Move ARM_CPSR_GREGNUM to arch/arm-linux.h
[deliverable/binutils-gdb.git] / bfd / elflink.c
... / ...
CommitLineData
1/* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31
32/* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35struct elf_info_failed
36{
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39};
40
41/* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44struct elf_find_verdep_info
45{
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52};
53
54static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57asection *
58_bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61{
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96}
97
98/* Define a symbol in a dynamic linkage section. */
99
100struct elf_link_hash_entry *
101_bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105{
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136}
137
138bfd_boolean
139_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140{
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197}
198\f
199/* Create a strtab to hold the dynamic symbol names. */
200static bfd_boolean
201_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202{
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216}
217
218/* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225bfd_boolean
226_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227{
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info) && !info->nointerp)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341}
342
343/* Create dynamic sections when linking against a dynamic object. */
344
345bfd_boolean
346_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347{
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435}
436\f
437/* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445bfd_boolean
446bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448{
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511}
512\f
513/* Mark a symbol dynamic. */
514
515static void
516bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519{
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || h->type == STT_COMMON
529 || (sym != NULL
530 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
531 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
532 || (d != NULL
533 && h->root.type == bfd_link_hash_new
534 && (*d->match) (&d->head, NULL, h->root.root.string)))
535 h->dynamic = 1;
536}
537
538/* Record an assignment to a symbol made by a linker script. We need
539 this in case some dynamic object refers to this symbol. */
540
541bfd_boolean
542bfd_elf_record_link_assignment (bfd *output_bfd,
543 struct bfd_link_info *info,
544 const char *name,
545 bfd_boolean provide,
546 bfd_boolean hidden)
547{
548 struct elf_link_hash_entry *h, *hv;
549 struct elf_link_hash_table *htab;
550 const struct elf_backend_data *bed;
551
552 if (!is_elf_hash_table (info->hash))
553 return TRUE;
554
555 htab = elf_hash_table (info);
556 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
557 if (h == NULL)
558 return provide;
559
560 if (h->versioned == unknown)
561 {
562 /* Set versioned if symbol version is unknown. */
563 char *version = strrchr (name, ELF_VER_CHR);
564 if (version)
565 {
566 if (version > name && version[-1] != ELF_VER_CHR)
567 h->versioned = versioned_hidden;
568 else
569 h->versioned = versioned;
570 }
571 }
572
573 switch (h->root.type)
574 {
575 case bfd_link_hash_defined:
576 case bfd_link_hash_defweak:
577 case bfd_link_hash_common:
578 break;
579 case bfd_link_hash_undefweak:
580 case bfd_link_hash_undefined:
581 /* Since we're defining the symbol, don't let it seem to have not
582 been defined. record_dynamic_symbol and size_dynamic_sections
583 may depend on this. */
584 h->root.type = bfd_link_hash_new;
585 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
586 bfd_link_repair_undef_list (&htab->root);
587 break;
588 case bfd_link_hash_new:
589 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
590 h->non_elf = 0;
591 break;
592 case bfd_link_hash_indirect:
593 /* We had a versioned symbol in a dynamic library. We make the
594 the versioned symbol point to this one. */
595 bed = get_elf_backend_data (output_bfd);
596 hv = h;
597 while (hv->root.type == bfd_link_hash_indirect
598 || hv->root.type == bfd_link_hash_warning)
599 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
600 /* We don't need to update h->root.u since linker will set them
601 later. */
602 h->root.type = bfd_link_hash_undefined;
603 hv->root.type = bfd_link_hash_indirect;
604 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
606 break;
607 case bfd_link_hash_warning:
608 abort ();
609 break;
610 }
611
612 /* If this symbol is being provided by the linker script, and it is
613 currently defined by a dynamic object, but not by a regular
614 object, then mark it as undefined so that the generic linker will
615 force the correct value. */
616 if (provide
617 && h->def_dynamic
618 && !h->def_regular)
619 h->root.type = bfd_link_hash_undefined;
620
621 /* If this symbol is not being provided by the linker script, and it is
622 currently defined by a dynamic object, but not by a regular object,
623 then clear out any version information because the symbol will not be
624 associated with the dynamic object any more. */
625 if (!provide
626 && h->def_dynamic
627 && !h->def_regular)
628 h->verinfo.verdef = NULL;
629
630 h->def_regular = 1;
631
632 if (hidden)
633 {
634 bed = get_elf_backend_data (output_bfd);
635 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
636 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
638 }
639
640 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
641 and executables. */
642 if (!bfd_link_relocatable (info)
643 && h->dynindx != -1
644 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
645 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
646 h->forced_local = 1;
647
648 if ((h->def_dynamic
649 || h->ref_dynamic
650 || bfd_link_dll (info)
651 || elf_hash_table (info)->is_relocatable_executable)
652 && h->dynindx == -1)
653 {
654 if (! bfd_elf_link_record_dynamic_symbol (info, h))
655 return FALSE;
656
657 /* If this is a weak defined symbol, and we know a corresponding
658 real symbol from the same dynamic object, make sure the real
659 symbol is also made into a dynamic symbol. */
660 if (h->u.weakdef != NULL
661 && h->u.weakdef->dynindx == -1)
662 {
663 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
664 return FALSE;
665 }
666 }
667
668 return TRUE;
669}
670
671/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
672 success, and 2 on a failure caused by attempting to record a symbol
673 in a discarded section, eg. a discarded link-once section symbol. */
674
675int
676bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
677 bfd *input_bfd,
678 long input_indx)
679{
680 bfd_size_type amt;
681 struct elf_link_local_dynamic_entry *entry;
682 struct elf_link_hash_table *eht;
683 struct elf_strtab_hash *dynstr;
684 unsigned long dynstr_index;
685 char *name;
686 Elf_External_Sym_Shndx eshndx;
687 char esym[sizeof (Elf64_External_Sym)];
688
689 if (! is_elf_hash_table (info->hash))
690 return 0;
691
692 /* See if the entry exists already. */
693 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
694 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
695 return 1;
696
697 amt = sizeof (*entry);
698 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
699 if (entry == NULL)
700 return 0;
701
702 /* Go find the symbol, so that we can find it's name. */
703 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
704 1, input_indx, &entry->isym, esym, &eshndx))
705 {
706 bfd_release (input_bfd, entry);
707 return 0;
708 }
709
710 if (entry->isym.st_shndx != SHN_UNDEF
711 && entry->isym.st_shndx < SHN_LORESERVE)
712 {
713 asection *s;
714
715 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
716 if (s == NULL || bfd_is_abs_section (s->output_section))
717 {
718 /* We can still bfd_release here as nothing has done another
719 bfd_alloc. We can't do this later in this function. */
720 bfd_release (input_bfd, entry);
721 return 2;
722 }
723 }
724
725 name = (bfd_elf_string_from_elf_section
726 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
727 entry->isym.st_name));
728
729 dynstr = elf_hash_table (info)->dynstr;
730 if (dynstr == NULL)
731 {
732 /* Create a strtab to hold the dynamic symbol names. */
733 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
734 if (dynstr == NULL)
735 return 0;
736 }
737
738 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
739 if (dynstr_index == (unsigned long) -1)
740 return 0;
741 entry->isym.st_name = dynstr_index;
742
743 eht = elf_hash_table (info);
744
745 entry->next = eht->dynlocal;
746 eht->dynlocal = entry;
747 entry->input_bfd = input_bfd;
748 entry->input_indx = input_indx;
749 eht->dynsymcount++;
750
751 /* Whatever binding the symbol had before, it's now local. */
752 entry->isym.st_info
753 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
754
755 /* The dynindx will be set at the end of size_dynamic_sections. */
756
757 return 1;
758}
759
760/* Return the dynindex of a local dynamic symbol. */
761
762long
763_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
764 bfd *input_bfd,
765 long input_indx)
766{
767 struct elf_link_local_dynamic_entry *e;
768
769 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
770 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
771 return e->dynindx;
772 return -1;
773}
774
775/* This function is used to renumber the dynamic symbols, if some of
776 them are removed because they are marked as local. This is called
777 via elf_link_hash_traverse. */
778
779static bfd_boolean
780elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
781 void *data)
782{
783 size_t *count = (size_t *) data;
784
785 if (h->forced_local)
786 return TRUE;
787
788 if (h->dynindx != -1)
789 h->dynindx = ++(*count);
790
791 return TRUE;
792}
793
794
795/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
796 STB_LOCAL binding. */
797
798static bfd_boolean
799elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
800 void *data)
801{
802 size_t *count = (size_t *) data;
803
804 if (!h->forced_local)
805 return TRUE;
806
807 if (h->dynindx != -1)
808 h->dynindx = ++(*count);
809
810 return TRUE;
811}
812
813/* Return true if the dynamic symbol for a given section should be
814 omitted when creating a shared library. */
815bfd_boolean
816_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
817 struct bfd_link_info *info,
818 asection *p)
819{
820 struct elf_link_hash_table *htab;
821 asection *ip;
822
823 switch (elf_section_data (p)->this_hdr.sh_type)
824 {
825 case SHT_PROGBITS:
826 case SHT_NOBITS:
827 /* If sh_type is yet undecided, assume it could be
828 SHT_PROGBITS/SHT_NOBITS. */
829 case SHT_NULL:
830 htab = elf_hash_table (info);
831 if (p == htab->tls_sec)
832 return FALSE;
833
834 if (htab->text_index_section != NULL)
835 return p != htab->text_index_section && p != htab->data_index_section;
836
837 return (htab->dynobj != NULL
838 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
839 && ip->output_section == p);
840
841 /* There shouldn't be section relative relocations
842 against any other section. */
843 default:
844 return TRUE;
845 }
846}
847
848/* Assign dynsym indices. In a shared library we generate a section
849 symbol for each output section, which come first. Next come symbols
850 which have been forced to local binding. Then all of the back-end
851 allocated local dynamic syms, followed by the rest of the global
852 symbols. */
853
854static unsigned long
855_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
856 struct bfd_link_info *info,
857 unsigned long *section_sym_count)
858{
859 unsigned long dynsymcount = 0;
860
861 if (bfd_link_pic (info)
862 || elf_hash_table (info)->is_relocatable_executable)
863 {
864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
865 asection *p;
866 for (p = output_bfd->sections; p ; p = p->next)
867 if ((p->flags & SEC_EXCLUDE) == 0
868 && (p->flags & SEC_ALLOC) != 0
869 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
870 elf_section_data (p)->dynindx = ++dynsymcount;
871 else
872 elf_section_data (p)->dynindx = 0;
873 }
874 *section_sym_count = dynsymcount;
875
876 elf_link_hash_traverse (elf_hash_table (info),
877 elf_link_renumber_local_hash_table_dynsyms,
878 &dynsymcount);
879
880 if (elf_hash_table (info)->dynlocal)
881 {
882 struct elf_link_local_dynamic_entry *p;
883 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
884 p->dynindx = ++dynsymcount;
885 }
886
887 elf_link_hash_traverse (elf_hash_table (info),
888 elf_link_renumber_hash_table_dynsyms,
889 &dynsymcount);
890
891 /* There is an unused NULL entry at the head of the table which
892 we must account for in our count. We always create the dynsym
893 section, even if it is empty, with dynamic sections. */
894 if (elf_hash_table (info)->dynamic_sections_created)
895 ++dynsymcount;
896
897 elf_hash_table (info)->dynsymcount = dynsymcount;
898 return dynsymcount;
899}
900
901/* Merge st_other field. */
902
903static void
904elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
905 const Elf_Internal_Sym *isym, asection *sec,
906 bfd_boolean definition, bfd_boolean dynamic)
907{
908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
909
910 /* If st_other has a processor-specific meaning, specific
911 code might be needed here. */
912 if (bed->elf_backend_merge_symbol_attribute)
913 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
914 dynamic);
915
916 if (!dynamic)
917 {
918 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
919 unsigned hvis = ELF_ST_VISIBILITY (h->other);
920
921 /* Keep the most constraining visibility. Leave the remainder
922 of the st_other field to elf_backend_merge_symbol_attribute. */
923 if (symvis - 1 < hvis - 1)
924 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
925 }
926 else if (definition
927 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
928 && (sec->flags & SEC_READONLY) == 0)
929 h->protected_def = 1;
930}
931
932/* This function is called when we want to merge a new symbol with an
933 existing symbol. It handles the various cases which arise when we
934 find a definition in a dynamic object, or when there is already a
935 definition in a dynamic object. The new symbol is described by
936 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
937 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
938 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
939 of an old common symbol. We set OVERRIDE if the old symbol is
940 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
941 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
942 to change. By OK to change, we mean that we shouldn't warn if the
943 type or size does change. */
944
945static bfd_boolean
946_bfd_elf_merge_symbol (bfd *abfd,
947 struct bfd_link_info *info,
948 const char *name,
949 Elf_Internal_Sym *sym,
950 asection **psec,
951 bfd_vma *pvalue,
952 struct elf_link_hash_entry **sym_hash,
953 bfd **poldbfd,
954 bfd_boolean *pold_weak,
955 unsigned int *pold_alignment,
956 bfd_boolean *skip,
957 bfd_boolean *override,
958 bfd_boolean *type_change_ok,
959 bfd_boolean *size_change_ok,
960 bfd_boolean *matched)
961{
962 asection *sec, *oldsec;
963 struct elf_link_hash_entry *h;
964 struct elf_link_hash_entry *hi;
965 struct elf_link_hash_entry *flip;
966 int bind;
967 bfd *oldbfd;
968 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
969 bfd_boolean newweak, oldweak, newfunc, oldfunc;
970 const struct elf_backend_data *bed;
971 char *new_version;
972
973 *skip = FALSE;
974 *override = FALSE;
975
976 sec = *psec;
977 bind = ELF_ST_BIND (sym->st_info);
978
979 if (! bfd_is_und_section (sec))
980 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
981 else
982 h = ((struct elf_link_hash_entry *)
983 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
984 if (h == NULL)
985 return FALSE;
986 *sym_hash = h;
987
988 bed = get_elf_backend_data (abfd);
989
990 /* NEW_VERSION is the symbol version of the new symbol. */
991 if (h->versioned != unversioned)
992 {
993 /* Symbol version is unknown or versioned. */
994 new_version = strrchr (name, ELF_VER_CHR);
995 if (new_version)
996 {
997 if (h->versioned == unknown)
998 {
999 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1000 h->versioned = versioned_hidden;
1001 else
1002 h->versioned = versioned;
1003 }
1004 new_version += 1;
1005 if (new_version[0] == '\0')
1006 new_version = NULL;
1007 }
1008 else
1009 h->versioned = unversioned;
1010 }
1011 else
1012 new_version = NULL;
1013
1014 /* For merging, we only care about real symbols. But we need to make
1015 sure that indirect symbol dynamic flags are updated. */
1016 hi = h;
1017 while (h->root.type == bfd_link_hash_indirect
1018 || h->root.type == bfd_link_hash_warning)
1019 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1020
1021 if (!*matched)
1022 {
1023 if (hi == h || h->root.type == bfd_link_hash_new)
1024 *matched = TRUE;
1025 else
1026 {
1027 /* OLD_HIDDEN is true if the existing symbol is only visible
1028 to the symbol with the same symbol version. NEW_HIDDEN is
1029 true if the new symbol is only visible to the symbol with
1030 the same symbol version. */
1031 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1032 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1033 if (!old_hidden && !new_hidden)
1034 /* The new symbol matches the existing symbol if both
1035 aren't hidden. */
1036 *matched = TRUE;
1037 else
1038 {
1039 /* OLD_VERSION is the symbol version of the existing
1040 symbol. */
1041 char *old_version;
1042
1043 if (h->versioned >= versioned)
1044 old_version = strrchr (h->root.root.string,
1045 ELF_VER_CHR) + 1;
1046 else
1047 old_version = NULL;
1048
1049 /* The new symbol matches the existing symbol if they
1050 have the same symbol version. */
1051 *matched = (old_version == new_version
1052 || (old_version != NULL
1053 && new_version != NULL
1054 && strcmp (old_version, new_version) == 0));
1055 }
1056 }
1057 }
1058
1059 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1060 existing symbol. */
1061
1062 oldbfd = NULL;
1063 oldsec = NULL;
1064 switch (h->root.type)
1065 {
1066 default:
1067 break;
1068
1069 case bfd_link_hash_undefined:
1070 case bfd_link_hash_undefweak:
1071 oldbfd = h->root.u.undef.abfd;
1072 break;
1073
1074 case bfd_link_hash_defined:
1075 case bfd_link_hash_defweak:
1076 oldbfd = h->root.u.def.section->owner;
1077 oldsec = h->root.u.def.section;
1078 break;
1079
1080 case bfd_link_hash_common:
1081 oldbfd = h->root.u.c.p->section->owner;
1082 oldsec = h->root.u.c.p->section;
1083 if (pold_alignment)
1084 *pold_alignment = h->root.u.c.p->alignment_power;
1085 break;
1086 }
1087 if (poldbfd && *poldbfd == NULL)
1088 *poldbfd = oldbfd;
1089
1090 /* Differentiate strong and weak symbols. */
1091 newweak = bind == STB_WEAK;
1092 oldweak = (h->root.type == bfd_link_hash_defweak
1093 || h->root.type == bfd_link_hash_undefweak);
1094 if (pold_weak)
1095 *pold_weak = oldweak;
1096
1097 /* This code is for coping with dynamic objects, and is only useful
1098 if we are doing an ELF link. */
1099 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1100 return TRUE;
1101
1102 /* We have to check it for every instance since the first few may be
1103 references and not all compilers emit symbol type for undefined
1104 symbols. */
1105 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1106
1107 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1108 respectively, is from a dynamic object. */
1109
1110 newdyn = (abfd->flags & DYNAMIC) != 0;
1111
1112 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1113 syms and defined syms in dynamic libraries respectively.
1114 ref_dynamic on the other hand can be set for a symbol defined in
1115 a dynamic library, and def_dynamic may not be set; When the
1116 definition in a dynamic lib is overridden by a definition in the
1117 executable use of the symbol in the dynamic lib becomes a
1118 reference to the executable symbol. */
1119 if (newdyn)
1120 {
1121 if (bfd_is_und_section (sec))
1122 {
1123 if (bind != STB_WEAK)
1124 {
1125 h->ref_dynamic_nonweak = 1;
1126 hi->ref_dynamic_nonweak = 1;
1127 }
1128 }
1129 else
1130 {
1131 /* Update the existing symbol only if they match. */
1132 if (*matched)
1133 h->dynamic_def = 1;
1134 hi->dynamic_def = 1;
1135 }
1136 }
1137
1138 /* If we just created the symbol, mark it as being an ELF symbol.
1139 Other than that, there is nothing to do--there is no merge issue
1140 with a newly defined symbol--so we just return. */
1141
1142 if (h->root.type == bfd_link_hash_new)
1143 {
1144 h->non_elf = 0;
1145 return TRUE;
1146 }
1147
1148 /* In cases involving weak versioned symbols, we may wind up trying
1149 to merge a symbol with itself. Catch that here, to avoid the
1150 confusion that results if we try to override a symbol with
1151 itself. The additional tests catch cases like
1152 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1153 dynamic object, which we do want to handle here. */
1154 if (abfd == oldbfd
1155 && (newweak || oldweak)
1156 && ((abfd->flags & DYNAMIC) == 0
1157 || !h->def_regular))
1158 return TRUE;
1159
1160 olddyn = FALSE;
1161 if (oldbfd != NULL)
1162 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1163 else if (oldsec != NULL)
1164 {
1165 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1166 indices used by MIPS ELF. */
1167 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1168 }
1169
1170 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1171 respectively, appear to be a definition rather than reference. */
1172
1173 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1174
1175 olddef = (h->root.type != bfd_link_hash_undefined
1176 && h->root.type != bfd_link_hash_undefweak
1177 && h->root.type != bfd_link_hash_common);
1178
1179 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1180 respectively, appear to be a function. */
1181
1182 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1183 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1184
1185 oldfunc = (h->type != STT_NOTYPE
1186 && bed->is_function_type (h->type));
1187
1188 /* When we try to create a default indirect symbol from the dynamic
1189 definition with the default version, we skip it if its type and
1190 the type of existing regular definition mismatch. */
1191 if (pold_alignment == NULL
1192 && newdyn
1193 && newdef
1194 && !olddyn
1195 && (((olddef || h->root.type == bfd_link_hash_common)
1196 && ELF_ST_TYPE (sym->st_info) != h->type
1197 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1198 && h->type != STT_NOTYPE
1199 && !(newfunc && oldfunc))
1200 || (olddef
1201 && ((h->type == STT_GNU_IFUNC)
1202 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1203 {
1204 *skip = TRUE;
1205 return TRUE;
1206 }
1207
1208 /* Check TLS symbols. We don't check undefined symbols introduced
1209 by "ld -u" which have no type (and oldbfd NULL), and we don't
1210 check symbols from plugins because they also have no type. */
1211 if (oldbfd != NULL
1212 && (oldbfd->flags & BFD_PLUGIN) == 0
1213 && (abfd->flags & BFD_PLUGIN) == 0
1214 && ELF_ST_TYPE (sym->st_info) != h->type
1215 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1216 {
1217 bfd *ntbfd, *tbfd;
1218 bfd_boolean ntdef, tdef;
1219 asection *ntsec, *tsec;
1220
1221 if (h->type == STT_TLS)
1222 {
1223 ntbfd = abfd;
1224 ntsec = sec;
1225 ntdef = newdef;
1226 tbfd = oldbfd;
1227 tsec = oldsec;
1228 tdef = olddef;
1229 }
1230 else
1231 {
1232 ntbfd = oldbfd;
1233 ntsec = oldsec;
1234 ntdef = olddef;
1235 tbfd = abfd;
1236 tsec = sec;
1237 tdef = newdef;
1238 }
1239
1240 if (tdef && ntdef)
1241 (*_bfd_error_handler)
1242 (_("%s: TLS definition in %B section %A "
1243 "mismatches non-TLS definition in %B section %A"),
1244 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1245 else if (!tdef && !ntdef)
1246 (*_bfd_error_handler)
1247 (_("%s: TLS reference in %B "
1248 "mismatches non-TLS reference in %B"),
1249 tbfd, ntbfd, h->root.root.string);
1250 else if (tdef)
1251 (*_bfd_error_handler)
1252 (_("%s: TLS definition in %B section %A "
1253 "mismatches non-TLS reference in %B"),
1254 tbfd, tsec, ntbfd, h->root.root.string);
1255 else
1256 (*_bfd_error_handler)
1257 (_("%s: TLS reference in %B "
1258 "mismatches non-TLS definition in %B section %A"),
1259 tbfd, ntbfd, ntsec, h->root.root.string);
1260
1261 bfd_set_error (bfd_error_bad_value);
1262 return FALSE;
1263 }
1264
1265 /* If the old symbol has non-default visibility, we ignore the new
1266 definition from a dynamic object. */
1267 if (newdyn
1268 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1269 && !bfd_is_und_section (sec))
1270 {
1271 *skip = TRUE;
1272 /* Make sure this symbol is dynamic. */
1273 h->ref_dynamic = 1;
1274 hi->ref_dynamic = 1;
1275 /* A protected symbol has external availability. Make sure it is
1276 recorded as dynamic.
1277
1278 FIXME: Should we check type and size for protected symbol? */
1279 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1280 return bfd_elf_link_record_dynamic_symbol (info, h);
1281 else
1282 return TRUE;
1283 }
1284 else if (!newdyn
1285 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1286 && h->def_dynamic)
1287 {
1288 /* If the new symbol with non-default visibility comes from a
1289 relocatable file and the old definition comes from a dynamic
1290 object, we remove the old definition. */
1291 if (hi->root.type == bfd_link_hash_indirect)
1292 {
1293 /* Handle the case where the old dynamic definition is
1294 default versioned. We need to copy the symbol info from
1295 the symbol with default version to the normal one if it
1296 was referenced before. */
1297 if (h->ref_regular)
1298 {
1299 hi->root.type = h->root.type;
1300 h->root.type = bfd_link_hash_indirect;
1301 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1302
1303 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1304 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1305 {
1306 /* If the new symbol is hidden or internal, completely undo
1307 any dynamic link state. */
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 }
1312 else
1313 h->ref_dynamic = 1;
1314
1315 h->def_dynamic = 0;
1316 /* FIXME: Should we check type and size for protected symbol? */
1317 h->size = 0;
1318 h->type = 0;
1319
1320 h = hi;
1321 }
1322 else
1323 h = hi;
1324 }
1325
1326 /* If the old symbol was undefined before, then it will still be
1327 on the undefs list. If the new symbol is undefined or
1328 common, we can't make it bfd_link_hash_new here, because new
1329 undefined or common symbols will be added to the undefs list
1330 by _bfd_generic_link_add_one_symbol. Symbols may not be
1331 added twice to the undefs list. Also, if the new symbol is
1332 undefweak then we don't want to lose the strong undef. */
1333 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1334 {
1335 h->root.type = bfd_link_hash_undefined;
1336 h->root.u.undef.abfd = abfd;
1337 }
1338 else
1339 {
1340 h->root.type = bfd_link_hash_new;
1341 h->root.u.undef.abfd = NULL;
1342 }
1343
1344 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1345 {
1346 /* If the new symbol is hidden or internal, completely undo
1347 any dynamic link state. */
1348 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1349 h->forced_local = 0;
1350 h->ref_dynamic = 0;
1351 }
1352 else
1353 h->ref_dynamic = 1;
1354 h->def_dynamic = 0;
1355 /* FIXME: Should we check type and size for protected symbol? */
1356 h->size = 0;
1357 h->type = 0;
1358 return TRUE;
1359 }
1360
1361 /* If a new weak symbol definition comes from a regular file and the
1362 old symbol comes from a dynamic library, we treat the new one as
1363 strong. Similarly, an old weak symbol definition from a regular
1364 file is treated as strong when the new symbol comes from a dynamic
1365 library. Further, an old weak symbol from a dynamic library is
1366 treated as strong if the new symbol is from a dynamic library.
1367 This reflects the way glibc's ld.so works.
1368
1369 Do this before setting *type_change_ok or *size_change_ok so that
1370 we warn properly when dynamic library symbols are overridden. */
1371
1372 if (newdef && !newdyn && olddyn)
1373 newweak = FALSE;
1374 if (olddef && newdyn)
1375 oldweak = FALSE;
1376
1377 /* Allow changes between different types of function symbol. */
1378 if (newfunc && oldfunc)
1379 *type_change_ok = TRUE;
1380
1381 /* It's OK to change the type if either the existing symbol or the
1382 new symbol is weak. A type change is also OK if the old symbol
1383 is undefined and the new symbol is defined. */
1384
1385 if (oldweak
1386 || newweak
1387 || (newdef
1388 && h->root.type == bfd_link_hash_undefined))
1389 *type_change_ok = TRUE;
1390
1391 /* It's OK to change the size if either the existing symbol or the
1392 new symbol is weak, or if the old symbol is undefined. */
1393
1394 if (*type_change_ok
1395 || h->root.type == bfd_link_hash_undefined)
1396 *size_change_ok = TRUE;
1397
1398 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1399 symbol, respectively, appears to be a common symbol in a dynamic
1400 object. If a symbol appears in an uninitialized section, and is
1401 not weak, and is not a function, then it may be a common symbol
1402 which was resolved when the dynamic object was created. We want
1403 to treat such symbols specially, because they raise special
1404 considerations when setting the symbol size: if the symbol
1405 appears as a common symbol in a regular object, and the size in
1406 the regular object is larger, we must make sure that we use the
1407 larger size. This problematic case can always be avoided in C,
1408 but it must be handled correctly when using Fortran shared
1409 libraries.
1410
1411 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1412 likewise for OLDDYNCOMMON and OLDDEF.
1413
1414 Note that this test is just a heuristic, and that it is quite
1415 possible to have an uninitialized symbol in a shared object which
1416 is really a definition, rather than a common symbol. This could
1417 lead to some minor confusion when the symbol really is a common
1418 symbol in some regular object. However, I think it will be
1419 harmless. */
1420
1421 if (newdyn
1422 && newdef
1423 && !newweak
1424 && (sec->flags & SEC_ALLOC) != 0
1425 && (sec->flags & SEC_LOAD) == 0
1426 && sym->st_size > 0
1427 && !newfunc)
1428 newdyncommon = TRUE;
1429 else
1430 newdyncommon = FALSE;
1431
1432 if (olddyn
1433 && olddef
1434 && h->root.type == bfd_link_hash_defined
1435 && h->def_dynamic
1436 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1437 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1438 && h->size > 0
1439 && !oldfunc)
1440 olddyncommon = TRUE;
1441 else
1442 olddyncommon = FALSE;
1443
1444 /* We now know everything about the old and new symbols. We ask the
1445 backend to check if we can merge them. */
1446 if (bed->merge_symbol != NULL)
1447 {
1448 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1449 return FALSE;
1450 sec = *psec;
1451 }
1452
1453 /* If both the old and the new symbols look like common symbols in a
1454 dynamic object, set the size of the symbol to the larger of the
1455 two. */
1456
1457 if (olddyncommon
1458 && newdyncommon
1459 && sym->st_size != h->size)
1460 {
1461 /* Since we think we have two common symbols, issue a multiple
1462 common warning if desired. Note that we only warn if the
1463 size is different. If the size is the same, we simply let
1464 the old symbol override the new one as normally happens with
1465 symbols defined in dynamic objects. */
1466
1467 if (! ((*info->callbacks->multiple_common)
1468 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1469 return FALSE;
1470
1471 if (sym->st_size > h->size)
1472 h->size = sym->st_size;
1473
1474 *size_change_ok = TRUE;
1475 }
1476
1477 /* If we are looking at a dynamic object, and we have found a
1478 definition, we need to see if the symbol was already defined by
1479 some other object. If so, we want to use the existing
1480 definition, and we do not want to report a multiple symbol
1481 definition error; we do this by clobbering *PSEC to be
1482 bfd_und_section_ptr.
1483
1484 We treat a common symbol as a definition if the symbol in the
1485 shared library is a function, since common symbols always
1486 represent variables; this can cause confusion in principle, but
1487 any such confusion would seem to indicate an erroneous program or
1488 shared library. We also permit a common symbol in a regular
1489 object to override a weak symbol in a shared object. A common
1490 symbol in executable also overrides a symbol in a shared object. */
1491
1492 if (newdyn
1493 && newdef
1494 && (olddef
1495 || (h->root.type == bfd_link_hash_common
1496 && (newweak
1497 || newfunc
1498 || (!olddyn && bfd_link_executable (info))))))
1499 {
1500 *override = TRUE;
1501 newdef = FALSE;
1502 newdyncommon = FALSE;
1503
1504 *psec = sec = bfd_und_section_ptr;
1505 *size_change_ok = TRUE;
1506
1507 /* If we get here when the old symbol is a common symbol, then
1508 we are explicitly letting it override a weak symbol or
1509 function in a dynamic object, and we don't want to warn about
1510 a type change. If the old symbol is a defined symbol, a type
1511 change warning may still be appropriate. */
1512
1513 if (h->root.type == bfd_link_hash_common)
1514 *type_change_ok = TRUE;
1515 }
1516
1517 /* Handle the special case of an old common symbol merging with a
1518 new symbol which looks like a common symbol in a shared object.
1519 We change *PSEC and *PVALUE to make the new symbol look like a
1520 common symbol, and let _bfd_generic_link_add_one_symbol do the
1521 right thing. */
1522
1523 if (newdyncommon
1524 && h->root.type == bfd_link_hash_common)
1525 {
1526 *override = TRUE;
1527 newdef = FALSE;
1528 newdyncommon = FALSE;
1529 *pvalue = sym->st_size;
1530 *psec = sec = bed->common_section (oldsec);
1531 *size_change_ok = TRUE;
1532 }
1533
1534 /* Skip weak definitions of symbols that are already defined. */
1535 if (newdef && olddef && newweak)
1536 {
1537 /* Don't skip new non-IR weak syms. */
1538 if (!(oldbfd != NULL
1539 && (oldbfd->flags & BFD_PLUGIN) != 0
1540 && (abfd->flags & BFD_PLUGIN) == 0))
1541 {
1542 newdef = FALSE;
1543 *skip = TRUE;
1544 }
1545
1546 /* Merge st_other. If the symbol already has a dynamic index,
1547 but visibility says it should not be visible, turn it into a
1548 local symbol. */
1549 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1550 if (h->dynindx != -1)
1551 switch (ELF_ST_VISIBILITY (h->other))
1552 {
1553 case STV_INTERNAL:
1554 case STV_HIDDEN:
1555 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1556 break;
1557 }
1558 }
1559
1560 /* If the old symbol is from a dynamic object, and the new symbol is
1561 a definition which is not from a dynamic object, then the new
1562 symbol overrides the old symbol. Symbols from regular files
1563 always take precedence over symbols from dynamic objects, even if
1564 they are defined after the dynamic object in the link.
1565
1566 As above, we again permit a common symbol in a regular object to
1567 override a definition in a shared object if the shared object
1568 symbol is a function or is weak. */
1569
1570 flip = NULL;
1571 if (!newdyn
1572 && (newdef
1573 || (bfd_is_com_section (sec)
1574 && (oldweak || oldfunc)))
1575 && olddyn
1576 && olddef
1577 && h->def_dynamic)
1578 {
1579 /* Change the hash table entry to undefined, and let
1580 _bfd_generic_link_add_one_symbol do the right thing with the
1581 new definition. */
1582
1583 h->root.type = bfd_link_hash_undefined;
1584 h->root.u.undef.abfd = h->root.u.def.section->owner;
1585 *size_change_ok = TRUE;
1586
1587 olddef = FALSE;
1588 olddyncommon = FALSE;
1589
1590 /* We again permit a type change when a common symbol may be
1591 overriding a function. */
1592
1593 if (bfd_is_com_section (sec))
1594 {
1595 if (oldfunc)
1596 {
1597 /* If a common symbol overrides a function, make sure
1598 that it isn't defined dynamically nor has type
1599 function. */
1600 h->def_dynamic = 0;
1601 h->type = STT_NOTYPE;
1602 }
1603 *type_change_ok = TRUE;
1604 }
1605
1606 if (hi->root.type == bfd_link_hash_indirect)
1607 flip = hi;
1608 else
1609 /* This union may have been set to be non-NULL when this symbol
1610 was seen in a dynamic object. We must force the union to be
1611 NULL, so that it is correct for a regular symbol. */
1612 h->verinfo.vertree = NULL;
1613 }
1614
1615 /* Handle the special case of a new common symbol merging with an
1616 old symbol that looks like it might be a common symbol defined in
1617 a shared object. Note that we have already handled the case in
1618 which a new common symbol should simply override the definition
1619 in the shared library. */
1620
1621 if (! newdyn
1622 && bfd_is_com_section (sec)
1623 && olddyncommon)
1624 {
1625 /* It would be best if we could set the hash table entry to a
1626 common symbol, but we don't know what to use for the section
1627 or the alignment. */
1628 if (! ((*info->callbacks->multiple_common)
1629 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1630 return FALSE;
1631
1632 /* If the presumed common symbol in the dynamic object is
1633 larger, pretend that the new symbol has its size. */
1634
1635 if (h->size > *pvalue)
1636 *pvalue = h->size;
1637
1638 /* We need to remember the alignment required by the symbol
1639 in the dynamic object. */
1640 BFD_ASSERT (pold_alignment);
1641 *pold_alignment = h->root.u.def.section->alignment_power;
1642
1643 olddef = FALSE;
1644 olddyncommon = FALSE;
1645
1646 h->root.type = bfd_link_hash_undefined;
1647 h->root.u.undef.abfd = h->root.u.def.section->owner;
1648
1649 *size_change_ok = TRUE;
1650 *type_change_ok = TRUE;
1651
1652 if (hi->root.type == bfd_link_hash_indirect)
1653 flip = hi;
1654 else
1655 h->verinfo.vertree = NULL;
1656 }
1657
1658 if (flip != NULL)
1659 {
1660 /* Handle the case where we had a versioned symbol in a dynamic
1661 library and now find a definition in a normal object. In this
1662 case, we make the versioned symbol point to the normal one. */
1663 flip->root.type = h->root.type;
1664 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1665 h->root.type = bfd_link_hash_indirect;
1666 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1667 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1668 if (h->def_dynamic)
1669 {
1670 h->def_dynamic = 0;
1671 flip->ref_dynamic = 1;
1672 }
1673 }
1674
1675 return TRUE;
1676}
1677
1678/* This function is called to create an indirect symbol from the
1679 default for the symbol with the default version if needed. The
1680 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1681 set DYNSYM if the new indirect symbol is dynamic. */
1682
1683static bfd_boolean
1684_bfd_elf_add_default_symbol (bfd *abfd,
1685 struct bfd_link_info *info,
1686 struct elf_link_hash_entry *h,
1687 const char *name,
1688 Elf_Internal_Sym *sym,
1689 asection *sec,
1690 bfd_vma value,
1691 bfd **poldbfd,
1692 bfd_boolean *dynsym)
1693{
1694 bfd_boolean type_change_ok;
1695 bfd_boolean size_change_ok;
1696 bfd_boolean skip;
1697 char *shortname;
1698 struct elf_link_hash_entry *hi;
1699 struct bfd_link_hash_entry *bh;
1700 const struct elf_backend_data *bed;
1701 bfd_boolean collect;
1702 bfd_boolean dynamic;
1703 bfd_boolean override;
1704 char *p;
1705 size_t len, shortlen;
1706 asection *tmp_sec;
1707 bfd_boolean matched;
1708
1709 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1710 return TRUE;
1711
1712 /* If this symbol has a version, and it is the default version, we
1713 create an indirect symbol from the default name to the fully
1714 decorated name. This will cause external references which do not
1715 specify a version to be bound to this version of the symbol. */
1716 p = strchr (name, ELF_VER_CHR);
1717 if (h->versioned == unknown)
1718 {
1719 if (p == NULL)
1720 {
1721 h->versioned = unversioned;
1722 return TRUE;
1723 }
1724 else
1725 {
1726 if (p[1] != ELF_VER_CHR)
1727 {
1728 h->versioned = versioned_hidden;
1729 return TRUE;
1730 }
1731 else
1732 h->versioned = versioned;
1733 }
1734 }
1735 else
1736 {
1737 /* PR ld/19073: We may see an unversioned definition after the
1738 default version. */
1739 if (p == NULL)
1740 return TRUE;
1741 }
1742
1743 bed = get_elf_backend_data (abfd);
1744 collect = bed->collect;
1745 dynamic = (abfd->flags & DYNAMIC) != 0;
1746
1747 shortlen = p - name;
1748 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1749 if (shortname == NULL)
1750 return FALSE;
1751 memcpy (shortname, name, shortlen);
1752 shortname[shortlen] = '\0';
1753
1754 /* We are going to create a new symbol. Merge it with any existing
1755 symbol with this name. For the purposes of the merge, act as
1756 though we were defining the symbol we just defined, although we
1757 actually going to define an indirect symbol. */
1758 type_change_ok = FALSE;
1759 size_change_ok = FALSE;
1760 matched = TRUE;
1761 tmp_sec = sec;
1762 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1763 &hi, poldbfd, NULL, NULL, &skip, &override,
1764 &type_change_ok, &size_change_ok, &matched))
1765 return FALSE;
1766
1767 if (skip)
1768 goto nondefault;
1769
1770 if (! override)
1771 {
1772 /* Add the default symbol if not performing a relocatable link. */
1773 if (! bfd_link_relocatable (info))
1774 {
1775 bh = &hi->root;
1776 if (! (_bfd_generic_link_add_one_symbol
1777 (info, abfd, shortname, BSF_INDIRECT,
1778 bfd_ind_section_ptr,
1779 0, name, FALSE, collect, &bh)))
1780 return FALSE;
1781 hi = (struct elf_link_hash_entry *) bh;
1782 }
1783 }
1784 else
1785 {
1786 /* In this case the symbol named SHORTNAME is overriding the
1787 indirect symbol we want to add. We were planning on making
1788 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1789 is the name without a version. NAME is the fully versioned
1790 name, and it is the default version.
1791
1792 Overriding means that we already saw a definition for the
1793 symbol SHORTNAME in a regular object, and it is overriding
1794 the symbol defined in the dynamic object.
1795
1796 When this happens, we actually want to change NAME, the
1797 symbol we just added, to refer to SHORTNAME. This will cause
1798 references to NAME in the shared object to become references
1799 to SHORTNAME in the regular object. This is what we expect
1800 when we override a function in a shared object: that the
1801 references in the shared object will be mapped to the
1802 definition in the regular object. */
1803
1804 while (hi->root.type == bfd_link_hash_indirect
1805 || hi->root.type == bfd_link_hash_warning)
1806 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1807
1808 h->root.type = bfd_link_hash_indirect;
1809 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 hi->ref_dynamic = 1;
1814 if (hi->ref_regular
1815 || hi->def_regular)
1816 {
1817 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1818 return FALSE;
1819 }
1820 }
1821
1822 /* Now set HI to H, so that the following code will set the
1823 other fields correctly. */
1824 hi = h;
1825 }
1826
1827 /* Check if HI is a warning symbol. */
1828 if (hi->root.type == bfd_link_hash_warning)
1829 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1830
1831 /* If there is a duplicate definition somewhere, then HI may not
1832 point to an indirect symbol. We will have reported an error to
1833 the user in that case. */
1834
1835 if (hi->root.type == bfd_link_hash_indirect)
1836 {
1837 struct elf_link_hash_entry *ht;
1838
1839 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1840 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1841
1842 /* A reference to the SHORTNAME symbol from a dynamic library
1843 will be satisfied by the versioned symbol at runtime. In
1844 effect, we have a reference to the versioned symbol. */
1845 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1846 hi->dynamic_def |= ht->dynamic_def;
1847
1848 /* See if the new flags lead us to realize that the symbol must
1849 be dynamic. */
1850 if (! *dynsym)
1851 {
1852 if (! dynamic)
1853 {
1854 if (! bfd_link_executable (info)
1855 || hi->def_dynamic
1856 || hi->ref_dynamic)
1857 *dynsym = TRUE;
1858 }
1859 else
1860 {
1861 if (hi->ref_regular)
1862 *dynsym = TRUE;
1863 }
1864 }
1865 }
1866
1867 /* We also need to define an indirection from the nondefault version
1868 of the symbol. */
1869
1870nondefault:
1871 len = strlen (name);
1872 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1873 if (shortname == NULL)
1874 return FALSE;
1875 memcpy (shortname, name, shortlen);
1876 memcpy (shortname + shortlen, p + 1, len - shortlen);
1877
1878 /* Once again, merge with any existing symbol. */
1879 type_change_ok = FALSE;
1880 size_change_ok = FALSE;
1881 tmp_sec = sec;
1882 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1883 &hi, poldbfd, NULL, NULL, &skip, &override,
1884 &type_change_ok, &size_change_ok, &matched))
1885 return FALSE;
1886
1887 if (skip)
1888 return TRUE;
1889
1890 if (override)
1891 {
1892 /* Here SHORTNAME is a versioned name, so we don't expect to see
1893 the type of override we do in the case above unless it is
1894 overridden by a versioned definition. */
1895 if (hi->root.type != bfd_link_hash_defined
1896 && hi->root.type != bfd_link_hash_defweak)
1897 (*_bfd_error_handler)
1898 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1899 abfd, shortname);
1900 }
1901 else
1902 {
1903 bh = &hi->root;
1904 if (! (_bfd_generic_link_add_one_symbol
1905 (info, abfd, shortname, BSF_INDIRECT,
1906 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1907 return FALSE;
1908 hi = (struct elf_link_hash_entry *) bh;
1909
1910 /* If there is a duplicate definition somewhere, then HI may not
1911 point to an indirect symbol. We will have reported an error
1912 to the user in that case. */
1913
1914 if (hi->root.type == bfd_link_hash_indirect)
1915 {
1916 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1917 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1918 hi->dynamic_def |= h->dynamic_def;
1919
1920 /* See if the new flags lead us to realize that the symbol
1921 must be dynamic. */
1922 if (! *dynsym)
1923 {
1924 if (! dynamic)
1925 {
1926 if (! bfd_link_executable (info)
1927 || hi->ref_dynamic)
1928 *dynsym = TRUE;
1929 }
1930 else
1931 {
1932 if (hi->ref_regular)
1933 *dynsym = TRUE;
1934 }
1935 }
1936 }
1937 }
1938
1939 return TRUE;
1940}
1941\f
1942/* This routine is used to export all defined symbols into the dynamic
1943 symbol table. It is called via elf_link_hash_traverse. */
1944
1945static bfd_boolean
1946_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1947{
1948 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1949
1950 /* Ignore indirect symbols. These are added by the versioning code. */
1951 if (h->root.type == bfd_link_hash_indirect)
1952 return TRUE;
1953
1954 /* Ignore this if we won't export it. */
1955 if (!eif->info->export_dynamic && !h->dynamic)
1956 return TRUE;
1957
1958 if (h->dynindx == -1
1959 && (h->def_regular || h->ref_regular)
1960 && ! bfd_hide_sym_by_version (eif->info->version_info,
1961 h->root.root.string))
1962 {
1963 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1964 {
1965 eif->failed = TRUE;
1966 return FALSE;
1967 }
1968 }
1969
1970 return TRUE;
1971}
1972\f
1973/* Look through the symbols which are defined in other shared
1974 libraries and referenced here. Update the list of version
1975 dependencies. This will be put into the .gnu.version_r section.
1976 This function is called via elf_link_hash_traverse. */
1977
1978static bfd_boolean
1979_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1980 void *data)
1981{
1982 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1983 Elf_Internal_Verneed *t;
1984 Elf_Internal_Vernaux *a;
1985 bfd_size_type amt;
1986
1987 /* We only care about symbols defined in shared objects with version
1988 information. */
1989 if (!h->def_dynamic
1990 || h->def_regular
1991 || h->dynindx == -1
1992 || h->verinfo.verdef == NULL
1993 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1994 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1995 return TRUE;
1996
1997 /* See if we already know about this version. */
1998 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1999 t != NULL;
2000 t = t->vn_nextref)
2001 {
2002 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2003 continue;
2004
2005 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2006 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2007 return TRUE;
2008
2009 break;
2010 }
2011
2012 /* This is a new version. Add it to tree we are building. */
2013
2014 if (t == NULL)
2015 {
2016 amt = sizeof *t;
2017 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2018 if (t == NULL)
2019 {
2020 rinfo->failed = TRUE;
2021 return FALSE;
2022 }
2023
2024 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2025 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2026 elf_tdata (rinfo->info->output_bfd)->verref = t;
2027 }
2028
2029 amt = sizeof *a;
2030 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2031 if (a == NULL)
2032 {
2033 rinfo->failed = TRUE;
2034 return FALSE;
2035 }
2036
2037 /* Note that we are copying a string pointer here, and testing it
2038 above. If bfd_elf_string_from_elf_section is ever changed to
2039 discard the string data when low in memory, this will have to be
2040 fixed. */
2041 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2042
2043 a->vna_flags = h->verinfo.verdef->vd_flags;
2044 a->vna_nextptr = t->vn_auxptr;
2045
2046 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2047 ++rinfo->vers;
2048
2049 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2050
2051 t->vn_auxptr = a;
2052
2053 return TRUE;
2054}
2055
2056/* Figure out appropriate versions for all the symbols. We may not
2057 have the version number script until we have read all of the input
2058 files, so until that point we don't know which symbols should be
2059 local. This function is called via elf_link_hash_traverse. */
2060
2061static bfd_boolean
2062_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2063{
2064 struct elf_info_failed *sinfo;
2065 struct bfd_link_info *info;
2066 const struct elf_backend_data *bed;
2067 struct elf_info_failed eif;
2068 char *p;
2069 bfd_size_type amt;
2070
2071 sinfo = (struct elf_info_failed *) data;
2072 info = sinfo->info;
2073
2074 /* Fix the symbol flags. */
2075 eif.failed = FALSE;
2076 eif.info = info;
2077 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2078 {
2079 if (eif.failed)
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 /* We only need version numbers for symbols defined in regular
2085 objects. */
2086 if (!h->def_regular)
2087 return TRUE;
2088
2089 bed = get_elf_backend_data (info->output_bfd);
2090 p = strchr (h->root.root.string, ELF_VER_CHR);
2091 if (p != NULL && h->verinfo.vertree == NULL)
2092 {
2093 struct bfd_elf_version_tree *t;
2094
2095 ++p;
2096 if (*p == ELF_VER_CHR)
2097 ++p;
2098
2099 /* If there is no version string, we can just return out. */
2100 if (*p == '\0')
2101 return TRUE;
2102
2103 /* Look for the version. If we find it, it is no longer weak. */
2104 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2105 {
2106 if (strcmp (t->name, p) == 0)
2107 {
2108 size_t len;
2109 char *alc;
2110 struct bfd_elf_version_expr *d;
2111
2112 len = p - h->root.root.string;
2113 alc = (char *) bfd_malloc (len);
2114 if (alc == NULL)
2115 {
2116 sinfo->failed = TRUE;
2117 return FALSE;
2118 }
2119 memcpy (alc, h->root.root.string, len - 1);
2120 alc[len - 1] = '\0';
2121 if (alc[len - 2] == ELF_VER_CHR)
2122 alc[len - 2] = '\0';
2123
2124 h->verinfo.vertree = t;
2125 t->used = TRUE;
2126 d = NULL;
2127
2128 if (t->globals.list != NULL)
2129 d = (*t->match) (&t->globals, NULL, alc);
2130
2131 /* See if there is anything to force this symbol to
2132 local scope. */
2133 if (d == NULL && t->locals.list != NULL)
2134 {
2135 d = (*t->match) (&t->locals, NULL, alc);
2136 if (d != NULL
2137 && h->dynindx != -1
2138 && ! info->export_dynamic)
2139 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2140 }
2141
2142 free (alc);
2143 break;
2144 }
2145 }
2146
2147 /* If we are building an application, we need to create a
2148 version node for this version. */
2149 if (t == NULL && bfd_link_executable (info))
2150 {
2151 struct bfd_elf_version_tree **pp;
2152 int version_index;
2153
2154 /* If we aren't going to export this symbol, we don't need
2155 to worry about it. */
2156 if (h->dynindx == -1)
2157 return TRUE;
2158
2159 amt = sizeof *t;
2160 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2161 if (t == NULL)
2162 {
2163 sinfo->failed = TRUE;
2164 return FALSE;
2165 }
2166
2167 t->name = p;
2168 t->name_indx = (unsigned int) -1;
2169 t->used = TRUE;
2170
2171 version_index = 1;
2172 /* Don't count anonymous version tag. */
2173 if (sinfo->info->version_info != NULL
2174 && sinfo->info->version_info->vernum == 0)
2175 version_index = 0;
2176 for (pp = &sinfo->info->version_info;
2177 *pp != NULL;
2178 pp = &(*pp)->next)
2179 ++version_index;
2180 t->vernum = version_index;
2181
2182 *pp = t;
2183
2184 h->verinfo.vertree = t;
2185 }
2186 else if (t == NULL)
2187 {
2188 /* We could not find the version for a symbol when
2189 generating a shared archive. Return an error. */
2190 (*_bfd_error_handler)
2191 (_("%B: version node not found for symbol %s"),
2192 info->output_bfd, h->root.root.string);
2193 bfd_set_error (bfd_error_bad_value);
2194 sinfo->failed = TRUE;
2195 return FALSE;
2196 }
2197 }
2198
2199 /* If we don't have a version for this symbol, see if we can find
2200 something. */
2201 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2202 {
2203 bfd_boolean hide;
2204
2205 h->verinfo.vertree
2206 = bfd_find_version_for_sym (sinfo->info->version_info,
2207 h->root.root.string, &hide);
2208 if (h->verinfo.vertree != NULL && hide)
2209 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2210 }
2211
2212 return TRUE;
2213}
2214\f
2215/* Read and swap the relocs from the section indicated by SHDR. This
2216 may be either a REL or a RELA section. The relocations are
2217 translated into RELA relocations and stored in INTERNAL_RELOCS,
2218 which should have already been allocated to contain enough space.
