Improve gdb.threads/attach-many-short-lived-threads.exp timeout handling
[deliverable/binutils-gdb.git] / bfd / elflink.c
... / ...
CommitLineData
1/* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31
32/* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35struct elf_info_failed
36{
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39};
40
41/* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44struct elf_find_verdep_info
45{
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52};
53
54static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57/* Define a symbol in a dynamic linkage section. */
58
59struct elf_link_hash_entry *
60_bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64{
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96}
97
98bfd_boolean
99_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100{
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_linker_section (abfd, ".got");
109 if (s != NULL)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_anyway_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157}
158\f
159/* Create a strtab to hold the dynamic symbol names. */
160static bfd_boolean
161_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162{
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176}
177
178/* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185bfd_boolean
186_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187{
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191 struct elf_link_hash_entry *h;
192
193 if (! is_elf_hash_table (info->hash))
194 return FALSE;
195
196 if (elf_hash_table (info)->dynamic_sections_created)
197 return TRUE;
198
199 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 return FALSE;
201
202 abfd = elf_hash_table (info)->dynobj;
203 bed = get_elf_backend_data (abfd);
204
205 flags = bed->dynamic_sec_flags;
206
207 /* A dynamically linked executable has a .interp section, but a
208 shared library does not. */
209 if (info->executable)
210 {
211 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
212 flags | SEC_READONLY);
213 if (s == NULL)
214 return FALSE;
215 }
216
217 /* Create sections to hold version informations. These are removed
218 if they are not needed. */
219 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
220 flags | SEC_READONLY);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
226 flags | SEC_READONLY);
227 if (s == NULL
228 || ! bfd_set_section_alignment (abfd, s, 1))
229 return FALSE;
230
231 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
232 flags | SEC_READONLY);
233 if (s == NULL
234 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 return FALSE;
236
237 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
238 flags | SEC_READONLY);
239 if (s == NULL
240 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 return FALSE;
242
243 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
244 flags | SEC_READONLY);
245 if (s == NULL)
246 return FALSE;
247
248 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 if (s == NULL
250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 return FALSE;
252
253 /* The special symbol _DYNAMIC is always set to the start of the
254 .dynamic section. We could set _DYNAMIC in a linker script, but we
255 only want to define it if we are, in fact, creating a .dynamic
256 section. We don't want to define it if there is no .dynamic
257 section, since on some ELF platforms the start up code examines it
258 to decide how to initialize the process. */
259 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
260 elf_hash_table (info)->hdynamic = h;
261 if (h == NULL)
262 return FALSE;
263
264 if (info->emit_hash)
265 {
266 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
267 flags | SEC_READONLY);
268 if (s == NULL
269 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 return FALSE;
271 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 }
273
274 if (info->emit_gnu_hash)
275 {
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
282 4 32-bit words followed by variable count of 64-bit words, then
283 variable count of 32-bit words. */
284 if (bed->s->arch_size == 64)
285 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 else
287 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 }
289
290 /* Let the backend create the rest of the sections. This lets the
291 backend set the right flags. The backend will normally create
292 the .got and .plt sections. */
293 if (bed->elf_backend_create_dynamic_sections == NULL
294 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
295 return FALSE;
296
297 elf_hash_table (info)->dynamic_sections_created = TRUE;
298
299 return TRUE;
300}
301
302/* Create dynamic sections when linking against a dynamic object. */
303
304bfd_boolean
305_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306{
307 flagword flags, pltflags;
308 struct elf_link_hash_entry *h;
309 asection *s;
310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
311 struct elf_link_hash_table *htab = elf_hash_table (info);
312
313 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
314 .rel[a].bss sections. */
315 flags = bed->dynamic_sec_flags;
316
317 pltflags = flags;
318 if (bed->plt_not_loaded)
319 /* We do not clear SEC_ALLOC here because we still want the OS to
320 allocate space for the section; it's just that there's nothing
321 to read in from the object file. */
322 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 else
324 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
325 if (bed->plt_readonly)
326 pltflags |= SEC_READONLY;
327
328 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
331 return FALSE;
332 htab->splt = s;
333
334 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 .plt section. */
336 if (bed->want_plt_sym)
337 {
338 h = _bfd_elf_define_linkage_sym (abfd, info, s,
339 "_PROCEDURE_LINKAGE_TABLE_");
340 elf_hash_table (info)->hplt = h;
341 if (h == NULL)
342 return FALSE;
343 }
344
345 s = bfd_make_section_anyway_with_flags (abfd,
346 (bed->rela_plts_and_copies_p
347 ? ".rela.plt" : ".rel.plt"),
348 flags | SEC_READONLY);
349 if (s == NULL
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 htab->srelplt = s;
353
354 if (! _bfd_elf_create_got_section (abfd, info))
355 return FALSE;
356
357 if (bed->want_dynbss)
358 {
359 /* The .dynbss section is a place to put symbols which are defined
360 by dynamic objects, are referenced by regular objects, and are
361 not functions. We must allocate space for them in the process
362 image and use a R_*_COPY reloc to tell the dynamic linker to
363 initialize them at run time. The linker script puts the .dynbss
364 section into the .bss section of the final image. */
365 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
366 (SEC_ALLOC | SEC_LINKER_CREATED));
367 if (s == NULL)
368 return FALSE;
369
370 /* The .rel[a].bss section holds copy relocs. This section is not
371 normally needed. We need to create it here, though, so that the
372 linker will map it to an output section. We can't just create it
373 only if we need it, because we will not know whether we need it
374 until we have seen all the input files, and the first time the
375 main linker code calls BFD after examining all the input files
376 (size_dynamic_sections) the input sections have already been
377 mapped to the output sections. If the section turns out not to
378 be needed, we can discard it later. We will never need this
379 section when generating a shared object, since they do not use
380 copy relocs. */
381 if (! info->shared)
382 {
383 s = bfd_make_section_anyway_with_flags (abfd,
384 (bed->rela_plts_and_copies_p
385 ? ".rela.bss" : ".rel.bss"),
386 flags | SEC_READONLY);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
389 return FALSE;
390 }
391 }
392
393 return TRUE;
394}
395\f
396/* Record a new dynamic symbol. We record the dynamic symbols as we
397 read the input files, since we need to have a list of all of them
398 before we can determine the final sizes of the output sections.
399 Note that we may actually call this function even though we are not
400 going to output any dynamic symbols; in some cases we know that a
401 symbol should be in the dynamic symbol table, but only if there is
402 one. */
403
404bfd_boolean
405bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *h)
407{
408 if (h->dynindx == -1)
409 {
410 struct elf_strtab_hash *dynstr;
411 char *p;
412 const char *name;
413 bfd_size_type indx;
414
415 /* XXX: The ABI draft says the linker must turn hidden and
416 internal symbols into STB_LOCAL symbols when producing the
417 DSO. However, if ld.so honors st_other in the dynamic table,
418 this would not be necessary. */
419 switch (ELF_ST_VISIBILITY (h->other))
420 {
421 case STV_INTERNAL:
422 case STV_HIDDEN:
423 if (h->root.type != bfd_link_hash_undefined
424 && h->root.type != bfd_link_hash_undefweak)
425 {
426 h->forced_local = 1;
427 if (!elf_hash_table (info)->is_relocatable_executable)
428 return TRUE;
429 }
430
431 default:
432 break;
433 }
434
435 h->dynindx = elf_hash_table (info)->dynsymcount;
436 ++elf_hash_table (info)->dynsymcount;
437
438 dynstr = elf_hash_table (info)->dynstr;
439 if (dynstr == NULL)
440 {
441 /* Create a strtab to hold the dynamic symbol names. */
442 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 if (dynstr == NULL)
444 return FALSE;
445 }
446
447 /* We don't put any version information in the dynamic string
448 table. */
449 name = h->root.root.string;
450 p = strchr (name, ELF_VER_CHR);
451 if (p != NULL)
452 /* We know that the p points into writable memory. In fact,
453 there are only a few symbols that have read-only names, being
454 those like _GLOBAL_OFFSET_TABLE_ that are created specially
455 by the backends. Most symbols will have names pointing into
