data
2807 || (info->extern_protected_data < 0
2808 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2809 info->callbacks->einfo
2810 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2811 h->root.root.string);
2812
2813 return TRUE;
2814}
2815
2816/* Adjust all external symbols pointing into SEC_MERGE sections
2817 to reflect the object merging within the sections. */
2818
2819static bfd_boolean
2820_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2821{
2822 asection *sec;
2823
2824 if ((h->root.type == bfd_link_hash_defined
2825 || h->root.type == bfd_link_hash_defweak)
2826 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2827 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2828 {
2829 bfd *output_bfd = (bfd *) data;
2830
2831 h->root.u.def.value =
2832 _bfd_merged_section_offset (output_bfd,
2833 &h->root.u.def.section,
2834 elf_section_data (sec)->sec_info,
2835 h->root.u.def.value);
2836 }
2837
2838 return TRUE;
2839}
2840
2841/* Returns false if the symbol referred to by H should be considered
2842 to resolve local to the current module, and true if it should be
2843 considered to bind dynamically. */
2844
2845bfd_boolean
2846_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2847 struct bfd_link_info *info,
2848 bfd_boolean not_local_protected)
2849{
2850 bfd_boolean binding_stays_local_p;
2851 const struct elf_backend_data *bed;
2852 struct elf_link_hash_table *hash_table;
2853
2854 if (h == NULL)
2855 return FALSE;
2856
2857 while (h->root.type == bfd_link_hash_indirect
2858 || h->root.type == bfd_link_hash_warning)
2859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2860
2861 /* If it was forced local, then clearly it's not dynamic. */
2862 if (h->dynindx == -1)
2863 return FALSE;
2864 if (h->forced_local)
2865 return FALSE;
2866
2867 /* Identify the cases where name binding rules say that a
2868 visible symbol resolves locally. */
2869 binding_stays_local_p = (bfd_link_executable (info)
2870 || SYMBOLIC_BIND (info, h));
2871
2872 switch (ELF_ST_VISIBILITY (h->other))
2873 {
2874 case STV_INTERNAL:
2875 case STV_HIDDEN:
2876 return FALSE;
2877
2878 case STV_PROTECTED:
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return FALSE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
2885 /* Proper resolution for function pointer equality may require
2886 that these symbols perhaps be resolved dynamically, even though
2887 we should be resolving them to the current module. */
2888 if (!not_local_protected || !bed->is_function_type (h->type))
2889 binding_stays_local_p = TRUE;
2890 break;
2891
2892 default:
2893 break;
2894 }
2895
2896 /* If it isn't defined locally, then clearly it's dynamic. */
2897 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2898 return TRUE;
2899
2900 /* Otherwise, the symbol is dynamic if binding rules don't tell
2901 us that it remains local. */
2902 return !binding_stays_local_p;
2903}
2904
2905/* Return true if the symbol referred to by H should be considered
2906 to resolve local to the current module, and false otherwise. Differs
2907 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2908 undefined symbols. The two functions are virtually identical except
2909 for the place where forced_local and dynindx == -1 are tested. If
2910 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2911 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2912 the symbol is local only for defined symbols.
2913 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2914 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2915 treatment of undefined weak symbols. For those that do not make
2916 undefined weak symbols dynamic, both functions may return false. */
2917
2918bfd_boolean
2919_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2920 struct bfd_link_info *info,
2921 bfd_boolean local_protected)
2922{
2923 const struct elf_backend_data *bed;
2924 struct elf_link_hash_table *hash_table;
2925
2926 /* If it's a local sym, of course we resolve locally. */
2927 if (h == NULL)
2928 return TRUE;
2929
2930 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2931 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2932 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2933 return TRUE;
2934
2935 /* Common symbols that become definitions don't get the DEF_REGULAR
2936 flag set, so test it first, and don't bail out. */
2937 if (ELF_COMMON_DEF_P (h))
2938 /* Do nothing. */;
2939 /* If we don't have a definition in a regular file, then we can't
2940 resolve locally. The sym is either undefined or dynamic. */
2941 else if (!h->def_regular)
2942 return FALSE;
2943
2944 /* Forced local symbols resolve locally. */
2945 if (h->forced_local)
2946 return TRUE;
2947
2948 /* As do non-dynamic symbols. */
2949 if (h->dynindx == -1)
2950 return TRUE;
2951
2952 /* At this point, we know the symbol is defined and dynamic. In an
2953 executable it must resolve locally, likewise when building symbolic
2954 shared libraries. */
2955 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2956 return TRUE;
2957
2958 /* Now deal with defined dynamic symbols in shared libraries. Ones
2959 with default visibility might not resolve locally. */
2960 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2961 return FALSE;
2962
2963 hash_table = elf_hash_table (info);
2964 if (!is_elf_hash_table (hash_table))
2965 return TRUE;
2966
2967 bed = get_elf_backend_data (hash_table->dynobj);
2968
2969 /* If extern_protected_data is false, STV_PROTECTED non-function
2970 symbols are local. */
2971 if ((!info->extern_protected_data
2972 || (info->extern_protected_data < 0
2973 && !bed->extern_protected_data))
2974 && !bed->is_function_type (h->type))
2975 return TRUE;
2976
2977 /* Function pointer equality tests may require that STV_PROTECTED
2978 symbols be treated as dynamic symbols. If the address of a
2979 function not defined in an executable is set to that function's
2980 plt entry in the executable, then the address of the function in
2981 a shared library must also be the plt entry in the executable. */
2982 return local_protected;
2983}
2984
2985/* Caches some TLS segment info, and ensures that the TLS segment vma is
2986 aligned. Returns the first TLS output section. */
2987
2988struct bfd_section *
2989_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2990{
2991 struct bfd_section *sec, *tls;
2992 unsigned int align = 0;
2993
2994 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2995 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2996 break;
2997 tls = sec;
2998
2999 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3000 if (sec->alignment_power > align)
3001 align = sec->alignment_power;
3002
3003 elf_hash_table (info)->tls_sec = tls;
3004
3005 /* Ensure the alignment of the first section is the largest alignment,
3006 so that the tls segment starts aligned. */
3007 if (tls != NULL)
3008 tls->alignment_power = align;
3009
3010 return tls;
3011}
3012
3013/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3014static bfd_boolean
3015is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3016 Elf_Internal_Sym *sym)
3017{
3018 const struct elf_backend_data *bed;
3019
3020 /* Local symbols do not count, but target specific ones might. */
3021 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3022 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3023 return FALSE;
3024
3025 bed = get_elf_backend_data (abfd);
3026 /* Function symbols do not count. */
3027 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3028 return FALSE;
3029
3030 /* If the section is undefined, then so is the symbol. */
3031 if (sym->st_shndx == SHN_UNDEF)
3032 return FALSE;
3033
3034 /* If the symbol is defined in the common section, then
3035 it is a common definition and so does not count. */
3036 if (bed->common_definition (sym))
3037 return FALSE;
3038
3039 /* If the symbol is in a target specific section then we
3040 must rely upon the backend to tell us what it is. */
3041 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3042 /* FIXME - this function is not coded yet:
3043
3044 return _bfd_is_global_symbol_definition (abfd, sym);
3045
3046 Instead for now assume that the definition is not global,
3047 Even if this is wrong, at least the linker will behave
3048 in the same way that it used to do. */
3049 return FALSE;
3050
3051 return TRUE;
3052}
3053
3054/* Search the symbol table of the archive element of the archive ABFD
3055 whose archive map contains a mention of SYMDEF, and determine if
3056 the symbol is defined in this element. */
3057static bfd_boolean
3058elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3059{
3060 Elf_Internal_Shdr * hdr;
3061 bfd_size_type symcount;
3062 bfd_size_type extsymcount;
3063 bfd_size_type extsymoff;
3064 Elf_Internal_Sym *isymbuf;
3065 Elf_Internal_Sym *isym;
3066 Elf_Internal_Sym *isymend;
3067 bfd_boolean result;
3068
3069 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3070 if (abfd == NULL)
3071 return FALSE;
3072
3073 /* Return FALSE if the object has been claimed by plugin. */
3074 if (abfd->plugin_format == bfd_plugin_yes)
3075 return FALSE;
3076
3077 if (! bfd_check_format (abfd, bfd_object))
3078 return FALSE;
3079
3080 /* Select the appropriate symbol table. */
3081 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3082 hdr = &elf_tdata (abfd)->symtab_hdr;
3083 else
3084 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3085
3086 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3087
3088 /* The sh_info field of the symtab header tells us where the
3089 external symbols start. We don't care about the local symbols. */
3090 if (elf_bad_symtab (abfd))
3091 {
3092 extsymcount = symcount;
3093 extsymoff = 0;
3094 }
3095 else
3096 {
3097 extsymcount = symcount - hdr->sh_info;
3098 extsymoff = hdr->sh_info;
3099 }
3100
3101 if (extsymcount == 0)
3102 return FALSE;
3103
3104 /* Read in the symbol table. */
3105 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3106 NULL, NULL, NULL);
3107 if (isymbuf == NULL)
3108 return FALSE;
3109
3110 /* Scan the symbol table looking for SYMDEF. */
3111 result = FALSE;
3112 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3113 {
3114 const char *name;
3115
3116 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3117 isym->st_name);
3118 if (name == NULL)
3119 break;
3120
3121 if (strcmp (name, symdef->name) == 0)
3122 {
3123 result = is_global_data_symbol_definition (abfd, isym);
3124 break;
3125 }
3126 }
3127
3128 free (isymbuf);
3129
3130 return result;
3131}
3132\f
3133/* Add an entry to the .dynamic table. */
3134
3135bfd_boolean
3136_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3137 bfd_vma tag,
3138 bfd_vma val)
3139{
3140 struct elf_link_hash_table *hash_table;
3141 const struct elf_backend_data *bed;
3142 asection *s;
3143 bfd_size_type newsize;
3144 bfd_byte *newcontents;
3145 Elf_Internal_Dyn dyn;
3146
3147 hash_table = elf_hash_table (info);
3148 if (! is_elf_hash_table (hash_table))
3149 return FALSE;
3150
3151 bed = get_elf_backend_data (hash_table->dynobj);
3152 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3153 BFD_ASSERT (s != NULL);
3154
3155 newsize = s->size + bed->s->sizeof_dyn;
3156 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3157 if (newcontents == NULL)
3158 return FALSE;
3159
3160 dyn.d_tag = tag;
3161 dyn.d_un.d_val = val;
3162 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3163
3164 s->size = newsize;
3165 s->contents = newcontents;
3166
3167 return TRUE;
3168}
3169
3170/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3171 otherwise just check whether one already exists. Returns -1 on error,
3172 1 if a DT_NEEDED tag already exists, and 0 on success. */
3173
3174static int
3175elf_add_dt_needed_tag (bfd *abfd,
3176 struct bfd_link_info *info,
3177 const char *soname,
3178 bfd_boolean do_it)
3179{
3180 struct elf_link_hash_table *hash_table;
3181 bfd_size_type strindex;
3182
3183 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3184 return -1;
3185
3186 hash_table = elf_hash_table (info);
3187 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3188 if (strindex == (bfd_size_type) -1)
3189 return -1;
3190
3191 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3192 {
3193 asection *sdyn;
3194 const struct elf_backend_data *bed;
3195 bfd_byte *extdyn;
3196
3197 bed = get_elf_backend_data (hash_table->dynobj);
3198 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3199 if (sdyn != NULL)
3200 for (extdyn = sdyn->contents;
3201 extdyn < sdyn->contents + sdyn->size;
3202 extdyn += bed->s->sizeof_dyn)
3203 {
3204 Elf_Internal_Dyn dyn;
3205
3206 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3207 if (dyn.d_tag == DT_NEEDED
3208 && dyn.d_un.d_val == strindex)
3209 {
3210 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3211 return 1;
3212 }
3213 }
3214 }
3215
3216 if (do_it)
3217 {
3218 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3219 return -1;
3220
3221 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3222 return -1;
3223 }
3224 else
3225 /* We were just checking for existence of the tag. */
3226 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3227
3228 return 0;
3229}
3230
3231static bfd_boolean
3232on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3233{
3234 for (; needed != NULL; needed = needed->next)
3235 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3236 && strcmp (soname, needed->name) == 0)
3237 return TRUE;
3238
3239 return FALSE;
3240}
3241
3242/* Sort symbol by value, section, and size. */
3243static int
3244elf_sort_symbol (const void *arg1, const void *arg2)
3245{
3246 const struct elf_link_hash_entry *h1;
3247 const struct elf_link_hash_entry *h2;
3248 bfd_signed_vma vdiff;
3249
3250 h1 = *(const struct elf_link_hash_entry **) arg1;
3251 h2 = *(const struct elf_link_hash_entry **) arg2;
3252 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3253 if (vdiff != 0)
3254 return vdiff > 0 ? 1 : -1;
3255 else
3256 {
3257 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3258 if (sdiff != 0)
3259 return sdiff > 0 ? 1 : -1;
3260 }
3261 vdiff = h1->size - h2->size;
3262 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3263}
3264
3265/* This function is used to adjust offsets into .dynstr for
3266 dynamic symbols. This is called via elf_link_hash_traverse. */
3267
3268static bfd_boolean
3269elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3270{
3271 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3272
3273 if (h->dynindx != -1)
3274 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3275 return TRUE;
3276}
3277
3278/* Assign string offsets in .dynstr, update all structures referencing
3279 them. */
3280
3281static bfd_boolean
3282elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3283{
3284 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3285 struct elf_link_local_dynamic_entry *entry;
3286 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3287 bfd *dynobj = hash_table->dynobj;
3288 asection *sdyn;
3289 bfd_size_type size;
3290 const struct elf_backend_data *bed;
3291 bfd_byte *extdyn;
3292
3293 _bfd_elf_strtab_finalize (dynstr);
3294 size = _bfd_elf_strtab_size (dynstr);
3295
3296 bed = get_elf_backend_data (dynobj);
3297 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3298 BFD_ASSERT (sdyn != NULL);
3299
3300 /* Update all .dynamic entries referencing .dynstr strings. */
3301 for (extdyn = sdyn->contents;
3302 extdyn < sdyn->contents + sdyn->size;
3303 extdyn += bed->s->sizeof_dyn)
3304 {
3305 Elf_Internal_Dyn dyn;
3306
3307 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3308 switch (dyn.d_tag)
3309 {
3310 case DT_STRSZ:
3311 dyn.d_un.d_val = size;
3312 break;
3313 case DT_NEEDED:
3314 case DT_SONAME:
3315 case DT_RPATH:
3316 case DT_RUNPATH:
3317 case DT_FILTER:
3318 case DT_AUXILIARY:
3319 case DT_AUDIT:
3320 case DT_DEPAUDIT:
3321 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3322 break;
3323 default:
3324 continue;
3325 }
3326 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3327 }
3328
3329 /* Now update local dynamic symbols. */
3330 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3331 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3332 entry->isym.st_name);
3333
3334 /* And the rest of dynamic symbols. */
3335 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3336
3337 /* Adjust version definitions. */
3338 if (elf_tdata (output_bfd)->cverdefs)
3339 {
3340 asection *s;
3341 bfd_byte *p;
3342 bfd_size_type i;
3343 Elf_Internal_Verdef def;
3344 Elf_Internal_Verdaux defaux;
3345
3346 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3347 p = s->contents;
3348 do
3349 {
3350 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3351 &def);
3352 p += sizeof (Elf_External_Verdef);
3353 if (def.vd_aux != sizeof (Elf_External_Verdef))
3354 continue;
3355 for (i = 0; i < def.vd_cnt; ++i)
3356 {
3357 _bfd_elf_swap_verdaux_in (output_bfd,
3358 (Elf_External_Verdaux *) p, &defaux);
3359 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3360 defaux.vda_name);
3361 _bfd_elf_swap_verdaux_out (output_bfd,
3362 &defaux, (Elf_External_Verdaux *) p);
3363 p += sizeof (Elf_External_Verdaux);
3364 }
3365 }
3366 while (def.vd_next);
3367 }
3368
3369 /* Adjust version references. */
3370 if (elf_tdata (output_bfd)->verref)
3371 {
3372 asection *s;
3373 bfd_byte *p;
3374 bfd_size_type i;
3375 Elf_Internal_Verneed need;
3376 Elf_Internal_Vernaux needaux;
3377
3378 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3379 p = s->contents;
3380 do
3381 {
3382 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3383 &need);
3384 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3385 _bfd_elf_swap_verneed_out (output_bfd, &need,
3386 (Elf_External_Verneed *) p);
3387 p += sizeof (Elf_External_Verneed);
3388 for (i = 0; i < need.vn_cnt; ++i)
3389 {
3390 _bfd_elf_swap_vernaux_in (output_bfd,
3391 (Elf_External_Vernaux *) p, &needaux);
3392 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3393 needaux.vna_name);
3394 _bfd_elf_swap_vernaux_out (output_bfd,
3395 &needaux,
3396 (Elf_External_Vernaux *) p);
3397 p += sizeof (Elf_External_Vernaux);
3398 }
3399 }
3400 while (need.vn_next);
3401 }
3402
3403 return TRUE;
3404}
3405\f
3406/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3407 The default is to only match when the INPUT and OUTPUT are exactly
3408 the same target. */
3409
3410bfd_boolean
3411_bfd_elf_default_relocs_compatible (const bfd_target *input,
3412 const bfd_target *output)
3413{
3414 return input == output;
3415}
3416
3417/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3418 This version is used when different targets for the same architecture
3419 are virtually identical. */
3420
3421bfd_boolean
3422_bfd_elf_relocs_compatible (const bfd_target *input,
3423 const bfd_target *output)
3424{
3425 const struct elf_backend_data *obed, *ibed;
3426
3427 if (input == output)
3428 return TRUE;
3429
3430 ibed = xvec_get_elf_backend_data (input);
3431 obed = xvec_get_elf_backend_data (output);
3432
3433 if (ibed->arch != obed->arch)
3434 return FALSE;
3435
3436 /* If both backends are using this function, deem them compatible. */
3437 return ibed->relocs_compatible == obed->relocs_compatible;
3438}
3439
3440/* Make a special call to the linker "notice" function to tell it that
3441 we are about to handle an as-needed lib, or have finished
3442 processing the lib. */
3443
3444bfd_boolean
3445_bfd_elf_notice_as_needed (bfd *ibfd,
3446 struct bfd_link_info *info,
3447 enum notice_asneeded_action act)
3448{
3449 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3450}
3451
3452/* Add symbols from an ELF object file to the linker hash table. */
3453
3454static bfd_boolean
3455elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3456{
3457 Elf_Internal_Ehdr *ehdr;
3458 Elf_Internal_Shdr *hdr;
3459 bfd_size_type symcount;
3460 bfd_size_type extsymcount;
3461 bfd_size_type extsymoff;
3462 struct elf_link_hash_entry **sym_hash;
3463 bfd_boolean dynamic;
3464 Elf_External_Versym *extversym = NULL;
3465 Elf_External_Versym *ever;
3466 struct elf_link_hash_entry *weaks;
3467 struct elf_link_hash_entry **nondeflt_vers = NULL;
3468 bfd_size_type nondeflt_vers_cnt = 0;
3469 Elf_Internal_Sym *isymbuf = NULL;
3470 Elf_Internal_Sym *isym;
3471 Elf_Internal_Sym *isymend;
3472 const struct elf_backend_data *bed;
3473 bfd_boolean add_needed;
3474 struct elf_link_hash_table *htab;
3475 bfd_size_type amt;
3476 void *alloc_mark = NULL;
3477 struct bfd_hash_entry **old_table = NULL;
3478 unsigned int old_size = 0;
3479 unsigned int old_count = 0;
3480 void *old_tab = NULL;
3481 void *old_ent;
3482 struct bfd_link_hash_entry *old_undefs = NULL;
3483 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3484 long old_dynsymcount = 0;
3485 bfd_size_type old_dynstr_size = 0;
3486 size_t tabsize = 0;
3487 asection *s;
3488 bfd_boolean just_syms;
3489
3490 htab = elf_hash_table (info);
3491 bed = get_elf_backend_data (abfd);
3492
3493 if ((abfd->flags & DYNAMIC) == 0)
3494 dynamic = FALSE;
3495 else
3496 {
3497 dynamic = TRUE;
3498
3499 /* You can't use -r against a dynamic object. Also, there's no
3500 hope of using a dynamic object which does not exactly match
3501 the format of the output file. */
3502 if (bfd_link_relocatable (info)
3503 || !is_elf_hash_table (htab)
3504 || info->output_bfd->xvec != abfd->xvec)
3505 {
3506 if (bfd_link_relocatable (info))
3507 bfd_set_error (bfd_error_invalid_operation);
3508 else
3509 bfd_set_error (bfd_error_wrong_format);
3510 goto error_return;
3511 }
3512 }
3513
3514 ehdr = elf_elfheader (abfd);
3515 if (info->warn_alternate_em
3516 && bed->elf_machine_code != ehdr->e_machine
3517 && ((bed->elf_machine_alt1 != 0
3518 && ehdr->e_machine == bed->elf_machine_alt1)
3519 || (bed->elf_machine_alt2 != 0
3520 && ehdr->e_machine == bed->elf_machine_alt2)))
3521 info->callbacks->einfo
3522 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3523 ehdr->e_machine, abfd, bed->elf_machine_code);
3524
3525 /* As a GNU extension, any input sections which are named
3526 .gnu.warning.SYMBOL are treated as warning symbols for the given
3527 symbol. This differs from .gnu.warning sections, which generate
3528 warnings when they are included in an output file. */
3529 /* PR 12761: Also generate this warning when building shared libraries. */
3530 for (s = abfd->sections; s != NULL; s = s->next)
3531 {
3532 const char *name;
3533
3534 name = bfd_get_section_name (abfd, s);
3535 if (CONST_STRNEQ (name, ".gnu.warning."))
3536 {
3537 char *msg;
3538 bfd_size_type sz;
3539
3540 name += sizeof ".gnu.warning." - 1;
3541
3542 /* If this is a shared object, then look up the symbol
3543 in the hash table. If it is there, and it is already
3544 been defined, then we will not be using the entry
3545 from this shared object, so we don't need to warn.
3546 FIXME: If we see the definition in a regular object
3547 later on, we will warn, but we shouldn't. The only
3548 fix is to keep track of what warnings we are supposed
3549 to emit, and then handle them all at the end of the
3550 link. */
3551 if (dynamic)
3552 {
3553 struct elf_link_hash_entry *h;
3554
3555 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3556
3557 /* FIXME: What about bfd_link_hash_common? */
3558 if (h != NULL
3559 && (h->root.type == bfd_link_hash_defined
3560 || h->root.type == bfd_link_hash_defweak))
3561 continue;
3562 }
3563
3564 sz = s->size;
3565 msg = (char *) bfd_alloc (abfd, sz + 1);
3566 if (msg == NULL)
3567 goto error_return;
3568
3569 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3570 goto error_return;
3571
3572 msg[sz] = '\0';
3573
3574 if (! (_bfd_generic_link_add_one_symbol
3575 (info, abfd, name, BSF_WARNING, s, 0, msg,
3576 FALSE, bed->collect, NULL)))
3577 goto error_return;
3578
3579 if (bfd_link_executable (info))
3580 {
3581 /* Clobber the section size so that the warning does
3582 not get copied into the output file. */
3583 s->size = 0;
3584
3585 /* Also set SEC_EXCLUDE, so that symbols defined in
3586 the warning section don't get copied to the output. */
3587 s->flags |= SEC_EXCLUDE;
3588 }
3589 }
3590 }
3591
3592 just_syms = ((s = abfd->sections) != NULL
3593 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3594
3595 add_needed = TRUE;
3596 if (! dynamic)
3597 {
3598 /* If we are creating a shared library, create all the dynamic
3599 sections immediately. We need to attach them to something,
3600 so we attach them to this BFD, provided it is the right
3601 format and is not from ld --just-symbols. FIXME: If there
3602 are no input BFD's of the same format as the output, we can't
3603 make a shared library. */
3604 if (!just_syms
3605 && bfd_link_pic (info)
3606 && is_elf_hash_table (htab)
3607 && info->output_bfd->xvec == abfd->xvec
3608 && !htab->dynamic_sections_created)
3609 {
3610 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3611 goto error_return;
3612 }
3613 }
3614 else if (!is_elf_hash_table (htab))
3615 goto error_return;
3616 else
3617 {
3618 const char *soname = NULL;
3619 char *audit = NULL;
3620 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3621 int ret;
3622
3623 /* ld --just-symbols and dynamic objects don't mix very well.
3624 ld shouldn't allow it. */
3625 if (just_syms)
3626 abort ();
3627
3628 /* If this dynamic lib was specified on the command line with
3629 --as-needed in effect, then we don't want to add a DT_NEEDED
3630 tag unless the lib is actually used. Similary for libs brought
3631 in by another lib's DT_NEEDED. When --no-add-needed is used
3632 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3633 any dynamic library in DT_NEEDED tags in the dynamic lib at
3634 all. */
3635 add_needed = (elf_dyn_lib_class (abfd)
3636 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3637 | DYN_NO_NEEDED)) == 0;
3638
3639 s = bfd_get_section_by_name (abfd, ".dynamic");
3640 if (s != NULL)
3641 {
3642 bfd_byte *dynbuf;
3643 bfd_byte *extdyn;
3644 unsigned int elfsec;
3645 unsigned long shlink;
3646
3647 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3648 {
3649error_free_dyn:
3650 free (dynbuf);
3651 goto error_return;
3652 }
3653
3654 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3655 if (elfsec == SHN_BAD)
3656 goto error_free_dyn;
3657 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3658
3659 for (extdyn = dynbuf;
3660 extdyn < dynbuf + s->size;
3661 extdyn += bed->s->sizeof_dyn)
3662 {
3663 Elf_Internal_Dyn dyn;
3664
3665 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3666 if (dyn.d_tag == DT_SONAME)
3667 {
3668 unsigned int tagv = dyn.d_un.d_val;
3669 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3670 if (soname == NULL)
3671 goto error_free_dyn;
3672 }
3673 if (dyn.d_tag == DT_NEEDED)
3674 {
3675 struct bfd_link_needed_list *n, **pn;
3676 char *fnm, *anm;
3677 unsigned int tagv = dyn.d_un.d_val;
3678
3679 amt = sizeof (struct bfd_link_needed_list);
3680 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3681 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3682 if (n == NULL || fnm == NULL)
3683 goto error_free_dyn;
3684 amt = strlen (fnm) + 1;
3685 anm = (char *) bfd_alloc (abfd, amt);
3686 if (anm == NULL)
3687 goto error_free_dyn;
3688 memcpy (anm, fnm, amt);
3689 n->name = anm;
3690 n->by = abfd;
3691 n->next = NULL;
3692 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3693 ;
3694 *pn = n;
3695 }
3696 if (dyn.d_tag == DT_RUNPATH)
3697 {
3698 struct bfd_link_needed_list *n, **pn;
3699 char *fnm, *anm;
3700 unsigned int tagv = dyn.d_un.d_val;
3701
3702 amt = sizeof (struct bfd_link_needed_list);
3703 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3704 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3705 if (n == NULL || fnm == NULL)
3706 goto error_free_dyn;
3707 amt = strlen (fnm) + 1;
3708 anm = (char *) bfd_alloc (abfd, amt);
3709 if (anm == NULL)
3710 goto error_free_dyn;
3711 memcpy (anm, fnm, amt);
3712 n->name = anm;
3713 n->by = abfd;
3714 n->next = NULL;
3715 for (pn = & runpath;
3716 *pn != NULL;
3717 pn = &(*pn)->next)
3718 ;
3719 *pn = n;
3720 }
3721 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3722 if (!runpath && dyn.d_tag == DT_RPATH)
3723 {
3724 struct bfd_link_needed_list *n, **pn;
3725 char *fnm, *anm;
3726 unsigned int tagv = dyn.d_un.d_val;
3727
3728 amt = sizeof (struct bfd_link_needed_list);
3729 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3730 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3731 if (n == NULL || fnm == NULL)
3732 goto error_free_dyn;
3733 amt = strlen (fnm) + 1;
3734 anm = (char *) bfd_alloc (abfd, amt);
3735 if (anm == NULL)
3736 goto error_free_dyn;
3737 memcpy (anm, fnm, amt);
3738 n->name = anm;
3739 n->by = abfd;
3740 n->next = NULL;
3741 for (pn = & rpath;
3742 *pn != NULL;
3743 pn = &(*pn)->next)
3744 ;
3745 *pn = n;
3746 }
3747 if (dyn.d_tag == DT_AUDIT)
3748 {
3749 unsigned int tagv = dyn.d_un.d_val;
3750 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3751 }
3752 }
3753
3754 free (dynbuf);
3755 }
3756
3757 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3758 frees all more recently bfd_alloc'd blocks as well. */
3759 if (runpath)
3760 rpath = runpath;
3761
3762 if (rpath)
3763 {
3764 struct bfd_link_needed_list **pn;
3765 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3766 ;
3767 *pn = rpath;
3768 }
3769
3770 /* We do not want to include any of the sections in a dynamic
3771 object in the output file. We hack by simply clobbering the
3772 list of sections in the BFD. This could be handled more
3773 cleanly by, say, a new section flag; the existing
3774 SEC_NEVER_LOAD flag is not the one we want, because that one
3775 still implies that the section takes up space in the output
3776 file. */
3777 bfd_section_list_clear (abfd);
3778
3779 /* Find the name to use in a DT_NEEDED entry that refers to this
3780 object. If the object has a DT_SONAME entry, we use it.
3781 Otherwise, if the generic linker stuck something in
3782 elf_dt_name, we use that. Otherwise, we just use the file
3783 name. */
3784 if (soname == NULL || *soname == '\0')
3785 {
3786 soname = elf_dt_name (abfd);
3787 if (soname == NULL || *soname == '\0')
3788 soname = bfd_get_filename (abfd);
3789 }
3790
3791 /* Save the SONAME because sometimes the linker emulation code
3792 will need to know it. */
3793 elf_dt_name (abfd) = soname;
3794
3795 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3796 if (ret < 0)
3797 goto error_return;
3798
3799 /* If we have already included this dynamic object in the
3800 link, just ignore it. There is no reason to include a
3801 particular dynamic object more than once. */
3802 if (ret > 0)
3803 return TRUE;
3804
3805 /* Save the DT_AUDIT entry for the linker emulation code. */
3806 elf_dt_audit (abfd) = audit;
3807 }
3808
3809 /* If this is a dynamic object, we always link against the .dynsym
3810 symbol table, not the .symtab symbol table. The dynamic linker
3811 will only see the .dynsym symbol table, so there is no reason to
3812 look at .symtab for a dynamic object. */
3813
3814 if (! dynamic || elf_dynsymtab (abfd) == 0)
3815 hdr = &elf_tdata (abfd)->symtab_hdr;
3816 else
3817 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3818
3819 symcount = hdr->sh_size / bed->s->sizeof_sym;
3820
3821 /* The sh_info field of the symtab header tells us where the
3822 external symbols start. We don't care about the local symbols at
3823 this point. */
3824 if (elf_bad_symtab (abfd))
3825 {
3826 extsymcount = symcount;
3827 extsymoff = 0;
3828 }
3829 else
3830 {
3831 extsymcount = symcount - hdr->sh_info;
3832 extsymoff = hdr->sh_info;
3833 }
3834
3835 sym_hash = elf_sym_hashes (abfd);
3836 if (extsymcount != 0)
3837 {
3838 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3839 NULL, NULL, NULL);
3840 if (isymbuf == NULL)
3841 goto error_return;
3842
3843 if (sym_hash == NULL)
3844 {
3845 /* We store a pointer to the hash table entry for each
3846 external symbol. */
3847 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3848 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3849 if (sym_hash == NULL)
3850 goto error_free_sym;
3851 elf_sym_hashes (abfd) = sym_hash;
3852 }
3853 }
3854
3855 if (dynamic)
3856 {
3857 /* Read in any version definitions. */
3858 if (!_bfd_elf_slurp_version_tables (abfd,
3859 info->default_imported_symver))
3860 goto error_free_sym;
3861
3862 /* Read in the symbol versions, but don't bother to convert them
3863 to internal format. */
3864 if (elf_dynversym (abfd) != 0)
3865 {
3866 Elf_Internal_Shdr *versymhdr;
3867
3868 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3869 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3870 if (extversym == NULL)
3871 goto error_free_sym;
3872 amt = versymhdr->sh_size;
3873 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3874 || bfd_bread (extversym, amt, abfd) != amt)
3875 goto error_free_vers;
3876 }
3877 }
3878
3879 /* If we are loading an as-needed shared lib, save the symbol table
3880 state before we start adding symbols. If the lib turns out
3881 to be unneeded, restore the state. */
3882 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3883 {
3884 unsigned int i;
3885 size_t entsize;
3886
3887 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3888 {
3889 struct bfd_hash_entry *p;
3890 struct elf_link_hash_entry *h;
3891
3892 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3893 {
3894 h = (struct elf_link_hash_entry *) p;
3895 entsize += htab->root.table.entsize;
3896 if (h->root.type == bfd_link_hash_warning)
3897 entsize += htab->root.table.entsize;
3898 }
3899 }
3900
3901 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3902 old_tab = bfd_malloc (tabsize + entsize);
3903 if (old_tab == NULL)
3904 goto error_free_vers;
3905
3906 /* Remember the current objalloc pointer, so that all mem for
3907 symbols added can later be reclaimed. */
3908 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3909 if (alloc_mark == NULL)
3910 goto error_free_vers;
3911
3912 /* Make a special call to the linker "notice" function to
3913 tell it that we are about to handle an as-needed lib. */
3914 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3915 goto error_free_vers;
3916
3917 /* Clone the symbol table. Remember some pointers into the
3918 symbol table, and dynamic symbol count. */
3919 old_ent = (char *) old_tab + tabsize;
3920 memcpy (old_tab, htab->root.table.table, tabsize);
3921 old_undefs = htab->root.undefs;
3922 old_undefs_tail = htab->root.undefs_tail;
3923 old_table = htab->root.table.table;
3924 old_size = htab->root.table.size;
3925 old_count = htab->root.table.count;
3926 old_dynsymcount = htab->dynsymcount;
3927 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3928
3929 for (i = 0; i < htab->root.table.size; i++)
3930 {
3931 struct bfd_hash_entry *p;
3932 struct elf_link_hash_entry *h;
3933
3934 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3935 {
3936 memcpy (old_ent, p, htab->root.table.entsize);
3937 old_ent = (char *) old_ent + htab->root.table.entsize;
3938 h = (struct elf_link_hash_entry *) p;
3939 if (h->root.type == bfd_link_hash_warning)
3940 {
3941 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3942 old_ent = (char *) old_ent + htab->root.table.entsize;
3943 }
3944 }
3945 }
3946 }
3947
3948 weaks = NULL;
3949 ever = extversym != NULL ? extversym + extsymoff : NULL;
3950 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3951 isym < isymend;
3952 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3953 {
3954 int bind;
3955 bfd_vma value;
3956 asection *sec, *new_sec;
3957 flagword flags;
3958 const char *name;
3959 struct elf_link_hash_entry *h;
3960 struct elf_link_hash_entry *hi;
3961 bfd_boolean definition;
3962 bfd_boolean size_change_ok;
3963 bfd_boolean type_change_ok;
3964 bfd_boolean new_weakdef;
3965 bfd_boolean new_weak;
3966 bfd_boolean old_weak;
3967 bfd_boolean override;
3968 bfd_boolean common;
3969 unsigned int old_alignment;
3970 bfd *old_bfd;
3971 bfd_boolean matched;
3972
3973 override = FALSE;
3974
3975 flags = BSF_NO_FLAGS;
3976 sec = NULL;
3977 value = isym->st_value;
3978 common = bed->common_definition (isym);
3979
3980 bind = ELF_ST_BIND (isym->st_info);
3981 switch (bind)
3982 {
3983 case STB_LOCAL:
3984 /* This should be impossible, since ELF requires that all
3985 global symbols follow all local symbols, and that sh_info
3986 point to the first global symbol. Unfortunately, Irix 5
3987 screws this up. */
3988 continue;
3989
3990 case STB_GLOBAL:
3991 if (isym->st_shndx != SHN_UNDEF && !common)
3992 flags = BSF_GLOBAL;
3993 break;
3994
3995 case STB_WEAK:
3996 flags = BSF_WEAK;
3997 break;
3998
3999 case STB_GNU_UNIQUE:
4000 flags = BSF_GNU_UNIQUE;
4001 break;
4002
4003 default:
4004 /* Leave it up to the processor backend. */
4005 break;
4006 }
4007
4008 if (isym->st_shndx == SHN_UNDEF)
4009 sec = bfd_und_section_ptr;
4010 else if (isym->st_shndx == SHN_ABS)
4011 sec = bfd_abs_section_ptr;
4012 else if (isym->st_shndx == SHN_COMMON)
4013 {
4014 sec = bfd_com_section_ptr;
4015 /* What ELF calls the size we call the value. What ELF
4016 calls the value we call the alignment. */
4017 value = isym->st_size;
4018 }
4019 else
4020 {
4021 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4022 if (sec == NULL)
4023 sec = bfd_abs_section_ptr;
4024 else if (discarded_section (sec))
4025 {
4026 /* Symbols from discarded section are undefined. We keep
4027 its visibility. */
4028 sec = bfd_und_section_ptr;
4029 isym->st_shndx = SHN_UNDEF;
4030 }
4031 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4032 value -= sec->vma;
4033 }
4034
4035 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4036 isym->st_name);
4037 if (name == NULL)
4038 goto error_free_vers;
4039
4040 if (isym->st_shndx == SHN_COMMON
4041 && (abfd->flags & BFD_PLUGIN) != 0)
4042 {
4043 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4044
4045 if (xc == NULL)
4046 {
4047 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4048 | SEC_EXCLUDE);
4049 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4050 if (xc == NULL)
4051 goto error_free_vers;
4052 }
4053 sec = xc;
4054 }
4055 else if (isym->st_shndx == SHN_COMMON
4056 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4057 && !bfd_link_relocatable (info))
4058 {
4059 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4060
4061 if (tcomm == NULL)
4062 {
4063 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4064 | SEC_LINKER_CREATED);
4065 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4066 if (tcomm == NULL)
4067 goto error_free_vers;
4068 }
4069 sec = tcomm;
4070 }
4071 else if (bed->elf_add_symbol_hook)
4072 {
4073 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4074 &sec, &value))
4075 goto error_free_vers;
4076
4077 /* The hook function sets the name to NULL if this symbol
4078 should be skipped for some reason. */
4079 if (name == NULL)
4080 continue;
4081 }
4082
4083 /* Sanity check that all possibilities were handled. */
4084 if (sec == NULL)
4085 {
4086 bfd_set_error (bfd_error_bad_value);
4087 goto error_free_vers;
4088 }
4089
4090 /* Silently discard TLS symbols from --just-syms. There's
4091 no way to combine a static TLS block with a new TLS block
4092 for this executable. */
4093 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4094 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4095 continue;
4096
4097 if (bfd_is_und_section (sec)
4098 || bfd_is_com_section (sec))
4099 definition = FALSE;
4100 else
4101 definition = TRUE;
4102
4103 size_change_ok = FALSE;
4104 type_change_ok = bed->type_change_ok;
4105 old_weak = FALSE;
4106 matched = FALSE;
4107 old_alignment = 0;
4108 old_bfd = NULL;
4109 new_sec = sec;
4110
4111 if (is_elf_hash_table (htab))
4112 {
4113 Elf_Internal_Versym iver;
4114 unsigned int vernum = 0;
4115 bfd_boolean skip;
4116
4117 if (ever == NULL)
4118 {
4119 if (info->default_imported_symver)
4120 /* Use the default symbol version created earlier. */
4121 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4122 else
4123 iver.vs_vers = 0;
4124 }
4125 else
4126 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4127
4128 vernum = iver.vs_vers & VERSYM_VERSION;
4129
4130 /* If this is a hidden symbol, or if it is not version
4131 1, we append the version name to the symbol name.