2219 The EXTERNAL_RELOCS are a buffer where the external form of the
2220 relocations should be stored.
2221
2222 Returns FALSE if something goes wrong. */
2223
2224static bfd_boolean
2225elf_link_read_relocs_from_section (bfd *abfd,
2226 asection *sec,
2227 Elf_Internal_Shdr *shdr,
2228 void *external_relocs,
2229 Elf_Internal_Rela *internal_relocs)
2230{
2231 const struct elf_backend_data *bed;
2232 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2233 const bfd_byte *erela;
2234 const bfd_byte *erelaend;
2235 Elf_Internal_Rela *irela;
2236 Elf_Internal_Shdr *symtab_hdr;
2237 size_t nsyms;
2238
2239 /* Position ourselves at the start of the section. */
2240 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2241 return FALSE;
2242
2243 /* Read the relocations. */
2244 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2245 return FALSE;
2246
2247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2248 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2249
2250 bed = get_elf_backend_data (abfd);
2251
2252 /* Convert the external relocations to the internal format. */
2253 if (shdr->sh_entsize == bed->s->sizeof_rel)
2254 swap_in = bed->s->swap_reloc_in;
2255 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2256 swap_in = bed->s->swap_reloca_in;
2257 else
2258 {
2259 bfd_set_error (bfd_error_wrong_format);
2260 return FALSE;
2261 }
2262
2263 erela = (const bfd_byte *) external_relocs;
2264 erelaend = erela + shdr->sh_size;
2265 irela = internal_relocs;
2266 while (erela < erelaend)
2267 {
2268 bfd_vma r_symndx;
2269
2270 (*swap_in) (abfd, erela, irela);
2271 r_symndx = ELF32_R_SYM (irela->r_info);
2272 if (bed->s->arch_size == 64)
2273 r_symndx >>= 24;
2274 if (nsyms > 0)
2275 {
2276 if ((size_t) r_symndx >= nsyms)
2277 {
2278 (*_bfd_error_handler)
2279 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2280 " for offset 0x%lx in section `%A'"),
2281 abfd, sec,
2282 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2283 bfd_set_error (bfd_error_bad_value);
2284 return FALSE;
2285 }
2286 }
2287 else if (r_symndx != STN_UNDEF)
2288 {
2289 (*_bfd_error_handler)
2290 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2291 " when the object file has no symbol table"),
2292 abfd, sec,
2293 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2294 bfd_set_error (bfd_error_bad_value);
2295 return FALSE;
2296 }
2297 irela += bed->s->int_rels_per_ext_rel;
2298 erela += shdr->sh_entsize;
2299 }
2300
2301 return TRUE;
2302}
2303
2304/* Read and swap the relocs for a section O. They may have been
2305 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2306 not NULL, they are used as buffers to read into. They are known to
2307 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2308 the return value is allocated using either malloc or bfd_alloc,
2309 according to the KEEP_MEMORY argument. If O has two relocation
2310 sections (both REL and RELA relocations), then the REL_HDR
2311 relocations will appear first in INTERNAL_RELOCS, followed by the
2312 RELA_HDR relocations. */
2313
2314Elf_Internal_Rela *
2315_bfd_elf_link_read_relocs (bfd *abfd,
2316 asection *o,
2317 void *external_relocs,
2318 Elf_Internal_Rela *internal_relocs,
2319 bfd_boolean keep_memory)
2320{
2321 void *alloc1 = NULL;
2322 Elf_Internal_Rela *alloc2 = NULL;
2323 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2324 struct bfd_elf_section_data *esdo = elf_section_data (o);
2325 Elf_Internal_Rela *internal_rela_relocs;
2326
2327 if (esdo->relocs != NULL)
2328 return esdo->relocs;
2329
2330 if (o->reloc_count == 0)
2331 return NULL;
2332
2333 if (internal_relocs == NULL)
2334 {
2335 bfd_size_type size;
2336
2337 size = o->reloc_count;
2338 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2339 if (keep_memory)
2340 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2341 else
2342 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2343 if (internal_relocs == NULL)
2344 goto error_return;
2345 }
2346
2347 if (external_relocs == NULL)
2348 {
2349 bfd_size_type size = 0;
2350
2351 if (esdo->rel.hdr)
2352 size += esdo->rel.hdr->sh_size;
2353 if (esdo->rela.hdr)
2354 size += esdo->rela.hdr->sh_size;
2355
2356 alloc1 = bfd_malloc (size);
2357 if (alloc1 == NULL)
2358 goto error_return;
2359 external_relocs = alloc1;
2360 }
2361
2362 internal_rela_relocs = internal_relocs;
2363 if (esdo->rel.hdr)
2364 {
2365 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2366 external_relocs,
2367 internal_relocs))
2368 goto error_return;
2369 external_relocs = (((bfd_byte *) external_relocs)
2370 + esdo->rel.hdr->sh_size);
2371 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2372 * bed->s->int_rels_per_ext_rel);
2373 }
2374
2375 if (esdo->rela.hdr
2376 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2377 external_relocs,
2378 internal_rela_relocs)))
2379 goto error_return;
2380
2381 /* Cache the results for next time, if we can. */
2382 if (keep_memory)
2383 esdo->relocs = internal_relocs;
2384
2385 if (alloc1 != NULL)
2386 free (alloc1);
2387
2388 /* Don't free alloc2, since if it was allocated we are passing it
2389 back (under the name of internal_relocs). */
2390
2391 return internal_relocs;
2392
2393 error_return:
2394 if (alloc1 != NULL)
2395 free (alloc1);
2396 if (alloc2 != NULL)
2397 {
2398 if (keep_memory)
2399 bfd_release (abfd, alloc2);
2400 else
2401 free (alloc2);
2402 }
2403 return NULL;
2404}
2405
2406/* Compute the size of, and allocate space for, REL_HDR which is the
2407 section header for a section containing relocations for O. */
2408
2409static bfd_boolean
2410_bfd_elf_link_size_reloc_section (bfd *abfd,
2411 struct bfd_elf_section_reloc_data *reldata)
2412{
2413 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2414
2415 /* That allows us to calculate the size of the section. */
2416 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2417
2418 /* The contents field must last into write_object_contents, so we
2419 allocate it with bfd_alloc rather than malloc. Also since we
2420 cannot be sure that the contents will actually be filled in,
2421 we zero the allocated space. */
2422 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2423 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2424 return FALSE;
2425
2426 if (reldata->hashes == NULL && reldata->count)
2427 {
2428 struct elf_link_hash_entry **p;
2429
2430 p = ((struct elf_link_hash_entry **)
2431 bfd_zmalloc (reldata->count * sizeof (*p)));
2432 if (p == NULL)
2433 return FALSE;
2434
2435 reldata->hashes = p;
2436 }
2437
2438 return TRUE;
2439}
2440
2441/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2442 originated from the section given by INPUT_REL_HDR) to the
2443 OUTPUT_BFD. */
2444
2445bfd_boolean
2446_bfd_elf_link_output_relocs (bfd *output_bfd,
2447 asection *input_section,
2448 Elf_Internal_Shdr *input_rel_hdr,
2449 Elf_Internal_Rela *internal_relocs,
2450 struct elf_link_hash_entry **rel_hash
2451 ATTRIBUTE_UNUSED)
2452{
2453 Elf_Internal_Rela *irela;
2454 Elf_Internal_Rela *irelaend;
2455 bfd_byte *erel;
2456 struct bfd_elf_section_reloc_data *output_reldata;
2457 asection *output_section;
2458 const struct elf_backend_data *bed;
2459 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2460 struct bfd_elf_section_data *esdo;
2461
2462 output_section = input_section->output_section;
2463
2464 bed = get_elf_backend_data (output_bfd);
2465 esdo = elf_section_data (output_section);
2466 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2467 {
2468 output_reldata = &esdo->rel;
2469 swap_out = bed->s->swap_reloc_out;
2470 }
2471 else if (esdo->rela.hdr
2472 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2473 {
2474 output_reldata = &esdo->rela;
2475 swap_out = bed->s->swap_reloca_out;
2476 }
2477 else
2478 {
2479 (*_bfd_error_handler)
2480 (_("%B: relocation size mismatch in %B section %A"),
2481 output_bfd, input_section->owner, input_section);
2482 bfd_set_error (bfd_error_wrong_format);
2483 return FALSE;
2484 }
2485
2486 erel = output_reldata->hdr->contents;
2487 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2488 irela = internal_relocs;
2489 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2490 * bed->s->int_rels_per_ext_rel);
2491 while (irela < irelaend)
2492 {
2493 (*swap_out) (output_bfd, irela, erel);
2494 irela += bed->s->int_rels_per_ext_rel;
2495 erel += input_rel_hdr->sh_entsize;
2496 }
2497
2498 /* Bump the counter, so that we know where to add the next set of
2499 relocations. */
2500 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2501
2502 return TRUE;
2503}
2504\f
2505/* Make weak undefined symbols in PIE dynamic. */
2506
2507bfd_boolean
2508_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2509 struct elf_link_hash_entry *h)
2510{
2511 if (bfd_link_pie (info)
2512 && h->dynindx == -1
2513 && h->root.type == bfd_link_hash_undefweak)
2514 return bfd_elf_link_record_dynamic_symbol (info, h);
2515
2516 return TRUE;
2517}
2518
2519/* Fix up the flags for a symbol. This handles various cases which
2520 can only be fixed after all the input files are seen. This is
2521 currently called by both adjust_dynamic_symbol and
2522 assign_sym_version, which is unnecessary but perhaps more robust in
2523 the face of future changes. */
2524
2525static bfd_boolean
2526_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2527 struct elf_info_failed *eif)
2528{
2529 const struct elf_backend_data *bed;
2530
2531 /* If this symbol was mentioned in a non-ELF file, try to set
2532 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2533 permit a non-ELF file to correctly refer to a symbol defined in
2534 an ELF dynamic object. */
2535 if (h->non_elf)
2536 {
2537 while (h->root.type == bfd_link_hash_indirect)
2538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539
2540 if (h->root.type != bfd_link_hash_defined
2541 && h->root.type != bfd_link_hash_defweak)
2542 {
2543 h->ref_regular = 1;
2544 h->ref_regular_nonweak = 1;
2545 }
2546 else
2547 {
2548 if (h->root.u.def.section->owner != NULL
2549 && (bfd_get_flavour (h->root.u.def.section->owner)
2550 == bfd_target_elf_flavour))
2551 {
2552 h->ref_regular = 1;
2553 h->ref_regular_nonweak = 1;
2554 }
2555 else
2556 h->def_regular = 1;
2557 }
2558
2559 if (h->dynindx == -1
2560 && (h->def_dynamic
2561 || h->ref_dynamic))
2562 {
2563 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2564 {
2565 eif->failed = TRUE;
2566 return FALSE;
2567 }
2568 }
2569 }
2570 else
2571 {
2572 /* Unfortunately, NON_ELF is only correct if the symbol
2573 was first seen in a non-ELF file. Fortunately, if the symbol
2574 was first seen in an ELF file, we're probably OK unless the
2575 symbol was defined in a non-ELF file. Catch that case here.
2576 FIXME: We're still in trouble if the symbol was first seen in
2577 a dynamic object, and then later in a non-ELF regular object. */
2578 if ((h->root.type == bfd_link_hash_defined
2579 || h->root.type == bfd_link_hash_defweak)
2580 && !h->def_regular
2581 && (h->root.u.def.section->owner != NULL
2582 ? (bfd_get_flavour (h->root.u.def.section->owner)
2583 != bfd_target_elf_flavour)
2584 : (bfd_is_abs_section (h->root.u.def.section)
2585 && !h->def_dynamic)))
2586 h->def_regular = 1;
2587 }
2588
2589 /* Backend specific symbol fixup. */
2590 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2591 if (bed->elf_backend_fixup_symbol
2592 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2593 return FALSE;
2594
2595 /* If this is a final link, and the symbol was defined as a common
2596 symbol in a regular object file, and there was no definition in
2597 any dynamic object, then the linker will have allocated space for
2598 the symbol in a common section but the DEF_REGULAR
2599 flag will not have been set. */
2600 if (h->root.type == bfd_link_hash_defined
2601 && !h->def_regular
2602 && h->ref_regular
2603 && !h->def_dynamic
2604 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2605 h->def_regular = 1;
2606
2607 /* If -Bsymbolic was used (which means to bind references to global
2608 symbols to the definition within the shared object), and this
2609 symbol was defined in a regular object, then it actually doesn't
2610 need a PLT entry. Likewise, if the symbol has non-default
2611 visibility. If the symbol has hidden or internal visibility, we
2612 will force it local. */
2613 if (h->needs_plt
2614 && bfd_link_pic (eif->info)
2615 && is_elf_hash_table (eif->info->hash)
2616 && (SYMBOLIC_BIND (eif->info, h)
2617 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2618 && h->def_regular)
2619 {
2620 bfd_boolean force_local;
2621
2622 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2623 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2624 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2625 }
2626
2627 /* If a weak undefined symbol has non-default visibility, we also
2628 hide it from the dynamic linker. */
2629 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2630 && h->root.type == bfd_link_hash_undefweak)
2631 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2632
2633 /* If this is a weak defined symbol in a dynamic object, and we know
2634 the real definition in the dynamic object, copy interesting flags
2635 over to the real definition. */
2636 if (h->u.weakdef != NULL)
2637 {
2638 /* If the real definition is defined by a regular object file,
2639 don't do anything special. See the longer description in
2640 _bfd_elf_adjust_dynamic_symbol, below. */
2641 if (h->u.weakdef->def_regular)
2642 h->u.weakdef = NULL;
2643 else
2644 {
2645 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2646
2647 while (h->root.type == bfd_link_hash_indirect)
2648 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2649
2650 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2651 || h->root.type == bfd_link_hash_defweak);
2652 BFD_ASSERT (weakdef->def_dynamic);
2653 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2654 || weakdef->root.type == bfd_link_hash_defweak);
2655 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2656 }
2657 }
2658
2659 return TRUE;
2660}
2661
2662/* Make the backend pick a good value for a dynamic symbol. This is
2663 called via elf_link_hash_traverse, and also calls itself
2664 recursively. */
2665
2666static bfd_boolean
2667_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2668{
2669 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2670 bfd *dynobj;
2671 const struct elf_backend_data *bed;
2672
2673 if (! is_elf_hash_table (eif->info->hash))
2674 return FALSE;
2675
2676 /* Ignore indirect symbols. These are added by the versioning code. */
2677 if (h->root.type == bfd_link_hash_indirect)
2678 return TRUE;
2679
2680 /* Fix the symbol flags. */
2681 if (! _bfd_elf_fix_symbol_flags (h, eif))
2682 return FALSE;
2683
2684 /* If this symbol does not require a PLT entry, and it is not
2685 defined by a dynamic object, or is not referenced by a regular
2686 object, ignore it. We do have to handle a weak defined symbol,
2687 even if no regular object refers to it, if we decided to add it
2688 to the dynamic symbol table. FIXME: Do we normally need to worry
2689 about symbols which are defined by one dynamic object and
2690 referenced by another one? */
2691 if (!h->needs_plt
2692 && h->type != STT_GNU_IFUNC
2693 && (h->def_regular
2694 || !h->def_dynamic
2695 || (!h->ref_regular
2696 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2697 {
2698 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2699 return TRUE;
2700 }
2701
2702 /* If we've already adjusted this symbol, don't do it again. This
2703 can happen via a recursive call. */
2704 if (h->dynamic_adjusted)
2705 return TRUE;
2706
2707 /* Don't look at this symbol again. Note that we must set this
2708 after checking the above conditions, because we may look at a
2709 symbol once, decide not to do anything, and then get called
2710 recursively later after REF_REGULAR is set below. */
2711 h->dynamic_adjusted = 1;
2712
2713 /* If this is a weak definition, and we know a real definition, and
2714 the real symbol is not itself defined by a regular object file,
2715 then get a good value for the real definition. We handle the
2716 real symbol first, for the convenience of the backend routine.
2717
2718 Note that there is a confusing case here. If the real definition
2719 is defined by a regular object file, we don't get the real symbol
2720 from the dynamic object, but we do get the weak symbol. If the
2721 processor backend uses a COPY reloc, then if some routine in the
2722 dynamic object changes the real symbol, we will not see that
2723 change in the corresponding weak symbol. This is the way other
2724 ELF linkers work as well, and seems to be a result of the shared
2725 library model.
2726
2727 I will clarify this issue. Most SVR4 shared libraries define the
2728 variable _timezone and define timezone as a weak synonym. The
2729 tzset call changes _timezone. If you write
2730 extern int timezone;
2731 int _timezone = 5;
2732 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2733 you might expect that, since timezone is a synonym for _timezone,
2734 the same number will print both times. However, if the processor
2735 backend uses a COPY reloc, then actually timezone will be copied
2736 into your process image, and, since you define _timezone
2737 yourself, _timezone will not. Thus timezone and _timezone will
2738 wind up at different memory locations. The tzset call will set
2739 _timezone, leaving timezone unchanged. */
2740
2741 if (h->u.weakdef != NULL)
2742 {
2743 /* If we get to this point, there is an implicit reference to
2744 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2745 h->u.weakdef->ref_regular = 1;
2746
2747 /* Ensure that the backend adjust_dynamic_symbol function sees
2748 H->U.WEAKDEF before H by recursively calling ourselves. */
2749 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2750 return FALSE;
2751 }
2752
2753 /* If a symbol has no type and no size and does not require a PLT
2754 entry, then we are probably about to do the wrong thing here: we
2755 are probably going to create a COPY reloc for an empty object.
2756 This case can arise when a shared object is built with assembly
2757 code, and the assembly code fails to set the symbol type. */
2758 if (h->size == 0
2759 && h->type == STT_NOTYPE
2760 && !h->needs_plt)
2761 (*_bfd_error_handler)
2762 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2763 h->root.root.string);
2764
2765 dynobj = elf_hash_table (eif->info)->dynobj;
2766 bed = get_elf_backend_data (dynobj);
2767
2768 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2769 {
2770 eif->failed = TRUE;
2771 return FALSE;
2772 }
2773
2774 return TRUE;
2775}
2776
2777/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2778 DYNBSS. */
2779
2780bfd_boolean
2781_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2782 struct elf_link_hash_entry *h,
2783 asection *dynbss)
2784{
2785 unsigned int power_of_two;
2786 bfd_vma mask;
2787 asection *sec = h->root.u.def.section;
2788
2789 /* The section aligment of definition is the maximum alignment
2790 requirement of symbols defined in the section. Since we don't
2791 know the symbol alignment requirement, we start with the
2792 maximum alignment and check low bits of the symbol address
2793 for the minimum alignment. */
2794 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2795 mask = ((bfd_vma) 1 << power_of_two) - 1;
2796 while ((h->root.u.def.value & mask) != 0)
2797 {
2798 mask >>= 1;
2799 --power_of_two;
2800 }
2801
2802 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2803 dynbss))
2804 {
2805 /* Adjust the section alignment if needed. */
2806 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2807 power_of_two))
2808 return FALSE;
2809 }
2810
2811 /* We make sure that the symbol will be aligned properly. */
2812 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2813
2814 /* Define the symbol as being at this point in DYNBSS. */
2815 h->root.u.def.section = dynbss;
2816 h->root.u.def.value = dynbss->size;
2817
2818 /* Increment the size of DYNBSS to make room for the symbol. */
2819 dynbss->size += h->size;
2820
2821 /* No error if extern_protected_data is true. */
2822 if (h->protected_def
2823 && (!info->extern_protected_data
2824 || (info->extern_protected_data < 0
2825 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2826 info->callbacks->einfo
2827 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2828 h->root.root.string);
2829
2830 return TRUE;
2831}
2832
2833/* Adjust all external symbols pointing into SEC_MERGE sections
2834 to reflect the object merging within the sections. */
2835
2836static bfd_boolean
2837_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2838{
2839 asection *sec;
2840
2841 if ((h->root.type == bfd_link_hash_defined
2842 || h->root.type == bfd_link_hash_defweak)
2843 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2844 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2845 {
2846 bfd *output_bfd = (bfd *) data;
2847
2848 h->root.u.def.value =
2849 _bfd_merged_section_offset (output_bfd,
2850 &h->root.u.def.section,
2851 elf_section_data (sec)->sec_info,
2852 h->root.u.def.value);
2853 }
2854
2855 return TRUE;
2856}
2857
2858/* Returns false if the symbol referred to by H should be considered
2859 to resolve local to the current module, and true if it should be
2860 considered to bind dynamically. */
2861
2862bfd_boolean
2863_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2864 struct bfd_link_info *info,
2865 bfd_boolean not_local_protected)
2866{
2867 bfd_boolean binding_stays_local_p;
2868 const struct elf_backend_data *bed;
2869 struct elf_link_hash_table *hash_table;
2870
2871 if (h == NULL)
2872 return FALSE;
2873
2874 while (h->root.type == bfd_link_hash_indirect
2875 || h->root.type == bfd_link_hash_warning)
2876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2877
2878 /* If it was forced local, then clearly it's not dynamic. */
2879 if (h->dynindx == -1)
2880 return FALSE;
2881 if (h->forced_local)
2882 return FALSE;
2883
2884 /* Identify the cases where name binding rules say that a
2885 visible symbol resolves locally. */
2886 binding_stays_local_p = (bfd_link_executable (info)
2887 || SYMBOLIC_BIND (info, h));
2888
2889 switch (ELF_ST_VISIBILITY (h->other))
2890 {
2891 case STV_INTERNAL:
2892 case STV_HIDDEN:
2893 return FALSE;
2894
2895 case STV_PROTECTED:
2896 hash_table = elf_hash_table (info);
2897 if (!is_elf_hash_table (hash_table))
2898 return FALSE;
2899
2900 bed = get_elf_backend_data (hash_table->dynobj);
2901
2902 /* Proper resolution for function pointer equality may require
2903 that these symbols perhaps be resolved dynamically, even though
2904 we should be resolving them to the current module. */
2905 if (!not_local_protected || !bed->is_function_type (h->type))
2906 binding_stays_local_p = TRUE;
2907 break;
2908
2909 default:
2910 break;
2911 }
2912
2913 /* If it isn't defined locally, then clearly it's dynamic. */
2914 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2915 return TRUE;
2916
2917 /* Otherwise, the symbol is dynamic if binding rules don't tell
2918 us that it remains local. */
2919 return !binding_stays_local_p;
2920}
2921
2922/* Return true if the symbol referred to by H should be considered
2923 to resolve local to the current module, and false otherwise. Differs
2924 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2925 undefined symbols. The two functions are virtually identical except
2926 for the place where forced_local and dynindx == -1 are tested. If
2927 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2928 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2929 the symbol is local only for defined symbols.
2930 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2931 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2932 treatment of undefined weak symbols. For those that do not make
2933 undefined weak symbols dynamic, both functions may return false. */
2934
2935bfd_boolean
2936_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2937 struct bfd_link_info *info,
2938 bfd_boolean local_protected)
2939{
2940 const struct elf_backend_data *bed;
2941 struct elf_link_hash_table *hash_table;
2942
2943 /* If it's a local sym, of course we resolve locally. */
2944 if (h == NULL)
2945 return TRUE;
2946
2947 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2948 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2949 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2950 return TRUE;
2951
2952 /* Common symbols that become definitions don't get the DEF_REGULAR
2953 flag set, so test it first, and don't bail out. */
2954 if (ELF_COMMON_DEF_P (h))
2955 /* Do nothing. */;
2956 /* If we don't have a definition in a regular file, then we can't
2957 resolve locally. The sym is either undefined or dynamic. */
2958 else if (!h->def_regular)
2959 return FALSE;
2960
2961 /* Forced local symbols resolve locally. */
2962 if (h->forced_local)
2963 return TRUE;
2964
2965 /* As do non-dynamic symbols. */
2966 if (h->dynindx == -1)
2967 return TRUE;
2968
2969 /* At this point, we know the symbol is defined and dynamic. In an
2970 executable it must resolve locally, likewise when building symbolic
2971 shared libraries. */
2972 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2973 return TRUE;
2974
2975 /* Now deal with defined dynamic symbols in shared libraries. Ones
2976 with default visibility might not resolve locally. */
2977 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2978 return FALSE;
2979
2980 hash_table = elf_hash_table (info);
2981 if (!is_elf_hash_table (hash_table))
2982 return TRUE;
2983
2984 bed = get_elf_backend_data (hash_table->dynobj);
2985
2986 /* If extern_protected_data is false, STV_PROTECTED non-function
2987 symbols are local. */
2988 if ((!info->extern_protected_data
2989 || (info->extern_protected_data < 0
2990 && !bed->extern_protected_data))
2991 && !bed->is_function_type (h->type))
2992 return TRUE;
2993
2994 /* Function pointer equality tests may require that STV_PROTECTED
2995 symbols be treated as dynamic symbols. If the address of a
2996 function not defined in an executable is set to that function's
2997 plt entry in the executable, then the address of the function in
2998 a shared library must also be the plt entry in the executable. */
2999 return local_protected;
3000}
3001
3002/* Caches some TLS segment info, and ensures that the TLS segment vma is
3003 aligned. Returns the first TLS output section. */
3004
3005struct bfd_section *
3006_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3007{
3008 struct bfd_section *sec, *tls;
3009 unsigned int align = 0;
3010
3011 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3012 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3013 break;
3014 tls = sec;
3015
3016 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3017 if (sec->alignment_power > align)
3018 align = sec->alignment_power;
3019
3020 elf_hash_table (info)->tls_sec = tls;
3021
3022 /* Ensure the alignment of the first section is the largest alignment,
3023 so that the tls segment starts aligned. */
3024 if (tls != NULL)
3025 tls->alignment_power = align;
3026
3027 return tls;
3028}
3029
3030/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3031static bfd_boolean
3032is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3033 Elf_Internal_Sym *sym)
3034{
3035 const struct elf_backend_data *bed;
3036
3037 /* Local symbols do not count, but target specific ones might. */
3038 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3039 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3040 return FALSE;
3041
3042 bed = get_elf_backend_data (abfd);
3043 /* Function symbols do not count. */
3044 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3045 return FALSE;
3046
3047 /* If the section is undefined, then so is the symbol. */
3048 if (sym->st_shndx == SHN_UNDEF)
3049 return FALSE;
3050
3051 /* If the symbol is defined in the common section, then
3052 it is a common definition and so does not count. */
3053 if (bed->common_definition (sym))
3054 return FALSE;
3055
3056 /* If the symbol is in a target specific section then we
3057 must rely upon the backend to tell us what it is. */
3058 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3059 /* FIXME - this function is not coded yet:
3060
3061 return _bfd_is_global_symbol_definition (abfd, sym);
3062
3063 Instead for now assume that the definition is not global,
3064 Even if this is wrong, at least the linker will behave
3065 in the same way that it used to do. */
3066 return FALSE;
3067
3068 return TRUE;
3069}
3070
3071/* Search the symbol table of the archive element of the archive ABFD
3072 whose archive map contains a mention of SYMDEF, and determine if
3073 the symbol is defined in this element. */
3074static bfd_boolean
3075elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3076{
3077 Elf_Internal_Shdr * hdr;
3078 bfd_size_type symcount;
3079 bfd_size_type extsymcount;
3080 bfd_size_type extsymoff;
3081 Elf_Internal_Sym *isymbuf;
3082 Elf_Internal_Sym *isym;
3083 Elf_Internal_Sym *isymend;
3084 bfd_boolean result;
3085
3086 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3087 if (abfd == NULL)
3088 return FALSE;
3089
3090 /* Return FALSE if the object has been claimed by plugin. */
3091 if (abfd->plugin_format == bfd_plugin_yes)
3092 return FALSE;
3093
3094 if (! bfd_check_format (abfd, bfd_object))
3095 return FALSE;
3096
3097 /* Select the appropriate symbol table. */
3098 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3099 hdr = &elf_tdata (abfd)->symtab_hdr;
3100 else
3101 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3102
3103 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3104
3105 /* The sh_info field of the symtab header tells us where the
3106 external symbols start. We don't care about the local symbols. */
3107 if (elf_bad_symtab (abfd))
3108 {
3109 extsymcount = symcount;
3110 extsymoff = 0;
3111 }
3112 else
3113 {
3114 extsymcount = symcount - hdr->sh_info;
3115 extsymoff = hdr->sh_info;
3116 }
3117
3118 if (extsymcount == 0)
3119 return FALSE;
3120
3121 /* Read in the symbol table. */
3122 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3123 NULL, NULL, NULL);
3124 if (isymbuf == NULL)
3125 return FALSE;
3126
3127 /* Scan the symbol table looking for SYMDEF. */
3128 result = FALSE;
3129 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3130 {
3131 const char *name;
3132
3133 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3134 isym->st_name);
3135 if (name == NULL)
3136 break;
3137
3138 if (strcmp (name, symdef->name) == 0)
3139 {
3140 result = is_global_data_symbol_definition (abfd, isym);
3141 break;
3142 }
3143 }
3144
3145 free (isymbuf);
3146
3147 return result;
3148}
3149\f
3150/* Add an entry to the .dynamic table. */
3151
3152bfd_boolean
3153_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3154 bfd_vma tag,
3155 bfd_vma val)
3156{
3157 struct elf_link_hash_table *hash_table;
3158 const struct elf_backend_data *bed;
3159 asection *s;
3160 bfd_size_type newsize;
3161 bfd_byte *newcontents;
3162 Elf_Internal_Dyn dyn;
3163
3164 hash_table = elf_hash_table (info);
3165 if (! is_elf_hash_table (hash_table))
3166 return FALSE;
3167
3168 bed = get_elf_backend_data (hash_table->dynobj);
3169 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3170 BFD_ASSERT (s != NULL);
3171
3172 newsize = s->size + bed->s->sizeof_dyn;
3173 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3174 if (newcontents == NULL)
3175 return FALSE;
3176
3177 dyn.d_tag = tag;
3178 dyn.d_un.d_val = val;
3179 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3180
3181 s->size = newsize;
3182 s->contents = newcontents;
3183
3184 return TRUE;
3185}
3186
3187/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3188 otherwise just check whether one already exists. Returns -1 on error,
3189 1 if a DT_NEEDED tag already exists, and 0 on success. */
3190
3191static int
3192elf_add_dt_needed_tag (bfd *abfd,
3193 struct bfd_link_info *info,
3194 const char *soname,
3195 bfd_boolean do_it)
3196{
3197 struct elf_link_hash_table *hash_table;
3198 bfd_size_type strindex;
3199
3200 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3201 return -1;
3202
3203 hash_table = elf_hash_table (info);
3204 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3205 if (strindex == (bfd_size_type) -1)
3206 return -1;
3207
3208 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3209 {
3210 asection *sdyn;
3211 const struct elf_backend_data *bed;
3212 bfd_byte *extdyn;
3213
3214 bed = get_elf_backend_data (hash_table->dynobj);
3215 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3216 if (sdyn != NULL)
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3224 if (dyn.d_tag == DT_NEEDED
3225 && dyn.d_un.d_val == strindex)
3226 {
3227 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3228 return 1;
3229 }
3230 }
3231 }
3232
3233 if (do_it)
3234 {
3235 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3236 return -1;
3237
3238 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3239 return -1;
3240 }
3241 else
3242 /* We were just checking for existence of the tag. */
3243 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3244
3245 return 0;
3246}
3247
3248/* Return true if SONAME is on the needed list between NEEDED and STOP
3249 (or the end of list if STOP is NULL), and needed by a library that
3250 will be loaded. */
3251
3252static bfd_boolean
3253on_needed_list (const char *soname,
3254 struct bfd_link_needed_list *needed,
3255 struct bfd_link_needed_list *stop)
3256{
3257 struct bfd_link_needed_list *look;
3258 for (look = needed; look != stop; look = look->next)
3259 if (strcmp (soname, look->name) == 0
3260 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3261 /* If needed by a library that itself is not directly
3262 needed, recursively check whether that library is
3263 indirectly needed. Since we add DT_NEEDED entries to
3264 the end of the list, library dependencies appear after
3265 the library. Therefore search prior to the current
3266 LOOK, preventing possible infinite recursion. */
3267 || on_needed_list (elf_dt_name (look->by), needed, look)))
3268 return TRUE;
3269
3270 return FALSE;
3271}
3272
3273/* Sort symbol by value, section, and size. */
3274static int
3275elf_sort_symbol (const void *arg1, const void *arg2)
3276{
3277 const struct elf_link_hash_entry *h1;
3278 const struct elf_link_hash_entry *h2;
3279 bfd_signed_vma vdiff;
3280
3281 h1 = *(const struct elf_link_hash_entry **) arg1;
3282 h2 = *(const struct elf_link_hash_entry **) arg2;
3283 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3284 if (vdiff != 0)
3285 return vdiff > 0 ? 1 : -1;
3286 else
3287 {
3288 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3289 if (sdiff != 0)
3290 return sdiff > 0 ? 1 : -1;
3291 }
3292 vdiff = h1->size - h2->size;
3293 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3294}
3295
3296/* This function is used to adjust offsets into .dynstr for
3297 dynamic symbols. This is called via elf_link_hash_traverse. */
3298
3299static bfd_boolean
3300elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3301{
3302 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3303
3304 if (h->dynindx != -1)
3305 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3306 return TRUE;
3307}
3308
3309/* Assign string offsets in .dynstr, update all structures referencing
3310 them. */
3311
3312static bfd_boolean
3313elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3314{
3315 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3316 struct elf_link_local_dynamic_entry *entry;
3317 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3318 bfd *dynobj = hash_table->dynobj;
3319 asection *sdyn;
3320 bfd_size_type size;
3321 const struct elf_backend_data *bed;
3322 bfd_byte *extdyn;
3323
3324 _bfd_elf_strtab_finalize (dynstr);
3325 size = _bfd_elf_strtab_size (dynstr);
3326
3327 bed = get_elf_backend_data (dynobj);
3328 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3329 BFD_ASSERT (sdyn != NULL);
3330
3331 /* Update all .dynamic entries referencing .dynstr strings. */
3332 for (extdyn = sdyn->contents;
3333 extdyn < sdyn->contents + sdyn->size;
3334 extdyn += bed->s->sizeof_dyn)
3335 {
3336 Elf_Internal_Dyn dyn;
3337
3338 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3339 switch (dyn.d_tag)
3340 {
3341 case DT_STRSZ:
3342 dyn.d_un.d_val = size;
3343 break;
3344 case DT_NEEDED:
3345 case DT_SONAME:
3346 case DT_RPATH:
3347 case DT_RUNPATH:
3348 case DT_FILTER:
3349 case DT_AUXILIARY:
3350 case DT_AUDIT:
3351 case DT_DEPAUDIT:
3352 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3353 break;
3354 default:
3355 continue;
3356 }
3357 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3358 }
3359
3360 /* Now update local dynamic symbols. */
3361 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3362 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3363 entry->isym.st_name);
3364
3365 /* And the rest of dynamic symbols. */
3366 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3367
3368 /* Adjust version definitions. */
3369 if (elf_tdata (output_bfd)->cverdefs)
3370 {
3371 asection *s;
3372 bfd_byte *p;
3373 bfd_size_type i;
3374 Elf_Internal_Verdef def;
3375 Elf_Internal_Verdaux defaux;
3376
3377 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3378 p = s->contents;
3379 do
3380 {
3381 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3382 &def);
3383 p += sizeof (Elf_External_Verdef);
3384 if (def.vd_aux != sizeof (Elf_External_Verdef))
3385 continue;
3386 for (i = 0; i < def.vd_cnt; ++i)
3387 {
3388 _bfd_elf_swap_verdaux_in (output_bfd,
3389 (Elf_External_Verdaux *) p, &defaux);
3390 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3391 defaux.vda_name);
3392 _bfd_elf_swap_verdaux_out (output_bfd,
3393 &defaux, (Elf_External_Verdaux *) p);
3394 p += sizeof (Elf_External_Verdaux);
3395 }
3396 }
3397 while (def.vd_next);
3398 }
3399
3400 /* Adjust version references. */
3401 if (elf_tdata (output_bfd)->verref)
3402 {
3403 asection *s;
3404 bfd_byte *p;
3405 bfd_size_type i;
3406 Elf_Internal_Verneed need;
3407 Elf_Internal_Vernaux needaux;
3408
3409 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3410 p = s->contents;
3411 do
3412 {
3413 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3414 &need);
3415 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3416 _bfd_elf_swap_verneed_out (output_bfd, &need,
3417 (Elf_External_Verneed *) p);
3418 p += sizeof (Elf_External_Verneed);
3419 for (i = 0; i < need.vn_cnt; ++i)
3420 {
3421 _bfd_elf_swap_vernaux_in (output_bfd,
3422 (Elf_External_Vernaux *) p, &needaux);
3423 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3424 needaux.vna_name);
3425 _bfd_elf_swap_vernaux_out (output_bfd,
3426 &needaux,
3427 (Elf_External_Vernaux *) p);
3428 p += sizeof (Elf_External_Vernaux);
3429 }
3430 }
3431 while (need.vn_next);
3432 }
3433
3434 return TRUE;
3435}
3436\f
3437/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3438 The default is to only match when the INPUT and OUTPUT are exactly
3439 the same target. */
3440
3441bfd_boolean
3442_bfd_elf_default_relocs_compatible (const bfd_target *input,
3443 const bfd_target *output)
3444{
3445 return input == output;
3446}
3447
3448/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3449 This version is used when different targets for the same architecture
3450 are virtually identical. */
3451
3452bfd_boolean
3453_bfd_elf_relocs_compatible (const bfd_target *input,
3454 const bfd_target *output)
3455{
3456 const struct elf_backend_data *obed, *ibed;
3457
3458 if (input == output)
3459 return TRUE;
3460
3461 ibed = xvec_get_elf_backend_data (input);
3462 obed = xvec_get_elf_backend_data (output);
3463
3464 if (ibed->arch != obed->arch)
3465 return FALSE;
3466
3467 /* If both backends are using this function, deem them compatible. */
3468 return ibed->relocs_compatible == obed->relocs_compatible;
3469}
3470
3471/* Make a special call to the linker "notice" function to tell it that
3472 we are about to handle an as-needed lib, or have finished
3473 processing the lib. */
3474
3475bfd_boolean
3476_bfd_elf_notice_as_needed (bfd *ibfd,
3477 struct bfd_link_info *info,
3478 enum notice_asneeded_action act)
3479{
3480 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3481}
3482
3483/* Add symbols from an ELF object file to the linker hash table. */
3484
3485static bfd_boolean
3486elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3487{
3488 Elf_Internal_Ehdr *ehdr;
3489 Elf_Internal_Shdr *hdr;
3490 bfd_size_type symcount;
3491 bfd_size_type extsymcount;
3492 bfd_size_type extsymoff;
3493 struct elf_link_hash_entry **sym_hash;
3494 bfd_boolean dynamic;
3495 Elf_External_Versym *extversym = NULL;
3496 Elf_External_Versym *ever;
3497 struct elf_link_hash_entry *weaks;
3498 struct elf_link_hash_entry **nondeflt_vers = NULL;
3499 bfd_size_type nondeflt_vers_cnt = 0;
3500 Elf_Internal_Sym *isymbuf = NULL;
3501 Elf_Internal_Sym *isym;
3502 Elf_Internal_Sym *isymend;
3503 const struct elf_backend_data *bed;
3504 bfd_boolean add_needed;
3505 struct elf_link_hash_table *htab;
3506 bfd_size_type amt;
3507 void *alloc_mark = NULL;
3508 struct bfd_hash_entry **old_table = NULL;
3509 unsigned int old_size = 0;
3510 unsigned int old_count = 0;
3511 void *old_tab = NULL;
3512 void *old_ent;
3513 struct bfd_link_hash_entry *old_undefs = NULL;
3514 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3515 long old_dynsymcount = 0;
3516 bfd_size_type old_dynstr_size = 0;
3517 size_t tabsize = 0;
3518 asection *s;
3519 bfd_boolean just_syms;
3520
3521 htab = elf_hash_table (info);
3522 bed = get_elf_backend_data (abfd);
3523
3524 if ((abfd->flags & DYNAMIC) == 0)
3525 dynamic = FALSE;
3526 else
3527 {
3528 dynamic = TRUE;
3529
3530 /* You can't use -r against a dynamic object. Also, there's no
3531 hope of using a dynamic object which does not exactly match
3532 the format of the output file. */
3533 if (bfd_link_relocatable (info)
3534 || !is_elf_hash_table (htab)
3535 || info->output_bfd->xvec != abfd->xvec)
3536 {
3537 if (bfd_link_relocatable (info))
3538 bfd_set_error (bfd_error_invalid_operation);
3539 else
3540 bfd_set_error (bfd_error_wrong_format);
3541 goto error_return;
3542 }
3543 }
3544
3545 ehdr = elf_elfheader (abfd);
3546 if (info->warn_alternate_em
3547 && bed->elf_machine_code != ehdr->e_machine
3548 && ((bed->elf_machine_alt1 != 0
3549 && ehdr->e_machine == bed->elf_machine_alt1)
3550 || (bed->elf_machine_alt2 != 0
3551 && ehdr->e_machine == bed->elf_machine_alt2)))
3552 info->callbacks->einfo
3553 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3554 ehdr->e_machine, abfd, bed->elf_machine_code);
3555
3556 /* As a GNU extension, any input sections which are named
3557 .gnu.warning.SYMBOL are treated as warning symbols for the given
3558 symbol. This differs from .gnu.warning sections, which generate
3559 warnings when they are included in an output file. */
3560 /* PR 12761: Also generate this warning when building shared libraries. */
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 const char *name;
3564
3565 name = bfd_get_section_name (abfd, s);
3566 if (CONST_STRNEQ (name, ".gnu.warning."))
3567 {
3568 char *msg;
3569 bfd_size_type sz;
3570
3571 name += sizeof ".gnu.warning." - 1;
3572
3573 /* If this is a shared object, then look up the symbol
3574 in the hash table. If it is there, and it is already
3575 been defined, then we will not be using the entry
3576 from this shared object, so we don't need to warn.
3577 FIXME: If we see the definition in a regular object
3578 later on, we will warn, but we shouldn't. The only
3579 fix is to keep track of what warnings we are supposed
3580 to emit, and then handle them all at the end of the
3581 link. */
3582 if (dynamic)
3583 {
3584 struct elf_link_hash_entry *h;
3585
3586 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3587
3588 /* FIXME: What about bfd_link_hash_common? */
3589 if (h != NULL
3590 && (h->root.type == bfd_link_hash_defined
3591 || h->root.type == bfd_link_hash_defweak))
3592 continue;
3593 }
3594
3595 sz = s->size;
3596 msg = (char *) bfd_alloc (abfd, sz + 1);
3597 if (msg == NULL)
3598 goto error_return;
3599
3600 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3601 goto error_return;
3602
3603 msg[sz] = '\0';
3604
3605 if (! (_bfd_generic_link_add_one_symbol
3606 (info, abfd, name, BSF_WARNING, s, 0, msg,
3607 FALSE, bed->collect, NULL)))
3608 goto error_return;
3609
3610 if (bfd_link_executable (info))
3611 {
3612 /* Clobber the section size so that the warning does
3613 not get copied into the output file. */
3614 s->size = 0;
3615
3616 /* Also set SEC_EXCLUDE, so that symbols defined in
3617 the warning section don't get copied to the output. */
3618 s->flags |= SEC_EXCLUDE;
3619 }
3620 }
3621 }
3622
3623 just_syms = ((s = abfd->sections) != NULL
3624 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3625
3626 add_needed = TRUE;
3627 if (! dynamic)
3628 {
3629 /* If we are creating a shared library, create all the dynamic
3630 sections immediately. We need to attach them to something,
3631 so we attach them to this BFD, provided it is the right
3632 format and is not from ld --just-symbols. Always create the
3633 dynamic sections for -E/--dynamic-list. FIXME: If there
3634 are no input BFD's of the same format as the output, we can't
3635 make a shared library. */
3636 if (!just_syms
3637 && (bfd_link_pic (info)
3638 || (!bfd_link_relocatable (info)
3639 && (info->export_dynamic || info->dynamic)))
3640 && is_elf_hash_table (htab)
3641 && info->output_bfd->xvec == abfd->xvec
3642 && !htab->dynamic_sections_created)
3643 {
3644 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3645 goto error_return;
3646 }
3647 }
3648 else if (!is_elf_hash_table (htab))
3649 goto error_return;
3650 else
3651 {
3652 const char *soname = NULL;
3653 char *audit = NULL;
3654 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3655 int ret;
3656
3657 /* ld --just-symbols and dynamic objects don't mix very well.
3658 ld shouldn't allow it. */
3659 if (just_syms)
3660 abort ();
3661
3662 /* If this dynamic lib was specified on the command line with
3663 --as-needed in effect, then we don't want to add a DT_NEEDED
3664 tag unless the lib is actually used. Similary for libs brought
3665 in by another lib's DT_NEEDED. When --no-add-needed is used
3666 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3667 any dynamic library in DT_NEEDED tags in the dynamic lib at
3668 all. */
3669 add_needed = (elf_dyn_lib_class (abfd)
3670 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3671 | DYN_NO_NEEDED)) == 0;
3672
3673 s = bfd_get_section_by_name (abfd, ".dynamic");
3674 if (s != NULL)
3675 {
3676 bfd_byte *dynbuf;
3677 bfd_byte *extdyn;
3678 unsigned int elfsec;
3679 unsigned long shlink;
3680
3681 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3682 {
3683error_free_dyn:
3684 free (dynbuf);
3685 goto error_return;
3686 }
3687
3688 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3689 if (elfsec == SHN_BAD)
3690 goto error_free_dyn;
3691 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3692
3693 for (extdyn = dynbuf;
3694 extdyn < dynbuf + s->size;
3695 extdyn += bed->s->sizeof_dyn)
3696 {
3697 Elf_Internal_Dyn dyn;
3698
3699 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3700 if (dyn.d_tag == DT_SONAME)
3701 {
3702 unsigned int tagv = dyn.d_un.d_val;
3703 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3704 if (soname == NULL)
3705 goto error_free_dyn;
3706 }
3707 if (dyn.d_tag == DT_NEEDED)
3708 {
3709 struct bfd_link_needed_list *n, **pn;
3710 char *fnm, *anm;
3711 unsigned int tagv = dyn.d_un.d_val;
3712
3713 amt = sizeof (struct bfd_link_needed_list);
3714 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3715 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3716 if (n == NULL || fnm == NULL)
3717 goto error_free_dyn;
3718 amt = strlen (fnm) + 1;
3719 anm = (char *) bfd_alloc (abfd, amt);
3720 if (anm == NULL)
3721 goto error_free_dyn;
3722 memcpy (anm, fnm, amt);
3723 n->name = anm;
3724 n->by = abfd;
3725 n->next = NULL;
3726 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3727 ;
3728 *pn = n;
3729 }
3730 if (dyn.d_tag == DT_RUNPATH)
3731 {
3732 struct bfd_link_needed_list *n, **pn;
3733 char *fnm, *anm;
3734 unsigned int tagv = dyn.d_un.d_val;
3735
3736 amt = sizeof (struct bfd_link_needed_list);
3737 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3738 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3739 if (n == NULL || fnm == NULL)
3740 goto error_free_dyn;
3741 amt = strlen (fnm) + 1;
3742 anm = (char *) bfd_alloc (abfd, amt);
3743 if (anm == NULL)
3744 goto error_free_dyn;
3745 memcpy (anm, fnm, amt);
3746 n->name = anm;
3747 n->by = abfd;
3748 n->next = NULL;
3749 for (pn = & runpath;
3750 *pn != NULL;
3751 pn = &(*pn)->next)
3752 ;
3753 *pn = n;
3754 }
3755 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3756 if (!runpath && dyn.d_tag == DT_RPATH)
3757 {
3758 struct bfd_link_needed_list *n, **pn;
3759 char *fnm, *anm;
3760 unsigned int tagv = dyn.d_un.d_val;
3761
3762 amt = sizeof (struct bfd_link_needed_list);
3763 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3764 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3765 if (n == NULL || fnm == NULL)
3766 goto error_free_dyn;
3767 amt = strlen (fnm) + 1;
3768 anm = (char *) bfd_alloc (abfd, amt);
3769 if (anm == NULL)
3770 goto error_free_dyn;
3771 memcpy (anm, fnm, amt);
3772 n->name = anm;
3773 n->by = abfd;
3774 n->next = NULL;
3775 for (pn = & rpath;
3776 *pn != NULL;
3777 pn = &(*pn)->next)
3778 ;
3779 *pn = n;
3780 }
3781 if (dyn.d_tag == DT_AUDIT)
3782 {
3783 unsigned int tagv = dyn.d_un.d_val;
3784 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3785 }
3786 }
3787
3788 free (dynbuf);
3789 }
3790
3791 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3792 frees all more recently bfd_alloc'd blocks as well. */
3793 if (runpath)
3794 rpath = runpath;
3795
3796 if (rpath)
3797 {
3798 struct bfd_link_needed_list **pn;
3799 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3800 ;
3801 *pn = rpath;
3802 }
3803
3804 /* We do not want to include any of the sections in a dynamic
3805 object in the output file. We hack by simply clobbering the
3806 list of sections in the BFD. This could be handled more
3807 cleanly by, say, a new section flag; the existing
3808 SEC_NEVER_LOAD flag is not the one we want, because that one
3809 still implies that the section takes up space in the output
3810 file. */
3811 bfd_section_list_clear (abfd);
3812
3813 /* Find the name to use in a DT_NEEDED entry that refers to this
3814 object. If the object has a DT_SONAME entry, we use it.