456 an ELF string table read from a file, or to objalloc memory. */
457 *p = 0;
458
459 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460
461 if (p != NULL)
462 *p = ELF_VER_CHR;
463
464 if (indx == (bfd_size_type) -1)
465 return FALSE;
466 h->dynstr_index = indx;
467 }
468
469 return TRUE;
470}
471\f
472/* Mark a symbol dynamic. */
473
474static void
475bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
476 struct elf_link_hash_entry *h,
477 Elf_Internal_Sym *sym)
478{
479 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480
481 /* It may be called more than once on the same H. */
482 if(h->dynamic || info->relocatable)
483 return;
484
485 if ((info->dynamic_data
486 && (h->type == STT_OBJECT
487 || (sym != NULL
488 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 || (d != NULL
490 && h->root.type == bfd_link_hash_new
491 && (*d->match) (&d->head, NULL, h->root.root.string)))
492 h->dynamic = 1;
493}
494
495/* Record an assignment to a symbol made by a linker script. We need
496 this in case some dynamic object refers to this symbol. */
497
498bfd_boolean
499bfd_elf_record_link_assignment (bfd *output_bfd,
500 struct bfd_link_info *info,
501 const char *name,
502 bfd_boolean provide,
503 bfd_boolean hidden)
504{
505 struct elf_link_hash_entry *h, *hv;
506 struct elf_link_hash_table *htab;
507 const struct elf_backend_data *bed;
508
509 if (!is_elf_hash_table (info->hash))
510 return TRUE;
511
512 htab = elf_hash_table (info);
513 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
514 if (h == NULL)
515 return provide;
516
517 switch (h->root.type)
518 {
519 case bfd_link_hash_defined:
520 case bfd_link_hash_defweak:
521 case bfd_link_hash_common:
522 break;
523 case bfd_link_hash_undefweak:
524 case bfd_link_hash_undefined:
525 /* Since we're defining the symbol, don't let it seem to have not
526 been defined. record_dynamic_symbol and size_dynamic_sections
527 may depend on this. */
528 h->root.type = bfd_link_hash_new;
529 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
530 bfd_link_repair_undef_list (&htab->root);
531 break;
532 case bfd_link_hash_new:
533 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
534 h->non_elf = 0;
535 break;
536 case bfd_link_hash_indirect:
537 /* We had a versioned symbol in a dynamic library. We make the
538 the versioned symbol point to this one. */
539 bed = get_elf_backend_data (output_bfd);
540 hv = h;
541 while (hv->root.type == bfd_link_hash_indirect
542 || hv->root.type == bfd_link_hash_warning)
543 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
544 /* We don't need to update h->root.u since linker will set them
545 later. */
546 h->root.type = bfd_link_hash_undefined;
547 hv->root.type = bfd_link_hash_indirect;
548 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 break;
551 case bfd_link_hash_warning:
552 abort ();
553 break;
554 }
555
556 /* If this symbol is being provided by the linker script, and it is
557 currently defined by a dynamic object, but not by a regular
558 object, then mark it as undefined so that the generic linker will
559 force the correct value. */
560 if (provide
561 && h->def_dynamic
562 && !h->def_regular)
563 h->root.type = bfd_link_hash_undefined;
564
565 /* If this symbol is not being provided by the linker script, and it is
566 currently defined by a dynamic object, but not by a regular object,
567 then clear out any version information because the symbol will not be
568 associated with the dynamic object any more. */
569 if (!provide
570 && h->def_dynamic
571 && !h->def_regular)
572 h->verinfo.verdef = NULL;
573
574 h->def_regular = 1;
575
576 if (hidden)
577 {
578 bed = get_elf_backend_data (output_bfd);
579 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
580 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
581 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 }
583
584 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
585 and executables. */
586 if (!info->relocatable
587 && h->dynindx != -1
588 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
589 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 h->forced_local = 1;
591
592 if ((h->def_dynamic
593 || h->ref_dynamic
594 || info->shared
595 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 && h->dynindx == -1)
597 {
598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 return FALSE;
600
601 /* If this is a weak defined symbol, and we know a corresponding
602 real symbol from the same dynamic object, make sure the real
603 symbol is also made into a dynamic symbol. */
604 if (h->u.weakdef != NULL
605 && h->u.weakdef->dynindx == -1)
606 {
607 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
608 return FALSE;
609 }
610 }
611
612 return TRUE;
613}
614
615/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
616 success, and 2 on a failure caused by attempting to record a symbol
617 in a discarded section, eg. a discarded link-once section symbol. */
618
619int
620bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
621 bfd *input_bfd,
622 long input_indx)
623{
624 bfd_size_type amt;
625 struct elf_link_local_dynamic_entry *entry;
626 struct elf_link_hash_table *eht;
627 struct elf_strtab_hash *dynstr;
628 unsigned long dynstr_index;
629 char *name;
630 Elf_External_Sym_Shndx eshndx;
631 char esym[sizeof (Elf64_External_Sym)];
632
633 if (! is_elf_hash_table (info->hash))
634 return 0;
635
636 /* See if the entry exists already. */
637 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
638 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 return 1;
640
641 amt = sizeof (*entry);
642 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
643 if (entry == NULL)
644 return 0;
645
646 /* Go find the symbol, so that we can find it's name. */
647 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
648 1, input_indx, &entry->isym, esym, &eshndx))
649 {
650 bfd_release (input_bfd, entry);
651 return 0;
652 }
653
654 if (entry->isym.st_shndx != SHN_UNDEF
655 && entry->isym.st_shndx < SHN_LORESERVE)
656 {
657 asection *s;
658
659 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
660 if (s == NULL || bfd_is_abs_section (s->output_section))
661 {
662 /* We can still bfd_release here as nothing has done another
663 bfd_alloc. We can't do this later in this function. */
664 bfd_release (input_bfd, entry);
665 return 2;
666 }
667 }
668
669 name = (bfd_elf_string_from_elf_section
670 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
671 entry->isym.st_name));
672
673 dynstr = elf_hash_table (info)->dynstr;
674 if (dynstr == NULL)
675 {
676 /* Create a strtab to hold the dynamic symbol names. */
677 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
678 if (dynstr == NULL)
679 return 0;
680 }
681
682 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
683 if (dynstr_index == (unsigned long) -1)
684 return 0;
685 entry->isym.st_name = dynstr_index;
686
687 eht = elf_hash_table (info);
688
689 entry->next = eht->dynlocal;
690 eht->dynlocal = entry;
691 entry->input_bfd = input_bfd;
692 entry->input_indx = input_indx;
693 eht->dynsymcount++;
694
695 /* Whatever binding the symbol had before, it's now local. */
696 entry->isym.st_info
697 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
698
699 /* The dynindx will be set at the end of size_dynamic_sections. */
700
701 return 1;
702}
703
704/* Return the dynindex of a local dynamic symbol. */
705
706long
707_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
708 bfd *input_bfd,
709 long input_indx)
710{
711 struct elf_link_local_dynamic_entry *e;
712
713 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
714 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
715 return e->dynindx;
716 return -1;
717}
718
719/* This function is used to renumber the dynamic symbols, if some of
720 them are removed because they are marked as local. This is called
721 via elf_link_hash_traverse. */
722
723static bfd_boolean
724elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 void *data)
726{
727 size_t *count = (size_t *) data;
728
729 if (h->forced_local)
730 return TRUE;
731
732 if (h->dynindx != -1)
733 h->dynindx = ++(*count);
734
735 return TRUE;
736}
737
738
739/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
740 STB_LOCAL binding. */
741
742static bfd_boolean
743elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 void *data)
745{
746 size_t *count = (size_t *) data;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755}
756
757/* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759bfd_boolean
760_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763{
764 struct elf_link_hash_table *htab;
765 asection *ip;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 return (htab->dynobj != NULL
782 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
783 && ip->output_section == p);
784
785 /* There shouldn't be section relative relocations
786 against any other section. */
787 default:
788 return TRUE;
789 }
790}
791
792/* Assign dynsym indices. In a shared library we generate a section
793 symbol for each output section, which come first. Next come symbols
794 which have been forced to local binding. Then all of the back-end
795 allocated local dynamic syms, followed by the rest of the global
796 symbols. */
797
798static unsigned long
799_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
800 struct bfd_link_info *info,
801 unsigned long *section_sym_count)
802{
803 unsigned long dynsymcount = 0;
804
805 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
806 {
807 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
808 asection *p;
809 for (p = output_bfd->sections; p ; p = p->next)
810 if ((p->flags & SEC_EXCLUDE) == 0
811 && (p->flags & SEC_ALLOC) != 0
812 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
813 elf_section_data (p)->dynindx = ++dynsymcount;