4132 However, we do not modify a non-hidden absolute symbol
4133 if it is not a function, because it might be the version
4134 symbol itself. FIXME: What if it isn't? */
4135 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4136 || (vernum > 1
4137 && (!bfd_is_abs_section (sec)
4138 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4139 {
4140 const char *verstr;
4141 size_t namelen, verlen, newlen;
4142 char *newname, *p;
4143
4144 if (isym->st_shndx != SHN_UNDEF)
4145 {
4146 if (vernum > elf_tdata (abfd)->cverdefs)
4147 verstr = NULL;
4148 else if (vernum > 1)
4149 verstr =
4150 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4151 else
4152 verstr = "";
4153
4154 if (verstr == NULL)
4155 {
4156 (*_bfd_error_handler)
4157 (_("%B: %s: invalid version %u (max %d)"),
4158 abfd, name, vernum,
4159 elf_tdata (abfd)->cverdefs);
4160 bfd_set_error (bfd_error_bad_value);
4161 goto error_free_vers;
4162 }
4163 }
4164 else
4165 {
4166 /* We cannot simply test for the number of
4167 entries in the VERNEED section since the
4168 numbers for the needed versions do not start
4169 at 0. */
4170 Elf_Internal_Verneed *t;
4171
4172 verstr = NULL;
4173 for (t = elf_tdata (abfd)->verref;
4174 t != NULL;
4175 t = t->vn_nextref)
4176 {
4177 Elf_Internal_Vernaux *a;
4178
4179 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4180 {
4181 if (a->vna_other == vernum)
4182 {
4183 verstr = a->vna_nodename;
4184 break;
4185 }
4186 }
4187 if (a != NULL)
4188 break;
4189 }
4190 if (verstr == NULL)
4191 {
4192 (*_bfd_error_handler)
4193 (_("%B: %s: invalid needed version %d"),
4194 abfd, name, vernum);
4195 bfd_set_error (bfd_error_bad_value);
4196 goto error_free_vers;
4197 }
4198 }
4199
4200 namelen = strlen (name);
4201 verlen = strlen (verstr);
4202 newlen = namelen + verlen + 2;
4203 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4204 && isym->st_shndx != SHN_UNDEF)
4205 ++newlen;
4206
4207 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4208 if (newname == NULL)
4209 goto error_free_vers;
4210 memcpy (newname, name, namelen);
4211 p = newname + namelen;
4212 *p++ = ELF_VER_CHR;
4213 /* If this is a defined non-hidden version symbol,
4214 we add another @ to the name. This indicates the
4215 default version of the symbol. */
4216 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4217 && isym->st_shndx != SHN_UNDEF)
4218 *p++ = ELF_VER_CHR;
4219 memcpy (p, verstr, verlen + 1);
4220
4221 name = newname;
4222 }
4223
4224 /* If this symbol has default visibility and the user has
4225 requested we not re-export it, then mark it as hidden. */
4226 if (!bfd_is_und_section (sec)
4227 && !dynamic
4228 && abfd->no_export
4229 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4230 isym->st_other = (STV_HIDDEN
4231 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4232
4233 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4234 sym_hash, &old_bfd, &old_weak,
4235 &old_alignment, &skip, &override,
4236 &type_change_ok, &size_change_ok,
4237 &matched))
4238 goto error_free_vers;
4239
4240 if (skip)
4241 continue;
4242
4243 /* Override a definition only if the new symbol matches the
4244 existing one. */
4245 if (override && matched)
4246 definition = FALSE;
4247
4248 h = *sym_hash;
4249 while (h->root.type == bfd_link_hash_indirect
4250 || h->root.type == bfd_link_hash_warning)
4251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4252
4253 if (elf_tdata (abfd)->verdef != NULL
4254 && vernum > 1
4255 && definition)
4256 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4257 }
4258
4259 if (! (_bfd_generic_link_add_one_symbol
4260 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4261 (struct bfd_link_hash_entry **) sym_hash)))
4262 goto error_free_vers;
4263
4264 h = *sym_hash;
4265 /* We need to make sure that indirect symbol dynamic flags are
4266 updated. */
4267 hi = h;
4268 while (h->root.type == bfd_link_hash_indirect
4269 || h->root.type == bfd_link_hash_warning)
4270 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4271
4272 *sym_hash = h;
4273
4274 new_weak = (flags & BSF_WEAK) != 0;
4275 new_weakdef = FALSE;
4276 if (dynamic
4277 && definition
4278 && new_weak
4279 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4280 && is_elf_hash_table (htab)
4281 && h->u.weakdef == NULL)
4282 {
4283 /* Keep a list of all weak defined non function symbols from
4284 a dynamic object, using the weakdef field. Later in this
4285 function we will set the weakdef field to the correct
4286 value. We only put non-function symbols from dynamic
4287 objects on this list, because that happens to be the only
4288 time we need to know the normal symbol corresponding to a
4289 weak symbol, and the information is time consuming to
4290 figure out. If the weakdef field is not already NULL,
4291 then this symbol was already defined by some previous
4292 dynamic object, and we will be using that previous
4293 definition anyhow. */
4294
4295 h->u.weakdef = weaks;
4296 weaks = h;
4297 new_weakdef = TRUE;
4298 }
4299
4300 /* Set the alignment of a common symbol. */
4301 if ((common || bfd_is_com_section (sec))
4302 && h->root.type == bfd_link_hash_common)
4303 {
4304 unsigned int align;
4305
4306 if (common)
4307 align = bfd_log2 (isym->st_value);
4308 else
4309 {
4310 /* The new symbol is a common symbol in a shared object.
4311 We need to get the alignment from the section. */
4312 align = new_sec->alignment_power;
4313 }
4314 if (align > old_alignment)
4315 h->root.u.c.p->alignment_power = align;
4316 else
4317 h->root.u.c.p->alignment_power = old_alignment;
4318 }
4319
4320 if (is_elf_hash_table (htab))
4321 {
4322 /* Set a flag in the hash table entry indicating the type of
4323 reference or definition we just found. A dynamic symbol
4324 is one which is referenced or defined by both a regular
4325 object and a shared object. */
4326 bfd_boolean dynsym = FALSE;
4327
4328 /* Plugin symbols aren't normal. Don't set def_regular or
4329 ref_regular for them, or make them dynamic. */
4330 if ((abfd->flags & BFD_PLUGIN) != 0)
4331 ;
4332 else if (! dynamic)
4333 {
4334 if (! definition)
4335 {
4336 h->ref_regular = 1;
4337 if (bind != STB_WEAK)
4338 h->ref_regular_nonweak = 1;
4339 }
4340 else
4341 {
4342 h->def_regular = 1;
4343 if (h->def_dynamic)
4344 {
4345 h->def_dynamic = 0;
4346 h->ref_dynamic = 1;
4347 }
4348 }
4349
4350 /* If the indirect symbol has been forced local, don't
4351 make the real symbol dynamic. */
4352 if ((h == hi || !hi->forced_local)
4353 && (bfd_link_dll (info)
4354 || h->def_dynamic
4355 || h->ref_dynamic))
4356 dynsym = TRUE;
4357 }
4358 else
4359 {
4360 if (! definition)
4361 {
4362 h->ref_dynamic = 1;
4363 hi->ref_dynamic = 1;
4364 }
4365 else
4366 {
4367 h->def_dynamic = 1;
4368 hi->def_dynamic = 1;
4369 }
4370
4371 /* If the indirect symbol has been forced local, don't
4372 make the real symbol dynamic. */
4373 if ((h == hi || !hi->forced_local)
4374 && (h->def_regular
4375 || h->ref_regular
4376 || (h->u.weakdef != NULL
4377 && ! new_weakdef
4378 && h->u.weakdef->dynindx != -1)))
4379 dynsym = TRUE;
4380 }
4381
4382 /* Check to see if we need to add an indirect symbol for
4383 the default name. */
4384 if (definition
4385 || (!override && h->root.type == bfd_link_hash_common))
4386 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4387 sec, value, &old_bfd, &dynsym))
4388 goto error_free_vers;
4389
4390 /* Check the alignment when a common symbol is involved. This
4391 can change when a common symbol is overridden by a normal
4392 definition or a common symbol is ignored due to the old
4393 normal definition. We need to make sure the maximum
4394 alignment is maintained. */
4395 if ((old_alignment || common)
4396 && h->root.type != bfd_link_hash_common)
4397 {
4398 unsigned int common_align;
4399 unsigned int normal_align;
4400 unsigned int symbol_align;
4401 bfd *normal_bfd;
4402 bfd *common_bfd;
4403
4404 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4405 || h->root.type == bfd_link_hash_defweak);
4406
4407 symbol_align = ffs (h->root.u.def.value) - 1;
4408 if (h->root.u.def.section->owner != NULL
4409 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4410 {
4411 normal_align = h->root.u.def.section->alignment_power;
4412 if (normal_align > symbol_align)
4413 normal_align = symbol_align;
4414 }
4415 else
4416 normal_align = symbol_align;
4417
4418 if (old_alignment)
4419 {
4420 common_align = old_alignment;
4421 common_bfd = old_bfd;
4422 normal_bfd = abfd;
4423 }
4424 else
4425 {
4426 common_align = bfd_log2 (isym->st_value);
4427 common_bfd = abfd;
4428 normal_bfd = old_bfd;
4429 }
4430
4431 if (normal_align < common_align)
4432 {
4433 /* PR binutils/2735 */
4434 if (normal_bfd == NULL)
4435 (*_bfd_error_handler)
4436 (_("Warning: alignment %u of common symbol `%s' in %B is"
4437 " greater than the alignment (%u) of its section %A"),
4438 common_bfd, h->root.u.def.section,
4439 1 << common_align, name, 1 << normal_align);
4440 else
4441 (*_bfd_error_handler)
4442 (_("Warning: alignment %u of symbol `%s' in %B"
4443 " is smaller than %u in %B"),
4444 normal_bfd, common_bfd,
4445 1 << normal_align, name, 1 << common_align);
4446 }
4447 }
4448
4449 /* Remember the symbol size if it isn't undefined. */
4450 if (isym->st_size != 0
4451 && isym->st_shndx != SHN_UNDEF
4452 && (definition || h->size == 0))
4453 {
4454 if (h->size != 0
4455 && h->size != isym->st_size
4456 && ! size_change_ok)
4457 (*_bfd_error_handler)
4458 (_("Warning: size of symbol `%s' changed"
4459 " from %lu in %B to %lu in %B"),
4460 old_bfd, abfd,
4461 name, (unsigned long) h->size,
4462 (unsigned long) isym->st_size);
4463
4464 h->size = isym->st_size;
4465 }
4466
4467 /* If this is a common symbol, then we always want H->SIZE
4468 to be the size of the common symbol. The code just above
4469 won't fix the size if a common symbol becomes larger. We
4470 don't warn about a size change here, because that is
4471 covered by --warn-common. Allow changes between different
4472 function types. */
4473 if (h->root.type == bfd_link_hash_common)
4474 h->size = h->root.u.c.size;
4475
4476 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4477 && ((definition && !new_weak)
4478 || (old_weak && h->root.type == bfd_link_hash_common)
4479 || h->type == STT_NOTYPE))
4480 {
4481 unsigned int type = ELF_ST_TYPE (isym->st_info);
4482
4483 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4484 symbol. */
4485 if (type == STT_GNU_IFUNC
4486 && (abfd->flags & DYNAMIC) != 0)
4487 type = STT_FUNC;
4488
4489 if (h->type != type)
4490 {
4491 if (h->type != STT_NOTYPE && ! type_change_ok)
4492 (*_bfd_error_handler)
4493 (_("Warning: type of symbol `%s' changed"
4494 " from %d to %d in %B"),
4495 abfd, name, h->type, type);
4496
4497 h->type = type;
4498 }
4499 }
4500
4501 /* Merge st_other field. */
4502 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4503
4504 /* We don't want to make debug symbol dynamic. */
4505 if (definition
4506 && (sec->flags & SEC_DEBUGGING)
4507 && !bfd_link_relocatable (info))
4508 dynsym = FALSE;
4509
4510 /* Nor should we make plugin symbols dynamic. */
4511 if ((abfd->flags & BFD_PLUGIN) != 0)
4512 dynsym = FALSE;
4513
4514 if (definition)
4515 {
4516 h->target_internal = isym->st_target_internal;
4517 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4518 }
4519
4520 if (definition && !dynamic)
4521 {
4522 char *p = strchr (name, ELF_VER_CHR);
4523 if (p != NULL && p[1] != ELF_VER_CHR)
4524 {
4525 /* Queue non-default versions so that .symver x, x@FOO
4526 aliases can be checked. */
4527 if (!nondeflt_vers)
4528 {
4529 amt = ((isymend - isym + 1)
4530 * sizeof (struct elf_link_hash_entry *));
4531 nondeflt_vers
4532 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4533 if (!nondeflt_vers)
4534 goto error_free_vers;
4535 }
4536 nondeflt_vers[nondeflt_vers_cnt++] = h;
4537 }
4538 }
4539
4540 if (dynsym && h->dynindx == -1)
4541 {
4542 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4543 goto error_free_vers;
4544 if (h->u.weakdef != NULL
4545 && ! new_weakdef
4546 && h->u.weakdef->dynindx == -1)
4547 {
4548 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4549 goto error_free_vers;
4550 }
4551 }
4552 else if (dynsym && h->dynindx != -1)
4553 /* If the symbol already has a dynamic index, but
4554 visibility says it should not be visible, turn it into
4555 a local symbol. */
4556 switch (ELF_ST_VISIBILITY (h->other))
4557 {
4558 case STV_INTERNAL:
4559 case STV_HIDDEN:
4560 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4561 dynsym = FALSE;
4562 break;
4563 }
4564
4565 /* Don't add DT_NEEDED for references from the dummy bfd. */
4566 if (!add_needed
4567 && definition
4568 && ((dynsym
4569 && h->ref_regular_nonweak
4570 && (old_bfd == NULL
4571 || (old_bfd->flags & BFD_PLUGIN) == 0))
4572 || (h->ref_dynamic_nonweak
4573 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4574 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4575 {
4576 int ret;
4577 const char *soname = elf_dt_name (abfd);
4578
4579 info->callbacks->minfo ("%!", soname, old_bfd,
4580 h->root.root.string);
4581
4582 /* A symbol from a library loaded via DT_NEEDED of some
4583 other library is referenced by a regular object.
4584 Add a DT_NEEDED entry for it. Issue an error if
4585 --no-add-needed is used and the reference was not
4586 a weak one. */
4587 if (old_bfd != NULL
4588 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4589 {
4590 (*_bfd_error_handler)
4591 (_("%B: undefined reference to symbol '%s'"),
4592 old_bfd, name);
4593 bfd_set_error (bfd_error_missing_dso);
4594 goto error_free_vers;
4595 }
4596
4597 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4598 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4599
4600 add_needed = TRUE;
4601 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4602 if (ret < 0)
4603 goto error_free_vers;
4604
4605 BFD_ASSERT (ret == 0);
4606 }
4607 }
4608 }
4609
4610 if (extversym != NULL)
4611 {
4612 free (extversym);
4613 extversym = NULL;
4614 }
4615
4616 if (isymbuf != NULL)
4617 {
4618 free (isymbuf);
4619 isymbuf = NULL;
4620 }
4621
4622 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4623 {
4624 unsigned int i;
4625
4626 /* Restore the symbol table. */
4627 old_ent = (char *) old_tab + tabsize;
4628 memset (elf_sym_hashes (abfd), 0,
4629 extsymcount * sizeof (struct elf_link_hash_entry *));
4630 htab->root.table.table = old_table;
4631 htab->root.table.size = old_size;
4632 htab->root.table.count = old_count;
4633 memcpy (htab->root.table.table, old_tab, tabsize);
4634 htab->root.undefs = old_undefs;
4635 htab->root.undefs_tail = old_undefs_tail;
4636 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4637 for (i = 0; i < htab->root.table.size; i++)
4638 {
4639 struct bfd_hash_entry *p;
4640 struct elf_link_hash_entry *h;
4641 bfd_size_type size;
4642 unsigned int alignment_power;
4643
4644 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4645 {
4646 h = (struct elf_link_hash_entry *) p;
4647 if (h->root.type == bfd_link_hash_warning)
4648 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4649 if (h->dynindx >= old_dynsymcount
4650 && h->dynstr_index < old_dynstr_size)
4651 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4652
4653 /* Preserve the maximum alignment and size for common
4654 symbols even if this dynamic lib isn't on DT_NEEDED
4655 since it can still be loaded at run time by another
4656 dynamic lib. */
4657 if (h->root.type == bfd_link_hash_common)
4658 {
4659 size = h->root.u.c.size;
4660 alignment_power = h->root.u.c.p->alignment_power;
4661 }
4662 else
4663 {
4664 size = 0;
4665 alignment_power = 0;
4666 }
4667 memcpy (p, old_ent, htab->root.table.entsize);
4668 old_ent = (char *) old_ent + htab->root.table.entsize;
4669 h = (struct elf_link_hash_entry *) p;
4670 if (h->root.type == bfd_link_hash_warning)
4671 {
4672 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4673 old_ent = (char *) old_ent + htab->root.table.entsize;
4674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4675 }
4676 if (h->root.type == bfd_link_hash_common)
4677 {
4678 if (size > h->root.u.c.size)
4679 h->root.u.c.size = size;
4680 if (alignment_power > h->root.u.c.p->alignment_power)
4681 h->root.u.c.p->alignment_power = alignment_power;
4682 }
4683 }
4684 }
4685
4686 /* Make a special call to the linker "notice" function to
4687 tell it that symbols added for crefs may need to be removed. */
4688 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4689 goto error_free_vers;
4690
4691 free (old_tab);
4692 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4693 alloc_mark);
4694 if (nondeflt_vers != NULL)
4695 free (nondeflt_vers);
4696 return TRUE;
4697 }
4698
4699 if (old_tab != NULL)
4700 {
4701 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4702 goto error_free_vers;
4703 free (old_tab);
4704 old_tab = NULL;
4705 }
4706
4707 /* Now that all the symbols from this input file are created, if
4708 not performing a relocatable link, handle .symver foo, foo@BAR
4709 such that any relocs against foo become foo@BAR. */
4710 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4711 {
4712 bfd_size_type cnt, symidx;
4713
4714 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4715 {
4716 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4717 char *shortname, *p;
4718
4719 p = strchr (h->root.root.string, ELF_VER_CHR);
4720 if (p == NULL
4721 || (h->root.type != bfd_link_hash_defined
4722 && h->root.type != bfd_link_hash_defweak))
4723 continue;
4724
4725 amt = p - h->root.root.string;
4726 shortname = (char *) bfd_malloc (amt + 1);
4727 if (!shortname)
4728 goto error_free_vers;
4729 memcpy (shortname, h->root.root.string, amt);
4730 shortname[amt] = '\0';
4731
4732 hi = (struct elf_link_hash_entry *)
4733 bfd_link_hash_lookup (&htab->root, shortname,
4734 FALSE, FALSE, FALSE);
4735 if (hi != NULL
4736 && hi->root.type == h->root.type
4737 && hi->root.u.def.value == h->root.u.def.value
4738 && hi->root.u.def.section == h->root.u.def.section)
4739 {
4740 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4741 hi->root.type = bfd_link_hash_indirect;
4742 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4743 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4744 sym_hash = elf_sym_hashes (abfd);
4745 if (sym_hash)
4746 for (symidx = 0; symidx < extsymcount; ++symidx)
4747 if (sym_hash[symidx] == hi)
4748 {
4749 sym_hash[symidx] = h;
4750 break;
4751 }
4752 }
4753 free (shortname);
4754 }
4755 free (nondeflt_vers);
4756 nondeflt_vers = NULL;
4757 }
4758
4759 /* Now set the weakdefs field correctly for all the weak defined
4760 symbols we found. The only way to do this is to search all the
4761 symbols. Since we only need the information for non functions in
4762 dynamic objects, that's the only time we actually put anything on
4763 the list WEAKS. We need this information so that if a regular
4764 object refers to a symbol defined weakly in a dynamic object, the
4765 real symbol in the dynamic object is also put in the dynamic
4766 symbols; we also must arrange for both symbols to point to the
4767 same memory location. We could handle the general case of symbol
4768 aliasing, but a general symbol alias can only be generated in
4769 assembler code, handling it correctly would be very time
4770 consuming, and other ELF linkers don't handle general aliasing
4771 either. */
4772 if (weaks != NULL)
4773 {
4774 struct elf_link_hash_entry **hpp;
4775 struct elf_link_hash_entry **hppend;
4776 struct elf_link_hash_entry **sorted_sym_hash;
4777 struct elf_link_hash_entry *h;
4778 size_t sym_count;
4779
4780 /* Since we have to search the whole symbol list for each weak
4781 defined symbol, search time for N weak defined symbols will be
4782 O(N^2). Binary search will cut it down to O(NlogN). */
4783 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4784 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4785 if (sorted_sym_hash == NULL)
4786 goto error_return;
4787 sym_hash = sorted_sym_hash;
4788 hpp = elf_sym_hashes (abfd);
4789 hppend = hpp + extsymcount;
4790 sym_count = 0;
4791 for (; hpp < hppend; hpp++)
4792 {
4793 h = *hpp;
4794 if (h != NULL
4795 && h->root.type == bfd_link_hash_defined
4796 && !bed->is_function_type (h->type))
4797 {
4798 *sym_hash = h;
4799 sym_hash++;
4800 sym_count++;
4801 }
4802 }
4803
4804 qsort (sorted_sym_hash, sym_count,
4805 sizeof (struct elf_link_hash_entry *),
4806 elf_sort_symbol);
4807
4808 while (weaks != NULL)
4809 {
4810 struct elf_link_hash_entry *hlook;
4811 asection *slook;
4812 bfd_vma vlook;
4813 size_t i, j, idx = 0;
4814
4815 hlook = weaks;
4816 weaks = hlook->u.weakdef;
4817 hlook->u.weakdef = NULL;
4818
4819 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4820 || hlook->root.type == bfd_link_hash_defweak
4821 || hlook->root.type == bfd_link_hash_common
4822 || hlook->root.type == bfd_link_hash_indirect);
4823 slook = hlook->root.u.def.section;
4824 vlook = hlook->root.u.def.value;
4825
4826 i = 0;
4827 j = sym_count;
4828 while (i != j)
4829 {
4830 bfd_signed_vma vdiff;
4831 idx = (i + j) / 2;
4832 h = sorted_sym_hash[idx];
4833 vdiff = vlook - h->root.u.def.value;
4834 if (vdiff < 0)
4835 j = idx;
4836 else if (vdiff > 0)
4837 i = idx + 1;
4838 else
4839 {
4840 int sdiff = slook->id - h->root.u.def.section->id;
4841 if (sdiff < 0)
4842 j = idx;
4843 else if (sdiff > 0)
4844 i = idx + 1;
4845 else
4846 break;
4847 }
4848 }
4849
4850 /* We didn't find a value/section match. */
4851 if (i == j)
4852 continue;
4853
4854 /* With multiple aliases, or when the weak symbol is already
4855 strongly defined, we have multiple matching symbols and
4856 the binary search above may land on any of them. Step
4857 one past the matching symbol(s). */
4858 while (++idx != j)
4859 {
4860 h = sorted_sym_hash[idx];
4861 if (h->root.u.def.section != slook
4862 || h->root.u.def.value != vlook)
4863 break;
4864 }
4865
4866 /* Now look back over the aliases. Since we sorted by size
4867 as well as value and section, we'll choose the one with
4868 the largest size. */
4869 while (idx-- != i)
4870 {
4871 h = sorted_sym_hash[idx];
4872
4873 /* Stop if value or section doesn't match. */
4874 if (h->root.u.def.section != slook
4875 || h->root.u.def.value != vlook)
4876 break;
4877 else if (h != hlook)
4878 {
4879 hlook->u.weakdef = h;
4880
4881 /* If the weak definition is in the list of dynamic
4882 symbols, make sure the real definition is put
4883 there as well. */
4884 if (hlook->dynindx != -1 && h->dynindx == -1)
4885 {
4886 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4887 {
4888 err_free_sym_hash:
4889 free (sorted_sym_hash);
4890 goto error_return;
4891 }
4892 }
4893
4894 /* If the real definition is in the list of dynamic
4895 symbols, make sure the weak definition is put
4896 there as well. If we don't do this, then the
4897 dynamic loader might not merge the entries for the
4898 real definition and the weak definition. */
4899 if (h->dynindx != -1 && hlook->dynindx == -1)
4900 {
4901 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4902 goto err_free_sym_hash;
4903 }
4904 break;
4905 }
4906 }
4907 }
4908
4909 free (sorted_sym_hash);
4910 }
4911
4912 if (bed->check_directives
4913 && !(*bed->check_directives) (abfd, info))
4914 return FALSE;
4915
4916 /* If this object is the same format as the output object, and it is
4917 not a shared library, then let the backend look through the
4918 relocs.
4919
4920 This is required to build global offset table entries and to
4921 arrange for dynamic relocs. It is not required for the
4922 particular common case of linking non PIC code, even when linking
4923 against shared libraries, but unfortunately there is no way of
4924 knowing whether an object file has been compiled PIC or not.
4925 Looking through the relocs is not particularly time consuming.
4926 The problem is that we must either (1) keep the relocs in memory,
4927 which causes the linker to require additional runtime memory or
4928 (2) read the relocs twice from the input file, which wastes time.
4929 This would be a good case for using mmap.
4930
4931 I have no idea how to handle linking PIC code into a file of a
4932 different format. It probably can't be done. */
4933 if (! dynamic
4934 && is_elf_hash_table (htab)
4935 && bed->check_relocs != NULL
4936 && elf_object_id (abfd) == elf_hash_table_id (htab)
4937 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4938 {
4939 asection *o;
4940
4941 for (o = abfd->sections; o != NULL; o = o->next)
4942 {
4943 Elf_Internal_Rela *internal_relocs;
4944 bfd_boolean ok;
4945
4946 if ((o->flags & SEC_RELOC) == 0
4947 || o->reloc_count == 0
4948 || ((info->strip == strip_all || info->strip == strip_debugger)
4949 && (o->flags & SEC_DEBUGGING) != 0)
4950 || bfd_is_abs_section (o->output_section))
4951 continue;
4952
4953 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4954 info->keep_memory);
4955 if (internal_relocs == NULL)
4956 goto error_return;
4957
4958 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4959
4960 if (elf_section_data (o)->relocs != internal_relocs)
4961 free (internal_relocs);
4962
4963 if (! ok)
4964 goto error_return;
4965 }
4966 }
4967
4968 /* If this is a non-traditional link, try to optimize the handling
4969 of the .stab/.stabstr sections. */
4970 if (! dynamic
4971 && ! info->traditional_format
4972 && is_elf_hash_table (htab)
4973 && (info->strip != strip_all && info->strip != strip_debugger))
4974 {
4975 asection *stabstr;
4976
4977 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4978 if (stabstr != NULL)
4979 {
4980 bfd_size_type string_offset = 0;
4981 asection *stab;
4982
4983 for (stab = abfd->sections; stab; stab = stab->next)
4984 if (CONST_STRNEQ (stab->name, ".stab")
4985 && (!stab->name[5] ||
4986 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4987 && (stab->flags & SEC_MERGE) == 0
4988 && !bfd_is_abs_section (stab->output_section))
4989 {
4990 struct bfd_elf_section_data *secdata;
4991
4992 secdata = elf_section_data (stab);
4993 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4994 stabstr, &secdata->sec_info,
4995 &string_offset))
4996 goto error_return;
4997 if (secdata->sec_info)
4998 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4999 }
5000 }
5001 }
5002
5003 if (is_elf_hash_table (htab) && add_needed)
5004 {
5005 /* Add this bfd to the loaded list. */
5006 struct elf_link_loaded_list *n;
5007
5008 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5009 if (n == NULL)
5010 goto error_return;
5011 n->abfd = abfd;
5012 n->next = htab->loaded;
5013 htab->loaded = n;
5014 }
5015
5016 return TRUE;
5017
5018 error_free_vers:
5019 if (old_tab != NULL)
5020 free (old_tab);
5021 if (nondeflt_vers != NULL)
5022 free (nondeflt_vers);
5023 if (extversym != NULL)
5024 free (extversym);
5025 error_free_sym:
5026 if (isymbuf != NULL)
5027 free (isymbuf);
5028 error_return:
5029 return FALSE;
5030}
5031
5032/* Return the linker hash table entry of a symbol that might be
5033 satisfied by an archive symbol. Return -1 on error. */
5034
5035struct elf_link_hash_entry *
5036_bfd_elf_archive_symbol_lookup (bfd *abfd,
5037 struct bfd_link_info *info,
5038 const char *name)
5039{
5040 struct elf_link_hash_entry *h;
5041 char *p, *copy;
5042 size_t len, first;
5043
5044 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5045 if (h != NULL)
5046 return h;
5047
5048 /* If this is a default version (the name contains @@), look up the
5049 symbol again with only one `@' as well as without the version.
5050 The effect is that references to the symbol with and without the
5051 version will be matched by the default symbol in the archive. */
5052
5053 p = strchr (name, ELF_VER_CHR);
5054 if (p == NULL || p[1] != ELF_VER_CHR)
5055 return h;
5056
5057 /* First check with only one `@'. */
5058 len = strlen (name);
5059 copy = (char *) bfd_alloc (abfd, len);
5060 if (copy == NULL)
5061 return (struct elf_link_hash_entry *) 0 - 1;
5062
5063 first = p - name + 1;
5064 memcpy (copy, name, first);
5065 memcpy (copy + first, name + first + 1, len - first);
5066
5067 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5068 if (h == NULL)
5069 {
5070 /* We also need to check references to the symbol without the
5071 version. */
5072 copy[first - 1] = '\0';
5073 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5074 FALSE, FALSE, TRUE);
5075 }
5076
5077 bfd_release (abfd, copy);
5078 return h;
5079}
5080
5081/* Add symbols from an ELF archive file to the linker hash table. We
5082 don't use _bfd_generic_link_add_archive_symbols because we need to
5083 handle versioned symbols.
5084
5085 Fortunately, ELF archive handling is simpler than that done by
5086 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5087 oddities. In ELF, if we find a symbol in the archive map, and the
5088 symbol is currently undefined, we know that we must pull in that
5089 object file.
5090
5091 Unfortunately, we do have to make multiple passes over the symbol
5092 table until nothing further is resolved. */
5093
5094static bfd_boolean
5095elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5096{
5097 symindex c;
5098 unsigned char *included = NULL;
5099 carsym *symdefs;
5100 bfd_boolean loop;
5101 bfd_size_type amt;
5102 const struct elf_backend_data *bed;
5103 struct elf_link_hash_entry * (*archive_symbol_lookup)
5104 (bfd *, struct bfd_link_info *, const char *);
5105
5106 if (! bfd_has_map (abfd))
5107 {
5108 /* An empty archive is a special case. */
5109 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5110 return TRUE;
5111 bfd_set_error (bfd_error_no_armap);
5112 return FALSE;
5113 }
5114
5115 /* Keep track of all symbols we know to be already defined, and all
5116 files we know to be already included. This is to speed up the
5117 second and subsequent passes. */
5118 c = bfd_ardata (abfd)->symdef_count;
5119 if (c == 0)
5120 return TRUE;
5121 amt = c;
5122 amt *= sizeof (*included);
5123 included = (unsigned char *) bfd_zmalloc (amt);
5124 if (included == NULL)
5125 return FALSE;
5126
5127 symdefs = bfd_ardata (abfd)->symdefs;
5128 bed = get_elf_backend_data (abfd);
5129 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5130
5131 do
5132 {
5133 file_ptr last;
5134 symindex i;
5135 carsym *symdef;
5136 carsym *symdefend;
5137
5138 loop = FALSE;
5139 last = -1;
5140
5141 symdef = symdefs;
5142 symdefend = symdef + c;
5143 for (i = 0; symdef < symdefend; symdef++, i++)
5144 {
5145 struct elf_link_hash_entry *h;
5146 bfd *element;
5147 struct bfd_link_hash_entry *undefs_tail;
5148 symindex mark;
5149
5150 if (included[i])
5151 continue;
5152 if (symdef->file_offset == last)
5153 {
5154 included[i] = TRUE;
5155 continue;
5156 }
5157
5158 h = archive_symbol_lookup (abfd, info, symdef->name);
5159 if (h == (struct elf_link_hash_entry *) 0 - 1)
5160 goto error_return;
5161
5162 if (h == NULL)
5163 continue;
5164
5165 if (h->root.type == bfd_link_hash_common)
5166 {
5167 /* We currently have a common symbol. The archive map contains
5168 a reference to this symbol, so we may want to include it. We
5169 only want to include it however, if this archive element
5170 contains a definition of the symbol, not just another common
5171 declaration of it.
5172
5173 Unfortunately some archivers (including GNU ar) will put
5174 declarations of common symbols into their archive maps, as
5175 well as real definitions, so we cannot just go by the archive
5176 map alone. Instead we must read in the element's symbol
5177 table and check that to see what kind of symbol definition
5178 this is. */
5179 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5180 continue;
5181 }
5182 else if (h->root.type != bfd_link_hash_undefined)
5183 {
5184 if (h->root.type != bfd_link_hash_undefweak)
5185 /* Symbol must be defined. Don't check it again. */
5186 included[i] = TRUE;
5187 continue;
5188 }
5189
5190 /* We need to include this archive member. */
5191 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5192 if (element == NULL)
5193 goto error_return;
5194
5195 if (! bfd_check_format (element, bfd_object))
5196 goto error_return;
5197
5198 undefs_tail = info->hash->undefs_tail;
5199
5200 if (!(*info->callbacks
5201 ->add_archive_element) (info, element, symdef->name, &element))
5202 goto error_return;
5203 if (!bfd_link_add_symbols (element, info))
5204 goto error_return;
5205
5206 /* If there are any new undefined symbols, we need to make
5207 another pass through the archive in order to see whether
5208 they can be defined. FIXME: This isn't perfect, because
5209 common symbols wind up on undefs_tail and because an
5210 undefined symbol which is defined later on in this pass
5211 does not require another pass. This isn't a bug, but it
5212 does make the code less efficient than it could be. */
5213 if (undefs_tail != info->hash->undefs_tail)
5214 loop = TRUE;
5215
5216 /* Look backward to mark all symbols from this object file
5217 which we have already seen in this pass. */
5218 mark = i;
5219 do
5220 {
5221 included[mark] = TRUE;
5222 if (mark == 0)
5223 break;
5224 --mark;
5225 }
5226 while (symdefs[mark].file_offset == symdef->file_offset);
5227
5228 /* We mark subsequent symbols from this object file as we go
5229 on through the loop. */
5230 last = symdef->file_offset;
5231 }
5232 }
5233 while (loop);
5234
5235 free (included);
5236
5237 return TRUE;
5238
5239 error_return:
5240 if (included != NULL)
5241 free (included);
5242 return FALSE;
5243}
5244
5245/* Given an ELF BFD, add symbols to the global hash table as
5246 appropriate. */
5247
5248bfd_boolean
5249bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5250{
5251 switch (bfd_get_format (abfd))
5252 {
5253 case bfd_object:
5254 return elf_link_add_object_symbols (abfd, info);
5255 case bfd_archive:
5256 return elf_link_add_archive_symbols (abfd, info);
5257 default:
5258 bfd_set_error (bfd_error_wrong_format);
5259 return FALSE;
5260 }
5261}
5262\f
5263struct hash_codes_info
5264{
5265 unsigned long *hashcodes;
5266 bfd_boolean error;
5267};
5268
5269/* This function will be called though elf_link_hash_traverse to store
5270 all hash value of the exported symbols in an array. */
5271
5272static bfd_boolean
5273elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5274{
5275 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5276 const char *name;
5277 unsigned long ha;
5278 char *alc = NULL;
5279
5280 /* Ignore indirect symbols. These are added by the versioning code. */
5281 if (h->dynindx == -1)
5282 return TRUE;
5283
5284 name = h->root.root.string;
5285 if (h->versioned >= versioned)
5286 {
5287 char *p = strchr (name, ELF_VER_CHR);
5288 if (p != NULL)
5289 {
5290 alc = (char *) bfd_malloc (p - name + 1);
5291 if (alc == NULL)
5292 {
5293 inf->error = TRUE;
5294 return FALSE;
5295 }
5296 memcpy (alc, name, p - name);
5297 alc[p - name] = '\0';
5298 name = alc;
5299 }
5300 }
5301
5302 /* Compute the hash value. */
5303 ha = bfd_elf_hash (name);
5304
5305 /* Store the found hash value in the array given as the argument. */
5306 *(inf->hashcodes)++ = ha;
5307
5308 /* And store it in the struct so that we can put it in the hash table
5309 later. */
5310 h->u.elf_hash_value = ha;
5311
5312 if (alc != NULL)
5313 free (alc);
5314
5315 return TRUE;
5316}
5317
5318struct collect_gnu_hash_codes
5319{
5320 bfd *output_bfd;
5321 const struct elf_backend_data *bed;
5322 unsigned long int nsyms;
5323 unsigned long int maskbits;
5324 unsigned long int *hashcodes;
5325 unsigned long int *hashval;
5326 unsigned long int *indx;
5327 unsigned long int *counts;
5328 bfd_vma *bitmask;
5329 bfd_byte *contents;
5330 long int min_dynindx;
5331 unsigned long int bucketcount;
5332 unsigned long int symindx;
5333 long int local_indx;
5334 long int shift1, shift2;
5335 unsigned long int mask;
5336 bfd_boolean error;
5337};
5338
5339/* This function will be called though elf_link_hash_traverse to store
5340 all hash value of the exported symbols in an array. */
5341
5342static bfd_boolean
5343elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5344{
5345 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5346 const char *name;
5347 unsigned long ha;
5348 char *alc = NULL;
5349
5350 /* Ignore indirect symbols. These are added by the versioning code. */
5351 if (h->dynindx == -1)
5352 return TRUE;
5353
5354 /* Ignore also local symbols and undefined symbols. */
5355 if (! (*s->bed->elf_hash_symbol) (h))
5356 return TRUE;
5357
5358 name = h->root.root.string;
5359 if (h->versioned >= versioned)
5360 {
5361 char *p = strchr (name, ELF_VER_CHR);
5362 if (p != NULL)
5363 {
5364 alc = (char *) bfd_malloc (p - name + 1);
5365 if (alc == NULL)
5366 {
5367 s->error = TRUE;
5368 return FALSE;
5369 }
5370 memcpy (alc, name, p - name);
5371 alc[p - name] = '\0';
5372 name = alc;
5373 }
5374 }
5375
5376 /* Compute the hash value. */
5377 ha = bfd_elf_gnu_hash (name);
5378
5379 /* Store the found hash value in the array for compute_bucket_count,
5380 and also for .dynsym reordering purposes. */
5381 s->hashcodes[s->nsyms] = ha;
5382 s->hashval[h->dynindx] = ha;
5383 ++s->nsyms;
5384 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5385 s->min_dynindx = h->dynindx;
5386
5387 if (alc != NULL)
5388 free (alc);
5389
5390 return TRUE;
5391}
5392
5393/* This function will be called though elf_link_hash_traverse to do
5394 final dynaminc symbol renumbering. */
5395
5396static bfd_boolean
5397elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5398{
5399 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5400 unsigned long int bucket;
5401 unsigned long int val;
5402
5403 /* Ignore indirect symbols. */
5404 if (h->dynindx == -1)
5405 return TRUE;
5406
5407 /* Ignore also local symbols and undefined symbols. */
5408 if (! (*s->bed->elf_hash_symbol) (h))
5409 {
5410 if (h->dynindx >= s->min_dynindx)
5411 h->dynindx = s->local_indx++;
5412 return TRUE;
5413 }
5414
5415 bucket = s->hashval[h->dynindx] % s->bucketcount;
5416 val = (s->hashval[h->dynindx] >> s->shift1)
5417 & ((s->maskbits >> s->shift1) - 1);
5418 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5419 s->bitmask[val]
5420 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5421 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5422 if (s->counts[bucket] == 1)
5423 /* Last element terminates the chain. */
5424 val |= 1;
5425 bfd_put_32 (s->output_bfd, val,
5426 s->contents + (s->indx[bucket] - s->symindx) * 4);
5427 --s->counts[bucket];
5428 h->dynindx = s->indx[bucket]++;
5429 return TRUE;
5430}
5431
5432/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5433
5434bfd_boolean
5435_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5436{
5437 return !(h->forced_local
5438 || h->root.type == bfd_link_hash_undefined
5439 || h->root.type == bfd_link_hash_undefweak
5440 || ((h->root.type == bfd_link_hash_defined
5441 || h->root.type == bfd_link_hash_defweak)
5442 && h->root.u.def.section->output_section == NULL));
5443}
5444
5445/* Array used to determine the number of hash table buckets to use
5446 based on the number of symbols there are. If there are fewer than
5447 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5448 fewer than 37 we use 17 buckets, and so forth. We never use more
5449 than 32771 buckets. */
5450
5451static const size_t elf_buckets[] =
5452{
5453 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5454 16411, 32771, 0
5455};
5456
5457/* Compute bucket count for hashing table. We do not use a static set
5458 of possible tables sizes anymore. Instead we determine for all
5459 possible reasonable sizes of the table the outcome (i.e., the
5460 number of collisions etc) and choose the best solution. The
5461 weighting functions are not too simple to allow the table to grow
5462 without bounds. Instead one of the weighting factors is the size.