3815 Otherwise, if the generic linker stuck something in
3816 elf_dt_name, we use that. Otherwise, we just use the file
3817 name. */
3818 if (soname == NULL || *soname == '\0')
3819 {
3820 soname = elf_dt_name (abfd);
3821 if (soname == NULL || *soname == '\0')
3822 soname = bfd_get_filename (abfd);
3823 }
3824
3825 /* Save the SONAME because sometimes the linker emulation code
3826 will need to know it. */
3827 elf_dt_name (abfd) = soname;
3828
3829 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3830 if (ret < 0)
3831 goto error_return;
3832
3833 /* If we have already included this dynamic object in the
3834 link, just ignore it. There is no reason to include a
3835 particular dynamic object more than once. */
3836 if (ret > 0)
3837 return TRUE;
3838
3839 /* Save the DT_AUDIT entry for the linker emulation code. */
3840 elf_dt_audit (abfd) = audit;
3841 }
3842
3843 /* If this is a dynamic object, we always link against the .dynsym
3844 symbol table, not the .symtab symbol table. The dynamic linker
3845 will only see the .dynsym symbol table, so there is no reason to
3846 look at .symtab for a dynamic object. */
3847
3848 if (! dynamic || elf_dynsymtab (abfd) == 0)
3849 hdr = &elf_tdata (abfd)->symtab_hdr;
3850 else
3851 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3852
3853 symcount = hdr->sh_size / bed->s->sizeof_sym;
3854
3855 /* The sh_info field of the symtab header tells us where the
3856 external symbols start. We don't care about the local symbols at
3857 this point. */
3858 if (elf_bad_symtab (abfd))
3859 {
3860 extsymcount = symcount;
3861 extsymoff = 0;
3862 }
3863 else
3864 {
3865 extsymcount = symcount - hdr->sh_info;
3866 extsymoff = hdr->sh_info;
3867 }
3868
3869 sym_hash = elf_sym_hashes (abfd);
3870 if (extsymcount != 0)
3871 {
3872 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3873 NULL, NULL, NULL);
3874 if (isymbuf == NULL)
3875 goto error_return;
3876
3877 if (sym_hash == NULL)
3878 {
3879 /* We store a pointer to the hash table entry for each
3880 external symbol. */
3881 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3882 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3883 if (sym_hash == NULL)
3884 goto error_free_sym;
3885 elf_sym_hashes (abfd) = sym_hash;
3886 }
3887 }
3888
3889 if (dynamic)
3890 {
3891 /* Read in any version definitions. */
3892 if (!_bfd_elf_slurp_version_tables (abfd,
3893 info->default_imported_symver))
3894 goto error_free_sym;
3895
3896 /* Read in the symbol versions, but don't bother to convert them
3897 to internal format. */
3898 if (elf_dynversym (abfd) != 0)
3899 {
3900 Elf_Internal_Shdr *versymhdr;
3901
3902 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3903 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3904 if (extversym == NULL)
3905 goto error_free_sym;
3906 amt = versymhdr->sh_size;
3907 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3908 || bfd_bread (extversym, amt, abfd) != amt)
3909 goto error_free_vers;
3910 }
3911 }
3912
3913 /* If we are loading an as-needed shared lib, save the symbol table
3914 state before we start adding symbols. If the lib turns out
3915 to be unneeded, restore the state. */
3916 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3917 {
3918 unsigned int i;
3919 size_t entsize;
3920
3921 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3922 {
3923 struct bfd_hash_entry *p;
3924 struct elf_link_hash_entry *h;
3925
3926 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3927 {
3928 h = (struct elf_link_hash_entry *) p;
3929 entsize += htab->root.table.entsize;
3930 if (h->root.type == bfd_link_hash_warning)
3931 entsize += htab->root.table.entsize;
3932 }
3933 }
3934
3935 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3936 old_tab = bfd_malloc (tabsize + entsize);
3937 if (old_tab == NULL)
3938 goto error_free_vers;
3939
3940 /* Remember the current objalloc pointer, so that all mem for
3941 symbols added can later be reclaimed. */
3942 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3943 if (alloc_mark == NULL)
3944 goto error_free_vers;
3945
3946 /* Make a special call to the linker "notice" function to
3947 tell it that we are about to handle an as-needed lib. */
3948 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3949 goto error_free_vers;
3950
3951 /* Clone the symbol table. Remember some pointers into the
3952 symbol table, and dynamic symbol count. */
3953 old_ent = (char *) old_tab + tabsize;
3954 memcpy (old_tab, htab->root.table.table, tabsize);
3955 old_undefs = htab->root.undefs;
3956 old_undefs_tail = htab->root.undefs_tail;
3957 old_table = htab->root.table.table;
3958 old_size = htab->root.table.size;
3959 old_count = htab->root.table.count;
3960 old_dynsymcount = htab->dynsymcount;
3961 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3962
3963 for (i = 0; i < htab->root.table.size; i++)
3964 {
3965 struct bfd_hash_entry *p;
3966 struct elf_link_hash_entry *h;
3967
3968 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3969 {
3970 memcpy (old_ent, p, htab->root.table.entsize);
3971 old_ent = (char *) old_ent + htab->root.table.entsize;
3972 h = (struct elf_link_hash_entry *) p;
3973 if (h->root.type == bfd_link_hash_warning)
3974 {
3975 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3976 old_ent = (char *) old_ent + htab->root.table.entsize;
3977 }
3978 }
3979 }
3980 }
3981
3982 weaks = NULL;
3983 ever = extversym != NULL ? extversym + extsymoff : NULL;
3984 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3985 isym < isymend;
3986 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3987 {
3988 int bind;
3989 bfd_vma value;
3990 asection *sec, *new_sec;
3991 flagword flags;
3992 const char *name;
3993 struct elf_link_hash_entry *h;
3994 struct elf_link_hash_entry *hi;
3995 bfd_boolean definition;
3996 bfd_boolean size_change_ok;
3997 bfd_boolean type_change_ok;
3998 bfd_boolean new_weakdef;
3999 bfd_boolean new_weak;
4000 bfd_boolean old_weak;
4001 bfd_boolean override;
4002 bfd_boolean common;
4003 unsigned int old_alignment;
4004 bfd *old_bfd;
4005 bfd_boolean matched;
4006
4007 override = FALSE;
4008
4009 flags = BSF_NO_FLAGS;
4010 sec = NULL;
4011 value = isym->st_value;
4012 common = bed->common_definition (isym);
4013
4014 bind = ELF_ST_BIND (isym->st_info);
4015 switch (bind)
4016 {
4017 case STB_LOCAL:
4018 /* This should be impossible, since ELF requires that all
4019 global symbols follow all local symbols, and that sh_info
4020 point to the first global symbol. Unfortunately, Irix 5
4021 screws this up. */
4022 continue;
4023
4024 case STB_GLOBAL:
4025 if (isym->st_shndx != SHN_UNDEF && !common)
4026 flags = BSF_GLOBAL;
4027 break;
4028
4029 case STB_WEAK:
4030 flags = BSF_WEAK;
4031 break;
4032
4033 case STB_GNU_UNIQUE:
4034 flags = BSF_GNU_UNIQUE;
4035 break;
4036
4037 default:
4038 /* Leave it up to the processor backend. */
4039 break;
4040 }
4041
4042 if (isym->st_shndx == SHN_UNDEF)
4043 sec = bfd_und_section_ptr;
4044 else if (isym->st_shndx == SHN_ABS)
4045 sec = bfd_abs_section_ptr;
4046 else if (isym->st_shndx == SHN_COMMON)
4047 {
4048 sec = bfd_com_section_ptr;
4049 /* What ELF calls the size we call the value. What ELF
4050 calls the value we call the alignment. */
4051 value = isym->st_size;
4052 }
4053 else
4054 {
4055 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4056 if (sec == NULL)
4057 sec = bfd_abs_section_ptr;
4058 else if (discarded_section (sec))
4059 {
4060 /* Symbols from discarded section are undefined. We keep
4061 its visibility. */
4062 sec = bfd_und_section_ptr;
4063 isym->st_shndx = SHN_UNDEF;
4064 }
4065 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4066 value -= sec->vma;
4067 }
4068
4069 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4070 isym->st_name);
4071 if (name == NULL)
4072 goto error_free_vers;
4073
4074 if (isym->st_shndx == SHN_COMMON
4075 && (abfd->flags & BFD_PLUGIN) != 0)
4076 {
4077 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4078
4079 if (xc == NULL)
4080 {
4081 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4082 | SEC_EXCLUDE);
4083 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4084 if (xc == NULL)
4085 goto error_free_vers;
4086 }
4087 sec = xc;
4088 }
4089 else if (isym->st_shndx == SHN_COMMON
4090 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4091 && !bfd_link_relocatable (info))
4092 {
4093 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4094
4095 if (tcomm == NULL)
4096 {
4097 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4098 | SEC_LINKER_CREATED);
4099 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4100 if (tcomm == NULL)
4101 goto error_free_vers;
4102 }
4103 sec = tcomm;
4104 }
4105 else if (bed->elf_add_symbol_hook)
4106 {
4107 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4108 &sec, &value))
4109 goto error_free_vers;
4110
4111 /* The hook function sets the name to NULL if this symbol
4112 should be skipped for some reason. */
4113 if (name == NULL)
4114 continue;
4115 }
4116
4117 /* Sanity check that all possibilities were handled. */
4118 if (sec == NULL)
4119 {
4120 bfd_set_error (bfd_error_bad_value);
4121 goto error_free_vers;
4122 }
4123
4124 /* Silently discard TLS symbols from --just-syms. There's
4125 no way to combine a static TLS block with a new TLS block
4126 for this executable. */
4127 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4128 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4129 continue;
4130
4131 if (bfd_is_und_section (sec)
4132 || bfd_is_com_section (sec))
4133 definition = FALSE;
4134 else
4135 definition = TRUE;
4136
4137 size_change_ok = FALSE;
4138 type_change_ok = bed->type_change_ok;
4139 old_weak = FALSE;
4140 matched = FALSE;
4141 old_alignment = 0;
4142 old_bfd = NULL;
4143 new_sec = sec;
4144
4145 if (is_elf_hash_table (htab))
4146 {
4147 Elf_Internal_Versym iver;
4148 unsigned int vernum = 0;
4149 bfd_boolean skip;
4150
4151 if (ever == NULL)
4152 {
4153 if (info->default_imported_symver)
4154 /* Use the default symbol version created earlier. */
4155 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4156 else
4157 iver.vs_vers = 0;
4158 }
4159 else
4160 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4161
4162 vernum = iver.vs_vers & VERSYM_VERSION;
4163
4164 /* If this is a hidden symbol, or if it is not version
4165 1, we append the version name to the symbol name.
4166 However, we do not modify a non-hidden absolute symbol
4167 if it is not a function, because it might be the version
4168 symbol itself. FIXME: What if it isn't? */
4169 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4170 || (vernum > 1
4171 && (!bfd_is_abs_section (sec)
4172 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4173 {
4174 const char *verstr;
4175 size_t namelen, verlen, newlen;
4176 char *newname, *p;
4177
4178 if (isym->st_shndx != SHN_UNDEF)
4179 {
4180 if (vernum > elf_tdata (abfd)->cverdefs)
4181 verstr = NULL;
4182 else if (vernum > 1)
4183 verstr =
4184 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4185 else
4186 verstr = "";
4187
4188 if (verstr == NULL)
4189 {
4190 (*_bfd_error_handler)
4191 (_("%B: %s: invalid version %u (max %d)"),
4192 abfd, name, vernum,
4193 elf_tdata (abfd)->cverdefs);
4194 bfd_set_error (bfd_error_bad_value);
4195 goto error_free_vers;
4196 }
4197 }
4198 else
4199 {
4200 /* We cannot simply test for the number of
4201 entries in the VERNEED section since the
4202 numbers for the needed versions do not start
4203 at 0. */
4204 Elf_Internal_Verneed *t;
4205
4206 verstr = NULL;
4207 for (t = elf_tdata (abfd)->verref;
4208 t != NULL;
4209 t = t->vn_nextref)
4210 {
4211 Elf_Internal_Vernaux *a;
4212
4213 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4214 {
4215 if (a->vna_other == vernum)
4216 {
4217 verstr = a->vna_nodename;
4218 break;
4219 }
4220 }
4221 if (a != NULL)
4222 break;
4223 }
4224 if (verstr == NULL)
4225 {
4226 (*_bfd_error_handler)
4227 (_("%B: %s: invalid needed version %d"),
4228 abfd, name, vernum);
4229 bfd_set_error (bfd_error_bad_value);
4230 goto error_free_vers;
4231 }
4232 }
4233
4234 namelen = strlen (name);
4235 verlen = strlen (verstr);
4236 newlen = namelen + verlen + 2;
4237 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4238 && isym->st_shndx != SHN_UNDEF)
4239 ++newlen;
4240
4241 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4242 if (newname == NULL)
4243 goto error_free_vers;
4244 memcpy (newname, name, namelen);
4245 p = newname + namelen;
4246 *p++ = ELF_VER_CHR;
4247 /* If this is a defined non-hidden version symbol,
4248 we add another @ to the name. This indicates the
4249 default version of the symbol. */
4250 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4251 && isym->st_shndx != SHN_UNDEF)
4252 *p++ = ELF_VER_CHR;
4253 memcpy (p, verstr, verlen + 1);
4254
4255 name = newname;
4256 }
4257
4258 /* If this symbol has default visibility and the user has
4259 requested we not re-export it, then mark it as hidden. */
4260 if (!bfd_is_und_section (sec)
4261 && !dynamic
4262 && abfd->no_export
4263 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4264 isym->st_other = (STV_HIDDEN
4265 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4266
4267 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4268 sym_hash, &old_bfd, &old_weak,
4269 &old_alignment, &skip, &override,
4270 &type_change_ok, &size_change_ok,
4271 &matched))
4272 goto error_free_vers;
4273
4274 if (skip)
4275 continue;
4276
4277 /* Override a definition only if the new symbol matches the
4278 existing one. */
4279 if (override && matched)
4280 definition = FALSE;
4281
4282 h = *sym_hash;
4283 while (h->root.type == bfd_link_hash_indirect
4284 || h->root.type == bfd_link_hash_warning)
4285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4286
4287 if (elf_tdata (abfd)->verdef != NULL
4288 && vernum > 1
4289 && definition)
4290 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4291 }
4292
4293 if (! (_bfd_generic_link_add_one_symbol
4294 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4295 (struct bfd_link_hash_entry **) sym_hash)))
4296 goto error_free_vers;
4297
4298 h = *sym_hash;
4299 /* We need to make sure that indirect symbol dynamic flags are
4300 updated. */
4301 hi = h;
4302 while (h->root.type == bfd_link_hash_indirect
4303 || h->root.type == bfd_link_hash_warning)
4304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4305
4306 *sym_hash = h;
4307
4308 new_weak = (flags & BSF_WEAK) != 0;
4309 new_weakdef = FALSE;
4310 if (dynamic
4311 && definition
4312 && new_weak
4313 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4314 && is_elf_hash_table (htab)
4315 && h->u.weakdef == NULL)
4316 {
4317 /* Keep a list of all weak defined non function symbols from
4318 a dynamic object, using the weakdef field. Later in this
4319 function we will set the weakdef field to the correct
4320 value. We only put non-function symbols from dynamic
4321 objects on this list, because that happens to be the only
4322 time we need to know the normal symbol corresponding to a
4323 weak symbol, and the information is time consuming to
4324 figure out. If the weakdef field is not already NULL,
4325 then this symbol was already defined by some previous
4326 dynamic object, and we will be using that previous
4327 definition anyhow. */
4328
4329 h->u.weakdef = weaks;
4330 weaks = h;
4331 new_weakdef = TRUE;
4332 }
4333
4334 /* Set the alignment of a common symbol. */
4335 if ((common || bfd_is_com_section (sec))
4336 && h->root.type == bfd_link_hash_common)
4337 {
4338 unsigned int align;
4339
4340 if (common)
4341 align = bfd_log2 (isym->st_value);
4342 else
4343 {
4344 /* The new symbol is a common symbol in a shared object.
4345 We need to get the alignment from the section. */
4346 align = new_sec->alignment_power;
4347 }
4348 if (align > old_alignment)
4349 h->root.u.c.p->alignment_power = align;
4350 else
4351 h->root.u.c.p->alignment_power = old_alignment;
4352 }
4353
4354 if (is_elf_hash_table (htab))
4355 {
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. A dynamic symbol
4358 is one which is referenced or defined by both a regular
4359 object and a shared object. */
4360 bfd_boolean dynsym = FALSE;
4361
4362 /* Plugin symbols aren't normal. Don't set def_regular or
4363 ref_regular for them, or make them dynamic. */
4364 if ((abfd->flags & BFD_PLUGIN) != 0)
4365 ;
4366 else if (! dynamic)
4367 {
4368 if (! definition)
4369 {
4370 h->ref_regular = 1;
4371 if (bind != STB_WEAK)
4372 h->ref_regular_nonweak = 1;
4373 }
4374 else
4375 {
4376 h->def_regular = 1;
4377 if (h->def_dynamic)
4378 {
4379 h->def_dynamic = 0;
4380 h->ref_dynamic = 1;
4381 }
4382 }
4383
4384 /* If the indirect symbol has been forced local, don't
4385 make the real symbol dynamic. */
4386 if ((h == hi || !hi->forced_local)
4387 && (bfd_link_dll (info)
4388 || h->def_dynamic
4389 || h->ref_dynamic))
4390 dynsym = TRUE;
4391 }
4392 else
4393 {
4394 if (! definition)
4395 {
4396 h->ref_dynamic = 1;
4397 hi->ref_dynamic = 1;
4398 }
4399 else
4400 {
4401 h->def_dynamic = 1;
4402 hi->def_dynamic = 1;
4403 }
4404
4405 /* If the indirect symbol has been forced local, don't
4406 make the real symbol dynamic. */
4407 if ((h == hi || !hi->forced_local)
4408 && (h->def_regular
4409 || h->ref_regular
4410 || (h->u.weakdef != NULL
4411 && ! new_weakdef
4412 && h->u.weakdef->dynindx != -1)))
4413 dynsym = TRUE;
4414 }
4415
4416 /* Check to see if we need to add an indirect symbol for
4417 the default name. */
4418 if (definition
4419 || (!override && h->root.type == bfd_link_hash_common))
4420 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4421 sec, value, &old_bfd, &dynsym))
4422 goto error_free_vers;
4423
4424 /* Check the alignment when a common symbol is involved. This
4425 can change when a common symbol is overridden by a normal
4426 definition or a common symbol is ignored due to the old
4427 normal definition. We need to make sure the maximum
4428 alignment is maintained. */
4429 if ((old_alignment || common)
4430 && h->root.type != bfd_link_hash_common)
4431 {
4432 unsigned int common_align;
4433 unsigned int normal_align;
4434 unsigned int symbol_align;
4435 bfd *normal_bfd;
4436 bfd *common_bfd;
4437
4438 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4439 || h->root.type == bfd_link_hash_defweak);
4440
4441 symbol_align = ffs (h->root.u.def.value) - 1;
4442 if (h->root.u.def.section->owner != NULL
4443 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4444 {
4445 normal_align = h->root.u.def.section->alignment_power;
4446 if (normal_align > symbol_align)
4447 normal_align = symbol_align;
4448 }
4449 else
4450 normal_align = symbol_align;
4451
4452 if (old_alignment)
4453 {
4454 common_align = old_alignment;
4455 common_bfd = old_bfd;
4456 normal_bfd = abfd;
4457 }
4458 else
4459 {
4460 common_align = bfd_log2 (isym->st_value);
4461 common_bfd = abfd;
4462 normal_bfd = old_bfd;
4463 }
4464
4465 if (normal_align < common_align)
4466 {
4467 /* PR binutils/2735 */
4468 if (normal_bfd == NULL)
4469 (*_bfd_error_handler)
4470 (_("Warning: alignment %u of common symbol `%s' in %B is"
4471 " greater than the alignment (%u) of its section %A"),
4472 common_bfd, h->root.u.def.section,
4473 1 << common_align, name, 1 << normal_align);
4474 else
4475 (*_bfd_error_handler)
4476 (_("Warning: alignment %u of symbol `%s' in %B"
4477 " is smaller than %u in %B"),
4478 normal_bfd, common_bfd,
4479 1 << normal_align, name, 1 << common_align);
4480 }
4481 }
4482
4483 /* Remember the symbol size if it isn't undefined. */
4484 if (isym->st_size != 0
4485 && isym->st_shndx != SHN_UNDEF
4486 && (definition || h->size == 0))
4487 {
4488 if (h->size != 0
4489 && h->size != isym->st_size
4490 && ! size_change_ok)
4491 (*_bfd_error_handler)
4492 (_("Warning: size of symbol `%s' changed"
4493 " from %lu in %B to %lu in %B"),
4494 old_bfd, abfd,
4495 name, (unsigned long) h->size,
4496 (unsigned long) isym->st_size);
4497
4498 h->size = isym->st_size;
4499 }
4500
4501 /* If this is a common symbol, then we always want H->SIZE
4502 to be the size of the common symbol. The code just above
4503 won't fix the size if a common symbol becomes larger. We
4504 don't warn about a size change here, because that is
4505 covered by --warn-common. Allow changes between different
4506 function types. */
4507 if (h->root.type == bfd_link_hash_common)
4508 h->size = h->root.u.c.size;
4509
4510 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4511 && ((definition && !new_weak)
4512 || (old_weak && h->root.type == bfd_link_hash_common)
4513 || h->type == STT_NOTYPE))
4514 {
4515 unsigned int type = ELF_ST_TYPE (isym->st_info);
4516
4517 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4518 symbol. */
4519 if (type == STT_GNU_IFUNC
4520 && (abfd->flags & DYNAMIC) != 0)
4521 type = STT_FUNC;
4522
4523 if (h->type != type)
4524 {
4525 if (h->type != STT_NOTYPE && ! type_change_ok)
4526 (*_bfd_error_handler)
4527 (_("Warning: type of symbol `%s' changed"
4528 " from %d to %d in %B"),
4529 abfd, name, h->type, type);
4530
4531 h->type = type;
4532 }
4533 }
4534
4535 /* Merge st_other field. */
4536 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4537
4538 /* We don't want to make debug symbol dynamic. */
4539 if (definition
4540 && (sec->flags & SEC_DEBUGGING)
4541 && !bfd_link_relocatable (info))
4542 dynsym = FALSE;
4543
4544 /* Nor should we make plugin symbols dynamic. */
4545 if ((abfd->flags & BFD_PLUGIN) != 0)
4546 dynsym = FALSE;
4547
4548 if (definition)
4549 {
4550 h->target_internal = isym->st_target_internal;
4551 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4552 }
4553
4554 if (definition && !dynamic)
4555 {
4556 char *p = strchr (name, ELF_VER_CHR);
4557 if (p != NULL && p[1] != ELF_VER_CHR)
4558 {
4559 /* Queue non-default versions so that .symver x, x@FOO
4560 aliases can be checked. */
4561 if (!nondeflt_vers)
4562 {
4563 amt = ((isymend - isym + 1)
4564 * sizeof (struct elf_link_hash_entry *));
4565 nondeflt_vers
4566 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4567 if (!nondeflt_vers)
4568 goto error_free_vers;
4569 }
4570 nondeflt_vers[nondeflt_vers_cnt++] = h;
4571 }
4572 }
4573
4574 if (dynsym && h->dynindx == -1)
4575 {
4576 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4577 goto error_free_vers;
4578 if (h->u.weakdef != NULL
4579 && ! new_weakdef
4580 && h->u.weakdef->dynindx == -1)
4581 {
4582 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4583 goto error_free_vers;
4584 }
4585 }
4586 else if (h->dynindx != -1)
4587 /* If the symbol already has a dynamic index, but
4588 visibility says it should not be visible, turn it into
4589 a local symbol. */
4590 switch (ELF_ST_VISIBILITY (h->other))
4591 {
4592 case STV_INTERNAL:
4593 case STV_HIDDEN:
4594 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4595 dynsym = FALSE;
4596 break;
4597 }
4598
4599 /* Don't add DT_NEEDED for references from the dummy bfd nor
4600 for unmatched symbol. */
4601 if (!add_needed
4602 && matched
4603 && definition
4604 && ((dynsym
4605 && h->ref_regular_nonweak
4606 && (old_bfd == NULL
4607 || (old_bfd->flags & BFD_PLUGIN) == 0))
4608 || (h->ref_dynamic_nonweak
4609 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4610 && !on_needed_list (elf_dt_name (abfd),
4611 htab->needed, NULL))))
4612 {
4613 int ret;
4614 const char *soname = elf_dt_name (abfd);
4615
4616 info->callbacks->minfo ("%!", soname, old_bfd,
4617 h->root.root.string);
4618
4619 /* A symbol from a library loaded via DT_NEEDED of some
4620 other library is referenced by a regular object.
4621 Add a DT_NEEDED entry for it. Issue an error if
4622 --no-add-needed is used and the reference was not
4623 a weak one. */
4624 if (old_bfd != NULL
4625 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4626 {
4627 (*_bfd_error_handler)
4628 (_("%B: undefined reference to symbol '%s'"),
4629 old_bfd, name);
4630 bfd_set_error (bfd_error_missing_dso);
4631 goto error_free_vers;
4632 }
4633
4634 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4635 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4636
4637 add_needed = TRUE;
4638 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4639 if (ret < 0)
4640 goto error_free_vers;
4641
4642 BFD_ASSERT (ret == 0);
4643 }
4644 }
4645 }
4646
4647 if (extversym != NULL)
4648 {
4649 free (extversym);
4650 extversym = NULL;
4651 }
4652
4653 if (isymbuf != NULL)
4654 {
4655 free (isymbuf);
4656 isymbuf = NULL;
4657 }
4658
4659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4660 {
4661 unsigned int i;
4662
4663 /* Restore the symbol table. */
4664 old_ent = (char *) old_tab + tabsize;
4665 memset (elf_sym_hashes (abfd), 0,
4666 extsymcount * sizeof (struct elf_link_hash_entry *));
4667 htab->root.table.table = old_table;
4668 htab->root.table.size = old_size;
4669 htab->root.table.count = old_count;
4670 memcpy (htab->root.table.table, old_tab, tabsize);
4671 htab->root.undefs = old_undefs;
4672 htab->root.undefs_tail = old_undefs_tail;
4673 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4674 for (i = 0; i < htab->root.table.size; i++)
4675 {
4676 struct bfd_hash_entry *p;
4677 struct elf_link_hash_entry *h;
4678 bfd_size_type size;
4679 unsigned int alignment_power;
4680
4681 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4682 {
4683 h = (struct elf_link_hash_entry *) p;
4684 if (h->root.type == bfd_link_hash_warning)
4685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4686 if (h->dynindx >= old_dynsymcount
4687 && h->dynstr_index < old_dynstr_size)
4688 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4689
4690 /* Preserve the maximum alignment and size for common
4691 symbols even if this dynamic lib isn't on DT_NEEDED
4692 since it can still be loaded at run time by another
4693 dynamic lib. */
4694 if (h->root.type == bfd_link_hash_common)
4695 {
4696 size = h->root.u.c.size;
4697 alignment_power = h->root.u.c.p->alignment_power;
4698 }
4699 else
4700 {
4701 size = 0;
4702 alignment_power = 0;
4703 }
4704 memcpy (p, old_ent, htab->root.table.entsize);
4705 old_ent = (char *) old_ent + htab->root.table.entsize;
4706 h = (struct elf_link_hash_entry *) p;
4707 if (h->root.type == bfd_link_hash_warning)
4708 {
4709 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4710 old_ent = (char *) old_ent + htab->root.table.entsize;
4711 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4712 }
4713 if (h->root.type == bfd_link_hash_common)
4714 {
4715 if (size > h->root.u.c.size)
4716 h->root.u.c.size = size;
4717 if (alignment_power > h->root.u.c.p->alignment_power)
4718 h->root.u.c.p->alignment_power = alignment_power;
4719 }
4720 }
4721 }
4722
4723 /* Make a special call to the linker "notice" function to
4724 tell it that symbols added for crefs may need to be removed. */
4725 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4726 goto error_free_vers;
4727
4728 free (old_tab);
4729 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4730 alloc_mark);
4731 if (nondeflt_vers != NULL)
4732 free (nondeflt_vers);
4733 return TRUE;
4734 }
4735
4736 if (old_tab != NULL)
4737 {
4738 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4739 goto error_free_vers;
4740 free (old_tab);
4741 old_tab = NULL;
4742 }
4743
4744 /* Now that all the symbols from this input file are created, if
4745 not performing a relocatable link, handle .symver foo, foo@BAR
4746 such that any relocs against foo become foo@BAR. */
4747 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4748 {
4749 bfd_size_type cnt, symidx;
4750
4751 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4752 {
4753 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4754 char *shortname, *p;
4755
4756 p = strchr (h->root.root.string, ELF_VER_CHR);
4757 if (p == NULL
4758 || (h->root.type != bfd_link_hash_defined
4759 && h->root.type != bfd_link_hash_defweak))
4760 continue;
4761
4762 amt = p - h->root.root.string;
4763 shortname = (char *) bfd_malloc (amt + 1);
4764 if (!shortname)
4765 goto error_free_vers;
4766 memcpy (shortname, h->root.root.string, amt);
4767 shortname[amt] = '\0';
4768
4769 hi = (struct elf_link_hash_entry *)
4770 bfd_link_hash_lookup (&htab->root, shortname,
4771 FALSE, FALSE, FALSE);
4772 if (hi != NULL
4773 && hi->root.type == h->root.type
4774 && hi->root.u.def.value == h->root.u.def.value
4775 && hi->root.u.def.section == h->root.u.def.section)
4776 {
4777 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4778 hi->root.type = bfd_link_hash_indirect;
4779 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4781 sym_hash = elf_sym_hashes (abfd);
4782 if (sym_hash)
4783 for (symidx = 0; symidx < extsymcount; ++symidx)
4784 if (sym_hash[symidx] == hi)
4785 {
4786 sym_hash[symidx] = h;
4787 break;
4788 }
4789 }
4790 free (shortname);
4791 }
4792 free (nondeflt_vers);
4793 nondeflt_vers = NULL;
4794 }
4795
4796 /* Now set the weakdefs field correctly for all the weak defined
4797 symbols we found. The only way to do this is to search all the
4798 symbols. Since we only need the information for non functions in
4799 dynamic objects, that's the only time we actually put anything on
4800 the list WEAKS. We need this information so that if a regular
4801 object refers to a symbol defined weakly in a dynamic object, the
4802 real symbol in the dynamic object is also put in the dynamic
4803 symbols; we also must arrange for both symbols to point to the
4804 same memory location. We could handle the general case of symbol
4805 aliasing, but a general symbol alias can only be generated in
4806 assembler code, handling it correctly would be very time
4807 consuming, and other ELF linkers don't handle general aliasing
4808 either. */
4809 if (weaks != NULL)
4810 {
4811 struct elf_link_hash_entry **hpp;
4812 struct elf_link_hash_entry **hppend;
4813 struct elf_link_hash_entry **sorted_sym_hash;
4814 struct elf_link_hash_entry *h;
4815 size_t sym_count;
4816
4817 /* Since we have to search the whole symbol list for each weak
4818 defined symbol, search time for N weak defined symbols will be
4819 O(N^2). Binary search will cut it down to O(NlogN). */
4820 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4821 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4822 if (sorted_sym_hash == NULL)
4823 goto error_return;
4824 sym_hash = sorted_sym_hash;
4825 hpp = elf_sym_hashes (abfd);
4826 hppend = hpp + extsymcount;
4827 sym_count = 0;
4828 for (; hpp < hppend; hpp++)
4829 {
4830 h = *hpp;
4831 if (h != NULL
4832 && h->root.type == bfd_link_hash_defined
4833 && !bed->is_function_type (h->type))
4834 {
4835 *sym_hash = h;
4836 sym_hash++;
4837 sym_count++;
4838 }
4839 }
4840
4841 qsort (sorted_sym_hash, sym_count,
4842 sizeof (struct elf_link_hash_entry *),
4843 elf_sort_symbol);
4844
4845 while (weaks != NULL)
4846 {
4847 struct elf_link_hash_entry *hlook;
4848 asection *slook;
4849 bfd_vma vlook;
4850 size_t i, j, idx = 0;
4851
4852 hlook = weaks;
4853 weaks = hlook->u.weakdef;
4854 hlook->u.weakdef = NULL;
4855
4856 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4857 || hlook->root.type == bfd_link_hash_defweak
4858 || hlook->root.type == bfd_link_hash_common
4859 || hlook->root.type == bfd_link_hash_indirect);
4860 slook = hlook->root.u.def.section;
4861 vlook = hlook->root.u.def.value;
4862
4863 i = 0;
4864 j = sym_count;
4865 while (i != j)
4866 {
4867 bfd_signed_vma vdiff;
4868 idx = (i + j) / 2;
4869 h = sorted_sym_hash[idx];
4870 vdiff = vlook - h->root.u.def.value;
4871 if (vdiff < 0)
4872 j = idx;
4873 else if (vdiff > 0)
4874 i = idx + 1;
4875 else
4876 {
4877 int sdiff = slook->id - h->root.u.def.section->id;
4878 if (sdiff < 0)
4879 j = idx;
4880 else if (sdiff > 0)
4881 i = idx + 1;
4882 else
4883 break;
4884 }
4885 }
4886
4887 /* We didn't find a value/section match. */
4888 if (i == j)
4889 continue;
4890
4891 /* With multiple aliases, or when the weak symbol is already
4892 strongly defined, we have multiple matching symbols and
4893 the binary search above may land on any of them. Step
4894 one past the matching symbol(s). */
4895 while (++idx != j)
4896 {
4897 h = sorted_sym_hash[idx];
4898 if (h->root.u.def.section != slook
4899 || h->root.u.def.value != vlook)
4900 break;
4901 }
4902
4903 /* Now look back over the aliases. Since we sorted by size
4904 as well as value and section, we'll choose the one with
4905 the largest size. */
4906 while (idx-- != i)
4907 {
4908 h = sorted_sym_hash[idx];
4909
4910 /* Stop if value or section doesn't match. */
4911 if (h->root.u.def.section != slook
4912 || h->root.u.def.value != vlook)
4913 break;
4914 else if (h != hlook)
4915 {
4916 hlook->u.weakdef = h;
4917
4918 /* If the weak definition is in the list of dynamic
4919 symbols, make sure the real definition is put
4920 there as well. */
4921 if (hlook->dynindx != -1 && h->dynindx == -1)
4922 {
4923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4924 {
4925 err_free_sym_hash:
4926 free (sorted_sym_hash);
4927 goto error_return;
4928 }
4929 }
4930
4931 /* If the real definition is in the list of dynamic
4932 symbols, make sure the weak definition is put
4933 there as well. If we don't do this, then the
4934 dynamic loader might not merge the entries for the
4935 real definition and the weak definition. */
4936 if (h->dynindx != -1 && hlook->dynindx == -1)
4937 {
4938 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4939 goto err_free_sym_hash;
4940 }
4941 break;
4942 }
4943 }
4944 }
4945
4946 free (sorted_sym_hash);
4947 }
4948
4949 if (bed->check_directives
4950 && !(*bed->check_directives) (abfd, info))
4951 return FALSE;
4952
4953 /* If this object is the same format as the output object, and it is
4954 not a shared library, then let the backend look through the
4955 relocs.
4956
4957 This is required to build global offset table entries and to
4958 arrange for dynamic relocs. It is not required for the
4959 particular common case of linking non PIC code, even when linking
4960 against shared libraries, but unfortunately there is no way of
4961 knowing whether an object file has been compiled PIC or not.
4962 Looking through the relocs is not particularly time consuming.
4963 The problem is that we must either (1) keep the relocs in memory,
4964 which causes the linker to require additional runtime memory or
4965 (2) read the relocs twice from the input file, which wastes time.
4966 This would be a good case for using mmap.
4967
4968 I have no idea how to handle linking PIC code into a file of a
4969 different format. It probably can't be done. */
4970 if (! dynamic
4971 && is_elf_hash_table (htab)
4972 && bed->check_relocs != NULL
4973 && elf_object_id (abfd) == elf_hash_table_id (htab)
4974 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4975 {
4976 asection *o;
4977
4978 for (o = abfd->sections; o != NULL; o = o->next)
4979 {
4980 Elf_Internal_Rela *internal_relocs;
4981 bfd_boolean ok;
4982
4983 if ((o->flags & SEC_RELOC) == 0
4984 || o->reloc_count == 0
4985 || ((info->strip == strip_all || info->strip == strip_debugger)
4986 && (o->flags & SEC_DEBUGGING) != 0)
4987 || bfd_is_abs_section (o->output_section))
4988 continue;
4989
4990 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4991 info->keep_memory);
4992 if (internal_relocs == NULL)
4993 goto error_return;
4994
4995 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4996
4997 if (elf_section_data (o)->relocs != internal_relocs)
4998 free (internal_relocs);
4999
5000 if (! ok)
5001 goto error_return;
5002 }
5003 }
5004
5005 /* If this is a non-traditional link, try to optimize the handling
5006 of the .stab/.stabstr sections. */
5007 if (! dynamic
5008 && ! info->traditional_format
5009 && is_elf_hash_table (htab)
5010 && (info->strip != strip_all && info->strip != strip_debugger))
5011 {
5012 asection *stabstr;
5013
5014 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5015 if (stabstr != NULL)
5016 {
5017 bfd_size_type string_offset = 0;
5018 asection *stab;
5019
5020 for (stab = abfd->sections; stab; stab = stab->next)
5021 if (CONST_STRNEQ (stab->name, ".stab")
5022 && (!stab->name[5] ||
5023 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5024 && (stab->flags & SEC_MERGE) == 0
5025 && !bfd_is_abs_section (stab->output_section))
5026 {
5027 struct bfd_elf_section_data *secdata;
5028
5029 secdata = elf_section_data (stab);
5030 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5031 stabstr, &secdata->sec_info,
5032 &string_offset))
5033 goto error_return;
5034 if (secdata->sec_info)
5035 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5036 }
5037 }
5038 }
5039
5040 if (is_elf_hash_table (htab) && add_needed)
5041 {
5042 /* Add this bfd to the loaded list. */
5043 struct elf_link_loaded_list *n;
5044
5045 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5046 if (n == NULL)
5047 goto error_return;
5048 n->abfd = abfd;
5049 n->next = htab->loaded;
5050 htab->loaded = n;
5051 }
5052
5053 return TRUE;
5054
5055 error_free_vers:
5056 if (old_tab != NULL)
5057 free (old_tab);
5058 if (nondeflt_vers != NULL)
5059 free (nondeflt_vers);
5060 if (extversym != NULL)
5061 free (extversym);
5062 error_free_sym:
5063 if (isymbuf != NULL)
5064 free (isymbuf);
5065 error_return:
5066 return FALSE;
5067}
5068
5069/* Return the linker hash table entry of a symbol that might be
5070 satisfied by an archive symbol. Return -1 on error. */
5071
5072struct elf_link_hash_entry *
5073_bfd_elf_archive_symbol_lookup (bfd *abfd,
5074 struct bfd_link_info *info,
5075 const char *name)
5076{
5077 struct elf_link_hash_entry *h;
5078 char *p, *copy;
5079 size_t len, first;
5080
5081 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5082 if (h != NULL)
5083 return h;
5084
5085 /* If this is a default version (the name contains @@), look up the
5086 symbol again with only one `@' as well as without the version.
5087 The effect is that references to the symbol with and without the
5088 version will be matched by the default symbol in the archive. */
5089
5090 p = strchr (name, ELF_VER_CHR);
5091 if (p == NULL || p[1] != ELF_VER_CHR)
5092 return h;
5093
5094 /* First check with only one `@'. */
5095 len = strlen (name);
5096 copy = (char *) bfd_alloc (abfd, len);
5097 if (copy == NULL)
5098 return (struct elf_link_hash_entry *) 0 - 1;
5099
5100 first = p - name + 1;
5101 memcpy (copy, name, first);
5102 memcpy (copy + first, name + first + 1, len - first);
5103
5104 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5105 if (h == NULL)
5106 {
5107 /* We also need to check references to the symbol without the
5108 version. */
5109 copy[first - 1] = '\0';
5110 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5111 FALSE, FALSE, TRUE);
5112 }
5113
5114 bfd_release (abfd, copy);
5115 return h;
5116}
5117
5118/* Add symbols from an ELF archive file to the linker hash table. We
5119 don't use _bfd_generic_link_add_archive_symbols because we need to
5120 handle versioned symbols.
5121
5122 Fortunately, ELF archive handling is simpler than that done by
5123 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5124 oddities. In ELF, if we find a symbol in the archive map, and the
5125 symbol is currently undefined, we know that we must pull in that
5126 object file.
5127
5128 Unfortunately, we do have to make multiple passes over the symbol
5129 table until nothing further is resolved. */
5130
5131static bfd_boolean
5132elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5133{
5134 symindex c;
5135 unsigned char *included = NULL;
5136 carsym *symdefs;
5137 bfd_boolean loop;
5138 bfd_size_type amt;
5139 const struct elf_backend_data *bed;
5140 struct elf_link_hash_entry * (*archive_symbol_lookup)
5141 (bfd *, struct bfd_link_info *, const char *);
5142
5143 if (! bfd_has_map (abfd))
5144 {
5145 /* An empty archive is a special case. */
5146 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5147 return TRUE;
5148 bfd_set_error (bfd_error_no_armap);
5149 return FALSE;
5150 }
5151
5152 /* Keep track of all symbols we know to be already defined, and all
5153 files we know to be already included. This is to speed up the
5154 second and subsequent passes. */
5155 c = bfd_ardata (abfd)->symdef_count;
5156 if (c == 0)
5157 return TRUE;
5158 amt = c;
5159 amt *= sizeof (*included);
5160 included = (unsigned char *) bfd_zmalloc (amt);
5161 if (included == NULL)
5162 return FALSE;
5163
5164 symdefs = bfd_ardata (abfd)->symdefs;
5165 bed = get_elf_backend_data (abfd);
5166 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5167
5168 do
5169 {
5170 file_ptr last;
5171 symindex i;
5172 carsym *symdef;
5173 carsym *symdefend;
5174
5175 loop = FALSE;
5176 last = -1;
5177
5178 symdef = symdefs;
5179 symdefend = symdef + c;
5180 for (i = 0; symdef < symdefend; symdef++, i++)
5181 {
5182 struct elf_link_hash_entry *h;
5183 bfd *element;
5184 struct bfd_link_hash_entry *undefs_tail;
5185 symindex mark;
5186
5187 if (included[i])
5188 continue;
5189 if (symdef->file_offset == last)
5190 {
5191 included[i] = TRUE;
5192 continue;
5193 }
5194
5195 h = archive_symbol_lookup (abfd, info, symdef->name);
5196 if (h == (struct elf_link_hash_entry *) 0 - 1)
5197 goto error_return;
5198
5199 if (h == NULL)
5200 continue;
5201
5202 if (h->root.type == bfd_link_hash_common)
5203 {
5204 /* We currently have a common symbol. The archive map contains
5205 a reference to this symbol, so we may want to include it. We
5206 only want to include it however, if this archive element
5207 contains a definition of the symbol, not just another common
5208 declaration of it.
5209
5210 Unfortunately some archivers (including GNU ar) will put
5211 declarations of common symbols into their archive maps, as
5212 well as real definitions, so we cannot just go by the archive
5213 map alone. Instead we must read in the element's symbol
5214 table and check that to see what kind of symbol definition
5215 this is. */
5216 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5217 continue;
5218 }
5219 else if (h->root.type != bfd_link_hash_undefined)
5220 {
5221 if (h->root.type != bfd_link_hash_undefweak)
5222 /* Symbol must be defined. Don't check it again. */
5223 included[i] = TRUE;
5224 continue;
5225 }
5226
5227 /* We need to include this archive member. */
5228 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5229 if (element == NULL)
5230 goto error_return;
5231
5232 if (! bfd_check_format (element, bfd_object))
5233 goto error_return;
5234
5235 undefs_tail = info->hash->undefs_tail;
5236
5237 if (!(*info->callbacks
5238 ->add_archive_element) (info, element, symdef->name, &element))
5239 goto error_return;
5240 if (!bfd_link_add_symbols (element, info))
5241 goto error_return;
5242
5243 /* If there are any new undefined symbols, we need to make
5244 another pass through the archive in order to see whether
5245 they can be defined. FIXME: This isn't perfect, because
5246 common symbols wind up on undefs_tail and because an
5247 undefined symbol which is defined later on in this pass
5248 does not require another pass. This isn't a bug, but it
5249 does make the code less efficient than it could be. */
5250 if (undefs_tail != info->hash->undefs_tail)
5251 loop = TRUE;
5252
5253 /* Look backward to mark all symbols from this object file
5254 which we have already seen in this pass. */
5255 mark = i;
5256 do
5257 {
5258 included[mark] = TRUE;
5259 if (mark == 0)
5260 break;
5261 --mark;
5262 }
5263 while (symdefs[mark].file_offset == symdef->file_offset);
5264
5265 /* We mark subsequent symbols from this object file as we go
5266 on through the loop. */
5267 last = symdef->file_offset;
5268 }
5269 }
5270 while (loop);
5271
5272 free (included);
5273
5274 return TRUE;
5275
5276 error_return:
5277 if (included != NULL)
5278 free (included);
5279 return FALSE;
5280}
5281
5282/* Given an ELF BFD, add symbols to the global hash table as
5283 appropriate. */
5284
5285bfd_boolean
5286bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5287{
5288 switch (bfd_get_format (abfd))
5289 {
5290 case bfd_object:
5291 return elf_link_add_object_symbols (abfd, info);
5292 case bfd_archive:
5293 return elf_link_add_archive_symbols (abfd, info);
5294 default:
5295 bfd_set_error (bfd_error_wrong_format);
5296 return FALSE;
5297 }
5298}
5299\f
5300struct hash_codes_info
5301{
5302 unsigned long *hashcodes;
5303 bfd_boolean error;
5304};
5305
5306/* This function will be called though elf_link_hash_traverse to store
5307 all hash value of the exported symbols in an array. */
5308
5309static bfd_boolean
5310elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5311{
5312 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5313 const char *name;
5314 unsigned long ha;
5315 char *alc = NULL;
5316
5317 /* Ignore indirect symbols. These are added by the versioning code. */
5318 if (h->dynindx == -1)
5319 return TRUE;
5320
5321 name = h->root.root.string;
5322 if (h->versioned >= versioned)
5323 {
5324 char *p = strchr (name, ELF_VER_CHR);
5325 if (p != NULL)
5326 {
5327 alc = (char *) bfd_malloc (p - name + 1);
5328 if (alc == NULL)
5329 {
5330 inf->error = TRUE;
5331 return FALSE;
5332 }
5333 memcpy (alc, name, p - name);
5334 alc[p - name] = '\0';
5335 name = alc;
5336 }
5337 }
5338
5339 /* Compute the hash value. */
5340 ha = bfd_elf_hash (name);
5341
5342 /* Store the found hash value in the array given as the argument. */
5343 *(inf->hashcodes)++ = ha;
5344
5345 /* And store it in the struct so that we can put it in the hash table
5346 later. */
5347 h->u.elf_hash_value = ha;
5348
5349 if (alc != NULL)
5350 free (alc);
5351
5352 return TRUE;
5353}
5354
5355struct collect_gnu_hash_codes
5356{
5357 bfd *output_bfd;
5358 const struct elf_backend_data *bed;
5359 unsigned long int nsyms;
5360 unsigned long int maskbits;
5361 unsigned long int *hashcodes;
5362 unsigned long int *hashval;
5363 unsigned long int *indx;
5364 unsigned long int *counts;
5365 bfd_vma *bitmask;
5366 bfd_byte *contents;
5367 long int min_dynindx;
5368 unsigned long int bucketcount;
5369 unsigned long int symindx;
5370 long int local_indx;
5371 long int shift1, shift2;
5372 unsigned long int mask;
5373 bfd_boolean error;
5374};
5375
5376/* This function will be called though elf_link_hash_traverse to store
5377 all hash value of the exported symbols in an array. */
5378
5379static bfd_boolean
5380elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5381{
5382 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5383 const char *name;
5384 unsigned long ha;
5385 char *alc = NULL;
5386
5387 /* Ignore indirect symbols. These are added by the versioning code. */
5388 if (h->dynindx == -1)
5389 return TRUE;
5390
5391 /* Ignore also local symbols and undefined symbols. */
5392 if (! (*s->bed->elf_hash_symbol) (h))
5393 return TRUE;
5394
5395 name = h->root.root.string;
5396 if (h->versioned >= versioned)
5397 {
5398 char *p = strchr (name, ELF_VER_CHR);
5399 if (p != NULL)
5400 {
5401 alc = (char *) bfd_malloc (p - name + 1);
5402 if (alc == NULL)
5403 {
5404 s->error = TRUE;
5405 return FALSE;
5406 }
5407 memcpy (alc, name, p - name);
5408 alc[p - name] = '\0';
5409 name = alc;
5410 }
5411 }
5412
5413 /* Compute the hash value. */
5414 ha = bfd_elf_gnu_hash (name);
5415
5416 /* Store the found hash value in the array for compute_bucket_count,
5417 and also for .dynsym reordering purposes. */
5418 s->hashcodes[s->nsyms] = ha;
5419 s->hashval[h->dynindx] = ha;
5420 ++s->nsyms;
5421 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5422 s->min_dynindx = h->dynindx;
5423
5424 if (alc != NULL)
5425 free (alc);
5426
5427 return TRUE;
5428}
5429
5430/* This function will be called though elf_link_hash_traverse to do
5431 final dynaminc symbol renumbering. */
5432
5433static bfd_boolean
5434elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5435{
5436 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5437 unsigned long int bucket;
5438 unsigned long int val;
5439
5440 /* Ignore indirect symbols. */
5441 if (h->dynindx == -1)
5442 return TRUE;
5443
5444 /* Ignore also local symbols and undefined symbols. */
5445 if (! (*s->bed->elf_hash_symbol) (h))
5446 {
5447 if (h->dynindx >= s->min_dynindx)
5448 h->dynindx = s->local_indx++;
5449 return TRUE;
5450 }
5451
5452 bucket = s->hashval[h->dynindx] % s->bucketcount;
5453 val = (s->hashval[h->dynindx] >> s->shift1)
5454 & ((s->maskbits >> s->shift1) - 1);
5455 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5456 s->bitmask[val]
5457 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5458 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5459 if (s->counts[bucket] == 1)
5460 /* Last element terminates the chain. */
5461 val |= 1;
5462 bfd_put_32 (s->output_bfd, val,
5463 s->contents + (s->indx[bucket] - s->symindx) * 4);
5464 --s->counts[bucket];
5465 h->dynindx = s->indx[bucket]++;
5466 return TRUE;
5467}
5468
5469/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5470
5471bfd_boolean
5472_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5473{
5474 return !(h->forced_local
5475 || h->root.type == bfd_link_hash_undefined
5476 || h->root.type == bfd_link_hash_undefweak
5477 || ((h->root.type == bfd_link_hash_defined
5478 || h->root.type == bfd_link_hash_defweak)
5479 && h->root.u.def.section->output_section == NULL));
5480}
5481
5482/* Array used to determine the number of hash table buckets to use
5483 based on the number of symbols there are. If there are fewer than
5484 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5485 fewer than 37 we use 17 buckets, and so forth. We never use more
5486 than 32771 buckets. */
5487
5488static const size_t elf_buckets[] =
5489{
5490 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5491 16411, 32771, 0
5492};
5493
5494/* Compute bucket count for hashing table. We do not use a static set
5495 of possible tables sizes anymore. Instead we determine for all
5496 possible reasonable sizes of the table the outcome (i.e., the
5497 number of collisions etc) and choose the best solution. The
5498 weighting functions are not too simple to allow the table to grow
5499 without bounds. Instead one of the weighting factors is the size.