814 else
815 elf_section_data (p)->dynindx = 0;
816 }
817 *section_sym_count = dynsymcount;
818
819 elf_link_hash_traverse (elf_hash_table (info),
820 elf_link_renumber_local_hash_table_dynsyms,
821 &dynsymcount);
822
823 if (elf_hash_table (info)->dynlocal)
824 {
825 struct elf_link_local_dynamic_entry *p;
826 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
827 p->dynindx = ++dynsymcount;
828 }
829
830 elf_link_hash_traverse (elf_hash_table (info),
831 elf_link_renumber_hash_table_dynsyms,
832 &dynsymcount);
833
834 /* There is an unused NULL entry at the head of the table which
835 we must account for in our count. Unless there weren't any
836 symbols, which means we'll have no table at all. */
837 if (dynsymcount != 0)
838 ++dynsymcount;
839
840 elf_hash_table (info)->dynsymcount = dynsymcount;
841 return dynsymcount;
842}
843
844/* Merge st_other field. */
845
846static void
847elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
848 const Elf_Internal_Sym *isym,
849 bfd_boolean definition, bfd_boolean dynamic)
850{
851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
852
853 /* If st_other has a processor-specific meaning, specific
854 code might be needed here. */
855 if (bed->elf_backend_merge_symbol_attribute)
856 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
857 dynamic);
858
859 if (!dynamic)
860 {
861 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
862 unsigned hvis = ELF_ST_VISIBILITY (h->other);
863
864 /* Keep the most constraining visibility. Leave the remainder
865 of the st_other field to elf_backend_merge_symbol_attribute. */
866 if (symvis - 1 < hvis - 1)
867 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
868 }
869 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
870 h->protected_def = 1;
871}
872
873/* This function is called when we want to merge a new symbol with an
874 existing symbol. It handles the various cases which arise when we
875 find a definition in a dynamic object, or when there is already a
876 definition in a dynamic object. The new symbol is described by
877 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
878 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
879 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
880 of an old common symbol. We set OVERRIDE if the old symbol is
881 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
882 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
883 to change. By OK to change, we mean that we shouldn't warn if the
884 type or size does change. */
885
886static bfd_boolean
887_bfd_elf_merge_symbol (bfd *abfd,
888 struct bfd_link_info *info,
889 const char *name,
890 Elf_Internal_Sym *sym,
891 asection **psec,
892 bfd_vma *pvalue,
893 struct elf_link_hash_entry **sym_hash,
894 bfd **poldbfd,
895 bfd_boolean *pold_weak,
896 unsigned int *pold_alignment,
897 bfd_boolean *skip,
898 bfd_boolean *override,
899 bfd_boolean *type_change_ok,
900 bfd_boolean *size_change_ok)
901{
902 asection *sec, *oldsec;
903 struct elf_link_hash_entry *h;
904 struct elf_link_hash_entry *hi;
905 struct elf_link_hash_entry *flip;
906 int bind;
907 bfd *oldbfd;
908 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
909 bfd_boolean newweak, oldweak, newfunc, oldfunc;
910 const struct elf_backend_data *bed;
911
912 *skip = FALSE;
913 *override = FALSE;
914
915 sec = *psec;
916 bind = ELF_ST_BIND (sym->st_info);
917
918 if (! bfd_is_und_section (sec))
919 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
920 else
921 h = ((struct elf_link_hash_entry *)
922 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
923 if (h == NULL)
924 return FALSE;
925 *sym_hash = h;
926
927 bed = get_elf_backend_data (abfd);
928
929 /* For merging, we only care about real symbols. But we need to make
930 sure that indirect symbol dynamic flags are updated. */
931 hi = h;
932 while (h->root.type == bfd_link_hash_indirect
933 || h->root.type == bfd_link_hash_warning)
934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
935
936 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
937 existing symbol. */
938
939 oldbfd = NULL;
940 oldsec = NULL;
941 switch (h->root.type)
942 {
943 default:
944 break;
945
946 case bfd_link_hash_undefined:
947 case bfd_link_hash_undefweak:
948 oldbfd = h->root.u.undef.abfd;
949 break;
950
951 case bfd_link_hash_defined:
952 case bfd_link_hash_defweak:
953 oldbfd = h->root.u.def.section->owner;
954 oldsec = h->root.u.def.section;
955 break;
956
957 case bfd_link_hash_common:
958 oldbfd = h->root.u.c.p->section->owner;
959 oldsec = h->root.u.c.p->section;
960 if (pold_alignment)
961 *pold_alignment = h->root.u.c.p->alignment_power;
962 break;
963 }
964 if (poldbfd && *poldbfd == NULL)
965 *poldbfd = oldbfd;
966
967 /* Differentiate strong and weak symbols. */
968 newweak = bind == STB_WEAK;
969 oldweak = (h->root.type == bfd_link_hash_defweak
970 || h->root.type == bfd_link_hash_undefweak);
971 if (pold_weak)
972 *pold_weak = oldweak;
973
974 /* This code is for coping with dynamic objects, and is only useful
975 if we are doing an ELF link. */
976 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
977 return TRUE;
978
979 /* We have to check it for every instance since the first few may be
980 references and not all compilers emit symbol type for undefined
981 symbols. */
982 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
983
984 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
985 respectively, is from a dynamic object. */
986
987 newdyn = (abfd->flags & DYNAMIC) != 0;
988
989 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
990 syms and defined syms in dynamic libraries respectively.
991 ref_dynamic on the other hand can be set for a symbol defined in
992 a dynamic library, and def_dynamic may not be set; When the
993 definition in a dynamic lib is overridden by a definition in the
994 executable use of the symbol in the dynamic lib becomes a
995 reference to the executable symbol. */
996 if (newdyn)
997 {
998 if (bfd_is_und_section (sec))
999 {
1000 if (bind != STB_WEAK)
1001 {
1002 h->ref_dynamic_nonweak = 1;
1003 hi->ref_dynamic_nonweak = 1;
1004 }
1005 }
1006 else
1007 {
1008 h->dynamic_def = 1;
1009 hi->dynamic_def = 1;
1010 }
1011 }
1012
1013 /* If we just created the symbol, mark it as being an ELF symbol.
1014 Other than that, there is nothing to do--there is no merge issue
1015 with a newly defined symbol--so we just return. */
1016
1017 if (h->root.type == bfd_link_hash_new)
1018 {
1019 h->non_elf = 0;
1020 return TRUE;
1021 }
1022
1023 /* In cases involving weak versioned symbols, we may wind up trying
1024 to merge a symbol with itself. Catch that here, to avoid the
1025 confusion that results if we try to override a symbol with
1026 itself. The additional tests catch cases like
1027 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1028 dynamic object, which we do want to handle here. */
1029 if (abfd == oldbfd
1030 && (newweak || oldweak)
1031 && ((abfd->flags & DYNAMIC) == 0
1032 || !h->def_regular))
1033 return TRUE;
1034
1035 olddyn = FALSE;
1036 if (oldbfd != NULL)
1037 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1038 else if (oldsec != NULL)
1039 {
1040 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1041 indices used by MIPS ELF. */
1042 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 }
1044
1045 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1046 respectively, appear to be a definition rather than reference. */
1047
1048 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1049
1050 olddef = (h->root.type != bfd_link_hash_undefined
1051 && h->root.type != bfd_link_hash_undefweak
1052 && h->root.type != bfd_link_hash_common);
1053
1054 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1055 respectively, appear to be a function. */
1056
1057 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1058 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1059
1060 oldfunc = (h->type != STT_NOTYPE
1061 && bed->is_function_type (h->type));
1062
1063 /* When we try to create a default indirect symbol from the dynamic
1064 definition with the default version, we skip it if its type and
1065 the type of existing regular definition mismatch. */
1066 if (pold_alignment == NULL
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (((olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 || (olddef
1076 && ((h->type == STT_GNU_IFUNC)
1077 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1078 {
1079 *skip = TRUE;
1080 return TRUE;
1081 }
1082
1083 /* Check TLS symbols. We don't check undefined symbols introduced
1084 by "ld -u" which have no type (and oldbfd NULL), and we don't
1085 check symbols from plugins because they also have no type. */
1086 if (oldbfd != NULL
1087 && (oldbfd->flags & BFD_PLUGIN) == 0
1088 && (abfd->flags & BFD_PLUGIN) == 0
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A "
1118 "mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B "
1123 "mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A "
1128 "mismatches non-TLS reference in %B"),
1129 tbfd, tsec, ntbfd, h->root.root.string);
1130 else
1131 (*_bfd_error_handler)
1132 (_("%s: TLS reference in %B "
1133 "mismatches non-TLS definition in %B section %A"),
1134 tbfd, ntbfd, ntsec, h->root.root.string);
1135
1136 bfd_set_error (bfd_error_bad_value);
1137 return FALSE;
1138 }
1139
1140 /* If the old symbol has non-default visibility, we ignore the new
1141 definition from a dynamic object. */
1142 if (newdyn
1143 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1144 && !bfd_is_und_section (sec))
1145 {
1146 *skip = TRUE;
1147 /* Make sure this symbol is dynamic. */
1148 h->ref_dynamic = 1;
1149 hi->ref_dynamic = 1;
1150 /* A protected symbol has external availability. Make sure it is
1151 recorded as dynamic.