5463 Therefore the result is always a good payoff between few collisions
5464 (= short chain lengths) and table size. */
5465static size_t
5466compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5467 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5468 unsigned long int nsyms,
5469 int gnu_hash)
5470{
5471 size_t best_size = 0;
5472 unsigned long int i;
5473
5474 /* We have a problem here. The following code to optimize the table
5475 size requires an integer type with more the 32 bits. If
5476 BFD_HOST_U_64_BIT is set we know about such a type. */
5477#ifdef BFD_HOST_U_64_BIT
5478 if (info->optimize)
5479 {
5480 size_t minsize;
5481 size_t maxsize;
5482 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5483 bfd *dynobj = elf_hash_table (info)->dynobj;
5484 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5485 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5486 unsigned long int *counts;
5487 bfd_size_type amt;
5488 unsigned int no_improvement_count = 0;
5489
5490 /* Possible optimization parameters: if we have NSYMS symbols we say
5491 that the hashing table must at least have NSYMS/4 and at most
5492 2*NSYMS buckets. */
5493 minsize = nsyms / 4;
5494 if (minsize == 0)
5495 minsize = 1;
5496 best_size = maxsize = nsyms * 2;
5497 if (gnu_hash)
5498 {
5499 if (minsize < 2)
5500 minsize = 2;
5501 if ((best_size & 31) == 0)
5502 ++best_size;
5503 }
5504
5505 /* Create array where we count the collisions in. We must use bfd_malloc
5506 since the size could be large. */
5507 amt = maxsize;
5508 amt *= sizeof (unsigned long int);
5509 counts = (unsigned long int *) bfd_malloc (amt);
5510 if (counts == NULL)
5511 return 0;
5512
5513 /* Compute the "optimal" size for the hash table. The criteria is a
5514 minimal chain length. The minor criteria is (of course) the size
5515 of the table. */
5516 for (i = minsize; i < maxsize; ++i)
5517 {
5518 /* Walk through the array of hashcodes and count the collisions. */
5519 BFD_HOST_U_64_BIT max;
5520 unsigned long int j;
5521 unsigned long int fact;
5522
5523 if (gnu_hash && (i & 31) == 0)
5524 continue;
5525
5526 memset (counts, '\0', i * sizeof (unsigned long int));
5527
5528 /* Determine how often each hash bucket is used. */
5529 for (j = 0; j < nsyms; ++j)
5530 ++counts[hashcodes[j] % i];
5531
5532 /* For the weight function we need some information about the
5533 pagesize on the target. This is information need not be 100%
5534 accurate. Since this information is not available (so far) we
5535 define it here to a reasonable default value. If it is crucial
5536 to have a better value some day simply define this value. */
5537# ifndef BFD_TARGET_PAGESIZE
5538# define BFD_TARGET_PAGESIZE (4096)
5539# endif
5540
5541 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5542 and the chains. */
5543 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5544
5545# if 1
5546 /* Variant 1: optimize for short chains. We add the squares
5547 of all the chain lengths (which favors many small chain
5548 over a few long chains). */
5549 for (j = 0; j < i; ++j)
5550 max += counts[j] * counts[j];
5551
5552 /* This adds penalties for the overall size of the table. */
5553 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5554 max *= fact * fact;
5555# else
5556 /* Variant 2: Optimize a lot more for small table. Here we
5557 also add squares of the size but we also add penalties for
5558 empty slots (the +1 term). */
5559 for (j = 0; j < i; ++j)
5560 max += (1 + counts[j]) * (1 + counts[j]);
5561
5562 /* The overall size of the table is considered, but not as
5563 strong as in variant 1, where it is squared. */
5564 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5565 max *= fact;
5566# endif
5567
5568 /* Compare with current best results. */
5569 if (max < best_chlen)
5570 {
5571 best_chlen = max;
5572 best_size = i;
5573 no_improvement_count = 0;
5574 }
5575 /* PR 11843: Avoid futile long searches for the best bucket size
5576 when there are a large number of symbols. */
5577 else if (++no_improvement_count == 100)
5578 break;
5579 }
5580
5581 free (counts);
5582 }
5583 else
5584#endif /* defined (BFD_HOST_U_64_BIT) */
5585 {
5586 /* This is the fallback solution if no 64bit type is available or if we
5587 are not supposed to spend much time on optimizations. We select the
5588 bucket count using a fixed set of numbers. */
5589 for (i = 0; elf_buckets[i] != 0; i++)
5590 {
5591 best_size = elf_buckets[i];
5592 if (nsyms < elf_buckets[i + 1])
5593 break;
5594 }
5595 if (gnu_hash && best_size < 2)
5596 best_size = 2;
5597 }
5598
5599 return best_size;
5600}
5601
5602/* Size any SHT_GROUP section for ld -r. */
5603
5604bfd_boolean
5605_bfd_elf_size_group_sections (struct bfd_link_info *info)
5606{
5607 bfd *ibfd;
5608
5609 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5610 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5611 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5612 return FALSE;
5613 return TRUE;
5614}
5615
5616/* Set a default stack segment size. The value in INFO wins. If it
5617 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5618 undefined it is initialized. */
5619
5620bfd_boolean
5621bfd_elf_stack_segment_size (bfd *output_bfd,
5622 struct bfd_link_info *info,
5623 const char *legacy_symbol,
5624 bfd_vma default_size)
5625{
5626 struct elf_link_hash_entry *h = NULL;
5627
5628 /* Look for legacy symbol. */
5629 if (legacy_symbol)
5630 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5631 FALSE, FALSE, FALSE);
5632 if (h && (h->root.type == bfd_link_hash_defined
5633 || h->root.type == bfd_link_hash_defweak)
5634 && h->def_regular
5635 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5636 {
5637 /* The symbol has no type if specified on the command line. */
5638 h->type = STT_OBJECT;
5639 if (info->stacksize)
5640 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5641 output_bfd, legacy_symbol);
5642 else if (h->root.u.def.section != bfd_abs_section_ptr)
5643 (*_bfd_error_handler) (_("%B: %s not absolute"),
5644 output_bfd, legacy_symbol);
5645 else
5646 info->stacksize = h->root.u.def.value;
5647 }
5648
5649 if (!info->stacksize)
5650 /* If the user didn't set a size, or explicitly inhibit the
5651 size, set it now. */
5652 info->stacksize = default_size;
5653
5654 /* Provide the legacy symbol, if it is referenced. */
5655 if (h && (h->root.type == bfd_link_hash_undefined
5656 || h->root.type == bfd_link_hash_undefweak))
5657 {
5658 struct bfd_link_hash_entry *bh = NULL;
5659
5660 if (!(_bfd_generic_link_add_one_symbol
5661 (info, output_bfd, legacy_symbol,
5662 BSF_GLOBAL, bfd_abs_section_ptr,
5663 info->stacksize >= 0 ? info->stacksize : 0,
5664 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5665 return FALSE;
5666
5667 h = (struct elf_link_hash_entry *) bh;
5668 h->def_regular = 1;
5669 h->type = STT_OBJECT;
5670 }
5671
5672 return TRUE;
5673}
5674
5675/* Set up the sizes and contents of the ELF dynamic sections. This is
5676 called by the ELF linker emulation before_allocation routine. We
5677 must set the sizes of the sections before the linker sets the
5678 addresses of the various sections. */
5679
5680bfd_boolean
5681bfd_elf_size_dynamic_sections (bfd *output_bfd,
5682 const char *soname,
5683 const char *rpath,
5684 const char *filter_shlib,
5685 const char *audit,
5686 const char *depaudit,
5687 const char * const *auxiliary_filters,
5688 struct bfd_link_info *info,
5689 asection **sinterpptr)
5690{
5691 bfd_size_type soname_indx;
5692 bfd *dynobj;
5693 const struct elf_backend_data *bed;
5694 struct elf_info_failed asvinfo;
5695
5696 *sinterpptr = NULL;
5697
5698 soname_indx = (bfd_size_type) -1;
5699
5700 if (!is_elf_hash_table (info->hash))
5701 return TRUE;
5702
5703 bed = get_elf_backend_data (output_bfd);
5704
5705 /* Any syms created from now on start with -1 in
5706 got.refcount/offset and plt.refcount/offset. */
5707 elf_hash_table (info)->init_got_refcount
5708 = elf_hash_table (info)->init_got_offset;
5709 elf_hash_table (info)->init_plt_refcount
5710 = elf_hash_table (info)->init_plt_offset;
5711
5712 if (bfd_link_relocatable (info)
5713 && !_bfd_elf_size_group_sections (info))
5714 return FALSE;
5715
5716 /* The backend may have to create some sections regardless of whether
5717 we're dynamic or not. */
5718 if (bed->elf_backend_always_size_sections
5719 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5720 return FALSE;
5721
5722 /* Determine any GNU_STACK segment requirements, after the backend
5723 has had a chance to set a default segment size. */
5724 if (info->execstack)
5725 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5726 else if (info->noexecstack)
5727 elf_stack_flags (output_bfd) = PF_R | PF_W;
5728 else
5729 {
5730 bfd *inputobj;
5731 asection *notesec = NULL;
5732 int exec = 0;
5733
5734 for (inputobj = info->input_bfds;
5735 inputobj;
5736 inputobj = inputobj->link.next)
5737 {
5738 asection *s;
5739
5740 if (inputobj->flags
5741 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5742 continue;
5743 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5744 if (s)
5745 {
5746 if (s->flags & SEC_CODE)
5747 exec = PF_X;
5748 notesec = s;
5749 }
5750 else if (bed->default_execstack)
5751 exec = PF_X;
5752 }
5753 if (notesec || info->stacksize > 0)
5754 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5755 if (notesec && exec && bfd_link_relocatable (info)
5756 && notesec->output_section != bfd_abs_section_ptr)
5757 notesec->output_section->flags |= SEC_CODE;
5758 }
5759
5760 dynobj = elf_hash_table (info)->dynobj;
5761
5762 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5763 {
5764 struct elf_info_failed eif;
5765 struct elf_link_hash_entry *h;
5766 asection *dynstr;
5767 struct bfd_elf_version_tree *t;
5768 struct bfd_elf_version_expr *d;
5769 asection *s;
5770 bfd_boolean all_defined;
5771
5772 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5773 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5774
5775 if (soname != NULL)
5776 {
5777 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5778 soname, TRUE);
5779 if (soname_indx == (bfd_size_type) -1
5780 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5781 return FALSE;
5782 }
5783
5784 if (info->symbolic)
5785 {
5786 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5787 return FALSE;
5788 info->flags |= DF_SYMBOLIC;
5789 }
5790
5791 if (rpath != NULL)
5792 {
5793 bfd_size_type indx;
5794 bfd_vma tag;
5795
5796 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5797 TRUE);
5798 if (indx == (bfd_size_type) -1)
5799 return FALSE;
5800
5801 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5802 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5803 return FALSE;
5804 }
5805
5806 if (filter_shlib != NULL)
5807 {
5808 bfd_size_type indx;
5809
5810 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5811 filter_shlib, TRUE);
5812 if (indx == (bfd_size_type) -1
5813 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5814 return FALSE;
5815 }
5816
5817 if (auxiliary_filters != NULL)
5818 {
5819 const char * const *p;
5820
5821 for (p = auxiliary_filters; *p != NULL; p++)
5822 {
5823 bfd_size_type indx;
5824
5825 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5826 *p, TRUE);
5827 if (indx == (bfd_size_type) -1
5828 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5829 return FALSE;
5830 }
5831 }
5832
5833 if (audit != NULL)
5834 {
5835 bfd_size_type indx;
5836
5837 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5838 TRUE);
5839 if (indx == (bfd_size_type) -1
5840 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5841 return FALSE;
5842 }
5843
5844 if (depaudit != NULL)
5845 {
5846 bfd_size_type indx;
5847
5848 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5849 TRUE);
5850 if (indx == (bfd_size_type) -1
5851 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5852 return FALSE;
5853 }
5854
5855 eif.info = info;
5856 eif.failed = FALSE;
5857
5858 /* If we are supposed to export all symbols into the dynamic symbol
5859 table (this is not the normal case), then do so. */
5860 if (info->export_dynamic
5861 || (bfd_link_executable (info) && info->dynamic))
5862 {
5863 elf_link_hash_traverse (elf_hash_table (info),
5864 _bfd_elf_export_symbol,
5865 &eif);
5866 if (eif.failed)
5867 return FALSE;
5868 }
5869
5870 /* Make all global versions with definition. */
5871 for (t = info->version_info; t != NULL; t = t->next)
5872 for (d = t->globals.list; d != NULL; d = d->next)
5873 if (!d->symver && d->literal)
5874 {
5875 const char *verstr, *name;
5876 size_t namelen, verlen, newlen;
5877 char *newname, *p, leading_char;
5878 struct elf_link_hash_entry *newh;
5879
5880 leading_char = bfd_get_symbol_leading_char (output_bfd);
5881 name = d->pattern;
5882 namelen = strlen (name) + (leading_char != '\0');
5883 verstr = t->name;
5884 verlen = strlen (verstr);
5885 newlen = namelen + verlen + 3;
5886
5887 newname = (char *) bfd_malloc (newlen);
5888 if (newname == NULL)
5889 return FALSE;
5890 newname[0] = leading_char;
5891 memcpy (newname + (leading_char != '\0'), name, namelen);
5892
5893 /* Check the hidden versioned definition. */
5894 p = newname + namelen;
5895 *p++ = ELF_VER_CHR;
5896 memcpy (p, verstr, verlen + 1);
5897 newh = elf_link_hash_lookup (elf_hash_table (info),
5898 newname, FALSE, FALSE,
5899 FALSE);
5900 if (newh == NULL
5901 || (newh->root.type != bfd_link_hash_defined
5902 && newh->root.type != bfd_link_hash_defweak))
5903 {
5904 /* Check the default versioned definition. */
5905 *p++ = ELF_VER_CHR;
5906 memcpy (p, verstr, verlen + 1);
5907 newh = elf_link_hash_lookup (elf_hash_table (info),
5908 newname, FALSE, FALSE,
5909 FALSE);
5910 }
5911 free (newname);
5912
5913 /* Mark this version if there is a definition and it is
5914 not defined in a shared object. */
5915 if (newh != NULL
5916 && !newh->def_dynamic
5917 && (newh->root.type == bfd_link_hash_defined
5918 || newh->root.type == bfd_link_hash_defweak))
5919 d->symver = 1;
5920 }
5921
5922 /* Attach all the symbols to their version information. */
5923 asvinfo.info = info;
5924 asvinfo.failed = FALSE;
5925
5926 elf_link_hash_traverse (elf_hash_table (info),
5927 _bfd_elf_link_assign_sym_version,
5928 &asvinfo);
5929 if (asvinfo.failed)
5930 return FALSE;
5931
5932 if (!info->allow_undefined_version)
5933 {
5934 /* Check if all global versions have a definition. */
5935 all_defined = TRUE;
5936 for (t = info->version_info; t != NULL; t = t->next)
5937 for (d = t->globals.list; d != NULL; d = d->next)
5938 if (d->literal && !d->symver && !d->script)
5939 {
5940 (*_bfd_error_handler)
5941 (_("%s: undefined version: %s"),
5942 d->pattern, t->name);
5943 all_defined = FALSE;
5944 }
5945
5946 if (!all_defined)
5947 {
5948 bfd_set_error (bfd_error_bad_value);
5949 return FALSE;
5950 }
5951 }
5952
5953 /* Find all symbols which were defined in a dynamic object and make
5954 the backend pick a reasonable value for them. */
5955 elf_link_hash_traverse (elf_hash_table (info),
5956 _bfd_elf_adjust_dynamic_symbol,
5957 &eif);
5958 if (eif.failed)
5959 return FALSE;
5960
5961 /* Add some entries to the .dynamic section. We fill in some of the
5962 values later, in bfd_elf_final_link, but we must add the entries
5963 now so that we know the final size of the .dynamic section. */
5964
5965 /* If there are initialization and/or finalization functions to
5966 call then add the corresponding DT_INIT/DT_FINI entries. */
5967 h = (info->init_function
5968 ? elf_link_hash_lookup (elf_hash_table (info),
5969 info->init_function, FALSE,
5970 FALSE, FALSE)
5971 : NULL);
5972 if (h != NULL
5973 && (h->ref_regular
5974 || h->def_regular))
5975 {
5976 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5977 return FALSE;
5978 }
5979 h = (info->fini_function
5980 ? elf_link_hash_lookup (elf_hash_table (info),
5981 info->fini_function, FALSE,
5982 FALSE, FALSE)
5983 : NULL);
5984 if (h != NULL
5985 && (h->ref_regular
5986 || h->def_regular))
5987 {
5988 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5989 return FALSE;
5990 }
5991
5992 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5993 if (s != NULL && s->linker_has_input)
5994 {
5995 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5996 if (! bfd_link_executable (info))
5997 {
5998 bfd *sub;
5999 asection *o;
6000
6001 for (sub = info->input_bfds; sub != NULL;
6002 sub = sub->link.next)
6003 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6004 for (o = sub->sections; o != NULL; o = o->next)
6005 if (elf_section_data (o)->this_hdr.sh_type
6006 == SHT_PREINIT_ARRAY)
6007 {
6008 (*_bfd_error_handler)
6009 (_("%B: .preinit_array section is not allowed in DSO"),
6010 sub);
6011 break;
6012 }
6013
6014 bfd_set_error (bfd_error_nonrepresentable_section);
6015 return FALSE;
6016 }
6017
6018 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6019 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6020 return FALSE;
6021 }
6022 s = bfd_get_section_by_name (output_bfd, ".init_array");
6023 if (s != NULL && s->linker_has_input)
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6027 return FALSE;
6028 }
6029 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6030 if (s != NULL && s->linker_has_input)
6031 {
6032 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6033 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6034 return FALSE;
6035 }
6036
6037 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6038 /* If .dynstr is excluded from the link, we don't want any of
6039 these tags. Strictly, we should be checking each section
6040 individually; This quick check covers for the case where
6041 someone does a /DISCARD/ : { *(*) }. */
6042 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6043 {
6044 bfd_size_type strsize;
6045
6046 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6047 if ((info->emit_hash
6048 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6049 || (info->emit_gnu_hash
6050 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6051 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6052 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6053 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6054 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6055 bed->s->sizeof_sym))
6056 return FALSE;
6057 }
6058 }
6059
6060 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6061 return FALSE;
6062
6063 /* The backend must work out the sizes of all the other dynamic
6064 sections. */
6065 if (dynobj != NULL
6066 && bed->elf_backend_size_dynamic_sections != NULL
6067 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6068 return FALSE;
6069
6070 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6071 {
6072 unsigned long section_sym_count;
6073 struct bfd_elf_version_tree *verdefs;
6074 asection *s;
6075
6076 /* Set up the version definition section. */
6077 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6078 BFD_ASSERT (s != NULL);
6079
6080 /* We may have created additional version definitions if we are
6081 just linking a regular application. */
6082 verdefs = info->version_info;
6083
6084 /* Skip anonymous version tag. */
6085 if (verdefs != NULL && verdefs->vernum == 0)
6086 verdefs = verdefs->next;
6087
6088 if (verdefs == NULL && !info->create_default_symver)
6089 s->flags |= SEC_EXCLUDE;
6090 else
6091 {
6092 unsigned int cdefs;
6093 bfd_size_type size;
6094 struct bfd_elf_version_tree *t;
6095 bfd_byte *p;
6096 Elf_Internal_Verdef def;
6097 Elf_Internal_Verdaux defaux;
6098 struct bfd_link_hash_entry *bh;
6099 struct elf_link_hash_entry *h;
6100 const char *name;
6101
6102 cdefs = 0;
6103 size = 0;
6104
6105 /* Make space for the base version. */
6106 size += sizeof (Elf_External_Verdef);
6107 size += sizeof (Elf_External_Verdaux);
6108 ++cdefs;
6109
6110 /* Make space for the default version. */
6111 if (info->create_default_symver)
6112 {
6113 size += sizeof (Elf_External_Verdef);
6114 ++cdefs;
6115 }
6116
6117 for (t = verdefs; t != NULL; t = t->next)
6118 {
6119 struct bfd_elf_version_deps *n;
6120
6121 /* Don't emit base version twice. */
6122 if (t->vernum == 0)
6123 continue;
6124
6125 size += sizeof (Elf_External_Verdef);
6126 size += sizeof (Elf_External_Verdaux);
6127 ++cdefs;
6128
6129 for (n = t->deps; n != NULL; n = n->next)
6130 size += sizeof (Elf_External_Verdaux);
6131 }
6132
6133 s->size = size;
6134 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6135 if (s->contents == NULL && s->size != 0)
6136 return FALSE;
6137
6138 /* Fill in the version definition section. */
6139
6140 p = s->contents;
6141
6142 def.vd_version = VER_DEF_CURRENT;
6143 def.vd_flags = VER_FLG_BASE;
6144 def.vd_ndx = 1;
6145 def.vd_cnt = 1;
6146 if (info->create_default_symver)
6147 {
6148 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6149 def.vd_next = sizeof (Elf_External_Verdef);
6150 }
6151 else
6152 {
6153 def.vd_aux = sizeof (Elf_External_Verdef);
6154 def.vd_next = (sizeof (Elf_External_Verdef)
6155 + sizeof (Elf_External_Verdaux));
6156 }
6157
6158 if (soname_indx != (bfd_size_type) -1)
6159 {
6160 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6161 soname_indx);
6162 def.vd_hash = bfd_elf_hash (soname);
6163 defaux.vda_name = soname_indx;
6164 name = soname;
6165 }
6166 else
6167 {
6168 bfd_size_type indx;
6169
6170 name = lbasename (output_bfd->filename);
6171 def.vd_hash = bfd_elf_hash (name);
6172 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6173 name, FALSE);
6174 if (indx == (bfd_size_type) -1)
6175 return FALSE;
6176 defaux.vda_name = indx;
6177 }
6178 defaux.vda_next = 0;
6179
6180 _bfd_elf_swap_verdef_out (output_bfd, &def,
6181 (Elf_External_Verdef *) p);
6182 p += sizeof (Elf_External_Verdef);
6183 if (info->create_default_symver)
6184 {
6185 /* Add a symbol representing this version. */
6186 bh = NULL;
6187 if (! (_bfd_generic_link_add_one_symbol
6188 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6189 0, NULL, FALSE,
6190 get_elf_backend_data (dynobj)->collect, &bh)))
6191 return FALSE;
6192 h = (struct elf_link_hash_entry *) bh;
6193 h->non_elf = 0;
6194 h->def_regular = 1;
6195 h->type = STT_OBJECT;
6196 h->verinfo.vertree = NULL;
6197
6198 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6199 return FALSE;
6200
6201 /* Create a duplicate of the base version with the same
6202 aux block, but different flags. */
6203 def.vd_flags = 0;
6204 def.vd_ndx = 2;
6205 def.vd_aux = sizeof (Elf_External_Verdef);
6206 if (verdefs)
6207 def.vd_next = (sizeof (Elf_External_Verdef)
6208 + sizeof (Elf_External_Verdaux));
6209 else
6210 def.vd_next = 0;
6211 _bfd_elf_swap_verdef_out (output_bfd, &def,
6212 (Elf_External_Verdef *) p);
6213 p += sizeof (Elf_External_Verdef);
6214 }
6215 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6216 (Elf_External_Verdaux *) p);
6217 p += sizeof (Elf_External_Verdaux);
6218
6219 for (t = verdefs; t != NULL; t = t->next)
6220 {
6221 unsigned int cdeps;
6222 struct bfd_elf_version_deps *n;
6223
6224 /* Don't emit the base version twice. */
6225 if (t->vernum == 0)
6226 continue;
6227
6228 cdeps = 0;
6229 for (n = t->deps; n != NULL; n = n->next)
6230 ++cdeps;
6231
6232 /* Add a symbol representing this version. */
6233 bh = NULL;
6234 if (! (_bfd_generic_link_add_one_symbol
6235 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6236 0, NULL, FALSE,
6237 get_elf_backend_data (dynobj)->collect, &bh)))
6238 return FALSE;
6239 h = (struct elf_link_hash_entry *) bh;
6240 h->non_elf = 0;
6241 h->def_regular = 1;
6242 h->type = STT_OBJECT;
6243 h->verinfo.vertree = t;
6244
6245 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6246 return FALSE;
6247
6248 def.vd_version = VER_DEF_CURRENT;
6249 def.vd_flags = 0;
6250 if (t->globals.list == NULL
6251 && t->locals.list == NULL
6252 && ! t->used)
6253 def.vd_flags |= VER_FLG_WEAK;
6254 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6255 def.vd_cnt = cdeps + 1;
6256 def.vd_hash = bfd_elf_hash (t->name);
6257 def.vd_aux = sizeof (Elf_External_Verdef);
6258 def.vd_next = 0;
6259
6260 /* If a basever node is next, it *must* be the last node in
6261 the chain, otherwise Verdef construction breaks. */
6262 if (t->next != NULL && t->next->vernum == 0)
6263 BFD_ASSERT (t->next->next == NULL);
6264
6265 if (t->next != NULL && t->next->vernum != 0)
6266 def.vd_next = (sizeof (Elf_External_Verdef)
6267 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6268
6269 _bfd_elf_swap_verdef_out (output_bfd, &def,
6270 (Elf_External_Verdef *) p);
6271 p += sizeof (Elf_External_Verdef);
6272
6273 defaux.vda_name = h->dynstr_index;
6274 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6275 h->dynstr_index);
6276 defaux.vda_next = 0;
6277 if (t->deps != NULL)
6278 defaux.vda_next = sizeof (Elf_External_Verdaux);
6279 t->name_indx = defaux.vda_name;
6280
6281 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6282 (Elf_External_Verdaux *) p);
6283 p += sizeof (Elf_External_Verdaux);
6284
6285 for (n = t->deps; n != NULL; n = n->next)
6286 {
6287 if (n->version_needed == NULL)
6288 {
6289 /* This can happen if there was an error in the
6290 version script. */
6291 defaux.vda_name = 0;
6292 }
6293 else
6294 {
6295 defaux.vda_name = n->version_needed->name_indx;
6296 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6297 defaux.vda_name);
6298 }
6299 if (n->next == NULL)
6300 defaux.vda_next = 0;
6301 else
6302 defaux.vda_next = sizeof (Elf_External_Verdaux);
6303
6304 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6305 (Elf_External_Verdaux *) p);
6306 p += sizeof (Elf_External_Verdaux);
6307 }
6308 }
6309
6310 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6311 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6312 return FALSE;
6313
6314 elf_tdata (output_bfd)->cverdefs = cdefs;
6315 }
6316
6317 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6318 {
6319 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6320 return FALSE;
6321 }
6322 else if (info->flags & DF_BIND_NOW)
6323 {
6324 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6325 return FALSE;
6326 }
6327
6328 if (info->flags_1)
6329 {
6330 if (bfd_link_executable (info))
6331 info->flags_1 &= ~ (DF_1_INITFIRST
6332 | DF_1_NODELETE
6333 | DF_1_NOOPEN);
6334 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6335 return FALSE;
6336 }
6337
6338 /* Work out the size of the version reference section. */
6339
6340 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6341 BFD_ASSERT (s != NULL);
6342 {
6343 struct elf_find_verdep_info sinfo;
6344
6345 sinfo.info = info;
6346 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6347 if (sinfo.vers == 0)
6348 sinfo.vers = 1;
6349 sinfo.failed = FALSE;
6350
6351 elf_link_hash_traverse (elf_hash_table (info),
6352 _bfd_elf_link_find_version_dependencies,
6353 &sinfo);
6354 if (sinfo.failed)
6355 return FALSE;
6356
6357 if (elf_tdata (output_bfd)->verref == NULL)
6358 s->flags |= SEC_EXCLUDE;
6359 else
6360 {
6361 Elf_Internal_Verneed *t;
6362 unsigned int size;
6363 unsigned int crefs;
6364 bfd_byte *p;
6365
6366 /* Build the version dependency section. */
6367 size = 0;
6368 crefs = 0;
6369 for (t = elf_tdata (output_bfd)->verref;
6370 t != NULL;
6371 t = t->vn_nextref)
6372 {
6373 Elf_Internal_Vernaux *a;
6374
6375 size += sizeof (Elf_External_Verneed);
6376 ++crefs;
6377 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6378 size += sizeof (Elf_External_Vernaux);
6379 }
6380
6381 s->size = size;
6382 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6383 if (s->contents == NULL)
6384 return FALSE;
6385
6386 p = s->contents;
6387 for (t = elf_tdata (output_bfd)->verref;
6388 t != NULL;
6389 t = t->vn_nextref)
6390 {
6391 unsigned int caux;
6392 Elf_Internal_Vernaux *a;
6393 bfd_size_type indx;
6394
6395 caux = 0;
6396 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6397 ++caux;
6398
6399 t->vn_version = VER_NEED_CURRENT;
6400 t->vn_cnt = caux;
6401 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6402 elf_dt_name (t->vn_bfd) != NULL
6403 ? elf_dt_name (t->vn_bfd)
6404 : lbasename (t->vn_bfd->filename),
6405 FALSE);
6406 if (indx == (bfd_size_type) -1)
6407 return FALSE;
6408 t->vn_file = indx;
6409 t->vn_aux = sizeof (Elf_External_Verneed);
6410 if (t->vn_nextref == NULL)
6411 t->vn_next = 0;
6412 else
6413 t->vn_next = (sizeof (Elf_External_Verneed)
6414 + caux * sizeof (Elf_External_Vernaux));
6415
6416 _bfd_elf_swap_verneed_out (output_bfd, t,
6417 (Elf_External_Verneed *) p);
6418 p += sizeof (Elf_External_Verneed);
6419
6420 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6421 {
6422 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6423 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6424 a->vna_nodename, FALSE);
6425 if (indx == (bfd_size_type) -1)
6426 return FALSE;
6427 a->vna_name = indx;
6428 if (a->vna_nextptr == NULL)
6429 a->vna_next = 0;
6430 else
6431 a->vna_next = sizeof (Elf_External_Vernaux);
6432
6433 _bfd_elf_swap_vernaux_out (output_bfd, a,
6434 (Elf_External_Vernaux *) p);
6435 p += sizeof (Elf_External_Vernaux);
6436 }
6437 }
6438
6439 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6440 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6441 return FALSE;
6442
6443 elf_tdata (output_bfd)->cverrefs = crefs;
6444 }
6445 }
6446
6447 if ((elf_tdata (output_bfd)->cverrefs == 0
6448 && elf_tdata (output_bfd)->cverdefs == 0)
6449 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6450 &section_sym_count) == 0)
6451 {
6452 s = bfd_get_linker_section (dynobj, ".gnu.version");
6453 s->flags |= SEC_EXCLUDE;
6454 }
6455 }
6456 return TRUE;
6457}
6458
6459/* Find the first non-excluded output section. We'll use its
6460 section symbol for some emitted relocs. */
6461void
6462_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6463{
6464 asection *s;
6465
6466 for (s = output_bfd->sections; s != NULL; s = s->next)
6467 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6468 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6469 {
6470 elf_hash_table (info)->text_index_section = s;
6471 break;
6472 }
6473}
6474
6475/* Find two non-excluded output sections, one for code, one for data.
6476 We'll use their section symbols for some emitted relocs. */
6477void
6478_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6479{
6480 asection *s;
6481
6482 /* Data first, since setting text_index_section changes
6483 _bfd_elf_link_omit_section_dynsym. */
6484 for (s = output_bfd->sections; s != NULL; s = s->next)
6485 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6486 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6487 {
6488 elf_hash_table (info)->data_index_section = s;
6489 break;
6490 }
6491
6492 for (s = output_bfd->sections; s != NULL; s = s->next)
6493 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6494 == (SEC_ALLOC | SEC_READONLY))
6495 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6496 {
6497 elf_hash_table (info)->text_index_section = s;
6498 break;
6499 }
6500
6501 if (elf_hash_table (info)->text_index_section == NULL)
6502 elf_hash_table (info)->text_index_section
6503 = elf_hash_table (info)->data_index_section;
6504}
6505
6506bfd_boolean
6507bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6508{
6509 const struct elf_backend_data *bed;
6510
6511 if (!is_elf_hash_table (info->hash))
6512 return TRUE;
6513
6514 bed = get_elf_backend_data (output_bfd);
6515 (*bed->elf_backend_init_index_section) (output_bfd, info);
6516
6517 if (elf_hash_table (info)->dynamic_sections_created)
6518 {
6519 bfd *dynobj;
6520 asection *s;
6521 bfd_size_type dynsymcount;
6522 unsigned long section_sym_count;
6523 unsigned int dtagcount;
6524
6525 dynobj = elf_hash_table (info)->dynobj;
6526
6527 /* Assign dynsym indicies. In a shared library we generate a
6528 section symbol for each output section, which come first.
6529 Next come all of the back-end allocated local dynamic syms,
6530 followed by the rest of the global symbols. */
6531
6532 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6533 &section_sym_count);
6534
6535 /* Work out the size of the symbol version section. */
6536 s = bfd_get_linker_section (dynobj, ".gnu.version");
6537 BFD_ASSERT (s != NULL);
6538 if (dynsymcount != 0
6539 && (s->flags & SEC_EXCLUDE) == 0)
6540 {
6541 s->size = dynsymcount * sizeof (Elf_External_Versym);
6542 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6543 if (s->contents == NULL)
6544 return FALSE;
6545
6546 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6547 return FALSE;
6548 }
6549
6550 /* Set the size of the .dynsym and .hash sections. We counted
6551 the number of dynamic symbols in elf_link_add_object_symbols.
6552 We will build the contents of .dynsym and .hash when we build
6553 the final symbol table, because until then we do not know the
6554 correct value to give the symbols. We built the .dynstr
6555 section as we went along in elf_link_add_object_symbols. */
6556 s = elf_hash_table (info)->dynsym;
6557 BFD_ASSERT (s != NULL);
6558 s->size = dynsymcount * bed->s->sizeof_sym;
6559
6560 if (dynsymcount != 0)
6561 {
6562 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6563 if (s->contents == NULL)
6564 return FALSE;
6565
6566 /* The first entry in .dynsym is a dummy symbol.
6567 Clear all the section syms, in case we don't output them all. */
6568 ++section_sym_count;
6569 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6570 }
6571
6572 elf_hash_table (info)->bucketcount = 0;
6573
6574 /* Compute the size of the hashing table. As a side effect this
6575 computes the hash values for all the names we export. */
6576 if (info->emit_hash)
6577 {
6578 unsigned long int *hashcodes;
6579 struct hash_codes_info hashinf;
6580 bfd_size_type amt;
6581 unsigned long int nsyms;
6582 size_t bucketcount;
6583 size_t hash_entry_size;
6584
6585 /* Compute the hash values for all exported symbols. At the same
6586 time store the values in an array so that we could use them for
6587 optimizations. */
6588 amt = dynsymcount * sizeof (unsigned long int);
6589 hashcodes = (unsigned long int *) bfd_malloc (amt);
6590 if (hashcodes == NULL)
6591 return FALSE;
6592 hashinf.hashcodes = hashcodes;
6593 hashinf.error = FALSE;
6594
6595 /* Put all hash values in HASHCODES. */
6596 elf_link_hash_traverse (elf_hash_table (info),
6597 elf_collect_hash_codes, &hashinf);
6598 if (hashinf.error)
6599 {
6600 free (hashcodes);
6601 return FALSE;
6602 }
6603
6604 nsyms = hashinf.hashcodes - hashcodes;
6605 bucketcount
6606 = compute_bucket_count (info, hashcodes, nsyms, 0);
6607 free (hashcodes);
6608
6609 if (bucketcount == 0)
6610 return FALSE;
6611
6612 elf_hash_table (info)->bucketcount = bucketcount;
6613
6614 s = bfd_get_linker_section (dynobj, ".hash");
6615 BFD_ASSERT (s != NULL);
6616 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6617 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6618 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6619 if (s->contents == NULL)
6620 return FALSE;
6621
6622 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6623 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6624 s->contents + hash_entry_size);
6625 }
6626
6627 if (info->emit_gnu_hash)
6628 {
6629 size_t i, cnt;
6630 unsigned char *contents;
6631 struct collect_gnu_hash_codes cinfo;
6632 bfd_size_type amt;
6633 size_t bucketcount;
6634
6635 memset (&cinfo, 0, sizeof (cinfo));
6636
6637 /* Compute the hash values for all exported symbols. At the same
6638 time store the values in an array so that we could use them for
6639 optimizations. */
6640 amt = dynsymcount * 2 * sizeof (unsigned long int);
6641 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6642 if (cinfo.hashcodes == NULL)
6643 return FALSE;
6644
6645 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6646 cinfo.min_dynindx = -1;
6647 cinfo.output_bfd = output_bfd;
6648 cinfo.bed = bed;
6649
6650 /* Put all hash values in HASHCODES. */
6651 elf_link_hash_traverse (elf_hash_table (info),
6652 elf_collect_gnu_hash_codes, &cinfo);
6653 if (cinfo.error)
6654 {
6655 free (cinfo.hashcodes);
6656 return FALSE;
6657 }
6658
6659 bucketcount
6660 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6661
6662 if (bucketcount == 0)
6663 {
6664 free (cinfo.hashcodes);
6665 return FALSE;
6666 }
6667
6668 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6669 BFD_ASSERT (s != NULL);
6670
6671 if (cinfo.nsyms == 0)
6672 {
6673 /* Empty .gnu.hash section is special. */
6674 BFD_ASSERT (cinfo.min_dynindx == -1);
6675 free (cinfo.hashcodes);
6676 s->size = 5 * 4 + bed->s->arch_size / 8;
6677 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6678 if (contents == NULL)
6679 return FALSE;
6680 s->contents = contents;
6681 /* 1 empty bucket. */
6682 bfd_put_32 (output_bfd, 1, contents);
6683 /* SYMIDX above the special symbol 0. */
6684 bfd_put_32 (output_bfd, 1, contents + 4);
6685 /* Just one word for bitmask. */
6686 bfd_put_32 (output_bfd, 1, contents + 8);
6687 /* Only hash fn bloom filter. */
6688 bfd_put_32 (output_bfd, 0, contents + 12);
6689 /* No hashes are valid - empty bitmask. */
6690 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6691 /* No hashes in the only bucket. */
6692 bfd_put_32 (output_bfd, 0,
6693 contents + 16 + bed->s->arch_size / 8);
6694 }
6695 else
6696 {
6697 unsigned long int maskwords, maskbitslog2, x;
6698 BFD_ASSERT (cinfo.min_dynindx != -1);
6699
6700 x = cinfo.nsyms;
6701 maskbitslog2 = 1;
6702 while ((x >>= 1) != 0)
6703 ++maskbitslog2;
6704 if (maskbitslog2 < 3)
6705 maskbitslog2 = 5;
6706 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6707 maskbitslog2 = maskbitslog2 + 3;
6708 else
6709 maskbitslog2 = maskbitslog2 + 2;
6710 if (bed->s->arch_size == 64)
6711 {
6712 if (maskbitslog2 == 5)
6713 maskbitslog2 = 6;
6714 cinfo.shift1 = 6;
6715 }
6716 else
6717 cinfo.shift1 = 5;
6718 cinfo.mask = (1 << cinfo.shift1) - 1;
6719 cinfo.shift2 = maskbitslog2;
6720 cinfo.maskbits = 1 << maskbitslog2;
6721 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6722 amt = bucketcount * sizeof (unsigned long int) * 2;
6723 amt += maskwords * sizeof (bfd_vma);
6724 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6725 if (cinfo.bitmask == NULL)
6726 {
6727 free (cinfo.hashcodes);
6728 return FALSE;
6729 }
6730
6731 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6732 cinfo.indx = cinfo.counts + bucketcount;
6733 cinfo.symindx = dynsymcount - cinfo.nsyms;
6734 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6735
6736 /* Determine how often each hash bucket is used. */
6737 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6738 for (i = 0; i < cinfo.nsyms; ++i)
6739 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6740
6741 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6742 if (cinfo.counts[i] != 0)
6743 {
6744 cinfo.indx[i] = cnt;
6745 cnt += cinfo.counts[i];
6746 }
6747 BFD_ASSERT (cnt == dynsymcount);
6748 cinfo.bucketcount = bucketcount;
6749 cinfo.local_indx = cinfo.min_dynindx;
6750
6751 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6752 s->size += cinfo.maskbits / 8;
6753 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6754 if (contents == NULL)
6755 {
6756 free (cinfo.bitmask);
6757 free (cinfo.hashcodes);
6758 return FALSE;
6759 }
6760
6761 s->contents = contents;
6762 bfd_put_32 (output_bfd, bucketcount, contents);
6763 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6764 bfd_put_32 (output_bfd, maskwords, contents + 8);
6765 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6766 contents += 16 + cinfo.maskbits / 8;
6767
6768 for (i = 0; i < bucketcount; ++i)
6769 {
6770 if (cinfo.counts[i] == 0)
6771 bfd_put_32 (output_bfd, 0, contents);
6772 else
6773 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6774 contents += 4;
6775 }
6776
6777 cinfo.contents = contents;
6778
6779 /* Renumber dynamic symbols, populate .gnu.hash section. */
6780 elf_link_hash_traverse (elf_hash_table (info),
6781 elf_renumber_gnu_hash_syms, &cinfo);
6782
6783 contents = s->contents + 16;
6784 for (i = 0; i < maskwords; ++i)
6785 {
6786 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6787 contents);
6788 contents += bed->s->arch_size / 8;
6789 }
6790
6791 free (cinfo.bitmask);
6792 free (cinfo.hashcodes);
6793 }
6794 }
6795
6796 s = bfd_get_linker_section (dynobj, ".dynstr");
6797 BFD_ASSERT (s != NULL);
6798
6799 elf_finalize_dynstr (output_bfd, info);
6800
6801 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6802
6803 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6804 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6805 return FALSE;
6806 }
6807
6808 return TRUE;
6809}
6810\f
6811/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6812
6813static void
6814merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6815 asection *sec)
6816{
6817 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6818 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6819}
6820
6821/* Finish SHF_MERGE section merging. */
6822
6823bfd_boolean
6824_bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6825{
6826 bfd *ibfd;
6827 asection *sec;
6828
6829 if (!is_elf_hash_table (info->hash))
6830 return FALSE;
6831
6832 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6833 if ((ibfd->flags & DYNAMIC) == 0
6834 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6835 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6836 == get_elf_backend_data (obfd)->s->elfclass))
6837 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6838 if ((sec->flags & SEC_MERGE) != 0
6839 && !bfd_is_abs_section (sec->output_section))
6840 {
6841 struct bfd_elf_section_data *secdata;
6842
6843 secdata = elf_section_data (sec);
6844 if (! _bfd_add_merge_section (obfd,
6845 &elf_hash_table (info)->merge_info,
6846 sec, &secdata->sec_info))
6847 return FALSE;
6848 else if (secdata->sec_info)
6849 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6850 }
6851
6852 if (elf_hash_table (info)->merge_info != NULL)
6853 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6854 merge_sections_remove_hook);
6855 return TRUE;
6856}
6857
6858/* Create an entry in an ELF linker hash table. */
6859
6860struct bfd_hash_entry *
6861_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6862 struct bfd_hash_table *table,
6863 const char *string)
6864{
6865 /* Allocate the structure if it has not already been allocated by a
6866 subclass. */
6867 if (entry == NULL)
6868 {
6869 entry = (struct bfd_hash_entry *)
6870 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6871 if (entry == NULL)
6872 return entry;
6873 }
6874
6875 /* Call the allocation method of the superclass. */
6876 entry = _bfd_link_hash_newfunc (entry, table, string);
6877 if (entry != NULL)
6878 {
6879 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6880 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6881
6882 /* Set local fields. */
6883 ret->indx = -1;
6884 ret->dynindx = -1;
6885 ret->got = htab->init_got_refcount;
6886 ret->plt = htab->init_plt_refcount;
6887 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6888 - offsetof (struct elf_link_hash_entry, size)));
6889 /* Assume that we have been called by a non-ELF symbol reader.