5500 Therefore the result is always a good payoff between few collisions
5501 (= short chain lengths) and table size. */
5502static size_t
5503compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5504 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5505 unsigned long int nsyms,
5506 int gnu_hash)
5507{
5508 size_t best_size = 0;
5509 unsigned long int i;
5510
5511 /* We have a problem here. The following code to optimize the table
5512 size requires an integer type with more the 32 bits. If
5513 BFD_HOST_U_64_BIT is set we know about such a type. */
5514#ifdef BFD_HOST_U_64_BIT
5515 if (info->optimize)
5516 {
5517 size_t minsize;
5518 size_t maxsize;
5519 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5520 bfd *dynobj = elf_hash_table (info)->dynobj;
5521 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5522 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5523 unsigned long int *counts;
5524 bfd_size_type amt;
5525 unsigned int no_improvement_count = 0;
5526
5527 /* Possible optimization parameters: if we have NSYMS symbols we say
5528 that the hashing table must at least have NSYMS/4 and at most
5529 2*NSYMS buckets. */
5530 minsize = nsyms / 4;
5531 if (minsize == 0)
5532 minsize = 1;
5533 best_size = maxsize = nsyms * 2;
5534 if (gnu_hash)
5535 {
5536 if (minsize < 2)
5537 minsize = 2;
5538 if ((best_size & 31) == 0)
5539 ++best_size;
5540 }
5541
5542 /* Create array where we count the collisions in. We must use bfd_malloc
5543 since the size could be large. */
5544 amt = maxsize;
5545 amt *= sizeof (unsigned long int);
5546 counts = (unsigned long int *) bfd_malloc (amt);
5547 if (counts == NULL)
5548 return 0;
5549
5550 /* Compute the "optimal" size for the hash table. The criteria is a
5551 minimal chain length. The minor criteria is (of course) the size
5552 of the table. */
5553 for (i = minsize; i < maxsize; ++i)
5554 {
5555 /* Walk through the array of hashcodes and count the collisions. */
5556 BFD_HOST_U_64_BIT max;
5557 unsigned long int j;
5558 unsigned long int fact;
5559
5560 if (gnu_hash && (i & 31) == 0)
5561 continue;
5562
5563 memset (counts, '\0', i * sizeof (unsigned long int));
5564
5565 /* Determine how often each hash bucket is used. */
5566 for (j = 0; j < nsyms; ++j)
5567 ++counts[hashcodes[j] % i];
5568
5569 /* For the weight function we need some information about the
5570 pagesize on the target. This is information need not be 100%
5571 accurate. Since this information is not available (so far) we
5572 define it here to a reasonable default value. If it is crucial
5573 to have a better value some day simply define this value. */
5574# ifndef BFD_TARGET_PAGESIZE
5575# define BFD_TARGET_PAGESIZE (4096)
5576# endif
5577
5578 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5579 and the chains. */
5580 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5581
5582# if 1
5583 /* Variant 1: optimize for short chains. We add the squares
5584 of all the chain lengths (which favors many small chain
5585 over a few long chains). */
5586 for (j = 0; j < i; ++j)
5587 max += counts[j] * counts[j];
5588
5589 /* This adds penalties for the overall size of the table. */
5590 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5591 max *= fact * fact;
5592# else
5593 /* Variant 2: Optimize a lot more for small table. Here we
5594 also add squares of the size but we also add penalties for
5595 empty slots (the +1 term). */
5596 for (j = 0; j < i; ++j)
5597 max += (1 + counts[j]) * (1 + counts[j]);
5598
5599 /* The overall size of the table is considered, but not as
5600 strong as in variant 1, where it is squared. */
5601 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5602 max *= fact;
5603# endif
5604
5605 /* Compare with current best results. */
5606 if (max < best_chlen)
5607 {
5608 best_chlen = max;
5609 best_size = i;
5610 no_improvement_count = 0;
5611 }
5612 /* PR 11843: Avoid futile long searches for the best bucket size
5613 when there are a large number of symbols. */
5614 else if (++no_improvement_count == 100)
5615 break;
5616 }
5617
5618 free (counts);
5619 }
5620 else
5621#endif /* defined (BFD_HOST_U_64_BIT) */
5622 {
5623 /* This is the fallback solution if no 64bit type is available or if we
5624 are not supposed to spend much time on optimizations. We select the
5625 bucket count using a fixed set of numbers. */
5626 for (i = 0; elf_buckets[i] != 0; i++)
5627 {
5628 best_size = elf_buckets[i];
5629 if (nsyms < elf_buckets[i + 1])
5630 break;
5631 }
5632 if (gnu_hash && best_size < 2)
5633 best_size = 2;
5634 }
5635
5636 return best_size;
5637}
5638
5639/* Size any SHT_GROUP section for ld -r. */
5640
5641bfd_boolean
5642_bfd_elf_size_group_sections (struct bfd_link_info *info)
5643{
5644 bfd *ibfd;
5645
5646 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5647 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5648 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5649 return FALSE;
5650 return TRUE;
5651}
5652
5653/* Set a default stack segment size. The value in INFO wins. If it
5654 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5655 undefined it is initialized. */
5656
5657bfd_boolean
5658bfd_elf_stack_segment_size (bfd *output_bfd,
5659 struct bfd_link_info *info,
5660 const char *legacy_symbol,
5661 bfd_vma default_size)
5662{
5663 struct elf_link_hash_entry *h = NULL;
5664
5665 /* Look for legacy symbol. */
5666 if (legacy_symbol)
5667 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5668 FALSE, FALSE, FALSE);
5669 if (h && (h->root.type == bfd_link_hash_defined
5670 || h->root.type == bfd_link_hash_defweak)
5671 && h->def_regular
5672 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5673 {
5674 /* The symbol has no type if specified on the command line. */
5675 h->type = STT_OBJECT;
5676 if (info->stacksize)
5677 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5678 output_bfd, legacy_symbol);
5679 else if (h->root.u.def.section != bfd_abs_section_ptr)
5680 (*_bfd_error_handler) (_("%B: %s not absolute"),
5681 output_bfd, legacy_symbol);
5682 else
5683 info->stacksize = h->root.u.def.value;
5684 }
5685
5686 if (!info->stacksize)
5687 /* If the user didn't set a size, or explicitly inhibit the
5688 size, set it now. */
5689 info->stacksize = default_size;
5690
5691 /* Provide the legacy symbol, if it is referenced. */
5692 if (h && (h->root.type == bfd_link_hash_undefined
5693 || h->root.type == bfd_link_hash_undefweak))
5694 {
5695 struct bfd_link_hash_entry *bh = NULL;
5696
5697 if (!(_bfd_generic_link_add_one_symbol
5698 (info, output_bfd, legacy_symbol,
5699 BSF_GLOBAL, bfd_abs_section_ptr,
5700 info->stacksize >= 0 ? info->stacksize : 0,
5701 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5702 return FALSE;
5703
5704 h = (struct elf_link_hash_entry *) bh;
5705 h->def_regular = 1;
5706 h->type = STT_OBJECT;
5707 }
5708
5709 return TRUE;
5710}
5711
5712/* Set up the sizes and contents of the ELF dynamic sections. This is
5713 called by the ELF linker emulation before_allocation routine. We
5714 must set the sizes of the sections before the linker sets the
5715 addresses of the various sections. */
5716
5717bfd_boolean
5718bfd_elf_size_dynamic_sections (bfd *output_bfd,
5719 const char *soname,
5720 const char *rpath,
5721 const char *filter_shlib,
5722 const char *audit,
5723 const char *depaudit,
5724 const char * const *auxiliary_filters,
5725 struct bfd_link_info *info,
5726 asection **sinterpptr)
5727{
5728 bfd_size_type soname_indx;
5729 bfd *dynobj;
5730 const struct elf_backend_data *bed;
5731 struct elf_info_failed asvinfo;
5732
5733 *sinterpptr = NULL;
5734
5735 soname_indx = (bfd_size_type) -1;
5736
5737 if (!is_elf_hash_table (info->hash))
5738 return TRUE;
5739
5740 bed = get_elf_backend_data (output_bfd);
5741
5742 /* Any syms created from now on start with -1 in
5743 got.refcount/offset and plt.refcount/offset. */
5744 elf_hash_table (info)->init_got_refcount
5745 = elf_hash_table (info)->init_got_offset;
5746 elf_hash_table (info)->init_plt_refcount
5747 = elf_hash_table (info)->init_plt_offset;
5748
5749 if (bfd_link_relocatable (info)
5750 && !_bfd_elf_size_group_sections (info))
5751 return FALSE;
5752
5753 /* The backend may have to create some sections regardless of whether
5754 we're dynamic or not. */
5755 if (bed->elf_backend_always_size_sections
5756 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5757 return FALSE;
5758
5759 /* Determine any GNU_STACK segment requirements, after the backend
5760 has had a chance to set a default segment size. */
5761 if (info->execstack)
5762 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5763 else if (info->noexecstack)
5764 elf_stack_flags (output_bfd) = PF_R | PF_W;
5765 else
5766 {
5767 bfd *inputobj;
5768 asection *notesec = NULL;
5769 int exec = 0;
5770
5771 for (inputobj = info->input_bfds;
5772 inputobj;
5773 inputobj = inputobj->link.next)
5774 {
5775 asection *s;
5776
5777 if (inputobj->flags
5778 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5779 continue;
5780 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5781 if (s)
5782 {
5783 if (s->flags & SEC_CODE)
5784 exec = PF_X;
5785 notesec = s;
5786 }
5787 else if (bed->default_execstack)
5788 exec = PF_X;
5789 }
5790 if (notesec || info->stacksize > 0)
5791 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5792 if (notesec && exec && bfd_link_relocatable (info)
5793 && notesec->output_section != bfd_abs_section_ptr)
5794 notesec->output_section->flags |= SEC_CODE;
5795 }
5796
5797 dynobj = elf_hash_table (info)->dynobj;
5798
5799 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5800 {
5801 struct elf_info_failed eif;
5802 struct elf_link_hash_entry *h;
5803 asection *dynstr;
5804 struct bfd_elf_version_tree *t;
5805 struct bfd_elf_version_expr *d;
5806 asection *s;
5807 bfd_boolean all_defined;
5808
5809 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5810 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5811
5812 if (soname != NULL)
5813 {
5814 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5815 soname, TRUE);
5816 if (soname_indx == (bfd_size_type) -1
5817 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5818 return FALSE;
5819 }
5820
5821 if (info->symbolic)
5822 {
5823 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5824 return FALSE;
5825 info->flags |= DF_SYMBOLIC;
5826 }
5827
5828 if (rpath != NULL)
5829 {
5830 bfd_size_type indx;
5831 bfd_vma tag;
5832
5833 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5834 TRUE);
5835 if (indx == (bfd_size_type) -1)
5836 return FALSE;
5837
5838 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5839 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5840 return FALSE;
5841 }
5842
5843 if (filter_shlib != NULL)
5844 {
5845 bfd_size_type indx;
5846
5847 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5848 filter_shlib, TRUE);
5849 if (indx == (bfd_size_type) -1
5850 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5851 return FALSE;
5852 }
5853
5854 if (auxiliary_filters != NULL)
5855 {
5856 const char * const *p;
5857
5858 for (p = auxiliary_filters; *p != NULL; p++)
5859 {
5860 bfd_size_type indx;
5861
5862 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5863 *p, TRUE);
5864 if (indx == (bfd_size_type) -1
5865 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5866 return FALSE;
5867 }
5868 }
5869
5870 if (audit != NULL)
5871 {
5872 bfd_size_type indx;
5873
5874 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5875 TRUE);
5876 if (indx == (bfd_size_type) -1
5877 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5878 return FALSE;
5879 }
5880
5881 if (depaudit != NULL)
5882 {
5883 bfd_size_type indx;
5884
5885 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5886 TRUE);
5887 if (indx == (bfd_size_type) -1
5888 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5889 return FALSE;
5890 }
5891
5892 eif.info = info;
5893 eif.failed = FALSE;
5894
5895 /* If we are supposed to export all symbols into the dynamic symbol
5896 table (this is not the normal case), then do so. */
5897 if (info->export_dynamic
5898 || (bfd_link_executable (info) && info->dynamic))
5899 {
5900 elf_link_hash_traverse (elf_hash_table (info),
5901 _bfd_elf_export_symbol,
5902 &eif);
5903 if (eif.failed)
5904 return FALSE;
5905 }
5906
5907 /* Make all global versions with definition. */
5908 for (t = info->version_info; t != NULL; t = t->next)
5909 for (d = t->globals.list; d != NULL; d = d->next)
5910 if (!d->symver && d->literal)
5911 {
5912 const char *verstr, *name;
5913 size_t namelen, verlen, newlen;
5914 char *newname, *p, leading_char;
5915 struct elf_link_hash_entry *newh;
5916
5917 leading_char = bfd_get_symbol_leading_char (output_bfd);
5918 name = d->pattern;
5919 namelen = strlen (name) + (leading_char != '\0');
5920 verstr = t->name;
5921 verlen = strlen (verstr);
5922 newlen = namelen + verlen + 3;
5923
5924 newname = (char *) bfd_malloc (newlen);
5925 if (newname == NULL)
5926 return FALSE;
5927 newname[0] = leading_char;
5928 memcpy (newname + (leading_char != '\0'), name, namelen);
5929
5930 /* Check the hidden versioned definition. */
5931 p = newname + namelen;
5932 *p++ = ELF_VER_CHR;
5933 memcpy (p, verstr, verlen + 1);
5934 newh = elf_link_hash_lookup (elf_hash_table (info),
5935 newname, FALSE, FALSE,
5936 FALSE);
5937 if (newh == NULL
5938 || (newh->root.type != bfd_link_hash_defined
5939 && newh->root.type != bfd_link_hash_defweak))
5940 {
5941 /* Check the default versioned definition. */
5942 *p++ = ELF_VER_CHR;
5943 memcpy (p, verstr, verlen + 1);
5944 newh = elf_link_hash_lookup (elf_hash_table (info),
5945 newname, FALSE, FALSE,
5946 FALSE);
5947 }
5948 free (newname);
5949
5950 /* Mark this version if there is a definition and it is
5951 not defined in a shared object. */
5952 if (newh != NULL
5953 && !newh->def_dynamic
5954 && (newh->root.type == bfd_link_hash_defined
5955 || newh->root.type == bfd_link_hash_defweak))
5956 d->symver = 1;
5957 }
5958
5959 /* Attach all the symbols to their version information. */
5960 asvinfo.info = info;
5961 asvinfo.failed = FALSE;
5962
5963 elf_link_hash_traverse (elf_hash_table (info),
5964 _bfd_elf_link_assign_sym_version,
5965 &asvinfo);
5966 if (asvinfo.failed)
5967 return FALSE;
5968
5969 if (!info->allow_undefined_version)
5970 {
5971 /* Check if all global versions have a definition. */
5972 all_defined = TRUE;
5973 for (t = info->version_info; t != NULL; t = t->next)
5974 for (d = t->globals.list; d != NULL; d = d->next)
5975 if (d->literal && !d->symver && !d->script)
5976 {
5977 (*_bfd_error_handler)
5978 (_("%s: undefined version: %s"),
5979 d->pattern, t->name);
5980 all_defined = FALSE;
5981 }
5982
5983 if (!all_defined)
5984 {
5985 bfd_set_error (bfd_error_bad_value);
5986 return FALSE;
5987 }
5988 }
5989
5990 /* Find all symbols which were defined in a dynamic object and make
5991 the backend pick a reasonable value for them. */
5992 elf_link_hash_traverse (elf_hash_table (info),
5993 _bfd_elf_adjust_dynamic_symbol,
5994 &eif);
5995 if (eif.failed)
5996 return FALSE;
5997
5998 /* Add some entries to the .dynamic section. We fill in some of the
5999 values later, in bfd_elf_final_link, but we must add the entries
6000 now so that we know the final size of the .dynamic section. */
6001
6002 /* If there are initialization and/or finalization functions to
6003 call then add the corresponding DT_INIT/DT_FINI entries. */
6004 h = (info->init_function
6005 ? elf_link_hash_lookup (elf_hash_table (info),
6006 info->init_function, FALSE,
6007 FALSE, FALSE)
6008 : NULL);
6009 if (h != NULL
6010 && (h->ref_regular
6011 || h->def_regular))
6012 {
6013 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6014 return FALSE;
6015 }
6016 h = (info->fini_function
6017 ? elf_link_hash_lookup (elf_hash_table (info),
6018 info->fini_function, FALSE,
6019 FALSE, FALSE)
6020 : NULL);
6021 if (h != NULL
6022 && (h->ref_regular
6023 || h->def_regular))
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6026 return FALSE;
6027 }
6028
6029 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6030 if (s != NULL && s->linker_has_input)
6031 {
6032 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6033 if (! bfd_link_executable (info))
6034 {
6035 bfd *sub;
6036 asection *o;
6037
6038 for (sub = info->input_bfds; sub != NULL;
6039 sub = sub->link.next)
6040 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6041 for (o = sub->sections; o != NULL; o = o->next)
6042 if (elf_section_data (o)->this_hdr.sh_type
6043 == SHT_PREINIT_ARRAY)
6044 {
6045 (*_bfd_error_handler)
6046 (_("%B: .preinit_array section is not allowed in DSO"),
6047 sub);
6048 break;
6049 }
6050
6051 bfd_set_error (bfd_error_nonrepresentable_section);
6052 return FALSE;
6053 }
6054
6055 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6056 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6057 return FALSE;
6058 }
6059 s = bfd_get_section_by_name (output_bfd, ".init_array");
6060 if (s != NULL && s->linker_has_input)
6061 {
6062 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6063 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6064 return FALSE;
6065 }
6066 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6067 if (s != NULL && s->linker_has_input)
6068 {
6069 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6070 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6071 return FALSE;
6072 }
6073
6074 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6075 /* If .dynstr is excluded from the link, we don't want any of
6076 these tags. Strictly, we should be checking each section
6077 individually; This quick check covers for the case where
6078 someone does a /DISCARD/ : { *(*) }. */
6079 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6080 {
6081 bfd_size_type strsize;
6082
6083 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6084 if ((info->emit_hash
6085 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6086 || (info->emit_gnu_hash
6087 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6088 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6089 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6090 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6091 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6092 bed->s->sizeof_sym))
6093 return FALSE;
6094 }
6095 }
6096
6097 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6098 return FALSE;
6099
6100 /* The backend must work out the sizes of all the other dynamic
6101 sections. */
6102 if (dynobj != NULL
6103 && bed->elf_backend_size_dynamic_sections != NULL
6104 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6105 return FALSE;
6106
6107 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6108 {
6109 unsigned long section_sym_count;
6110 struct bfd_elf_version_tree *verdefs;
6111 asection *s;
6112
6113 /* Set up the version definition section. */
6114 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6115 BFD_ASSERT (s != NULL);
6116
6117 /* We may have created additional version definitions if we are
6118 just linking a regular application. */
6119 verdefs = info->version_info;
6120
6121 /* Skip anonymous version tag. */
6122 if (verdefs != NULL && verdefs->vernum == 0)
6123 verdefs = verdefs->next;
6124
6125 if (verdefs == NULL && !info->create_default_symver)
6126 s->flags |= SEC_EXCLUDE;
6127 else
6128 {
6129 unsigned int cdefs;
6130 bfd_size_type size;
6131 struct bfd_elf_version_tree *t;
6132 bfd_byte *p;
6133 Elf_Internal_Verdef def;
6134 Elf_Internal_Verdaux defaux;
6135 struct bfd_link_hash_entry *bh;
6136 struct elf_link_hash_entry *h;
6137 const char *name;
6138
6139 cdefs = 0;
6140 size = 0;
6141
6142 /* Make space for the base version. */
6143 size += sizeof (Elf_External_Verdef);
6144 size += sizeof (Elf_External_Verdaux);
6145 ++cdefs;
6146
6147 /* Make space for the default version. */
6148 if (info->create_default_symver)
6149 {
6150 size += sizeof (Elf_External_Verdef);
6151 ++cdefs;
6152 }
6153
6154 for (t = verdefs; t != NULL; t = t->next)
6155 {
6156 struct bfd_elf_version_deps *n;
6157
6158 /* Don't emit base version twice. */
6159 if (t->vernum == 0)
6160 continue;
6161
6162 size += sizeof (Elf_External_Verdef);
6163 size += sizeof (Elf_External_Verdaux);
6164 ++cdefs;
6165
6166 for (n = t->deps; n != NULL; n = n->next)
6167 size += sizeof (Elf_External_Verdaux);
6168 }
6169
6170 s->size = size;
6171 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6172 if (s->contents == NULL && s->size != 0)
6173 return FALSE;
6174
6175 /* Fill in the version definition section. */
6176
6177 p = s->contents;
6178
6179 def.vd_version = VER_DEF_CURRENT;
6180 def.vd_flags = VER_FLG_BASE;
6181 def.vd_ndx = 1;
6182 def.vd_cnt = 1;
6183 if (info->create_default_symver)
6184 {
6185 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6186 def.vd_next = sizeof (Elf_External_Verdef);
6187 }
6188 else
6189 {
6190 def.vd_aux = sizeof (Elf_External_Verdef);
6191 def.vd_next = (sizeof (Elf_External_Verdef)
6192 + sizeof (Elf_External_Verdaux));
6193 }
6194
6195 if (soname_indx != (bfd_size_type) -1)
6196 {
6197 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6198 soname_indx);
6199 def.vd_hash = bfd_elf_hash (soname);
6200 defaux.vda_name = soname_indx;
6201 name = soname;
6202 }
6203 else
6204 {
6205 bfd_size_type indx;
6206
6207 name = lbasename (output_bfd->filename);
6208 def.vd_hash = bfd_elf_hash (name);
6209 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6210 name, FALSE);
6211 if (indx == (bfd_size_type) -1)
6212 return FALSE;
6213 defaux.vda_name = indx;
6214 }
6215 defaux.vda_next = 0;
6216
6217 _bfd_elf_swap_verdef_out (output_bfd, &def,
6218 (Elf_External_Verdef *) p);
6219 p += sizeof (Elf_External_Verdef);
6220 if (info->create_default_symver)
6221 {
6222 /* Add a symbol representing this version. */
6223 bh = NULL;
6224 if (! (_bfd_generic_link_add_one_symbol
6225 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6226 0, NULL, FALSE,
6227 get_elf_backend_data (dynobj)->collect, &bh)))
6228 return FALSE;
6229 h = (struct elf_link_hash_entry *) bh;
6230 h->non_elf = 0;
6231 h->def_regular = 1;
6232 h->type = STT_OBJECT;
6233 h->verinfo.vertree = NULL;
6234
6235 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6236 return FALSE;
6237
6238 /* Create a duplicate of the base version with the same
6239 aux block, but different flags. */
6240 def.vd_flags = 0;
6241 def.vd_ndx = 2;
6242 def.vd_aux = sizeof (Elf_External_Verdef);
6243 if (verdefs)
6244 def.vd_next = (sizeof (Elf_External_Verdef)
6245 + sizeof (Elf_External_Verdaux));
6246 else
6247 def.vd_next = 0;
6248 _bfd_elf_swap_verdef_out (output_bfd, &def,
6249 (Elf_External_Verdef *) p);
6250 p += sizeof (Elf_External_Verdef);
6251 }
6252 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6253 (Elf_External_Verdaux *) p);
6254 p += sizeof (Elf_External_Verdaux);
6255
6256 for (t = verdefs; t != NULL; t = t->next)
6257 {
6258 unsigned int cdeps;
6259 struct bfd_elf_version_deps *n;
6260
6261 /* Don't emit the base version twice. */
6262 if (t->vernum == 0)
6263 continue;
6264
6265 cdeps = 0;
6266 for (n = t->deps; n != NULL; n = n->next)
6267 ++cdeps;
6268
6269 /* Add a symbol representing this version. */
6270 bh = NULL;
6271 if (! (_bfd_generic_link_add_one_symbol
6272 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6273 0, NULL, FALSE,
6274 get_elf_backend_data (dynobj)->collect, &bh)))
6275 return FALSE;
6276 h = (struct elf_link_hash_entry *) bh;
6277 h->non_elf = 0;
6278 h->def_regular = 1;
6279 h->type = STT_OBJECT;
6280 h->verinfo.vertree = t;
6281
6282 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6283 return FALSE;
6284
6285 def.vd_version = VER_DEF_CURRENT;
6286 def.vd_flags = 0;
6287 if (t->globals.list == NULL
6288 && t->locals.list == NULL
6289 && ! t->used)
6290 def.vd_flags |= VER_FLG_WEAK;
6291 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6292 def.vd_cnt = cdeps + 1;
6293 def.vd_hash = bfd_elf_hash (t->name);
6294 def.vd_aux = sizeof (Elf_External_Verdef);
6295 def.vd_next = 0;
6296
6297 /* If a basever node is next, it *must* be the last node in
6298 the chain, otherwise Verdef construction breaks. */
6299 if (t->next != NULL && t->next->vernum == 0)
6300 BFD_ASSERT (t->next->next == NULL);
6301
6302 if (t->next != NULL && t->next->vernum != 0)
6303 def.vd_next = (sizeof (Elf_External_Verdef)
6304 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6305
6306 _bfd_elf_swap_verdef_out (output_bfd, &def,
6307 (Elf_External_Verdef *) p);
6308 p += sizeof (Elf_External_Verdef);
6309
6310 defaux.vda_name = h->dynstr_index;
6311 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6312 h->dynstr_index);
6313 defaux.vda_next = 0;
6314 if (t->deps != NULL)
6315 defaux.vda_next = sizeof (Elf_External_Verdaux);
6316 t->name_indx = defaux.vda_name;
6317
6318 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6319 (Elf_External_Verdaux *) p);
6320 p += sizeof (Elf_External_Verdaux);
6321
6322 for (n = t->deps; n != NULL; n = n->next)
6323 {
6324 if (n->version_needed == NULL)
6325 {
6326 /* This can happen if there was an error in the
6327 version script. */
6328 defaux.vda_name = 0;
6329 }
6330 else
6331 {
6332 defaux.vda_name = n->version_needed->name_indx;
6333 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6334 defaux.vda_name);
6335 }
6336 if (n->next == NULL)
6337 defaux.vda_next = 0;
6338 else
6339 defaux.vda_next = sizeof (Elf_External_Verdaux);
6340
6341 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6342 (Elf_External_Verdaux *) p);
6343 p += sizeof (Elf_External_Verdaux);
6344 }
6345 }
6346
6347 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6348 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6349 return FALSE;
6350
6351 elf_tdata (output_bfd)->cverdefs = cdefs;
6352 }
6353
6354 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6355 {
6356 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6357 return FALSE;
6358 }
6359 else if (info->flags & DF_BIND_NOW)
6360 {
6361 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6362 return FALSE;
6363 }
6364
6365 if (info->flags_1)
6366 {
6367 if (bfd_link_executable (info))
6368 info->flags_1 &= ~ (DF_1_INITFIRST
6369 | DF_1_NODELETE
6370 | DF_1_NOOPEN);
6371 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6372 return FALSE;
6373 }
6374
6375 /* Work out the size of the version reference section. */
6376
6377 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6378 BFD_ASSERT (s != NULL);
6379 {
6380 struct elf_find_verdep_info sinfo;
6381
6382 sinfo.info = info;
6383 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6384 if (sinfo.vers == 0)
6385 sinfo.vers = 1;
6386 sinfo.failed = FALSE;
6387
6388 elf_link_hash_traverse (elf_hash_table (info),
6389 _bfd_elf_link_find_version_dependencies,
6390 &sinfo);
6391 if (sinfo.failed)
6392 return FALSE;
6393
6394 if (elf_tdata (output_bfd)->verref == NULL)
6395 s->flags |= SEC_EXCLUDE;
6396 else
6397 {
6398 Elf_Internal_Verneed *t;
6399 unsigned int size;
6400 unsigned int crefs;
6401 bfd_byte *p;
6402
6403 /* Build the version dependency section. */
6404 size = 0;
6405 crefs = 0;
6406 for (t = elf_tdata (output_bfd)->verref;
6407 t != NULL;
6408 t = t->vn_nextref)
6409 {
6410 Elf_Internal_Vernaux *a;
6411
6412 size += sizeof (Elf_External_Verneed);
6413 ++crefs;
6414 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6415 size += sizeof (Elf_External_Vernaux);
6416 }
6417
6418 s->size = size;
6419 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6420 if (s->contents == NULL)
6421 return FALSE;
6422
6423 p = s->contents;
6424 for (t = elf_tdata (output_bfd)->verref;
6425 t != NULL;
6426 t = t->vn_nextref)
6427 {
6428 unsigned int caux;
6429 Elf_Internal_Vernaux *a;
6430 bfd_size_type indx;
6431
6432 caux = 0;
6433 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6434 ++caux;
6435
6436 t->vn_version = VER_NEED_CURRENT;
6437 t->vn_cnt = caux;
6438 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6439 elf_dt_name (t->vn_bfd) != NULL
6440 ? elf_dt_name (t->vn_bfd)
6441 : lbasename (t->vn_bfd->filename),
6442 FALSE);
6443 if (indx == (bfd_size_type) -1)
6444 return FALSE;
6445 t->vn_file = indx;
6446 t->vn_aux = sizeof (Elf_External_Verneed);
6447 if (t->vn_nextref == NULL)
6448 t->vn_next = 0;
6449 else
6450 t->vn_next = (sizeof (Elf_External_Verneed)
6451 + caux * sizeof (Elf_External_Vernaux));
6452
6453 _bfd_elf_swap_verneed_out (output_bfd, t,
6454 (Elf_External_Verneed *) p);
6455 p += sizeof (Elf_External_Verneed);
6456
6457 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6458 {
6459 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6460 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6461 a->vna_nodename, FALSE);
6462 if (indx == (bfd_size_type) -1)
6463 return FALSE;
6464 a->vna_name = indx;
6465 if (a->vna_nextptr == NULL)
6466 a->vna_next = 0;
6467 else
6468 a->vna_next = sizeof (Elf_External_Vernaux);
6469
6470 _bfd_elf_swap_vernaux_out (output_bfd, a,
6471 (Elf_External_Vernaux *) p);
6472 p += sizeof (Elf_External_Vernaux);
6473 }
6474 }
6475
6476 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6477 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6478 return FALSE;
6479
6480 elf_tdata (output_bfd)->cverrefs = crefs;
6481 }
6482 }
6483
6484 if ((elf_tdata (output_bfd)->cverrefs == 0
6485 && elf_tdata (output_bfd)->cverdefs == 0)
6486 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6487 &section_sym_count) == 0)
6488 {
6489 s = bfd_get_linker_section (dynobj, ".gnu.version");
6490 s->flags |= SEC_EXCLUDE;
6491 }
6492 }
6493 return TRUE;
6494}
6495
6496/* Find the first non-excluded output section. We'll use its
6497 section symbol for some emitted relocs. */
6498void
6499_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6500{
6501 asection *s;
6502
6503 for (s = output_bfd->sections; s != NULL; s = s->next)
6504 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6505 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6506 {
6507 elf_hash_table (info)->text_index_section = s;
6508 break;
6509 }
6510}
6511
6512/* Find two non-excluded output sections, one for code, one for data.
6513 We'll use their section symbols for some emitted relocs. */
6514void
6515_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6516{
6517 asection *s;
6518
6519 /* Data first, since setting text_index_section changes
6520 _bfd_elf_link_omit_section_dynsym. */
6521 for (s = output_bfd->sections; s != NULL; s = s->next)
6522 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6523 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6524 {
6525 elf_hash_table (info)->data_index_section = s;
6526 break;
6527 }
6528
6529 for (s = output_bfd->sections; s != NULL; s = s->next)
6530 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6531 == (SEC_ALLOC | SEC_READONLY))
6532 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6533 {
6534 elf_hash_table (info)->text_index_section = s;
6535 break;
6536 }
6537
6538 if (elf_hash_table (info)->text_index_section == NULL)
6539 elf_hash_table (info)->text_index_section
6540 = elf_hash_table (info)->data_index_section;
6541}
6542
6543bfd_boolean
6544bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6545{
6546 const struct elf_backend_data *bed;
6547
6548 if (!is_elf_hash_table (info->hash))
6549 return TRUE;
6550
6551 bed = get_elf_backend_data (output_bfd);
6552 (*bed->elf_backend_init_index_section) (output_bfd, info);
6553
6554 if (elf_hash_table (info)->dynamic_sections_created)
6555 {
6556 bfd *dynobj;
6557 asection *s;
6558 bfd_size_type dynsymcount;
6559 unsigned long section_sym_count;
6560 unsigned int dtagcount;
6561
6562 dynobj = elf_hash_table (info)->dynobj;
6563
6564 /* Assign dynsym indicies. In a shared library we generate a
6565 section symbol for each output section, which come first.
6566 Next come all of the back-end allocated local dynamic syms,
6567 followed by the rest of the global symbols. */
6568
6569 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6570 &section_sym_count);
6571
6572 /* Work out the size of the symbol version section. */
6573 s = bfd_get_linker_section (dynobj, ".gnu.version");
6574 BFD_ASSERT (s != NULL);
6575 if (dynsymcount != 0
6576 && (s->flags & SEC_EXCLUDE) == 0)
6577 {
6578 s->size = dynsymcount * sizeof (Elf_External_Versym);
6579 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6580 if (s->contents == NULL)
6581 return FALSE;
6582
6583 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6584 return FALSE;
6585 }
6586
6587 /* Set the size of the .dynsym and .hash sections. We counted
6588 the number of dynamic symbols in elf_link_add_object_symbols.
6589 We will build the contents of .dynsym and .hash when we build
6590 the final symbol table, because until then we do not know the
6591 correct value to give the symbols. We built the .dynstr
6592 section as we went along in elf_link_add_object_symbols. */
6593 s = elf_hash_table (info)->dynsym;
6594 BFD_ASSERT (s != NULL);
6595 s->size = dynsymcount * bed->s->sizeof_sym;
6596
6597 if (dynsymcount != 0)
6598 {
6599 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6600 if (s->contents == NULL)
6601 return FALSE;
6602
6603 /* The first entry in .dynsym is a dummy symbol.
6604 Clear all the section syms, in case we don't output them all. */
6605 ++section_sym_count;
6606 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6607 }
6608
6609 elf_hash_table (info)->bucketcount = 0;
6610
6611 /* Compute the size of the hashing table. As a side effect this
6612 computes the hash values for all the names we export. */
6613 if (info->emit_hash)
6614 {
6615 unsigned long int *hashcodes;
6616 struct hash_codes_info hashinf;
6617 bfd_size_type amt;
6618 unsigned long int nsyms;
6619 size_t bucketcount;
6620 size_t hash_entry_size;
6621
6622 /* Compute the hash values for all exported symbols. At the same
6623 time store the values in an array so that we could use them for
6624 optimizations. */
6625 amt = dynsymcount * sizeof (unsigned long int);
6626 hashcodes = (unsigned long int *) bfd_malloc (amt);
6627 if (hashcodes == NULL)
6628 return FALSE;
6629 hashinf.hashcodes = hashcodes;
6630 hashinf.error = FALSE;
6631
6632 /* Put all hash values in HASHCODES. */
6633 elf_link_hash_traverse (elf_hash_table (info),
6634 elf_collect_hash_codes, &hashinf);
6635 if (hashinf.error)
6636 {
6637 free (hashcodes);
6638 return FALSE;
6639 }
6640
6641 nsyms = hashinf.hashcodes - hashcodes;
6642 bucketcount
6643 = compute_bucket_count (info, hashcodes, nsyms, 0);
6644 free (hashcodes);
6645
6646 if (bucketcount == 0)
6647 return FALSE;
6648
6649 elf_hash_table (info)->bucketcount = bucketcount;
6650
6651 s = bfd_get_linker_section (dynobj, ".hash");
6652 BFD_ASSERT (s != NULL);
6653 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6654 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6655 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6656 if (s->contents == NULL)
6657 return FALSE;
6658
6659 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6660 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6661 s->contents + hash_entry_size);
6662 }
6663
6664 if (info->emit_gnu_hash)
6665 {
6666 size_t i, cnt;
6667 unsigned char *contents;
6668 struct collect_gnu_hash_codes cinfo;
6669 bfd_size_type amt;
6670 size_t bucketcount;
6671
6672 memset (&cinfo, 0, sizeof (cinfo));
6673
6674 /* Compute the hash values for all exported symbols. At the same
6675 time store the values in an array so that we could use them for
6676 optimizations. */
6677 amt = dynsymcount * 2 * sizeof (unsigned long int);
6678 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6679 if (cinfo.hashcodes == NULL)
6680 return FALSE;
6681
6682 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6683 cinfo.min_dynindx = -1;
6684 cinfo.output_bfd = output_bfd;
6685 cinfo.bed = bed;
6686
6687 /* Put all hash values in HASHCODES. */
6688 elf_link_hash_traverse (elf_hash_table (info),
6689 elf_collect_gnu_hash_codes, &cinfo);
6690 if (cinfo.error)
6691 {
6692 free (cinfo.hashcodes);
6693 return FALSE;
6694 }
6695
6696 bucketcount
6697 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6698
6699 if (bucketcount == 0)
6700 {
6701 free (cinfo.hashcodes);
6702 return FALSE;
6703 }
6704
6705 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6706 BFD_ASSERT (s != NULL);
6707
6708 if (cinfo.nsyms == 0)
6709 {
6710 /* Empty .gnu.hash section is special. */
6711 BFD_ASSERT (cinfo.min_dynindx == -1);
6712 free (cinfo.hashcodes);
6713 s->size = 5 * 4 + bed->s->arch_size / 8;
6714 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6715 if (contents == NULL)
6716 return FALSE;
6717 s->contents = contents;
6718 /* 1 empty bucket. */
6719 bfd_put_32 (output_bfd, 1, contents);
6720 /* SYMIDX above the special symbol 0. */
6721 bfd_put_32 (output_bfd, 1, contents + 4);
6722 /* Just one word for bitmask. */
6723 bfd_put_32 (output_bfd, 1, contents + 8);
6724 /* Only hash fn bloom filter. */
6725 bfd_put_32 (output_bfd, 0, contents + 12);
6726 /* No hashes are valid - empty bitmask. */
6727 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6728 /* No hashes in the only bucket. */
6729 bfd_put_32 (output_bfd, 0,
6730 contents + 16 + bed->s->arch_size / 8);
6731 }
6732 else
6733 {
6734 unsigned long int maskwords, maskbitslog2, x;
6735 BFD_ASSERT (cinfo.min_dynindx != -1);
6736
6737 x = cinfo.nsyms;
6738 maskbitslog2 = 1;
6739 while ((x >>= 1) != 0)
6740 ++maskbitslog2;
6741 if (maskbitslog2 < 3)
6742 maskbitslog2 = 5;
6743 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6744 maskbitslog2 = maskbitslog2 + 3;
6745 else
6746 maskbitslog2 = maskbitslog2 + 2;
6747 if (bed->s->arch_size == 64)
6748 {
6749 if (maskbitslog2 == 5)
6750 maskbitslog2 = 6;
6751 cinfo.shift1 = 6;
6752 }
6753 else
6754 cinfo.shift1 = 5;
6755 cinfo.mask = (1 << cinfo.shift1) - 1;
6756 cinfo.shift2 = maskbitslog2;
6757 cinfo.maskbits = 1 << maskbitslog2;
6758 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6759 amt = bucketcount * sizeof (unsigned long int) * 2;
6760 amt += maskwords * sizeof (bfd_vma);
6761 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6762 if (cinfo.bitmask == NULL)
6763 {
6764 free (cinfo.hashcodes);
6765 return FALSE;
6766 }
6767
6768 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6769 cinfo.indx = cinfo.counts + bucketcount;
6770 cinfo.symindx = dynsymcount - cinfo.nsyms;
6771 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6772
6773 /* Determine how often each hash bucket is used. */
6774 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6775 for (i = 0; i < cinfo.nsyms; ++i)
6776 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6777
6778 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6779 if (cinfo.counts[i] != 0)
6780 {
6781 cinfo.indx[i] = cnt;
6782 cnt += cinfo.counts[i];
6783 }
6784 BFD_ASSERT (cnt == dynsymcount);
6785 cinfo.bucketcount = bucketcount;
6786 cinfo.local_indx = cinfo.min_dynindx;
6787
6788 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6789 s->size += cinfo.maskbits / 8;
6790 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6791 if (contents == NULL)
6792 {
6793 free (cinfo.bitmask);
6794 free (cinfo.hashcodes);
6795 return FALSE;
6796 }
6797
6798 s->contents = contents;
6799 bfd_put_32 (output_bfd, bucketcount, contents);
6800 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6801 bfd_put_32 (output_bfd, maskwords, contents + 8);
6802 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6803 contents += 16 + cinfo.maskbits / 8;
6804
6805 for (i = 0; i < bucketcount; ++i)
6806 {
6807 if (cinfo.counts[i] == 0)
6808 bfd_put_32 (output_bfd, 0, contents);
6809 else
6810 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6811 contents += 4;
6812 }
6813
6814 cinfo.contents = contents;
6815
6816 /* Renumber dynamic symbols, populate .gnu.hash section. */
6817 elf_link_hash_traverse (elf_hash_table (info),
6818 elf_renumber_gnu_hash_syms, &cinfo);
6819
6820 contents = s->contents + 16;
6821 for (i = 0; i < maskwords; ++i)
6822 {
6823 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6824 contents);
6825 contents += bed->s->arch_size / 8;
6826 }
6827
6828 free (cinfo.bitmask);
6829 free (cinfo.hashcodes);
6830 }
6831 }
6832
6833 s = bfd_get_linker_section (dynobj, ".dynstr");
6834 BFD_ASSERT (s != NULL);
6835
6836 elf_finalize_dynstr (output_bfd, info);
6837
6838 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6839
6840 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6841 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6842 return FALSE;
6843 }
6844
6845 return TRUE;
6846}
6847\f
6848/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6849
6850static void
6851merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6852 asection *sec)
6853{
6854 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6855 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6856}
6857
6858/* Finish SHF_MERGE section merging. */
6859
6860bfd_boolean
6861_bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6862{
6863 bfd *ibfd;
6864 asection *sec;
6865
6866 if (!is_elf_hash_table (info->hash))
6867 return FALSE;
6868
6869 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6870 if ((ibfd->flags & DYNAMIC) == 0
6871 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6872 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6873 == get_elf_backend_data (obfd)->s->elfclass))
6874 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6875 if ((sec->flags & SEC_MERGE) != 0
6876 && !bfd_is_abs_section (sec->output_section))
6877 {
6878 struct bfd_elf_section_data *secdata;
6879
6880 secdata = elf_section_data (sec);
6881 if (! _bfd_add_merge_section (obfd,
6882 &elf_hash_table (info)->merge_info,
6883 sec, &secdata->sec_info))
6884 return FALSE;
6885 else if (secdata->sec_info)
6886 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6887 }
6888
6889 if (elf_hash_table (info)->merge_info != NULL)
6890 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6891 merge_sections_remove_hook);
6892 return TRUE;
6893}
6894
6895/* Create an entry in an ELF linker hash table. */
6896
6897struct bfd_hash_entry *
6898_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6899 struct bfd_hash_table *table,
6900 const char *string)
6901{
6902 /* Allocate the structure if it has not already been allocated by a
6903 subclass. */
6904 if (entry == NULL)
6905 {
6906 entry = (struct bfd_hash_entry *)
6907 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6908 if (entry == NULL)
6909 return entry;
6910 }
6911
6912 /* Call the allocation method of the superclass. */
6913 entry = _bfd_link_hash_newfunc (entry, table, string);
6914 if (entry != NULL)
6915 {
6916 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6917 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6918
6919 /* Set local fields. */
6920 ret->indx = -1;
6921 ret->dynindx = -1;
6922 ret->got = htab->init_got_refcount;
6923 ret->plt = htab->init_plt_refcount;
6924 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6925 - offsetof (struct elf_link_hash_entry, size)));
6926 /* Assume that we have been called by a non-ELF symbol reader.
6927 This flag is then reset by the code which reads an ELF input
6928 file. This ensures that a symbol created by a non-ELF symbol
6929 reader will have the flag set correctly. */
6930 ret->non_elf = 1;
6931 }
6932
6933 return entry;
6934}
6935
6936/* Copy data from an indirect symbol to its direct symbol, hiding the
6937 old indirect symbol. Also used for copying flags to a weakdef. */
6938
6939void
6940_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6941 struct elf_link_hash_entry *dir,
6942 struct elf_link_hash_entry *ind)
6943{
6944 struct elf_link_hash_table *htab;
6945
6946 /* Copy down any references that we may have already seen to the
6947 symbol which just became indirect if DIR isn't a hidden versioned
6948 symbol. */
6949
6950 if (dir->versioned != versioned_hidden)
6951 {
6952 dir->ref_dynamic |= ind->ref_dynamic;
6953 dir->ref_regular |= ind->ref_regular;
6954 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6955 dir->non_got_ref |= ind->non_got_ref;
6956 dir->needs_plt |= ind->needs_plt;
6957 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6958 }
6959
6960 if (ind->root.type != bfd_link_hash_indirect)
6961 return;
6962
6963 /* Copy over the global and procedure linkage table refcount entries.