1152
1153 FIXME: Should we check type and size for protected symbol? */
1154 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1155 return bfd_elf_link_record_dynamic_symbol (info, h);
1156 else
1157 return TRUE;
1158 }
1159 else if (!newdyn
1160 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1161 && h->def_dynamic)
1162 {
1163 /* If the new symbol with non-default visibility comes from a
1164 relocatable file and the old definition comes from a dynamic
1165 object, we remove the old definition. */
1166 if (hi->root.type == bfd_link_hash_indirect)
1167 {
1168 /* Handle the case where the old dynamic definition is
1169 default versioned. We need to copy the symbol info from
1170 the symbol with default version to the normal one if it
1171 was referenced before. */
1172 if (h->ref_regular)
1173 {
1174 hi->root.type = h->root.type;
1175 h->root.type = bfd_link_hash_indirect;
1176 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1177
1178 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1179 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1180 {
1181 /* If the new symbol is hidden or internal, completely undo
1182 any dynamic link state. */
1183 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1184 h->forced_local = 0;
1185 h->ref_dynamic = 0;
1186 }
1187 else
1188 h->ref_dynamic = 1;
1189
1190 h->def_dynamic = 0;
1191 /* FIXME: Should we check type and size for protected symbol? */
1192 h->size = 0;
1193 h->type = 0;
1194
1195 h = hi;
1196 }
1197 else
1198 h = hi;
1199 }
1200
1201 /* If the old symbol was undefined before, then it will still be
1202 on the undefs list. If the new symbol is undefined or
1203 common, we can't make it bfd_link_hash_new here, because new
1204 undefined or common symbols will be added to the undefs list
1205 by _bfd_generic_link_add_one_symbol. Symbols may not be
1206 added twice to the undefs list. Also, if the new symbol is
1207 undefweak then we don't want to lose the strong undef. */
1208 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1209 {
1210 h->root.type = bfd_link_hash_undefined;
1211 h->root.u.undef.abfd = abfd;
1212 }
1213 else
1214 {
1215 h->root.type = bfd_link_hash_new;
1216 h->root.u.undef.abfd = NULL;
1217 }
1218
1219 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1220 {
1221 /* If the new symbol is hidden or internal, completely undo
1222 any dynamic link state. */
1223 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1224 h->forced_local = 0;
1225 h->ref_dynamic = 0;
1226 }
1227 else
1228 h->ref_dynamic = 1;
1229 h->def_dynamic = 0;
1230 /* FIXME: Should we check type and size for protected symbol? */
1231 h->size = 0;
1232 h->type = 0;
1233 return TRUE;
1234 }
1235
1236 /* If a new weak symbol definition comes from a regular file and the
1237 old symbol comes from a dynamic library, we treat the new one as
1238 strong. Similarly, an old weak symbol definition from a regular
1239 file is treated as strong when the new symbol comes from a dynamic
1240 library. Further, an old weak symbol from a dynamic library is
1241 treated as strong if the new symbol is from a dynamic library.
1242 This reflects the way glibc's ld.so works.
1243
1244 Do this before setting *type_change_ok or *size_change_ok so that
1245 we warn properly when dynamic library symbols are overridden. */
1246
1247 if (newdef && !newdyn && olddyn)
1248 newweak = FALSE;
1249 if (olddef && newdyn)
1250 oldweak = FALSE;
1251
1252 /* Allow changes between different types of function symbol. */
1253 if (newfunc && oldfunc)
1254 *type_change_ok = TRUE;
1255
1256 /* It's OK to change the type if either the existing symbol or the
1257 new symbol is weak. A type change is also OK if the old symbol
1258 is undefined and the new symbol is defined. */
1259
1260 if (oldweak
1261 || newweak
1262 || (newdef
1263 && h->root.type == bfd_link_hash_undefined))
1264 *type_change_ok = TRUE;
1265
1266 /* It's OK to change the size if either the existing symbol or the
1267 new symbol is weak, or if the old symbol is undefined. */
1268
1269 if (*type_change_ok
1270 || h->root.type == bfd_link_hash_undefined)
1271 *size_change_ok = TRUE;
1272
1273 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1274 symbol, respectively, appears to be a common symbol in a dynamic
1275 object. If a symbol appears in an uninitialized section, and is
1276 not weak, and is not a function, then it may be a common symbol
1277 which was resolved when the dynamic object was created. We want
1278 to treat such symbols specially, because they raise special
1279 considerations when setting the symbol size: if the symbol
1280 appears as a common symbol in a regular object, and the size in
1281 the regular object is larger, we must make sure that we use the
1282 larger size. This problematic case can always be avoided in C,
1283 but it must be handled correctly when using Fortran shared
1284 libraries.
1285
1286 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1287 likewise for OLDDYNCOMMON and OLDDEF.
1288
1289 Note that this test is just a heuristic, and that it is quite
1290 possible to have an uninitialized symbol in a shared object which
1291 is really a definition, rather than a common symbol. This could
1292 lead to some minor confusion when the symbol really is a common
1293 symbol in some regular object. However, I think it will be
1294 harmless. */
1295
1296 if (newdyn
1297 && newdef
1298 && !newweak
1299 && (sec->flags & SEC_ALLOC) != 0
1300 && (sec->flags & SEC_LOAD) == 0
1301 && sym->st_size > 0
1302 && !newfunc)
1303 newdyncommon = TRUE;
1304 else
1305 newdyncommon = FALSE;
1306
1307 if (olddyn
1308 && olddef
1309 && h->root.type == bfd_link_hash_defined
1310 && h->def_dynamic
1311 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1312 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1313 && h->size > 0
1314 && !oldfunc)
1315 olddyncommon = TRUE;
1316 else
1317 olddyncommon = FALSE;
1318
1319 /* We now know everything about the old and new symbols. We ask the
1320 backend to check if we can merge them. */
1321 if (bed->merge_symbol != NULL)
1322 {
1323 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1324 return FALSE;
1325 sec = *psec;
1326 }
1327
1328 /* If both the old and the new symbols look like common symbols in a
1329 dynamic object, set the size of the symbol to the larger of the
1330 two. */
1331
1332 if (olddyncommon
1333 && newdyncommon
1334 && sym->st_size != h->size)
1335 {
1336 /* Since we think we have two common symbols, issue a multiple
1337 common warning if desired. Note that we only warn if the
1338 size is different. If the size is the same, we simply let
1339 the old symbol override the new one as normally happens with
1340 symbols defined in dynamic objects. */
1341
1342 if (! ((*info->callbacks->multiple_common)
1343 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1344 return FALSE;
1345
1346 if (sym->st_size > h->size)
1347 h->size = sym->st_size;
1348
1349 *size_change_ok = TRUE;
1350 }
1351
1352 /* If we are looking at a dynamic object, and we have found a
1353 definition, we need to see if the symbol was already defined by
1354 some other object. If so, we want to use the existing
1355 definition, and we do not want to report a multiple symbol
1356 definition error; we do this by clobbering *PSEC to be
1357 bfd_und_section_ptr.
1358
1359 We treat a common symbol as a definition if the symbol in the
1360 shared library is a function, since common symbols always
1361 represent variables; this can cause confusion in principle, but
1362 any such confusion would seem to indicate an erroneous program or
1363 shared library. We also permit a common symbol in a regular
1364 object to override a weak symbol in a shared object. */
1365
1366 if (newdyn
1367 && newdef
1368 && (olddef
1369 || (h->root.type == bfd_link_hash_common
1370 && (newweak || newfunc))))
1371 {
1372 *override = TRUE;
1373 newdef = FALSE;
1374 newdyncommon = FALSE;
1375
1376 *psec = sec = bfd_und_section_ptr;
1377 *size_change_ok = TRUE;
1378
1379 /* If we get here when the old symbol is a common symbol, then
1380 we are explicitly letting it override a weak symbol or
1381 function in a dynamic object, and we don't want to warn about
1382 a type change. If the old symbol is a defined symbol, a type
1383 change warning may still be appropriate. */
1384
1385 if (h->root.type == bfd_link_hash_common)
1386 *type_change_ok = TRUE;
1387 }
1388
1389 /* Handle the special case of an old common symbol merging with a
1390 new symbol which looks like a common symbol in a shared object.
1391 We change *PSEC and *PVALUE to make the new symbol look like a
1392 common symbol, and let _bfd_generic_link_add_one_symbol do the
1393 right thing. */
1394
1395 if (newdyncommon
1396 && h->root.type == bfd_link_hash_common)
1397 {
1398 *override = TRUE;
1399 newdef = FALSE;
1400 newdyncommon = FALSE;
1401 *pvalue = sym->st_size;
1402 *psec = sec = bed->common_section (oldsec);
1403 *size_change_ok = TRUE;
1404 }
1405
1406 /* Skip weak definitions of symbols that are already defined. */
1407 if (newdef && olddef && newweak)
1408 {
1409 /* Don't skip new non-IR weak syms. */
1410 if (!(oldbfd != NULL
1411 && (oldbfd->flags & BFD_PLUGIN) != 0
1412 && (abfd->flags & BFD_PLUGIN) == 0))
1413 {
1414 newdef = FALSE;
1415 *skip = TRUE;
1416 }
1417
1418 /* Merge st_other. If the symbol already has a dynamic index,
1419 but visibility says it should not be visible, turn it into a
1420 local symbol. */
1421 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1422 if (h->dynindx != -1)
1423 switch (ELF_ST_VISIBILITY (h->other))
1424 {
1425 case STV_INTERNAL:
1426 case STV_HIDDEN:
1427 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1428 break;
1429 }
1430 }
1431
1432 /* If the old symbol is from a dynamic object, and the new symbol is
1433 a definition which is not from a dynamic object, then the new
1434 symbol overrides the old symbol. Symbols from regular files
1435 always take precedence over symbols from dynamic objects, even if
1436 they are defined after the dynamic object in the link.