6890 This flag is then reset by the code which reads an ELF input
6891 file. This ensures that a symbol created by a non-ELF symbol
6892 reader will have the flag set correctly. */
6893 ret->non_elf = 1;
6894 }
6895
6896 return entry;
6897}
6898
6899/* Copy data from an indirect symbol to its direct symbol, hiding the
6900 old indirect symbol. Also used for copying flags to a weakdef. */
6901
6902void
6903_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6904 struct elf_link_hash_entry *dir,
6905 struct elf_link_hash_entry *ind)
6906{
6907 struct elf_link_hash_table *htab;
6908
6909 /* Copy down any references that we may have already seen to the
6910 symbol which just became indirect if DIR isn't a hidden versioned
6911 symbol. */
6912
6913 if (dir->versioned != versioned_hidden)
6914 {
6915 dir->ref_dynamic |= ind->ref_dynamic;
6916 dir->ref_regular |= ind->ref_regular;
6917 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6918 dir->non_got_ref |= ind->non_got_ref;
6919 dir->needs_plt |= ind->needs_plt;
6920 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6921 }
6922
6923 if (ind->root.type != bfd_link_hash_indirect)
6924 return;
6925
6926 /* Copy over the global and procedure linkage table refcount entries.
6927 These may have been already set up by a check_relocs routine. */
6928 htab = elf_hash_table (info);
6929 if (ind->got.refcount > htab->init_got_refcount.refcount)
6930 {
6931 if (dir->got.refcount < 0)
6932 dir->got.refcount = 0;
6933 dir->got.refcount += ind->got.refcount;
6934 ind->got.refcount = htab->init_got_refcount.refcount;
6935 }
6936
6937 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6938 {
6939 if (dir->plt.refcount < 0)
6940 dir->plt.refcount = 0;
6941 dir->plt.refcount += ind->plt.refcount;
6942 ind->plt.refcount = htab->init_plt_refcount.refcount;
6943 }
6944
6945 if (ind->dynindx != -1)
6946 {
6947 if (dir->dynindx != -1)
6948 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6949 dir->dynindx = ind->dynindx;
6950 dir->dynstr_index = ind->dynstr_index;
6951 ind->dynindx = -1;
6952 ind->dynstr_index = 0;
6953 }
6954}
6955
6956void
6957_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6958 struct elf_link_hash_entry *h,
6959 bfd_boolean force_local)
6960{
6961 /* STT_GNU_IFUNC symbol must go through PLT. */
6962 if (h->type != STT_GNU_IFUNC)
6963 {
6964 h->plt = elf_hash_table (info)->init_plt_offset;
6965 h->needs_plt = 0;
6966 }
6967 if (force_local)
6968 {
6969 h->forced_local = 1;
6970 if (h->dynindx != -1)
6971 {
6972 h->dynindx = -1;
6973 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6974 h->dynstr_index);
6975 }
6976 }
6977}
6978
6979/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6980 caller. */
6981
6982bfd_boolean
6983_bfd_elf_link_hash_table_init
6984 (struct elf_link_hash_table *table,
6985 bfd *abfd,
6986 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6987 struct bfd_hash_table *,
6988 const char *),
6989 unsigned int entsize,
6990 enum elf_target_id target_id)
6991{
6992 bfd_boolean ret;
6993 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6994
6995 table->init_got_refcount.refcount = can_refcount - 1;
6996 table->init_plt_refcount.refcount = can_refcount - 1;
6997 table->init_got_offset.offset = -(bfd_vma) 1;
6998 table->init_plt_offset.offset = -(bfd_vma) 1;
6999 /* The first dynamic symbol is a dummy. */
7000 table->dynsymcount = 1;
7001
7002 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7003
7004 table->root.type = bfd_link_elf_hash_table;
7005 table->hash_table_id = target_id;
7006
7007 return ret;
7008}
7009
7010/* Create an ELF linker hash table. */
7011
7012struct bfd_link_hash_table *
7013_bfd_elf_link_hash_table_create (bfd *abfd)
7014{
7015 struct elf_link_hash_table *ret;
7016 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7017
7018 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7019 if (ret == NULL)
7020 return NULL;
7021
7022 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7023 sizeof (struct elf_link_hash_entry),
7024 GENERIC_ELF_DATA))
7025 {
7026 free (ret);
7027 return NULL;
7028 }
7029 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7030
7031 return &ret->root;
7032}
7033
7034/* Destroy an ELF linker hash table. */
7035
7036void
7037_bfd_elf_link_hash_table_free (bfd *obfd)
7038{
7039 struct elf_link_hash_table *htab;
7040
7041 htab = (struct elf_link_hash_table *) obfd->link.hash;
7042 if (htab->dynstr != NULL)
7043 _bfd_elf_strtab_free (htab->dynstr);
7044 _bfd_merge_sections_free (htab->merge_info);
7045 _bfd_generic_link_hash_table_free (obfd);
7046}
7047
7048/* This is a hook for the ELF emulation code in the generic linker to
7049 tell the backend linker what file name to use for the DT_NEEDED
7050 entry for a dynamic object. */
7051
7052void
7053bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7054{
7055 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7056 && bfd_get_format (abfd) == bfd_object)
7057 elf_dt_name (abfd) = name;
7058}
7059
7060int
7061bfd_elf_get_dyn_lib_class (bfd *abfd)
7062{
7063 int lib_class;
7064 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7065 && bfd_get_format (abfd) == bfd_object)
7066 lib_class = elf_dyn_lib_class (abfd);
7067 else
7068 lib_class = 0;
7069 return lib_class;
7070}
7071
7072void
7073bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7074{
7075 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7076 && bfd_get_format (abfd) == bfd_object)
7077 elf_dyn_lib_class (abfd) = lib_class;
7078}
7079
7080/* Get the list of DT_NEEDED entries for a link. This is a hook for
7081 the linker ELF emulation code. */
7082
7083struct bfd_link_needed_list *
7084bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7085 struct bfd_link_info *info)
7086{
7087 if (! is_elf_hash_table (info->hash))
7088 return NULL;
7089 return elf_hash_table (info)->needed;
7090}
7091
7092/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7093 hook for the linker ELF emulation code. */
7094
7095struct bfd_link_needed_list *
7096bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7097 struct bfd_link_info *info)
7098{
7099 if (! is_elf_hash_table (info->hash))
7100 return NULL;
7101 return elf_hash_table (info)->runpath;
7102}
7103
7104/* Get the name actually used for a dynamic object for a link. This
7105 is the SONAME entry if there is one. Otherwise, it is the string
7106 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7107
7108const char *
7109bfd_elf_get_dt_soname (bfd *abfd)
7110{
7111 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7112 && bfd_get_format (abfd) == bfd_object)
7113 return elf_dt_name (abfd);
7114 return NULL;
7115}
7116
7117/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7118 the ELF linker emulation code. */
7119
7120bfd_boolean
7121bfd_elf_get_bfd_needed_list (bfd *abfd,
7122 struct bfd_link_needed_list **pneeded)
7123{
7124 asection *s;
7125 bfd_byte *dynbuf = NULL;
7126 unsigned int elfsec;
7127 unsigned long shlink;
7128 bfd_byte *extdyn, *extdynend;
7129 size_t extdynsize;
7130 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7131
7132 *pneeded = NULL;
7133
7134 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7135 || bfd_get_format (abfd) != bfd_object)
7136 return TRUE;
7137
7138 s = bfd_get_section_by_name (abfd, ".dynamic");
7139 if (s == NULL || s->size == 0)
7140 return TRUE;
7141
7142 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7143 goto error_return;
7144
7145 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7146 if (elfsec == SHN_BAD)
7147 goto error_return;
7148
7149 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7150
7151 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7152 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7153
7154 extdyn = dynbuf;
7155 extdynend = extdyn + s->size;
7156 for (; extdyn < extdynend; extdyn += extdynsize)
7157 {
7158 Elf_Internal_Dyn dyn;
7159
7160 (*swap_dyn_in) (abfd, extdyn, &dyn);
7161
7162 if (dyn.d_tag == DT_NULL)
7163 break;
7164
7165 if (dyn.d_tag == DT_NEEDED)
7166 {
7167 const char *string;
7168 struct bfd_link_needed_list *l;
7169 unsigned int tagv = dyn.d_un.d_val;
7170 bfd_size_type amt;
7171
7172 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7173 if (string == NULL)
7174 goto error_return;
7175
7176 amt = sizeof *l;
7177 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7178 if (l == NULL)
7179 goto error_return;
7180
7181 l->by = abfd;
7182 l->name = string;
7183 l->next = *pneeded;
7184 *pneeded = l;
7185 }
7186 }
7187
7188 free (dynbuf);
7189
7190 return TRUE;
7191
7192 error_return:
7193 if (dynbuf != NULL)
7194 free (dynbuf);
7195 return FALSE;
7196}
7197
7198struct elf_symbuf_symbol
7199{
7200 unsigned long st_name; /* Symbol name, index in string tbl */
7201 unsigned char st_info; /* Type and binding attributes */
7202 unsigned char st_other; /* Visibilty, and target specific */
7203};
7204
7205struct elf_symbuf_head
7206{
7207 struct elf_symbuf_symbol *ssym;
7208 bfd_size_type count;
7209 unsigned int st_shndx;
7210};
7211
7212struct elf_symbol
7213{
7214 union
7215 {
7216 Elf_Internal_Sym *isym;
7217 struct elf_symbuf_symbol *ssym;
7218 } u;
7219 const char *name;
7220};
7221
7222/* Sort references to symbols by ascending section number. */
7223
7224static int
7225elf_sort_elf_symbol (const void *arg1, const void *arg2)
7226{
7227 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7228 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7229
7230 return s1->st_shndx - s2->st_shndx;
7231}
7232
7233static int
7234elf_sym_name_compare (const void *arg1, const void *arg2)
7235{
7236 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7237 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7238 return strcmp (s1->name, s2->name);
7239}
7240
7241static struct elf_symbuf_head *
7242elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7243{
7244 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7245 struct elf_symbuf_symbol *ssym;
7246 struct elf_symbuf_head *ssymbuf, *ssymhead;
7247 bfd_size_type i, shndx_count, total_size;
7248
7249 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7250 if (indbuf == NULL)
7251 return NULL;
7252
7253 for (ind = indbuf, i = 0; i < symcount; i++)
7254 if (isymbuf[i].st_shndx != SHN_UNDEF)
7255 *ind++ = &isymbuf[i];
7256 indbufend = ind;
7257
7258 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7259 elf_sort_elf_symbol);
7260
7261 shndx_count = 0;
7262 if (indbufend > indbuf)
7263 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7264 if (ind[0]->st_shndx != ind[1]->st_shndx)
7265 shndx_count++;
7266
7267 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7268 + (indbufend - indbuf) * sizeof (*ssym));
7269 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7270 if (ssymbuf == NULL)
7271 {
7272 free (indbuf);
7273 return NULL;
7274 }
7275
7276 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7277 ssymbuf->ssym = NULL;
7278 ssymbuf->count = shndx_count;
7279 ssymbuf->st_shndx = 0;
7280 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7281 {
7282 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7283 {
7284 ssymhead++;
7285 ssymhead->ssym = ssym;
7286 ssymhead->count = 0;
7287 ssymhead->st_shndx = (*ind)->st_shndx;
7288 }
7289 ssym->st_name = (*ind)->st_name;
7290 ssym->st_info = (*ind)->st_info;
7291 ssym->st_other = (*ind)->st_other;
7292 ssymhead->count++;
7293 }
7294 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7295 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7296 == total_size));
7297
7298 free (indbuf);
7299 return ssymbuf;
7300}
7301
7302/* Check if 2 sections define the same set of local and global
7303 symbols. */
7304
7305static bfd_boolean
7306bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7307 struct bfd_link_info *info)
7308{
7309 bfd *bfd1, *bfd2;
7310 const struct elf_backend_data *bed1, *bed2;
7311 Elf_Internal_Shdr *hdr1, *hdr2;
7312 bfd_size_type symcount1, symcount2;
7313 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7314 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7315 Elf_Internal_Sym *isym, *isymend;
7316 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7317 bfd_size_type count1, count2, i;
7318 unsigned int shndx1, shndx2;
7319 bfd_boolean result;
7320
7321 bfd1 = sec1->owner;
7322 bfd2 = sec2->owner;
7323
7324 /* Both sections have to be in ELF. */
7325 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7326 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7327 return FALSE;
7328
7329 if (elf_section_type (sec1) != elf_section_type (sec2))
7330 return FALSE;
7331
7332 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7333 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7334 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7335 return FALSE;
7336
7337 bed1 = get_elf_backend_data (bfd1);
7338 bed2 = get_elf_backend_data (bfd2);
7339 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7340 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7341 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7342 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7343
7344 if (symcount1 == 0 || symcount2 == 0)
7345 return FALSE;
7346
7347 result = FALSE;
7348 isymbuf1 = NULL;
7349 isymbuf2 = NULL;
7350 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7351 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7352
7353 if (ssymbuf1 == NULL)
7354 {
7355 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7356 NULL, NULL, NULL);
7357 if (isymbuf1 == NULL)
7358 goto done;
7359
7360 if (!info->reduce_memory_overheads)
7361 elf_tdata (bfd1)->symbuf = ssymbuf1
7362 = elf_create_symbuf (symcount1, isymbuf1);
7363 }
7364
7365 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7366 {
7367 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7368 NULL, NULL, NULL);
7369 if (isymbuf2 == NULL)
7370 goto done;
7371
7372 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7373 elf_tdata (bfd2)->symbuf = ssymbuf2
7374 = elf_create_symbuf (symcount2, isymbuf2);
7375 }
7376
7377 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7378 {
7379 /* Optimized faster version. */
7380 bfd_size_type lo, hi, mid;
7381 struct elf_symbol *symp;
7382 struct elf_symbuf_symbol *ssym, *ssymend;
7383
7384 lo = 0;
7385 hi = ssymbuf1->count;
7386 ssymbuf1++;
7387 count1 = 0;
7388 while (lo < hi)
7389 {
7390 mid = (lo + hi) / 2;
7391 if (shndx1 < ssymbuf1[mid].st_shndx)
7392 hi = mid;
7393 else if (shndx1 > ssymbuf1[mid].st_shndx)
7394 lo = mid + 1;
7395 else
7396 {
7397 count1 = ssymbuf1[mid].count;
7398 ssymbuf1 += mid;
7399 break;
7400 }
7401 }
7402
7403 lo = 0;
7404 hi = ssymbuf2->count;
7405 ssymbuf2++;
7406 count2 = 0;
7407 while (lo < hi)
7408 {
7409 mid = (lo + hi) / 2;
7410 if (shndx2 < ssymbuf2[mid].st_shndx)
7411 hi = mid;
7412 else if (shndx2 > ssymbuf2[mid].st_shndx)
7413 lo = mid + 1;
7414 else
7415 {
7416 count2 = ssymbuf2[mid].count;
7417 ssymbuf2 += mid;
7418 break;
7419 }
7420 }
7421
7422 if (count1 == 0 || count2 == 0 || count1 != count2)
7423 goto done;
7424
7425 symtable1
7426 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7427 symtable2
7428 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7429 if (symtable1 == NULL || symtable2 == NULL)
7430 goto done;
7431
7432 symp = symtable1;
7433 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7434 ssym < ssymend; ssym++, symp++)
7435 {
7436 symp->u.ssym = ssym;
7437 symp->name = bfd_elf_string_from_elf_section (bfd1,
7438 hdr1->sh_link,
7439 ssym->st_name);
7440 }
7441
7442 symp = symtable2;
7443 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7444 ssym < ssymend; ssym++, symp++)
7445 {
7446 symp->u.ssym = ssym;
7447 symp->name = bfd_elf_string_from_elf_section (bfd2,
7448 hdr2->sh_link,
7449 ssym->st_name);
7450 }
7451
7452 /* Sort symbol by name. */
7453 qsort (symtable1, count1, sizeof (struct elf_symbol),
7454 elf_sym_name_compare);
7455 qsort (symtable2, count1, sizeof (struct elf_symbol),
7456 elf_sym_name_compare);
7457
7458 for (i = 0; i < count1; i++)
7459 /* Two symbols must have the same binding, type and name. */
7460 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7461 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7462 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7463 goto done;
7464
7465 result = TRUE;
7466 goto done;
7467 }
7468
7469 symtable1 = (struct elf_symbol *)
7470 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7471 symtable2 = (struct elf_symbol *)
7472 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7473 if (symtable1 == NULL || symtable2 == NULL)
7474 goto done;
7475
7476 /* Count definitions in the section. */
7477 count1 = 0;
7478 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7479 if (isym->st_shndx == shndx1)
7480 symtable1[count1++].u.isym = isym;
7481
7482 count2 = 0;
7483 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7484 if (isym->st_shndx == shndx2)
7485 symtable2[count2++].u.isym = isym;
7486
7487 if (count1 == 0 || count2 == 0 || count1 != count2)
7488 goto done;
7489
7490 for (i = 0; i < count1; i++)
7491 symtable1[i].name
7492 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7493 symtable1[i].u.isym->st_name);
7494
7495 for (i = 0; i < count2; i++)
7496 symtable2[i].name
7497 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7498 symtable2[i].u.isym->st_name);
7499
7500 /* Sort symbol by name. */
7501 qsort (symtable1, count1, sizeof (struct elf_symbol),
7502 elf_sym_name_compare);
7503 qsort (symtable2, count1, sizeof (struct elf_symbol),
7504 elf_sym_name_compare);
7505
7506 for (i = 0; i < count1; i++)
7507 /* Two symbols must have the same binding, type and name. */
7508 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7509 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7510 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7511 goto done;
7512
7513 result = TRUE;
7514
7515done:
7516 if (symtable1)
7517 free (symtable1);
7518 if (symtable2)
7519 free (symtable2);
7520 if (isymbuf1)
7521 free (isymbuf1);
7522 if (isymbuf2)
7523 free (isymbuf2);
7524
7525 return result;
7526}
7527
7528/* Return TRUE if 2 section types are compatible. */
7529
7530bfd_boolean
7531_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7532 bfd *bbfd, const asection *bsec)
7533{
7534 if (asec == NULL
7535 || bsec == NULL
7536 || abfd->xvec->flavour != bfd_target_elf_flavour
7537 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7538 return TRUE;
7539
7540 return elf_section_type (asec) == elf_section_type (bsec);
7541}
7542\f
7543/* Final phase of ELF linker. */
7544
7545/* A structure we use to avoid passing large numbers of arguments. */
7546
7547struct elf_final_link_info
7548{
7549 /* General link information. */
7550 struct bfd_link_info *info;
7551 /* Output BFD. */
7552 bfd *output_bfd;
7553 /* Symbol string table. */
7554 struct elf_strtab_hash *symstrtab;
7555 /* .hash section. */
7556 asection *hash_sec;
7557 /* symbol version section (.gnu.version). */
7558 asection *symver_sec;
7559 /* Buffer large enough to hold contents of any section. */
7560 bfd_byte *contents;
7561 /* Buffer large enough to hold external relocs of any section. */
7562 void *external_relocs;
7563 /* Buffer large enough to hold internal relocs of any section. */
7564 Elf_Internal_Rela *internal_relocs;
7565 /* Buffer large enough to hold external local symbols of any input
7566 BFD. */
7567 bfd_byte *external_syms;
7568 /* And a buffer for symbol section indices. */
7569 Elf_External_Sym_Shndx *locsym_shndx;
7570 /* Buffer large enough to hold internal local symbols of any input
7571 BFD. */
7572 Elf_Internal_Sym *internal_syms;
7573 /* Array large enough to hold a symbol index for each local symbol
7574 of any input BFD. */
7575 long *indices;
7576 /* Array large enough to hold a section pointer for each local
7577 symbol of any input BFD. */
7578 asection **sections;
7579 /* Buffer for SHT_SYMTAB_SHNDX section. */
7580 Elf_External_Sym_Shndx *symshndxbuf;
7581 /* Number of STT_FILE syms seen. */
7582 size_t filesym_count;
7583};
7584
7585/* This struct is used to pass information to elf_link_output_extsym. */
7586
7587struct elf_outext_info
7588{
7589 bfd_boolean failed;
7590 bfd_boolean localsyms;
7591 bfd_boolean file_sym_done;
7592 struct elf_final_link_info *flinfo;
7593};
7594
7595
7596/* Support for evaluating a complex relocation.
7597
7598 Complex relocations are generalized, self-describing relocations. The
7599 implementation of them consists of two parts: complex symbols, and the
7600 relocations themselves.
7601
7602 The relocations are use a reserved elf-wide relocation type code (R_RELC
7603 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7604 information (start bit, end bit, word width, etc) into the addend. This
7605 information is extracted from CGEN-generated operand tables within gas.
7606
7607 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7608 internal) representing prefix-notation expressions, including but not
7609 limited to those sorts of expressions normally encoded as addends in the
7610 addend field. The symbol mangling format is:
7611
7612 <node> := <literal>
7613 | <unary-operator> ':' <node>
7614 | <binary-operator> ':' <node> ':' <node>
7615 ;
7616
7617 <literal> := 's' <digits=N> ':' <N character symbol name>
7618 | 'S' <digits=N> ':' <N character section name>
7619 | '#' <hexdigits>
7620 ;
7621
7622 <binary-operator> := as in C
7623 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7624
7625static void
7626set_symbol_value (bfd *bfd_with_globals,
7627 Elf_Internal_Sym *isymbuf,
7628 size_t locsymcount,
7629 size_t symidx,
7630 bfd_vma val)
7631{
7632 struct elf_link_hash_entry **sym_hashes;
7633 struct elf_link_hash_entry *h;
7634 size_t extsymoff = locsymcount;
7635
7636 if (symidx < locsymcount)
7637 {
7638 Elf_Internal_Sym *sym;
7639
7640 sym = isymbuf + symidx;
7641 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7642 {
7643 /* It is a local symbol: move it to the
7644 "absolute" section and give it a value. */
7645 sym->st_shndx = SHN_ABS;
7646 sym->st_value = val;
7647 return;
7648 }
7649 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7650 extsymoff = 0;
7651 }
7652
7653 /* It is a global symbol: set its link type
7654 to "defined" and give it a value. */
7655
7656 sym_hashes = elf_sym_hashes (bfd_with_globals);
7657 h = sym_hashes [symidx - extsymoff];
7658 while (h->root.type == bfd_link_hash_indirect
7659 || h->root.type == bfd_link_hash_warning)
7660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7661 h->root.type = bfd_link_hash_defined;
7662 h->root.u.def.value = val;
7663 h->root.u.def.section = bfd_abs_section_ptr;
7664}
7665
7666static bfd_boolean
7667resolve_symbol (const char *name,
7668 bfd *input_bfd,
7669 struct elf_final_link_info *flinfo,
7670 bfd_vma *result,
7671 Elf_Internal_Sym *isymbuf,
7672 size_t locsymcount)
7673{
7674 Elf_Internal_Sym *sym;
7675 struct bfd_link_hash_entry *global_entry;
7676 const char *candidate = NULL;
7677 Elf_Internal_Shdr *symtab_hdr;
7678 size_t i;
7679
7680 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7681
7682 for (i = 0; i < locsymcount; ++ i)
7683 {
7684 sym = isymbuf + i;
7685
7686 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7687 continue;
7688
7689 candidate = bfd_elf_string_from_elf_section (input_bfd,
7690 symtab_hdr->sh_link,
7691 sym->st_name);
7692#ifdef DEBUG
7693 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7694 name, candidate, (unsigned long) sym->st_value);
7695#endif
7696 if (candidate && strcmp (candidate, name) == 0)
7697 {
7698 asection *sec = flinfo->sections [i];
7699
7700 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7701 *result += sec->output_offset + sec->output_section->vma;
7702#ifdef DEBUG
7703 printf ("Found symbol with value %8.8lx\n",
7704 (unsigned long) *result);
7705#endif
7706 return TRUE;
7707 }
7708 }
7709
7710 /* Hmm, haven't found it yet. perhaps it is a global. */
7711 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7712 FALSE, FALSE, TRUE);
7713 if (!global_entry)
7714 return FALSE;
7715
7716 if (global_entry->type == bfd_link_hash_defined
7717 || global_entry->type == bfd_link_hash_defweak)
7718 {
7719 *result = (global_entry->u.def.value
7720 + global_entry->u.def.section->output_section->vma
7721 + global_entry->u.def.section->output_offset);
7722#ifdef DEBUG
7723 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7724 global_entry->root.string, (unsigned long) *result);
7725#endif
7726 return TRUE;
7727 }
7728
7729 return FALSE;
7730}
7731
7732static bfd_boolean
7733resolve_section (const char *name,
7734 asection *sections,
7735 bfd_vma *result)
7736{
7737 asection *curr;
7738 unsigned int len;
7739
7740 for (curr = sections; curr; curr = curr->next)
7741 if (strcmp (curr->name, name) == 0)
7742 {
7743 *result = curr->vma;
7744 return TRUE;
7745 }
7746
7747 /* Hmm. still haven't found it. try pseudo-section names. */
7748 for (curr = sections; curr; curr = curr->next)
7749 {
7750 len = strlen (curr->name);
7751 if (len > strlen (name))
7752 continue;
7753
7754 if (strncmp (curr->name, name, len) == 0)
7755 {
7756 if (strncmp (".end", name + len, 4) == 0)
7757 {
7758 *result = curr->vma + curr->size;
7759 return TRUE;
7760 }
7761
7762 /* Insert more pseudo-section names here, if you like. */
7763 }
7764 }
7765
7766 return FALSE;
7767}
7768
7769static void
7770undefined_reference (const char *reftype, const char *name)
7771{
7772 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7773 reftype, name);
7774}
7775
7776static bfd_boolean
7777eval_symbol (bfd_vma *result,
7778 const char **symp,
7779 bfd *input_bfd,
7780 struct elf_final_link_info *flinfo,
7781 bfd_vma dot,
7782 Elf_Internal_Sym *isymbuf,
7783 size_t locsymcount,
7784 int signed_p)
7785{
7786 size_t len;
7787 size_t symlen;
7788 bfd_vma a;
7789 bfd_vma b;
7790 char symbuf[4096];
7791 const char *sym = *symp;
7792 const char *symend;
7793 bfd_boolean symbol_is_section = FALSE;
7794
7795 len = strlen (sym);
7796 symend = sym + len;
7797
7798 if (len < 1 || len > sizeof (symbuf))
7799 {
7800 bfd_set_error (bfd_error_invalid_operation);
7801 return FALSE;
7802 }
7803
7804 switch (* sym)
7805 {
7806 case '.':
7807 *result = dot;
7808 *symp = sym + 1;
7809 return TRUE;
7810
7811 case '#':
7812 ++sym;
7813 *result = strtoul (sym, (char **) symp, 16);
7814 return TRUE;
7815
7816 case 'S':
7817 symbol_is_section = TRUE;
7818 case 's':
7819 ++sym;
7820 symlen = strtol (sym, (char **) symp, 10);
7821 sym = *symp + 1; /* Skip the trailing ':'. */
7822
7823 if (symend < sym || symlen + 1 > sizeof (symbuf))
7824 {
7825 bfd_set_error (bfd_error_invalid_operation);
7826 return FALSE;
7827 }
7828
7829 memcpy (symbuf, sym, symlen);
7830 symbuf[symlen] = '\0';
7831 *symp = sym + symlen;
7832
7833 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7834 the symbol as a section, or vice-versa. so we're pretty liberal in our
7835 interpretation here; section means "try section first", not "must be a
7836 section", and likewise with symbol. */
7837
7838 if (symbol_is_section)
7839 {
7840 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7841 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7842 isymbuf, locsymcount))
7843 {
7844 undefined_reference ("section", symbuf);
7845 return FALSE;
7846 }
7847 }
7848 else
7849 {
7850 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7851 isymbuf, locsymcount)
7852 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7853 result))
7854 {
7855 undefined_reference ("symbol", symbuf);
7856 return FALSE;
7857 }
7858 }
7859
7860 return TRUE;
7861
7862 /* All that remains are operators. */
7863
7864#define UNARY_OP(op) \
7865 if (strncmp (sym, #op, strlen (#op)) == 0) \
7866 { \
7867 sym += strlen (#op); \
7868 if (*sym == ':') \
7869 ++sym; \
7870 *symp = sym; \
7871 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7872 isymbuf, locsymcount, signed_p)) \
7873 return FALSE; \
7874 if (signed_p) \
7875 *result = op ((bfd_signed_vma) a); \
7876 else \
7877 *result = op a; \
7878 return TRUE; \
7879 }
7880
7881#define BINARY_OP(op) \
7882 if (strncmp (sym, #op, strlen (#op)) == 0) \
7883 { \
7884 sym += strlen (#op); \
7885 if (*sym == ':') \
7886 ++sym; \
7887 *symp = sym; \
7888 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7889 isymbuf, locsymcount, signed_p)) \
7890 return FALSE; \
7891 ++*symp; \
7892 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7893 isymbuf, locsymcount, signed_p)) \
7894 return FALSE; \
7895 if (signed_p) \
7896 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7897 else \
7898 *result = a op b; \
7899 return TRUE; \
7900 }
7901
7902 default:
7903 UNARY_OP (0-);
7904 BINARY_OP (<<);
7905 BINARY_OP (>>);
7906 BINARY_OP (==);
7907 BINARY_OP (!=);
7908 BINARY_OP (<=);
7909 BINARY_OP (>=);
7910 BINARY_OP (&&);
7911 BINARY_OP (||);
7912 UNARY_OP (~);
7913 UNARY_OP (!);
7914 BINARY_OP (*);
7915 BINARY_OP (/);
7916 BINARY_OP (%);
7917 BINARY_OP (^);
7918 BINARY_OP (|);
7919 BINARY_OP (&);
7920 BINARY_OP (+);
7921 BINARY_OP (-);
7922 BINARY_OP (<);
7923 BINARY_OP (>);
7924#undef UNARY_OP
7925#undef BINARY_OP
7926 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7927 bfd_set_error (bfd_error_invalid_operation);
7928 return FALSE;
7929 }
7930}
7931
7932static void
7933put_value (bfd_vma size,
7934 unsigned long chunksz,
7935 bfd *input_bfd,
7936 bfd_vma x,
7937 bfd_byte *location)
7938{
7939 location += (size - chunksz);
7940
7941 for (; size; size -= chunksz, location -= chunksz)
7942 {
7943 switch (chunksz)
7944 {
7945 case 1:
7946 bfd_put_8 (input_bfd, x, location);
7947 x >>= 8;
7948 break;
7949 case 2:
7950 bfd_put_16 (input_bfd, x, location);
7951 x >>= 16;
7952 break;
7953 case 4:
7954 bfd_put_32 (input_bfd, x, location);
7955 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7956 x >>= 16;
7957 x >>= 16;
7958 break;
7959#ifdef BFD64
7960 case 8:
7961 bfd_put_64 (input_bfd, x, location);
7962 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7963 x >>= 32;
7964 x >>= 32;
7965 break;
7966#endif
7967 default:
7968 abort ();
7969 break;
7970 }
7971 }
7972}
7973
7974static bfd_vma
7975get_value (bfd_vma size,
7976 unsigned long chunksz,
7977 bfd *input_bfd,
7978 bfd_byte *location)
7979{
7980 int shift;
7981 bfd_vma x = 0;
7982
7983 /* Sanity checks. */
7984 BFD_ASSERT (chunksz <= sizeof (x)
7985 && size >= chunksz
7986 && chunksz != 0
7987 && (size % chunksz) == 0
7988 && input_bfd != NULL
7989 && location != NULL);
7990
7991 if (chunksz == sizeof (x))
7992 {
7993 BFD_ASSERT (size == chunksz);
7994
7995 /* Make sure that we do not perform an undefined shift operation.
7996 We know that size == chunksz so there will only be one iteration
7997 of the loop below. */
7998 shift = 0;
7999 }
8000 else
8001 shift = 8 * chunksz;
8002
8003 for (; size; size -= chunksz, location += chunksz)
8004 {
8005 switch (chunksz)
8006 {
8007 case 1:
8008 x = (x << shift) | bfd_get_8 (input_bfd, location);
8009 break;
8010 case 2:
8011 x = (x << shift) | bfd_get_16 (input_bfd, location);
8012 break;
8013 case 4:
8014 x = (x << shift) | bfd_get_32 (input_bfd, location);
8015 break;
8016#ifdef BFD64
8017 case 8:
8018 x = (x << shift) | bfd_get_64 (input_bfd, location);
8019 break;
8020#endif
8021 default:
8022 abort ();
8023 }
8024 }
8025 return x;
8026}
8027
8028static void
8029decode_complex_addend (unsigned long *start, /* in bits */
8030 unsigned long *oplen, /* in bits */
8031 unsigned long *len, /* in bits */
8032 unsigned long *wordsz, /* in bytes */
8033 unsigned long *chunksz, /* in bytes */
8034 unsigned long *lsb0_p,
8035 unsigned long *signed_p,
8036 unsigned long *trunc_p,
8037 unsigned long encoded)
8038{
8039 * start = encoded & 0x3F;
8040 * len = (encoded >> 6) & 0x3F;
8041 * oplen = (encoded >> 12) & 0x3F;
8042 * wordsz = (encoded >> 18) & 0xF;
8043 * chunksz = (encoded >> 22) & 0xF;
8044 * lsb0_p = (encoded >> 27) & 1;
8045 * signed_p = (encoded >> 28) & 1;
8046 * trunc_p = (encoded >> 29) & 1;
8047}
8048
8049bfd_reloc_status_type
8050bfd_elf_perform_complex_relocation (bfd *input_bfd,
8051 asection *input_section ATTRIBUTE_UNUSED,
8052 bfd_byte *contents,
8053 Elf_Internal_Rela *rel,
8054 bfd_vma relocation)
8055{
8056 bfd_vma shift, x, mask;
8057 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8058 bfd_reloc_status_type r;
8059
8060 /* Perform this reloc, since it is complex.
8061 (this is not to say that it necessarily refers to a complex
8062 symbol; merely that it is a self-describing CGEN based reloc.