6964 These may have been already set up by a check_relocs routine. */
6965 htab = elf_hash_table (info);
6966 if (ind->got.refcount > htab->init_got_refcount.refcount)
6967 {
6968 if (dir->got.refcount < 0)
6969 dir->got.refcount = 0;
6970 dir->got.refcount += ind->got.refcount;
6971 ind->got.refcount = htab->init_got_refcount.refcount;
6972 }
6973
6974 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6975 {
6976 if (dir->plt.refcount < 0)
6977 dir->plt.refcount = 0;
6978 dir->plt.refcount += ind->plt.refcount;
6979 ind->plt.refcount = htab->init_plt_refcount.refcount;
6980 }
6981
6982 if (ind->dynindx != -1)
6983 {
6984 if (dir->dynindx != -1)
6985 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6986 dir->dynindx = ind->dynindx;
6987 dir->dynstr_index = ind->dynstr_index;
6988 ind->dynindx = -1;
6989 ind->dynstr_index = 0;
6990 }
6991}
6992
6993void
6994_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6995 struct elf_link_hash_entry *h,
6996 bfd_boolean force_local)
6997{
6998 /* STT_GNU_IFUNC symbol must go through PLT. */
6999 if (h->type != STT_GNU_IFUNC)
7000 {
7001 h->plt = elf_hash_table (info)->init_plt_offset;
7002 h->needs_plt = 0;
7003 }
7004 if (force_local)
7005 {
7006 h->forced_local = 1;
7007 if (h->dynindx != -1)
7008 {
7009 h->dynindx = -1;
7010 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7011 h->dynstr_index);
7012 }
7013 }
7014}
7015
7016/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7017 caller. */
7018
7019bfd_boolean
7020_bfd_elf_link_hash_table_init
7021 (struct elf_link_hash_table *table,
7022 bfd *abfd,
7023 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7024 struct bfd_hash_table *,
7025 const char *),
7026 unsigned int entsize,
7027 enum elf_target_id target_id)
7028{
7029 bfd_boolean ret;
7030 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7031
7032 table->init_got_refcount.refcount = can_refcount - 1;
7033 table->init_plt_refcount.refcount = can_refcount - 1;
7034 table->init_got_offset.offset = -(bfd_vma) 1;
7035 table->init_plt_offset.offset = -(bfd_vma) 1;
7036 /* The first dynamic symbol is a dummy. */
7037 table->dynsymcount = 1;
7038
7039 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7040
7041 table->root.type = bfd_link_elf_hash_table;
7042 table->hash_table_id = target_id;
7043
7044 return ret;
7045}
7046
7047/* Create an ELF linker hash table. */
7048
7049struct bfd_link_hash_table *
7050_bfd_elf_link_hash_table_create (bfd *abfd)
7051{
7052 struct elf_link_hash_table *ret;
7053 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7054
7055 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7056 if (ret == NULL)
7057 return NULL;
7058
7059 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7060 sizeof (struct elf_link_hash_entry),
7061 GENERIC_ELF_DATA))
7062 {
7063 free (ret);
7064 return NULL;
7065 }
7066 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7067
7068 return &ret->root;
7069}
7070
7071/* Destroy an ELF linker hash table. */
7072
7073void
7074_bfd_elf_link_hash_table_free (bfd *obfd)
7075{
7076 struct elf_link_hash_table *htab;
7077
7078 htab = (struct elf_link_hash_table *) obfd->link.hash;
7079 if (htab->dynstr != NULL)
7080 _bfd_elf_strtab_free (htab->dynstr);
7081 _bfd_merge_sections_free (htab->merge_info);
7082 _bfd_generic_link_hash_table_free (obfd);
7083}
7084
7085/* This is a hook for the ELF emulation code in the generic linker to
7086 tell the backend linker what file name to use for the DT_NEEDED
7087 entry for a dynamic object. */
7088
7089void
7090bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7091{
7092 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7093 && bfd_get_format (abfd) == bfd_object)
7094 elf_dt_name (abfd) = name;
7095}
7096
7097int
7098bfd_elf_get_dyn_lib_class (bfd *abfd)
7099{
7100 int lib_class;
7101 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7102 && bfd_get_format (abfd) == bfd_object)
7103 lib_class = elf_dyn_lib_class (abfd);
7104 else
7105 lib_class = 0;
7106 return lib_class;
7107}
7108
7109void
7110bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7111{
7112 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7113 && bfd_get_format (abfd) == bfd_object)
7114 elf_dyn_lib_class (abfd) = lib_class;
7115}
7116
7117/* Get the list of DT_NEEDED entries for a link. This is a hook for
7118 the linker ELF emulation code. */
7119
7120struct bfd_link_needed_list *
7121bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7122 struct bfd_link_info *info)
7123{
7124 if (! is_elf_hash_table (info->hash))
7125 return NULL;
7126 return elf_hash_table (info)->needed;
7127}
7128
7129/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7130 hook for the linker ELF emulation code. */
7131
7132struct bfd_link_needed_list *
7133bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7134 struct bfd_link_info *info)
7135{
7136 if (! is_elf_hash_table (info->hash))
7137 return NULL;
7138 return elf_hash_table (info)->runpath;
7139}
7140
7141/* Get the name actually used for a dynamic object for a link. This
7142 is the SONAME entry if there is one. Otherwise, it is the string
7143 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7144
7145const char *
7146bfd_elf_get_dt_soname (bfd *abfd)
7147{
7148 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7149 && bfd_get_format (abfd) == bfd_object)
7150 return elf_dt_name (abfd);
7151 return NULL;
7152}
7153
7154/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7155 the ELF linker emulation code. */
7156
7157bfd_boolean
7158bfd_elf_get_bfd_needed_list (bfd *abfd,
7159 struct bfd_link_needed_list **pneeded)
7160{
7161 asection *s;
7162 bfd_byte *dynbuf = NULL;
7163 unsigned int elfsec;
7164 unsigned long shlink;
7165 bfd_byte *extdyn, *extdynend;
7166 size_t extdynsize;
7167 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7168
7169 *pneeded = NULL;
7170
7171 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7172 || bfd_get_format (abfd) != bfd_object)
7173 return TRUE;
7174
7175 s = bfd_get_section_by_name (abfd, ".dynamic");
7176 if (s == NULL || s->size == 0)
7177 return TRUE;
7178
7179 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7180 goto error_return;
7181
7182 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7183 if (elfsec == SHN_BAD)
7184 goto error_return;
7185
7186 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7187
7188 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7189 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7190
7191 extdyn = dynbuf;
7192 extdynend = extdyn + s->size;
7193 for (; extdyn < extdynend; extdyn += extdynsize)
7194 {
7195 Elf_Internal_Dyn dyn;
7196
7197 (*swap_dyn_in) (abfd, extdyn, &dyn);
7198
7199 if (dyn.d_tag == DT_NULL)
7200 break;
7201
7202 if (dyn.d_tag == DT_NEEDED)
7203 {
7204 const char *string;
7205 struct bfd_link_needed_list *l;
7206 unsigned int tagv = dyn.d_un.d_val;
7207 bfd_size_type amt;
7208
7209 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7210 if (string == NULL)
7211 goto error_return;
7212
7213 amt = sizeof *l;
7214 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7215 if (l == NULL)
7216 goto error_return;
7217
7218 l->by = abfd;
7219 l->name = string;
7220 l->next = *pneeded;
7221 *pneeded = l;
7222 }
7223 }
7224
7225 free (dynbuf);
7226
7227 return TRUE;
7228
7229 error_return:
7230 if (dynbuf != NULL)
7231 free (dynbuf);
7232 return FALSE;
7233}
7234
7235struct elf_symbuf_symbol
7236{
7237 unsigned long st_name; /* Symbol name, index in string tbl */
7238 unsigned char st_info; /* Type and binding attributes */
7239 unsigned char st_other; /* Visibilty, and target specific */
7240};
7241
7242struct elf_symbuf_head
7243{
7244 struct elf_symbuf_symbol *ssym;
7245 bfd_size_type count;
7246 unsigned int st_shndx;
7247};
7248
7249struct elf_symbol
7250{
7251 union
7252 {
7253 Elf_Internal_Sym *isym;
7254 struct elf_symbuf_symbol *ssym;
7255 } u;
7256 const char *name;
7257};
7258
7259/* Sort references to symbols by ascending section number. */
7260
7261static int
7262elf_sort_elf_symbol (const void *arg1, const void *arg2)
7263{
7264 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7265 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7266
7267 return s1->st_shndx - s2->st_shndx;
7268}
7269
7270static int
7271elf_sym_name_compare (const void *arg1, const void *arg2)
7272{
7273 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7274 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7275 return strcmp (s1->name, s2->name);
7276}
7277
7278static struct elf_symbuf_head *
7279elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7280{
7281 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7282 struct elf_symbuf_symbol *ssym;
7283 struct elf_symbuf_head *ssymbuf, *ssymhead;
7284 bfd_size_type i, shndx_count, total_size;
7285
7286 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7287 if (indbuf == NULL)
7288 return NULL;
7289
7290 for (ind = indbuf, i = 0; i < symcount; i++)
7291 if (isymbuf[i].st_shndx != SHN_UNDEF)
7292 *ind++ = &isymbuf[i];
7293 indbufend = ind;
7294
7295 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7296 elf_sort_elf_symbol);
7297
7298 shndx_count = 0;
7299 if (indbufend > indbuf)
7300 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7301 if (ind[0]->st_shndx != ind[1]->st_shndx)
7302 shndx_count++;
7303
7304 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7305 + (indbufend - indbuf) * sizeof (*ssym));
7306 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7307 if (ssymbuf == NULL)
7308 {
7309 free (indbuf);
7310 return NULL;
7311 }
7312
7313 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7314 ssymbuf->ssym = NULL;
7315 ssymbuf->count = shndx_count;
7316 ssymbuf->st_shndx = 0;
7317 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7318 {
7319 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7320 {
7321 ssymhead++;
7322 ssymhead->ssym = ssym;
7323 ssymhead->count = 0;
7324 ssymhead->st_shndx = (*ind)->st_shndx;
7325 }
7326 ssym->st_name = (*ind)->st_name;
7327 ssym->st_info = (*ind)->st_info;
7328 ssym->st_other = (*ind)->st_other;
7329 ssymhead->count++;
7330 }
7331 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7332 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7333 == total_size));
7334
7335 free (indbuf);
7336 return ssymbuf;
7337}
7338
7339/* Check if 2 sections define the same set of local and global
7340 symbols. */
7341
7342static bfd_boolean
7343bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7344 struct bfd_link_info *info)
7345{
7346 bfd *bfd1, *bfd2;
7347 const struct elf_backend_data *bed1, *bed2;
7348 Elf_Internal_Shdr *hdr1, *hdr2;
7349 bfd_size_type symcount1, symcount2;
7350 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7351 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7352 Elf_Internal_Sym *isym, *isymend;
7353 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7354 bfd_size_type count1, count2, i;
7355 unsigned int shndx1, shndx2;
7356 bfd_boolean result;
7357
7358 bfd1 = sec1->owner;
7359 bfd2 = sec2->owner;
7360
7361 /* Both sections have to be in ELF. */
7362 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7363 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7364 return FALSE;
7365
7366 if (elf_section_type (sec1) != elf_section_type (sec2))
7367 return FALSE;
7368
7369 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7370 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7371 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7372 return FALSE;
7373
7374 bed1 = get_elf_backend_data (bfd1);
7375 bed2 = get_elf_backend_data (bfd2);
7376 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7377 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7378 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7379 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7380
7381 if (symcount1 == 0 || symcount2 == 0)
7382 return FALSE;
7383
7384 result = FALSE;
7385 isymbuf1 = NULL;
7386 isymbuf2 = NULL;
7387 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7388 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7389
7390 if (ssymbuf1 == NULL)
7391 {
7392 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7393 NULL, NULL, NULL);
7394 if (isymbuf1 == NULL)
7395 goto done;
7396
7397 if (!info->reduce_memory_overheads)
7398 elf_tdata (bfd1)->symbuf = ssymbuf1
7399 = elf_create_symbuf (symcount1, isymbuf1);
7400 }
7401
7402 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7403 {
7404 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7405 NULL, NULL, NULL);
7406 if (isymbuf2 == NULL)
7407 goto done;
7408
7409 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7410 elf_tdata (bfd2)->symbuf = ssymbuf2
7411 = elf_create_symbuf (symcount2, isymbuf2);
7412 }
7413
7414 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7415 {
7416 /* Optimized faster version. */
7417 bfd_size_type lo, hi, mid;
7418 struct elf_symbol *symp;
7419 struct elf_symbuf_symbol *ssym, *ssymend;
7420
7421 lo = 0;
7422 hi = ssymbuf1->count;
7423 ssymbuf1++;
7424 count1 = 0;
7425 while (lo < hi)
7426 {
7427 mid = (lo + hi) / 2;
7428 if (shndx1 < ssymbuf1[mid].st_shndx)
7429 hi = mid;
7430 else if (shndx1 > ssymbuf1[mid].st_shndx)
7431 lo = mid + 1;
7432 else
7433 {
7434 count1 = ssymbuf1[mid].count;
7435 ssymbuf1 += mid;
7436 break;
7437 }
7438 }
7439
7440 lo = 0;
7441 hi = ssymbuf2->count;
7442 ssymbuf2++;
7443 count2 = 0;
7444 while (lo < hi)
7445 {
7446 mid = (lo + hi) / 2;
7447 if (shndx2 < ssymbuf2[mid].st_shndx)
7448 hi = mid;
7449 else if (shndx2 > ssymbuf2[mid].st_shndx)
7450 lo = mid + 1;
7451 else
7452 {
7453 count2 = ssymbuf2[mid].count;
7454 ssymbuf2 += mid;
7455 break;
7456 }
7457 }
7458
7459 if (count1 == 0 || count2 == 0 || count1 != count2)
7460 goto done;
7461
7462 symtable1
7463 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7464 symtable2
7465 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7466 if (symtable1 == NULL || symtable2 == NULL)
7467 goto done;
7468
7469 symp = symtable1;
7470 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7471 ssym < ssymend; ssym++, symp++)
7472 {
7473 symp->u.ssym = ssym;
7474 symp->name = bfd_elf_string_from_elf_section (bfd1,
7475 hdr1->sh_link,
7476 ssym->st_name);
7477 }
7478
7479 symp = symtable2;
7480 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7481 ssym < ssymend; ssym++, symp++)
7482 {
7483 symp->u.ssym = ssym;
7484 symp->name = bfd_elf_string_from_elf_section (bfd2,
7485 hdr2->sh_link,
7486 ssym->st_name);
7487 }
7488
7489 /* Sort symbol by name. */
7490 qsort (symtable1, count1, sizeof (struct elf_symbol),
7491 elf_sym_name_compare);
7492 qsort (symtable2, count1, sizeof (struct elf_symbol),
7493 elf_sym_name_compare);
7494
7495 for (i = 0; i < count1; i++)
7496 /* Two symbols must have the same binding, type and name. */
7497 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7498 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7499 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7500 goto done;
7501
7502 result = TRUE;
7503 goto done;
7504 }
7505
7506 symtable1 = (struct elf_symbol *)
7507 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7508 symtable2 = (struct elf_symbol *)
7509 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7510 if (symtable1 == NULL || symtable2 == NULL)
7511 goto done;
7512
7513 /* Count definitions in the section. */
7514 count1 = 0;
7515 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7516 if (isym->st_shndx == shndx1)
7517 symtable1[count1++].u.isym = isym;
7518
7519 count2 = 0;
7520 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7521 if (isym->st_shndx == shndx2)
7522 symtable2[count2++].u.isym = isym;
7523
7524 if (count1 == 0 || count2 == 0 || count1 != count2)
7525 goto done;
7526
7527 for (i = 0; i < count1; i++)
7528 symtable1[i].name
7529 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7530 symtable1[i].u.isym->st_name);
7531
7532 for (i = 0; i < count2; i++)
7533 symtable2[i].name
7534 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7535 symtable2[i].u.isym->st_name);
7536
7537 /* Sort symbol by name. */
7538 qsort (symtable1, count1, sizeof (struct elf_symbol),
7539 elf_sym_name_compare);
7540 qsort (symtable2, count1, sizeof (struct elf_symbol),
7541 elf_sym_name_compare);
7542
7543 for (i = 0; i < count1; i++)
7544 /* Two symbols must have the same binding, type and name. */
7545 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7546 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7547 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7548 goto done;
7549
7550 result = TRUE;
7551
7552done:
7553 if (symtable1)
7554 free (symtable1);
7555 if (symtable2)
7556 free (symtable2);
7557 if (isymbuf1)
7558 free (isymbuf1);
7559 if (isymbuf2)
7560 free (isymbuf2);
7561
7562 return result;
7563}
7564
7565/* Return TRUE if 2 section types are compatible. */
7566
7567bfd_boolean
7568_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7569 bfd *bbfd, const asection *bsec)
7570{
7571 if (asec == NULL
7572 || bsec == NULL
7573 || abfd->xvec->flavour != bfd_target_elf_flavour
7574 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7575 return TRUE;
7576
7577 return elf_section_type (asec) == elf_section_type (bsec);
7578}
7579\f
7580/* Final phase of ELF linker. */
7581
7582/* A structure we use to avoid passing large numbers of arguments. */
7583
7584struct elf_final_link_info
7585{
7586 /* General link information. */
7587 struct bfd_link_info *info;
7588 /* Output BFD. */
7589 bfd *output_bfd;
7590 /* Symbol string table. */
7591 struct elf_strtab_hash *symstrtab;
7592 /* .hash section. */
7593 asection *hash_sec;
7594 /* symbol version section (.gnu.version). */
7595 asection *symver_sec;
7596 /* Buffer large enough to hold contents of any section. */
7597 bfd_byte *contents;
7598 /* Buffer large enough to hold external relocs of any section. */
7599 void *external_relocs;
7600 /* Buffer large enough to hold internal relocs of any section. */
7601 Elf_Internal_Rela *internal_relocs;
7602 /* Buffer large enough to hold external local symbols of any input
7603 BFD. */
7604 bfd_byte *external_syms;
7605 /* And a buffer for symbol section indices. */
7606 Elf_External_Sym_Shndx *locsym_shndx;
7607 /* Buffer large enough to hold internal local symbols of any input
7608 BFD. */
7609 Elf_Internal_Sym *internal_syms;
7610 /* Array large enough to hold a symbol index for each local symbol
7611 of any input BFD. */
7612 long *indices;
7613 /* Array large enough to hold a section pointer for each local
7614 symbol of any input BFD. */
7615 asection **sections;
7616 /* Buffer for SHT_SYMTAB_SHNDX section. */
7617 Elf_External_Sym_Shndx *symshndxbuf;
7618 /* Number of STT_FILE syms seen. */
7619 size_t filesym_count;
7620};
7621
7622/* This struct is used to pass information to elf_link_output_extsym. */
7623
7624struct elf_outext_info
7625{
7626 bfd_boolean failed;
7627 bfd_boolean localsyms;
7628 bfd_boolean file_sym_done;
7629 struct elf_final_link_info *flinfo;
7630};
7631
7632
7633/* Support for evaluating a complex relocation.
7634
7635 Complex relocations are generalized, self-describing relocations. The
7636 implementation of them consists of two parts: complex symbols, and the
7637 relocations themselves.
7638
7639 The relocations are use a reserved elf-wide relocation type code (R_RELC
7640 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7641 information (start bit, end bit, word width, etc) into the addend. This
7642 information is extracted from CGEN-generated operand tables within gas.
7643
7644 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7645 internal) representing prefix-notation expressions, including but not
7646 limited to those sorts of expressions normally encoded as addends in the
7647 addend field. The symbol mangling format is:
7648
7649 <node> := <literal>
7650 | <unary-operator> ':' <node>
7651 | <binary-operator> ':' <node> ':' <node>
7652 ;
7653
7654 <literal> := 's' <digits=N> ':' <N character symbol name>
7655 | 'S' <digits=N> ':' <N character section name>
7656 | '#' <hexdigits>
7657 ;
7658
7659 <binary-operator> := as in C
7660 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7661
7662static void
7663set_symbol_value (bfd *bfd_with_globals,
7664 Elf_Internal_Sym *isymbuf,
7665 size_t locsymcount,
7666 size_t symidx,
7667 bfd_vma val)
7668{
7669 struct elf_link_hash_entry **sym_hashes;
7670 struct elf_link_hash_entry *h;
7671 size_t extsymoff = locsymcount;
7672
7673 if (symidx < locsymcount)
7674 {
7675 Elf_Internal_Sym *sym;
7676
7677 sym = isymbuf + symidx;
7678 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7679 {
7680 /* It is a local symbol: move it to the
7681 "absolute" section and give it a value. */
7682 sym->st_shndx = SHN_ABS;
7683 sym->st_value = val;
7684 return;
7685 }
7686 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7687 extsymoff = 0;
7688 }
7689
7690 /* It is a global symbol: set its link type
7691 to "defined" and give it a value. */
7692
7693 sym_hashes = elf_sym_hashes (bfd_with_globals);
7694 h = sym_hashes [symidx - extsymoff];
7695 while (h->root.type == bfd_link_hash_indirect
7696 || h->root.type == bfd_link_hash_warning)
7697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7698 h->root.type = bfd_link_hash_defined;
7699 h->root.u.def.value = val;
7700 h->root.u.def.section = bfd_abs_section_ptr;
7701}
7702
7703static bfd_boolean
7704resolve_symbol (const char *name,
7705 bfd *input_bfd,
7706 struct elf_final_link_info *flinfo,
7707 bfd_vma *result,
7708 Elf_Internal_Sym *isymbuf,
7709 size_t locsymcount)
7710{
7711 Elf_Internal_Sym *sym;
7712 struct bfd_link_hash_entry *global_entry;
7713 const char *candidate = NULL;
7714 Elf_Internal_Shdr *symtab_hdr;
7715 size_t i;
7716
7717 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7718
7719 for (i = 0; i < locsymcount; ++ i)
7720 {
7721 sym = isymbuf + i;
7722
7723 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7724 continue;
7725
7726 candidate = bfd_elf_string_from_elf_section (input_bfd,
7727 symtab_hdr->sh_link,
7728 sym->st_name);
7729#ifdef DEBUG
7730 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7731 name, candidate, (unsigned long) sym->st_value);
7732#endif
7733 if (candidate && strcmp (candidate, name) == 0)
7734 {
7735 asection *sec = flinfo->sections [i];
7736
7737 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7738 *result += sec->output_offset + sec->output_section->vma;
7739#ifdef DEBUG
7740 printf ("Found symbol with value %8.8lx\n",
7741 (unsigned long) *result);
7742#endif
7743 return TRUE;
7744 }
7745 }
7746
7747 /* Hmm, haven't found it yet. perhaps it is a global. */
7748 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7749 FALSE, FALSE, TRUE);
7750 if (!global_entry)
7751 return FALSE;
7752
7753 if (global_entry->type == bfd_link_hash_defined
7754 || global_entry->type == bfd_link_hash_defweak)
7755 {
7756 *result = (global_entry->u.def.value
7757 + global_entry->u.def.section->output_section->vma
7758 + global_entry->u.def.section->output_offset);
7759#ifdef DEBUG
7760 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7761 global_entry->root.string, (unsigned long) *result);
7762#endif
7763 return TRUE;
7764 }
7765
7766 return FALSE;
7767}
7768
7769/* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7770 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7771 names like "foo.end" which is the end address of section "foo". */
7772
7773static bfd_boolean
7774resolve_section (const char *name,
7775 asection *sections,
7776 bfd_vma *result,
7777 bfd * abfd)
7778{
7779 asection *curr;
7780 unsigned int len;
7781
7782 for (curr = sections; curr; curr = curr->next)
7783 if (strcmp (curr->name, name) == 0)
7784 {
7785 *result = curr->vma;
7786 return TRUE;
7787 }
7788
7789 /* Hmm. still haven't found it. try pseudo-section names. */
7790 /* FIXME: This could be coded more efficiently... */
7791 for (curr = sections; curr; curr = curr->next)
7792 {
7793 len = strlen (curr->name);
7794 if (len > strlen (name))
7795 continue;
7796
7797 if (strncmp (curr->name, name, len) == 0)
7798 {
7799 if (strncmp (".end", name + len, 4) == 0)
7800 {
7801 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7802 return TRUE;
7803 }
7804
7805 /* Insert more pseudo-section names here, if you like. */
7806 }
7807 }
7808
7809 return FALSE;
7810}
7811
7812static void
7813undefined_reference (const char *reftype, const char *name)
7814{
7815 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7816 reftype, name);
7817}
7818
7819static bfd_boolean
7820eval_symbol (bfd_vma *result,
7821 const char **symp,
7822 bfd *input_bfd,
7823 struct elf_final_link_info *flinfo,
7824 bfd_vma dot,
7825 Elf_Internal_Sym *isymbuf,
7826 size_t locsymcount,
7827 int signed_p)
7828{
7829 size_t len;
7830 size_t symlen;
7831 bfd_vma a;
7832 bfd_vma b;
7833 char symbuf[4096];
7834 const char *sym = *symp;
7835 const char *symend;
7836 bfd_boolean symbol_is_section = FALSE;
7837
7838 len = strlen (sym);
7839 symend = sym + len;
7840
7841 if (len < 1 || len > sizeof (symbuf))
7842 {
7843 bfd_set_error (bfd_error_invalid_operation);
7844 return FALSE;
7845 }
7846
7847 switch (* sym)
7848 {
7849 case '.':
7850 *result = dot;
7851 *symp = sym + 1;
7852 return TRUE;
7853
7854 case '#':
7855 ++sym;
7856 *result = strtoul (sym, (char **) symp, 16);
7857 return TRUE;
7858
7859 case 'S':
7860 symbol_is_section = TRUE;
7861 case 's':
7862 ++sym;
7863 symlen = strtol (sym, (char **) symp, 10);
7864 sym = *symp + 1; /* Skip the trailing ':'. */
7865
7866 if (symend < sym || symlen + 1 > sizeof (symbuf))
7867 {
7868 bfd_set_error (bfd_error_invalid_operation);
7869 return FALSE;
7870 }
7871
7872 memcpy (symbuf, sym, symlen);
7873 symbuf[symlen] = '\0';
7874 *symp = sym + symlen;
7875
7876 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7877 the symbol as a section, or vice-versa. so we're pretty liberal in our
7878 interpretation here; section means "try section first", not "must be a
7879 section", and likewise with symbol. */
7880
7881 if (symbol_is_section)
7882 {
7883 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7884 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7885 isymbuf, locsymcount))
7886 {
7887 undefined_reference ("section", symbuf);
7888 return FALSE;
7889 }
7890 }
7891 else
7892 {
7893 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7894 isymbuf, locsymcount)
7895 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7896 result, input_bfd))
7897 {
7898 undefined_reference ("symbol", symbuf);
7899 return FALSE;
7900 }
7901 }
7902
7903 return TRUE;
7904
7905 /* All that remains are operators. */
7906
7907#define UNARY_OP(op) \
7908 if (strncmp (sym, #op, strlen (#op)) == 0) \
7909 { \
7910 sym += strlen (#op); \
7911 if (*sym == ':') \
7912 ++sym; \
7913 *symp = sym; \
7914 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7915 isymbuf, locsymcount, signed_p)) \
7916 return FALSE; \
7917 if (signed_p) \
7918 *result = op ((bfd_signed_vma) a); \
7919 else \
7920 *result = op a; \
7921 return TRUE; \
7922 }
7923
7924#define BINARY_OP(op) \
7925 if (strncmp (sym, #op, strlen (#op)) == 0) \
7926 { \
7927 sym += strlen (#op); \
7928 if (*sym == ':') \
7929 ++sym; \
7930 *symp = sym; \
7931 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7932 isymbuf, locsymcount, signed_p)) \
7933 return FALSE; \
7934 ++*symp; \
7935 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7936 isymbuf, locsymcount, signed_p)) \
7937 return FALSE; \
7938 if (signed_p) \
7939 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7940 else \
7941 *result = a op b; \
7942 return TRUE; \
7943 }
7944
7945 default:
7946 UNARY_OP (0-);
7947 BINARY_OP (<<);
7948 BINARY_OP (>>);
7949 BINARY_OP (==);
7950 BINARY_OP (!=);
7951 BINARY_OP (<=);
7952 BINARY_OP (>=);
7953 BINARY_OP (&&);
7954 BINARY_OP (||);
7955 UNARY_OP (~);
7956 UNARY_OP (!);
7957 BINARY_OP (*);
7958 BINARY_OP (/);
7959 BINARY_OP (%);
7960 BINARY_OP (^);
7961 BINARY_OP (|);
7962 BINARY_OP (&);
7963 BINARY_OP (+);
7964 BINARY_OP (-);
7965 BINARY_OP (<);
7966 BINARY_OP (>);
7967#undef UNARY_OP
7968#undef BINARY_OP
7969 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7970 bfd_set_error (bfd_error_invalid_operation);
7971 return FALSE;
7972 }
7973}
7974
7975static void
7976put_value (bfd_vma size,
7977 unsigned long chunksz,
7978 bfd *input_bfd,
7979 bfd_vma x,
7980 bfd_byte *location)
7981{
7982 location += (size - chunksz);
7983
7984 for (; size; size -= chunksz, location -= chunksz)
7985 {
7986 switch (chunksz)
7987 {
7988 case 1:
7989 bfd_put_8 (input_bfd, x, location);
7990 x >>= 8;
7991 break;
7992 case 2:
7993 bfd_put_16 (input_bfd, x, location);
7994 x >>= 16;
7995 break;
7996 case 4:
7997 bfd_put_32 (input_bfd, x, location);
7998 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7999 x >>= 16;
8000 x >>= 16;
8001 break;
8002#ifdef BFD64
8003 case 8:
8004 bfd_put_64 (input_bfd, x, location);
8005 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8006 x >>= 32;
8007 x >>= 32;
8008 break;
8009#endif
8010 default:
8011 abort ();
8012 break;
8013 }
8014 }
8015}
8016
8017static bfd_vma
8018get_value (bfd_vma size,
8019 unsigned long chunksz,
8020 bfd *input_bfd,
8021 bfd_byte *location)
8022{
8023 int shift;
8024 bfd_vma x = 0;
8025
8026 /* Sanity checks. */
8027 BFD_ASSERT (chunksz <= sizeof (x)
8028 && size >= chunksz
8029 && chunksz != 0
8030 && (size % chunksz) == 0
8031 && input_bfd != NULL
8032 && location != NULL);
8033
8034 if (chunksz == sizeof (x))
8035 {
8036 BFD_ASSERT (size == chunksz);
8037
8038 /* Make sure that we do not perform an undefined shift operation.
8039 We know that size == chunksz so there will only be one iteration
8040 of the loop below. */
8041 shift = 0;
8042 }
8043 else
8044 shift = 8 * chunksz;
8045
8046 for (; size; size -= chunksz, location += chunksz)
8047 {
8048 switch (chunksz)
8049 {
8050 case 1:
8051 x = (x << shift) | bfd_get_8 (input_bfd, location);
8052 break;
8053 case 2:
8054 x = (x << shift) | bfd_get_16 (input_bfd, location);
8055 break;
8056 case 4:
8057 x = (x << shift) | bfd_get_32 (input_bfd, location);
8058 break;
8059#ifdef BFD64
8060 case 8:
8061 x = (x << shift) | bfd_get_64 (input_bfd, location);
8062 break;
8063#endif
8064 default:
8065 abort ();
8066 }
8067 }
8068 return x;
8069}
8070
8071static void
8072decode_complex_addend (unsigned long *start, /* in bits */
8073 unsigned long *oplen, /* in bits */
8074 unsigned long *len, /* in bits */
8075 unsigned long *wordsz, /* in bytes */
8076 unsigned long *chunksz, /* in bytes */
8077 unsigned long *lsb0_p,
8078 unsigned long *signed_p,
8079 unsigned long *trunc_p,
8080 unsigned long encoded)
8081{
8082 * start = encoded & 0x3F;
8083 * len = (encoded >> 6) & 0x3F;
8084 * oplen = (encoded >> 12) & 0x3F;
8085 * wordsz = (encoded >> 18) & 0xF;
8086 * chunksz = (encoded >> 22) & 0xF;
8087 * lsb0_p = (encoded >> 27) & 1;
8088 * signed_p = (encoded >> 28) & 1;
8089 * trunc_p = (encoded >> 29) & 1;
8090}
8091
8092bfd_reloc_status_type
8093bfd_elf_perform_complex_relocation (bfd *input_bfd,
8094 asection *input_section ATTRIBUTE_UNUSED,
8095 bfd_byte *contents,
8096 Elf_Internal_Rela *rel,
8097 bfd_vma relocation)
8098{
8099 bfd_vma shift, x, mask;
8100 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8101 bfd_reloc_status_type r;
8102
8103 /* Perform this reloc, since it is complex.
8104 (this is not to say that it necessarily refers to a complex
8105 symbol; merely that it is a self-describing CGEN based reloc.
8106 i.e. the addend has the complete reloc information (bit start, end,
8107 word size, etc) encoded within it.). */
8108
8109 decode_complex_addend (&start, &oplen, &len, &wordsz,
8110 &chunksz, &lsb0_p, &signed_p,
8111 &trunc_p, rel->r_addend);
8112
8113 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8114
8115 if (lsb0_p)
8116 shift = (start + 1) - len;
8117 else
8118 shift = (8 * wordsz) - (start + len);
8119
8120 x = get_value (wordsz, chunksz, input_bfd,
8121 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8122
8123#ifdef DEBUG
8124 printf ("Doing complex reloc: "
8125 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8126 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8127 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8128 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8129 oplen, (unsigned long) x, (unsigned long) mask,
8130 (unsigned long) relocation);
8131#endif
8132
8133 r = bfd_reloc_ok;
8134 if (! trunc_p)
8135 /* Now do an overflow check. */
8136 r = bfd_check_overflow ((signed_p
8137 ? complain_overflow_signed
8138 : complain_overflow_unsigned),
8139 len, 0, (8 * wordsz),
8140 relocation);
8141
8142 /* Do the deed. */
8143 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8144
8145#ifdef DEBUG
8146 printf (" relocation: %8.8lx\n"
8147 " shifted mask: %8.8lx\n"
8148 " shifted/masked reloc: %8.8lx\n"
8149 " result: %8.8lx\n",
8150 (unsigned long) relocation, (unsigned long) (mask << shift),
8151 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8152#endif
8153 put_value (wordsz, chunksz, input_bfd, x,
8154 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8155 return r;
8156}
8157
8158/* Functions to read r_offset from external (target order) reloc
8159 entry. Faster than bfd_getl32 et al, because we let the compiler
8160 know the value is aligned. */
8161
8162static bfd_vma
8163ext32l_r_offset (const void *p)
8164{
8165 union aligned32
8166 {
8167 uint32_t v;
8168 unsigned char c[4];
8169 };
8170 const union aligned32 *a
8171 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8172
8173 uint32_t aval = ( (uint32_t) a->c[0]
8174 | (uint32_t) a->c[1] << 8
8175 | (uint32_t) a->c[2] << 16
8176 | (uint32_t) a->c[3] << 24);
8177 return aval;
8178}
8179
8180static bfd_vma
8181ext32b_r_offset (const void *p)
8182{
8183 union aligned32
8184 {
8185 uint32_t v;
8186 unsigned char c[4];
8187 };
8188 const union aligned32 *a
8189 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8190
8191 uint32_t aval = ( (uint32_t) a->c[0] << 24
8192 | (uint32_t) a->c[1] << 16
8193 | (uint32_t) a->c[2] << 8
8194 | (uint32_t) a->c[3]);
8195 return aval;
8196}
8197
8198#ifdef BFD_HOST_64_BIT
8199static bfd_vma
8200ext64l_r_offset (const void *p)
8201{
8202 union aligned64
8203 {
8204 uint64_t v;
8205 unsigned char c[8];
8206 };
8207 const union aligned64 *a
8208 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8209
8210 uint64_t aval = ( (uint64_t) a->c[0]
8211 | (uint64_t) a->c[1] << 8
8212 | (uint64_t) a->c[2] << 16
8213 | (uint64_t) a->c[3] << 24
8214 | (uint64_t) a->c[4] << 32
8215 | (uint64_t) a->c[5] << 40
8216 | (uint64_t) a->c[6] << 48
8217 | (uint64_t) a->c[7] << 56);
8218 return aval;
8219}
8220
8221static bfd_vma
8222ext64b_r_offset (const void *p)
8223{
8224 union aligned64
8225 {
8226 uint64_t v;
8227 unsigned char c[8];
8228 };
8229 const union aligned64 *a
8230 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8231
8232 uint64_t aval = ( (uint64_t) a->c[0] << 56
8233 | (uint64_t) a->c[1] << 48
8234 | (uint64_t) a->c[2] << 40
8235 | (uint64_t) a->c[3] << 32
8236 | (uint64_t) a->c[4] << 24
8237 | (uint64_t) a->c[5] << 16
8238 | (uint64_t) a->c[6] << 8
8239 | (uint64_t) a->c[7]);
8240 return aval;
8241}
8242#endif
8243
8244/* When performing a relocatable link, the input relocations are
8245 preserved. But, if they reference global symbols, the indices
8246 referenced must be updated. Update all the relocations found in
8247 RELDATA. */
8248
8249static bfd_boolean
8250elf_link_adjust_relocs (bfd *abfd,
8251 struct bfd_elf_section_reloc_data *reldata,
8252 bfd_boolean sort)
8253{
8254 unsigned int i;
8255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8256 bfd_byte *erela;
8257 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8258 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8259 bfd_vma r_type_mask;
8260 int r_sym_shift;
8261 unsigned int count = reldata->count;
8262 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8263
8264 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8265 {
8266 swap_in = bed->s->swap_reloc_in;
8267 swap_out = bed->s->swap_reloc_out;
8268 }
8269 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8270 {
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8273 }
8274 else
8275 abort ();
8276
8277 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8278 abort ();
8279
8280 if (bed->s->arch_size == 32)
8281 {
8282 r_type_mask = 0xff;
8283 r_sym_shift = 8;
8284 }
8285 else
8286 {
8287 r_type_mask = 0xffffffff;
8288 r_sym_shift = 32;
8289 }
8290
8291 erela = reldata->hdr->contents;
8292 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8293 {
8294 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8295 unsigned int j;
8296
8297 if (*rel_hash == NULL)
8298 continue;
8299
8300 BFD_ASSERT ((*rel_hash)->indx >= 0);
8301
8302 (*swap_in) (abfd, erela, irela);
8303 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8304 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8305 | (irela[j].r_info & r_type_mask));
8306 (*swap_out) (abfd, irela, erela);
8307 }
8308
8309 if (sort && count != 0)
8310 {
8311 bfd_vma (*ext_r_off) (const void *);
8312 bfd_vma r_off;
8313 size_t elt_size;
8314 bfd_byte *base, *end, *p, *loc;
8315 bfd_byte *buf = NULL;
8316
8317 if (bed->s->arch_size == 32)
8318 {
8319 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8320 ext_r_off = ext32l_r_offset;
8321 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8322 ext_r_off = ext32b_r_offset;
8323 else
8324 abort ();
8325 }
8326 else
8327 {
8328#ifdef BFD_HOST_64_BIT
8329 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8330 ext_r_off = ext64l_r_offset;
8331 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8332 ext_r_off = ext64b_r_offset;
8333 else
8334#endif
8335 abort ();
8336 }
8337
8338 /* Must use a stable sort here. A modified insertion sort,
8339 since the relocs are mostly sorted already. */
8340 elt_size = reldata->hdr->sh_entsize;
8341 base = reldata->hdr->contents;
8342 end = base + count * elt_size;
8343 if (elt_size > sizeof (Elf64_External_Rela))
8344 abort ();
8345
8346 /* Ensure the first element is lowest. This acts as a sentinel,
8347 speeding the main loop below. */
8348 r_off = (*ext_r_off) (base);
8349 for (p = loc = base; (p += elt_size) < end; )
8350 {
8351 bfd_vma r_off2 = (*ext_r_off) (p);
8352 if (r_off > r_off2)
8353 {
8354 r_off = r_off2;
8355 loc = p;
8356 }
8357 }
8358 if (loc != base)
8359 {
8360 /* Don't just swap *base and *loc as that changes the order
8361 of the original base[0] and base[1] if they happen to
8362 have the same r_offset. */
8363 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8364 memcpy (onebuf, loc, elt_size);
8365 memmove (base + elt_size, base, loc - base);
8366 memcpy (base, onebuf, elt_size);
8367 }
8368
8369 for (p = base + elt_size; (p += elt_size) < end; )
8370 {
8371 /* base to p is sorted, *p is next to insert. */
8372 r_off = (*ext_r_off) (p);
8373 /* Search the sorted region for location to insert. */
8374 loc = p - elt_size;
8375 while (r_off < (*ext_r_off) (loc))
8376 loc -= elt_size;
8377 loc += elt_size;
8378 if (loc != p)
8379 {
8380 /* Chances are there is a run of relocs to insert here,
8381 from one of more input files. Files are not always
8382 linked in order due to the way elf_link_input_bfd is
8383 called. See pr17666. */
8384 size_t sortlen = p - loc;
8385 bfd_vma r_off2 = (*ext_r_off) (loc);
8386 size_t runlen = elt_size;
8387 size_t buf_size = 96 * 1024;
8388 while (p + runlen < end
8389 && (sortlen <= buf_size
8390 || runlen + elt_size <= buf_size)
8391 && r_off2 > (*ext_r_off) (p + runlen))
8392 runlen += elt_size;
8393 if (buf == NULL)
8394 {
8395 buf = bfd_malloc (buf_size);
8396 if (buf == NULL)
8397 return FALSE;
8398 }
8399 if (runlen < sortlen)
8400 {
8401 memcpy (buf, p, runlen);
8402 memmove (loc + runlen, loc, sortlen);
8403 memcpy (loc, buf, runlen);
8404 }
8405 else
8406 {
8407 memcpy (buf, loc, sortlen);
8408 memmove (loc, p, runlen);
8409 memcpy (loc + runlen, buf, sortlen);
8410 }
8411 p += runlen - elt_size;
8412 }
8413 }
8414 /* Hashes are no longer valid. */
8415 free (reldata->hashes);
8416 reldata->hashes = NULL;
8417 free (buf);
8418 }
8419 return TRUE;
8420}
8421
8422struct elf_link_sort_rela
8423{
8424 union {
8425 bfd_vma offset;
8426 bfd_vma sym_mask;
8427 } u;
8428 enum elf_reloc_type_class type;
8429 /* We use this as an array of size int_rels_per_ext_rel. */
8430 Elf_Internal_Rela rela[1];
8431};
8432
8433static int
8434elf_link_sort_cmp1 (const void *A, const void *B)
8435{
8436 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8437 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8438 int relativea, relativeb;
8439
8440 relativea = a->type == reloc_class_relative;
8441 relativeb = b->type == reloc_class_relative;
8442
8443 if (relativea < relativeb)
8444 return 1;
8445 if (relativea > relativeb)
8446 return -1;
8447 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8448 return -1;
8449 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8450 return 1;
8451 if (a->rela->r_offset < b->rela->r_offset)
8452 return -1;
8453 if (a->rela->r_offset > b->rela->r_offset)
8454 return 1;
8455 return 0;
8456}
8457
8458static int
8459elf_link_sort_cmp2 (const void *A, const void *B)
8460{
8461 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8462 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8463
8464 if (a->type < b->type)
8465 return -1;
8466 if (a->type > b->type)
8467 return 1;
8468 if (a->u.offset < b->u.offset)
8469 return -1;
8470 if (a->u.offset > b->u.offset)
8471 return 1;
8472 if (a->rela->r_offset < b->rela->r_offset)
8473 return -1;
8474 if (a->rela->r_offset > b->rela->r_offset)
8475 return 1;
8476 return 0;
8477}
8478
8479static size_t
8480elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8481{
8482 asection *dynamic_relocs;
8483 asection *rela_dyn;
8484 asection *rel_dyn;
8485 bfd_size_type count, size;
8486 size_t i, ret, sort_elt, ext_size;
8487 bfd_byte *sort, *s_non_relative, *p;
8488 struct elf_link_sort_rela *sq;
8489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8490 int i2e = bed->s->int_rels_per_ext_rel;
8491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8492 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8493 struct bfd_link_order *lo;
8494 bfd_vma r_sym_mask;
8495 bfd_boolean use_rela;
8496
8497 /* Find a dynamic reloc section. */
8498 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8499 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8500 if (rela_dyn != NULL && rela_dyn->size > 0
8501 && rel_dyn != NULL && rel_dyn->size > 0)
8502 {
8503 bfd_boolean use_rela_initialised = FALSE;
8504
8505 /* This is just here to stop gcc from complaining.
8506 It's initialization checking code is not perfect. */
8507 use_rela = TRUE;
8508
8509 /* Both sections are present. Examine the sizes
8510 of the indirect sections to help us choose. */
8511 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8512 if (lo->type == bfd_indirect_link_order)
8513 {
8514 asection *o = lo->u.indirect.section;
8515
8516 if ((o->size % bed->s->sizeof_rela) == 0)
8517 {
8518 if ((o->size % bed->s->sizeof_rel) == 0)
8519 /* Section size is divisible by both rel and rela sizes.
8520 It is of no help to us. */
8521 ;
8522 else
8523 {
8524 /* Section size is only divisible by rela. */
8525 if (use_rela_initialised && (use_rela == FALSE))
8526 {
8527 _bfd_error_handler
8528 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8529 bfd_set_error (bfd_error_invalid_operation);
8530 return 0;
8531 }
8532 else
8533 {
8534 use_rela = TRUE;
8535 use_rela_initialised = TRUE;
8536 }
8537 }
8538 }
8539 else if ((o->size % bed->s->sizeof_rel) == 0)
8540 {
8541 /* Section size is only divisible by rel. */
8542 if (use_rela_initialised && (use_rela == TRUE))
8543 {
8544 _bfd_error_handler
8545 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8546 bfd_set_error (bfd_error_invalid_operation);
8547 return 0;
8548 }
8549 else
8550 {
8551 use_rela = FALSE;
8552 use_rela_initialised = TRUE;
8553 }
8554 }
8555 else
8556 {
8557 /* The section size is not divisible by either - something is wrong. */
8558 _bfd_error_handler
8559 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8560 bfd_set_error (bfd_error_invalid_operation);
8561 return 0;
8562 }
8563 }
8564
8565 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8566 if (lo->type == bfd_indirect_link_order)
8567 {
8568 asection *o = lo->u.indirect.section;
8569
8570 if ((o->size % bed->s->sizeof_rela) == 0)
8571 {
8572 if ((o->size % bed->s->sizeof_rel) == 0)
8573 /* Section size is divisible by both rel and rela sizes.