1437
1438 As above, we again permit a common symbol in a regular object to
1439 override a definition in a shared object if the shared object
1440 symbol is a function or is weak. */
1441
1442 flip = NULL;
1443 if (!newdyn
1444 && (newdef
1445 || (bfd_is_com_section (sec)
1446 && (oldweak || oldfunc)))
1447 && olddyn
1448 && olddef
1449 && h->def_dynamic)
1450 {
1451 /* Change the hash table entry to undefined, and let
1452 _bfd_generic_link_add_one_symbol do the right thing with the
1453 new definition. */
1454
1455 h->root.type = bfd_link_hash_undefined;
1456 h->root.u.undef.abfd = h->root.u.def.section->owner;
1457 *size_change_ok = TRUE;
1458
1459 olddef = FALSE;
1460 olddyncommon = FALSE;
1461
1462 /* We again permit a type change when a common symbol may be
1463 overriding a function. */
1464
1465 if (bfd_is_com_section (sec))
1466 {
1467 if (oldfunc)
1468 {
1469 /* If a common symbol overrides a function, make sure
1470 that it isn't defined dynamically nor has type
1471 function. */
1472 h->def_dynamic = 0;
1473 h->type = STT_NOTYPE;
1474 }
1475 *type_change_ok = TRUE;
1476 }
1477
1478 if (hi->root.type == bfd_link_hash_indirect)
1479 flip = hi;
1480 else
1481 /* This union may have been set to be non-NULL when this symbol
1482 was seen in a dynamic object. We must force the union to be
1483 NULL, so that it is correct for a regular symbol. */
1484 h->verinfo.vertree = NULL;
1485 }
1486
1487 /* Handle the special case of a new common symbol merging with an
1488 old symbol that looks like it might be a common symbol defined in
1489 a shared object. Note that we have already handled the case in
1490 which a new common symbol should simply override the definition
1491 in the shared library. */
1492
1493 if (! newdyn
1494 && bfd_is_com_section (sec)
1495 && olddyncommon)
1496 {
1497 /* It would be best if we could set the hash table entry to a
1498 common symbol, but we don't know what to use for the section
1499 or the alignment. */
1500 if (! ((*info->callbacks->multiple_common)
1501 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1502 return FALSE;
1503
1504 /* If the presumed common symbol in the dynamic object is
1505 larger, pretend that the new symbol has its size. */
1506
1507 if (h->size > *pvalue)
1508 *pvalue = h->size;
1509
1510 /* We need to remember the alignment required by the symbol
1511 in the dynamic object. */
1512 BFD_ASSERT (pold_alignment);
1513 *pold_alignment = h->root.u.def.section->alignment_power;
1514
1515 olddef = FALSE;
1516 olddyncommon = FALSE;
1517
1518 h->root.type = bfd_link_hash_undefined;
1519 h->root.u.undef.abfd = h->root.u.def.section->owner;
1520
1521 *size_change_ok = TRUE;
1522 *type_change_ok = TRUE;
1523
1524 if (hi->root.type == bfd_link_hash_indirect)
1525 flip = hi;
1526 else
1527 h->verinfo.vertree = NULL;
1528 }
1529
1530 if (flip != NULL)
1531 {
1532 /* Handle the case where we had a versioned symbol in a dynamic
1533 library and now find a definition in a normal object. In this
1534 case, we make the versioned symbol point to the normal one. */
1535 flip->root.type = h->root.type;
1536 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1537 h->root.type = bfd_link_hash_indirect;
1538 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1539 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1540 if (h->def_dynamic)
1541 {
1542 h->def_dynamic = 0;
1543 flip->ref_dynamic = 1;
1544 }
1545 }
1546
1547 return TRUE;
1548}
1549
1550/* This function is called to create an indirect symbol from the
1551 default for the symbol with the default version if needed. The
1552 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1553 set DYNSYM if the new indirect symbol is dynamic. */
1554
1555static bfd_boolean
1556_bfd_elf_add_default_symbol (bfd *abfd,
1557 struct bfd_link_info *info,
1558 struct elf_link_hash_entry *h,
1559 const char *name,
1560 Elf_Internal_Sym *sym,
1561 asection *sec,
1562 bfd_vma value,
1563 bfd **poldbfd,
1564 bfd_boolean *dynsym)
1565{
1566 bfd_boolean type_change_ok;
1567 bfd_boolean size_change_ok;
1568 bfd_boolean skip;
1569 char *shortname;
1570 struct elf_link_hash_entry *hi;
1571 struct bfd_link_hash_entry *bh;
1572 const struct elf_backend_data *bed;
1573 bfd_boolean collect;
1574 bfd_boolean dynamic;
1575 bfd_boolean override;
1576 char *p;
1577 size_t len, shortlen;
1578 asection *tmp_sec;
1579
1580 /* If this symbol has a version, and it is the default version, we
1581 create an indirect symbol from the default name to the fully
1582 decorated name. This will cause external references which do not
1583 specify a version to be bound to this version of the symbol. */
1584 p = strchr (name, ELF_VER_CHR);
1585 if (p == NULL || p[1] != ELF_VER_CHR)
1586 return TRUE;
1587
1588 bed = get_elf_backend_data (abfd);
1589 collect = bed->collect;
1590 dynamic = (abfd->flags & DYNAMIC) != 0;
1591
1592 shortlen = p - name;
1593 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1594 if (shortname == NULL)
1595 return FALSE;
1596 memcpy (shortname, name, shortlen);
1597 shortname[shortlen] = '\0';
1598
1599 /* We are going to create a new symbol. Merge it with any existing
1600 symbol with this name. For the purposes of the merge, act as
1601 though we were defining the symbol we just defined, although we
1602 actually going to define an indirect symbol. */
1603 type_change_ok = FALSE;
1604 size_change_ok = FALSE;
1605 tmp_sec = sec;
1606 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1607 &hi, poldbfd, NULL, NULL, &skip, &override,
1608 &type_change_ok, &size_change_ok))
1609 return FALSE;
1610
1611 if (skip)
1612 goto nondefault;
1613
1614 if (! override)
1615 {
1616 bh = &hi->root;
1617 if (! (_bfd_generic_link_add_one_symbol
1618 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1619 0, name, FALSE, collect, &bh)))
1620 return FALSE;
1621 hi = (struct elf_link_hash_entry *) bh;
1622 }
1623 else
1624 {
1625 /* In this case the symbol named SHORTNAME is overriding the
1626 indirect symbol we want to add. We were planning on making
1627 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1628 is the name without a version. NAME is the fully versioned
1629 name, and it is the default version.
1630
1631 Overriding means that we already saw a definition for the
1632 symbol SHORTNAME in a regular object, and it is overriding
1633 the symbol defined in the dynamic object.
1634
1635 When this happens, we actually want to change NAME, the
1636 symbol we just added, to refer to SHORTNAME. This will cause
1637 references to NAME in the shared object to become references
1638 to SHORTNAME in the regular object. This is what we expect
1639 when we override a function in a shared object: that the
1640 references in the shared object will be mapped to the
1641 definition in the regular object. */
1642
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1646
1647 h->root.type = bfd_link_hash_indirect;
1648 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1649 if (h->def_dynamic)
1650 {
1651 h->def_dynamic = 0;
1652 hi->ref_dynamic = 1;
1653 if (hi->ref_regular
1654 || hi->def_regular)
1655 {
1656 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1657 return FALSE;
1658 }
1659 }
1660
1661 /* Now set HI to H, so that the following code will set the
1662 other fields correctly. */
1663 hi = h;
1664 }
1665
1666 /* Check if HI is a warning symbol. */
1667 if (hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1669
1670 /* If there is a duplicate definition somewhere, then HI may not
1671 point to an indirect symbol. We will have reported an error to
1672 the user in that case. */
1673
1674 if (hi->root.type == bfd_link_hash_indirect)
1675 {
1676 struct elf_link_hash_entry *ht;
1677
1678 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1680
1681 /* A reference to the SHORTNAME symbol from a dynamic library
1682 will be satisfied by the versioned symbol at runtime. In
1683 effect, we have a reference to the versioned symbol. */
1684 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1685 hi->dynamic_def |= ht->dynamic_def;
1686
1687 /* See if the new flags lead us to realize that the symbol must
1688 be dynamic. */
1689 if (! *dynsym)
1690 {
1691 if (! dynamic)
1692 {
1693 if (! info->executable
1694 || hi->def_dynamic
1695 || hi->ref_dynamic)
1696 *dynsym = TRUE;
1697 }
1698 else
1699 {
1700 if (hi->ref_regular)
1701 *dynsym = TRUE;
1702 }
1703 }
1704 }
1705
1706 /* We also need to define an indirection from the nondefault version
1707 of the symbol. */
1708
1709nondefault:
1710 len = strlen (name);
1711 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1712 if (shortname == NULL)
1713 return FALSE;
1714 memcpy (shortname, name, shortlen);
1715 memcpy (shortname + shortlen, p + 1, len - shortlen);
1716
1717 /* Once again, merge with any existing symbol. */
1718 type_change_ok = FALSE;
1719 size_change_ok = FALSE;
1720 tmp_sec = sec;
1721 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1722 &hi, poldbfd, NULL, NULL, &skip, &override,
1723 &type_change_ok, &size_change_ok))
1724 return FALSE;
1725
1726 if (skip)
1727 return TRUE;
1728
1729 if (override)
1730 {
1731 /* Here SHORTNAME is a versioned name, so we don't expect to see
1732 the type of override we do in the case above unless it is
1733 overridden by a versioned definition. */
1734 if (hi->root.type != bfd_link_hash_defined
1735 && hi->root.type != bfd_link_hash_defweak)
1736 (*_bfd_error_handler)
1737 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1738 abfd, shortname);
1739 }
1740 else
1741 {
1742 bh = &hi->root;
1743 if (! (_bfd_generic_link_add_one_symbol
1744 (info, abfd, shortname, BSF_INDIRECT,
1745 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1746 return FALSE;
1747 hi = (struct elf_link_hash_entry *) bh;
1748
1749 /* If there is a duplicate definition somewhere, then HI may not
1750 point to an indirect symbol. We will have reported an error
1751 to the user in that case. */
1752
1753 if (hi->root.type == bfd_link_hash_indirect)
1754 {
1755 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1756 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1757 hi->dynamic_def |= h->dynamic_def;
1758
1759 /* See if the new flags lead us to realize that the symbol
1760 must be dynamic. */
1761 if (! *dynsym)
1762 {
1763 if (! dynamic)
1764 {
1765 if (! info->executable
1766 || hi->ref_dynamic)
1767 *dynsym = TRUE;
1768 }
1769 else
1770 {
1771 if (hi->ref_regular)
1772 *dynsym = TRUE;
1773 }
1774 }
1775 }
1776 }
1777
1778 return TRUE;
1779}
1780\f
1781/* This routine is used to export all defined symbols into the dynamic
1782 symbol table. It is called via elf_link_hash_traverse. */
1783
1784static bfd_boolean
1785_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1786{
1787 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1788
1789 /* Ignore indirect symbols. These are added by the versioning code. */
1790 if (h->root.type == bfd_link_hash_indirect)
1791 return TRUE;
1792
1793 /* Ignore this if we won't export it. */
1794 if (!eif->info->export_dynamic && !h->dynamic)
1795 return TRUE;
1796
1797 if (h->dynindx == -1
1798 && (h->def_regular || h->ref_regular)
1799 && ! bfd_hide_sym_by_version (eif->info->version_info,
1800 h->root.root.string))
1801 {
1802 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1803 {
1804 eif->failed = TRUE;
1805 return FALSE;
1806 }
1807 }
1808
1809 return TRUE;
1810}
1811\f
1812/* Look through the symbols which are defined in other shared
1813 libraries and referenced here. Update the list of version
1814 dependencies. This will be put into the .gnu.version_r section.