8063 i.e. the addend has the complete reloc information (bit start, end,
8064 word size, etc) encoded within it.). */
8065
8066 decode_complex_addend (&start, &oplen, &len, &wordsz,
8067 &chunksz, &lsb0_p, &signed_p,
8068 &trunc_p, rel->r_addend);
8069
8070 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8071
8072 if (lsb0_p)
8073 shift = (start + 1) - len;
8074 else
8075 shift = (8 * wordsz) - (start + len);
8076
8077 /* FIXME: octets_per_byte. */
8078 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8079
8080#ifdef DEBUG
8081 printf ("Doing complex reloc: "
8082 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8083 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8084 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8085 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8086 oplen, (unsigned long) x, (unsigned long) mask,
8087 (unsigned long) relocation);
8088#endif
8089
8090 r = bfd_reloc_ok;
8091 if (! trunc_p)
8092 /* Now do an overflow check. */
8093 r = bfd_check_overflow ((signed_p
8094 ? complain_overflow_signed
8095 : complain_overflow_unsigned),
8096 len, 0, (8 * wordsz),
8097 relocation);
8098
8099 /* Do the deed. */
8100 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8101
8102#ifdef DEBUG
8103 printf (" relocation: %8.8lx\n"
8104 " shifted mask: %8.8lx\n"
8105 " shifted/masked reloc: %8.8lx\n"
8106 " result: %8.8lx\n",
8107 (unsigned long) relocation, (unsigned long) (mask << shift),
8108 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8109#endif
8110 /* FIXME: octets_per_byte. */
8111 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8112 return r;
8113}
8114
8115/* Functions to read r_offset from external (target order) reloc
8116 entry. Faster than bfd_getl32 et al, because we let the compiler
8117 know the value is aligned. */
8118
8119static bfd_vma
8120ext32l_r_offset (const void *p)
8121{
8122 union aligned32
8123 {
8124 uint32_t v;
8125 unsigned char c[4];
8126 };
8127 const union aligned32 *a
8128 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8129
8130 uint32_t aval = ( (uint32_t) a->c[0]
8131 | (uint32_t) a->c[1] << 8
8132 | (uint32_t) a->c[2] << 16
8133 | (uint32_t) a->c[3] << 24);
8134 return aval;
8135}
8136
8137static bfd_vma
8138ext32b_r_offset (const void *p)
8139{
8140 union aligned32
8141 {
8142 uint32_t v;
8143 unsigned char c[4];
8144 };
8145 const union aligned32 *a
8146 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8147
8148 uint32_t aval = ( (uint32_t) a->c[0] << 24
8149 | (uint32_t) a->c[1] << 16
8150 | (uint32_t) a->c[2] << 8
8151 | (uint32_t) a->c[3]);
8152 return aval;
8153}
8154
8155#ifdef BFD_HOST_64_BIT
8156static bfd_vma
8157ext64l_r_offset (const void *p)
8158{
8159 union aligned64
8160 {
8161 uint64_t v;
8162 unsigned char c[8];
8163 };
8164 const union aligned64 *a
8165 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8166
8167 uint64_t aval = ( (uint64_t) a->c[0]
8168 | (uint64_t) a->c[1] << 8
8169 | (uint64_t) a->c[2] << 16
8170 | (uint64_t) a->c[3] << 24
8171 | (uint64_t) a->c[4] << 32
8172 | (uint64_t) a->c[5] << 40
8173 | (uint64_t) a->c[6] << 48
8174 | (uint64_t) a->c[7] << 56);
8175 return aval;
8176}
8177
8178static bfd_vma
8179ext64b_r_offset (const void *p)
8180{
8181 union aligned64
8182 {
8183 uint64_t v;
8184 unsigned char c[8];
8185 };
8186 const union aligned64 *a
8187 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8188
8189 uint64_t aval = ( (uint64_t) a->c[0] << 56
8190 | (uint64_t) a->c[1] << 48
8191 | (uint64_t) a->c[2] << 40
8192 | (uint64_t) a->c[3] << 32
8193 | (uint64_t) a->c[4] << 24
8194 | (uint64_t) a->c[5] << 16
8195 | (uint64_t) a->c[6] << 8
8196 | (uint64_t) a->c[7]);
8197 return aval;
8198}
8199#endif
8200
8201/* When performing a relocatable link, the input relocations are
8202 preserved. But, if they reference global symbols, the indices
8203 referenced must be updated. Update all the relocations found in
8204 RELDATA. */
8205
8206static bfd_boolean
8207elf_link_adjust_relocs (bfd *abfd,
8208 struct bfd_elf_section_reloc_data *reldata,
8209 bfd_boolean sort)
8210{
8211 unsigned int i;
8212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8213 bfd_byte *erela;
8214 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8215 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8216 bfd_vma r_type_mask;
8217 int r_sym_shift;
8218 unsigned int count = reldata->count;
8219 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8220
8221 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8222 {
8223 swap_in = bed->s->swap_reloc_in;
8224 swap_out = bed->s->swap_reloc_out;
8225 }
8226 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8227 {
8228 swap_in = bed->s->swap_reloca_in;
8229 swap_out = bed->s->swap_reloca_out;
8230 }
8231 else
8232 abort ();
8233
8234 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8235 abort ();
8236
8237 if (bed->s->arch_size == 32)
8238 {
8239 r_type_mask = 0xff;
8240 r_sym_shift = 8;
8241 }
8242 else
8243 {
8244 r_type_mask = 0xffffffff;
8245 r_sym_shift = 32;
8246 }
8247
8248 erela = reldata->hdr->contents;
8249 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8250 {
8251 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8252 unsigned int j;
8253
8254 if (*rel_hash == NULL)
8255 continue;
8256
8257 BFD_ASSERT ((*rel_hash)->indx >= 0);
8258
8259 (*swap_in) (abfd, erela, irela);
8260 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8261 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8262 | (irela[j].r_info & r_type_mask));
8263 (*swap_out) (abfd, irela, erela);
8264 }
8265
8266 if (sort && count != 0)
8267 {
8268 bfd_vma (*ext_r_off) (const void *);
8269 bfd_vma r_off;
8270 size_t elt_size;
8271 bfd_byte *base, *end, *p, *loc;
8272 bfd_byte *buf = NULL;
8273
8274 if (bed->s->arch_size == 32)
8275 {
8276 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8277 ext_r_off = ext32l_r_offset;
8278 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8279 ext_r_off = ext32b_r_offset;
8280 else
8281 abort ();
8282 }
8283 else
8284 {
8285#ifdef BFD_HOST_64_BIT
8286 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8287 ext_r_off = ext64l_r_offset;
8288 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8289 ext_r_off = ext64b_r_offset;
8290 else
8291#endif
8292 abort ();
8293 }
8294
8295 /* Must use a stable sort here. A modified insertion sort,
8296 since the relocs are mostly sorted already. */
8297 elt_size = reldata->hdr->sh_entsize;
8298 base = reldata->hdr->contents;
8299 end = base + count * elt_size;
8300 if (elt_size > sizeof (Elf64_External_Rela))
8301 abort ();
8302
8303 /* Ensure the first element is lowest. This acts as a sentinel,
8304 speeding the main loop below. */
8305 r_off = (*ext_r_off) (base);
8306 for (p = loc = base; (p += elt_size) < end; )
8307 {
8308 bfd_vma r_off2 = (*ext_r_off) (p);
8309 if (r_off > r_off2)
8310 {
8311 r_off = r_off2;
8312 loc = p;
8313 }
8314 }
8315 if (loc != base)
8316 {
8317 /* Don't just swap *base and *loc as that changes the order
8318 of the original base[0] and base[1] if they happen to
8319 have the same r_offset. */
8320 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8321 memcpy (onebuf, loc, elt_size);
8322 memmove (base + elt_size, base, loc - base);
8323 memcpy (base, onebuf, elt_size);
8324 }
8325
8326 for (p = base + elt_size; (p += elt_size) < end; )
8327 {
8328 /* base to p is sorted, *p is next to insert. */
8329 r_off = (*ext_r_off) (p);
8330 /* Search the sorted region for location to insert. */
8331 loc = p - elt_size;
8332 while (r_off < (*ext_r_off) (loc))
8333 loc -= elt_size;
8334 loc += elt_size;
8335 if (loc != p)
8336 {
8337 /* Chances are there is a run of relocs to insert here,
8338 from one of more input files. Files are not always
8339 linked in order due to the way elf_link_input_bfd is
8340 called. See pr17666. */
8341 size_t sortlen = p - loc;
8342 bfd_vma r_off2 = (*ext_r_off) (loc);
8343 size_t runlen = elt_size;
8344 size_t buf_size = 96 * 1024;
8345 while (p + runlen < end
8346 && (sortlen <= buf_size
8347 || runlen + elt_size <= buf_size)
8348 && r_off2 > (*ext_r_off) (p + runlen))
8349 runlen += elt_size;
8350 if (buf == NULL)
8351 {
8352 buf = bfd_malloc (buf_size);
8353 if (buf == NULL)
8354 return FALSE;
8355 }
8356 if (runlen < sortlen)
8357 {
8358 memcpy (buf, p, runlen);
8359 memmove (loc + runlen, loc, sortlen);
8360 memcpy (loc, buf, runlen);
8361 }
8362 else
8363 {
8364 memcpy (buf, loc, sortlen);
8365 memmove (loc, p, runlen);
8366 memcpy (loc + runlen, buf, sortlen);
8367 }
8368 p += runlen - elt_size;
8369 }
8370 }
8371 /* Hashes are no longer valid. */
8372 free (reldata->hashes);
8373 reldata->hashes = NULL;
8374 free (buf);
8375 }
8376 return TRUE;
8377}
8378
8379struct elf_link_sort_rela
8380{
8381 union {
8382 bfd_vma offset;
8383 bfd_vma sym_mask;
8384 } u;
8385 enum elf_reloc_type_class type;
8386 /* We use this as an array of size int_rels_per_ext_rel. */
8387 Elf_Internal_Rela rela[1];
8388};
8389
8390static int
8391elf_link_sort_cmp1 (const void *A, const void *B)
8392{
8393 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8394 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8395 int relativea, relativeb;
8396
8397 relativea = a->type == reloc_class_relative;
8398 relativeb = b->type == reloc_class_relative;
8399
8400 if (relativea < relativeb)
8401 return 1;
8402 if (relativea > relativeb)
8403 return -1;
8404 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8405 return -1;
8406 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8407 return 1;
8408 if (a->rela->r_offset < b->rela->r_offset)
8409 return -1;
8410 if (a->rela->r_offset > b->rela->r_offset)
8411 return 1;
8412 return 0;
8413}
8414
8415static int
8416elf_link_sort_cmp2 (const void *A, const void *B)
8417{
8418 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8419 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8420
8421 if (a->type < b->type)
8422 return -1;
8423 if (a->type > b->type)
8424 return 1;
8425 if (a->u.offset < b->u.offset)
8426 return -1;
8427 if (a->u.offset > b->u.offset)
8428 return 1;
8429 if (a->rela->r_offset < b->rela->r_offset)
8430 return -1;
8431 if (a->rela->r_offset > b->rela->r_offset)
8432 return 1;
8433 return 0;
8434}
8435
8436static size_t
8437elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8438{
8439 asection *dynamic_relocs;
8440 asection *rela_dyn;
8441 asection *rel_dyn;
8442 bfd_size_type count, size;
8443 size_t i, ret, sort_elt, ext_size;
8444 bfd_byte *sort, *s_non_relative, *p;
8445 struct elf_link_sort_rela *sq;
8446 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8447 int i2e = bed->s->int_rels_per_ext_rel;
8448 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8449 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8450 struct bfd_link_order *lo;
8451 bfd_vma r_sym_mask;
8452 bfd_boolean use_rela;
8453
8454 /* Find a dynamic reloc section. */
8455 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8456 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8457 if (rela_dyn != NULL && rela_dyn->size > 0
8458 && rel_dyn != NULL && rel_dyn->size > 0)
8459 {
8460 bfd_boolean use_rela_initialised = FALSE;
8461
8462 /* This is just here to stop gcc from complaining.
8463 It's initialization checking code is not perfect. */
8464 use_rela = TRUE;
8465
8466 /* Both sections are present. Examine the sizes
8467 of the indirect sections to help us choose. */
8468 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8469 if (lo->type == bfd_indirect_link_order)
8470 {
8471 asection *o = lo->u.indirect.section;
8472
8473 if ((o->size % bed->s->sizeof_rela) == 0)
8474 {
8475 if ((o->size % bed->s->sizeof_rel) == 0)
8476 /* Section size is divisible by both rel and rela sizes.
8477 It is of no help to us. */
8478 ;
8479 else
8480 {
8481 /* Section size is only divisible by rela. */
8482 if (use_rela_initialised && (use_rela == FALSE))
8483 {
8484 _bfd_error_handler
8485 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8486 bfd_set_error (bfd_error_invalid_operation);
8487 return 0;
8488 }
8489 else
8490 {
8491 use_rela = TRUE;
8492 use_rela_initialised = TRUE;
8493 }
8494 }
8495 }
8496 else if ((o->size % bed->s->sizeof_rel) == 0)
8497 {
8498 /* Section size is only divisible by rel. */
8499 if (use_rela_initialised && (use_rela == TRUE))
8500 {
8501 _bfd_error_handler
8502 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8503 bfd_set_error (bfd_error_invalid_operation);
8504 return 0;
8505 }
8506 else
8507 {
8508 use_rela = FALSE;
8509 use_rela_initialised = TRUE;
8510 }
8511 }
8512 else
8513 {
8514 /* The section size is not divisible by either - something is wrong. */
8515 _bfd_error_handler
8516 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8517 bfd_set_error (bfd_error_invalid_operation);
8518 return 0;
8519 }
8520 }
8521
8522 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8523 if (lo->type == bfd_indirect_link_order)
8524 {
8525 asection *o = lo->u.indirect.section;
8526
8527 if ((o->size % bed->s->sizeof_rela) == 0)
8528 {
8529 if ((o->size % bed->s->sizeof_rel) == 0)
8530 /* Section size is divisible by both rel and rela sizes.
8531 It is of no help to us. */
8532 ;
8533 else
8534 {
8535 /* Section size is only divisible by rela. */
8536 if (use_rela_initialised && (use_rela == FALSE))
8537 {
8538 _bfd_error_handler
8539 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8540 bfd_set_error (bfd_error_invalid_operation);
8541 return 0;
8542 }
8543 else
8544 {
8545 use_rela = TRUE;
8546 use_rela_initialised = TRUE;
8547 }
8548 }
8549 }
8550 else if ((o->size % bed->s->sizeof_rel) == 0)
8551 {
8552 /* Section size is only divisible by rel. */
8553 if (use_rela_initialised && (use_rela == TRUE))
8554 {
8555 _bfd_error_handler
8556 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8557 bfd_set_error (bfd_error_invalid_operation);
8558 return 0;
8559 }
8560 else
8561 {
8562 use_rela = FALSE;
8563 use_rela_initialised = TRUE;
8564 }
8565 }
8566 else
8567 {
8568 /* The section size is not divisible by either - something is wrong. */
8569 _bfd_error_handler
8570 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8571 bfd_set_error (bfd_error_invalid_operation);
8572 return 0;
8573 }
8574 }
8575
8576 if (! use_rela_initialised)
8577 /* Make a guess. */
8578 use_rela = TRUE;
8579 }
8580 else if (rela_dyn != NULL && rela_dyn->size > 0)
8581 use_rela = TRUE;
8582 else if (rel_dyn != NULL && rel_dyn->size > 0)
8583 use_rela = FALSE;
8584 else
8585 return 0;
8586
8587 if (use_rela)
8588 {
8589 dynamic_relocs = rela_dyn;
8590 ext_size = bed->s->sizeof_rela;
8591 swap_in = bed->s->swap_reloca_in;
8592 swap_out = bed->s->swap_reloca_out;
8593 }
8594 else
8595 {
8596 dynamic_relocs = rel_dyn;
8597 ext_size = bed->s->sizeof_rel;
8598 swap_in = bed->s->swap_reloc_in;
8599 swap_out = bed->s->swap_reloc_out;
8600 }
8601
8602 size = 0;
8603 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8604 if (lo->type == bfd_indirect_link_order)
8605 size += lo->u.indirect.section->size;
8606
8607 if (size != dynamic_relocs->size)
8608 return 0;
8609
8610 sort_elt = (sizeof (struct elf_link_sort_rela)
8611 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8612
8613 count = dynamic_relocs->size / ext_size;
8614 if (count == 0)
8615 return 0;
8616 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8617
8618 if (sort == NULL)
8619 {
8620 (*info->callbacks->warning)
8621 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8622 return 0;
8623 }
8624
8625 if (bed->s->arch_size == 32)
8626 r_sym_mask = ~(bfd_vma) 0xff;
8627 else
8628 r_sym_mask = ~(bfd_vma) 0xffffffff;
8629
8630 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8631 if (lo->type == bfd_indirect_link_order)
8632 {
8633 bfd_byte *erel, *erelend;
8634 asection *o = lo->u.indirect.section;
8635
8636 if (o->contents == NULL && o->size != 0)
8637 {
8638 /* This is a reloc section that is being handled as a normal
8639 section. See bfd_section_from_shdr. We can't combine
8640 relocs in this case. */
8641 free (sort);
8642 return 0;
8643 }
8644 erel = o->contents;
8645 erelend = o->contents + o->size;
8646 /* FIXME: octets_per_byte. */
8647 p = sort + o->output_offset / ext_size * sort_elt;
8648
8649 while (erel < erelend)
8650 {
8651 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8652
8653 (*swap_in) (abfd, erel, s->rela);
8654 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8655 s->u.sym_mask = r_sym_mask;
8656 p += sort_elt;
8657 erel += ext_size;
8658 }
8659 }
8660
8661 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8662
8663 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8664 {
8665 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8666 if (s->type != reloc_class_relative)
8667 break;
8668 }
8669 ret = i;
8670 s_non_relative = p;
8671
8672 sq = (struct elf_link_sort_rela *) s_non_relative;
8673 for (; i < count; i++, p += sort_elt)
8674 {
8675 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8676 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8677 sq = sp;
8678 sp->u.offset = sq->rela->r_offset;
8679 }
8680
8681 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8682
8683 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8684 if (lo->type == bfd_indirect_link_order)
8685 {
8686 bfd_byte *erel, *erelend;
8687 asection *o = lo->u.indirect.section;
8688
8689 erel = o->contents;
8690 erelend = o->contents + o->size;
8691 /* FIXME: octets_per_byte. */
8692 p = sort + o->output_offset / ext_size * sort_elt;
8693 while (erel < erelend)
8694 {
8695 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8696 (*swap_out) (abfd, s->rela, erel);
8697 p += sort_elt;
8698 erel += ext_size;
8699 }
8700 }
8701
8702 free (sort);
8703 *psec = dynamic_relocs;
8704 return ret;
8705}
8706
8707/* Add a symbol to the output symbol string table. */
8708
8709static int
8710elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8711 const char *name,
8712 Elf_Internal_Sym *elfsym,
8713 asection *input_sec,
8714 struct elf_link_hash_entry *h)
8715{
8716 int (*output_symbol_hook)
8717 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8718 struct elf_link_hash_entry *);
8719 struct elf_link_hash_table *hash_table;
8720 const struct elf_backend_data *bed;
8721 bfd_size_type strtabsize;
8722
8723 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8724
8725 bed = get_elf_backend_data (flinfo->output_bfd);
8726 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8727 if (output_symbol_hook != NULL)
8728 {
8729 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8730 if (ret != 1)
8731 return ret;
8732 }
8733
8734 if (name == NULL
8735 || *name == '\0'
8736 || (input_sec->flags & SEC_EXCLUDE))
8737 elfsym->st_name = (unsigned long) -1;
8738 else
8739 {
8740 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8741 to get the final offset for st_name. */
8742 elfsym->st_name
8743 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8744 name, FALSE);
8745 if (elfsym->st_name == (unsigned long) -1)
8746 return 0;
8747 }
8748
8749 hash_table = elf_hash_table (flinfo->info);
8750 strtabsize = hash_table->strtabsize;
8751 if (strtabsize <= hash_table->strtabcount)
8752 {
8753 strtabsize += strtabsize;
8754 hash_table->strtabsize = strtabsize;
8755 strtabsize *= sizeof (*hash_table->strtab);
8756 hash_table->strtab
8757 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8758 strtabsize);
8759 if (hash_table->strtab == NULL)
8760 return 0;
8761 }
8762 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8763 hash_table->strtab[hash_table->strtabcount].dest_index
8764 = hash_table->strtabcount;
8765 hash_table->strtab[hash_table->strtabcount].destshndx_index
8766 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8767
8768 bfd_get_symcount (flinfo->output_bfd) += 1;
8769 hash_table->strtabcount += 1;
8770
8771 return 1;
8772}
8773
8774/* Swap symbols out to the symbol table and flush the output symbols to
8775 the file. */
8776
8777static bfd_boolean
8778elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8779{
8780 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8781 bfd_size_type amt, i;
8782 const struct elf_backend_data *bed;
8783 bfd_byte *symbuf;
8784 Elf_Internal_Shdr *hdr;
8785 file_ptr pos;
8786 bfd_boolean ret;
8787
8788 if (!hash_table->strtabcount)
8789 return TRUE;
8790
8791 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8792
8793 bed = get_elf_backend_data (flinfo->output_bfd);
8794
8795 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8796 symbuf = (bfd_byte *) bfd_malloc (amt);
8797 if (symbuf == NULL)
8798 return FALSE;
8799
8800 if (flinfo->symshndxbuf)
8801 {
8802 amt = (sizeof (Elf_External_Sym_Shndx)
8803 * (bfd_get_symcount (flinfo->output_bfd)));
8804 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8805 if (flinfo->symshndxbuf == NULL)
8806 {
8807 free (symbuf);
8808 return FALSE;
8809 }
8810 }
8811
8812 for (i = 0; i < hash_table->strtabcount; i++)
8813 {
8814 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8815 if (elfsym->sym.st_name == (unsigned long) -1)
8816 elfsym->sym.st_name = 0;
8817 else
8818 elfsym->sym.st_name
8819 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8820 elfsym->sym.st_name);
8821 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8822 ((bfd_byte *) symbuf
8823 + (elfsym->dest_index
8824 * bed->s->sizeof_sym)),
8825 (flinfo->symshndxbuf
8826 + elfsym->destshndx_index));
8827 }
8828
8829 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8830 pos = hdr->sh_offset + hdr->sh_size;
8831 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8832 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8833 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8834 {
8835 hdr->sh_size += amt;
8836 ret = TRUE;
8837 }
8838 else
8839 ret = FALSE;
8840
8841 free (symbuf);
8842
8843 free (hash_table->strtab);
8844 hash_table->strtab = NULL;
8845
8846 return ret;
8847}
8848
8849/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8850
8851static bfd_boolean
8852check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8853{
8854 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8855 && sym->st_shndx < SHN_LORESERVE)
8856 {
8857 /* The gABI doesn't support dynamic symbols in output sections
8858 beyond 64k. */
8859 (*_bfd_error_handler)
8860 (_("%B: Too many sections: %d (>= %d)"),
8861 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8862 bfd_set_error (bfd_error_nonrepresentable_section);
8863 return FALSE;
8864 }
8865 return TRUE;
8866}
8867
8868/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8869 allowing an unsatisfied unversioned symbol in the DSO to match a
8870 versioned symbol that would normally require an explicit version.
8871 We also handle the case that a DSO references a hidden symbol
8872 which may be satisfied by a versioned symbol in another DSO. */
8873
8874static bfd_boolean
8875elf_link_check_versioned_symbol (struct bfd_link_info *info,
8876 const struct elf_backend_data *bed,
8877 struct elf_link_hash_entry *h)
8878{
8879 bfd *abfd;
8880 struct elf_link_loaded_list *loaded;
8881
8882 if (!is_elf_hash_table (info->hash))
8883 return FALSE;
8884
8885 /* Check indirect symbol. */
8886 while (h->root.type == bfd_link_hash_indirect)
8887 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8888
8889 switch (h->root.type)
8890 {
8891 default:
8892 abfd = NULL;
8893 break;
8894
8895 case bfd_link_hash_undefined:
8896 case bfd_link_hash_undefweak:
8897 abfd = h->root.u.undef.abfd;
8898 if ((abfd->flags & DYNAMIC) == 0
8899 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8900 return FALSE;
8901 break;
8902
8903 case bfd_link_hash_defined:
8904 case bfd_link_hash_defweak:
8905 abfd = h->root.u.def.section->owner;
8906 break;
8907
8908 case bfd_link_hash_common:
8909 abfd = h->root.u.c.p->section->owner;
8910 break;
8911 }
8912 BFD_ASSERT (abfd != NULL);
8913
8914 for (loaded = elf_hash_table (info)->loaded;
8915 loaded != NULL;
8916 loaded = loaded->next)
8917 {
8918 bfd *input;
8919 Elf_Internal_Shdr *hdr;
8920 bfd_size_type symcount;
8921 bfd_size_type extsymcount;
8922 bfd_size_type extsymoff;
8923 Elf_Internal_Shdr *versymhdr;
8924 Elf_Internal_Sym *isym;
8925 Elf_Internal_Sym *isymend;
8926 Elf_Internal_Sym *isymbuf;
8927 Elf_External_Versym *ever;
8928 Elf_External_Versym *extversym;
8929
8930 input = loaded->abfd;
8931
8932 /* We check each DSO for a possible hidden versioned definition. */
8933 if (input == abfd
8934 || (input->flags & DYNAMIC) == 0
8935 || elf_dynversym (input) == 0)
8936 continue;
8937
8938 hdr = &elf_tdata (input)->dynsymtab_hdr;
8939
8940 symcount = hdr->sh_size / bed->s->sizeof_sym;
8941 if (elf_bad_symtab (input))
8942 {
8943 extsymcount = symcount;
8944 extsymoff = 0;
8945 }
8946 else
8947 {
8948 extsymcount = symcount - hdr->sh_info;
8949 extsymoff = hdr->sh_info;
8950 }
8951
8952 if (extsymcount == 0)
8953 continue;
8954
8955 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8956 NULL, NULL, NULL);
8957 if (isymbuf == NULL)
8958 return FALSE;
8959
8960 /* Read in any version definitions. */
8961 versymhdr = &elf_tdata (input)->dynversym_hdr;
8962 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8963 if (extversym == NULL)
8964 goto error_ret;
8965
8966 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8967 || (bfd_bread (extversym, versymhdr->sh_size, input)
8968 != versymhdr->sh_size))
8969 {
8970 free (extversym);
8971 error_ret:
8972 free (isymbuf);
8973 return FALSE;
8974 }
8975
8976 ever = extversym + extsymoff;
8977 isymend = isymbuf + extsymcount;
8978 for (isym = isymbuf; isym < isymend; isym++, ever++)
8979 {
8980 const char *name;
8981 Elf_Internal_Versym iver;
8982 unsigned short version_index;
8983
8984 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8985 || isym->st_shndx == SHN_UNDEF)
8986 continue;
8987
8988 name = bfd_elf_string_from_elf_section (input,
8989 hdr->sh_link,
8990 isym->st_name);
8991 if (strcmp (name, h->root.root.string) != 0)
8992 continue;
8993
8994 _bfd_elf_swap_versym_in (input, ever, &iver);
8995
8996 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8997 && !(h->def_regular
8998 && h->forced_local))
8999 {
9000 /* If we have a non-hidden versioned sym, then it should
9001 have provided a definition for the undefined sym unless
9002 it is defined in a non-shared object and forced local.
9003 */
9004 abort ();
9005 }
9006
9007 version_index = iver.vs_vers & VERSYM_VERSION;
9008 if (version_index == 1 || version_index == 2)
9009 {
9010 /* This is the base or first version. We can use it. */
9011 free (extversym);
9012 free (isymbuf);
9013 return TRUE;
9014 }
9015 }
9016
9017 free (extversym);
9018 free (isymbuf);
9019 }
9020
9021 return FALSE;
9022}
9023
9024/* Add an external symbol to the symbol table. This is called from
9025 the hash table traversal routine. When generating a shared object,
9026 we go through the symbol table twice. The first time we output
9027 anything that might have been forced to local scope in a version
9028 script. The second time we output the symbols that are still
9029 global symbols. */
9030
9031static bfd_boolean
9032elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9033{
9034 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9035 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9036 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9037 bfd_boolean strip;
9038 Elf_Internal_Sym sym;
9039 asection *input_sec;
9040 const struct elf_backend_data *bed;
9041 long indx;
9042 int ret;
9043 /* A symbol is bound locally if it is forced local or it is locally
9044 defined, hidden versioned, not referenced by shared library and
9045 not exported when linking executable. */
9046 bfd_boolean local_bind = (h->forced_local
9047 || (bfd_link_executable (flinfo->info)
9048 && !flinfo->info->export_dynamic
9049 && !h->dynamic
9050 && !h->ref_dynamic
9051 && h->def_regular
9052 && h->versioned == versioned_hidden));
9053
9054 if (h->root.type == bfd_link_hash_warning)
9055 {
9056 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9057 if (h->root.type == bfd_link_hash_new)
9058 return TRUE;
9059 }
9060
9061 /* Decide whether to output this symbol in this pass. */
9062 if (eoinfo->localsyms)
9063 {
9064 if (!local_bind)
9065 return TRUE;
9066 }
9067 else
9068 {
9069 if (local_bind)
9070 return TRUE;
9071 }
9072
9073 bed = get_elf_backend_data (flinfo->output_bfd);
9074
9075 if (h->root.type == bfd_link_hash_undefined)
9076 {
9077 /* If we have an undefined symbol reference here then it must have
9078 come from a shared library that is being linked in. (Undefined
9079 references in regular files have already been handled unless
9080 they are in unreferenced sections which are removed by garbage
9081 collection). */
9082 bfd_boolean ignore_undef = FALSE;
9083
9084 /* Some symbols may be special in that the fact that they're
9085 undefined can be safely ignored - let backend determine that. */
9086 if (bed->elf_backend_ignore_undef_symbol)
9087 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9088
9089 /* If we are reporting errors for this situation then do so now. */
9090 if (!ignore_undef
9091 && h->ref_dynamic
9092 && (!h->ref_regular || flinfo->info->gc_sections)
9093 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9094 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9095 {
9096 if (!(flinfo->info->callbacks->undefined_symbol
9097 (flinfo->info, h->root.root.string,
9098 h->ref_regular ? NULL : h->root.u.undef.abfd,
9099 NULL, 0,
9100 (flinfo->info->unresolved_syms_in_shared_libs
9101 == RM_GENERATE_ERROR))))
9102 {
9103 bfd_set_error (bfd_error_bad_value);
9104 eoinfo->failed = TRUE;
9105 return FALSE;
9106 }
9107 }
9108 }
9109
9110 /* We should also warn if a forced local symbol is referenced from
9111 shared libraries. */
9112 if (bfd_link_executable (flinfo->info)
9113 && h->forced_local
9114 && h->ref_dynamic
9115 && h->def_regular
9116 && !h->dynamic_def
9117 && h->ref_dynamic_nonweak
9118 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9119 {
9120 bfd *def_bfd;
9121 const char *msg;
9122 struct elf_link_hash_entry *hi = h;
9123
9124 /* Check indirect symbol. */
9125 while (hi->root.type == bfd_link_hash_indirect)
9126 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9127
9128 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9129 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9130 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9131 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9132 else
9133 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9134 def_bfd = flinfo->output_bfd;
9135 if (hi->root.u.def.section != bfd_abs_section_ptr)
9136 def_bfd = hi->root.u.def.section->owner;
9137 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9138 h->root.root.string);
9139 bfd_set_error (bfd_error_bad_value);
9140 eoinfo->failed = TRUE;
9141 return FALSE;
9142 }
9143
9144 /* We don't want to output symbols that have never been mentioned by
9145 a regular file, or that we have been told to strip. However, if
9146 h->indx is set to -2, the symbol is used by a reloc and we must
9147 output it. */
9148 strip = FALSE;
9149 if (h->indx == -2)
9150 ;
9151 else if ((h->def_dynamic
9152 || h->ref_dynamic
9153 || h->root.type == bfd_link_hash_new)
9154 && !h->def_regular
9155 && !h->ref_regular)
9156 strip = TRUE;
9157 else if (flinfo->info->strip == strip_all)
9158 strip = TRUE;
9159 else if (flinfo->info->strip == strip_some
9160 && bfd_hash_lookup (flinfo->info->keep_hash,
9161 h->root.root.string, FALSE, FALSE) == NULL)
9162 strip = TRUE;
9163 else if ((h->root.type == bfd_link_hash_defined
9164 || h->root.type == bfd_link_hash_defweak)
9165 && ((flinfo->info->strip_discarded
9166 && discarded_section (h->root.u.def.section))
9167 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9168 && h->root.u.def.section->owner != NULL
9169 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9170 strip = TRUE;
9171 else if ((h->root.type == bfd_link_hash_undefined
9172 || h->root.type == bfd_link_hash_undefweak)
9173 && h->root.u.undef.abfd != NULL
9174 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9175 strip = TRUE;
9176
9177 /* If we're stripping it, and it's not a dynamic symbol, there's
9178 nothing else to do. However, if it is a forced local symbol or
9179 an ifunc symbol we need to give the backend finish_dynamic_symbol
9180 function a chance to make it dynamic. */
9181 if (strip
9182 && h->dynindx == -1
9183 && h->type != STT_GNU_IFUNC
9184 && !h->forced_local)
9185 return TRUE;
9186
9187 sym.st_value = 0;
9188 sym.st_size = h->size;
9189 sym.st_other = h->other;
9190 if (local_bind)
9191 {
9192 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9193 /* Turn off visibility on local symbol. */
9194 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9195 }
9196 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9197 else if (h->unique_global && h->def_regular)
9198 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9199 else if (h->root.type == bfd_link_hash_undefweak
9200 || h->root.type == bfd_link_hash_defweak)
9201 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9202 else
9203 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9204 sym.st_target_internal = h->target_internal;
9205
9206 switch (h->root.type)
9207 {
9208 default:
9209 case bfd_link_hash_new:
9210 case bfd_link_hash_warning:
9211 abort ();
9212 return FALSE;
9213
9214 case bfd_link_hash_undefined:
9215 case bfd_link_hash_undefweak:
9216 input_sec = bfd_und_section_ptr;
9217 sym.st_shndx = SHN_UNDEF;
9218 break;
9219
9220 case bfd_link_hash_defined:
9221 case bfd_link_hash_defweak:
9222 {
9223 input_sec = h->root.u.def.section;
9224 if (input_sec->output_section != NULL)
9225 {
9226 sym.st_shndx =
9227 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9228 input_sec->output_section);
9229 if (sym.st_shndx == SHN_BAD)
9230 {
9231 (*_bfd_error_handler)
9232 (_("%B: could not find output section %A for input section %A"),
9233 flinfo->output_bfd, input_sec->output_section, input_sec);
9234 bfd_set_error (bfd_error_nonrepresentable_section);
9235 eoinfo->failed = TRUE;
9236 return FALSE;
9237 }
9238
9239 /* ELF symbols in relocatable files are section relative,
9240 but in nonrelocatable files they are virtual
9241 addresses. */
9242 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9243 if (!bfd_link_relocatable (flinfo->info))
9244 {
9245 sym.st_value += input_sec->output_section->vma;
9246 if (h->type == STT_TLS)
9247 {
9248 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9249 if (tls_sec != NULL)
9250 sym.st_value -= tls_sec->vma;
9251 }
9252 }
9253 }
9254 else
9255 {
9256 BFD_ASSERT (input_sec->owner == NULL
9257 || (input_sec->owner->flags & DYNAMIC) != 0);
9258 sym.st_shndx = SHN_UNDEF;
9259 input_sec = bfd_und_section_ptr;
9260 }
9261 }
9262 break;
9263
9264 case bfd_link_hash_common:
9265 input_sec = h->root.u.c.p->section;
9266 sym.st_shndx = bed->common_section_index (input_sec);
9267 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9268 break;
9269
9270 case bfd_link_hash_indirect:
9271 /* These symbols are created by symbol versioning. They point
9272 to the decorated version of the name. For example, if the
9273 symbol foo@@GNU_1.2 is the default, which should be used when
9274 foo is used with no version, then we add an indirect symbol
9275 foo which points to foo@@GNU_1.2. We ignore these symbols,
9276 since the indirected symbol is already in the hash table. */
9277 return TRUE;
9278 }
9279
9280 /* Give the processor backend a chance to tweak the symbol value,
9281 and also to finish up anything that needs to be done for this
9282 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9283 forced local syms when non-shared is due to a historical quirk.
9284 STT_GNU_IFUNC symbol must go through PLT. */
9285 if ((h->type == STT_GNU_IFUNC
9286 && h->def_regular
9287 && !bfd_link_relocatable (flinfo->info))
9288 || ((h->dynindx != -1
9289 || h->forced_local)
9290 && ((bfd_link_pic (flinfo->info)
9291 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9292 || h->root.type != bfd_link_hash_undefweak))
9293 || !h->forced_local)
9294 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9295 {
9296 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9297 (flinfo->output_bfd, flinfo->info, h, &sym)))
9298 {
9299 eoinfo->failed = TRUE;
9300 return FALSE;
9301 }
9302 }
9303
9304 /* If we are marking the symbol as undefined, and there are no
9305 non-weak references to this symbol from a regular object, then
9306 mark the symbol as weak undefined; if there are non-weak
9307 references, mark the symbol as strong. We can't do this earlier,
9308 because it might not be marked as undefined until the
9309 finish_dynamic_symbol routine gets through with it. */
9310 if (sym.st_shndx == SHN_UNDEF
9311 && h->ref_regular
9312 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9313 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9314 {
9315 int bindtype;
9316 unsigned int type = ELF_ST_TYPE (sym.st_info);
9317
9318 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9319 if (type == STT_GNU_IFUNC)
9320 type = STT_FUNC;
9321
9322 if (h->ref_regular_nonweak)
9323 bindtype = STB_GLOBAL;
9324 else
9325 bindtype = STB_WEAK;
9326 sym.st_info = ELF_ST_INFO (bindtype, type);
9327 }
9328
9329 /* If this is a symbol defined in a dynamic library, don't use the
9330 symbol size from the dynamic library. Relinking an executable
9331 against a new library may introduce gratuitous changes in the
9332 executable's symbols if we keep the size. */
9333 if (sym.st_shndx == SHN_UNDEF
9334 && !h->def_regular
9335 && h->def_dynamic)
9336 sym.st_size = 0;
9337
9338 /* If a non-weak symbol with non-default visibility is not defined
9339 locally, it is a fatal error. */
9340 if (!bfd_link_relocatable (flinfo->info)
9341 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9342 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9343 && h->root.type == bfd_link_hash_undefined
9344 && !h->def_regular)
9345 {
9346 const char *msg;
9347
9348 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9349 msg = _("%B: protected symbol `%s' isn't defined");
9350 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9351 msg = _("%B: internal symbol `%s' isn't defined");
9352 else
9353 msg = _("%B: hidden symbol `%s' isn't defined");
9354 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9355 bfd_set_error (bfd_error_bad_value);
9356 eoinfo->failed = TRUE;
9357 return FALSE;
9358 }
9359
9360 /* If this symbol should be put in the .dynsym section, then put it
9361 there now. We already know the symbol index. We also fill in
9362 the entry in the .hash section. */
9363 if (elf_hash_table (flinfo->info)->dynsym != NULL
9364 && h->dynindx != -1
9365 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9366 {
9367 bfd_byte *esym;
9368
9369 /* Since there is no version information in the dynamic string,
9370 if there is no version info in symbol version section, we will
9371 have a run-time problem if not linking executable, referenced
9372 by shared library, not locally defined, or not bound locally.
9373 */
9374 if (h->verinfo.verdef == NULL
9375 && !local_bind
9376 && (!bfd_link_executable (flinfo->info)
9377 || h->ref_dynamic
9378 || !h->def_regular))
9379 {
9380 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9381
9382 if (p && p [1] != '\0')
9383 {
9384 (*_bfd_error_handler)
9385 (_("%B: No symbol version section for versioned symbol `%s'"),
9386 flinfo->output_bfd, h->root.root.string);
9387 eoinfo->failed = TRUE;
9388 return FALSE;
9389 }
9390 }
9391
9392 sym.st_name = h->dynstr_index;
9393 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9394 + h->dynindx * bed->s->sizeof_sym);
9395 if (!check_dynsym (flinfo->output_bfd, &sym))
9396 {
9397 eoinfo->failed = TRUE;
9398 return FALSE;
9399 }
9400 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9401
9402 if (flinfo->hash_sec != NULL)
9403 {
9404 size_t hash_entry_size;
9405 bfd_byte *bucketpos;
9406 bfd_vma chain;
9407 size_t bucketcount;
9408 size_t bucket;
9409
9410 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9411 bucket = h->u.elf_hash_value % bucketcount;
9412
9413 hash_entry_size
9414 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9415 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9416 + (bucket + 2) * hash_entry_size);
9417 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9418 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9419 bucketpos);
9420 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9421 ((bfd_byte *) flinfo->hash_sec->contents
9422 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9423 }
9424
9425 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9426 {
9427 Elf_Internal_Versym iversym;
9428 Elf_External_Versym *eversym;
9429
9430 if (!h->def_regular)
9431 {
9432 if (h->verinfo.verdef == NULL
9433 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9434 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9435 iversym.vs_vers = 0;
9436 else
9437 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9438 }
9439 else
9440 {
9441 if (h->verinfo.vertree == NULL)
9442 iversym.vs_vers = 1;
9443 else
9444 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9445 if (flinfo->info->create_default_symver)
9446 iversym.vs_vers++;
9447 }
9448
9449 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9450 defined locally. */
9451 if (h->versioned == versioned_hidden && h->def_regular)
9452 iversym.vs_vers |= VERSYM_HIDDEN;
9453
9454 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9455 eversym += h->dynindx;
9456 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9457 }
9458 }
9459
9460 /* If the symbol is undefined, and we didn't output it to .dynsym,
9461 strip it from .symtab too. Obviously we can't do this for
9462 relocatable output or when needed for --emit-relocs. */
9463 else if (input_sec == bfd_und_section_ptr
9464 && h->indx != -2
9465 && !bfd_link_relocatable (flinfo->info))
9466 return TRUE;
9467 /* Also strip others that we couldn't earlier due to dynamic symbol
9468 processing. */
9469 if (strip)
9470 return TRUE;
9471 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9472 return TRUE;
9473
9474 /* Output a FILE symbol so that following locals are not associated
9475 with the wrong input file. We need one for forced local symbols
9476 if we've seen more than one FILE symbol or when we have exactly
9477 one FILE symbol but global symbols are present in a file other
9478 than the one with the FILE symbol. We also need one if linker
9479 defined symbols are present. In practice these conditions are
9480 always met, so just emit the FILE symbol unconditionally. */
9481 if (eoinfo->localsyms
9482 && !eoinfo->file_sym_done
9483 && eoinfo->flinfo->filesym_count != 0)
9484 {
9485 Elf_Internal_Sym fsym;
9486
9487 memset (&fsym, 0, sizeof (fsym));
9488 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9489 fsym.st_shndx = SHN_ABS;
9490 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9491 bfd_und_section_ptr, NULL))
9492 return FALSE;
9493
9494 eoinfo->file_sym_done = TRUE;
9495 }
9496
9497 indx = bfd_get_symcount (flinfo->output_bfd);
9498 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9499 input_sec, h);
9500 if (ret == 0)
9501 {
9502 eoinfo->failed = TRUE;
9503 return FALSE;
9504 }
9505 else if (ret == 1)
9506 h->indx = indx;
9507 else if (h->indx == -2)
9508 abort();
9509
9510 return TRUE;
9511}
9512
9513/* Return TRUE if special handling is done for relocs in SEC against
9514 symbols defined in discarded sections. */
9515
9516static bfd_boolean
9517elf_section_ignore_discarded_relocs (asection *sec)
9518{
9519 const struct elf_backend_data *bed;
9520
9521 switch (sec->sec_info_type)
9522 {
9523 case SEC_INFO_TYPE_STABS:
9524 case SEC_INFO_TYPE_EH_FRAME:
9525 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9526 return TRUE;
9527 default:
9528 break;
9529 }
9530
9531 bed = get_elf_backend_data (sec->owner);
9532 if (bed->elf_backend_ignore_discarded_relocs != NULL
9533 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9534 return TRUE;
9535
9536 return FALSE;
9537}
9538
9539/* Return a mask saying how ld should treat relocations in SEC against
9540 symbols defined in discarded sections. If this function returns
9541 COMPLAIN set, ld will issue a warning message. If this function
9542 returns PRETEND set, and the discarded section was link-once and the
9543 same size as the kept link-once section, ld will pretend that the
9544 symbol was actually defined in the kept section. Otherwise ld will
9545 zero the reloc (at least that is the intent, but some cooperation by
9546 the target dependent code is needed, particularly for REL targets). */
9547
9548unsigned int
9549_bfd_elf_default_action_discarded (asection *sec)
9550{
9551 if (sec->flags & SEC_DEBUGGING)
9552 return PRETEND;
9553
9554 if (strcmp (".eh_frame", sec->name) == 0)
9555 return 0;
9556
9557 if (strcmp (".gcc_except_table", sec->name) == 0)
9558 return 0;
9559
9560 return COMPLAIN | PRETEND;
9561}
9562
9563/* Find a match between a section and a member of a section group. */
9564
9565static asection *
9566match_group_member (asection *sec, asection *group,
9567 struct bfd_link_info *info)
9568{
9569 asection *first = elf_next_in_group (group);
9570 asection *s = first;
9571
9572 while (s != NULL)
9573 {
9574 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9575 return s;
9576
9577 s = elf_next_in_group (s);
9578 if (s == first)
9579 break;
9580 }
9581
9582 return NULL;
9583}
9584
9585/* Check if the kept section of a discarded section SEC can be used
9586 to replace it. Return the replacement if it is OK. Otherwise return
9587 NULL. */
9588
9589asection *
9590_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9591{
9592 asection *kept;
9593
9594 kept = sec->kept_section;
9595 if (kept != NULL)
9596 {
9597 if ((kept->flags & SEC_GROUP) != 0)
9598 kept = match_group_member (sec, kept, info);
9599 if (kept != NULL
9600 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9601 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9602 kept = NULL;
9603 sec->kept_section = kept;
9604 }
9605 return kept;
9606}
9607
9608/* Link an input file into the linker output file. This function
9609 handles all the sections and relocations of the input file at once.