8574 It is of no help to us. */
8575 ;
8576 else
8577 {
8578 /* Section size is only divisible by rela. */
8579 if (use_rela_initialised && (use_rela == FALSE))
8580 {
8581 _bfd_error_handler
8582 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8583 bfd_set_error (bfd_error_invalid_operation);
8584 return 0;
8585 }
8586 else
8587 {
8588 use_rela = TRUE;
8589 use_rela_initialised = TRUE;
8590 }
8591 }
8592 }
8593 else if ((o->size % bed->s->sizeof_rel) == 0)
8594 {
8595 /* Section size is only divisible by rel. */
8596 if (use_rela_initialised && (use_rela == TRUE))
8597 {
8598 _bfd_error_handler
8599 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8600 bfd_set_error (bfd_error_invalid_operation);
8601 return 0;
8602 }
8603 else
8604 {
8605 use_rela = FALSE;
8606 use_rela_initialised = TRUE;
8607 }
8608 }
8609 else
8610 {
8611 /* The section size is not divisible by either - something is wrong. */
8612 _bfd_error_handler
8613 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8614 bfd_set_error (bfd_error_invalid_operation);
8615 return 0;
8616 }
8617 }
8618
8619 if (! use_rela_initialised)
8620 /* Make a guess. */
8621 use_rela = TRUE;
8622 }
8623 else if (rela_dyn != NULL && rela_dyn->size > 0)
8624 use_rela = TRUE;
8625 else if (rel_dyn != NULL && rel_dyn->size > 0)
8626 use_rela = FALSE;
8627 else
8628 return 0;
8629
8630 if (use_rela)
8631 {
8632 dynamic_relocs = rela_dyn;
8633 ext_size = bed->s->sizeof_rela;
8634 swap_in = bed->s->swap_reloca_in;
8635 swap_out = bed->s->swap_reloca_out;
8636 }
8637 else
8638 {
8639 dynamic_relocs = rel_dyn;
8640 ext_size = bed->s->sizeof_rel;
8641 swap_in = bed->s->swap_reloc_in;
8642 swap_out = bed->s->swap_reloc_out;
8643 }
8644
8645 size = 0;
8646 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8647 if (lo->type == bfd_indirect_link_order)
8648 size += lo->u.indirect.section->size;
8649
8650 if (size != dynamic_relocs->size)
8651 return 0;
8652
8653 sort_elt = (sizeof (struct elf_link_sort_rela)
8654 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8655
8656 count = dynamic_relocs->size / ext_size;
8657 if (count == 0)
8658 return 0;
8659 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8660
8661 if (sort == NULL)
8662 {
8663 (*info->callbacks->warning)
8664 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8665 return 0;
8666 }
8667
8668 if (bed->s->arch_size == 32)
8669 r_sym_mask = ~(bfd_vma) 0xff;
8670 else
8671 r_sym_mask = ~(bfd_vma) 0xffffffff;
8672
8673 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8674 if (lo->type == bfd_indirect_link_order)
8675 {
8676 bfd_byte *erel, *erelend;
8677 asection *o = lo->u.indirect.section;
8678
8679 if (o->contents == NULL && o->size != 0)
8680 {
8681 /* This is a reloc section that is being handled as a normal
8682 section. See bfd_section_from_shdr. We can't combine
8683 relocs in this case. */
8684 free (sort);
8685 return 0;
8686 }
8687 erel = o->contents;
8688 erelend = o->contents + o->size;
8689 /* FIXME: octets_per_byte. */
8690 p = sort + o->output_offset / ext_size * sort_elt;
8691
8692 while (erel < erelend)
8693 {
8694 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8695
8696 (*swap_in) (abfd, erel, s->rela);
8697 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8698 s->u.sym_mask = r_sym_mask;
8699 p += sort_elt;
8700 erel += ext_size;
8701 }
8702 }
8703
8704 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8705
8706 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8707 {
8708 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8709 if (s->type != reloc_class_relative)
8710 break;
8711 }
8712 ret = i;
8713 s_non_relative = p;
8714
8715 sq = (struct elf_link_sort_rela *) s_non_relative;
8716 for (; i < count; i++, p += sort_elt)
8717 {
8718 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8719 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8720 sq = sp;
8721 sp->u.offset = sq->rela->r_offset;
8722 }
8723
8724 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8725
8726 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8727 if (lo->type == bfd_indirect_link_order)
8728 {
8729 bfd_byte *erel, *erelend;
8730 asection *o = lo->u.indirect.section;
8731
8732 erel = o->contents;
8733 erelend = o->contents + o->size;
8734 /* FIXME: octets_per_byte. */
8735 p = sort + o->output_offset / ext_size * sort_elt;
8736 while (erel < erelend)
8737 {
8738 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8739 (*swap_out) (abfd, s->rela, erel);
8740 p += sort_elt;
8741 erel += ext_size;
8742 }
8743 }
8744
8745 free (sort);
8746 *psec = dynamic_relocs;
8747 return ret;
8748}
8749
8750/* Add a symbol to the output symbol string table. */
8751
8752static int
8753elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8754 const char *name,
8755 Elf_Internal_Sym *elfsym,
8756 asection *input_sec,
8757 struct elf_link_hash_entry *h)
8758{
8759 int (*output_symbol_hook)
8760 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8761 struct elf_link_hash_entry *);
8762 struct elf_link_hash_table *hash_table;
8763 const struct elf_backend_data *bed;
8764 bfd_size_type strtabsize;
8765
8766 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8767
8768 bed = get_elf_backend_data (flinfo->output_bfd);
8769 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8770 if (output_symbol_hook != NULL)
8771 {
8772 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8773 if (ret != 1)
8774 return ret;
8775 }
8776
8777 if (name == NULL
8778 || *name == '\0'
8779 || (input_sec->flags & SEC_EXCLUDE))
8780 elfsym->st_name = (unsigned long) -1;
8781 else
8782 {
8783 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8784 to get the final offset for st_name. */
8785 elfsym->st_name
8786 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8787 name, FALSE);
8788 if (elfsym->st_name == (unsigned long) -1)
8789 return 0;
8790 }
8791
8792 hash_table = elf_hash_table (flinfo->info);
8793 strtabsize = hash_table->strtabsize;
8794 if (strtabsize <= hash_table->strtabcount)
8795 {
8796 strtabsize += strtabsize;
8797 hash_table->strtabsize = strtabsize;
8798 strtabsize *= sizeof (*hash_table->strtab);
8799 hash_table->strtab
8800 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8801 strtabsize);
8802 if (hash_table->strtab == NULL)
8803 return 0;
8804 }
8805 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8806 hash_table->strtab[hash_table->strtabcount].dest_index
8807 = hash_table->strtabcount;
8808 hash_table->strtab[hash_table->strtabcount].destshndx_index
8809 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8810
8811 bfd_get_symcount (flinfo->output_bfd) += 1;
8812 hash_table->strtabcount += 1;
8813
8814 return 1;
8815}
8816
8817/* Swap symbols out to the symbol table and flush the output symbols to
8818 the file. */
8819
8820static bfd_boolean
8821elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8822{
8823 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8824 bfd_size_type amt, i;
8825 const struct elf_backend_data *bed;
8826 bfd_byte *symbuf;
8827 Elf_Internal_Shdr *hdr;
8828 file_ptr pos;
8829 bfd_boolean ret;
8830
8831 if (!hash_table->strtabcount)
8832 return TRUE;
8833
8834 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8835
8836 bed = get_elf_backend_data (flinfo->output_bfd);
8837
8838 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8839 symbuf = (bfd_byte *) bfd_malloc (amt);
8840 if (symbuf == NULL)
8841 return FALSE;
8842
8843 if (flinfo->symshndxbuf)
8844 {
8845 amt = (sizeof (Elf_External_Sym_Shndx)
8846 * (bfd_get_symcount (flinfo->output_bfd)));
8847 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8848 if (flinfo->symshndxbuf == NULL)
8849 {
8850 free (symbuf);
8851 return FALSE;
8852 }
8853 }
8854
8855 for (i = 0; i < hash_table->strtabcount; i++)
8856 {
8857 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8858 if (elfsym->sym.st_name == (unsigned long) -1)
8859 elfsym->sym.st_name = 0;
8860 else
8861 elfsym->sym.st_name
8862 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8863 elfsym->sym.st_name);
8864 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8865 ((bfd_byte *) symbuf
8866 + (elfsym->dest_index
8867 * bed->s->sizeof_sym)),
8868 (flinfo->symshndxbuf
8869 + elfsym->destshndx_index));
8870 }
8871
8872 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8873 pos = hdr->sh_offset + hdr->sh_size;
8874 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8875 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8876 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8877 {
8878 hdr->sh_size += amt;
8879 ret = TRUE;
8880 }
8881 else
8882 ret = FALSE;
8883
8884 free (symbuf);
8885
8886 free (hash_table->strtab);
8887 hash_table->strtab = NULL;
8888
8889 return ret;
8890}
8891
8892/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8893
8894static bfd_boolean
8895check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8896{
8897 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8898 && sym->st_shndx < SHN_LORESERVE)
8899 {
8900 /* The gABI doesn't support dynamic symbols in output sections
8901 beyond 64k. */
8902 (*_bfd_error_handler)
8903 (_("%B: Too many sections: %d (>= %d)"),
8904 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8905 bfd_set_error (bfd_error_nonrepresentable_section);
8906 return FALSE;
8907 }
8908 return TRUE;
8909}
8910
8911/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8912 allowing an unsatisfied unversioned symbol in the DSO to match a
8913 versioned symbol that would normally require an explicit version.
8914 We also handle the case that a DSO references a hidden symbol
8915 which may be satisfied by a versioned symbol in another DSO. */
8916
8917static bfd_boolean
8918elf_link_check_versioned_symbol (struct bfd_link_info *info,
8919 const struct elf_backend_data *bed,
8920 struct elf_link_hash_entry *h)
8921{
8922 bfd *abfd;
8923 struct elf_link_loaded_list *loaded;
8924
8925 if (!is_elf_hash_table (info->hash))
8926 return FALSE;
8927
8928 /* Check indirect symbol. */
8929 while (h->root.type == bfd_link_hash_indirect)
8930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8931
8932 switch (h->root.type)
8933 {
8934 default:
8935 abfd = NULL;
8936 break;
8937
8938 case bfd_link_hash_undefined:
8939 case bfd_link_hash_undefweak:
8940 abfd = h->root.u.undef.abfd;
8941 if ((abfd->flags & DYNAMIC) == 0
8942 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8943 return FALSE;
8944 break;
8945
8946 case bfd_link_hash_defined:
8947 case bfd_link_hash_defweak:
8948 abfd = h->root.u.def.section->owner;
8949 break;
8950
8951 case bfd_link_hash_common:
8952 abfd = h->root.u.c.p->section->owner;
8953 break;
8954 }
8955 BFD_ASSERT (abfd != NULL);
8956
8957 for (loaded = elf_hash_table (info)->loaded;
8958 loaded != NULL;
8959 loaded = loaded->next)
8960 {
8961 bfd *input;
8962 Elf_Internal_Shdr *hdr;
8963 bfd_size_type symcount;
8964 bfd_size_type extsymcount;
8965 bfd_size_type extsymoff;
8966 Elf_Internal_Shdr *versymhdr;
8967 Elf_Internal_Sym *isym;
8968 Elf_Internal_Sym *isymend;
8969 Elf_Internal_Sym *isymbuf;
8970 Elf_External_Versym *ever;
8971 Elf_External_Versym *extversym;
8972
8973 input = loaded->abfd;
8974
8975 /* We check each DSO for a possible hidden versioned definition. */
8976 if (input == abfd
8977 || (input->flags & DYNAMIC) == 0
8978 || elf_dynversym (input) == 0)
8979 continue;
8980
8981 hdr = &elf_tdata (input)->dynsymtab_hdr;
8982
8983 symcount = hdr->sh_size / bed->s->sizeof_sym;
8984 if (elf_bad_symtab (input))
8985 {
8986 extsymcount = symcount;
8987 extsymoff = 0;
8988 }
8989 else
8990 {
8991 extsymcount = symcount - hdr->sh_info;
8992 extsymoff = hdr->sh_info;
8993 }
8994
8995 if (extsymcount == 0)
8996 continue;
8997
8998 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8999 NULL, NULL, NULL);
9000 if (isymbuf == NULL)
9001 return FALSE;
9002
9003 /* Read in any version definitions. */
9004 versymhdr = &elf_tdata (input)->dynversym_hdr;
9005 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9006 if (extversym == NULL)
9007 goto error_ret;
9008
9009 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9010 || (bfd_bread (extversym, versymhdr->sh_size, input)
9011 != versymhdr->sh_size))
9012 {
9013 free (extversym);
9014 error_ret:
9015 free (isymbuf);
9016 return FALSE;
9017 }
9018
9019 ever = extversym + extsymoff;
9020 isymend = isymbuf + extsymcount;
9021 for (isym = isymbuf; isym < isymend; isym++, ever++)
9022 {
9023 const char *name;
9024 Elf_Internal_Versym iver;
9025 unsigned short version_index;
9026
9027 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9028 || isym->st_shndx == SHN_UNDEF)
9029 continue;
9030
9031 name = bfd_elf_string_from_elf_section (input,
9032 hdr->sh_link,
9033 isym->st_name);
9034 if (strcmp (name, h->root.root.string) != 0)
9035 continue;
9036
9037 _bfd_elf_swap_versym_in (input, ever, &iver);
9038
9039 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9040 && !(h->def_regular
9041 && h->forced_local))
9042 {
9043 /* If we have a non-hidden versioned sym, then it should
9044 have provided a definition for the undefined sym unless
9045 it is defined in a non-shared object and forced local.
9046 */
9047 abort ();
9048 }
9049
9050 version_index = iver.vs_vers & VERSYM_VERSION;
9051 if (version_index == 1 || version_index == 2)
9052 {
9053 /* This is the base or first version. We can use it. */
9054 free (extversym);
9055 free (isymbuf);
9056 return TRUE;
9057 }
9058 }
9059
9060 free (extversym);
9061 free (isymbuf);
9062 }
9063
9064 return FALSE;
9065}
9066
9067/* Convert ELF common symbol TYPE. */
9068
9069static int
9070elf_link_convert_common_type (struct bfd_link_info *info, int type)
9071{
9072 /* Commom symbol can only appear in relocatable link. */
9073 if (!bfd_link_relocatable (info))
9074 abort ();
9075 switch (info->elf_stt_common)
9076 {
9077 case unchanged:
9078 break;
9079 case elf_stt_common:
9080 type = STT_COMMON;
9081 break;
9082 case no_elf_stt_common:
9083 type = STT_OBJECT;
9084 break;
9085 }
9086 return type;
9087}
9088
9089/* Add an external symbol to the symbol table. This is called from
9090 the hash table traversal routine. When generating a shared object,
9091 we go through the symbol table twice. The first time we output
9092 anything that might have been forced to local scope in a version
9093 script. The second time we output the symbols that are still
9094 global symbols. */
9095
9096static bfd_boolean
9097elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9098{
9099 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9100 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9101 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9102 bfd_boolean strip;
9103 Elf_Internal_Sym sym;
9104 asection *input_sec;
9105 const struct elf_backend_data *bed;
9106 long indx;
9107 int ret;
9108 unsigned int type;
9109 /* A symbol is bound locally if it is forced local or it is locally
9110 defined, hidden versioned, not referenced by shared library and
9111 not exported when linking executable. */
9112 bfd_boolean local_bind = (h->forced_local
9113 || (bfd_link_executable (flinfo->info)
9114 && !flinfo->info->export_dynamic
9115 && !h->dynamic
9116 && !h->ref_dynamic
9117 && h->def_regular
9118 && h->versioned == versioned_hidden));
9119
9120 if (h->root.type == bfd_link_hash_warning)
9121 {
9122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9123 if (h->root.type == bfd_link_hash_new)
9124 return TRUE;
9125 }
9126
9127 /* Decide whether to output this symbol in this pass. */
9128 if (eoinfo->localsyms)
9129 {
9130 if (!local_bind)
9131 return TRUE;
9132 }
9133 else
9134 {
9135 if (local_bind)
9136 return TRUE;
9137 }
9138
9139 bed = get_elf_backend_data (flinfo->output_bfd);
9140
9141 if (h->root.type == bfd_link_hash_undefined)
9142 {
9143 /* If we have an undefined symbol reference here then it must have
9144 come from a shared library that is being linked in. (Undefined
9145 references in regular files have already been handled unless
9146 they are in unreferenced sections which are removed by garbage
9147 collection). */
9148 bfd_boolean ignore_undef = FALSE;
9149
9150 /* Some symbols may be special in that the fact that they're
9151 undefined can be safely ignored - let backend determine that. */
9152 if (bed->elf_backend_ignore_undef_symbol)
9153 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9154
9155 /* If we are reporting errors for this situation then do so now. */
9156 if (!ignore_undef
9157 && h->ref_dynamic
9158 && (!h->ref_regular || flinfo->info->gc_sections)
9159 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9160 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9161 {
9162 if (!(flinfo->info->callbacks->undefined_symbol
9163 (flinfo->info, h->root.root.string,
9164 h->ref_regular ? NULL : h->root.u.undef.abfd,
9165 NULL, 0,
9166 (flinfo->info->unresolved_syms_in_shared_libs
9167 == RM_GENERATE_ERROR))))
9168 {
9169 bfd_set_error (bfd_error_bad_value);
9170 eoinfo->failed = TRUE;
9171 return FALSE;
9172 }
9173 }
9174 }
9175
9176 /* We should also warn if a forced local symbol is referenced from
9177 shared libraries. */
9178 if (bfd_link_executable (flinfo->info)
9179 && h->forced_local
9180 && h->ref_dynamic
9181 && h->def_regular
9182 && !h->dynamic_def
9183 && h->ref_dynamic_nonweak
9184 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9185 {
9186 bfd *def_bfd;
9187 const char *msg;
9188 struct elf_link_hash_entry *hi = h;
9189
9190 /* Check indirect symbol. */
9191 while (hi->root.type == bfd_link_hash_indirect)
9192 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9193
9194 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9195 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9196 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9197 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9198 else
9199 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9200 def_bfd = flinfo->output_bfd;
9201 if (hi->root.u.def.section != bfd_abs_section_ptr)
9202 def_bfd = hi->root.u.def.section->owner;
9203 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9204 h->root.root.string);
9205 bfd_set_error (bfd_error_bad_value);
9206 eoinfo->failed = TRUE;
9207 return FALSE;
9208 }
9209
9210 /* We don't want to output symbols that have never been mentioned by
9211 a regular file, or that we have been told to strip. However, if
9212 h->indx is set to -2, the symbol is used by a reloc and we must
9213 output it. */
9214 strip = FALSE;
9215 if (h->indx == -2)
9216 ;
9217 else if ((h->def_dynamic
9218 || h->ref_dynamic
9219 || h->root.type == bfd_link_hash_new)
9220 && !h->def_regular
9221 && !h->ref_regular)
9222 strip = TRUE;
9223 else if (flinfo->info->strip == strip_all)
9224 strip = TRUE;
9225 else if (flinfo->info->strip == strip_some
9226 && bfd_hash_lookup (flinfo->info->keep_hash,
9227 h->root.root.string, FALSE, FALSE) == NULL)
9228 strip = TRUE;
9229 else if ((h->root.type == bfd_link_hash_defined
9230 || h->root.type == bfd_link_hash_defweak)
9231 && ((flinfo->info->strip_discarded
9232 && discarded_section (h->root.u.def.section))
9233 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9234 && h->root.u.def.section->owner != NULL
9235 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9236 strip = TRUE;
9237 else if ((h->root.type == bfd_link_hash_undefined
9238 || h->root.type == bfd_link_hash_undefweak)
9239 && h->root.u.undef.abfd != NULL
9240 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9241 strip = TRUE;
9242
9243 type = h->type;
9244
9245 /* If we're stripping it, and it's not a dynamic symbol, there's
9246 nothing else to do. However, if it is a forced local symbol or
9247 an ifunc symbol we need to give the backend finish_dynamic_symbol
9248 function a chance to make it dynamic. */
9249 if (strip
9250 && h->dynindx == -1
9251 && type != STT_GNU_IFUNC
9252 && !h->forced_local)
9253 return TRUE;
9254
9255 sym.st_value = 0;
9256 sym.st_size = h->size;
9257 sym.st_other = h->other;
9258 switch (h->root.type)
9259 {
9260 default:
9261 case bfd_link_hash_new:
9262 case bfd_link_hash_warning:
9263 abort ();
9264 return FALSE;
9265
9266 case bfd_link_hash_undefined:
9267 case bfd_link_hash_undefweak:
9268 input_sec = bfd_und_section_ptr;
9269 sym.st_shndx = SHN_UNDEF;
9270 break;
9271
9272 case bfd_link_hash_defined:
9273 case bfd_link_hash_defweak:
9274 {
9275 input_sec = h->root.u.def.section;
9276 if (input_sec->output_section != NULL)
9277 {
9278 sym.st_shndx =
9279 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9280 input_sec->output_section);
9281 if (sym.st_shndx == SHN_BAD)
9282 {
9283 (*_bfd_error_handler)
9284 (_("%B: could not find output section %A for input section %A"),
9285 flinfo->output_bfd, input_sec->output_section, input_sec);
9286 bfd_set_error (bfd_error_nonrepresentable_section);
9287 eoinfo->failed = TRUE;
9288 return FALSE;
9289 }
9290
9291 /* ELF symbols in relocatable files are section relative,
9292 but in nonrelocatable files they are virtual
9293 addresses. */
9294 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9295 if (!bfd_link_relocatable (flinfo->info))
9296 {
9297 sym.st_value += input_sec->output_section->vma;
9298 if (h->type == STT_TLS)
9299 {
9300 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9301 if (tls_sec != NULL)
9302 sym.st_value -= tls_sec->vma;
9303 }
9304 }
9305 }
9306 else
9307 {
9308 BFD_ASSERT (input_sec->owner == NULL
9309 || (input_sec->owner->flags & DYNAMIC) != 0);
9310 sym.st_shndx = SHN_UNDEF;
9311 input_sec = bfd_und_section_ptr;
9312 }
9313 }
9314 break;
9315
9316 case bfd_link_hash_common:
9317 input_sec = h->root.u.c.p->section;
9318 sym.st_shndx = bed->common_section_index (input_sec);
9319 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9320 break;
9321
9322 case bfd_link_hash_indirect:
9323 /* These symbols are created by symbol versioning. They point
9324 to the decorated version of the name. For example, if the
9325 symbol foo@@GNU_1.2 is the default, which should be used when
9326 foo is used with no version, then we add an indirect symbol
9327 foo which points to foo@@GNU_1.2. We ignore these symbols,
9328 since the indirected symbol is already in the hash table. */
9329 return TRUE;
9330 }
9331
9332 if (type == STT_COMMON || type == STT_OBJECT)
9333 switch (h->root.type)
9334 {
9335 case bfd_link_hash_common:
9336 type = elf_link_convert_common_type (flinfo->info, type);
9337 break;
9338 case bfd_link_hash_defined:
9339 case bfd_link_hash_defweak:
9340 if (bed->common_definition (&sym))
9341 type = elf_link_convert_common_type (flinfo->info, type);
9342 else
9343 type = STT_OBJECT;
9344 break;
9345 case bfd_link_hash_undefined:
9346 case bfd_link_hash_undefweak:
9347 break;
9348 default:
9349 abort ();
9350 }
9351
9352 if (local_bind)
9353 {
9354 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9355 /* Turn off visibility on local symbol. */
9356 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9357 }
9358 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9359 else if (h->unique_global && h->def_regular)
9360 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9361 else if (h->root.type == bfd_link_hash_undefweak
9362 || h->root.type == bfd_link_hash_defweak)
9363 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9364 else
9365 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9366 sym.st_target_internal = h->target_internal;
9367
9368 /* Give the processor backend a chance to tweak the symbol value,
9369 and also to finish up anything that needs to be done for this
9370 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9371 forced local syms when non-shared is due to a historical quirk.
9372 STT_GNU_IFUNC symbol must go through PLT. */
9373 if ((h->type == STT_GNU_IFUNC
9374 && h->def_regular
9375 && !bfd_link_relocatable (flinfo->info))
9376 || ((h->dynindx != -1
9377 || h->forced_local)
9378 && ((bfd_link_pic (flinfo->info)
9379 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9380 || h->root.type != bfd_link_hash_undefweak))
9381 || !h->forced_local)
9382 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9383 {
9384 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9385 (flinfo->output_bfd, flinfo->info, h, &sym)))
9386 {
9387 eoinfo->failed = TRUE;
9388 return FALSE;
9389 }
9390 }
9391
9392 /* If we are marking the symbol as undefined, and there are no
9393 non-weak references to this symbol from a regular object, then
9394 mark the symbol as weak undefined; if there are non-weak
9395 references, mark the symbol as strong. We can't do this earlier,
9396 because it might not be marked as undefined until the
9397 finish_dynamic_symbol routine gets through with it. */
9398 if (sym.st_shndx == SHN_UNDEF
9399 && h->ref_regular
9400 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9401 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9402 {
9403 int bindtype;
9404 type = ELF_ST_TYPE (sym.st_info);
9405
9406 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9407 if (type == STT_GNU_IFUNC)
9408 type = STT_FUNC;
9409
9410 if (h->ref_regular_nonweak)
9411 bindtype = STB_GLOBAL;
9412 else
9413 bindtype = STB_WEAK;
9414 sym.st_info = ELF_ST_INFO (bindtype, type);
9415 }
9416
9417 /* If this is a symbol defined in a dynamic library, don't use the
9418 symbol size from the dynamic library. Relinking an executable
9419 against a new library may introduce gratuitous changes in the
9420 executable's symbols if we keep the size. */
9421 if (sym.st_shndx == SHN_UNDEF
9422 && !h->def_regular
9423 && h->def_dynamic)
9424 sym.st_size = 0;
9425
9426 /* If a non-weak symbol with non-default visibility is not defined
9427 locally, it is a fatal error. */
9428 if (!bfd_link_relocatable (flinfo->info)
9429 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9430 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9431 && h->root.type == bfd_link_hash_undefined
9432 && !h->def_regular)
9433 {
9434 const char *msg;
9435
9436 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9437 msg = _("%B: protected symbol `%s' isn't defined");
9438 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9439 msg = _("%B: internal symbol `%s' isn't defined");
9440 else
9441 msg = _("%B: hidden symbol `%s' isn't defined");
9442 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9443 bfd_set_error (bfd_error_bad_value);
9444 eoinfo->failed = TRUE;
9445 return FALSE;
9446 }
9447
9448 /* If this symbol should be put in the .dynsym section, then put it
9449 there now. We already know the symbol index. We also fill in
9450 the entry in the .hash section. */
9451 if (elf_hash_table (flinfo->info)->dynsym != NULL
9452 && h->dynindx != -1
9453 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9454 {
9455 bfd_byte *esym;
9456
9457 /* Since there is no version information in the dynamic string,
9458 if there is no version info in symbol version section, we will
9459 have a run-time problem if not linking executable, referenced
9460 by shared library, not locally defined, or not bound locally.
9461 */
9462 if (h->verinfo.verdef == NULL
9463 && !local_bind
9464 && (!bfd_link_executable (flinfo->info)
9465 || h->ref_dynamic
9466 || !h->def_regular))
9467 {
9468 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9469
9470 if (p && p [1] != '\0')
9471 {
9472 (*_bfd_error_handler)
9473 (_("%B: No symbol version section for versioned symbol `%s'"),
9474 flinfo->output_bfd, h->root.root.string);
9475 eoinfo->failed = TRUE;
9476 return FALSE;
9477 }
9478 }
9479
9480 sym.st_name = h->dynstr_index;
9481 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9482 + h->dynindx * bed->s->sizeof_sym);
9483 if (!check_dynsym (flinfo->output_bfd, &sym))
9484 {
9485 eoinfo->failed = TRUE;
9486 return FALSE;
9487 }
9488 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9489
9490 if (flinfo->hash_sec != NULL)
9491 {
9492 size_t hash_entry_size;
9493 bfd_byte *bucketpos;
9494 bfd_vma chain;
9495 size_t bucketcount;
9496 size_t bucket;
9497
9498 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9499 bucket = h->u.elf_hash_value % bucketcount;
9500
9501 hash_entry_size
9502 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9503 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9504 + (bucket + 2) * hash_entry_size);
9505 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9506 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9507 bucketpos);
9508 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9509 ((bfd_byte *) flinfo->hash_sec->contents
9510 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9511 }
9512
9513 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9514 {
9515 Elf_Internal_Versym iversym;
9516 Elf_External_Versym *eversym;
9517
9518 if (!h->def_regular)
9519 {
9520 if (h->verinfo.verdef == NULL
9521 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9522 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9523 iversym.vs_vers = 0;
9524 else
9525 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9526 }
9527 else
9528 {
9529 if (h->verinfo.vertree == NULL)
9530 iversym.vs_vers = 1;
9531 else
9532 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9533 if (flinfo->info->create_default_symver)
9534 iversym.vs_vers++;
9535 }
9536
9537 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9538 defined locally. */
9539 if (h->versioned == versioned_hidden && h->def_regular)
9540 iversym.vs_vers |= VERSYM_HIDDEN;
9541
9542 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9543 eversym += h->dynindx;
9544 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9545 }
9546 }
9547
9548 /* If the symbol is undefined, and we didn't output it to .dynsym,
9549 strip it from .symtab too. Obviously we can't do this for
9550 relocatable output or when needed for --emit-relocs. */
9551 else if (input_sec == bfd_und_section_ptr
9552 && h->indx != -2
9553 && !bfd_link_relocatable (flinfo->info))
9554 return TRUE;
9555 /* Also strip others that we couldn't earlier due to dynamic symbol
9556 processing. */
9557 if (strip)
9558 return TRUE;
9559 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9560 return TRUE;
9561
9562 /* Output a FILE symbol so that following locals are not associated
9563 with the wrong input file. We need one for forced local symbols
9564 if we've seen more than one FILE symbol or when we have exactly
9565 one FILE symbol but global symbols are present in a file other
9566 than the one with the FILE symbol. We also need one if linker
9567 defined symbols are present. In practice these conditions are
9568 always met, so just emit the FILE symbol unconditionally. */
9569 if (eoinfo->localsyms
9570 && !eoinfo->file_sym_done
9571 && eoinfo->flinfo->filesym_count != 0)
9572 {
9573 Elf_Internal_Sym fsym;
9574
9575 memset (&fsym, 0, sizeof (fsym));
9576 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9577 fsym.st_shndx = SHN_ABS;
9578 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9579 bfd_und_section_ptr, NULL))
9580 return FALSE;
9581
9582 eoinfo->file_sym_done = TRUE;
9583 }
9584
9585 indx = bfd_get_symcount (flinfo->output_bfd);
9586 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9587 input_sec, h);
9588 if (ret == 0)
9589 {
9590 eoinfo->failed = TRUE;
9591 return FALSE;
9592 }
9593 else if (ret == 1)
9594 h->indx = indx;
9595 else if (h->indx == -2)
9596 abort();
9597
9598 return TRUE;
9599}
9600
9601/* Return TRUE if special handling is done for relocs in SEC against
9602 symbols defined in discarded sections. */
9603
9604static bfd_boolean
9605elf_section_ignore_discarded_relocs (asection *sec)
9606{
9607 const struct elf_backend_data *bed;
9608
9609 switch (sec->sec_info_type)
9610 {
9611 case SEC_INFO_TYPE_STABS:
9612 case SEC_INFO_TYPE_EH_FRAME:
9613 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9614 return TRUE;
9615 default:
9616 break;
9617 }
9618
9619 bed = get_elf_backend_data (sec->owner);
9620 if (bed->elf_backend_ignore_discarded_relocs != NULL
9621 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9622 return TRUE;
9623
9624 return FALSE;
9625}
9626
9627/* Return a mask saying how ld should treat relocations in SEC against
9628 symbols defined in discarded sections. If this function returns
9629 COMPLAIN set, ld will issue a warning message. If this function
9630 returns PRETEND set, and the discarded section was link-once and the
9631 same size as the kept link-once section, ld will pretend that the
9632 symbol was actually defined in the kept section. Otherwise ld will
9633 zero the reloc (at least that is the intent, but some cooperation by
9634 the target dependent code is needed, particularly for REL targets). */
9635
9636unsigned int
9637_bfd_elf_default_action_discarded (asection *sec)
9638{
9639 if (sec->flags & SEC_DEBUGGING)
9640 return PRETEND;
9641
9642 if (strcmp (".eh_frame", sec->name) == 0)
9643 return 0;
9644
9645 if (strcmp (".gcc_except_table", sec->name) == 0)
9646 return 0;
9647
9648 return COMPLAIN | PRETEND;
9649}
9650
9651/* Find a match between a section and a member of a section group. */
9652
9653static asection *
9654match_group_member (asection *sec, asection *group,
9655 struct bfd_link_info *info)
9656{
9657 asection *first = elf_next_in_group (group);
9658 asection *s = first;
9659
9660 while (s != NULL)
9661 {
9662 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9663 return s;
9664
9665 s = elf_next_in_group (s);
9666 if (s == first)
9667 break;
9668 }
9669
9670 return NULL;
9671}
9672
9673/* Check if the kept section of a discarded section SEC can be used
9674 to replace it. Return the replacement if it is OK. Otherwise return
9675 NULL. */
9676
9677asection *
9678_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9679{
9680 asection *kept;
9681
9682 kept = sec->kept_section;
9683 if (kept != NULL)
9684 {
9685 if ((kept->flags & SEC_GROUP) != 0)
9686 kept = match_group_member (sec, kept, info);
9687 if (kept != NULL
9688 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9689 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9690 kept = NULL;
9691 sec->kept_section = kept;
9692 }
9693 return kept;
9694}
9695
9696/* Link an input file into the linker output file. This function
9697 handles all the sections and relocations of the input file at once.
9698 This is so that we only have to read the local symbols once, and
9699 don't have to keep them in memory. */
9700
9701static bfd_boolean
9702elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9703{
9704 int (*relocate_section)
9705 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9706 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9707 bfd *output_bfd;
9708 Elf_Internal_Shdr *symtab_hdr;
9709 size_t locsymcount;
9710 size_t extsymoff;
9711 Elf_Internal_Sym *isymbuf;
9712 Elf_Internal_Sym *isym;
9713 Elf_Internal_Sym *isymend;
9714 long *pindex;
9715 asection **ppsection;
9716 asection *o;
9717 const struct elf_backend_data *bed;
9718 struct elf_link_hash_entry **sym_hashes;
9719 bfd_size_type address_size;
9720 bfd_vma r_type_mask;
9721 int r_sym_shift;
9722 bfd_boolean have_file_sym = FALSE;
9723
9724 output_bfd = flinfo->output_bfd;
9725 bed = get_elf_backend_data (output_bfd);
9726 relocate_section = bed->elf_backend_relocate_section;
9727
9728 /* If this is a dynamic object, we don't want to do anything here:
9729 we don't want the local symbols, and we don't want the section
9730 contents. */
9731 if ((input_bfd->flags & DYNAMIC) != 0)
9732 return TRUE;
9733
9734 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9735 if (elf_bad_symtab (input_bfd))
9736 {
9737 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9738 extsymoff = 0;
9739 }
9740 else
9741 {
9742 locsymcount = symtab_hdr->sh_info;
9743 extsymoff = symtab_hdr->sh_info;
9744 }
9745
9746 /* Read the local symbols. */
9747 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9748 if (isymbuf == NULL && locsymcount != 0)
9749 {
9750 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9751 flinfo->internal_syms,
9752 flinfo->external_syms,
9753 flinfo->locsym_shndx);
9754 if (isymbuf == NULL)
9755 return FALSE;
9756 }
9757
9758 /* Find local symbol sections and adjust values of symbols in
9759 SEC_MERGE sections. Write out those local symbols we know are
9760 going into the output file. */
9761 isymend = isymbuf + locsymcount;
9762 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9763 isym < isymend;
9764 isym++, pindex++, ppsection++)
9765 {
9766 asection *isec;
9767 const char *name;
9768 Elf_Internal_Sym osym;
9769 long indx;
9770 int ret;
9771
9772 *pindex = -1;
9773
9774 if (elf_bad_symtab (input_bfd))
9775 {
9776 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9777 {
9778 *ppsection = NULL;
9779 continue;
9780 }
9781 }
9782
9783 if (isym->st_shndx == SHN_UNDEF)
9784 isec = bfd_und_section_ptr;
9785 else if (isym->st_shndx == SHN_ABS)
9786 isec = bfd_abs_section_ptr;
9787 else if (isym->st_shndx == SHN_COMMON)
9788 isec = bfd_com_section_ptr;
9789 else
9790 {
9791 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9792 if (isec == NULL)
9793 {
9794 /* Don't attempt to output symbols with st_shnx in the
9795 reserved range other than SHN_ABS and SHN_COMMON. */
9796 *ppsection = NULL;
9797 continue;
9798 }
9799 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9800 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9801 isym->st_value =
9802 _bfd_merged_section_offset (output_bfd, &isec,
9803 elf_section_data (isec)->sec_info,
9804 isym->st_value);
9805 }
9806
9807 *ppsection = isec;
9808
9809 /* Don't output the first, undefined, symbol. In fact, don't
9810 output any undefined local symbol. */
9811 if (isec == bfd_und_section_ptr)
9812 continue;
9813
9814 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9815 {
9816 /* We never output section symbols. Instead, we use the
9817 section symbol of the corresponding section in the output
9818 file. */
9819 continue;
9820 }
9821
9822 /* If we are stripping all symbols, we don't want to output this
9823 one. */
9824 if (flinfo->info->strip == strip_all)
9825 continue;
9826
9827 /* If we are discarding all local symbols, we don't want to
9828 output this one. If we are generating a relocatable output
9829 file, then some of the local symbols may be required by
9830 relocs; we output them below as we discover that they are
9831 needed. */
9832 if (flinfo->info->discard == discard_all)
9833 continue;
9834
9835 /* If this symbol is defined in a section which we are
9836 discarding, we don't need to keep it. */
9837 if (isym->st_shndx != SHN_UNDEF
9838 && isym->st_shndx < SHN_LORESERVE
9839 && bfd_section_removed_from_list (output_bfd,
9840 isec->output_section))
9841 continue;
9842
9843 /* Get the name of the symbol. */
9844 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9845 isym->st_name);
9846 if (name == NULL)
9847 return FALSE;
9848
9849 /* See if we are discarding symbols with this name. */
9850 if ((flinfo->info->strip == strip_some
9851 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9852 == NULL))
9853 || (((flinfo->info->discard == discard_sec_merge
9854 && (isec->flags & SEC_MERGE)
9855 && !bfd_link_relocatable (flinfo->info))
9856 || flinfo->info->discard == discard_l)
9857 && bfd_is_local_label_name (input_bfd, name)))
9858 continue;
9859
9860 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9861 {
9862 if (input_bfd->lto_output)
9863 /* -flto puts a temp file name here. This means builds
9864 are not reproducible. Discard the symbol. */
9865 continue;
9866 have_file_sym = TRUE;
9867 flinfo->filesym_count += 1;
9868 }
9869 if (!have_file_sym)
9870 {
9871 /* In the absence of debug info, bfd_find_nearest_line uses
9872 FILE symbols to determine the source file for local
9873 function symbols. Provide a FILE symbol here if input
9874 files lack such, so that their symbols won't be
9875 associated with a previous input file. It's not the
9876 source file, but the best we can do. */
9877 have_file_sym = TRUE;
9878 flinfo->filesym_count += 1;
9879 memset (&osym, 0, sizeof (osym));
9880 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9881 osym.st_shndx = SHN_ABS;
9882 if (!elf_link_output_symstrtab (flinfo,
9883 (input_bfd->lto_output ? NULL
9884 : input_bfd->filename),
9885 &osym, bfd_abs_section_ptr,
9886 NULL))
9887 return FALSE;
9888 }
9889
9890 osym = *isym;
9891
9892 /* Adjust the section index for the output file. */
9893 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9894 isec->output_section);
9895 if (osym.st_shndx == SHN_BAD)
9896 return FALSE;
9897
9898 /* ELF symbols in relocatable files are section relative, but
9899 in executable files they are virtual addresses. Note that
9900 this code assumes that all ELF sections have an associated
9901 BFD section with a reasonable value for output_offset; below
9902 we assume that they also have a reasonable value for
9903 output_section. Any special sections must be set up to meet
9904 these requirements. */
9905 osym.st_value += isec->output_offset;
9906 if (!bfd_link_relocatable (flinfo->info))
9907 {
9908 osym.st_value += isec->output_section->vma;
9909 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9910 {
9911 /* STT_TLS symbols are relative to PT_TLS segment base. */
9912 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9913 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9914 }
9915 }
9916
9917 indx = bfd_get_symcount (output_bfd);
9918 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9919 if (ret == 0)
9920 return FALSE;
9921 else if (ret == 1)
9922 *pindex = indx;
9923 }
9924
9925 if (bed->s->arch_size == 32)
9926 {
9927 r_type_mask = 0xff;
9928 r_sym_shift = 8;
9929 address_size = 4;
9930 }
9931 else
9932 {
9933 r_type_mask = 0xffffffff;
9934 r_sym_shift = 32;
9935 address_size = 8;
9936 }
9937
9938 /* Relocate the contents of each section. */
9939 sym_hashes = elf_sym_hashes (input_bfd);
9940 for (o = input_bfd->sections; o != NULL; o = o->next)
9941 {
9942 bfd_byte *contents;
9943
9944 if (! o->linker_mark)
9945 {
9946 /* This section was omitted from the link. */
9947 continue;
9948 }
9949
9950 if (bfd_link_relocatable (flinfo->info)
9951 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9952 {
9953 /* Deal with the group signature symbol. */
9954 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9955 unsigned long symndx = sec_data->this_hdr.sh_info;
9956 asection *osec = o->output_section;
9957
9958 if (symndx >= locsymcount
9959 || (elf_bad_symtab (input_bfd)
9960 && flinfo->sections[symndx] == NULL))
9961 {
9962 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9963 while (h->root.type == bfd_link_hash_indirect
9964 || h->root.type == bfd_link_hash_warning)
9965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9966 /* Arrange for symbol to be output. */
9967 h->indx = -2;
9968 elf_section_data (osec)->this_hdr.sh_info = -2;
9969 }
9970 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9971 {
9972 /* We'll use the output section target_index. */
9973 asection *sec = flinfo->sections[symndx]->output_section;
9974 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9975 }
9976 else
9977 {
9978 if (flinfo->indices[symndx] == -1)
9979 {
9980 /* Otherwise output the local symbol now. */
9981 Elf_Internal_Sym sym = isymbuf[symndx];
9982 asection *sec = flinfo->sections[symndx]->output_section;
9983 const char *name;
9984 long indx;
9985 int ret;
9986
9987 name = bfd_elf_string_from_elf_section (input_bfd,
9988 symtab_hdr->sh_link,
9989 sym.st_name);
9990 if (name == NULL)
9991 return FALSE;
9992
9993 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9994 sec);
9995 if (sym.st_shndx == SHN_BAD)
9996 return FALSE;
9997
9998 sym.st_value += o->output_offset;
9999
10000 indx = bfd_get_symcount (output_bfd);
10001 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10002 NULL);
10003 if (ret == 0)
10004 return FALSE;
10005 else if (ret == 1)
10006 flinfo->indices[symndx] = indx;
10007 else
10008 abort ();
10009 }
10010 elf_section_data (osec)->this_hdr.sh_info
10011 = flinfo->indices[symndx];
10012 }
10013 }
10014
10015 if ((o->flags & SEC_HAS_CONTENTS) == 0
10016 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10017 continue;
10018
10019 if ((o->flags & SEC_LINKER_CREATED) != 0)
10020 {
10021 /* Section was created by _bfd_elf_link_create_dynamic_sections
10022 or somesuch. */
10023 continue;
10024 }
10025
10026 /* Get the contents of the section. They have been cached by a
10027 relaxation routine. Note that o is a section in an input
10028 file, so the contents field will not have been set by any of
10029 the routines which work on output files. */
10030 if (elf_section_data (o)->this_hdr.contents != NULL)
10031 {
10032 contents = elf_section_data (o)->this_hdr.contents;
10033 if (bed->caches_rawsize
10034 && o->rawsize != 0
10035 && o->rawsize < o->size)
10036 {
10037 memcpy (flinfo->contents, contents, o->rawsize);
10038 contents = flinfo->contents;
10039 }
10040 }
10041 else
10042 {
10043 contents = flinfo->contents;
10044 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10045 return FALSE;
10046 }
10047
10048 if ((o->flags & SEC_RELOC) != 0)
10049 {
10050 Elf_Internal_Rela *internal_relocs;
10051 Elf_Internal_Rela *rel, *relend;
10052 int action_discarded;
10053 int ret;
10054
10055 /* Get the swapped relocs. */
10056 internal_relocs
10057 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10058 flinfo->internal_relocs, FALSE);
10059 if (internal_relocs == NULL
10060 && o->reloc_count > 0)
10061 return FALSE;
10062
10063 /* We need to reverse-copy input .ctors/.dtors sections if
10064 they are placed in .init_array/.finit_array for output. */
10065 if (o->size > address_size
10066 && ((strncmp (o->name, ".ctors", 6) == 0
10067 && strcmp (o->output_section->name,
10068 ".init_array") == 0)
10069 || (strncmp (o->name, ".dtors", 6) == 0
10070 && strcmp (o->output_section->name,
10071 ".fini_array") == 0))
10072 && (o->name[6] == 0 || o->name[6] == '.'))
10073 {
10074 if (o->size != o->reloc_count * address_size)
10075 {
10076 (*_bfd_error_handler)
10077 (_("error: %B: size of section %A is not "
10078 "multiple of address size"),
10079 input_bfd, o);
10080 bfd_set_error (bfd_error_on_input);
10081 return FALSE;
10082 }
10083 o->flags |= SEC_ELF_REVERSE_COPY;
10084 }
10085
10086 action_discarded = -1;
10087 if (!elf_section_ignore_discarded_relocs (o))
10088 action_discarded = (*bed->action_discarded) (o);
10089
10090 /* Run through the relocs evaluating complex reloc symbols and
10091 looking for relocs against symbols from discarded sections
10092 or section symbols from removed link-once sections.
10093 Complain about relocs against discarded sections. Zero
10094 relocs against removed link-once sections. */
10095
10096 rel = internal_relocs;
10097 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10098 for ( ; rel < relend; rel++)
10099 {
10100 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10101 unsigned int s_type;
10102 asection **ps, *sec;
10103 struct elf_link_hash_entry *h = NULL;
10104 const char *sym_name;
10105
10106 if (r_symndx == STN_UNDEF)
10107 continue;
10108
10109 if (r_symndx >= locsymcount
10110 || (elf_bad_symtab (input_bfd)
10111 && flinfo->sections[r_symndx] == NULL))
10112 {
10113 h = sym_hashes[r_symndx - extsymoff];
10114
10115 /* Badly formatted input files can contain relocs that
10116 reference non-existant symbols. Check here so that
10117 we do not seg fault. */
10118 if (h == NULL)
10119 {
10120 char buffer [32];
10121
10122 sprintf_vma (buffer, rel->r_info);
10123 (*_bfd_error_handler)
10124 (_("error: %B contains a reloc (0x%s) for section %A "
10125 "that references a non-existent global symbol"),
10126 input_bfd, o, buffer);
10127 bfd_set_error (bfd_error_bad_value);
10128 return FALSE;
10129 }
10130
10131 while (h->root.type == bfd_link_hash_indirect
10132 || h->root.type == bfd_link_hash_warning)
10133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10134
10135 s_type = h->type;
10136
10137 /* If a plugin symbol is referenced from a non-IR file,
10138 mark the symbol as undefined. Note that the
10139 linker may attach linker created dynamic sections
10140 to the plugin bfd. Symbols defined in linker
10141 created sections are not plugin symbols. */
10142 if (h->root.non_ir_ref
10143 && (h->root.type == bfd_link_hash_defined
10144 || h->root.type == bfd_link_hash_defweak)
10145 && (h->root.u.def.section->flags
10146 & SEC_LINKER_CREATED) == 0
10147 && h->root.u.def.section->owner != NULL
10148 && (h->root.u.def.section->owner->flags
10149 & BFD_PLUGIN) != 0)
10150 {
10151 h->root.type = bfd_link_hash_undefined;
10152 h->root.u.undef.abfd = h->root.u.def.section->owner;
10153 }
10154
10155 ps = NULL;
10156 if (h->root.type == bfd_link_hash_defined
10157 || h->root.type == bfd_link_hash_defweak)
10158 ps = &h->root.u.def.section;
10159
10160 sym_name = h->root.root.string;
10161 }
10162 else
10163 {
10164 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10165
10166 s_type = ELF_ST_TYPE (sym->st_info);
10167 ps = &flinfo->sections[r_symndx];
10168 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10169 sym, *ps);
10170 }
10171
10172 if ((s_type == STT_RELC || s_type == STT_SRELC)
10173 && !bfd_link_relocatable (flinfo->info))
10174 {
10175 bfd_vma val;
10176 bfd_vma dot = (rel->r_offset
10177 + o->output_offset + o->output_section->vma);
10178#ifdef DEBUG
10179 printf ("Encountered a complex symbol!");
10180 printf (" (input_bfd %s, section %s, reloc %ld\n",
10181 input_bfd->filename, o->name,
10182 (long) (rel - internal_relocs));
10183 printf (" symbol: idx %8.8lx, name %s\n",
10184 r_symndx, sym_name);
10185 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10186 (unsigned long) rel->r_info,
10187 (unsigned long) rel->r_offset);
10188#endif
10189 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10190 isymbuf, locsymcount, s_type == STT_SRELC))
10191 return FALSE;
10192
10193 /* Symbol evaluated OK. Update to absolute value. */
10194 set_symbol_value (input_bfd, isymbuf, locsymcount,
10195 r_symndx, val);
10196 continue;
10197 }
10198
10199 if (action_discarded != -1 && ps != NULL)
10200 {
10201 /* Complain if the definition comes from a
10202 discarded section. */
10203 if ((sec = *ps) != NULL && discarded_section (sec))
10204 {
10205 BFD_ASSERT (r_symndx != STN_UNDEF);
10206 if (action_discarded & COMPLAIN)
10207 (*flinfo->info->callbacks->einfo)
10208 (_("%X`%s' referenced in section `%A' of %B: "
10209 "defined in discarded section `%A' of %B\n"),
10210 sym_name, o, input_bfd, sec, sec->owner);
10211
10212 /* Try to do the best we can to support buggy old
10213 versions of gcc. Pretend that the symbol is
10214 really defined in the kept linkonce section.
10215 FIXME: This is quite broken. Modifying the
10216 symbol here means we will be changing all later
10217 uses of the symbol, not just in this section. */
10218 if (action_discarded & PRETEND)
10219 {
10220 asection *kept;
10221
10222 kept = _bfd_elf_check_kept_section (sec,
10223 flinfo->info);
10224 if (kept != NULL)
10225 {
10226 *ps = kept;
10227 continue;
10228 }
10229 }
10230 }
10231 }
10232 }
10233
10234 /* Relocate the section by invoking a back end routine.
10235
10236 The back end routine is responsible for adjusting the
10237 section contents as necessary, and (if using Rela relocs
10238 and generating a relocatable output file) adjusting the
10239 reloc addend as necessary.
10240
10241 The back end routine does not have to worry about setting
10242 the reloc address or the reloc symbol index.
10243
10244 The back end routine is given a pointer to the swapped in
10245 internal symbols, and can access the hash table entries
10246 for the external symbols via elf_sym_hashes (input_bfd).
10247
10248 When generating relocatable output, the back end routine
10249 must handle STB_LOCAL/STT_SECTION symbols specially. The
10250 output symbol is going to be a section symbol
10251 corresponding to the output section, which will require
10252 the addend to be adjusted. */
10253
10254 ret = (*relocate_section) (output_bfd, flinfo->info,
10255 input_bfd, o, contents,
10256 internal_relocs,
10257 isymbuf,
10258 flinfo->sections);
10259 if (!ret)
10260 return FALSE;
10261
10262 if (ret == 2
10263 || bfd_link_relocatable (flinfo->info)
10264 || flinfo->info->emitrelocations)
10265 {
10266 Elf_Internal_Rela *irela;
10267 Elf_Internal_Rela *irelaend, *irelamid;
10268 bfd_vma last_offset;
10269 struct elf_link_hash_entry **rel_hash;
10270 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10271 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10272 unsigned int next_erel;
10273 bfd_boolean rela_normal;
10274 struct bfd_elf_section_data *esdi, *esdo;
10275
10276 esdi = elf_section_data (o);
10277 esdo = elf_section_data (o->output_section);
10278 rela_normal = FALSE;
10279
10280 /* Adjust the reloc addresses and symbol indices. */
10281
10282 irela = internal_relocs;
10283 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10284 rel_hash = esdo->rel.hashes + esdo->rel.count;
10285 /* We start processing the REL relocs, if any. When we reach
10286 IRELAMID in the loop, we switch to the RELA relocs. */
10287 irelamid = irela;
10288 if (esdi->rel.hdr != NULL)
10289 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10290 * bed->s->int_rels_per_ext_rel);
10291 rel_hash_list = rel_hash;
10292 rela_hash_list = NULL;
10293 last_offset = o->output_offset;
10294 if (!bfd_link_relocatable (flinfo->info))
10295 last_offset += o->output_section->vma;
10296 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10297 {
10298 unsigned long r_symndx;
10299 asection *sec;
10300 Elf_Internal_Sym sym;
10301
10302 if (next_erel == bed->s->int_rels_per_ext_rel)
10303 {
10304 rel_hash++;
10305 next_erel = 0;
10306 }
10307
10308 if (irela == irelamid)
10309 {
10310 rel_hash = esdo->rela.hashes + esdo->rela.count;
10311 rela_hash_list = rel_hash;
10312 rela_normal = bed->rela_normal;
10313 }
10314
10315 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10316 flinfo->info, o,
10317 irela->r_offset);
10318 if (irela->r_offset >= (bfd_vma) -2)
10319 {
10320 /* This is a reloc for a deleted entry or somesuch.