1815 This function is called via elf_link_hash_traverse. */
1816
1817static bfd_boolean
1818_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1819 void *data)
1820{
1821 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1822 Elf_Internal_Verneed *t;
1823 Elf_Internal_Vernaux *a;
1824 bfd_size_type amt;
1825
1826 /* We only care about symbols defined in shared objects with version
1827 information. */
1828 if (!h->def_dynamic
1829 || h->def_regular
1830 || h->dynindx == -1
1831 || h->verinfo.verdef == NULL
1832 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1833 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1834 return TRUE;
1835
1836 /* See if we already know about this version. */
1837 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1838 t != NULL;
1839 t = t->vn_nextref)
1840 {
1841 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1842 continue;
1843
1844 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1845 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1846 return TRUE;
1847
1848 break;
1849 }
1850
1851 /* This is a new version. Add it to tree we are building. */
1852
1853 if (t == NULL)
1854 {
1855 amt = sizeof *t;
1856 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1857 if (t == NULL)
1858 {
1859 rinfo->failed = TRUE;
1860 return FALSE;
1861 }
1862
1863 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1864 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1865 elf_tdata (rinfo->info->output_bfd)->verref = t;
1866 }
1867
1868 amt = sizeof *a;
1869 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1870 if (a == NULL)
1871 {
1872 rinfo->failed = TRUE;
1873 return FALSE;
1874 }
1875
1876 /* Note that we are copying a string pointer here, and testing it
1877 above. If bfd_elf_string_from_elf_section is ever changed to
1878 discard the string data when low in memory, this will have to be
1879 fixed. */
1880 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1881
1882 a->vna_flags = h->verinfo.verdef->vd_flags;
1883 a->vna_nextptr = t->vn_auxptr;
1884
1885 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1886 ++rinfo->vers;
1887
1888 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1889
1890 t->vn_auxptr = a;
1891
1892 return TRUE;
1893}
1894
1895/* Figure out appropriate versions for all the symbols. We may not
1896 have the version number script until we have read all of the input
1897 files, so until that point we don't know which symbols should be
1898 local. This function is called via elf_link_hash_traverse. */
1899
1900static bfd_boolean
1901_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1902{
1903 struct elf_info_failed *sinfo;
1904 struct bfd_link_info *info;
1905 const struct elf_backend_data *bed;
1906 struct elf_info_failed eif;
1907 char *p;
1908 bfd_size_type amt;
1909
1910 sinfo = (struct elf_info_failed *) data;
1911 info = sinfo->info;
1912
1913 /* Fix the symbol flags. */
1914 eif.failed = FALSE;
1915 eif.info = info;
1916 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1917 {
1918 if (eif.failed)
1919 sinfo->failed = TRUE;
1920 return FALSE;
1921 }
1922
1923 /* We only need version numbers for symbols defined in regular
1924 objects. */
1925 if (!h->def_regular)
1926 return TRUE;
1927
1928 bed = get_elf_backend_data (info->output_bfd);
1929 p = strchr (h->root.root.string, ELF_VER_CHR);
1930 if (p != NULL && h->verinfo.vertree == NULL)
1931 {
1932 struct bfd_elf_version_tree *t;
1933 bfd_boolean hidden;
1934
1935 hidden = TRUE;
1936
1937 /* There are two consecutive ELF_VER_CHR characters if this is
1938 not a hidden symbol. */
1939 ++p;
1940 if (*p == ELF_VER_CHR)
1941 {
1942 hidden = FALSE;
1943 ++p;
1944 }
1945
1946 /* If there is no version string, we can just return out. */
1947 if (*p == '\0')
1948 {
1949 if (hidden)
1950 h->hidden = 1;
1951 return TRUE;
1952 }
1953
1954 /* Look for the version. If we find it, it is no longer weak. */
1955 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1956 {
1957 if (strcmp (t->name, p) == 0)
1958 {
1959 size_t len;
1960 char *alc;
1961 struct bfd_elf_version_expr *d;
1962
1963 len = p - h->root.root.string;
1964 alc = (char *) bfd_malloc (len);
1965 if (alc == NULL)
1966 {
1967 sinfo->failed = TRUE;
1968 return FALSE;
1969 }
1970 memcpy (alc, h->root.root.string, len - 1);
1971 alc[len - 1] = '\0';
1972 if (alc[len - 2] == ELF_VER_CHR)
1973 alc[len - 2] = '\0';
1974
1975 h->verinfo.vertree = t;
1976 t->used = TRUE;
1977 d = NULL;
1978
1979 if (t->globals.list != NULL)
1980 d = (*t->match) (&t->globals, NULL, alc);
1981
1982 /* See if there is anything to force this symbol to
1983 local scope. */
1984 if (d == NULL && t->locals.list != NULL)
1985 {
1986 d = (*t->match) (&t->locals, NULL, alc);
1987 if (d != NULL
1988 && h->dynindx != -1
1989 && ! info->export_dynamic)
1990 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1991 }
1992
1993 free (alc);
1994 break;
1995 }
1996 }
1997
1998 /* If we are building an application, we need to create a
1999 version node for this version. */
2000 if (t == NULL && info->executable)
2001 {
2002 struct bfd_elf_version_tree **pp;
2003 int version_index;
2004
2005 /* If we aren't going to export this symbol, we don't need
2006 to worry about it. */
2007 if (h->dynindx == -1)
2008 return TRUE;
2009
2010 amt = sizeof *t;
2011 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2012 if (t == NULL)
2013 {
2014 sinfo->failed = TRUE;
2015 return FALSE;
2016 }
2017
2018 t->name = p;
2019 t->name_indx = (unsigned int) -1;
2020 t->used = TRUE;
2021
2022 version_index = 1;
2023 /* Don't count anonymous version tag. */
2024 if (sinfo->info->version_info != NULL
2025 && sinfo->info->version_info->vernum == 0)
2026 version_index = 0;
2027 for (pp = &sinfo->info->version_info;
2028 *pp != NULL;
2029 pp = &(*pp)->next)
2030 ++version_index;
2031 t->vernum = version_index;
2032
2033 *pp = t;
2034
2035 h->verinfo.vertree = t;
2036 }
2037 else if (t == NULL)
2038 {
2039 /* We could not find the version for a symbol when
2040 generating a shared archive. Return an error. */
2041 (*_bfd_error_handler)
2042 (_("%B: version node not found for symbol %s"),
2043 info->output_bfd, h->root.root.string);
2044 bfd_set_error (bfd_error_bad_value);
2045 sinfo->failed = TRUE;
2046 return FALSE;
2047 }
2048
2049 if (hidden)
2050 h->hidden = 1;
2051 }
2052
2053 /* If we don't have a version for this symbol, see if we can find
2054 something. */
2055 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2056 {
2057 bfd_boolean hide;
2058
2059 h->verinfo.vertree
2060 = bfd_find_version_for_sym (sinfo->info->version_info,
2061 h->root.root.string, &hide);
2062 if (h->verinfo.vertree != NULL && hide)
2063 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2064 }
2065
2066 return TRUE;
2067}
2068\f
2069/* Read and swap the relocs from the section indicated by SHDR. This
2070 may be either a REL or a RELA section. The relocations are
2071 translated into RELA relocations and stored in INTERNAL_RELOCS,
2072 which should have already been allocated to contain enough space.