9610 This is so that we only have to read the local symbols once, and
9611 don't have to keep them in memory. */
9612
9613static bfd_boolean
9614elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9615{
9616 int (*relocate_section)
9617 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9618 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9619 bfd *output_bfd;
9620 Elf_Internal_Shdr *symtab_hdr;
9621 size_t locsymcount;
9622 size_t extsymoff;
9623 Elf_Internal_Sym *isymbuf;
9624 Elf_Internal_Sym *isym;
9625 Elf_Internal_Sym *isymend;
9626 long *pindex;
9627 asection **ppsection;
9628 asection *o;
9629 const struct elf_backend_data *bed;
9630 struct elf_link_hash_entry **sym_hashes;
9631 bfd_size_type address_size;
9632 bfd_vma r_type_mask;
9633 int r_sym_shift;
9634 bfd_boolean have_file_sym = FALSE;
9635
9636 output_bfd = flinfo->output_bfd;
9637 bed = get_elf_backend_data (output_bfd);
9638 relocate_section = bed->elf_backend_relocate_section;
9639
9640 /* If this is a dynamic object, we don't want to do anything here:
9641 we don't want the local symbols, and we don't want the section
9642 contents. */
9643 if ((input_bfd->flags & DYNAMIC) != 0)
9644 return TRUE;
9645
9646 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9647 if (elf_bad_symtab (input_bfd))
9648 {
9649 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9650 extsymoff = 0;
9651 }
9652 else
9653 {
9654 locsymcount = symtab_hdr->sh_info;
9655 extsymoff = symtab_hdr->sh_info;
9656 }
9657
9658 /* Read the local symbols. */
9659 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9660 if (isymbuf == NULL && locsymcount != 0)
9661 {
9662 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9663 flinfo->internal_syms,
9664 flinfo->external_syms,
9665 flinfo->locsym_shndx);
9666 if (isymbuf == NULL)
9667 return FALSE;
9668 }
9669
9670 /* Find local symbol sections and adjust values of symbols in
9671 SEC_MERGE sections. Write out those local symbols we know are
9672 going into the output file. */
9673 isymend = isymbuf + locsymcount;
9674 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9675 isym < isymend;
9676 isym++, pindex++, ppsection++)
9677 {
9678 asection *isec;
9679 const char *name;
9680 Elf_Internal_Sym osym;
9681 long indx;
9682 int ret;
9683
9684 *pindex = -1;
9685
9686 if (elf_bad_symtab (input_bfd))
9687 {
9688 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9689 {
9690 *ppsection = NULL;
9691 continue;
9692 }
9693 }
9694
9695 if (isym->st_shndx == SHN_UNDEF)
9696 isec = bfd_und_section_ptr;
9697 else if (isym->st_shndx == SHN_ABS)
9698 isec = bfd_abs_section_ptr;
9699 else if (isym->st_shndx == SHN_COMMON)
9700 isec = bfd_com_section_ptr;
9701 else
9702 {
9703 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9704 if (isec == NULL)
9705 {
9706 /* Don't attempt to output symbols with st_shnx in the
9707 reserved range other than SHN_ABS and SHN_COMMON. */
9708 *ppsection = NULL;
9709 continue;
9710 }
9711 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9712 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9713 isym->st_value =
9714 _bfd_merged_section_offset (output_bfd, &isec,
9715 elf_section_data (isec)->sec_info,
9716 isym->st_value);
9717 }
9718
9719 *ppsection = isec;
9720
9721 /* Don't output the first, undefined, symbol. In fact, don't
9722 output any undefined local symbol. */
9723 if (isec == bfd_und_section_ptr)
9724 continue;
9725
9726 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9727 {
9728 /* We never output section symbols. Instead, we use the
9729 section symbol of the corresponding section in the output
9730 file. */
9731 continue;
9732 }
9733
9734 /* If we are stripping all symbols, we don't want to output this
9735 one. */
9736 if (flinfo->info->strip == strip_all)
9737 continue;
9738
9739 /* If we are discarding all local symbols, we don't want to
9740 output this one. If we are generating a relocatable output
9741 file, then some of the local symbols may be required by
9742 relocs; we output them below as we discover that they are
9743 needed. */
9744 if (flinfo->info->discard == discard_all)
9745 continue;
9746
9747 /* If this symbol is defined in a section which we are
9748 discarding, we don't need to keep it. */
9749 if (isym->st_shndx != SHN_UNDEF
9750 && isym->st_shndx < SHN_LORESERVE
9751 && bfd_section_removed_from_list (output_bfd,
9752 isec->output_section))
9753 continue;
9754
9755 /* Get the name of the symbol. */
9756 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9757 isym->st_name);
9758 if (name == NULL)
9759 return FALSE;
9760
9761 /* See if we are discarding symbols with this name. */
9762 if ((flinfo->info->strip == strip_some
9763 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9764 == NULL))
9765 || (((flinfo->info->discard == discard_sec_merge
9766 && (isec->flags & SEC_MERGE)
9767 && !bfd_link_relocatable (flinfo->info))
9768 || flinfo->info->discard == discard_l)
9769 && bfd_is_local_label_name (input_bfd, name)))
9770 continue;
9771
9772 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9773 {
9774 if (input_bfd->lto_output)
9775 /* -flto puts a temp file name here. This means builds
9776 are not reproducible. Discard the symbol. */
9777 continue;
9778 have_file_sym = TRUE;
9779 flinfo->filesym_count += 1;
9780 }
9781 if (!have_file_sym)
9782 {
9783 /* In the absence of debug info, bfd_find_nearest_line uses
9784 FILE symbols to determine the source file for local
9785 function symbols. Provide a FILE symbol here if input
9786 files lack such, so that their symbols won't be
9787 associated with a previous input file. It's not the
9788 source file, but the best we can do. */
9789 have_file_sym = TRUE;
9790 flinfo->filesym_count += 1;
9791 memset (&osym, 0, sizeof (osym));
9792 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9793 osym.st_shndx = SHN_ABS;
9794 if (!elf_link_output_symstrtab (flinfo,
9795 (input_bfd->lto_output ? NULL
9796 : input_bfd->filename),
9797 &osym, bfd_abs_section_ptr,
9798 NULL))
9799 return FALSE;
9800 }
9801
9802 osym = *isym;
9803
9804 /* Adjust the section index for the output file. */
9805 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9806 isec->output_section);
9807 if (osym.st_shndx == SHN_BAD)
9808 return FALSE;
9809
9810 /* ELF symbols in relocatable files are section relative, but
9811 in executable files they are virtual addresses. Note that
9812 this code assumes that all ELF sections have an associated
9813 BFD section with a reasonable value for output_offset; below
9814 we assume that they also have a reasonable value for
9815 output_section. Any special sections must be set up to meet
9816 these requirements. */
9817 osym.st_value += isec->output_offset;
9818 if (!bfd_link_relocatable (flinfo->info))
9819 {
9820 osym.st_value += isec->output_section->vma;
9821 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9822 {
9823 /* STT_TLS symbols are relative to PT_TLS segment base. */
9824 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9825 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9826 }
9827 }
9828
9829 indx = bfd_get_symcount (output_bfd);
9830 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9831 if (ret == 0)
9832 return FALSE;
9833 else if (ret == 1)
9834 *pindex = indx;
9835 }
9836
9837 if (bed->s->arch_size == 32)
9838 {
9839 r_type_mask = 0xff;
9840 r_sym_shift = 8;
9841 address_size = 4;
9842 }
9843 else
9844 {
9845 r_type_mask = 0xffffffff;
9846 r_sym_shift = 32;
9847 address_size = 8;
9848 }
9849
9850 /* Relocate the contents of each section. */
9851 sym_hashes = elf_sym_hashes (input_bfd);
9852 for (o = input_bfd->sections; o != NULL; o = o->next)
9853 {
9854 bfd_byte *contents;
9855
9856 if (! o->linker_mark)
9857 {
9858 /* This section was omitted from the link. */
9859 continue;
9860 }
9861
9862 if (bfd_link_relocatable (flinfo->info)
9863 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9864 {
9865 /* Deal with the group signature symbol. */
9866 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9867 unsigned long symndx = sec_data->this_hdr.sh_info;
9868 asection *osec = o->output_section;
9869
9870 if (symndx >= locsymcount
9871 || (elf_bad_symtab (input_bfd)
9872 && flinfo->sections[symndx] == NULL))
9873 {
9874 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9875 while (h->root.type == bfd_link_hash_indirect
9876 || h->root.type == bfd_link_hash_warning)
9877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9878 /* Arrange for symbol to be output. */
9879 h->indx = -2;
9880 elf_section_data (osec)->this_hdr.sh_info = -2;
9881 }
9882 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9883 {
9884 /* We'll use the output section target_index. */
9885 asection *sec = flinfo->sections[symndx]->output_section;
9886 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9887 }
9888 else
9889 {
9890 if (flinfo->indices[symndx] == -1)
9891 {
9892 /* Otherwise output the local symbol now. */
9893 Elf_Internal_Sym sym = isymbuf[symndx];
9894 asection *sec = flinfo->sections[symndx]->output_section;
9895 const char *name;
9896 long indx;
9897 int ret;
9898
9899 name = bfd_elf_string_from_elf_section (input_bfd,
9900 symtab_hdr->sh_link,
9901 sym.st_name);
9902 if (name == NULL)
9903 return FALSE;
9904
9905 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9906 sec);
9907 if (sym.st_shndx == SHN_BAD)
9908 return FALSE;
9909
9910 sym.st_value += o->output_offset;
9911
9912 indx = bfd_get_symcount (output_bfd);
9913 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9914 NULL);
9915 if (ret == 0)
9916 return FALSE;
9917 else if (ret == 1)
9918 flinfo->indices[symndx] = indx;
9919 else
9920 abort ();
9921 }
9922 elf_section_data (osec)->this_hdr.sh_info
9923 = flinfo->indices[symndx];
9924 }
9925 }
9926
9927 if ((o->flags & SEC_HAS_CONTENTS) == 0
9928 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9929 continue;
9930
9931 if ((o->flags & SEC_LINKER_CREATED) != 0)
9932 {
9933 /* Section was created by _bfd_elf_link_create_dynamic_sections
9934 or somesuch. */
9935 continue;
9936 }
9937
9938 /* Get the contents of the section. They have been cached by a
9939 relaxation routine. Note that o is a section in an input
9940 file, so the contents field will not have been set by any of
9941 the routines which work on output files. */
9942 if (elf_section_data (o)->this_hdr.contents != NULL)
9943 {
9944 contents = elf_section_data (o)->this_hdr.contents;
9945 if (bed->caches_rawsize
9946 && o->rawsize != 0
9947 && o->rawsize < o->size)
9948 {
9949 memcpy (flinfo->contents, contents, o->rawsize);
9950 contents = flinfo->contents;
9951 }
9952 }
9953 else
9954 {
9955 contents = flinfo->contents;
9956 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9957 return FALSE;
9958 }
9959
9960 if ((o->flags & SEC_RELOC) != 0)
9961 {
9962 Elf_Internal_Rela *internal_relocs;
9963 Elf_Internal_Rela *rel, *relend;
9964 int action_discarded;
9965 int ret;
9966
9967 /* Get the swapped relocs. */
9968 internal_relocs
9969 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9970 flinfo->internal_relocs, FALSE);
9971 if (internal_relocs == NULL
9972 && o->reloc_count > 0)
9973 return FALSE;
9974
9975 /* We need to reverse-copy input .ctors/.dtors sections if
9976 they are placed in .init_array/.finit_array for output. */
9977 if (o->size > address_size
9978 && ((strncmp (o->name, ".ctors", 6) == 0
9979 && strcmp (o->output_section->name,
9980 ".init_array") == 0)
9981 || (strncmp (o->name, ".dtors", 6) == 0
9982 && strcmp (o->output_section->name,
9983 ".fini_array") == 0))
9984 && (o->name[6] == 0 || o->name[6] == '.'))
9985 {
9986 if (o->size != o->reloc_count * address_size)
9987 {
9988 (*_bfd_error_handler)
9989 (_("error: %B: size of section %A is not "
9990 "multiple of address size"),
9991 input_bfd, o);
9992 bfd_set_error (bfd_error_on_input);
9993 return FALSE;
9994 }
9995 o->flags |= SEC_ELF_REVERSE_COPY;
9996 }
9997
9998 action_discarded = -1;
9999 if (!elf_section_ignore_discarded_relocs (o))
10000 action_discarded = (*bed->action_discarded) (o);
10001
10002 /* Run through the relocs evaluating complex reloc symbols and
10003 looking for relocs against symbols from discarded sections
10004 or section symbols from removed link-once sections.
10005 Complain about relocs against discarded sections. Zero
10006 relocs against removed link-once sections. */
10007
10008 rel = internal_relocs;
10009 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10010 for ( ; rel < relend; rel++)
10011 {
10012 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10013 unsigned int s_type;
10014 asection **ps, *sec;
10015 struct elf_link_hash_entry *h = NULL;
10016 const char *sym_name;
10017
10018 if (r_symndx == STN_UNDEF)
10019 continue;
10020
10021 if (r_symndx >= locsymcount
10022 || (elf_bad_symtab (input_bfd)
10023 && flinfo->sections[r_symndx] == NULL))
10024 {
10025 h = sym_hashes[r_symndx - extsymoff];
10026
10027 /* Badly formatted input files can contain relocs that
10028 reference non-existant symbols. Check here so that
10029 we do not seg fault. */
10030 if (h == NULL)
10031 {
10032 char buffer [32];
10033
10034 sprintf_vma (buffer, rel->r_info);
10035 (*_bfd_error_handler)
10036 (_("error: %B contains a reloc (0x%s) for section %A "
10037 "that references a non-existent global symbol"),
10038 input_bfd, o, buffer);
10039 bfd_set_error (bfd_error_bad_value);
10040 return FALSE;
10041 }
10042
10043 while (h->root.type == bfd_link_hash_indirect
10044 || h->root.type == bfd_link_hash_warning)
10045 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10046
10047 s_type = h->type;
10048
10049 /* If a plugin symbol is referenced from a non-IR file,
10050 mark the symbol as undefined. Note that the
10051 linker may attach linker created dynamic sections
10052 to the plugin bfd. Symbols defined in linker
10053 created sections are not plugin symbols. */
10054 if (h->root.non_ir_ref
10055 && (h->root.type == bfd_link_hash_defined
10056 || h->root.type == bfd_link_hash_defweak)
10057 && (h->root.u.def.section->flags
10058 & SEC_LINKER_CREATED) == 0
10059 && h->root.u.def.section->owner != NULL
10060 && (h->root.u.def.section->owner->flags
10061 & BFD_PLUGIN) != 0)
10062 {
10063 h->root.type = bfd_link_hash_undefined;
10064 h->root.u.undef.abfd = h->root.u.def.section->owner;
10065 }
10066
10067 ps = NULL;
10068 if (h->root.type == bfd_link_hash_defined
10069 || h->root.type == bfd_link_hash_defweak)
10070 ps = &h->root.u.def.section;
10071
10072 sym_name = h->root.root.string;
10073 }
10074 else
10075 {
10076 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10077
10078 s_type = ELF_ST_TYPE (sym->st_info);
10079 ps = &flinfo->sections[r_symndx];
10080 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10081 sym, *ps);
10082 }
10083
10084 if ((s_type == STT_RELC || s_type == STT_SRELC)
10085 && !bfd_link_relocatable (flinfo->info))
10086 {
10087 bfd_vma val;
10088 bfd_vma dot = (rel->r_offset
10089 + o->output_offset + o->output_section->vma);
10090#ifdef DEBUG
10091 printf ("Encountered a complex symbol!");
10092 printf (" (input_bfd %s, section %s, reloc %ld\n",
10093 input_bfd->filename, o->name,
10094 (long) (rel - internal_relocs));
10095 printf (" symbol: idx %8.8lx, name %s\n",
10096 r_symndx, sym_name);
10097 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10098 (unsigned long) rel->r_info,
10099 (unsigned long) rel->r_offset);
10100#endif
10101 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10102 isymbuf, locsymcount, s_type == STT_SRELC))
10103 return FALSE;
10104
10105 /* Symbol evaluated OK. Update to absolute value. */
10106 set_symbol_value (input_bfd, isymbuf, locsymcount,
10107 r_symndx, val);
10108 continue;
10109 }
10110
10111 if (action_discarded != -1 && ps != NULL)
10112 {
10113 /* Complain if the definition comes from a
10114 discarded section. */
10115 if ((sec = *ps) != NULL && discarded_section (sec))
10116 {
10117 BFD_ASSERT (r_symndx != STN_UNDEF);
10118 if (action_discarded & COMPLAIN)
10119 (*flinfo->info->callbacks->einfo)
10120 (_("%X`%s' referenced in section `%A' of %B: "
10121 "defined in discarded section `%A' of %B\n"),
10122 sym_name, o, input_bfd, sec, sec->owner);
10123
10124 /* Try to do the best we can to support buggy old
10125 versions of gcc. Pretend that the symbol is
10126 really defined in the kept linkonce section.
10127 FIXME: This is quite broken. Modifying the
10128 symbol here means we will be changing all later
10129 uses of the symbol, not just in this section. */
10130 if (action_discarded & PRETEND)
10131 {
10132 asection *kept;
10133
10134 kept = _bfd_elf_check_kept_section (sec,
10135 flinfo->info);
10136 if (kept != NULL)
10137 {
10138 *ps = kept;
10139 continue;
10140 }
10141 }
10142 }
10143 }
10144 }
10145
10146 /* Relocate the section by invoking a back end routine.
10147
10148 The back end routine is responsible for adjusting the
10149 section contents as necessary, and (if using Rela relocs
10150 and generating a relocatable output file) adjusting the
10151 reloc addend as necessary.
10152
10153 The back end routine does not have to worry about setting
10154 the reloc address or the reloc symbol index.
10155
10156 The back end routine is given a pointer to the swapped in
10157 internal symbols, and can access the hash table entries
10158 for the external symbols via elf_sym_hashes (input_bfd).
10159
10160 When generating relocatable output, the back end routine
10161 must handle STB_LOCAL/STT_SECTION symbols specially. The
10162 output symbol is going to be a section symbol
10163 corresponding to the output section, which will require
10164 the addend to be adjusted. */
10165
10166 ret = (*relocate_section) (output_bfd, flinfo->info,
10167 input_bfd, o, contents,
10168 internal_relocs,
10169 isymbuf,
10170 flinfo->sections);
10171 if (!ret)
10172 return FALSE;
10173
10174 if (ret == 2
10175 || bfd_link_relocatable (flinfo->info)
10176 || flinfo->info->emitrelocations)
10177 {
10178 Elf_Internal_Rela *irela;
10179 Elf_Internal_Rela *irelaend, *irelamid;
10180 bfd_vma last_offset;
10181 struct elf_link_hash_entry **rel_hash;
10182 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10183 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10184 unsigned int next_erel;
10185 bfd_boolean rela_normal;
10186 struct bfd_elf_section_data *esdi, *esdo;
10187
10188 esdi = elf_section_data (o);
10189 esdo = elf_section_data (o->output_section);
10190 rela_normal = FALSE;
10191
10192 /* Adjust the reloc addresses and symbol indices. */
10193
10194 irela = internal_relocs;
10195 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10196 rel_hash = esdo->rel.hashes + esdo->rel.count;
10197 /* We start processing the REL relocs, if any. When we reach
10198 IRELAMID in the loop, we switch to the RELA relocs. */
10199 irelamid = irela;
10200 if (esdi->rel.hdr != NULL)
10201 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10202 * bed->s->int_rels_per_ext_rel);
10203 rel_hash_list = rel_hash;
10204 rela_hash_list = NULL;
10205 last_offset = o->output_offset;
10206 if (!bfd_link_relocatable (flinfo->info))
10207 last_offset += o->output_section->vma;
10208 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10209 {
10210 unsigned long r_symndx;
10211 asection *sec;
10212 Elf_Internal_Sym sym;
10213
10214 if (next_erel == bed->s->int_rels_per_ext_rel)
10215 {
10216 rel_hash++;
10217 next_erel = 0;
10218 }
10219
10220 if (irela == irelamid)
10221 {
10222 rel_hash = esdo->rela.hashes + esdo->rela.count;
10223 rela_hash_list = rel_hash;
10224 rela_normal = bed->rela_normal;
10225 }
10226
10227 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10228 flinfo->info, o,
10229 irela->r_offset);
10230 if (irela->r_offset >= (bfd_vma) -2)
10231 {
10232 /* This is a reloc for a deleted entry or somesuch.
10233 Turn it into an R_*_NONE reloc, at the same
10234 offset as the last reloc. elf_eh_frame.c and
10235 bfd_elf_discard_info rely on reloc offsets
10236 being ordered. */
10237 irela->r_offset = last_offset;
10238 irela->r_info = 0;
10239 irela->r_addend = 0;
10240 continue;
10241 }
10242
10243 irela->r_offset += o->output_offset;
10244
10245 /* Relocs in an executable have to be virtual addresses. */
10246 if (!bfd_link_relocatable (flinfo->info))
10247 irela->r_offset += o->output_section->vma;
10248
10249 last_offset = irela->r_offset;
10250
10251 r_symndx = irela->r_info >> r_sym_shift;
10252 if (r_symndx == STN_UNDEF)
10253 continue;
10254
10255 if (r_symndx >= locsymcount
10256 || (elf_bad_symtab (input_bfd)
10257 && flinfo->sections[r_symndx] == NULL))
10258 {
10259 struct elf_link_hash_entry *rh;
10260 unsigned long indx;
10261
10262 /* This is a reloc against a global symbol. We
10263 have not yet output all the local symbols, so
10264 we do not know the symbol index of any global
10265 symbol. We set the rel_hash entry for this
10266 reloc to point to the global hash table entry
10267 for this symbol. The symbol index is then
10268 set at the end of bfd_elf_final_link. */
10269 indx = r_symndx - extsymoff;
10270 rh = elf_sym_hashes (input_bfd)[indx];
10271 while (rh->root.type == bfd_link_hash_indirect
10272 || rh->root.type == bfd_link_hash_warning)
10273 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10274
10275 /* Setting the index to -2 tells
10276 elf_link_output_extsym that this symbol is
10277 used by a reloc. */
10278 BFD_ASSERT (rh->indx < 0);
10279 rh->indx = -2;
10280
10281 *rel_hash = rh;
10282
10283 continue;
10284 }
10285
10286 /* This is a reloc against a local symbol. */
10287
10288 *rel_hash = NULL;
10289 sym = isymbuf[r_symndx];
10290 sec = flinfo->sections[r_symndx];
10291 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10292 {
10293 /* I suppose the backend ought to fill in the
10294 section of any STT_SECTION symbol against a
10295 processor specific section. */
10296 r_symndx = STN_UNDEF;
10297 if (bfd_is_abs_section (sec))
10298 ;
10299 else if (sec == NULL || sec->owner == NULL)
10300 {
10301 bfd_set_error (bfd_error_bad_value);
10302 return FALSE;
10303 }
10304 else
10305 {
10306 asection *osec = sec->output_section;
10307
10308 /* If we have discarded a section, the output
10309 section will be the absolute section. In
10310 case of discarded SEC_MERGE sections, use
10311 the kept section. relocate_section should
10312 have already handled discarded linkonce
10313 sections. */
10314 if (bfd_is_abs_section (osec)
10315 && sec->kept_section != NULL
10316 && sec->kept_section->output_section != NULL)
10317 {
10318 osec = sec->kept_section->output_section;
10319 irela->r_addend -= osec->vma;
10320 }
10321
10322 if (!bfd_is_abs_section (osec))
10323 {
10324 r_symndx = osec->target_index;
10325 if (r_symndx == STN_UNDEF)
10326 {
10327 irela->r_addend += osec->vma;
10328 osec = _bfd_nearby_section (output_bfd, osec,
10329 osec->vma);
10330 irela->r_addend -= osec->vma;
10331 r_symndx = osec->target_index;
10332 }
10333 }
10334 }
10335
10336 /* Adjust the addend according to where the
10337 section winds up in the output section. */
10338 if (rela_normal)
10339 irela->r_addend += sec->output_offset;
10340 }
10341 else
10342 {
10343 if (flinfo->indices[r_symndx] == -1)
10344 {
10345 unsigned long shlink;
10346 const char *name;
10347 asection *osec;
10348 long indx;
10349
10350 if (flinfo->info->strip == strip_all)
10351 {
10352 /* You can't do ld -r -s. */
10353 bfd_set_error (bfd_error_invalid_operation);
10354 return FALSE;
10355 }
10356
10357 /* This symbol was skipped earlier, but
10358 since it is needed by a reloc, we
10359 must output it now. */
10360 shlink = symtab_hdr->sh_link;
10361 name = (bfd_elf_string_from_elf_section
10362 (input_bfd, shlink, sym.st_name));
10363 if (name == NULL)
10364 return FALSE;
10365
10366 osec = sec->output_section;
10367 sym.st_shndx =
10368 _bfd_elf_section_from_bfd_section (output_bfd,
10369 osec);
10370 if (sym.st_shndx == SHN_BAD)
10371 return FALSE;
10372
10373 sym.st_value += sec->output_offset;
10374 if (!bfd_link_relocatable (flinfo->info))
10375 {
10376 sym.st_value += osec->vma;
10377 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10378 {
10379 /* STT_TLS symbols are relative to PT_TLS
10380 segment base. */
10381 BFD_ASSERT (elf_hash_table (flinfo->info)
10382 ->tls_sec != NULL);
10383 sym.st_value -= (elf_hash_table (flinfo->info)
10384 ->tls_sec->vma);
10385 }
10386 }
10387
10388 indx = bfd_get_symcount (output_bfd);
10389 ret = elf_link_output_symstrtab (flinfo, name,
10390 &sym, sec,
10391 NULL);
10392 if (ret == 0)
10393 return FALSE;
10394 else if (ret == 1)
10395 flinfo->indices[r_symndx] = indx;
10396 else
10397 abort ();
10398 }
10399
10400 r_symndx = flinfo->indices[r_symndx];
10401 }
10402
10403 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10404 | (irela->r_info & r_type_mask));
10405 }
10406
10407 /* Swap out the relocs. */
10408 input_rel_hdr = esdi->rel.hdr;
10409 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10410 {
10411 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10412 input_rel_hdr,
10413 internal_relocs,
10414 rel_hash_list))
10415 return FALSE;
10416 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10417 * bed->s->int_rels_per_ext_rel);
10418 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10419 }
10420
10421 input_rela_hdr = esdi->rela.hdr;
10422 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10423 {
10424 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10425 input_rela_hdr,
10426 internal_relocs,
10427 rela_hash_list))
10428 return FALSE;
10429 }
10430 }
10431 }
10432
10433 /* Write out the modified section contents. */
10434 if (bed->elf_backend_write_section
10435 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10436 contents))
10437 {
10438 /* Section written out. */
10439 }
10440 else switch (o->sec_info_type)
10441 {
10442 case SEC_INFO_TYPE_STABS:
10443 if (! (_bfd_write_section_stabs
10444 (output_bfd,
10445 &elf_hash_table (flinfo->info)->stab_info,
10446 o, &elf_section_data (o)->sec_info, contents)))
10447 return FALSE;
10448 break;
10449 case SEC_INFO_TYPE_MERGE:
10450 if (! _bfd_write_merged_section (output_bfd, o,
10451 elf_section_data (o)->sec_info))
10452 return FALSE;
10453 break;
10454 case SEC_INFO_TYPE_EH_FRAME:
10455 {
10456 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10457 o, contents))
10458 return FALSE;
10459 }
10460 break;
10461 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10462 {
10463 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10464 flinfo->info,
10465 o, contents))
10466 return FALSE;
10467 }
10468 break;
10469 default:
10470 {
10471 /* FIXME: octets_per_byte. */
10472 if (! (o->flags & SEC_EXCLUDE))
10473 {
10474 file_ptr offset = (file_ptr) o->output_offset;
10475 bfd_size_type todo = o->size;
10476 if ((o->flags & SEC_ELF_REVERSE_COPY))
10477 {
10478 /* Reverse-copy input section to output. */
10479 do
10480 {
10481 todo -= address_size;
10482 if (! bfd_set_section_contents (output_bfd,
10483 o->output_section,
10484 contents + todo,
10485 offset,
10486 address_size))
10487 return FALSE;
10488 if (todo == 0)
10489 break;
10490 offset += address_size;
10491 }
10492 while (1);
10493 }
10494 else if (! bfd_set_section_contents (output_bfd,
10495 o->output_section,
10496 contents,
10497 offset, todo))
10498 return FALSE;
10499 }
10500 }
10501 break;
10502 }
10503 }
10504
10505 return TRUE;
10506}
10507
10508/* Generate a reloc when linking an ELF file. This is a reloc
10509 requested by the linker, and does not come from any input file. This
10510 is used to build constructor and destructor tables when linking
10511 with -Ur. */
10512
10513static bfd_boolean
10514elf_reloc_link_order (bfd *output_bfd,
10515 struct bfd_link_info *info,
10516 asection *output_section,
10517 struct bfd_link_order *link_order)
10518{
10519 reloc_howto_type *howto;
10520 long indx;
10521 bfd_vma offset;
10522 bfd_vma addend;
10523 struct bfd_elf_section_reloc_data *reldata;
10524 struct elf_link_hash_entry **rel_hash_ptr;
10525 Elf_Internal_Shdr *rel_hdr;
10526 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10527 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10528 bfd_byte *erel;
10529 unsigned int i;
10530 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10531
10532 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10533 if (howto == NULL)
10534 {
10535 bfd_set_error (bfd_error_bad_value);
10536 return FALSE;
10537 }
10538
10539 addend = link_order->u.reloc.p->addend;
10540
10541 if (esdo->rel.hdr)
10542 reldata = &esdo->rel;
10543 else if (esdo->rela.hdr)
10544 reldata = &esdo->rela;
10545 else
10546 {
10547 reldata = NULL;
10548 BFD_ASSERT (0);
10549 }
10550
10551 /* Figure out the symbol index. */
10552 rel_hash_ptr = reldata->hashes + reldata->count;
10553 if (link_order->type == bfd_section_reloc_link_order)
10554 {
10555 indx = link_order->u.reloc.p->u.section->target_index;
10556 BFD_ASSERT (indx != 0);
10557 *rel_hash_ptr = NULL;
10558 }
10559 else
10560 {
10561 struct elf_link_hash_entry *h;
10562
10563 /* Treat a reloc against a defined symbol as though it were
10564 actually against the section. */
10565 h = ((struct elf_link_hash_entry *)
10566 bfd_wrapped_link_hash_lookup (output_bfd, info,
10567 link_order->u.reloc.p->u.name,
10568 FALSE, FALSE, TRUE));
10569 if (h != NULL
10570 && (h->root.type == bfd_link_hash_defined
10571 || h->root.type == bfd_link_hash_defweak))
10572 {
10573 asection *section;
10574
10575 section = h->root.u.def.section;
10576 indx = section->output_section->target_index;
10577 *rel_hash_ptr = NULL;
10578 /* It seems that we ought to add the symbol value to the
10579 addend here, but in practice it has already been added
10580 because it was passed to constructor_callback. */
10581 addend += section->output_section->vma + section->output_offset;
10582 }
10583 else if (h != NULL)
10584 {
10585 /* Setting the index to -2 tells elf_link_output_extsym that
10586 this symbol is used by a reloc. */
10587 h->indx = -2;
10588 *rel_hash_ptr = h;
10589 indx = 0;
10590 }
10591 else
10592 {
10593 if (! ((*info->callbacks->unattached_reloc)
10594 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10595 return FALSE;
10596 indx = 0;
10597 }
10598 }
10599
10600 /* If this is an inplace reloc, we must write the addend into the
10601 object file. */
10602 if (howto->partial_inplace && addend != 0)
10603 {
10604 bfd_size_type size;
10605 bfd_reloc_status_type rstat;
10606 bfd_byte *buf;
10607 bfd_boolean ok;
10608 const char *sym_name;
10609
10610 size = (bfd_size_type) bfd_get_reloc_size (howto);
10611 buf = (bfd_byte *) bfd_zmalloc (size);
10612 if (buf == NULL && size != 0)
10613 return FALSE;
10614 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10615 switch (rstat)
10616 {
10617 case bfd_reloc_ok:
10618 break;
10619
10620 default:
10621 case bfd_reloc_outofrange:
10622 abort ();
10623
10624 case bfd_reloc_overflow:
10625 if (link_order->type == bfd_section_reloc_link_order)
10626 sym_name = bfd_section_name (output_bfd,
10627 link_order->u.reloc.p->u.section);
10628 else
10629 sym_name = link_order->u.reloc.p->u.name;
10630 if (! ((*info->callbacks->reloc_overflow)
10631 (info, NULL, sym_name, howto->name, addend, NULL,
10632 NULL, (bfd_vma) 0)))
10633 {
10634 free (buf);
10635 return FALSE;
10636 }
10637 break;
10638 }
10639 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10640 link_order->offset, size);
10641 free (buf);
10642 if (! ok)
10643 return FALSE;
10644 }
10645
10646 /* The address of a reloc is relative to the section in a
10647 relocatable file, and is a virtual address in an executable
10648 file. */
10649 offset = link_order->offset;
10650 if (! bfd_link_relocatable (info))
10651 offset += output_section->vma;
10652
10653 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10654 {
10655 irel[i].r_offset = offset;
10656 irel[i].r_info = 0;
10657 irel[i].r_addend = 0;
10658 }
10659 if (bed->s->arch_size == 32)
10660 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10661 else
10662 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10663
10664 rel_hdr = reldata->hdr;
10665 erel = rel_hdr->contents;
10666 if (rel_hdr->sh_type == SHT_REL)
10667 {
10668 erel += reldata->count * bed->s->sizeof_rel;
10669 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10670 }
10671 else
10672 {
10673 irel[0].r_addend = addend;
10674 erel += reldata->count * bed->s->sizeof_rela;
10675 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10676 }
10677
10678 ++reldata->count;
10679
10680 return TRUE;
10681}
10682
10683
10684/* Get the output vma of the section pointed to by the sh_link field. */
10685
10686static bfd_vma
10687elf_get_linked_section_vma (struct bfd_link_order *p)
10688{
10689 Elf_Internal_Shdr **elf_shdrp;
10690 asection *s;
10691 int elfsec;
10692
10693 s = p->u.indirect.section;
10694 elf_shdrp = elf_elfsections (s->owner);
10695 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10696 elfsec = elf_shdrp[elfsec]->sh_link;
10697 /* PR 290:
10698 The Intel C compiler generates SHT_IA_64_UNWIND with
10699 SHF_LINK_ORDER. But it doesn't set the sh_link or
10700 sh_info fields. Hence we could get the situation
10701 where elfsec is 0. */
10702 if (elfsec == 0)
10703 {
10704 const struct elf_backend_data *bed
10705 = get_elf_backend_data (s->owner);
10706 if (bed->link_order_error_handler)
10707 bed->link_order_error_handler
10708 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10709 return 0;
10710 }
10711 else
10712 {
10713 s = elf_shdrp[elfsec]->bfd_section;
10714 return s->output_section->vma + s->output_offset;
10715 }
10716}
10717
10718
10719/* Compare two sections based on the locations of the sections they are
10720 linked to. Used by elf_fixup_link_order. */
10721
10722static int
10723compare_link_order (const void * a, const void * b)
10724{
10725 bfd_vma apos;
10726 bfd_vma bpos;
10727
10728 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10729 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10730 if (apos < bpos)
10731 return -1;
10732 return apos > bpos;
10733}
10734
10735
10736/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10737 order as their linked sections. Returns false if this could not be done
10738 because an output section includes both ordered and unordered
10739 sections. Ideally we'd do this in the linker proper. */
10740
10741static bfd_boolean
10742elf_fixup_link_order (bfd *abfd, asection *o)
10743{
10744 int seen_linkorder;
10745 int seen_other;
10746 int n;
10747 struct bfd_link_order *p;
10748 bfd *sub;
10749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10750 unsigned elfsec;
10751 struct bfd_link_order **sections;
10752 asection *s, *other_sec, *linkorder_sec;
10753 bfd_vma offset;
10754
10755 other_sec = NULL;
10756 linkorder_sec = NULL;
10757 seen_other = 0;
10758 seen_linkorder = 0;
10759 for (p = o->map_head.link_order; p != NULL; p = p->next)
10760 {
10761 if (p->type == bfd_indirect_link_order)
10762 {
10763 s = p->u.indirect.section;
10764 sub = s->owner;
10765 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10766 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10767 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10768 && elfsec < elf_numsections (sub)
10769 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10770 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10771 {
10772 seen_linkorder++;
10773 linkorder_sec = s;
10774 }
10775 else
10776 {
10777 seen_other++;
10778 other_sec = s;
10779 }
10780 }
10781 else
10782 seen_other++;
10783
10784 if (seen_other && seen_linkorder)
10785 {
10786 if (other_sec && linkorder_sec)
10787 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10788 o, linkorder_sec,
10789 linkorder_sec->owner, other_sec,
10790 other_sec->owner);
10791 else
10792 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10793 o);
10794 bfd_set_error (bfd_error_bad_value);
10795 return FALSE;
10796 }
10797 }
10798
10799 if (!seen_linkorder)
10800 return TRUE;
10801
10802 sections = (struct bfd_link_order **)
10803 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10804 if (sections == NULL)
10805 return FALSE;
10806 seen_linkorder = 0;
10807
10808 for (p = o->map_head.link_order; p != NULL; p = p->next)
10809 {
10810 sections[seen_linkorder++] = p;
10811 }
10812 /* Sort the input sections in the order of their linked section. */
10813 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10814 compare_link_order);
10815
10816 /* Change the offsets of the sections. */
10817 offset = 0;
10818 for (n = 0; n < seen_linkorder; n++)
10819 {
10820 s = sections[n]->u.indirect.section;
10821 offset &= ~(bfd_vma) 0 << s->alignment_power;
10822 s->output_offset = offset;
10823 sections[n]->offset = offset;
10824 /* FIXME: octets_per_byte. */
10825 offset += sections[n]->size;
10826 }
10827
10828 free (sections);
10829 return TRUE;
10830}
10831
10832static void
10833elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10834{
10835 asection *o;
10836
10837 if (flinfo->symstrtab != NULL)
10838 _bfd_elf_strtab_free (flinfo->symstrtab);
10839 if (flinfo->contents != NULL)
10840 free (flinfo->contents);
10841 if (flinfo->external_relocs != NULL)
10842 free (flinfo->external_relocs);
10843 if (flinfo->internal_relocs != NULL)
10844 free (flinfo->internal_relocs);
10845 if (flinfo->external_syms != NULL)
10846 free (flinfo->external_syms);
10847 if (flinfo->locsym_shndx != NULL)
10848 free (flinfo->locsym_shndx);
10849 if (flinfo->internal_syms != NULL)
10850 free (flinfo->internal_syms);
10851 if (flinfo->indices != NULL)
10852 free (flinfo->indices);
10853 if (flinfo->sections != NULL)
10854 free (flinfo->sections);
10855 if (flinfo->symshndxbuf != NULL)
10856 free (flinfo->symshndxbuf);
10857 for (o = obfd->sections; o != NULL; o = o->next)
10858 {
10859 struct bfd_elf_section_data *esdo = elf_section_data (o);
10860 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10861 free (esdo->rel.hashes);
10862 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10863 free (esdo->rela.hashes);
10864 }
10865}
10866
10867/* Do the final step of an ELF link. */
10868
10869bfd_boolean
10870bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10871{
10872 bfd_boolean dynamic;
10873 bfd_boolean emit_relocs;
10874 bfd *dynobj;
10875 struct elf_final_link_info flinfo;
10876 asection *o;
10877 struct bfd_link_order *p;
10878 bfd *sub;
10879 bfd_size_type max_contents_size;
10880 bfd_size_type max_external_reloc_size;
10881 bfd_size_type max_internal_reloc_count;
10882 bfd_size_type max_sym_count;
10883 bfd_size_type max_sym_shndx_count;
10884 Elf_Internal_Sym elfsym;
10885 unsigned int i;
10886 Elf_Internal_Shdr *symtab_hdr;
10887 Elf_Internal_Shdr *symtab_shndx_hdr;
10888 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10889 struct elf_outext_info eoinfo;
10890 bfd_boolean merged;
10891 size_t relativecount = 0;
10892 asection *reldyn = 0;
10893 bfd_size_type amt;
10894 asection *attr_section = NULL;
10895 bfd_vma attr_size = 0;
10896 const char *std_attrs_section;
10897
10898 if (! is_elf_hash_table (info->hash))
10899 return FALSE;
10900
10901 if (bfd_link_pic (info))
10902 abfd->flags |= DYNAMIC;
10903
10904 dynamic = elf_hash_table (info)->dynamic_sections_created;
10905 dynobj = elf_hash_table (info)->dynobj;
10906
10907 emit_relocs = (bfd_link_relocatable (info)
10908 || info->emitrelocations);
10909
10910 flinfo.info = info;
10911 flinfo.output_bfd = abfd;
10912 flinfo.symstrtab = _bfd_elf_strtab_init ();
10913 if (flinfo.symstrtab == NULL)
10914 return FALSE;
10915
10916 if (! dynamic)
10917 {
10918 flinfo.hash_sec = NULL;
10919 flinfo.symver_sec = NULL;
10920 }
10921 else
10922 {
10923 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10924 /* Note that dynsym_sec can be NULL (on VMS). */
10925 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10926 /* Note that it is OK if symver_sec is NULL. */
10927 }
10928
10929 flinfo.contents = NULL;
10930 flinfo.external_relocs = NULL;
10931 flinfo.internal_relocs = NULL;
10932 flinfo.external_syms = NULL;
10933 flinfo.locsym_shndx = NULL;
10934 flinfo.internal_syms = NULL;
10935 flinfo.indices = NULL;
10936 flinfo.sections = NULL;
10937 flinfo.symshndxbuf = NULL;
10938 flinfo.filesym_count = 0;
10939
10940 /* The object attributes have been merged. Remove the input
10941 sections from the link, and set the contents of the output
10942 secton. */
10943 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10944 for (o = abfd->sections; o != NULL; o = o->next)
10945 {
10946 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10947 || strcmp (o->name, ".gnu.attributes") == 0)
10948 {
10949 for (p = o->map_head.link_order; p != NULL; p = p->next)
10950 {
10951 asection *input_section;
10952
10953 if (p->type != bfd_indirect_link_order)
10954 continue;
10955 input_section = p->u.indirect.section;
10956 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10957 elf_link_input_bfd ignores this section. */
10958 input_section->flags &= ~SEC_HAS_CONTENTS;
10959 }
10960
10961 attr_size = bfd_elf_obj_attr_size (abfd);
10962 if (attr_size)
10963 {
10964 bfd_set_section_size (abfd, o, attr_size);
10965 attr_section = o;
10966 /* Skip this section later on. */
10967 o->map_head.link_order = NULL;
10968 }
10969 else
10970 o->flags |= SEC_EXCLUDE;
10971 }
10972 }
10973
10974 /* Count up the number of relocations we will output for each output
10975 section, so that we know the sizes of the reloc sections. We
10976 also figure out some maximum sizes. */
10977 max_contents_size = 0;
10978 max_external_reloc_size = 0;
10979 max_internal_reloc_count = 0;
10980 max_sym_count = 0;
10981 max_sym_shndx_count = 0;
10982 merged = FALSE;
10983 for (o = abfd->sections; o != NULL; o = o->next)
10984 {
10985 struct bfd_elf_section_data *esdo = elf_section_data (o);
10986 o->reloc_count = 0;
10987
10988 for (p = o->map_head.link_order; p != NULL; p = p->next)
10989 {
10990 unsigned int reloc_count = 0;
10991 unsigned int additional_reloc_count = 0;
10992 struct bfd_elf_section_data *esdi = NULL;
10993
10994 if (p->type == bfd_section_reloc_link_order
10995 || p->type == bfd_symbol_reloc_link_order)
10996 reloc_count = 1;
10997 else if (p->type == bfd_indirect_link_order)
10998 {
10999 asection *sec;
11000
11001 sec = p->u.indirect.section;
11002 esdi = elf_section_data (sec);
11003
11004 /* Mark all sections which are to be included in the
11005 link. This will normally be every section. We need
11006 to do this so that we can identify any sections which
11007 the linker has decided to not include. */
11008 sec->linker_mark = TRUE;
11009
11010 if (sec->flags & SEC_MERGE)
11011 merged = TRUE;
11012
11013 if (esdo->this_hdr.sh_type == SHT_REL
11014 || esdo->this_hdr.sh_type == SHT_RELA)
11015 /* Some backends use reloc_count in relocation sections
11016 to count particular types of relocs. Of course,
11017 reloc sections themselves can't have relocations. */
11018 reloc_count = 0;
11019 else if (emit_relocs)
11020 {
11021 reloc_count = sec->reloc_count;
11022 if (bed->elf_backend_count_additional_relocs)
11023 {
11024 int c;
11025 c = (*bed->elf_backend_count_additional_relocs) (sec);
11026 additional_reloc_count += c;
11027 }
11028 }
11029 else if (bed->elf_backend_count_relocs)
11030 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11031
11032 if (sec->rawsize > max_contents_size)
11033 max_contents_size = sec->rawsize;
11034 if (sec->size > max_contents_size)
11035 max_contents_size = sec->size;
11036
11037 /* We are interested in just local symbols, not all
11038 symbols. */
11039 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11040 && (sec->owner->flags & DYNAMIC) == 0)
11041 {
11042 size_t sym_count;
11043
11044 if (elf_bad_symtab (sec->owner))
11045 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11046 / bed->s->sizeof_sym);
11047 else
11048 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11049
11050 if (sym_count > max_sym_count)
11051 max_sym_count = sym_count;
11052
11053 if (sym_count > max_sym_shndx_count
11054 && elf_symtab_shndx_list (sec->owner) != NULL)
11055 max_sym_shndx_count = sym_count;
11056
11057 if ((sec->flags & SEC_RELOC) != 0)
11058 {
11059 size_t ext_size = 0;
11060
11061 if (esdi->rel.hdr != NULL)
11062 ext_size = esdi->rel.hdr->sh_size;
11063 if (esdi->rela.hdr != NULL)
11064 ext_size += esdi->rela.hdr->sh_size;
11065
11066 if (ext_size > max_external_reloc_size)
11067 max_external_reloc_size = ext_size;
11068 if (sec->reloc_count > max_internal_reloc_count)
11069 max_internal_reloc_count = sec->reloc_count;
11070 }
11071 }
11072 }
11073
11074 if (reloc_count == 0)
11075 continue;
11076
11077 reloc_count += additional_reloc_count;
11078 o->reloc_count += reloc_count;
11079
11080 if (p->type == bfd_indirect_link_order && emit_relocs)
11081 {
11082 if (esdi->rel.hdr)
11083 {
11084 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11085 esdo->rel.count += additional_reloc_count;
11086 }
11087 if (esdi->rela.hdr)
11088 {
11089 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11090 esdo->rela.count += additional_reloc_count;
11091 }
11092 }
11093 else
11094 {
11095 if (o->use_rela_p)
11096 esdo->rela.count += reloc_count;
11097 else
11098 esdo->rel.count += reloc_count;
11099 }
11100 }
11101
11102 if (o->reloc_count > 0)
11103 o->flags |= SEC_RELOC;
11104 else
11105 {
11106 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11107 set it (this is probably a bug) and if it is set
11108 assign_section_numbers will create a reloc section. */
11109 o->flags &=~ SEC_RELOC;
11110 }
11111
11112 /* If the SEC_ALLOC flag is not set, force the section VMA to
11113 zero. This is done in elf_fake_sections as well, but forcing
11114 the VMA to 0 here will ensure that relocs against these
11115 sections are handled correctly. */
11116 if ((o->flags & SEC_ALLOC) == 0
11117 && ! o->user_set_vma)
11118 o->vma = 0;
11119 }
11120
11121 if (! bfd_link_relocatable (info) && merged)
11122 elf_link_hash_traverse (elf_hash_table (info),
11123 _bfd_elf_link_sec_merge_syms, abfd);
11124
11125 /* Figure out the file positions for everything but the symbol table
11126 and the relocs. We set symcount to force assign_section_numbers
11127 to create a symbol table. */
11128 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11129 BFD_ASSERT (! abfd->output_has_begun);
11130 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11131 goto error_return;
11132
11133 /* Set sizes, and assign file positions for reloc sections. */
11134 for (o = abfd->sections; o != NULL; o = o->next)
11135 {
11136 struct bfd_elf_section_data *esdo = elf_section_data (o);
11137 if ((o->flags & SEC_RELOC) != 0)
11138 {
11139 if (esdo->rel.hdr
11140 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11141 goto error_return;
11142
11143 if (esdo->rela.hdr
11144 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11145 goto error_return;
11146 }
11147
11148 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11149 to count upwards while actually outputting the relocations. */
11150 esdo->rel.count = 0;
11151 esdo->rela.count = 0;
11152
11153 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11154 {
11155 /* Cache the section contents so that they can be compressed
11156 later. Use bfd_malloc since it will be freed by
11157 bfd_compress_section_contents. */
11158 unsigned char *contents = esdo->this_hdr.contents;
11159 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11160 abort ();
11161 contents
11162 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11163 if (contents == NULL)
11164 goto error_return;
11165 esdo->this_hdr.contents = contents;
11166 }
11167 }
11168
11169 /* We have now assigned file positions for all the sections except
11170 .symtab, .strtab, and non-loaded reloc sections. We start the
11171 .symtab section at the current file position, and write directly
11172 to it. We build the .strtab section in memory. */
11173 bfd_get_symcount (abfd) = 0;
11174 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11175 /* sh_name is set in prep_headers. */
11176 symtab_hdr->sh_type = SHT_SYMTAB;
11177 /* sh_flags, sh_addr and sh_size all start off zero. */
11178 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11179 /* sh_link is set in assign_section_numbers. */
11180 /* sh_info is set below. */
11181 /* sh_offset is set just below. */
11182 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11183
11184 if (max_sym_count < 20)
11185 max_sym_count = 20;
11186 elf_hash_table (info)->strtabsize = max_sym_count;
11187 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11188 elf_hash_table (info)->strtab
11189 = (struct elf_sym_strtab *) bfd_malloc (amt);
11190 if (elf_hash_table (info)->strtab == NULL)
11191 goto error_return;
11192 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11193 flinfo.symshndxbuf
11194 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11195 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11196
11197 if (info->strip != strip_all || emit_relocs)
11198 {
11199 file_ptr off = elf_next_file_pos (abfd);
11200
11201 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11202
11203 /* Note that at this point elf_next_file_pos (abfd) is
11204 incorrect. We do not yet know the size of the .symtab section.