10321 Turn it into an R_*_NONE reloc, at the same
10322 offset as the last reloc. elf_eh_frame.c and
10323 bfd_elf_discard_info rely on reloc offsets
10324 being ordered. */
10325 irela->r_offset = last_offset;
10326 irela->r_info = 0;
10327 irela->r_addend = 0;
10328 continue;
10329 }
10330
10331 irela->r_offset += o->output_offset;
10332
10333 /* Relocs in an executable have to be virtual addresses. */
10334 if (!bfd_link_relocatable (flinfo->info))
10335 irela->r_offset += o->output_section->vma;
10336
10337 last_offset = irela->r_offset;
10338
10339 r_symndx = irela->r_info >> r_sym_shift;
10340 if (r_symndx == STN_UNDEF)
10341 continue;
10342
10343 if (r_symndx >= locsymcount
10344 || (elf_bad_symtab (input_bfd)
10345 && flinfo->sections[r_symndx] == NULL))
10346 {
10347 struct elf_link_hash_entry *rh;
10348 unsigned long indx;
10349
10350 /* This is a reloc against a global symbol. We
10351 have not yet output all the local symbols, so
10352 we do not know the symbol index of any global
10353 symbol. We set the rel_hash entry for this
10354 reloc to point to the global hash table entry
10355 for this symbol. The symbol index is then
10356 set at the end of bfd_elf_final_link. */
10357 indx = r_symndx - extsymoff;
10358 rh = elf_sym_hashes (input_bfd)[indx];
10359 while (rh->root.type == bfd_link_hash_indirect
10360 || rh->root.type == bfd_link_hash_warning)
10361 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10362
10363 /* Setting the index to -2 tells
10364 elf_link_output_extsym that this symbol is
10365 used by a reloc. */
10366 BFD_ASSERT (rh->indx < 0);
10367 rh->indx = -2;
10368
10369 *rel_hash = rh;
10370
10371 continue;
10372 }
10373
10374 /* This is a reloc against a local symbol. */
10375
10376 *rel_hash = NULL;
10377 sym = isymbuf[r_symndx];
10378 sec = flinfo->sections[r_symndx];
10379 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10380 {
10381 /* I suppose the backend ought to fill in the
10382 section of any STT_SECTION symbol against a
10383 processor specific section. */
10384 r_symndx = STN_UNDEF;
10385 if (bfd_is_abs_section (sec))
10386 ;
10387 else if (sec == NULL || sec->owner == NULL)
10388 {
10389 bfd_set_error (bfd_error_bad_value);
10390 return FALSE;
10391 }
10392 else
10393 {
10394 asection *osec = sec->output_section;
10395
10396 /* If we have discarded a section, the output
10397 section will be the absolute section. In
10398 case of discarded SEC_MERGE sections, use
10399 the kept section. relocate_section should
10400 have already handled discarded linkonce
10401 sections. */
10402 if (bfd_is_abs_section (osec)
10403 && sec->kept_section != NULL
10404 && sec->kept_section->output_section != NULL)
10405 {
10406 osec = sec->kept_section->output_section;
10407 irela->r_addend -= osec->vma;
10408 }
10409
10410 if (!bfd_is_abs_section (osec))
10411 {
10412 r_symndx = osec->target_index;
10413 if (r_symndx == STN_UNDEF)
10414 {
10415 irela->r_addend += osec->vma;
10416 osec = _bfd_nearby_section (output_bfd, osec,
10417 osec->vma);
10418 irela->r_addend -= osec->vma;
10419 r_symndx = osec->target_index;
10420 }
10421 }
10422 }
10423
10424 /* Adjust the addend according to where the
10425 section winds up in the output section. */
10426 if (rela_normal)
10427 irela->r_addend += sec->output_offset;
10428 }
10429 else
10430 {
10431 if (flinfo->indices[r_symndx] == -1)
10432 {
10433 unsigned long shlink;
10434 const char *name;
10435 asection *osec;
10436 long indx;
10437
10438 if (flinfo->info->strip == strip_all)
10439 {
10440 /* You can't do ld -r -s. */
10441 bfd_set_error (bfd_error_invalid_operation);
10442 return FALSE;
10443 }
10444
10445 /* This symbol was skipped earlier, but
10446 since it is needed by a reloc, we
10447 must output it now. */
10448 shlink = symtab_hdr->sh_link;
10449 name = (bfd_elf_string_from_elf_section
10450 (input_bfd, shlink, sym.st_name));
10451 if (name == NULL)
10452 return FALSE;
10453
10454 osec = sec->output_section;
10455 sym.st_shndx =
10456 _bfd_elf_section_from_bfd_section (output_bfd,
10457 osec);
10458 if (sym.st_shndx == SHN_BAD)
10459 return FALSE;
10460
10461 sym.st_value += sec->output_offset;
10462 if (!bfd_link_relocatable (flinfo->info))
10463 {
10464 sym.st_value += osec->vma;
10465 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10466 {
10467 /* STT_TLS symbols are relative to PT_TLS
10468 segment base. */
10469 BFD_ASSERT (elf_hash_table (flinfo->info)
10470 ->tls_sec != NULL);
10471 sym.st_value -= (elf_hash_table (flinfo->info)
10472 ->tls_sec->vma);
10473 }
10474 }
10475
10476 indx = bfd_get_symcount (output_bfd);
10477 ret = elf_link_output_symstrtab (flinfo, name,
10478 &sym, sec,
10479 NULL);
10480 if (ret == 0)
10481 return FALSE;
10482 else if (ret == 1)
10483 flinfo->indices[r_symndx] = indx;
10484 else
10485 abort ();
10486 }
10487
10488 r_symndx = flinfo->indices[r_symndx];
10489 }
10490
10491 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10492 | (irela->r_info & r_type_mask));
10493 }
10494
10495 /* Swap out the relocs. */
10496 input_rel_hdr = esdi->rel.hdr;
10497 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10498 {
10499 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10500 input_rel_hdr,
10501 internal_relocs,
10502 rel_hash_list))
10503 return FALSE;
10504 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10505 * bed->s->int_rels_per_ext_rel);
10506 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10507 }
10508
10509 input_rela_hdr = esdi->rela.hdr;
10510 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10511 {
10512 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10513 input_rela_hdr,
10514 internal_relocs,
10515 rela_hash_list))
10516 return FALSE;
10517 }
10518 }
10519 }
10520
10521 /* Write out the modified section contents. */
10522 if (bed->elf_backend_write_section
10523 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10524 contents))
10525 {
10526 /* Section written out. */
10527 }
10528 else switch (o->sec_info_type)
10529 {
10530 case SEC_INFO_TYPE_STABS:
10531 if (! (_bfd_write_section_stabs
10532 (output_bfd,
10533 &elf_hash_table (flinfo->info)->stab_info,
10534 o, &elf_section_data (o)->sec_info, contents)))
10535 return FALSE;
10536 break;
10537 case SEC_INFO_TYPE_MERGE:
10538 if (! _bfd_write_merged_section (output_bfd, o,
10539 elf_section_data (o)->sec_info))
10540 return FALSE;
10541 break;
10542 case SEC_INFO_TYPE_EH_FRAME:
10543 {
10544 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10545 o, contents))
10546 return FALSE;
10547 }
10548 break;
10549 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10550 {
10551 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10552 flinfo->info,
10553 o, contents))
10554 return FALSE;
10555 }
10556 break;
10557 default:
10558 {
10559 if (! (o->flags & SEC_EXCLUDE))
10560 {
10561 file_ptr offset = (file_ptr) o->output_offset;
10562 bfd_size_type todo = o->size;
10563
10564 offset *= bfd_octets_per_byte (output_bfd);
10565
10566 if ((o->flags & SEC_ELF_REVERSE_COPY))
10567 {
10568 /* Reverse-copy input section to output. */
10569 do
10570 {
10571 todo -= address_size;
10572 if (! bfd_set_section_contents (output_bfd,
10573 o->output_section,
10574 contents + todo,
10575 offset,
10576 address_size))
10577 return FALSE;
10578 if (todo == 0)
10579 break;
10580 offset += address_size;
10581 }
10582 while (1);
10583 }
10584 else if (! bfd_set_section_contents (output_bfd,
10585 o->output_section,
10586 contents,
10587 offset, todo))
10588 return FALSE;
10589 }
10590 }
10591 break;
10592 }
10593 }
10594
10595 return TRUE;
10596}
10597
10598/* Generate a reloc when linking an ELF file. This is a reloc
10599 requested by the linker, and does not come from any input file. This
10600 is used to build constructor and destructor tables when linking
10601 with -Ur. */
10602
10603static bfd_boolean
10604elf_reloc_link_order (bfd *output_bfd,
10605 struct bfd_link_info *info,
10606 asection *output_section,
10607 struct bfd_link_order *link_order)
10608{
10609 reloc_howto_type *howto;
10610 long indx;
10611 bfd_vma offset;
10612 bfd_vma addend;
10613 struct bfd_elf_section_reloc_data *reldata;
10614 struct elf_link_hash_entry **rel_hash_ptr;
10615 Elf_Internal_Shdr *rel_hdr;
10616 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10617 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10618 bfd_byte *erel;
10619 unsigned int i;
10620 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10621
10622 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10623 if (howto == NULL)
10624 {
10625 bfd_set_error (bfd_error_bad_value);
10626 return FALSE;
10627 }
10628
10629 addend = link_order->u.reloc.p->addend;
10630
10631 if (esdo->rel.hdr)
10632 reldata = &esdo->rel;
10633 else if (esdo->rela.hdr)
10634 reldata = &esdo->rela;
10635 else
10636 {
10637 reldata = NULL;
10638 BFD_ASSERT (0);
10639 }
10640
10641 /* Figure out the symbol index. */
10642 rel_hash_ptr = reldata->hashes + reldata->count;
10643 if (link_order->type == bfd_section_reloc_link_order)
10644 {
10645 indx = link_order->u.reloc.p->u.section->target_index;
10646 BFD_ASSERT (indx != 0);
10647 *rel_hash_ptr = NULL;
10648 }
10649 else
10650 {
10651 struct elf_link_hash_entry *h;
10652
10653 /* Treat a reloc against a defined symbol as though it were
10654 actually against the section. */
10655 h = ((struct elf_link_hash_entry *)
10656 bfd_wrapped_link_hash_lookup (output_bfd, info,
10657 link_order->u.reloc.p->u.name,
10658 FALSE, FALSE, TRUE));
10659 if (h != NULL
10660 && (h->root.type == bfd_link_hash_defined
10661 || h->root.type == bfd_link_hash_defweak))
10662 {
10663 asection *section;
10664
10665 section = h->root.u.def.section;
10666 indx = section->output_section->target_index;
10667 *rel_hash_ptr = NULL;
10668 /* It seems that we ought to add the symbol value to the
10669 addend here, but in practice it has already been added
10670 because it was passed to constructor_callback. */
10671 addend += section->output_section->vma + section->output_offset;
10672 }
10673 else if (h != NULL)
10674 {
10675 /* Setting the index to -2 tells elf_link_output_extsym that
10676 this symbol is used by a reloc. */
10677 h->indx = -2;
10678 *rel_hash_ptr = h;
10679 indx = 0;
10680 }
10681 else
10682 {
10683 if (! ((*info->callbacks->unattached_reloc)
10684 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10685 return FALSE;
10686 indx = 0;
10687 }
10688 }
10689
10690 /* If this is an inplace reloc, we must write the addend into the
10691 object file. */
10692 if (howto->partial_inplace && addend != 0)
10693 {
10694 bfd_size_type size;
10695 bfd_reloc_status_type rstat;
10696 bfd_byte *buf;
10697 bfd_boolean ok;
10698 const char *sym_name;
10699
10700 size = (bfd_size_type) bfd_get_reloc_size (howto);
10701 buf = (bfd_byte *) bfd_zmalloc (size);
10702 if (buf == NULL && size != 0)
10703 return FALSE;
10704 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10705 switch (rstat)
10706 {
10707 case bfd_reloc_ok:
10708 break;
10709
10710 default:
10711 case bfd_reloc_outofrange:
10712 abort ();
10713
10714 case bfd_reloc_overflow:
10715 if (link_order->type == bfd_section_reloc_link_order)
10716 sym_name = bfd_section_name (output_bfd,
10717 link_order->u.reloc.p->u.section);
10718 else
10719 sym_name = link_order->u.reloc.p->u.name;
10720 if (! ((*info->callbacks->reloc_overflow)
10721 (info, NULL, sym_name, howto->name, addend, NULL,
10722 NULL, (bfd_vma) 0)))
10723 {
10724 free (buf);
10725 return FALSE;
10726 }
10727 break;
10728 }
10729
10730 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10731 link_order->offset
10732 * bfd_octets_per_byte (output_bfd),
10733 size);
10734 free (buf);
10735 if (! ok)
10736 return FALSE;
10737 }
10738
10739 /* The address of a reloc is relative to the section in a
10740 relocatable file, and is a virtual address in an executable
10741 file. */
10742 offset = link_order->offset;
10743 if (! bfd_link_relocatable (info))
10744 offset += output_section->vma;
10745
10746 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10747 {
10748 irel[i].r_offset = offset;
10749 irel[i].r_info = 0;
10750 irel[i].r_addend = 0;
10751 }
10752 if (bed->s->arch_size == 32)
10753 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10754 else
10755 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10756
10757 rel_hdr = reldata->hdr;
10758 erel = rel_hdr->contents;
10759 if (rel_hdr->sh_type == SHT_REL)
10760 {
10761 erel += reldata->count * bed->s->sizeof_rel;
10762 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10763 }
10764 else
10765 {
10766 irel[0].r_addend = addend;
10767 erel += reldata->count * bed->s->sizeof_rela;
10768 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10769 }
10770
10771 ++reldata->count;
10772
10773 return TRUE;
10774}
10775
10776
10777/* Get the output vma of the section pointed to by the sh_link field. */
10778
10779static bfd_vma
10780elf_get_linked_section_vma (struct bfd_link_order *p)
10781{
10782 Elf_Internal_Shdr **elf_shdrp;
10783 asection *s;
10784 int elfsec;
10785
10786 s = p->u.indirect.section;
10787 elf_shdrp = elf_elfsections (s->owner);
10788 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10789 elfsec = elf_shdrp[elfsec]->sh_link;
10790 /* PR 290:
10791 The Intel C compiler generates SHT_IA_64_UNWIND with
10792 SHF_LINK_ORDER. But it doesn't set the sh_link or
10793 sh_info fields. Hence we could get the situation
10794 where elfsec is 0. */
10795 if (elfsec == 0)
10796 {
10797 const struct elf_backend_data *bed
10798 = get_elf_backend_data (s->owner);
10799 if (bed->link_order_error_handler)
10800 bed->link_order_error_handler
10801 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10802 return 0;
10803 }
10804 else
10805 {
10806 s = elf_shdrp[elfsec]->bfd_section;
10807 return s->output_section->vma + s->output_offset;
10808 }
10809}
10810
10811
10812/* Compare two sections based on the locations of the sections they are
10813 linked to. Used by elf_fixup_link_order. */
10814
10815static int
10816compare_link_order (const void * a, const void * b)
10817{
10818 bfd_vma apos;
10819 bfd_vma bpos;
10820
10821 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10822 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10823 if (apos < bpos)
10824 return -1;
10825 return apos > bpos;
10826}
10827
10828
10829/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10830 order as their linked sections. Returns false if this could not be done
10831 because an output section includes both ordered and unordered
10832 sections. Ideally we'd do this in the linker proper. */
10833
10834static bfd_boolean
10835elf_fixup_link_order (bfd *abfd, asection *o)
10836{
10837 int seen_linkorder;
10838 int seen_other;
10839 int n;
10840 struct bfd_link_order *p;
10841 bfd *sub;
10842 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10843 unsigned elfsec;
10844 struct bfd_link_order **sections;
10845 asection *s, *other_sec, *linkorder_sec;
10846 bfd_vma offset;
10847
10848 other_sec = NULL;
10849 linkorder_sec = NULL;
10850 seen_other = 0;
10851 seen_linkorder = 0;
10852 for (p = o->map_head.link_order; p != NULL; p = p->next)
10853 {
10854 if (p->type == bfd_indirect_link_order)
10855 {
10856 s = p->u.indirect.section;
10857 sub = s->owner;
10858 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10859 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10860 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10861 && elfsec < elf_numsections (sub)
10862 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10863 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10864 {
10865 seen_linkorder++;
10866 linkorder_sec = s;
10867 }
10868 else
10869 {
10870 seen_other++;
10871 other_sec = s;
10872 }
10873 }
10874 else
10875 seen_other++;
10876
10877 if (seen_other && seen_linkorder)
10878 {
10879 if (other_sec && linkorder_sec)
10880 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10881 o, linkorder_sec,
10882 linkorder_sec->owner, other_sec,
10883 other_sec->owner);
10884 else
10885 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10886 o);
10887 bfd_set_error (bfd_error_bad_value);
10888 return FALSE;
10889 }
10890 }
10891
10892 if (!seen_linkorder)
10893 return TRUE;
10894
10895 sections = (struct bfd_link_order **)
10896 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10897 if (sections == NULL)
10898 return FALSE;
10899 seen_linkorder = 0;
10900
10901 for (p = o->map_head.link_order; p != NULL; p = p->next)
10902 {
10903 sections[seen_linkorder++] = p;
10904 }
10905 /* Sort the input sections in the order of their linked section. */
10906 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10907 compare_link_order);
10908
10909 /* Change the offsets of the sections. */
10910 offset = 0;
10911 for (n = 0; n < seen_linkorder; n++)
10912 {
10913 s = sections[n]->u.indirect.section;
10914 offset &= ~(bfd_vma) 0 << s->alignment_power;
10915 s->output_offset = offset / bfd_octets_per_byte (abfd);
10916 sections[n]->offset = offset;
10917 offset += sections[n]->size;
10918 }
10919
10920 free (sections);
10921 return TRUE;
10922}
10923
10924static void
10925elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10926{
10927 asection *o;
10928
10929 if (flinfo->symstrtab != NULL)
10930 _bfd_elf_strtab_free (flinfo->symstrtab);
10931 if (flinfo->contents != NULL)
10932 free (flinfo->contents);
10933 if (flinfo->external_relocs != NULL)
10934 free (flinfo->external_relocs);
10935 if (flinfo->internal_relocs != NULL)
10936 free (flinfo->internal_relocs);
10937 if (flinfo->external_syms != NULL)
10938 free (flinfo->external_syms);
10939 if (flinfo->locsym_shndx != NULL)
10940 free (flinfo->locsym_shndx);
10941 if (flinfo->internal_syms != NULL)
10942 free (flinfo->internal_syms);
10943 if (flinfo->indices != NULL)
10944 free (flinfo->indices);
10945 if (flinfo->sections != NULL)
10946 free (flinfo->sections);
10947 if (flinfo->symshndxbuf != NULL)
10948 free (flinfo->symshndxbuf);
10949 for (o = obfd->sections; o != NULL; o = o->next)
10950 {
10951 struct bfd_elf_section_data *esdo = elf_section_data (o);
10952 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10953 free (esdo->rel.hashes);
10954 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10955 free (esdo->rela.hashes);
10956 }
10957}
10958
10959/* Do the final step of an ELF link. */
10960
10961bfd_boolean
10962bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10963{
10964 bfd_boolean dynamic;
10965 bfd_boolean emit_relocs;
10966 bfd *dynobj;
10967 struct elf_final_link_info flinfo;
10968 asection *o;
10969 struct bfd_link_order *p;
10970 bfd *sub;
10971 bfd_size_type max_contents_size;
10972 bfd_size_type max_external_reloc_size;
10973 bfd_size_type max_internal_reloc_count;
10974 bfd_size_type max_sym_count;
10975 bfd_size_type max_sym_shndx_count;
10976 Elf_Internal_Sym elfsym;
10977 unsigned int i;
10978 Elf_Internal_Shdr *symtab_hdr;
10979 Elf_Internal_Shdr *symtab_shndx_hdr;
10980 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10981 struct elf_outext_info eoinfo;
10982 bfd_boolean merged;
10983 size_t relativecount = 0;
10984 asection *reldyn = 0;
10985 bfd_size_type amt;
10986 asection *attr_section = NULL;
10987 bfd_vma attr_size = 0;
10988 const char *std_attrs_section;
10989
10990 if (! is_elf_hash_table (info->hash))
10991 return FALSE;
10992
10993 if (bfd_link_pic (info))
10994 abfd->flags |= DYNAMIC;
10995
10996 dynamic = elf_hash_table (info)->dynamic_sections_created;
10997 dynobj = elf_hash_table (info)->dynobj;
10998
10999 emit_relocs = (bfd_link_relocatable (info)
11000 || info->emitrelocations);
11001
11002 flinfo.info = info;
11003 flinfo.output_bfd = abfd;
11004 flinfo.symstrtab = _bfd_elf_strtab_init ();
11005 if (flinfo.symstrtab == NULL)
11006 return FALSE;
11007
11008 if (! dynamic)
11009 {
11010 flinfo.hash_sec = NULL;
11011 flinfo.symver_sec = NULL;
11012 }
11013 else
11014 {
11015 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11016 /* Note that dynsym_sec can be NULL (on VMS). */
11017 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11018 /* Note that it is OK if symver_sec is NULL. */
11019 }
11020
11021 flinfo.contents = NULL;
11022 flinfo.external_relocs = NULL;
11023 flinfo.internal_relocs = NULL;
11024 flinfo.external_syms = NULL;
11025 flinfo.locsym_shndx = NULL;
11026 flinfo.internal_syms = NULL;
11027 flinfo.indices = NULL;
11028 flinfo.sections = NULL;
11029 flinfo.symshndxbuf = NULL;
11030 flinfo.filesym_count = 0;
11031
11032 /* The object attributes have been merged. Remove the input
11033 sections from the link, and set the contents of the output
11034 secton. */
11035 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11036 for (o = abfd->sections; o != NULL; o = o->next)
11037 {
11038 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11039 || strcmp (o->name, ".gnu.attributes") == 0)
11040 {
11041 for (p = o->map_head.link_order; p != NULL; p = p->next)
11042 {
11043 asection *input_section;
11044
11045 if (p->type != bfd_indirect_link_order)
11046 continue;
11047 input_section = p->u.indirect.section;
11048 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11049 elf_link_input_bfd ignores this section. */
11050 input_section->flags &= ~SEC_HAS_CONTENTS;
11051 }
11052
11053 attr_size = bfd_elf_obj_attr_size (abfd);
11054 if (attr_size)
11055 {
11056 bfd_set_section_size (abfd, o, attr_size);
11057 attr_section = o;
11058 /* Skip this section later on. */
11059 o->map_head.link_order = NULL;
11060 }
11061 else
11062 o->flags |= SEC_EXCLUDE;
11063 }
11064 }
11065
11066 /* Count up the number of relocations we will output for each output
11067 section, so that we know the sizes of the reloc sections. We
11068 also figure out some maximum sizes. */
11069 max_contents_size = 0;
11070 max_external_reloc_size = 0;
11071 max_internal_reloc_count = 0;
11072 max_sym_count = 0;
11073 max_sym_shndx_count = 0;
11074 merged = FALSE;
11075 for (o = abfd->sections; o != NULL; o = o->next)
11076 {
11077 struct bfd_elf_section_data *esdo = elf_section_data (o);
11078 o->reloc_count = 0;
11079
11080 for (p = o->map_head.link_order; p != NULL; p = p->next)
11081 {
11082 unsigned int reloc_count = 0;
11083 unsigned int additional_reloc_count = 0;
11084 struct bfd_elf_section_data *esdi = NULL;
11085
11086 if (p->type == bfd_section_reloc_link_order
11087 || p->type == bfd_symbol_reloc_link_order)
11088 reloc_count = 1;
11089 else if (p->type == bfd_indirect_link_order)
11090 {
11091 asection *sec;
11092
11093 sec = p->u.indirect.section;
11094 esdi = elf_section_data (sec);
11095
11096 /* Mark all sections which are to be included in the
11097 link. This will normally be every section. We need
11098 to do this so that we can identify any sections which
11099 the linker has decided to not include. */
11100 sec->linker_mark = TRUE;
11101
11102 if (sec->flags & SEC_MERGE)
11103 merged = TRUE;
11104
11105 if (esdo->this_hdr.sh_type == SHT_REL
11106 || esdo->this_hdr.sh_type == SHT_RELA)
11107 /* Some backends use reloc_count in relocation sections
11108 to count particular types of relocs. Of course,
11109 reloc sections themselves can't have relocations. */
11110 reloc_count = 0;
11111 else if (emit_relocs)
11112 {
11113 reloc_count = sec->reloc_count;
11114 if (bed->elf_backend_count_additional_relocs)
11115 {
11116 int c;
11117 c = (*bed->elf_backend_count_additional_relocs) (sec);
11118 additional_reloc_count += c;
11119 }
11120 }
11121 else if (bed->elf_backend_count_relocs)
11122 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11123
11124 if (sec->rawsize > max_contents_size)
11125 max_contents_size = sec->rawsize;
11126 if (sec->size > max_contents_size)
11127 max_contents_size = sec->size;
11128
11129 /* We are interested in just local symbols, not all
11130 symbols. */
11131 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11132 && (sec->owner->flags & DYNAMIC) == 0)
11133 {
11134 size_t sym_count;
11135
11136 if (elf_bad_symtab (sec->owner))
11137 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11138 / bed->s->sizeof_sym);
11139 else
11140 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11141
11142 if (sym_count > max_sym_count)
11143 max_sym_count = sym_count;
11144
11145 if (sym_count > max_sym_shndx_count
11146 && elf_symtab_shndx_list (sec->owner) != NULL)
11147 max_sym_shndx_count = sym_count;
11148
11149 if ((sec->flags & SEC_RELOC) != 0)
11150 {
11151 size_t ext_size = 0;
11152
11153 if (esdi->rel.hdr != NULL)
11154 ext_size = esdi->rel.hdr->sh_size;
11155 if (esdi->rela.hdr != NULL)
11156 ext_size += esdi->rela.hdr->sh_size;
11157
11158 if (ext_size > max_external_reloc_size)
11159 max_external_reloc_size = ext_size;
11160 if (sec->reloc_count > max_internal_reloc_count)
11161 max_internal_reloc_count = sec->reloc_count;
11162 }
11163 }
11164 }
11165
11166 if (reloc_count == 0)
11167 continue;
11168
11169 reloc_count += additional_reloc_count;
11170 o->reloc_count += reloc_count;
11171
11172 if (p->type == bfd_indirect_link_order && emit_relocs)
11173 {
11174 if (esdi->rel.hdr)
11175 {
11176 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11177 esdo->rel.count += additional_reloc_count;
11178 }
11179 if (esdi->rela.hdr)
11180 {
11181 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11182 esdo->rela.count += additional_reloc_count;
11183 }
11184 }
11185 else
11186 {
11187 if (o->use_rela_p)
11188 esdo->rela.count += reloc_count;
11189 else
11190 esdo->rel.count += reloc_count;
11191 }
11192 }
11193
11194 if (o->reloc_count > 0)
11195 o->flags |= SEC_RELOC;
11196 else
11197 {
11198 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11199 set it (this is probably a bug) and if it is set
11200 assign_section_numbers will create a reloc section. */
11201 o->flags &=~ SEC_RELOC;
11202 }
11203
11204 /* If the SEC_ALLOC flag is not set, force the section VMA to
11205 zero. This is done in elf_fake_sections as well, but forcing
11206 the VMA to 0 here will ensure that relocs against these
11207 sections are handled correctly. */
11208 if ((o->flags & SEC_ALLOC) == 0
11209 && ! o->user_set_vma)
11210 o->vma = 0;
11211 }
11212
11213 if (! bfd_link_relocatable (info) && merged)
11214 elf_link_hash_traverse (elf_hash_table (info),
11215 _bfd_elf_link_sec_merge_syms, abfd);
11216
11217 /* Figure out the file positions for everything but the symbol table
11218 and the relocs. We set symcount to force assign_section_numbers
11219 to create a symbol table. */
11220 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11221 BFD_ASSERT (! abfd->output_has_begun);
11222 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11223 goto error_return;
11224
11225 /* Set sizes, and assign file positions for reloc sections. */
11226 for (o = abfd->sections; o != NULL; o = o->next)
11227 {
11228 struct bfd_elf_section_data *esdo = elf_section_data (o);
11229 if ((o->flags & SEC_RELOC) != 0)
11230 {
11231 if (esdo->rel.hdr
11232 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11233 goto error_return;
11234
11235 if (esdo->rela.hdr
11236 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11237 goto error_return;
11238 }
11239
11240 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11241 to count upwards while actually outputting the relocations. */
11242 esdo->rel.count = 0;
11243 esdo->rela.count = 0;
11244
11245 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11246 {
11247 /* Cache the section contents so that they can be compressed
11248 later. Use bfd_malloc since it will be freed by
11249 bfd_compress_section_contents. */
11250 unsigned char *contents = esdo->this_hdr.contents;
11251 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11252 abort ();
11253 contents
11254 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11255 if (contents == NULL)
11256 goto error_return;
11257 esdo->this_hdr.contents = contents;
11258 }
11259 }
11260
11261 /* We have now assigned file positions for all the sections except
11262 .symtab, .strtab, and non-loaded reloc sections. We start the
11263 .symtab section at the current file position, and write directly
11264 to it. We build the .strtab section in memory. */
11265 bfd_get_symcount (abfd) = 0;
11266 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11267 /* sh_name is set in prep_headers. */
11268 symtab_hdr->sh_type = SHT_SYMTAB;
11269 /* sh_flags, sh_addr and sh_size all start off zero. */
11270 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11271 /* sh_link is set in assign_section_numbers. */
11272 /* sh_info is set below. */
11273 /* sh_offset is set just below. */
11274 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11275
11276 if (max_sym_count < 20)
11277 max_sym_count = 20;
11278 elf_hash_table (info)->strtabsize = max_sym_count;
11279 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11280 elf_hash_table (info)->strtab
11281 = (struct elf_sym_strtab *) bfd_malloc (amt);
11282 if (elf_hash_table (info)->strtab == NULL)
11283 goto error_return;
11284 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11285 flinfo.symshndxbuf
11286 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11287 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11288
11289 if (info->strip != strip_all || emit_relocs)
11290 {
11291 file_ptr off = elf_next_file_pos (abfd);
11292
11293 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11294
11295 /* Note that at this point elf_next_file_pos (abfd) is
11296 incorrect. We do not yet know the size of the .symtab section.
11297 We correct next_file_pos below, after we do know the size. */
11298
11299 /* Start writing out the symbol table. The first symbol is always a
11300 dummy symbol. */
11301 elfsym.st_value = 0;
11302 elfsym.st_size = 0;
11303 elfsym.st_info = 0;
11304 elfsym.st_other = 0;
11305 elfsym.st_shndx = SHN_UNDEF;
11306 elfsym.st_target_internal = 0;
11307 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11308 bfd_und_section_ptr, NULL) != 1)
11309 goto error_return;
11310
11311 /* Output a symbol for each section. We output these even if we are
11312 discarding local symbols, since they are used for relocs. These
11313 symbols have no names. We store the index of each one in the
11314 index field of the section, so that we can find it again when
11315 outputting relocs. */
11316
11317 elfsym.st_size = 0;
11318 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11319 elfsym.st_other = 0;
11320 elfsym.st_value = 0;
11321 elfsym.st_target_internal = 0;
11322 for (i = 1; i < elf_numsections (abfd); i++)
11323 {
11324 o = bfd_section_from_elf_index (abfd, i);
11325 if (o != NULL)
11326 {
11327 o->target_index = bfd_get_symcount (abfd);
11328 elfsym.st_shndx = i;
11329 if (!bfd_link_relocatable (info))
11330 elfsym.st_value = o->vma;
11331 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11332 NULL) != 1)
11333 goto error_return;
11334 }
11335 }
11336 }
11337
11338 /* Allocate some memory to hold information read in from the input
11339 files. */
11340 if (max_contents_size != 0)
11341 {
11342 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11343 if (flinfo.contents == NULL)
11344 goto error_return;
11345 }
11346
11347 if (max_external_reloc_size != 0)
11348 {
11349 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11350 if (flinfo.external_relocs == NULL)
11351 goto error_return;
11352 }
11353
11354 if (max_internal_reloc_count != 0)
11355 {
11356 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11357 amt *= sizeof (Elf_Internal_Rela);
11358 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11359 if (flinfo.internal_relocs == NULL)
11360 goto error_return;
11361 }
11362
11363 if (max_sym_count != 0)
11364 {
11365 amt = max_sym_count * bed->s->sizeof_sym;
11366 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11367 if (flinfo.external_syms == NULL)
11368 goto error_return;
11369
11370 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11371 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11372 if (flinfo.internal_syms == NULL)
11373 goto error_return;
11374
11375 amt = max_sym_count * sizeof (long);
11376 flinfo.indices = (long int *) bfd_malloc (amt);
11377 if (flinfo.indices == NULL)
11378 goto error_return;
11379
11380 amt = max_sym_count * sizeof (asection *);
11381 flinfo.sections = (asection **) bfd_malloc (amt);
11382 if (flinfo.sections == NULL)
11383 goto error_return;
11384 }
11385
11386 if (max_sym_shndx_count != 0)
11387 {
11388 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11389 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11390 if (flinfo.locsym_shndx == NULL)
11391 goto error_return;
11392 }
11393
11394 if (elf_hash_table (info)->tls_sec)
11395 {
11396 bfd_vma base, end = 0;
11397 asection *sec;
11398
11399 for (sec = elf_hash_table (info)->tls_sec;
11400 sec && (sec->flags & SEC_THREAD_LOCAL);
11401 sec = sec->next)
11402 {
11403 bfd_size_type size = sec->size;
11404
11405 if (size == 0
11406 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11407 {
11408 struct bfd_link_order *ord = sec->map_tail.link_order;
11409
11410 if (ord != NULL)
11411 size = ord->offset + ord->size;
11412 }
11413 end = sec->vma + size;
11414 }
11415 base = elf_hash_table (info)->tls_sec->vma;
11416 /* Only align end of TLS section if static TLS doesn't have special
11417 alignment requirements. */
11418 if (bed->static_tls_alignment == 1)
11419 end = align_power (end,
11420 elf_hash_table (info)->tls_sec->alignment_power);
11421 elf_hash_table (info)->tls_size = end - base;
11422 }
11423
11424 /* Reorder SHF_LINK_ORDER sections. */
11425 for (o = abfd->sections; o != NULL; o = o->next)
11426 {
11427 if (!elf_fixup_link_order (abfd, o))
11428 return FALSE;
11429 }
11430
11431 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11432 return FALSE;
11433
11434 /* Since ELF permits relocations to be against local symbols, we
11435 must have the local symbols available when we do the relocations.
11436 Since we would rather only read the local symbols once, and we
11437 would rather not keep them in memory, we handle all the
11438 relocations for a single input file at the same time.
11439
11440 Unfortunately, there is no way to know the total number of local
11441 symbols until we have seen all of them, and the local symbol
11442 indices precede the global symbol indices. This means that when
11443 we are generating relocatable output, and we see a reloc against
11444 a global symbol, we can not know the symbol index until we have
11445 finished examining all the local symbols to see which ones we are
11446 going to output. To deal with this, we keep the relocations in
11447 memory, and don't output them until the end of the link. This is
11448 an unfortunate waste of memory, but I don't see a good way around
11449 it. Fortunately, it only happens when performing a relocatable
11450 link, which is not the common case. FIXME: If keep_memory is set
11451 we could write the relocs out and then read them again; I don't
11452 know how bad the memory loss will be. */
11453
11454 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11455 sub->output_has_begun = FALSE;
11456 for (o = abfd->sections; o != NULL; o = o->next)
11457 {
11458 for (p = o->map_head.link_order; p != NULL; p = p->next)
11459 {
11460 if (p->type == bfd_indirect_link_order
11461 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11462 == bfd_target_elf_flavour)
11463 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11464 {
11465 if (! sub->output_has_begun)
11466 {
11467 if (! elf_link_input_bfd (&flinfo, sub))
11468 goto error_return;
11469 sub->output_has_begun = TRUE;
11470 }
11471 }
11472 else if (p->type == bfd_section_reloc_link_order
11473 || p->type == bfd_symbol_reloc_link_order)
11474 {
11475 if (! elf_reloc_link_order (abfd, info, o, p))
11476 goto error_return;
11477 }
11478 else
11479 {
11480 if (! _bfd_default_link_order (abfd, info, o, p))
11481 {
11482 if (p->type == bfd_indirect_link_order
11483 && (bfd_get_flavour (sub)
11484 == bfd_target_elf_flavour)
11485 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11486 != bed->s->elfclass))
11487 {
11488 const char *iclass, *oclass;
11489
11490 switch (bed->s->elfclass)
11491 {
11492 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11493 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11494 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11495 default: abort ();
11496 }
11497
11498 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11499 {
11500 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11501 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11502 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11503 default: abort ();
11504 }
11505
11506 bfd_set_error (bfd_error_wrong_format);
11507 (*_bfd_error_handler)
11508 (_("%B: file class %s incompatible with %s"),
11509 sub, iclass, oclass);
11510 }
11511
11512 goto error_return;
11513 }
11514 }
11515 }
11516 }
11517
11518 /* Free symbol buffer if needed. */
11519 if (!info->reduce_memory_overheads)
11520 {
11521 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11522 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11523 && elf_tdata (sub)->symbuf)
11524 {
11525 free (elf_tdata (sub)->symbuf);
11526 elf_tdata (sub)->symbuf = NULL;
11527 }
11528 }
11529
11530 /* Output any global symbols that got converted to local in a
11531 version script or due to symbol visibility. We do this in a
11532 separate step since ELF requires all local symbols to appear
11533 prior to any global symbols. FIXME: We should only do this if
11534 some global symbols were, in fact, converted to become local.
11535 FIXME: Will this work correctly with the Irix 5 linker? */
11536 eoinfo.failed = FALSE;
11537 eoinfo.flinfo = &flinfo;
11538 eoinfo.localsyms = TRUE;
11539 eoinfo.file_sym_done = FALSE;
11540 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11541 if (eoinfo.failed)
11542 return FALSE;
11543
11544 /* If backend needs to output some local symbols not present in the hash
11545 table, do it now. */
11546 if (bed->elf_backend_output_arch_local_syms
11547 && (info->strip != strip_all || emit_relocs))
11548 {
11549 typedef int (*out_sym_func)
11550 (void *, const char *, Elf_Internal_Sym *, asection *,
11551 struct elf_link_hash_entry *);
11552
11553 if (! ((*bed->elf_backend_output_arch_local_syms)
11554 (abfd, info, &flinfo,
11555 (out_sym_func) elf_link_output_symstrtab)))
11556 return FALSE;
11557 }
11558
11559 /* That wrote out all the local symbols. Finish up the symbol table
11560 with the global symbols. Even if we want to strip everything we
11561 can, we still need to deal with those global symbols that got
11562 converted to local in a version script. */
11563
11564 /* The sh_info field records the index of the first non local symbol. */
11565 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11566
11567 if (dynamic
11568 && elf_hash_table (info)->dynsym != NULL
11569 && (elf_hash_table (info)->dynsym->output_section
11570 != bfd_abs_section_ptr))
11571 {
11572 Elf_Internal_Sym sym;
11573 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11574 long last_local = 0;
11575
11576 /* Write out the section symbols for the output sections. */
11577 if (bfd_link_pic (info)
11578 || elf_hash_table (info)->is_relocatable_executable)
11579 {
11580 asection *s;
11581
11582 sym.st_size = 0;
11583 sym.st_name = 0;
11584 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11585 sym.st_other = 0;
11586 sym.st_target_internal = 0;
11587
11588 for (s = abfd->sections; s != NULL; s = s->next)
11589 {
11590 int indx;
11591 bfd_byte *dest;
11592 long dynindx;
11593
11594 dynindx = elf_section_data (s)->dynindx;
11595 if (dynindx <= 0)
11596 continue;
11597 indx = elf_section_data (s)->this_idx;
11598 BFD_ASSERT (indx > 0);
11599 sym.st_shndx = indx;
11600 if (! check_dynsym (abfd, &sym))
11601 return FALSE;
11602 sym.st_value = s->vma;
11603 dest = dynsym + dynindx * bed->s->sizeof_sym;
11604 if (last_local < dynindx)
11605 last_local = dynindx;
11606 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11607 }
11608 }
11609
11610 /* Write out the local dynsyms. */
11611 if (elf_hash_table (info)->dynlocal)
11612 {
11613 struct elf_link_local_dynamic_entry *e;
11614 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11615 {
11616 asection *s;
11617 bfd_byte *dest;
11618
11619 /* Copy the internal symbol and turn off visibility.