2073 The EXTERNAL_RELOCS are a buffer where the external form of the
2074 relocations should be stored.
2075
2076 Returns FALSE if something goes wrong. */
2077
2078static bfd_boolean
2079elf_link_read_relocs_from_section (bfd *abfd,
2080 asection *sec,
2081 Elf_Internal_Shdr *shdr,
2082 void *external_relocs,
2083 Elf_Internal_Rela *internal_relocs)
2084{
2085 const struct elf_backend_data *bed;
2086 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2087 const bfd_byte *erela;
2088 const bfd_byte *erelaend;
2089 Elf_Internal_Rela *irela;
2090 Elf_Internal_Shdr *symtab_hdr;
2091 size_t nsyms;
2092
2093 /* Position ourselves at the start of the section. */
2094 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2095 return FALSE;
2096
2097 /* Read the relocations. */
2098 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2099 return FALSE;
2100
2101 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2102 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2103
2104 bed = get_elf_backend_data (abfd);
2105
2106 /* Convert the external relocations to the internal format. */
2107 if (shdr->sh_entsize == bed->s->sizeof_rel)
2108 swap_in = bed->s->swap_reloc_in;
2109 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2110 swap_in = bed->s->swap_reloca_in;
2111 else
2112 {
2113 bfd_set_error (bfd_error_wrong_format);
2114 return FALSE;
2115 }
2116
2117 erela = (const bfd_byte *) external_relocs;
2118 erelaend = erela + shdr->sh_size;
2119 irela = internal_relocs;
2120 while (erela < erelaend)
2121 {
2122 bfd_vma r_symndx;
2123
2124 (*swap_in) (abfd, erela, irela);
2125 r_symndx = ELF32_R_SYM (irela->r_info);
2126 if (bed->s->arch_size == 64)
2127 r_symndx >>= 24;
2128 if (nsyms > 0)
2129 {
2130 if ((size_t) r_symndx >= nsyms)
2131 {
2132 (*_bfd_error_handler)
2133 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2134 " for offset 0x%lx in section `%A'"),
2135 abfd, sec,
2136 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2137 bfd_set_error (bfd_error_bad_value);
2138 return FALSE;
2139 }
2140 }
2141 else if (r_symndx != STN_UNDEF)
2142 {
2143 (*_bfd_error_handler)
2144 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2145 " when the object file has no symbol table"),
2146 abfd, sec,
2147 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2148 bfd_set_error (bfd_error_bad_value);
2149 return FALSE;
2150 }
2151 irela += bed->s->int_rels_per_ext_rel;
2152 erela += shdr->sh_entsize;
2153 }
2154
2155 return TRUE;
2156}
2157
2158/* Read and swap the relocs for a section O. They may have been
2159 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2160 not NULL, they are used as buffers to read into. They are known to
2161 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2162 the return value is allocated using either malloc or bfd_alloc,
2163 according to the KEEP_MEMORY argument. If O has two relocation
2164 sections (both REL and RELA relocations), then the REL_HDR
2165 relocations will appear first in INTERNAL_RELOCS, followed by the
2166 RELA_HDR relocations. */
2167
2168Elf_Internal_Rela *
2169_bfd_elf_link_read_relocs (bfd *abfd,
2170 asection *o,
2171 void *external_relocs,
2172 Elf_Internal_Rela *internal_relocs,
2173 bfd_boolean keep_memory)
2174{
2175 void *alloc1 = NULL;
2176 Elf_Internal_Rela *alloc2 = NULL;
2177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2178 struct bfd_elf_section_data *esdo = elf_section_data (o);
2179 Elf_Internal_Rela *internal_rela_relocs;
2180
2181 if (esdo->relocs != NULL)
2182 return esdo->relocs;
2183
2184 if (o->reloc_count == 0)
2185 return NULL;
2186
2187 if (internal_relocs == NULL)
2188 {
2189 bfd_size_type size;
2190
2191 size = o->reloc_count;
2192 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2193 if (keep_memory)
2194 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2195 else
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2197 if (internal_relocs == NULL)
2198 goto error_return;
2199 }
2200
2201 if (external_relocs == NULL)
2202 {
2203 bfd_size_type size = 0;
2204
2205 if (esdo->rel.hdr)
2206 size += esdo->rel.hdr->sh_size;
2207 if (esdo->rela.hdr)
2208 size += esdo->rela.hdr->sh_size;
2209
2210 alloc1 = bfd_malloc (size);
2211 if (alloc1 == NULL)
2212 goto error_return;
2213 external_relocs = alloc1;
2214 }
2215
2216 internal_rela_relocs = internal_relocs;
2217 if (esdo->rel.hdr)
2218 {
2219 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2220 external_relocs,
2221 internal_relocs))
2222 goto error_return;
2223 external_relocs = (((bfd_byte *) external_relocs)
2224 + esdo->rel.hdr->sh_size);
2225 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2226 * bed->s->int_rels_per_ext_rel);
2227 }
2228
2229 if (esdo->rela.hdr
2230 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2231 external_relocs,
2232 internal_rela_relocs)))
2233 goto error_return;
2234
2235 /* Cache the results for next time, if we can. */
2236 if (keep_memory)
2237 esdo->relocs = internal_relocs;
2238
2239 if (alloc1 != NULL)
2240 free (alloc1);
2241
2242 /* Don't free alloc2, since if it was allocated we are passing it
2243 back (under the name of internal_relocs). */
2244
2245 return internal_relocs;
2246
2247 error_return:
2248 if (alloc1 != NULL)
2249 free (alloc1);
2250 if (alloc2 != NULL)
2251 {
2252 if (keep_memory)
2253 bfd_release (abfd, alloc2);
2254 else
2255 free (alloc2);
2256 }
2257 return NULL;
2258}
2259
2260/* Compute the size of, and allocate space for, REL_HDR which is the
2261 section header for a section containing relocations for O. */
2262
2263static bfd_boolean
2264_bfd_elf_link_size_reloc_section (bfd *abfd,
2265 struct bfd_elf_section_reloc_data *reldata)
2266{
2267 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2268
2269 /* That allows us to calculate the size of the section. */
2270 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2271
2272 /* The contents field must last into write_object_contents, so we
2273 allocate it with bfd_alloc rather than malloc. Also since we
2274 cannot be sure that the contents will actually be filled in,
2275 we zero the allocated space. */
2276 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2277 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2278 return FALSE;
2279
2280 if (reldata->hashes == NULL && reldata->count)
2281 {
2282 struct elf_link_hash_entry **p;
2283
2284 p = (struct elf_link_hash_entry **)
2285 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2286 if (p == NULL)
2287 return FALSE;
2288
2289 reldata->hashes = p;
2290 }
2291
2292 return TRUE;
2293}
2294
2295/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2296 originated from the section given by INPUT_REL_HDR) to the
2297 OUTPUT_BFD. */
2298
2299bfd_boolean
2300_bfd_elf_link_output_relocs (bfd *output_bfd,
2301 asection *input_section,
2302 Elf_Internal_Shdr *input_rel_hdr,
2303 Elf_Internal_Rela *internal_relocs,
2304 struct elf_link_hash_entry **rel_hash
2305 ATTRIBUTE_UNUSED)
2306{
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rela *irelaend;
2309 bfd_byte *erel;
2310 struct bfd_elf_section_reloc_data *output_reldata;
2311 asection *output_section;
2312 const struct elf_backend_data *bed;
2313 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2314 struct bfd_elf_section_data *esdo;
2315
2316 output_section = input_section->output_section;
2317
2318 bed = get_elf_backend_data (output_bfd);
2319 esdo = elf_section_data (output_section);
2320 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2321 {
2322 output_reldata = &esdo->rel;
2323 swap_out = bed->s->swap_reloc_out;
2324 }
2325 else if (esdo->rela.hdr
2326 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2327 {
2328 output_reldata = &esdo->rela;
2329 swap_out = bed->s->swap_reloca_out;
2330 }
2331 else
2332 {
2333 (*_bfd_error_handler)
2334 (_("%B: relocation size mismatch in %B section %A"),
2335 output_bfd, input_section->owner, input_section);
2336 bfd_set_error (bfd_error_wrong_format);
2337 return FALSE;
2338 }
2339
2340 erel = output_reldata->hdr->contents;
2341 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2342 irela = internal_relocs;
2343 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2344 * bed->s->int_rels_per_ext_rel);
2345 while (irela < irelaend)
2346 {
2347 (*swap_out) (output_bfd, irela, erel);
2348 irela += bed->s->int_rels_per_ext_rel;
2349 erel += input_rel_hdr->sh_entsize;
2350 }
2351
2352 /* Bump the counter, so that we know where to add the next set of
2353 relocations. */
2354 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2355
2356 return TRUE;
2357}
2358\f
2359/* Make weak undefined symbols in PIE dynamic. */
2360
2361bfd_boolean
2362_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2363 struct elf_link_hash_entry *h)
2364{
2365 if (info->pie
2366 && h->dynindx == -1
2367 && h->root.type == bfd_link_hash_undefweak)
2368 return bfd_elf_link_record_dynamic_symbol (info, h);
2369
2370 return TRUE;
2371}
2372
2373/* Fix up the flags for a symbol. This handles various cases which
2374 can only be fixed after all the input files are seen. This is
2375 currently called by both adjust_dynamic_symbol and
2376 assign_sym_version, which is unnecessary but perhaps more robust in
2377 the face of future changes. */
2378
2379static bfd_boolean
2380_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2381 struct elf_info_failed *eif)
2382{
2383 const struct elf_backend_data *bed;
2384
2385 /* If this symbol was mentioned in a non-ELF file, try to set
2386 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2387 permit a non-ELF file to correctly refer to a symbol defined in
2388 an ELF dynamic object. */
2389 if (h->non_elf)
2390 {
2391 while (h->root.type == bfd_link_hash_indirect)
2392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2393
2394 if (h->root.type != bfd_link_hash_defined
2395 && h->root.type != bfd_link_hash_defweak)
2396 {
2397 h->ref_regular = 1;
2398 h->ref_regular_nonweak = 1;
2399 }
2400 else
2401 {
2402 if (h->root.u.def.section->owner != NULL
2403 && (bfd_get_flavour (h->root.u.def.section->owner)
2404 == bfd_target_elf_flavour))
2405 {