11205 We correct next_file_pos below, after we do know the size. */
11206
11207 /* Start writing out the symbol table. The first symbol is always a
11208 dummy symbol. */
11209 elfsym.st_value = 0;
11210 elfsym.st_size = 0;
11211 elfsym.st_info = 0;
11212 elfsym.st_other = 0;
11213 elfsym.st_shndx = SHN_UNDEF;
11214 elfsym.st_target_internal = 0;
11215 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11216 bfd_und_section_ptr, NULL) != 1)
11217 goto error_return;
11218
11219 /* Output a symbol for each section. We output these even if we are
11220 discarding local symbols, since they are used for relocs. These
11221 symbols have no names. We store the index of each one in the
11222 index field of the section, so that we can find it again when
11223 outputting relocs. */
11224
11225 elfsym.st_size = 0;
11226 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11227 elfsym.st_other = 0;
11228 elfsym.st_value = 0;
11229 elfsym.st_target_internal = 0;
11230 for (i = 1; i < elf_numsections (abfd); i++)
11231 {
11232 o = bfd_section_from_elf_index (abfd, i);
11233 if (o != NULL)
11234 {
11235 o->target_index = bfd_get_symcount (abfd);
11236 elfsym.st_shndx = i;
11237 if (!bfd_link_relocatable (info))
11238 elfsym.st_value = o->vma;
11239 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11240 NULL) != 1)
11241 goto error_return;
11242 }
11243 }
11244 }
11245
11246 /* Allocate some memory to hold information read in from the input
11247 files. */
11248 if (max_contents_size != 0)
11249 {
11250 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11251 if (flinfo.contents == NULL)
11252 goto error_return;
11253 }
11254
11255 if (max_external_reloc_size != 0)
11256 {
11257 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11258 if (flinfo.external_relocs == NULL)
11259 goto error_return;
11260 }
11261
11262 if (max_internal_reloc_count != 0)
11263 {
11264 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11265 amt *= sizeof (Elf_Internal_Rela);
11266 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11267 if (flinfo.internal_relocs == NULL)
11268 goto error_return;
11269 }
11270
11271 if (max_sym_count != 0)
11272 {
11273 amt = max_sym_count * bed->s->sizeof_sym;
11274 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11275 if (flinfo.external_syms == NULL)
11276 goto error_return;
11277
11278 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11279 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11280 if (flinfo.internal_syms == NULL)
11281 goto error_return;
11282
11283 amt = max_sym_count * sizeof (long);
11284 flinfo.indices = (long int *) bfd_malloc (amt);
11285 if (flinfo.indices == NULL)
11286 goto error_return;
11287
11288 amt = max_sym_count * sizeof (asection *);
11289 flinfo.sections = (asection **) bfd_malloc (amt);
11290 if (flinfo.sections == NULL)
11291 goto error_return;
11292 }
11293
11294 if (max_sym_shndx_count != 0)
11295 {
11296 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11297 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11298 if (flinfo.locsym_shndx == NULL)
11299 goto error_return;
11300 }
11301
11302 if (elf_hash_table (info)->tls_sec)
11303 {
11304 bfd_vma base, end = 0;
11305 asection *sec;
11306
11307 for (sec = elf_hash_table (info)->tls_sec;
11308 sec && (sec->flags & SEC_THREAD_LOCAL);
11309 sec = sec->next)
11310 {
11311 bfd_size_type size = sec->size;
11312
11313 if (size == 0
11314 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11315 {
11316 struct bfd_link_order *ord = sec->map_tail.link_order;
11317
11318 if (ord != NULL)
11319 size = ord->offset + ord->size;
11320 }
11321 end = sec->vma + size;
11322 }
11323 base = elf_hash_table (info)->tls_sec->vma;
11324 /* Only align end of TLS section if static TLS doesn't have special
11325 alignment requirements. */
11326 if (bed->static_tls_alignment == 1)
11327 end = align_power (end,
11328 elf_hash_table (info)->tls_sec->alignment_power);
11329 elf_hash_table (info)->tls_size = end - base;
11330 }
11331
11332 /* Reorder SHF_LINK_ORDER sections. */
11333 for (o = abfd->sections; o != NULL; o = o->next)
11334 {
11335 if (!elf_fixup_link_order (abfd, o))
11336 return FALSE;
11337 }
11338
11339 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11340 return FALSE;
11341
11342 /* Since ELF permits relocations to be against local symbols, we
11343 must have the local symbols available when we do the relocations.
11344 Since we would rather only read the local symbols once, and we
11345 would rather not keep them in memory, we handle all the
11346 relocations for a single input file at the same time.
11347
11348 Unfortunately, there is no way to know the total number of local
11349 symbols until we have seen all of them, and the local symbol
11350 indices precede the global symbol indices. This means that when
11351 we are generating relocatable output, and we see a reloc against
11352 a global symbol, we can not know the symbol index until we have
11353 finished examining all the local symbols to see which ones we are
11354 going to output. To deal with this, we keep the relocations in
11355 memory, and don't output them until the end of the link. This is
11356 an unfortunate waste of memory, but I don't see a good way around
11357 it. Fortunately, it only happens when performing a relocatable
11358 link, which is not the common case. FIXME: If keep_memory is set
11359 we could write the relocs out and then read them again; I don't
11360 know how bad the memory loss will be. */
11361
11362 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11363 sub->output_has_begun = FALSE;
11364 for (o = abfd->sections; o != NULL; o = o->next)
11365 {
11366 for (p = o->map_head.link_order; p != NULL; p = p->next)
11367 {
11368 if (p->type == bfd_indirect_link_order
11369 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11370 == bfd_target_elf_flavour)
11371 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11372 {
11373 if (! sub->output_has_begun)
11374 {
11375 if (! elf_link_input_bfd (&flinfo, sub))
11376 goto error_return;
11377 sub->output_has_begun = TRUE;
11378 }
11379 }
11380 else if (p->type == bfd_section_reloc_link_order
11381 || p->type == bfd_symbol_reloc_link_order)
11382 {
11383 if (! elf_reloc_link_order (abfd, info, o, p))
11384 goto error_return;
11385 }
11386 else
11387 {
11388 if (! _bfd_default_link_order (abfd, info, o, p))
11389 {
11390 if (p->type == bfd_indirect_link_order
11391 && (bfd_get_flavour (sub)
11392 == bfd_target_elf_flavour)
11393 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11394 != bed->s->elfclass))
11395 {
11396 const char *iclass, *oclass;
11397
11398 if (bed->s->elfclass == ELFCLASS64)
11399 {
11400 iclass = "ELFCLASS32";
11401 oclass = "ELFCLASS64";
11402 }
11403 else
11404 {
11405 iclass = "ELFCLASS64";
11406 oclass = "ELFCLASS32";
11407 }
11408
11409 bfd_set_error (bfd_error_wrong_format);
11410 (*_bfd_error_handler)
11411 (_("%B: file class %s incompatible with %s"),
11412 sub, iclass, oclass);
11413 }
11414
11415 goto error_return;
11416 }
11417 }
11418 }
11419 }
11420
11421 /* Free symbol buffer if needed. */
11422 if (!info->reduce_memory_overheads)
11423 {
11424 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11425 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11426 && elf_tdata (sub)->symbuf)
11427 {
11428 free (elf_tdata (sub)->symbuf);
11429 elf_tdata (sub)->symbuf = NULL;
11430 }
11431 }
11432
11433 /* Output any global symbols that got converted to local in a
11434 version script or due to symbol visibility. We do this in a
11435 separate step since ELF requires all local symbols to appear
11436 prior to any global symbols. FIXME: We should only do this if
11437 some global symbols were, in fact, converted to become local.
11438 FIXME: Will this work correctly with the Irix 5 linker? */
11439 eoinfo.failed = FALSE;
11440 eoinfo.flinfo = &flinfo;
11441 eoinfo.localsyms = TRUE;
11442 eoinfo.file_sym_done = FALSE;
11443 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11444 if (eoinfo.failed)
11445 return FALSE;
11446
11447 /* If backend needs to output some local symbols not present in the hash
11448 table, do it now. */
11449 if (bed->elf_backend_output_arch_local_syms
11450 && (info->strip != strip_all || emit_relocs))
11451 {
11452 typedef int (*out_sym_func)
11453 (void *, const char *, Elf_Internal_Sym *, asection *,
11454 struct elf_link_hash_entry *);
11455
11456 if (! ((*bed->elf_backend_output_arch_local_syms)
11457 (abfd, info, &flinfo,
11458 (out_sym_func) elf_link_output_symstrtab)))
11459 return FALSE;
11460 }
11461
11462 /* That wrote out all the local symbols. Finish up the symbol table
11463 with the global symbols. Even if we want to strip everything we
11464 can, we still need to deal with those global symbols that got
11465 converted to local in a version script. */
11466
11467 /* The sh_info field records the index of the first non local symbol. */
11468 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11469
11470 if (dynamic
11471 && elf_hash_table (info)->dynsym != NULL
11472 && (elf_hash_table (info)->dynsym->output_section
11473 != bfd_abs_section_ptr))
11474 {
11475 Elf_Internal_Sym sym;
11476 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11477 long last_local = 0;
11478
11479 /* Write out the section symbols for the output sections. */
11480 if (bfd_link_pic (info)
11481 || elf_hash_table (info)->is_relocatable_executable)
11482 {
11483 asection *s;
11484
11485 sym.st_size = 0;
11486 sym.st_name = 0;
11487 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11488 sym.st_other = 0;
11489 sym.st_target_internal = 0;
11490
11491 for (s = abfd->sections; s != NULL; s = s->next)
11492 {
11493 int indx;
11494 bfd_byte *dest;
11495 long dynindx;
11496
11497 dynindx = elf_section_data (s)->dynindx;
11498 if (dynindx <= 0)
11499 continue;
11500 indx = elf_section_data (s)->this_idx;
11501 BFD_ASSERT (indx > 0);
11502 sym.st_shndx = indx;
11503 if (! check_dynsym (abfd, &sym))
11504 return FALSE;
11505 sym.st_value = s->vma;
11506 dest = dynsym + dynindx * bed->s->sizeof_sym;
11507 if (last_local < dynindx)
11508 last_local = dynindx;
11509 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11510 }
11511 }
11512
11513 /* Write out the local dynsyms. */
11514 if (elf_hash_table (info)->dynlocal)
11515 {
11516 struct elf_link_local_dynamic_entry *e;
11517 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11518 {
11519 asection *s;
11520 bfd_byte *dest;
11521
11522 /* Copy the internal symbol and turn off visibility.
11523 Note that we saved a word of storage and overwrote
11524 the original st_name with the dynstr_index. */
11525 sym = e->isym;
11526 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11527
11528 s = bfd_section_from_elf_index (e->input_bfd,
11529 e->isym.st_shndx);
11530 if (s != NULL)
11531 {
11532 sym.st_shndx =
11533 elf_section_data (s->output_section)->this_idx;
11534 if (! check_dynsym (abfd, &sym))
11535 return FALSE;
11536 sym.st_value = (s->output_section->vma
11537 + s->output_offset
11538 + e->isym.st_value);
11539 }
11540
11541 if (last_local < e->dynindx)
11542 last_local = e->dynindx;
11543
11544 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11545 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11546 }
11547 }
11548
11549 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11550 last_local + 1;
11551 }
11552
11553 /* We get the global symbols from the hash table. */
11554 eoinfo.failed = FALSE;
11555 eoinfo.localsyms = FALSE;
11556 eoinfo.flinfo = &flinfo;
11557 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11558 if (eoinfo.failed)
11559 return FALSE;
11560
11561 /* If backend needs to output some symbols not present in the hash
11562 table, do it now. */
11563 if (bed->elf_backend_output_arch_syms
11564 && (info->strip != strip_all || emit_relocs))
11565 {
11566 typedef int (*out_sym_func)
11567 (void *, const char *, Elf_Internal_Sym *, asection *,
11568 struct elf_link_hash_entry *);
11569
11570 if (! ((*bed->elf_backend_output_arch_syms)
11571 (abfd, info, &flinfo,
11572 (out_sym_func) elf_link_output_symstrtab)))
11573 return FALSE;
11574 }
11575
11576 /* Finalize the .strtab section. */
11577 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11578
11579 /* Swap out the .strtab section. */
11580 if (!elf_link_swap_symbols_out (&flinfo))
11581 return FALSE;
11582
11583 /* Now we know the size of the symtab section. */
11584 if (bfd_get_symcount (abfd) > 0)
11585 {
11586 /* Finish up and write out the symbol string table (.strtab)
11587 section. */
11588 Elf_Internal_Shdr *symstrtab_hdr;
11589 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11590
11591 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11592 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11593 {
11594 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11595 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11596 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11597 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11598 symtab_shndx_hdr->sh_size = amt;
11599
11600 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11601 off, TRUE);
11602
11603 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11604 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11605 return FALSE;
11606 }
11607
11608 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11609 /* sh_name was set in prep_headers. */
11610 symstrtab_hdr->sh_type = SHT_STRTAB;
11611 symstrtab_hdr->sh_flags = 0;
11612 symstrtab_hdr->sh_addr = 0;
11613 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11614 symstrtab_hdr->sh_entsize = 0;
11615 symstrtab_hdr->sh_link = 0;
11616 symstrtab_hdr->sh_info = 0;
11617 /* sh_offset is set just below. */
11618 symstrtab_hdr->sh_addralign = 1;
11619
11620 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11621 off, TRUE);
11622 elf_next_file_pos (abfd) = off;
11623
11624 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11625 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11626 return FALSE;
11627 }
11628
11629 /* Adjust the relocs to have the correct symbol indices. */
11630 for (o = abfd->sections; o != NULL; o = o->next)
11631 {
11632 struct bfd_elf_section_data *esdo = elf_section_data (o);
11633 bfd_boolean sort;
11634 if ((o->flags & SEC_RELOC) == 0)
11635 continue;
11636
11637 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11638 if (esdo->rel.hdr != NULL
11639 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11640 return FALSE;
11641 if (esdo->rela.hdr != NULL
11642 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11643 return FALSE;
11644
11645 /* Set the reloc_count field to 0 to prevent write_relocs from
11646 trying to swap the relocs out itself. */
11647 o->reloc_count = 0;
11648 }
11649
11650 if (dynamic && info->combreloc && dynobj != NULL)
11651 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11652
11653 /* If we are linking against a dynamic object, or generating a
11654 shared library, finish up the dynamic linking information. */
11655 if (dynamic)
11656 {
11657 bfd_byte *dyncon, *dynconend;
11658
11659 /* Fix up .dynamic entries. */
11660 o = bfd_get_linker_section (dynobj, ".dynamic");
11661 BFD_ASSERT (o != NULL);
11662
11663 dyncon = o->contents;
11664 dynconend = o->contents + o->size;
11665 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11666 {
11667 Elf_Internal_Dyn dyn;
11668 const char *name;
11669 unsigned int type;
11670
11671 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11672
11673 switch (dyn.d_tag)
11674 {
11675 default:
11676 continue;
11677 case DT_NULL:
11678 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11679 {
11680 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11681 {
11682 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11683 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11684 default: continue;
11685 }
11686 dyn.d_un.d_val = relativecount;
11687 relativecount = 0;
11688 break;
11689 }
11690 continue;
11691
11692 case DT_INIT:
11693 name = info->init_function;
11694 goto get_sym;
11695 case DT_FINI:
11696 name = info->fini_function;
11697 get_sym:
11698 {
11699 struct elf_link_hash_entry *h;
11700
11701 h = elf_link_hash_lookup (elf_hash_table (info), name,
11702 FALSE, FALSE, TRUE);
11703 if (h != NULL
11704 && (h->root.type == bfd_link_hash_defined
11705 || h->root.type == bfd_link_hash_defweak))
11706 {
11707 dyn.d_un.d_ptr = h->root.u.def.value;
11708 o = h->root.u.def.section;
11709 if (o->output_section != NULL)
11710 dyn.d_un.d_ptr += (o->output_section->vma
11711 + o->output_offset);
11712 else
11713 {
11714 /* The symbol is imported from another shared
11715 library and does not apply to this one. */
11716 dyn.d_un.d_ptr = 0;
11717 }
11718 break;
11719 }
11720 }
11721 continue;
11722
11723 case DT_PREINIT_ARRAYSZ:
11724 name = ".preinit_array";
11725 goto get_size;
11726 case DT_INIT_ARRAYSZ:
11727 name = ".init_array";
11728 goto get_size;
11729 case DT_FINI_ARRAYSZ:
11730 name = ".fini_array";
11731 get_size:
11732 o = bfd_get_section_by_name (abfd, name);
11733 if (o == NULL)
11734 {
11735 (*_bfd_error_handler)
11736 (_("%B: could not find output section %s"), abfd, name);
11737 goto error_return;
11738 }
11739 if (o->size == 0)
11740 (*_bfd_error_handler)
11741 (_("warning: %s section has zero size"), name);
11742 dyn.d_un.d_val = o->size;
11743 break;
11744
11745 case DT_PREINIT_ARRAY:
11746 name = ".preinit_array";
11747 goto get_vma;
11748 case DT_INIT_ARRAY:
11749 name = ".init_array";
11750 goto get_vma;
11751 case DT_FINI_ARRAY:
11752 name = ".fini_array";
11753 goto get_vma;
11754
11755 case DT_HASH:
11756 name = ".hash";
11757 goto get_vma;
11758 case DT_GNU_HASH:
11759 name = ".gnu.hash";
11760 goto get_vma;
11761 case DT_STRTAB:
11762 name = ".dynstr";
11763 goto get_vma;
11764 case DT_SYMTAB:
11765 name = ".dynsym";
11766 goto get_vma;
11767 case DT_VERDEF:
11768 name = ".gnu.version_d";
11769 goto get_vma;
11770 case DT_VERNEED:
11771 name = ".gnu.version_r";
11772 goto get_vma;
11773 case DT_VERSYM:
11774 name = ".gnu.version";
11775 get_vma:
11776 o = bfd_get_section_by_name (abfd, name);
11777 if (o == NULL)
11778 {
11779 (*_bfd_error_handler)
11780 (_("%B: could not find output section %s"), abfd, name);
11781 goto error_return;
11782 }
11783 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11784 {
11785 (*_bfd_error_handler)
11786 (_("warning: section '%s' is being made into a note"), name);
11787 bfd_set_error (bfd_error_nonrepresentable_section);
11788 goto error_return;
11789 }
11790 dyn.d_un.d_ptr = o->vma;
11791 break;
11792
11793 case DT_REL:
11794 case DT_RELA:
11795 case DT_RELSZ:
11796 case DT_RELASZ:
11797 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11798 type = SHT_REL;
11799 else
11800 type = SHT_RELA;
11801 dyn.d_un.d_val = 0;
11802 dyn.d_un.d_ptr = 0;
11803 for (i = 1; i < elf_numsections (abfd); i++)
11804 {
11805 Elf_Internal_Shdr *hdr;
11806
11807 hdr = elf_elfsections (abfd)[i];
11808 if (hdr->sh_type == type
11809 && (hdr->sh_flags & SHF_ALLOC) != 0)
11810 {
11811 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11812 dyn.d_un.d_val += hdr->sh_size;
11813 else
11814 {
11815 if (dyn.d_un.d_ptr == 0
11816 || hdr->sh_addr < dyn.d_un.d_ptr)
11817 dyn.d_un.d_ptr = hdr->sh_addr;
11818 }
11819 }
11820 }
11821 break;
11822 }
11823 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11824 }
11825 }
11826
11827 /* If we have created any dynamic sections, then output them. */
11828 if (dynobj != NULL)
11829 {
11830 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11831 goto error_return;
11832
11833 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11834 if (((info->warn_shared_textrel && bfd_link_pic (info))
11835 || info->error_textrel)
11836 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11837 {
11838 bfd_byte *dyncon, *dynconend;
11839
11840 dyncon = o->contents;
11841 dynconend = o->contents + o->size;
11842 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11843 {
11844 Elf_Internal_Dyn dyn;
11845
11846 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11847
11848 if (dyn.d_tag == DT_TEXTREL)
11849 {
11850 if (info->error_textrel)
11851 info->callbacks->einfo
11852 (_("%P%X: read-only segment has dynamic relocations.\n"));
11853 else
11854 info->callbacks->einfo
11855 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11856 break;
11857 }
11858 }
11859 }
11860
11861 for (o = dynobj->sections; o != NULL; o = o->next)
11862 {
11863 if ((o->flags & SEC_HAS_CONTENTS) == 0
11864 || o->size == 0
11865 || o->output_section == bfd_abs_section_ptr)
11866 continue;
11867 if ((o->flags & SEC_LINKER_CREATED) == 0)
11868 {
11869 /* At this point, we are only interested in sections
11870 created by _bfd_elf_link_create_dynamic_sections. */
11871 continue;
11872 }
11873 if (elf_hash_table (info)->stab_info.stabstr == o)
11874 continue;
11875 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11876 continue;
11877 if (strcmp (o->name, ".dynstr") != 0)
11878 {
11879 /* FIXME: octets_per_byte. */
11880 if (! bfd_set_section_contents (abfd, o->output_section,
11881 o->contents,
11882 (file_ptr) o->output_offset,
11883 o->size))
11884 goto error_return;
11885 }
11886 else
11887 {
11888 /* The contents of the .dynstr section are actually in a
11889 stringtab. */
11890 file_ptr off;
11891
11892 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11893 if (bfd_seek (abfd, off, SEEK_SET) != 0
11894 || ! _bfd_elf_strtab_emit (abfd,
11895 elf_hash_table (info)->dynstr))
11896 goto error_return;
11897 }
11898 }
11899 }
11900
11901 if (bfd_link_relocatable (info))
11902 {
11903 bfd_boolean failed = FALSE;
11904
11905 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11906 if (failed)
11907 goto error_return;
11908 }
11909
11910 /* If we have optimized stabs strings, output them. */
11911 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11912 {
11913 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11914 goto error_return;
11915 }
11916
11917 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11918 goto error_return;
11919
11920 elf_final_link_free (abfd, &flinfo);
11921
11922 elf_linker (abfd) = TRUE;
11923
11924 if (attr_section)
11925 {
11926 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11927 if (contents == NULL)
11928 return FALSE; /* Bail out and fail. */
11929 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11930 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11931 free (contents);
11932 }
11933
11934 return TRUE;
11935
11936 error_return:
11937 elf_final_link_free (abfd, &flinfo);
11938 return FALSE;
11939}
11940\f
11941/* Initialize COOKIE for input bfd ABFD. */
11942
11943static bfd_boolean
11944init_reloc_cookie (struct elf_reloc_cookie *cookie,
11945 struct bfd_link_info *info, bfd *abfd)
11946{
11947 Elf_Internal_Shdr *symtab_hdr;
11948 const struct elf_backend_data *bed;
11949
11950 bed = get_elf_backend_data (abfd);
11951 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11952
11953 cookie->abfd = abfd;
11954 cookie->sym_hashes = elf_sym_hashes (abfd);
11955 cookie->bad_symtab = elf_bad_symtab (abfd);
11956 if (cookie->bad_symtab)
11957 {
11958 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11959 cookie->extsymoff = 0;
11960 }
11961 else
11962 {
11963 cookie->locsymcount = symtab_hdr->sh_info;
11964 cookie->extsymoff = symtab_hdr->sh_info;
11965 }
11966
11967 if (bed->s->arch_size == 32)
11968 cookie->r_sym_shift = 8;
11969 else
11970 cookie->r_sym_shift = 32;
11971
11972 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11973 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11974 {
11975 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11976 cookie->locsymcount, 0,
11977 NULL, NULL, NULL);
11978 if (cookie->locsyms == NULL)
11979 {
11980 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11981 return FALSE;
11982 }
11983 if (info->keep_memory)
11984 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11985 }
11986 return TRUE;
11987}
11988
11989/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11990
11991static void
11992fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11993{
11994 Elf_Internal_Shdr *symtab_hdr;
11995
11996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11997 if (cookie->locsyms != NULL
11998 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11999 free (cookie->locsyms);
12000}
12001
12002/* Initialize the relocation information in COOKIE for input section SEC
12003 of input bfd ABFD. */
12004
12005static bfd_boolean
12006init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12007 struct bfd_link_info *info, bfd *abfd,
12008 asection *sec)
12009{
12010 const struct elf_backend_data *bed;
12011
12012 if (sec->reloc_count == 0)
12013 {
12014 cookie->rels = NULL;
12015 cookie->relend = NULL;
12016 }
12017 else
12018 {
12019 bed = get_elf_backend_data (abfd);
12020
12021 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12022 info->keep_memory);
12023 if (cookie->rels == NULL)
12024 return FALSE;
12025 cookie->rel = cookie->rels;
12026 cookie->relend = (cookie->rels
12027 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12028 }
12029 cookie->rel = cookie->rels;
12030 return TRUE;
12031}
12032
12033/* Free the memory allocated by init_reloc_cookie_rels,
12034 if appropriate. */
12035
12036static void
12037fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12038 asection *sec)
12039{
12040 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12041 free (cookie->rels);
12042}
12043
12044/* Initialize the whole of COOKIE for input section SEC. */
12045
12046static bfd_boolean
12047init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12048 struct bfd_link_info *info,
12049 asection *sec)
12050{
12051 if (!init_reloc_cookie (cookie, info, sec->owner))
12052 goto error1;
12053 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12054 goto error2;
12055 return TRUE;
12056
12057 error2:
12058 fini_reloc_cookie (cookie, sec->owner);
12059 error1:
12060 return FALSE;
12061}
12062
12063/* Free the memory allocated by init_reloc_cookie_for_section,
12064 if appropriate. */
12065
12066static void
12067fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12068 asection *sec)
12069{
12070 fini_reloc_cookie_rels (cookie, sec);
12071 fini_reloc_cookie (cookie, sec->owner);
12072}
12073\f
12074/* Garbage collect unused sections. */
12075
12076/* Default gc_mark_hook. */
12077
12078asection *
12079_bfd_elf_gc_mark_hook (asection *sec,
12080 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12081 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12082 struct elf_link_hash_entry *h,
12083 Elf_Internal_Sym *sym)
12084{
12085 if (h != NULL)
12086 {
12087 switch (h->root.type)
12088 {
12089 case bfd_link_hash_defined:
12090 case bfd_link_hash_defweak:
12091 return h->root.u.def.section;
12092
12093 case bfd_link_hash_common:
12094 return h->root.u.c.p->section;
12095
12096 default:
12097 break;
12098 }
12099 }
12100 else
12101 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12102
12103 return NULL;
12104}
12105
12106/* COOKIE->rel describes a relocation against section SEC, which is
12107 a section we've decided to keep. Return the section that contains
12108 the relocation symbol, or NULL if no section contains it. */
12109
12110asection *
12111_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12112 elf_gc_mark_hook_fn gc_mark_hook,
12113 struct elf_reloc_cookie *cookie,
12114 bfd_boolean *start_stop)
12115{
12116 unsigned long r_symndx;
12117 struct elf_link_hash_entry *h;
12118
12119 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12120 if (r_symndx == STN_UNDEF)
12121 return NULL;
12122
12123 if (r_symndx >= cookie->locsymcount
12124 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12125 {
12126 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12127 if (h == NULL)
12128 {
12129 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12130 sec->owner);
12131 return NULL;
12132 }
12133 while (h->root.type == bfd_link_hash_indirect
12134 || h->root.type == bfd_link_hash_warning)
12135 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12136 h->mark = 1;
12137 /* If this symbol is weak and there is a non-weak definition, we
12138 keep the non-weak definition because many backends put
12139 dynamic reloc info on the non-weak definition for code
12140 handling copy relocs. */
12141 if (h->u.weakdef != NULL)
12142 h->u.weakdef->mark = 1;
12143
12144 if (start_stop != NULL
12145 && (h->root.type == bfd_link_hash_undefined
12146 || h->root.type == bfd_link_hash_undefweak))
12147 {
12148 /* To work around a glibc bug, mark all XXX input sections
12149 when there is an as yet undefined reference to __start_XXX
12150 or __stop_XXX symbols. The linker will later define such
12151 symbols for orphan input sections that have a name
12152 representable as a C identifier. */
12153 const char *sec_name = NULL;
12154 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12155 sec_name = h->root.root.string + 8;
12156 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12157 sec_name = h->root.root.string + 7;
12158
12159 if (sec_name != NULL && *sec_name != '\0')
12160 {
12161 bfd *i;
12162
12163 for (i = info->input_bfds; i != NULL; i = i->link.next)
12164 {
12165 asection *s = bfd_get_section_by_name (i, sec_name);
12166 if (s != NULL && !s->gc_mark)
12167 {
12168 *start_stop = TRUE;
12169 return s;
12170 }
12171 }
12172 }
12173 }
12174
12175 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12176 }
12177
12178 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12179 &cookie->locsyms[r_symndx]);
12180}
12181
12182/* COOKIE->rel describes a relocation against section SEC, which is
12183 a section we've decided to keep. Mark the section that contains
12184 the relocation symbol. */
12185
12186bfd_boolean
12187_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12188 asection *sec,
12189 elf_gc_mark_hook_fn gc_mark_hook,
12190 struct elf_reloc_cookie *cookie)
12191{
12192 asection *rsec;
12193 bfd_boolean start_stop = FALSE;
12194
12195 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12196 while (rsec != NULL)
12197 {
12198 if (!rsec->gc_mark)
12199 {
12200 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12201 || (rsec->owner->flags & DYNAMIC) != 0)
12202 rsec->gc_mark = 1;
12203 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12204 return FALSE;
12205 }
12206 if (!start_stop)
12207 break;
12208 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12209 }
12210 return TRUE;
12211}
12212
12213/* The mark phase of garbage collection. For a given section, mark
12214 it and any sections in this section's group, and all the sections
12215 which define symbols to which it refers. */
12216
12217bfd_boolean
12218_bfd_elf_gc_mark (struct bfd_link_info *info,
12219 asection *sec,
12220 elf_gc_mark_hook_fn gc_mark_hook)
12221{
12222 bfd_boolean ret;
12223 asection *group_sec, *eh_frame;
12224
12225 sec->gc_mark = 1;
12226
12227 /* Mark all the sections in the group. */
12228 group_sec = elf_section_data (sec)->next_in_group;
12229 if (group_sec && !group_sec->gc_mark)
12230 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12231 return FALSE;
12232
12233 /* Look through the section relocs. */
12234 ret = TRUE;
12235 eh_frame = elf_eh_frame_section (sec->owner);
12236 if ((sec->flags & SEC_RELOC) != 0
12237 && sec->reloc_count > 0
12238 && sec != eh_frame)
12239 {
12240 struct elf_reloc_cookie cookie;
12241
12242 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12243 ret = FALSE;
12244 else
12245 {
12246 for (; cookie.rel < cookie.relend; cookie.rel++)
12247 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12248 {
12249 ret = FALSE;
12250 break;
12251 }
12252 fini_reloc_cookie_for_section (&cookie, sec);
12253 }
12254 }
12255
12256 if (ret && eh_frame && elf_fde_list (sec))
12257 {
12258 struct elf_reloc_cookie cookie;
12259
12260 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12261 ret = FALSE;
12262 else
12263 {
12264 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12265 gc_mark_hook, &cookie))
12266 ret = FALSE;
12267 fini_reloc_cookie_for_section (&cookie, eh_frame);
12268 }
12269 }
12270
12271 eh_frame = elf_section_eh_frame_entry (sec);
12272 if (ret && eh_frame && !eh_frame->gc_mark)
12273 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12274 ret = FALSE;
12275
12276 return ret;
12277}
12278
12279/* Scan and mark sections in a special or debug section group. */
12280
12281static void
12282_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12283{
12284 /* Point to first section of section group. */
12285 asection *ssec;
12286 /* Used to iterate the section group. */
12287 asection *msec;
12288
12289 bfd_boolean is_special_grp = TRUE;
12290 bfd_boolean is_debug_grp = TRUE;
12291
12292 /* First scan to see if group contains any section other than debug
12293 and special section. */
12294 ssec = msec = elf_next_in_group (grp);
12295 do
12296 {
12297 if ((msec->flags & SEC_DEBUGGING) == 0)
12298 is_debug_grp = FALSE;
12299
12300 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12301 is_special_grp = FALSE;
12302
12303 msec = elf_next_in_group (msec);
12304 }
12305 while (msec != ssec);
12306
12307 /* If this is a pure debug section group or pure special section group,
12308 keep all sections in this group. */
12309 if (is_debug_grp || is_special_grp)
12310 {
12311 do
12312 {
12313 msec->gc_mark = 1;
12314 msec = elf_next_in_group (msec);
12315 }
12316 while (msec != ssec);
12317 }
12318}
12319
12320/* Keep debug and special sections. */
12321
12322bfd_boolean
12323_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12324 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12325{
12326 bfd *ibfd;
12327
12328 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12329 {
12330 asection *isec;
12331 bfd_boolean some_kept;
12332 bfd_boolean debug_frag_seen;
12333
12334 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12335 continue;
12336
12337 /* Ensure all linker created sections are kept,
12338 see if any other section is already marked,
12339 and note if we have any fragmented debug sections. */
12340 debug_frag_seen = some_kept = FALSE;
12341 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12342 {
12343 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12344 isec->gc_mark = 1;
12345 else if (isec->gc_mark)
12346 some_kept = TRUE;
12347
12348 if (debug_frag_seen == FALSE
12349 && (isec->flags & SEC_DEBUGGING)
12350 && CONST_STRNEQ (isec->name, ".debug_line."))