11620 Note that we saved a word of storage and overwrote
11621 the original st_name with the dynstr_index. */
11622 sym = e->isym;
11623 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11624
11625 s = bfd_section_from_elf_index (e->input_bfd,
11626 e->isym.st_shndx);
11627 if (s != NULL)
11628 {
11629 sym.st_shndx =
11630 elf_section_data (s->output_section)->this_idx;
11631 if (! check_dynsym (abfd, &sym))
11632 return FALSE;
11633 sym.st_value = (s->output_section->vma
11634 + s->output_offset
11635 + e->isym.st_value);
11636 }
11637
11638 if (last_local < e->dynindx)
11639 last_local = e->dynindx;
11640
11641 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11642 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11643 }
11644 }
11645
11646 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11647 last_local + 1;
11648 }
11649
11650 /* We get the global symbols from the hash table. */
11651 eoinfo.failed = FALSE;
11652 eoinfo.localsyms = FALSE;
11653 eoinfo.flinfo = &flinfo;
11654 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11655 if (eoinfo.failed)
11656 return FALSE;
11657
11658 /* If backend needs to output some symbols not present in the hash
11659 table, do it now. */
11660 if (bed->elf_backend_output_arch_syms
11661 && (info->strip != strip_all || emit_relocs))
11662 {
11663 typedef int (*out_sym_func)
11664 (void *, const char *, Elf_Internal_Sym *, asection *,
11665 struct elf_link_hash_entry *);
11666
11667 if (! ((*bed->elf_backend_output_arch_syms)
11668 (abfd, info, &flinfo,
11669 (out_sym_func) elf_link_output_symstrtab)))
11670 return FALSE;
11671 }
11672
11673 /* Finalize the .strtab section. */
11674 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11675
11676 /* Swap out the .strtab section. */
11677 if (!elf_link_swap_symbols_out (&flinfo))
11678 return FALSE;
11679
11680 /* Now we know the size of the symtab section. */
11681 if (bfd_get_symcount (abfd) > 0)
11682 {
11683 /* Finish up and write out the symbol string table (.strtab)
11684 section. */
11685 Elf_Internal_Shdr *symstrtab_hdr;
11686 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11687
11688 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11689 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11690 {
11691 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11692 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11693 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11694 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11695 symtab_shndx_hdr->sh_size = amt;
11696
11697 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11698 off, TRUE);
11699
11700 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11701 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11702 return FALSE;
11703 }
11704
11705 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11706 /* sh_name was set in prep_headers. */
11707 symstrtab_hdr->sh_type = SHT_STRTAB;
11708 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11709 symstrtab_hdr->sh_addr = 0;
11710 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11711 symstrtab_hdr->sh_entsize = 0;
11712 symstrtab_hdr->sh_link = 0;
11713 symstrtab_hdr->sh_info = 0;
11714 /* sh_offset is set just below. */
11715 symstrtab_hdr->sh_addralign = 1;
11716
11717 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11718 off, TRUE);
11719 elf_next_file_pos (abfd) = off;
11720
11721 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11722 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11723 return FALSE;
11724 }
11725
11726 /* Adjust the relocs to have the correct symbol indices. */
11727 for (o = abfd->sections; o != NULL; o = o->next)
11728 {
11729 struct bfd_elf_section_data *esdo = elf_section_data (o);
11730 bfd_boolean sort;
11731 if ((o->flags & SEC_RELOC) == 0)
11732 continue;
11733
11734 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11735 if (esdo->rel.hdr != NULL
11736 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11737 return FALSE;
11738 if (esdo->rela.hdr != NULL
11739 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11740 return FALSE;
11741
11742 /* Set the reloc_count field to 0 to prevent write_relocs from
11743 trying to swap the relocs out itself. */
11744 o->reloc_count = 0;
11745 }
11746
11747 if (dynamic && info->combreloc && dynobj != NULL)
11748 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11749
11750 /* If we are linking against a dynamic object, or generating a
11751 shared library, finish up the dynamic linking information. */
11752 if (dynamic)
11753 {
11754 bfd_byte *dyncon, *dynconend;
11755
11756 /* Fix up .dynamic entries. */
11757 o = bfd_get_linker_section (dynobj, ".dynamic");
11758 BFD_ASSERT (o != NULL);
11759
11760 dyncon = o->contents;
11761 dynconend = o->contents + o->size;
11762 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11763 {
11764 Elf_Internal_Dyn dyn;
11765 const char *name;
11766 unsigned int type;
11767
11768 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11769
11770 switch (dyn.d_tag)
11771 {
11772 default:
11773 continue;
11774 case DT_NULL:
11775 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11776 {
11777 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11778 {
11779 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11780 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11781 default: continue;
11782 }
11783 dyn.d_un.d_val = relativecount;
11784 relativecount = 0;
11785 break;
11786 }
11787 continue;
11788
11789 case DT_INIT:
11790 name = info->init_function;
11791 goto get_sym;
11792 case DT_FINI:
11793 name = info->fini_function;
11794 get_sym:
11795 {
11796 struct elf_link_hash_entry *h;
11797
11798 h = elf_link_hash_lookup (elf_hash_table (info), name,
11799 FALSE, FALSE, TRUE);
11800 if (h != NULL
11801 && (h->root.type == bfd_link_hash_defined
11802 || h->root.type == bfd_link_hash_defweak))
11803 {
11804 dyn.d_un.d_ptr = h->root.u.def.value;
11805 o = h->root.u.def.section;
11806 if (o->output_section != NULL)
11807 dyn.d_un.d_ptr += (o->output_section->vma
11808 + o->output_offset);
11809 else
11810 {
11811 /* The symbol is imported from another shared
11812 library and does not apply to this one. */
11813 dyn.d_un.d_ptr = 0;
11814 }
11815 break;
11816 }
11817 }
11818 continue;
11819
11820 case DT_PREINIT_ARRAYSZ:
11821 name = ".preinit_array";
11822 goto get_size;
11823 case DT_INIT_ARRAYSZ:
11824 name = ".init_array";
11825 goto get_size;
11826 case DT_FINI_ARRAYSZ:
11827 name = ".fini_array";
11828 get_size:
11829 o = bfd_get_section_by_name (abfd, name);
11830 if (o == NULL)
11831 {
11832 (*_bfd_error_handler)
11833 (_("%B: could not find output section %s"), abfd, name);
11834 goto error_return;
11835 }
11836 if (o->size == 0)
11837 (*_bfd_error_handler)
11838 (_("warning: %s section has zero size"), name);
11839 dyn.d_un.d_val = o->size;
11840 break;
11841
11842 case DT_PREINIT_ARRAY:
11843 name = ".preinit_array";
11844 goto get_vma;
11845 case DT_INIT_ARRAY:
11846 name = ".init_array";
11847 goto get_vma;
11848 case DT_FINI_ARRAY:
11849 name = ".fini_array";
11850 goto get_vma;
11851
11852 case DT_HASH:
11853 name = ".hash";
11854 goto get_vma;
11855 case DT_GNU_HASH:
11856 name = ".gnu.hash";
11857 goto get_vma;
11858 case DT_STRTAB:
11859 name = ".dynstr";
11860 goto get_vma;
11861 case DT_SYMTAB:
11862 name = ".dynsym";
11863 goto get_vma;
11864 case DT_VERDEF:
11865 name = ".gnu.version_d";
11866 goto get_vma;
11867 case DT_VERNEED:
11868 name = ".gnu.version_r";
11869 goto get_vma;
11870 case DT_VERSYM:
11871 name = ".gnu.version";
11872 get_vma:
11873 o = bfd_get_section_by_name (abfd, name);
11874 if (o == NULL)
11875 {
11876 (*_bfd_error_handler)
11877 (_("%B: could not find output section %s"), abfd, name);
11878 goto error_return;
11879 }
11880 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11881 {
11882 (*_bfd_error_handler)
11883 (_("warning: section '%s' is being made into a note"), name);
11884 bfd_set_error (bfd_error_nonrepresentable_section);
11885 goto error_return;
11886 }
11887 dyn.d_un.d_ptr = o->vma;
11888 break;
11889
11890 case DT_REL:
11891 case DT_RELA:
11892 case DT_RELSZ:
11893 case DT_RELASZ:
11894 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11895 type = SHT_REL;
11896 else
11897 type = SHT_RELA;
11898 dyn.d_un.d_val = 0;
11899 dyn.d_un.d_ptr = 0;
11900 for (i = 1; i < elf_numsections (abfd); i++)
11901 {
11902 Elf_Internal_Shdr *hdr;
11903
11904 hdr = elf_elfsections (abfd)[i];
11905 if (hdr->sh_type == type
11906 && (hdr->sh_flags & SHF_ALLOC) != 0)
11907 {
11908 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11909 dyn.d_un.d_val += hdr->sh_size;
11910 else
11911 {
11912 if (dyn.d_un.d_ptr == 0
11913 || hdr->sh_addr < dyn.d_un.d_ptr)
11914 dyn.d_un.d_ptr = hdr->sh_addr;
11915 }
11916 }
11917 }
11918 break;
11919 }
11920 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11921 }
11922 }
11923
11924 /* If we have created any dynamic sections, then output them. */
11925 if (dynobj != NULL)
11926 {
11927 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11928 goto error_return;
11929
11930 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11931 if (((info->warn_shared_textrel && bfd_link_pic (info))
11932 || info->error_textrel)
11933 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11934 {
11935 bfd_byte *dyncon, *dynconend;
11936
11937 dyncon = o->contents;
11938 dynconend = o->contents + o->size;
11939 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11940 {
11941 Elf_Internal_Dyn dyn;
11942
11943 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11944
11945 if (dyn.d_tag == DT_TEXTREL)
11946 {
11947 if (info->error_textrel)
11948 info->callbacks->einfo
11949 (_("%P%X: read-only segment has dynamic relocations.\n"));
11950 else
11951 info->callbacks->einfo
11952 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11953 break;
11954 }
11955 }
11956 }
11957
11958 for (o = dynobj->sections; o != NULL; o = o->next)
11959 {
11960 if ((o->flags & SEC_HAS_CONTENTS) == 0
11961 || o->size == 0
11962 || o->output_section == bfd_abs_section_ptr)
11963 continue;
11964 if ((o->flags & SEC_LINKER_CREATED) == 0)
11965 {
11966 /* At this point, we are only interested in sections
11967 created by _bfd_elf_link_create_dynamic_sections. */
11968 continue;
11969 }
11970 if (elf_hash_table (info)->stab_info.stabstr == o)
11971 continue;
11972 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11973 continue;
11974 if (strcmp (o->name, ".dynstr") != 0)
11975 {
11976 if (! bfd_set_section_contents (abfd, o->output_section,
11977 o->contents,
11978 (file_ptr) o->output_offset
11979 * bfd_octets_per_byte (abfd),
11980 o->size))
11981 goto error_return;
11982 }
11983 else
11984 {
11985 /* The contents of the .dynstr section are actually in a
11986 stringtab. */
11987 file_ptr off;
11988
11989 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11990 if (bfd_seek (abfd, off, SEEK_SET) != 0
11991 || ! _bfd_elf_strtab_emit (abfd,
11992 elf_hash_table (info)->dynstr))
11993 goto error_return;
11994 }
11995 }
11996 }
11997
11998 if (bfd_link_relocatable (info))
11999 {
12000 bfd_boolean failed = FALSE;
12001
12002 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12003 if (failed)
12004 goto error_return;
12005 }
12006
12007 /* If we have optimized stabs strings, output them. */
12008 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12009 {
12010 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12011 goto error_return;
12012 }
12013
12014 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12015 goto error_return;
12016
12017 elf_final_link_free (abfd, &flinfo);
12018
12019 elf_linker (abfd) = TRUE;
12020
12021 if (attr_section)
12022 {
12023 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12024 if (contents == NULL)
12025 return FALSE; /* Bail out and fail. */
12026 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12027 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12028 free (contents);
12029 }
12030
12031 return TRUE;
12032
12033 error_return:
12034 elf_final_link_free (abfd, &flinfo);
12035 return FALSE;
12036}
12037\f
12038/* Initialize COOKIE for input bfd ABFD. */
12039
12040static bfd_boolean
12041init_reloc_cookie (struct elf_reloc_cookie *cookie,
12042 struct bfd_link_info *info, bfd *abfd)
12043{
12044 Elf_Internal_Shdr *symtab_hdr;
12045 const struct elf_backend_data *bed;
12046
12047 bed = get_elf_backend_data (abfd);
12048 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12049
12050 cookie->abfd = abfd;
12051 cookie->sym_hashes = elf_sym_hashes (abfd);
12052 cookie->bad_symtab = elf_bad_symtab (abfd);
12053 if (cookie->bad_symtab)
12054 {
12055 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12056 cookie->extsymoff = 0;
12057 }
12058 else
12059 {
12060 cookie->locsymcount = symtab_hdr->sh_info;
12061 cookie->extsymoff = symtab_hdr->sh_info;
12062 }
12063
12064 if (bed->s->arch_size == 32)
12065 cookie->r_sym_shift = 8;
12066 else
12067 cookie->r_sym_shift = 32;
12068
12069 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12070 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12071 {
12072 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12073 cookie->locsymcount, 0,
12074 NULL, NULL, NULL);
12075 if (cookie->locsyms == NULL)
12076 {
12077 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12078 return FALSE;
12079 }
12080 if (info->keep_memory)
12081 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12082 }
12083 return TRUE;
12084}
12085
12086/* Free the memory allocated by init_reloc_cookie, if appropriate. */
12087
12088static void
12089fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12090{
12091 Elf_Internal_Shdr *symtab_hdr;
12092
12093 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12094 if (cookie->locsyms != NULL
12095 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12096 free (cookie->locsyms);
12097}
12098
12099/* Initialize the relocation information in COOKIE for input section SEC
12100 of input bfd ABFD. */
12101
12102static bfd_boolean
12103init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12104 struct bfd_link_info *info, bfd *abfd,
12105 asection *sec)
12106{
12107 const struct elf_backend_data *bed;
12108
12109 if (sec->reloc_count == 0)
12110 {
12111 cookie->rels = NULL;
12112 cookie->relend = NULL;
12113 }
12114 else
12115 {
12116 bed = get_elf_backend_data (abfd);
12117
12118 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12119 info->keep_memory);
12120 if (cookie->rels == NULL)
12121 return FALSE;
12122 cookie->rel = cookie->rels;
12123 cookie->relend = (cookie->rels
12124 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12125 }
12126 cookie->rel = cookie->rels;
12127 return TRUE;
12128}
12129
12130/* Free the memory allocated by init_reloc_cookie_rels,
12131 if appropriate. */
12132
12133static void
12134fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12135 asection *sec)
12136{
12137 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12138 free (cookie->rels);
12139}
12140
12141/* Initialize the whole of COOKIE for input section SEC. */
12142
12143static bfd_boolean
12144init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12145 struct bfd_link_info *info,
12146 asection *sec)
12147{
12148 if (!init_reloc_cookie (cookie, info, sec->owner))
12149 goto error1;
12150 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12151 goto error2;
12152 return TRUE;
12153
12154 error2:
12155 fini_reloc_cookie (cookie, sec->owner);
12156 error1:
12157 return FALSE;
12158}
12159
12160/* Free the memory allocated by init_reloc_cookie_for_section,
12161 if appropriate. */
12162
12163static void
12164fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12165 asection *sec)
12166{
12167 fini_reloc_cookie_rels (cookie, sec);
12168 fini_reloc_cookie (cookie, sec->owner);
12169}
12170\f
12171/* Garbage collect unused sections. */
12172
12173/* Default gc_mark_hook. */
12174
12175asection *
12176_bfd_elf_gc_mark_hook (asection *sec,
12177 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12178 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12179 struct elf_link_hash_entry *h,
12180 Elf_Internal_Sym *sym)
12181{
12182 if (h != NULL)
12183 {
12184 switch (h->root.type)
12185 {
12186 case bfd_link_hash_defined:
12187 case bfd_link_hash_defweak:
12188 return h->root.u.def.section;
12189
12190 case bfd_link_hash_common:
12191 return h->root.u.c.p->section;
12192
12193 default:
12194 break;
12195 }
12196 }
12197 else
12198 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12199
12200 return NULL;
12201}
12202
12203/* COOKIE->rel describes a relocation against section SEC, which is
12204 a section we've decided to keep. Return the section that contains
12205 the relocation symbol, or NULL if no section contains it. */
12206
12207asection *
12208_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12209 elf_gc_mark_hook_fn gc_mark_hook,
12210 struct elf_reloc_cookie *cookie,
12211 bfd_boolean *start_stop)
12212{
12213 unsigned long r_symndx;
12214 struct elf_link_hash_entry *h;
12215
12216 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12217 if (r_symndx == STN_UNDEF)
12218 return NULL;
12219
12220 if (r_symndx >= cookie->locsymcount
12221 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12222 {
12223 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12224 if (h == NULL)
12225 {
12226 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12227 sec->owner);
12228 return NULL;
12229 }
12230 while (h->root.type == bfd_link_hash_indirect
12231 || h->root.type == bfd_link_hash_warning)
12232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12233 h->mark = 1;
12234 /* If this symbol is weak and there is a non-weak definition, we
12235 keep the non-weak definition because many backends put
12236 dynamic reloc info on the non-weak definition for code
12237 handling copy relocs. */
12238 if (h->u.weakdef != NULL)
12239 h->u.weakdef->mark = 1;
12240
12241 if (start_stop != NULL
12242 && (h->root.type == bfd_link_hash_undefined
12243 || h->root.type == bfd_link_hash_undefweak))
12244 {
12245 /* To work around a glibc bug, mark all XXX input sections
12246 when there is an as yet undefined reference to __start_XXX
12247 or __stop_XXX symbols. The linker will later define such
12248 symbols for orphan input sections that have a name
12249 representable as a C identifier. */
12250 const char *sec_name = NULL;
12251 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12252 sec_name = h->root.root.string + 8;
12253 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12254 sec_name = h->root.root.string + 7;
12255
12256 if (sec_name != NULL && *sec_name != '\0')
12257 {
12258 bfd *i;
12259
12260 for (i = info->input_bfds; i != NULL; i = i->link.next)
12261 {
12262 asection *s = bfd_get_section_by_name (i, sec_name);
12263 if (s != NULL && !s->gc_mark)
12264 {
12265 *start_stop = TRUE;
12266 return s;
12267 }
12268 }
12269 }
12270 }
12271
12272 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12273 }
12274
12275 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12276 &cookie->locsyms[r_symndx]);
12277}
12278
12279/* COOKIE->rel describes a relocation against section SEC, which is
12280 a section we've decided to keep. Mark the section that contains
12281 the relocation symbol. */
12282
12283bfd_boolean
12284_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12285 asection *sec,
12286 elf_gc_mark_hook_fn gc_mark_hook,
12287 struct elf_reloc_cookie *cookie)
12288{
12289 asection *rsec;
12290 bfd_boolean start_stop = FALSE;
12291
12292 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12293 while (rsec != NULL)
12294 {
12295 if (!rsec->gc_mark)
12296 {
12297 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12298 || (rsec->owner->flags & DYNAMIC) != 0)
12299 rsec->gc_mark = 1;
12300 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12301 return FALSE;
12302 }
12303 if (!start_stop)
12304 break;
12305 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12306 }
12307 return TRUE;
12308}
12309
12310/* The mark phase of garbage collection. For a given section, mark
12311 it and any sections in this section's group, and all the sections
12312 which define symbols to which it refers. */
12313
12314bfd_boolean
12315_bfd_elf_gc_mark (struct bfd_link_info *info,
12316 asection *sec,
12317 elf_gc_mark_hook_fn gc_mark_hook)
12318{
12319 bfd_boolean ret;
12320 asection *group_sec, *eh_frame;
12321
12322 sec->gc_mark = 1;
12323
12324 /* Mark all the sections in the group. */
12325 group_sec = elf_section_data (sec)->next_in_group;
12326 if (group_sec && !group_sec->gc_mark)
12327 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12328 return FALSE;
12329
12330 /* Look through the section relocs. */
12331 ret = TRUE;
12332 eh_frame = elf_eh_frame_section (sec->owner);
12333 if ((sec->flags & SEC_RELOC) != 0
12334 && sec->reloc_count > 0
12335 && sec != eh_frame)
12336 {
12337 struct elf_reloc_cookie cookie;
12338
12339 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12340 ret = FALSE;
12341 else
12342 {
12343 for (; cookie.rel < cookie.relend; cookie.rel++)
12344 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12345 {
12346 ret = FALSE;
12347 break;
12348 }
12349 fini_reloc_cookie_for_section (&cookie, sec);
12350 }
12351 }
12352
12353 if (ret && eh_frame && elf_fde_list (sec))
12354 {
12355 struct elf_reloc_cookie cookie;
12356
12357 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12358 ret = FALSE;
12359 else
12360 {
12361 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12362 gc_mark_hook, &cookie))
12363 ret = FALSE;
12364 fini_reloc_cookie_for_section (&cookie, eh_frame);
12365 }
12366 }
12367
12368 eh_frame = elf_section_eh_frame_entry (sec);
12369 if (ret && eh_frame && !eh_frame->gc_mark)
12370 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12371 ret = FALSE;
12372
12373 return ret;
12374}
12375
12376/* Scan and mark sections in a special or debug section group. */
12377
12378static void
12379_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12380{
12381 /* Point to first section of section group. */
12382 asection *ssec;
12383 /* Used to iterate the section group. */
12384 asection *msec;
12385
12386 bfd_boolean is_special_grp = TRUE;
12387 bfd_boolean is_debug_grp = TRUE;
12388
12389 /* First scan to see if group contains any section other than debug
12390 and special section. */
12391 ssec = msec = elf_next_in_group (grp);
12392 do
12393 {
12394 if ((msec->flags & SEC_DEBUGGING) == 0)
12395 is_debug_grp = FALSE;
12396
12397 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12398 is_special_grp = FALSE;
12399
12400 msec = elf_next_in_group (msec);
12401 }
12402 while (msec != ssec);
12403
12404 /* If this is a pure debug section group or pure special section group,
12405 keep all sections in this group. */
12406 if (is_debug_grp || is_special_grp)
12407 {
12408 do
12409 {
12410 msec->gc_mark = 1;
12411 msec = elf_next_in_group (msec);
12412 }
12413 while (msec != ssec);
12414 }
12415}
12416
12417/* Keep debug and special sections. */
12418
12419bfd_boolean
12420_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12421 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12422{
12423 bfd *ibfd;
12424
12425 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12426 {
12427 asection *isec;
12428 bfd_boolean some_kept;
12429 bfd_boolean debug_frag_seen;
12430
12431 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12432 continue;
12433
12434 /* Ensure all linker created sections are kept,
12435 see if any other section is already marked,
12436 and note if we have any fragmented debug sections. */
12437 debug_frag_seen = some_kept = FALSE;
12438 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12439 {
12440 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12441 isec->gc_mark = 1;
12442 else if (isec->gc_mark)
12443 some_kept = TRUE;
12444
12445 if (debug_frag_seen == FALSE
12446 && (isec->flags & SEC_DEBUGGING)
12447 && CONST_STRNEQ (isec->name, ".debug_line."))
12448 debug_frag_seen = TRUE;
12449 }
12450
12451 /* If no section in this file will be kept, then we can
12452 toss out the debug and special sections. */
12453 if (!some_kept)
12454 continue;
12455
12456 /* Keep debug and special sections like .comment when they are
12457 not part of a group. Also keep section groups that contain
12458 just debug sections or special sections. */
12459 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12460 {
12461 if ((isec->flags & SEC_GROUP) != 0)
12462 _bfd_elf_gc_mark_debug_special_section_group (isec);
12463 else if (((isec->flags & SEC_DEBUGGING) != 0
12464 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12465 && elf_next_in_group (isec) == NULL)
12466 isec->gc_mark = 1;
12467 }
12468
12469 if (! debug_frag_seen)
12470 continue;
12471
12472 /* Look for CODE sections which are going to be discarded,
12473 and find and discard any fragmented debug sections which
12474 are associated with that code section. */
12475 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12476 if ((isec->flags & SEC_CODE) != 0
12477 && isec->gc_mark == 0)
12478 {
12479 unsigned int ilen;
12480 asection *dsec;
12481
12482 ilen = strlen (isec->name);
12483
12484 /* Association is determined by the name of the debug section
12485 containing the name of the code section as a suffix. For
12486 example .debug_line.text.foo is a debug section associated
12487 with .text.foo. */
12488 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12489 {
12490 unsigned int dlen;
12491
12492 if (dsec->gc_mark == 0
12493 || (dsec->flags & SEC_DEBUGGING) == 0)
12494 continue;
12495
12496 dlen = strlen (dsec->name);
12497
12498 if (dlen > ilen
12499 && strncmp (dsec->name + (dlen - ilen),
12500 isec->name, ilen) == 0)
12501 {
12502 dsec->gc_mark = 0;
12503 }
12504 }
12505 }
12506 }
12507 return TRUE;
12508}
12509
12510/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12511
12512struct elf_gc_sweep_symbol_info
12513{
12514 struct bfd_link_info *info;
12515 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12516 bfd_boolean);
12517};
12518
12519static bfd_boolean
12520elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12521{
12522 if (!h->mark
12523 && (((h->root.type == bfd_link_hash_defined
12524 || h->root.type == bfd_link_hash_defweak)
12525 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12526 && h->root.u.def.section->gc_mark))
12527 || h->root.type == bfd_link_hash_undefined
12528 || h->root.type == bfd_link_hash_undefweak))
12529 {
12530 struct elf_gc_sweep_symbol_info *inf;
12531
12532 inf = (struct elf_gc_sweep_symbol_info *) data;
12533 (*inf->hide_symbol) (inf->info, h, TRUE);
12534 h->def_regular = 0;
12535 h->ref_regular = 0;
12536 h->ref_regular_nonweak = 0;
12537 }
12538
12539 return TRUE;
12540}
12541
12542/* The sweep phase of garbage collection. Remove all garbage sections. */
12543
12544typedef bfd_boolean (*gc_sweep_hook_fn)
12545 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12546
12547static bfd_boolean
12548elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12549{
12550 bfd *sub;
12551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12552 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12553 unsigned long section_sym_count;
12554 struct elf_gc_sweep_symbol_info sweep_info;
12555
12556 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12557 {
12558 asection *o;
12559
12560 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12561 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12562 continue;
12563
12564 for (o = sub->sections; o != NULL; o = o->next)
12565 {
12566 /* When any section in a section group is kept, we keep all
12567 sections in the section group. If the first member of
12568 the section group is excluded, we will also exclude the
12569 group section. */
12570 if (o->flags & SEC_GROUP)
12571 {
12572 asection *first = elf_next_in_group (o);
12573 o->gc_mark = first->gc_mark;
12574 }
12575
12576 if (o->gc_mark)
12577 continue;
12578
12579 /* Skip sweeping sections already excluded. */
12580 if (o->flags & SEC_EXCLUDE)
12581 continue;
12582
12583 /* Since this is early in the link process, it is simple
12584 to remove a section from the output. */
12585 o->flags |= SEC_EXCLUDE;
12586
12587 if (info->print_gc_sections && o->size != 0)
12588 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12589
12590 /* But we also have to update some of the relocation
12591 info we collected before. */
12592 if (gc_sweep_hook
12593 && (o->flags & SEC_RELOC) != 0
12594 && o->reloc_count != 0
12595 && !((info->strip == strip_all || info->strip == strip_debugger)
12596 && (o->flags & SEC_DEBUGGING) != 0)
12597 && !bfd_is_abs_section (o->output_section))
12598 {
12599 Elf_Internal_Rela *internal_relocs;
12600 bfd_boolean r;
12601
12602 internal_relocs
12603 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12604 info->keep_memory);
12605 if (internal_relocs == NULL)
12606 return FALSE;
12607
12608 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12609
12610 if (elf_section_data (o)->relocs != internal_relocs)
12611 free (internal_relocs);
12612
12613 if (!r)
12614 return FALSE;
12615 }
12616 }
12617 }
12618
12619 /* Remove the symbols that were in the swept sections from the dynamic
12620 symbol table. GCFIXME: Anyone know how to get them out of the
12621 static symbol table as well? */
12622 sweep_info.info = info;
12623 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12624 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12625 &sweep_info);
12626
12627 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12628 return TRUE;
12629}
12630
12631/* Propagate collected vtable information. This is called through
12632 elf_link_hash_traverse. */
12633
12634static bfd_boolean
12635elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12636{
12637 /* Those that are not vtables. */
12638 if (h->vtable == NULL || h->vtable->parent == NULL)
12639 return TRUE;
12640
12641 /* Those vtables that do not have parents, we cannot merge. */
12642 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12643 return TRUE;
12644
12645 /* If we've already been done, exit. */
12646 if (h->vtable->used && h->vtable->used[-1])
12647 return TRUE;
12648
12649 /* Make sure the parent's table is up to date. */
12650 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12651
12652 if (h->vtable->used == NULL)
12653 {
12654 /* None of this table's entries were referenced. Re-use the
12655 parent's table. */
12656 h->vtable->used = h->vtable->parent->vtable->used;
12657 h->vtable->size = h->vtable->parent->vtable->size;
12658 }
12659 else
12660 {
12661 size_t n;
12662 bfd_boolean *cu, *pu;
12663
12664 /* Or the parent's entries into ours. */
12665 cu = h->vtable->used;
12666 cu[-1] = TRUE;
12667 pu = h->vtable->parent->vtable->used;
12668 if (pu != NULL)
12669 {
12670 const struct elf_backend_data *bed;
12671 unsigned int log_file_align;
12672
12673 bed = get_elf_backend_data (h->root.u.def.section->owner);
12674 log_file_align = bed->s->log_file_align;
12675 n = h->vtable->parent->vtable->size >> log_file_align;
12676 while (n--)
12677 {
12678 if (*pu)
12679 *cu = TRUE;
12680 pu++;
12681 cu++;
12682 }
12683 }
12684 }
12685
12686 return TRUE;
12687}
12688
12689static bfd_boolean
12690elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12691{
12692 asection *sec;
12693 bfd_vma hstart, hend;
12694 Elf_Internal_Rela *relstart, *relend, *rel;
12695 const struct elf_backend_data *bed;
12696 unsigned int log_file_align;
12697
12698 /* Take care of both those symbols that do not describe vtables as
12699 well as those that are not loaded. */
12700 if (h->vtable == NULL || h->vtable->parent == NULL)
12701 return TRUE;
12702
12703 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12704 || h->root.type == bfd_link_hash_defweak);
12705
12706 sec = h->root.u.def.section;
12707 hstart = h->root.u.def.value;
12708 hend = hstart + h->size;
12709
12710 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12711 if (!relstart)
12712 return *(bfd_boolean *) okp = FALSE;
12713 bed = get_elf_backend_data (sec->owner);
12714 log_file_align = bed->s->log_file_align;
12715
12716 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12717
12718 for (rel = relstart; rel < relend; ++rel)
12719 if (rel->r_offset >= hstart && rel->r_offset < hend)
12720 {
12721 /* If the entry is in use, do nothing. */
12722 if (h->vtable->used
12723 && (rel->r_offset - hstart) < h->vtable->size)
12724 {
12725 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12726 if (h->vtable->used[entry])
12727 continue;
12728 }
12729 /* Otherwise, kill it. */
12730 rel->r_offset = rel->r_info = rel->r_addend = 0;
12731 }
12732
12733 return TRUE;
12734}
12735
12736/* Mark sections containing dynamically referenced symbols. When
12737 building shared libraries, we must assume that any visible symbol is
12738 referenced. */
12739
12740bfd_boolean
12741bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12742{
12743 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12744 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12745
12746 if ((h->root.type == bfd_link_hash_defined
12747 || h->root.type == bfd_link_hash_defweak)
12748 && (h->ref_dynamic
12749 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12750 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12751 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12752 && (!bfd_link_executable (info)
12753 || info->export_dynamic
12754 || (h->dynamic
12755 && d != NULL
12756 && (*d->match) (&d->head, NULL, h->root.root.string)))
12757 && (h->versioned >= versioned
12758 || !bfd_hide_sym_by_version (info->version_info,
12759 h->root.root.string)))))
12760 h->root.u.def.section->flags |= SEC_KEEP;
12761
12762 return TRUE;
12763}
12764
12765/* Keep all sections containing symbols undefined on the command-line,
12766 and the section containing the entry symbol. */
12767
12768void
12769_bfd_elf_gc_keep (struct bfd_link_info *info)
12770{
12771 struct bfd_sym_chain *sym;
12772
12773 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12774 {
12775 struct elf_link_hash_entry *h;
12776
12777 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12778 FALSE, FALSE, FALSE);
12779
12780 if (h != NULL
12781 && (h->root.type == bfd_link_hash_defined
12782 || h->root.type == bfd_link_hash_defweak)
12783 && !bfd_is_abs_section (h->root.u.def.section))
12784 h->root.u.def.section->flags |= SEC_KEEP;
12785 }
12786}
12787
12788bfd_boolean
12789bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12790 struct bfd_link_info *info)
12791{
12792 bfd *ibfd = info->input_bfds;
12793
12794 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12795 {
12796 asection *sec;
12797 struct elf_reloc_cookie cookie;
12798
12799 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12800 continue;
12801
12802 if (!init_reloc_cookie (&cookie, info, ibfd))
12803 return FALSE;
12804
12805 for (sec = ibfd->sections; sec; sec = sec->next)
12806 {
12807 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12808 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12809 {
12810 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12811 fini_reloc_cookie_rels (&cookie, sec);
12812 }
12813 }
12814 }
12815 return TRUE;
12816}
12817
12818/* Do mark and sweep of unused sections. */
12819
12820bfd_boolean
12821bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12822{
12823 bfd_boolean ok = TRUE;
12824 bfd *sub;
12825 elf_gc_mark_hook_fn gc_mark_hook;
12826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12827 struct elf_link_hash_table *htab;
12828
12829 if (!bed->can_gc_sections
12830 || !is_elf_hash_table (info->hash))
12831 {
12832 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12833 return TRUE;
12834 }
12835
12836 bed->gc_keep (info);
12837 htab = elf_hash_table (info);
12838
12839 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12840 at the .eh_frame section if we can mark the FDEs individually. */
12841 for (sub = info->input_bfds;
12842 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12843 sub = sub->link.next)
12844 {
12845 asection *sec;
12846 struct elf_reloc_cookie cookie;
12847
12848 sec = bfd_get_section_by_name (sub, ".eh_frame");
12849 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12850 {
12851 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12852 if (elf_section_data (sec)->sec_info
12853 && (sec->flags & SEC_LINKER_CREATED) == 0)
12854 elf_eh_frame_section (sub) = sec;
12855 fini_reloc_cookie_for_section (&cookie, sec);
12856 sec = bfd_get_next_section_by_name (NULL, sec);
12857 }
12858 }
12859
12860 /* Apply transitive closure to the vtable entry usage info. */
12861 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12862 if (!ok)
12863 return FALSE;
12864
12865 /* Kill the vtable relocations that were not used. */
12866 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12867 if (!ok)
12868 return FALSE;
12869
12870 /* Mark dynamically referenced symbols. */
12871 if (htab->dynamic_sections_created)
12872 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12873
12874 /* Grovel through relocs to find out who stays ... */
12875 gc_mark_hook = bed->gc_mark_hook;
12876 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12877 {
12878 asection *o;
12879
12880 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12881 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12882 continue;
12883
12884 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12885 Also treat note sections as a root, if the section is not part
12886 of a group. */
12887 for (o = sub->sections; o != NULL; o = o->next)
12888 if (!o->gc_mark
12889 && (o->flags & SEC_EXCLUDE) == 0
12890 && ((o->flags & SEC_KEEP) != 0
12891 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12892 && elf_next_in_group (o) == NULL )))
12893 {
12894 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12895 return FALSE;
12896 }
12897 }
12898
12899 /* Allow the backend to mark additional target specific sections. */
12900 bed->gc_mark_extra_sections (info, gc_mark_hook);
12901
12902 /* ... and mark SEC_EXCLUDE for those that go. */
12903 return elf_gc_sweep (abfd, info);
12904}
12905\f
12906/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12907
12908bfd_boolean
12909bfd_elf_gc_record_vtinherit (bfd *abfd,
12910 asection *sec,
12911 struct elf_link_hash_entry *h,
12912 bfd_vma offset)
12913{
12914 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12915 struct elf_link_hash_entry **search, *child;
12916 bfd_size_type extsymcount;
12917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12918
12919 /* The sh_info field of the symtab header tells us where the
12920 external symbols start. We don't care about the local symbols at
12921 this point. */
12922 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12923 if (!elf_bad_symtab (abfd))
12924 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12925
12926 sym_hashes = elf_sym_hashes (abfd);
12927 sym_hashes_end = sym_hashes + extsymcount;
12928
12929 /* Hunt down the child symbol, which is in this section at the same
12930 offset as the relocation. */
12931 for (search = sym_hashes; search != sym_hashes_end; ++search)
12932 {
12933 if ((child = *search) != NULL
12934 && (child->root.type == bfd_link_hash_defined
12935 || child->root.type == bfd_link_hash_defweak)
12936 && child->root.u.def.section == sec
12937 && child->root.u.def.value == offset)
12938 goto win;
12939 }
12940
12941 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12942 abfd, sec, (unsigned long) offset);
12943 bfd_set_error (bfd_error_invalid_operation);
12944 return FALSE;
12945
12946 win:
12947 if (!child->vtable)
12948 {
12949 child->vtable = ((struct elf_link_virtual_table_entry *)
12950 bfd_zalloc (abfd, sizeof (*child->vtable)));
12951 if (!child->vtable)
12952 return FALSE;
12953 }
12954 if (!h)
12955 {
12956 /* This *should* only be the absolute section. It could potentially
12957 be that someone has defined a non-global vtable though, which
12958 would be bad. It isn't worth paging in the local symbols to be
12959 sure though; that case should simply be handled by the assembler. */
12960
12961 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12962 }
12963 else
12964 child->vtable->parent = h;
12965
12966 return TRUE;
12967}
12968
12969/* Called from check_relocs to record the existence of a VTENTRY reloc. */
12970
12971bfd_boolean
12972bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12973 asection *sec ATTRIBUTE_UNUSED,
12974 struct elf_link_hash_entry *h,
12975 bfd_vma addend)
12976{
12977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12978 unsigned int log_file_align = bed->s->log_file_align;
12979
12980 if (!h->vtable)
12981 {
12982 h->vtable = ((struct elf_link_virtual_table_entry *)
12983 bfd_zalloc (abfd, sizeof (*h->vtable)));
12984 if (!h->vtable)
12985 return FALSE;
12986 }
12987
12988 if (addend >= h->vtable->size)
12989 {
12990 size_t size, bytes, file_align;
12991 bfd_boolean *ptr = h->vtable->used;
12992
12993 /* While the symbol is undefined, we have to be prepared to handle
12994 a zero size. */
12995 file_align = 1 << log_file_align;
12996 if (h->root.type == bfd_link_hash_undefined)
12997 size = addend + file_align;
12998 else
12999 {
13000 size = h->size;
13001 if (addend >= size)
13002 {
13003 /* Oops! We've got a reference past the defined end of
13004 the table. This is probably a bug -- shall we warn? */
13005 size = addend + file_align;
13006 }
13007 }
13008 size = (size + file_align - 1) & -file_align;
13009
13010 /* Allocate one extra entry for use as a "done" flag for the
13011 consolidation pass. */
13012 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13013
13014 if (ptr)
13015 {
13016 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13017
13018 if (ptr != NULL)
13019 {
13020 size_t oldbytes;
13021
13022 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13023 * sizeof (bfd_boolean));
13024 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13025 }
13026 }
13027 else
13028 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13029
13030 if (ptr == NULL)
13031 return FALSE;
13032
13033 /* And arrange for that done flag to be at index -1. */
13034 h->vtable->used = ptr + 1;
13035 h->vtable->size = size;
13036 }
13037
13038 h->vtable->used[addend >> log_file_align] = TRUE;
13039
13040 return TRUE;
13041}
13042
13043/* Map an ELF section header flag to its corresponding string. */
13044typedef struct
13045{
13046 char *flag_name;
13047 flagword flag_value;
13048} elf_flags_to_name_table;
13049
13050static elf_flags_to_name_table elf_flags_to_names [] =
13051{
13052 { "SHF_WRITE", SHF_WRITE },
13053 { "SHF_ALLOC", SHF_ALLOC },
13054 { "SHF_EXECINSTR", SHF_EXECINSTR },
13055 { "SHF_MERGE", SHF_MERGE },
13056 { "SHF_STRINGS", SHF_STRINGS },
13057 { "SHF_INFO_LINK", SHF_INFO_LINK},
13058 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13059 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13060 { "SHF_GROUP", SHF_GROUP },
13061 { "SHF_TLS", SHF_TLS },
13062 { "SHF_MASKOS", SHF_MASKOS },
13063 { "SHF_EXCLUDE", SHF_EXCLUDE },
13064};
13065
13066/* Returns TRUE if the section is to be included, otherwise FALSE. */
13067bfd_boolean
13068bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13069 struct flag_info *flaginfo,
13070 asection *section)
13071{
13072 const bfd_vma sh_flags = elf_section_flags (section);
13073
13074 if (!flaginfo->flags_initialized)
13075 {
13076 bfd *obfd = info->output_bfd;
13077 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13078 struct flag_info_list *tf = flaginfo->flag_list;
13079 int with_hex = 0;
13080 int without_hex = 0;
13081
13082 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13083 {
13084 unsigned i;
13085 flagword (*lookup) (char *);
13086
13087 lookup = bed->elf_backend_lookup_section_flags_hook;
13088 if (lookup != NULL)
13089 {
13090 flagword hexval = (*lookup) ((char *) tf->name);
13091
13092 if (hexval != 0)
13093 {
13094 if (tf->with == with_flags)
13095 with_hex |= hexval;
13096 else if (tf->with == without_flags)
13097 without_hex |= hexval;
13098 tf->valid = TRUE;
13099 continue;
13100 }
13101 }
13102 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13103 {
13104 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13105 {
13106 if (tf->with == with_flags)
13107 with_hex |= elf_flags_to_names[i].flag_value;
13108 else if (tf->with == without_flags)
13109 without_hex |= elf_flags_to_names[i].flag_value;
13110 tf->valid = TRUE;
13111 break;
13112 }
13113 }
13114 if (!tf->valid)
13115 {
13116 info->callbacks->einfo
13117 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13118 return FALSE;
13119 }
13120 }
13121 flaginfo->flags_initialized = TRUE;
13122 flaginfo->only_with_flags |= with_hex;
13123 flaginfo->not_with_flags |= without_hex;
13124 }
13125
13126 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13127 return FALSE;
13128
13129 if ((flaginfo->not_with_flags & sh_flags) != 0)
13130 return FALSE;
13131
13132 return TRUE;
13133}
13134
13135struct alloc_got_off_arg {
13136 bfd_vma gotoff;
13137 struct bfd_link_info *info;
13138};
13139
13140/* We need a special top-level link routine to convert got reference counts
13141 to real got offsets. */
13142
13143static bfd_boolean
13144elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13145{
13146 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13147 bfd *obfd = gofarg->info->output_bfd;
13148 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13149
13150 if (h->got.refcount > 0)
13151 {
13152 h->got.offset = gofarg->gotoff;
13153 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13154 }
13155 else
13156 h->got.offset = (bfd_vma) -1;
13157
13158 return TRUE;
13159}
13160
13161/* And an accompanying bit to work out final got entry offsets once
13162 we're done. Should be called from final_link. */
13163
13164bfd_boolean
13165bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13166 struct bfd_link_info *info)
13167{
13168 bfd *i;
13169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13170 bfd_vma gotoff;
13171 struct alloc_got_off_arg gofarg;
13172
13173 BFD_ASSERT (abfd == info->output_bfd);
13174
13175 if (! is_elf_hash_table (info->hash))
13176 return FALSE;
13177
13178 /* The GOT offset is relative to the .got section, but the GOT header is
13179 put into the .got.plt section, if the backend uses it. */
13180 if (bed->want_got_plt)
13181 gotoff = 0;
13182 else
13183 gotoff = bed->got_header_size;
13184
13185 /* Do the local .got entries first. */
13186 for (i = info->input_bfds; i; i = i->link.next)
13187 {
13188 bfd_signed_vma *local_got;
13189 bfd_size_type j, locsymcount;
13190 Elf_Internal_Shdr *symtab_hdr;
13191
13192 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13193 continue;
13194
13195 local_got = elf_local_got_refcounts (i);
13196 if (!local_got)
13197 continue;
13198
13199 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13200 if (elf_bad_symtab (i))
13201 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13202 else
13203 locsymcount = symtab_hdr->sh_info;
13204
13205 for (j = 0; j < locsymcount; ++j)
13206 {
13207 if (local_got[j] > 0)
13208 {
13209 local_got[j] = gotoff;
13210 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13211 }
13212 else
13213 local_got[j] = (bfd_vma) -1;
13214 }
13215 }
13216
13217 /* Then the global .got entries. .plt refcounts are handled by
13218 adjust_dynamic_symbol */
13219 gofarg.gotoff = gotoff;
13220 gofarg.info = info;
13221 elf_link_hash_traverse (elf_hash_table (info),
13222 elf_gc_allocate_got_offsets,
13223 &gofarg);
13224 return TRUE;
13225}
13226
13227/* Many folk need no more in the way of final link than this, once
13228 got entry reference counting is enabled. */
13229
13230bfd_boolean
13231bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13232{
13233 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13234 return FALSE;
13235
13236 /* Invoke the regular ELF backend linker to do all the work. */
13237 return bfd_elf_final_link (abfd, info);
13238}
13239
13240bfd_boolean
13241bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13242{
13243 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13244
13245 if (rcookie->bad_symtab)
13246 rcookie->rel = rcookie->rels;
13247
13248 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13249 {
13250 unsigned long r_symndx;
13251
13252 if (! rcookie->bad_symtab)
13253 if (rcookie->rel->r_offset > offset)
13254 return FALSE;
13255 if (rcookie->rel->r_offset != offset)
13256 continue;
13257
13258 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13259 if (r_symndx == STN_UNDEF)
13260 return TRUE;
13261
13262 if (r_symndx >= rcookie->locsymcount
13263 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13264 {
13265 struct elf_link_hash_entry *h;
13266
13267 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13268
13269 while (h->root.type == bfd_link_hash_indirect
13270 || h->root.type == bfd_link_hash_warning)
13271 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13272
13273 if ((h->root.type == bfd_link_hash_defined
13274 || h->root.type == bfd_link_hash_defweak)
13275 && (h->root.u.def.section->owner != rcookie->abfd
13276 || h->root.u.def.section->kept_section != NULL
13277 || discarded_section (h->root.u.def.section)))
13278 return TRUE;
13279 }
13280 else
13281 {
13282 /* It's not a relocation against a global symbol,
13283 but it could be a relocation against a local
13284 symbol for a discarded section. */
13285 asection *isec;
13286 Elf_Internal_Sym *isym;
13287
13288 /* Need to: get the symbol; get the section. */
13289 isym = &rcookie->locsyms[r_symndx];
13290 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13291 if (isec != NULL
13292 && (isec->kept_section != NULL
13293 || discarded_section (isec)))
13294 return TRUE;
13295 }
13296 return FALSE;
13297 }
13298 return FALSE;
13299}
13300
13301/* Discard unneeded references to discarded sections.
13302 Returns -1 on error, 1 if any section's size was changed, 0 if
13303 nothing changed. This function assumes that the relocations are in
13304 sorted order, which is true for all known assemblers. */
13305
13306int
13307bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13308{
13309 struct elf_reloc_cookie cookie;
13310 asection *o;
13311 bfd *abfd;
13312 int changed = 0;
13313
13314 if (info->traditional_format
13315 || !is_elf_hash_table (info->hash))
13316 return 0;
13317
13318 o = bfd_get_section_by_name (output_bfd, ".stab");
13319 if (o != NULL)
13320 {
13321 asection *i;
13322
13323 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13324 {
13325 if (i->size == 0
13326 || i->reloc_count == 0
13327 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13328 continue;
13329
13330 abfd = i->owner;
13331 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13332 continue;
13333
13334 if (!init_reloc_cookie_for_section (&cookie, info, i))
13335 return -1;
13336
13337 if (_bfd_discard_section_stabs (abfd, i,
13338 elf_section_data (i)->sec_info,
13339 bfd_elf_reloc_symbol_deleted_p,
13340 &cookie))
13341 changed = 1;
13342
13343 fini_reloc_cookie_for_section (&cookie, i);
13344 }
13345 }
13346
13347 o = NULL;
13348 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13349 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13350 if (o != NULL)
13351 {
13352 asection *i;
13353
13354 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13355 {
13356 if (i->size == 0)
13357 continue;
13358
13359 abfd = i->owner;
13360 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13361 continue;
13362
13363 if (!init_reloc_cookie_for_section (&cookie, info, i))
13364 return -1;
13365
13366 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13367 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13368 bfd_elf_reloc_symbol_deleted_p,
13369 &cookie))
13370 changed = 1;
13371
13372 fini_reloc_cookie_for_section (&cookie, i);
13373 }
13374 }
13375
13376 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13377 {
13378 const struct elf_backend_data *bed;
13379
13380 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13381 continue;
13382
13383 bed = get_elf_backend_data (abfd);
13384
13385 if (bed->elf_backend_discard_info != NULL)
13386 {
13387 if (!init_reloc_cookie (&cookie, info, abfd))
13388 return -1;
13389
13390 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13391 changed = 1;
13392
13393 fini_reloc_cookie (&cookie, abfd);
13394 }
13395 }
13396
13397 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13398 _bfd_elf_end_eh_frame_parsing (info);
13399
13400 if (info->eh_frame_hdr_type
13401 && !bfd_link_relocatable (info)
13402 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13403 changed = 1;
13404
13405 return changed;
13406}
13407
13408bfd_boolean
13409_bfd_elf_section_already_linked (bfd *abfd,
13410 asection *sec,
13411 struct bfd_link_info *info)
13412{
13413 flagword flags;
13414 const char *name, *key;
13415 struct bfd_section_already_linked *l;
13416 struct bfd_section_already_linked_hash_entry *already_linked_list;
13417
13418 if (sec->output_section == bfd_abs_section_ptr)
13419 return FALSE;
13420
13421 flags = sec->flags;
13422
13423 /* Return if it isn't a linkonce section. A comdat group section
13424 also has SEC_LINK_ONCE set. */
13425 if ((flags & SEC_LINK_ONCE) == 0)
13426 return FALSE;
13427
13428 /* Don't put group member sections on our list of already linked
13429 sections. They are handled as a group via their group section. */
13430 if (elf_sec_group (sec) != NULL)
13431 return FALSE;
13432
13433 /* For a SHT_GROUP section, use the group signature as the key. */
13434 name = sec->name;
13435 if ((flags & SEC_GROUP) != 0
13436 && elf_next_in_group (sec) != NULL
13437 && elf_group_name (elf_next_in_group (sec)) != NULL)
13438 key = elf_group_name (elf_next_in_group (sec));
13439 else
13440 {
13441 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13442 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13443 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13444 key++;
13445 else
13446 /* Must be a user linkonce section that doesn't follow gcc's
13447 naming convention. In this case we won't be matching
13448 single member groups. */
13449 key = name;
13450 }
13451
13452 already_linked_list = bfd_section_already_linked_table_lookup (key);
13453
13454 for (l = already_linked_list->entry; l != NULL; l = l->next)
13455 {
13456 /* We may have 2 different types of sections on the list: group
13457 sections with a signature of <key> (<key> is some string),
13458 and linkonce sections named .gnu.linkonce.<type>.<key>.
13459 Match like sections. LTO plugin sections are an exception.
13460 They are always named .gnu.linkonce.t.<key> and match either
13461 type of section. */
13462 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13463 && ((flags & SEC_GROUP) != 0
13464 || strcmp (name, l->sec->name) == 0))
13465 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13466 {
13467 /* The section has already been linked. See if we should
13468 issue a warning. */
13469 if (!_bfd_handle_already_linked (sec, l, info))
13470 return FALSE;
13471
13472 if (flags & SEC_GROUP)
13473 {
13474 asection *first = elf_next_in_group (sec);
13475 asection *s = first;
13476
13477 while (s != NULL)
13478 {
13479 s->output_section = bfd_abs_section_ptr;
13480 /* Record which group discards it. */
13481 s->kept_section = l->sec;
13482 s = elf_next_in_group (s);
13483 /* These lists are circular. */
13484 if (s == first)
13485 break;
13486 }
13487 }
13488
13489 return TRUE;
13490 }
13491 }
13492
13493 /* A single member comdat group section may be discarded by a
13494 linkonce section and vice versa. */
13495 if ((flags & SEC_GROUP) != 0)
13496 {
13497 asection *first = elf_next_in_group (sec);
13498
13499 if (first != NULL && elf_next_in_group (first) == first)
13500 /* Check this single member group against linkonce sections. */
13501 for (l = already_linked_list->entry; l != NULL; l = l->next)
13502 if ((l->sec->flags & SEC_GROUP) == 0
13503 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13504 {
13505 first->output_section = bfd_abs_section_ptr;
13506 first->kept_section = l->sec;
13507 sec->output_section = bfd_abs_section_ptr;
13508 break;
13509 }
13510 }
13511 else
13512 /* Check this linkonce section against single member groups. */
13513 for (l = already_linked_list->entry; l != NULL; l = l->next)
13514 if (l->sec->flags & SEC_GROUP)
13515 {
13516 asection *first = elf_next_in_group (l->sec);
13517
13518 if (first != NULL
13519 && elf_next_in_group (first) == first
13520 && bfd_elf_match_symbols_in_sections (first, sec, info))
13521 {
13522 sec->output_section = bfd_abs_section_ptr;
13523 sec->kept_section = first;
13524 break;
13525 }
13526 }
13527
13528 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13529 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13530 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13531 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13532 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13533 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13534 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13535 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13536 The reverse order cannot happen as there is never a bfd with only the
13537 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13538 matter as here were are looking only for cross-bfd sections. */
13539
13540 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13541 for (l = already_linked_list->entry; l != NULL; l = l->next)
13542 if ((l->sec->flags & SEC_GROUP) == 0
13543 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13544 {
13545 if (abfd != l->sec->owner)
13546 sec->output_section = bfd_abs_section_ptr;
13547 break;
13548 }
13549
13550 /* This is the first section with this name. Record it. */
13551 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13552 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13553 return sec->output_section == bfd_abs_section_ptr;
13554}
13555
13556bfd_boolean
13557_bfd_elf_common_definition (Elf_Internal_Sym *sym)
13558{
13559 return sym->st_shndx == SHN_COMMON;
13560}
13561
13562unsigned int
13563_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13564{
13565 return SHN_COMMON;
13566}
13567
13568asection *
13569_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13570{
13571 return bfd_com_section_ptr;
13572}
13573
13574bfd_vma
13575_bfd_elf_default_got_elt_size (bfd *abfd,
13576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13577 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13578 bfd *ibfd ATTRIBUTE_UNUSED,
13579 unsigned long symndx ATTRIBUTE_UNUSED)
13580{
13581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13582 return bed->s->arch_size / 8;
13583}
13584
13585/* Routines to support the creation of dynamic relocs. */
13586
13587/* Returns the name of the dynamic reloc section associated with SEC. */
13588
13589static const char *
13590get_dynamic_reloc_section_name (bfd * abfd,
13591 asection * sec,
13592 bfd_boolean is_rela)
13593{
13594 char *name;
13595 const char *old_name = bfd_get_section_name (NULL, sec);
13596 const char *prefix = is_rela ? ".rela" : ".rel";
13597
13598 if (old_name == NULL)
13599 return NULL;
13600
13601 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13602 sprintf (name, "%s%s", prefix, old_name);
13603
13604 return name;
13605}
13606
13607/* Returns the dynamic reloc section associated with SEC.
13608 If necessary compute the name of the dynamic reloc section based
13609 on SEC's name (looked up in ABFD's string table) and the setting
13610 of IS_RELA. */
13611
13612asection *
13613_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13614 asection * sec,
13615 bfd_boolean is_rela)
13616{
13617 asection * reloc_sec = elf_section_data (sec)->sreloc;
13618
13619 if (reloc_sec == NULL)
13620 {
13621 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13622
13623 if (name != NULL)
13624 {
13625 reloc_sec = bfd_get_linker_section (abfd, name);
13626
13627 if (reloc_sec != NULL)
13628 elf_section_data (sec)->sreloc = reloc_sec;
13629 }
13630 }
13631
13632 return reloc_sec;
13633}
13634
13635/* Returns the dynamic reloc section associated with SEC. If the
13636 section does not exist it is created and attached to the DYNOBJ
13637 bfd and stored in the SRELOC field of SEC's elf_section_data
13638 structure.
13639
13640 ALIGNMENT is the alignment for the newly created section and
13641 IS_RELA defines whether the name should be .rela.<SEC's name>
13642 or .rel.<SEC's name>. The section name is looked up in the
13643 string table associated with ABFD. */
13644
13645asection *
13646_bfd_elf_make_dynamic_reloc_section (asection *sec,
13647 bfd *dynobj,
13648 unsigned int alignment,
13649 bfd *abfd,
13650 bfd_boolean is_rela)
13651{
13652 asection * reloc_sec = elf_section_data (sec)->sreloc;
13653
13654 if (reloc_sec == NULL)
13655 {
13656 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13657
13658 if (name == NULL)
13659 return NULL;
13660
13661 reloc_sec = bfd_get_linker_section (dynobj, name);
13662
13663 if (reloc_sec == NULL)
13664 {
13665 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13666 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13667 if ((sec->flags & SEC_ALLOC) != 0)
13668 flags |= SEC_ALLOC | SEC_LOAD;
13669
13670 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13671 if (reloc_sec != NULL)
13672 {
13673 /* _bfd_elf_get_sec_type_attr chooses a section type by
13674 name. Override as it may be wrong, eg. for a user
13675 section named "auto" we'll get ".relauto" which is
13676 seen to be a .rela section. */
13677 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13678 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13679 reloc_sec = NULL;
13680 }
13681 }
13682
13683 elf_section_data (sec)->sreloc = reloc_sec;
13684 }
13685
13686 return reloc_sec;
13687}
13688
13689/* Copy the ELF symbol type and other attributes for a linker script
13690 assignment from HSRC to HDEST. Generally this should be treated as
13691 if we found a strong non-dynamic definition for HDEST (except that
13692 ld ignores multiple definition errors). */
13693void
13694_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13695 struct bfd_link_hash_entry *hdest,
13696 struct bfd_link_hash_entry *hsrc)
13697{
13698 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13699 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13700 Elf_Internal_Sym isym;
13701
13702 ehdest->type = ehsrc->type;
13703 ehdest->target_internal = ehsrc->target_internal;
13704
13705 isym.st_other = ehsrc->other;
13706 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13707}
13708
13709/* Append a RELA relocation REL to section S in BFD. */
13710
13711void
13712elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13713{
13714 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13715 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13716 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13717 bed->s->swap_reloca_out (abfd, rel, loc);
13718}
13719
13720/* Append a REL relocation REL to section S in BFD. */
13721
13722void
13723elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13724{
13725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13726 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13727 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13728 bed->s->swap_reloc_out (abfd, rel, loc);
13729}
This page took 0.070192 seconds and 4 git commands to generate.