12351 debug_frag_seen = TRUE;
12352 }
12353
12354 /* If no section in this file will be kept, then we can
12355 toss out the debug and special sections. */
12356 if (!some_kept)
12357 continue;
12358
12359 /* Keep debug and special sections like .comment when they are
12360 not part of a group. Also keep section groups that contain
12361 just debug sections or special sections. */
12362 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12363 {
12364 if ((isec->flags & SEC_GROUP) != 0)
12365 _bfd_elf_gc_mark_debug_special_section_group (isec);
12366 else if (((isec->flags & SEC_DEBUGGING) != 0
12367 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12368 && elf_next_in_group (isec) == NULL)
12369 isec->gc_mark = 1;
12370 }
12371
12372 if (! debug_frag_seen)
12373 continue;
12374
12375 /* Look for CODE sections which are going to be discarded,
12376 and find and discard any fragmented debug sections which
12377 are associated with that code section. */
12378 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12379 if ((isec->flags & SEC_CODE) != 0
12380 && isec->gc_mark == 0)
12381 {
12382 unsigned int ilen;
12383 asection *dsec;
12384
12385 ilen = strlen (isec->name);
12386
12387 /* Association is determined by the name of the debug section
12388 containing the name of the code section as a suffix. For
12389 example .debug_line.text.foo is a debug section associated
12390 with .text.foo. */
12391 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12392 {
12393 unsigned int dlen;
12394
12395 if (dsec->gc_mark == 0
12396 || (dsec->flags & SEC_DEBUGGING) == 0)
12397 continue;
12398
12399 dlen = strlen (dsec->name);
12400
12401 if (dlen > ilen
12402 && strncmp (dsec->name + (dlen - ilen),
12403 isec->name, ilen) == 0)
12404 {
12405 dsec->gc_mark = 0;
12406 }
12407 }
12408 }
12409 }
12410 return TRUE;
12411}
12412
12413/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12414
12415struct elf_gc_sweep_symbol_info
12416{
12417 struct bfd_link_info *info;
12418 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12419 bfd_boolean);
12420};
12421
12422static bfd_boolean
12423elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12424{
12425 if (!h->mark
12426 && (((h->root.type == bfd_link_hash_defined
12427 || h->root.type == bfd_link_hash_defweak)
12428 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12429 && h->root.u.def.section->gc_mark))
12430 || h->root.type == bfd_link_hash_undefined
12431 || h->root.type == bfd_link_hash_undefweak))
12432 {
12433 struct elf_gc_sweep_symbol_info *inf;
12434
12435 inf = (struct elf_gc_sweep_symbol_info *) data;
12436 (*inf->hide_symbol) (inf->info, h, TRUE);
12437 h->def_regular = 0;
12438 h->ref_regular = 0;
12439 h->ref_regular_nonweak = 0;
12440 }
12441
12442 return TRUE;
12443}
12444
12445/* The sweep phase of garbage collection. Remove all garbage sections. */
12446
12447typedef bfd_boolean (*gc_sweep_hook_fn)
12448 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12449
12450static bfd_boolean
12451elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12452{
12453 bfd *sub;
12454 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12455 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12456 unsigned long section_sym_count;
12457 struct elf_gc_sweep_symbol_info sweep_info;
12458
12459 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12460 {
12461 asection *o;
12462
12463 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12464 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12465 continue;
12466
12467 for (o = sub->sections; o != NULL; o = o->next)
12468 {
12469 /* When any section in a section group is kept, we keep all
12470 sections in the section group. If the first member of
12471 the section group is excluded, we will also exclude the
12472 group section. */
12473 if (o->flags & SEC_GROUP)
12474 {
12475 asection *first = elf_next_in_group (o);
12476 o->gc_mark = first->gc_mark;
12477 }
12478
12479 if (o->gc_mark)
12480 continue;
12481
12482 /* Skip sweeping sections already excluded. */
12483 if (o->flags & SEC_EXCLUDE)
12484 continue;
12485
12486 /* Since this is early in the link process, it is simple
12487 to remove a section from the output. */
12488 o->flags |= SEC_EXCLUDE;
12489
12490 if (info->print_gc_sections && o->size != 0)
12491 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12492
12493 /* But we also have to update some of the relocation
12494 info we collected before. */
12495 if (gc_sweep_hook
12496 && (o->flags & SEC_RELOC) != 0
12497 && o->reloc_count != 0
12498 && !((info->strip == strip_all || info->strip == strip_debugger)
12499 && (o->flags & SEC_DEBUGGING) != 0)
12500 && !bfd_is_abs_section (o->output_section))
12501 {
12502 Elf_Internal_Rela *internal_relocs;
12503 bfd_boolean r;
12504
12505 internal_relocs
12506 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12507 info->keep_memory);
12508 if (internal_relocs == NULL)
12509 return FALSE;
12510
12511 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12512
12513 if (elf_section_data (o)->relocs != internal_relocs)
12514 free (internal_relocs);
12515
12516 if (!r)
12517 return FALSE;
12518 }
12519 }
12520 }
12521
12522 /* Remove the symbols that were in the swept sections from the dynamic
12523 symbol table. GCFIXME: Anyone know how to get them out of the
12524 static symbol table as well? */
12525 sweep_info.info = info;
12526 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12527 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12528 &sweep_info);
12529
12530 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12531 return TRUE;
12532}
12533
12534/* Propagate collected vtable information. This is called through
12535 elf_link_hash_traverse. */
12536
12537static bfd_boolean
12538elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12539{
12540 /* Those that are not vtables. */
12541 if (h->vtable == NULL || h->vtable->parent == NULL)
12542 return TRUE;
12543
12544 /* Those vtables that do not have parents, we cannot merge. */
12545 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12546 return TRUE;
12547
12548 /* If we've already been done, exit. */
12549 if (h->vtable->used && h->vtable->used[-1])
12550 return TRUE;
12551
12552 /* Make sure the parent's table is up to date. */
12553 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12554
12555 if (h->vtable->used == NULL)
12556 {
12557 /* None of this table's entries were referenced. Re-use the
12558 parent's table. */
12559 h->vtable->used = h->vtable->parent->vtable->used;
12560 h->vtable->size = h->vtable->parent->vtable->size;
12561 }
12562 else
12563 {
12564 size_t n;
12565 bfd_boolean *cu, *pu;
12566
12567 /* Or the parent's entries into ours. */
12568 cu = h->vtable->used;
12569 cu[-1] = TRUE;
12570 pu = h->vtable->parent->vtable->used;
12571 if (pu != NULL)
12572 {
12573 const struct elf_backend_data *bed;
12574 unsigned int log_file_align;
12575
12576 bed = get_elf_backend_data (h->root.u.def.section->owner);
12577 log_file_align = bed->s->log_file_align;
12578 n = h->vtable->parent->vtable->size >> log_file_align;
12579 while (n--)
12580 {
12581 if (*pu)
12582 *cu = TRUE;
12583 pu++;
12584 cu++;
12585 }
12586 }
12587 }
12588
12589 return TRUE;
12590}
12591
12592static bfd_boolean
12593elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12594{
12595 asection *sec;
12596 bfd_vma hstart, hend;
12597 Elf_Internal_Rela *relstart, *relend, *rel;
12598 const struct elf_backend_data *bed;
12599 unsigned int log_file_align;
12600
12601 /* Take care of both those symbols that do not describe vtables as
12602 well as those that are not loaded. */
12603 if (h->vtable == NULL || h->vtable->parent == NULL)
12604 return TRUE;
12605
12606 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12607 || h->root.type == bfd_link_hash_defweak);
12608
12609 sec = h->root.u.def.section;
12610 hstart = h->root.u.def.value;
12611 hend = hstart + h->size;
12612
12613 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12614 if (!relstart)
12615 return *(bfd_boolean *) okp = FALSE;
12616 bed = get_elf_backend_data (sec->owner);
12617 log_file_align = bed->s->log_file_align;
12618
12619 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12620
12621 for (rel = relstart; rel < relend; ++rel)
12622 if (rel->r_offset >= hstart && rel->r_offset < hend)
12623 {
12624 /* If the entry is in use, do nothing. */
12625 if (h->vtable->used
12626 && (rel->r_offset - hstart) < h->vtable->size)
12627 {
12628 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12629 if (h->vtable->used[entry])
12630 continue;
12631 }
12632 /* Otherwise, kill it. */
12633 rel->r_offset = rel->r_info = rel->r_addend = 0;
12634 }
12635
12636 return TRUE;
12637}
12638
12639/* Mark sections containing dynamically referenced symbols. When
12640 building shared libraries, we must assume that any visible symbol is
12641 referenced. */
12642
12643bfd_boolean
12644bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12645{
12646 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12647 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12648
12649 if ((h->root.type == bfd_link_hash_defined
12650 || h->root.type == bfd_link_hash_defweak)
12651 && (h->ref_dynamic
12652 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12653 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12654 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12655 && (!bfd_link_executable (info)
12656 || info->export_dynamic
12657 || (h->dynamic
12658 && d != NULL
12659 && (*d->match) (&d->head, NULL, h->root.root.string)))
12660 && (h->versioned >= versioned
12661 || !bfd_hide_sym_by_version (info->version_info,
12662 h->root.root.string)))))
12663 h->root.u.def.section->flags |= SEC_KEEP;
12664
12665 return TRUE;
12666}
12667
12668/* Keep all sections containing symbols undefined on the command-line,
12669 and the section containing the entry symbol. */
12670
12671void
12672_bfd_elf_gc_keep (struct bfd_link_info *info)
12673{
12674 struct bfd_sym_chain *sym;
12675
12676 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12677 {
12678 struct elf_link_hash_entry *h;
12679
12680 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12681 FALSE, FALSE, FALSE);
12682
12683 if (h != NULL
12684 && (h->root.type == bfd_link_hash_defined
12685 || h->root.type == bfd_link_hash_defweak)
12686 && !bfd_is_abs_section (h->root.u.def.section))
12687 h->root.u.def.section->flags |= SEC_KEEP;
12688 }
12689}
12690
12691bfd_boolean
12692bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12693 struct bfd_link_info *info)
12694{
12695 bfd *ibfd = info->input_bfds;
12696
12697 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12698 {
12699 asection *sec;
12700 struct elf_reloc_cookie cookie;
12701
12702 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12703 continue;
12704
12705 if (!init_reloc_cookie (&cookie, info, ibfd))
12706 return FALSE;
12707
12708 for (sec = ibfd->sections; sec; sec = sec->next)
12709 {
12710 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12711 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12712 {
12713 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12714 fini_reloc_cookie_rels (&cookie, sec);
12715 }
12716 }
12717 }
12718 return TRUE;
12719}
12720
12721/* Do mark and sweep of unused sections. */
12722
12723bfd_boolean
12724bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12725{
12726 bfd_boolean ok = TRUE;
12727 bfd *sub;
12728 elf_gc_mark_hook_fn gc_mark_hook;
12729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12730 struct elf_link_hash_table *htab;
12731
12732 if (!bed->can_gc_sections
12733 || !is_elf_hash_table (info->hash))
12734 {
12735 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12736 return TRUE;
12737 }
12738
12739 bed->gc_keep (info);
12740 htab = elf_hash_table (info);
12741
12742 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12743 at the .eh_frame section if we can mark the FDEs individually. */
12744 for (sub = info->input_bfds;
12745 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12746 sub = sub->link.next)
12747 {
12748 asection *sec;
12749 struct elf_reloc_cookie cookie;
12750
12751 sec = bfd_get_section_by_name (sub, ".eh_frame");
12752 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12753 {
12754 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12755 if (elf_section_data (sec)->sec_info
12756 && (sec->flags & SEC_LINKER_CREATED) == 0)
12757 elf_eh_frame_section (sub) = sec;
12758 fini_reloc_cookie_for_section (&cookie, sec);
12759 sec = bfd_get_next_section_by_name (NULL, sec);
12760 }
12761 }
12762
12763 /* Apply transitive closure to the vtable entry usage info. */
12764 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12765 if (!ok)
12766 return FALSE;
12767
12768 /* Kill the vtable relocations that were not used. */
12769 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12770 if (!ok)
12771 return FALSE;
12772
12773 /* Mark dynamically referenced symbols. */
12774 if (htab->dynamic_sections_created)
12775 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12776
12777 /* Grovel through relocs to find out who stays ... */
12778 gc_mark_hook = bed->gc_mark_hook;
12779 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12780 {
12781 asection *o;
12782
12783 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12784 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12785 continue;
12786
12787 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12788 Also treat note sections as a root, if the section is not part
12789 of a group. */
12790 for (o = sub->sections; o != NULL; o = o->next)
12791 if (!o->gc_mark
12792 && (o->flags & SEC_EXCLUDE) == 0
12793 && ((o->flags & SEC_KEEP) != 0
12794 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12795 && elf_next_in_group (o) == NULL )))
12796 {
12797 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12798 return FALSE;
12799 }
12800 }
12801
12802 /* Allow the backend to mark additional target specific sections. */
12803 bed->gc_mark_extra_sections (info, gc_mark_hook);
12804
12805 /* ... and mark SEC_EXCLUDE for those that go. */
12806 return elf_gc_sweep (abfd, info);
12807}
12808\f
12809/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12810
12811bfd_boolean
12812bfd_elf_gc_record_vtinherit (bfd *abfd,
12813 asection *sec,
12814 struct elf_link_hash_entry *h,
12815 bfd_vma offset)
12816{
12817 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12818 struct elf_link_hash_entry **search, *child;
12819 bfd_size_type extsymcount;
12820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12821
12822 /* The sh_info field of the symtab header tells us where the
12823 external symbols start. We don't care about the local symbols at
12824 this point. */
12825 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12826 if (!elf_bad_symtab (abfd))
12827 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12828
12829 sym_hashes = elf_sym_hashes (abfd);
12830 sym_hashes_end = sym_hashes + extsymcount;
12831
12832 /* Hunt down the child symbol, which is in this section at the same
12833 offset as the relocation. */
12834 for (search = sym_hashes; search != sym_hashes_end; ++search)
12835 {
12836 if ((child = *search) != NULL
12837 && (child->root.type == bfd_link_hash_defined
12838 || child->root.type == bfd_link_hash_defweak)
12839 && child->root.u.def.section == sec
12840 && child->root.u.def.value == offset)
12841 goto win;
12842 }
12843
12844 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12845 abfd, sec, (unsigned long) offset);
12846 bfd_set_error (bfd_error_invalid_operation);
12847 return FALSE;
12848
12849 win:
12850 if (!child->vtable)
12851 {
12852 child->vtable = ((struct elf_link_virtual_table_entry *)
12853 bfd_zalloc (abfd, sizeof (*child->vtable)));
12854 if (!child->vtable)
12855 return FALSE;
12856 }
12857 if (!h)
12858 {
12859 /* This *should* only be the absolute section. It could potentially
12860 be that someone has defined a non-global vtable though, which
12861 would be bad. It isn't worth paging in the local symbols to be
12862 sure though; that case should simply be handled by the assembler. */
12863
12864 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12865 }
12866 else
12867 child->vtable->parent = h;
12868
12869 return TRUE;
12870}
12871
12872/* Called from check_relocs to record the existence of a VTENTRY reloc. */
12873
12874bfd_boolean
12875bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12876 asection *sec ATTRIBUTE_UNUSED,
12877 struct elf_link_hash_entry *h,
12878 bfd_vma addend)
12879{
12880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12881 unsigned int log_file_align = bed->s->log_file_align;
12882
12883 if (!h->vtable)
12884 {
12885 h->vtable = ((struct elf_link_virtual_table_entry *)
12886 bfd_zalloc (abfd, sizeof (*h->vtable)));
12887 if (!h->vtable)
12888 return FALSE;
12889 }
12890
12891 if (addend >= h->vtable->size)
12892 {
12893 size_t size, bytes, file_align;
12894 bfd_boolean *ptr = h->vtable->used;
12895
12896 /* While the symbol is undefined, we have to be prepared to handle
12897 a zero size. */
12898 file_align = 1 << log_file_align;
12899 if (h->root.type == bfd_link_hash_undefined)
12900 size = addend + file_align;
12901 else
12902 {
12903 size = h->size;
12904 if (addend >= size)
12905 {
12906 /* Oops! We've got a reference past the defined end of
12907 the table. This is probably a bug -- shall we warn? */
12908 size = addend + file_align;
12909 }
12910 }
12911 size = (size + file_align - 1) & -file_align;
12912
12913 /* Allocate one extra entry for use as a "done" flag for the
12914 consolidation pass. */
12915 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12916
12917 if (ptr)
12918 {
12919 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12920
12921 if (ptr != NULL)
12922 {
12923 size_t oldbytes;
12924
12925 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12926 * sizeof (bfd_boolean));
12927 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12928 }
12929 }
12930 else
12931 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12932
12933 if (ptr == NULL)
12934 return FALSE;
12935
12936 /* And arrange for that done flag to be at index -1. */
12937 h->vtable->used = ptr + 1;
12938 h->vtable->size = size;
12939 }
12940
12941 h->vtable->used[addend >> log_file_align] = TRUE;
12942
12943 return TRUE;
12944}
12945
12946/* Map an ELF section header flag to its corresponding string. */
12947typedef struct
12948{
12949 char *flag_name;
12950 flagword flag_value;
12951} elf_flags_to_name_table;
12952
12953static elf_flags_to_name_table elf_flags_to_names [] =
12954{
12955 { "SHF_WRITE", SHF_WRITE },
12956 { "SHF_ALLOC", SHF_ALLOC },
12957 { "SHF_EXECINSTR", SHF_EXECINSTR },
12958 { "SHF_MERGE", SHF_MERGE },
12959 { "SHF_STRINGS", SHF_STRINGS },
12960 { "SHF_INFO_LINK", SHF_INFO_LINK},
12961 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12962 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12963 { "SHF_GROUP", SHF_GROUP },
12964 { "SHF_TLS", SHF_TLS },
12965 { "SHF_MASKOS", SHF_MASKOS },
12966 { "SHF_EXCLUDE", SHF_EXCLUDE },
12967};
12968
12969/* Returns TRUE if the section is to be included, otherwise FALSE. */
12970bfd_boolean
12971bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12972 struct flag_info *flaginfo,
12973 asection *section)
12974{
12975 const bfd_vma sh_flags = elf_section_flags (section);
12976
12977 if (!flaginfo->flags_initialized)
12978 {
12979 bfd *obfd = info->output_bfd;
12980 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12981 struct flag_info_list *tf = flaginfo->flag_list;
12982 int with_hex = 0;
12983 int without_hex = 0;
12984
12985 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12986 {
12987 unsigned i;
12988 flagword (*lookup) (char *);
12989
12990 lookup = bed->elf_backend_lookup_section_flags_hook;
12991 if (lookup != NULL)
12992 {
12993 flagword hexval = (*lookup) ((char *) tf->name);
12994
12995 if (hexval != 0)
12996 {
12997 if (tf->with == with_flags)
12998 with_hex |= hexval;
12999 else if (tf->with == without_flags)
13000 without_hex |= hexval;
13001 tf->valid = TRUE;
13002 continue;
13003 }
13004 }
13005 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13006 {
13007 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13008 {
13009 if (tf->with == with_flags)
13010 with_hex |= elf_flags_to_names[i].flag_value;
13011 else if (tf->with == without_flags)
13012 without_hex |= elf_flags_to_names[i].flag_value;
13013 tf->valid = TRUE;
13014 break;
13015 }
13016 }
13017 if (!tf->valid)
13018 {
13019 info->callbacks->einfo
13020 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13021 return FALSE;
13022 }
13023 }
13024 flaginfo->flags_initialized = TRUE;
13025 flaginfo->only_with_flags |= with_hex;
13026 flaginfo->not_with_flags |= without_hex;
13027 }
13028
13029 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13030 return FALSE;
13031
13032 if ((flaginfo->not_with_flags & sh_flags) != 0)
13033 return FALSE;
13034
13035 return TRUE;
13036}
13037
13038struct alloc_got_off_arg {
13039 bfd_vma gotoff;
13040 struct bfd_link_info *info;
13041};
13042
13043/* We need a special top-level link routine to convert got reference counts
13044 to real got offsets. */
13045
13046static bfd_boolean
13047elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13048{
13049 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13050 bfd *obfd = gofarg->info->output_bfd;
13051 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13052
13053 if (h->got.refcount > 0)
13054 {
13055 h->got.offset = gofarg->gotoff;
13056 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13057 }
13058 else
13059 h->got.offset = (bfd_vma) -1;
13060
13061 return TRUE;
13062}
13063
13064/* And an accompanying bit to work out final got entry offsets once
13065 we're done. Should be called from final_link. */
13066
13067bfd_boolean
13068bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13069 struct bfd_link_info *info)
13070{
13071 bfd *i;
13072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13073 bfd_vma gotoff;
13074 struct alloc_got_off_arg gofarg;
13075
13076 BFD_ASSERT (abfd == info->output_bfd);
13077
13078 if (! is_elf_hash_table (info->hash))
13079 return FALSE;
13080
13081 /* The GOT offset is relative to the .got section, but the GOT header is
13082 put into the .got.plt section, if the backend uses it. */
13083 if (bed->want_got_plt)
13084 gotoff = 0;
13085 else
13086 gotoff = bed->got_header_size;
13087
13088 /* Do the local .got entries first. */
13089 for (i = info->input_bfds; i; i = i->link.next)
13090 {
13091 bfd_signed_vma *local_got;
13092 bfd_size_type j, locsymcount;
13093 Elf_Internal_Shdr *symtab_hdr;
13094
13095 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13096 continue;
13097
13098 local_got = elf_local_got_refcounts (i);
13099 if (!local_got)
13100 continue;
13101
13102 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13103 if (elf_bad_symtab (i))
13104 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13105 else
13106 locsymcount = symtab_hdr->sh_info;
13107
13108 for (j = 0; j < locsymcount; ++j)
13109 {
13110 if (local_got[j] > 0)
13111 {
13112 local_got[j] = gotoff;
13113 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13114 }
13115 else
13116 local_got[j] = (bfd_vma) -1;
13117 }
13118 }
13119
13120 /* Then the global .got entries. .plt refcounts are handled by
13121 adjust_dynamic_symbol */
13122 gofarg.gotoff = gotoff;
13123 gofarg.info = info;
13124 elf_link_hash_traverse (elf_hash_table (info),
13125 elf_gc_allocate_got_offsets,
13126 &gofarg);
13127 return TRUE;
13128}
13129
13130/* Many folk need no more in the way of final link than this, once
13131 got entry reference counting is enabled. */
13132
13133bfd_boolean
13134bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13135{
13136 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13137 return FALSE;
13138
13139 /* Invoke the regular ELF backend linker to do all the work. */
13140 return bfd_elf_final_link (abfd, info);
13141}
13142
13143bfd_boolean
13144bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13145{
13146 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13147
13148 if (rcookie->bad_symtab)
13149 rcookie->rel = rcookie->rels;
13150
13151 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13152 {
13153 unsigned long r_symndx;
13154
13155 if (! rcookie->bad_symtab)
13156 if (rcookie->rel->r_offset > offset)
13157 return FALSE;
13158 if (rcookie->rel->r_offset != offset)
13159 continue;
13160
13161 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13162 if (r_symndx == STN_UNDEF)
13163 return TRUE;
13164
13165 if (r_symndx >= rcookie->locsymcount
13166 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13167 {
13168 struct elf_link_hash_entry *h;
13169
13170 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13171
13172 while (h->root.type == bfd_link_hash_indirect
13173 || h->root.type == bfd_link_hash_warning)
13174 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13175
13176 if ((h->root.type == bfd_link_hash_defined
13177 || h->root.type == bfd_link_hash_defweak)
13178 && (h->root.u.def.section->owner != rcookie->abfd
13179 || h->root.u.def.section->kept_section != NULL
13180 || discarded_section (h->root.u.def.section)))
13181 return TRUE;
13182 }
13183 else
13184 {
13185 /* It's not a relocation against a global symbol,
13186 but it could be a relocation against a local
13187 symbol for a discarded section. */
13188 asection *isec;
13189 Elf_Internal_Sym *isym;
13190
13191 /* Need to: get the symbol; get the section. */
13192 isym = &rcookie->locsyms[r_symndx];
13193 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13194 if (isec != NULL
13195 && (isec->kept_section != NULL
13196 || discarded_section (isec)))
13197 return TRUE;
13198 }
13199 return FALSE;
13200 }
13201 return FALSE;
13202}
13203
13204/* Discard unneeded references to discarded sections.
13205 Returns -1 on error, 1 if any section's size was changed, 0 if
13206 nothing changed. This function assumes that the relocations are in
13207 sorted order, which is true for all known assemblers. */
13208
13209int
13210bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13211{
13212 struct elf_reloc_cookie cookie;
13213 asection *o;
13214 bfd *abfd;
13215 int changed = 0;
13216
13217 if (info->traditional_format
13218 || !is_elf_hash_table (info->hash))
13219 return 0;
13220
13221 o = bfd_get_section_by_name (output_bfd, ".stab");
13222 if (o != NULL)
13223 {
13224 asection *i;
13225
13226 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13227 {
13228 if (i->size == 0
13229 || i->reloc_count == 0
13230 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13231 continue;
13232
13233 abfd = i->owner;
13234 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13235 continue;
13236
13237 if (!init_reloc_cookie_for_section (&cookie, info, i))
13238 return -1;
13239
13240 if (_bfd_discard_section_stabs (abfd, i,
13241 elf_section_data (i)->sec_info,
13242 bfd_elf_reloc_symbol_deleted_p,
13243 &cookie))
13244 changed = 1;
13245
13246 fini_reloc_cookie_for_section (&cookie, i);
13247 }
13248 }
13249
13250 o = NULL;
13251 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13252 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13253 if (o != NULL)
13254 {
13255 asection *i;
13256
13257 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13258 {
13259 if (i->size == 0)
13260 continue;
13261
13262 abfd = i->owner;
13263 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13264 continue;
13265
13266 if (!init_reloc_cookie_for_section (&cookie, info, i))
13267 return -1;
13268
13269 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13270 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13271 bfd_elf_reloc_symbol_deleted_p,
13272 &cookie))
13273 changed = 1;
13274
13275 fini_reloc_cookie_for_section (&cookie, i);
13276 }
13277 }
13278
13279 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13280 {
13281 const struct elf_backend_data *bed;
13282
13283 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13284 continue;
13285
13286 bed = get_elf_backend_data (abfd);
13287
13288 if (bed->elf_backend_discard_info != NULL)
13289 {
13290 if (!init_reloc_cookie (&cookie, info, abfd))
13291 return -1;
13292
13293 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13294 changed = 1;
13295
13296 fini_reloc_cookie (&cookie, abfd);
13297 }
13298 }
13299
13300 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13301 _bfd_elf_end_eh_frame_parsing (info);
13302
13303 if (info->eh_frame_hdr_type
13304 && !bfd_link_relocatable (info)
13305 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13306 changed = 1;
13307
13308 return changed;
13309}
13310
13311bfd_boolean
13312_bfd_elf_section_already_linked (bfd *abfd,
13313 asection *sec,
13314 struct bfd_link_info *info)
13315{
13316 flagword flags;
13317 const char *name, *key;
13318 struct bfd_section_already_linked *l;
13319 struct bfd_section_already_linked_hash_entry *already_linked_list;
13320
13321 if (sec->output_section == bfd_abs_section_ptr)
13322 return FALSE;
13323
13324 flags = sec->flags;
13325
13326 /* Return if it isn't a linkonce section. A comdat group section
13327 also has SEC_LINK_ONCE set. */
13328 if ((flags & SEC_LINK_ONCE) == 0)
13329 return FALSE;
13330
13331 /* Don't put group member sections on our list of already linked
13332 sections. They are handled as a group via their group section. */
13333 if (elf_sec_group (sec) != NULL)
13334 return FALSE;
13335
13336 /* For a SHT_GROUP section, use the group signature as the key. */
13337 name = sec->name;
13338 if ((flags & SEC_GROUP) != 0
13339 && elf_next_in_group (sec) != NULL
13340 && elf_group_name (elf_next_in_group (sec)) != NULL)
13341 key = elf_group_name (elf_next_in_group (sec));
13342 else
13343 {
13344 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13345 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13346 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13347 key++;
13348 else
13349 /* Must be a user linkonce section that doesn't follow gcc's
13350 naming convention. In this case we won't be matching
13351 single member groups. */
13352 key = name;
13353 }
13354
13355 already_linked_list = bfd_section_already_linked_table_lookup (key);
13356
13357 for (l = already_linked_list->entry; l != NULL; l = l->next)
13358 {
13359 /* We may have 2 different types of sections on the list: group
13360 sections with a signature of <key> (<key> is some string),
13361 and linkonce sections named .gnu.linkonce.<type>.<key>.
13362 Match like sections. LTO plugin sections are an exception.
13363 They are always named .gnu.linkonce.t.<key> and match either
13364 type of section. */
13365 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13366 && ((flags & SEC_GROUP) != 0
13367 || strcmp (name, l->sec->name) == 0))
13368 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13369 {
13370 /* The section has already been linked. See if we should
13371 issue a warning. */
13372 if (!_bfd_handle_already_linked (sec, l, info))
13373 return FALSE;
13374
13375 if (flags & SEC_GROUP)
13376 {
13377 asection *first = elf_next_in_group (sec);
13378 asection *s = first;
13379
13380 while (s != NULL)
13381 {
13382 s->output_section = bfd_abs_section_ptr;
13383 /* Record which group discards it. */
13384 s->kept_section = l->sec;
13385 s = elf_next_in_group (s);
13386 /* These lists are circular. */
13387 if (s == first)
13388 break;
13389 }
13390 }
13391
13392 return TRUE;
13393 }
13394 }
13395
13396 /* A single member comdat group section may be discarded by a
13397 linkonce section and vice versa. */
13398 if ((flags & SEC_GROUP) != 0)
13399 {
13400 asection *first = elf_next_in_group (sec);
13401
13402 if (first != NULL && elf_next_in_group (first) == first)
13403 /* Check this single member group against linkonce sections. */
13404 for (l = already_linked_list->entry; l != NULL; l = l->next)
13405 if ((l->sec->flags & SEC_GROUP) == 0
13406 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13407 {
13408 first->output_section = bfd_abs_section_ptr;
13409 first->kept_section = l->sec;
13410 sec->output_section = bfd_abs_section_ptr;
13411 break;
13412 }
13413 }
13414 else
13415 /* Check this linkonce section against single member groups. */
13416 for (l = already_linked_list->entry; l != NULL; l = l->next)
13417 if (l->sec->flags & SEC_GROUP)
13418 {
13419 asection *first = elf_next_in_group (l->sec);
13420
13421 if (first != NULL
13422 && elf_next_in_group (first) == first
13423 && bfd_elf_match_symbols_in_sections (first, sec, info))
13424 {
13425 sec->output_section = bfd_abs_section_ptr;
13426 sec->kept_section = first;
13427 break;
13428 }
13429 }
13430
13431 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13432 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13433 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13434 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13435 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13436 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13437 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13438 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13439 The reverse order cannot happen as there is never a bfd with only the
13440 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13441 matter as here were are looking only for cross-bfd sections. */
13442
13443 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13444 for (l = already_linked_list->entry; l != NULL; l = l->next)
13445 if ((l->sec->flags & SEC_GROUP) == 0
13446 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13447 {
13448 if (abfd != l->sec->owner)
13449 sec->output_section = bfd_abs_section_ptr;
13450 break;
13451 }
13452
13453 /* This is the first section with this name. Record it. */
13454 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13455 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13456 return sec->output_section == bfd_abs_section_ptr;
13457}
13458
13459bfd_boolean
13460_bfd_elf_common_definition (Elf_Internal_Sym *sym)
13461{
13462 return sym->st_shndx == SHN_COMMON;
13463}
13464
13465unsigned int
13466_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13467{
13468 return SHN_COMMON;
13469}
13470
13471asection *
13472_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13473{
13474 return bfd_com_section_ptr;
13475}
13476
13477bfd_vma
13478_bfd_elf_default_got_elt_size (bfd *abfd,
13479 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13480 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13481 bfd *ibfd ATTRIBUTE_UNUSED,
13482 unsigned long symndx ATTRIBUTE_UNUSED)
13483{
13484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13485 return bed->s->arch_size / 8;
13486}
13487
13488/* Routines to support the creation of dynamic relocs. */
13489
13490/* Returns the name of the dynamic reloc section associated with SEC. */
13491
13492static const char *
13493get_dynamic_reloc_section_name (bfd * abfd,
13494 asection * sec,
13495 bfd_boolean is_rela)
13496{
13497 char *name;
13498 const char *old_name = bfd_get_section_name (NULL, sec);
13499 const char *prefix = is_rela ? ".rela" : ".rel";
13500
13501 if (old_name == NULL)
13502 return NULL;
13503
13504 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13505 sprintf (name, "%s%s", prefix, old_name);
13506
13507 return name;
13508}
13509
13510/* Returns the dynamic reloc section associated with SEC.
13511 If necessary compute the name of the dynamic reloc section based
13512 on SEC's name (looked up in ABFD's string table) and the setting
13513 of IS_RELA. */
13514
13515asection *
13516_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13517 asection * sec,
13518 bfd_boolean is_rela)
13519{
13520 asection * reloc_sec = elf_section_data (sec)->sreloc;
13521
13522 if (reloc_sec == NULL)
13523 {
13524 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13525
13526 if (name != NULL)
13527 {
13528 reloc_sec = bfd_get_linker_section (abfd, name);
13529
13530 if (reloc_sec != NULL)
13531 elf_section_data (sec)->sreloc = reloc_sec;
13532 }
13533 }
13534
13535 return reloc_sec;
13536}
13537
13538/* Returns the dynamic reloc section associated with SEC. If the
13539 section does not exist it is created and attached to the DYNOBJ
13540 bfd and stored in the SRELOC field of SEC's elf_section_data
13541 structure.
13542
13543 ALIGNMENT is the alignment for the newly created section and
13544 IS_RELA defines whether the name should be .rela.<SEC's name>
13545 or .rel.<SEC's name>. The section name is looked up in the
13546 string table associated with ABFD. */
13547
13548asection *
13549_bfd_elf_make_dynamic_reloc_section (asection *sec,
13550 bfd *dynobj,
13551 unsigned int alignment,
13552 bfd *abfd,
13553 bfd_boolean is_rela)
13554{
13555 asection * reloc_sec = elf_section_data (sec)->sreloc;
13556
13557 if (reloc_sec == NULL)
13558 {
13559 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13560
13561 if (name == NULL)
13562 return NULL;
13563
13564 reloc_sec = bfd_get_linker_section (dynobj, name);
13565
13566 if (reloc_sec == NULL)
13567 {
13568 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13569 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13570 if ((sec->flags & SEC_ALLOC) != 0)
13571 flags |= SEC_ALLOC | SEC_LOAD;
13572
13573 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13574 if (reloc_sec != NULL)
13575 {
13576 /* _bfd_elf_get_sec_type_attr chooses a section type by
13577 name. Override as it may be wrong, eg. for a user
13578 section named "auto" we'll get ".relauto" which is
13579 seen to be a .rela section. */
13580 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13581 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13582 reloc_sec = NULL;
13583 }
13584 }
13585
13586 elf_section_data (sec)->sreloc = reloc_sec;
13587 }
13588
13589 return reloc_sec;
13590}
13591
13592/* Copy the ELF symbol type and other attributes for a linker script
13593 assignment from HSRC to HDEST. Generally this should be treated as
13594 if we found a strong non-dynamic definition for HDEST (except that
13595 ld ignores multiple definition errors). */
13596void
13597_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13598 struct bfd_link_hash_entry *hdest,
13599 struct bfd_link_hash_entry *hsrc)
13600{
13601 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13602 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13603 Elf_Internal_Sym isym;
13604
13605 ehdest->type = ehsrc->type;
13606 ehdest->target_internal = ehsrc->target_internal;
13607
13608 isym.st_other = ehsrc->other;
13609 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13610}
13611
13612/* Append a RELA relocation REL to section S in BFD. */
13613
13614void
13615elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13616{
13617 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13618 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13619 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13620 bed->s->swap_reloca_out (abfd, rel, loc);
13621}
13622
13623/* Append a REL relocation REL to section S in BFD. */
13624
13625void
13626elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13627{
13628 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13629 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13630 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13631 bed->s->swap_reloc_out (abfd, rel, loc);
13632}
This page took 0.10134 seconds and 4 git commands to generate.