2406 h->ref_regular = 1;
2407 h->ref_regular_nonweak = 1;
2408 }
2409 else
2410 h->def_regular = 1;
2411 }
2412
2413 if (h->dynindx == -1
2414 && (h->def_dynamic
2415 || h->ref_dynamic))
2416 {
2417 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2418 {
2419 eif->failed = TRUE;
2420 return FALSE;
2421 }
2422 }
2423 }
2424 else
2425 {
2426 /* If a plugin symbol is referenced from a non-IR file, mark
2427 the symbol as undefined, except for symbol for linker
2428 created section. */
2429 if (h->root.non_ir_ref
2430 && (h->root.type == bfd_link_hash_defined
2431 || h->root.type == bfd_link_hash_defweak)
2432 && (h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
2433 && h->root.u.def.section->owner != NULL
2434 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
2435 {
2436 h->root.type = bfd_link_hash_undefined;
2437 h->root.u.undef.abfd = h->root.u.def.section->owner;
2438 }
2439
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2455 }
2456
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2462
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2474
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2487 {
2488 bfd_boolean force_local;
2489
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 }
2494
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2500
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2505 {
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2512 {
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2514
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2524 }
2525 }
2526
2527 return TRUE;
2528}
2529
2530/* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2533
2534static bfd_boolean
2535_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2536{
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2540
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2543
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2547
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2551
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2565 {
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2568 }
2569
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2574
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2580
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2585
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2594
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2608
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2614
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2619 }
2620
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2632
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2635
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2637 {
2638 eif->failed = TRUE;
2639 return FALSE;
2640 }
2641
2642 return TRUE;
2643}
2644
2645/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2647
2648bfd_boolean
2649_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2650 struct elf_link_hash_entry *h,
2651 asection *dynbss)
2652{
2653 unsigned int power_of_two;
2654 bfd_vma mask;
2655 asection *sec = h->root.u.def.section;
2656
2657 /* The section aligment of definition is the maximum alignment
2658 requirement of symbols defined in the section. Since we don't
2659 know the symbol alignment requirement, we start with the
2660 maximum alignment and check low bits of the symbol address
2661 for the minimum alignment. */
2662 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2663 mask = ((bfd_vma) 1 << power_of_two) - 1;
2664 while ((h->root.u.def.value & mask) != 0)
2665 {
2666 mask >>= 1;
2667 --power_of_two;
2668 }
2669
2670 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2671 dynbss))
2672 {
2673 /* Adjust the section alignment if needed. */
2674 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2675 power_of_two))
2676 return FALSE;
2677 }
2678
2679 /* We make sure that the symbol will be aligned properly. */
2680 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681
2682 /* Define the symbol as being at this point in DYNBSS. */
2683 h->root.u.def.section = dynbss;
2684 h->root.u.def.value = dynbss->size;
2685
2686 /* Increment the size of DYNBSS to make room for the symbol. */
2687 dynbss->size += h->size;
2688
2689 if (h->protected_def)
2690 {
2691 info->callbacks->einfo
2692 (_("%P: copy reloc against protected `%T' is invalid\n"),
2693 h->root.root.string);
2694 bfd_set_error (bfd_error_bad_value);
2695 return FALSE;
2696 }
2697
2698 return TRUE;
2699}
2700
2701/* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2703
2704static bfd_boolean
2705_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2706{
2707 asection *sec;
2708
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2713 {
2714 bfd *output_bfd = (bfd *) data;
2715
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2721 }
2722
2723 return TRUE;
2724}
2725
2726/* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2729
2730bfd_boolean
2731_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2734{
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2738
2739 if (h == NULL)
2740 return FALSE;
2741
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2748 return FALSE;
2749 if (h->forced_local)
2750 return FALSE;
2751
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2755
2756 switch (ELF_ST_VISIBILITY (h->other))
2757 {
2758 case STV_INTERNAL:
2759 case STV_HIDDEN:
2760 return FALSE;
2761
2762 case STV_PROTECTED:
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2765 return FALSE;
2766
2767 bed = get_elf_backend_data (hash_table->dynobj);
2768
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2774 break;
2775
2776 default:
2777 break;
2778 }
2779
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2782 return TRUE;
2783
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2787}
2788
2789/* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2801
2802bfd_boolean
2803_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2806{
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2809
2810 /* If it's a local sym, of course we resolve locally. */
2811 if (h == NULL)
2812 return TRUE;
2813
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2817 return TRUE;
2818
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2822 /* Do nothing. */;
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2826 return FALSE;
2827
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2830 return TRUE;
2831
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2834 return TRUE;
2835
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2840 return TRUE;
2841
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2845 return FALSE;
2846
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2849 return TRUE;
2850
2851 bed = get_elf_backend_data (hash_table->dynobj);
2852
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2855 return TRUE;
2856
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2863}
2864
2865/* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2867
2868struct bfd_section *
2869_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2870{
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2873
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2876 break;
2877 tls = sec;
2878
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2882
2883 elf_hash_table (info)->tls_sec = tls;
2884
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2887 if (tls != NULL)
2888 tls->alignment_power = align;
2889
2890 return tls;
2891}
2892
2893/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2894static bfd_boolean
2895is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2897{
2898 const struct elf_backend_data *bed;
2899
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2903 return FALSE;
2904
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2908 return FALSE;
2909
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2912 return FALSE;
2913
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2917 return FALSE;
2918
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2923
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2925
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2929 return FALSE;
2930
2931 return TRUE;
2932}
2933
2934/* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2937static bfd_boolean
2938elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2939{
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2947 bfd_boolean result;
2948
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2950 if (abfd == NULL)
2951 return FALSE;
2952
2953 if (! bfd_check_format (abfd, bfd_object))
2954 return FALSE;
2955
2956 /* Select the appropriate symbol table. */
2957 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2958 hdr = &elf_tdata (abfd)->symtab_hdr;
2959 else
2960 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2961
2962 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2963
2964 /* The sh_info field of the symtab header tells us where the
2965 external symbols start. We don't care about the local symbols. */
2966 if (elf_bad_symtab (abfd))
2967 {
2968 extsymcount = symcount;
2969 extsymoff = 0;
2970 }
2971 else
2972 {
2973 extsymcount = symcount - hdr->sh_info;
2974 extsymoff = hdr->sh_info;
2975 }
2976
2977 if (extsymcount == 0)
2978 return FALSE;
2979
2980 /* Read in the symbol table. */
2981 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2982 NULL, NULL, NULL);
2983 if (isymbuf == NULL)
2984 return FALSE;
2985
2986 /* Scan the symbol table looking for SYMDEF. */
2987 result = FALSE;
2988 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2989 {
2990 const char *name;
2991
2992 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2993 isym->st_name);
2994 if (name == NULL)
2995 break;
2996
2997 if (strcmp (name, symdef->name) == 0)
2998 {
2999 result = is_global_data_symbol_definition (abfd, isym);
3000 break;
3001 }
3002 }
3003
3004 free (isymbuf);
3005
3006 return result;
3007}
3008\f
3009/* Add an entry to the .dynamic table. */
3010
3011bfd_boolean
3012_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3013 bfd_vma tag,
3014 bfd_vma val)
3015{
3016 struct elf_link_hash_table *hash_table;
3017 const struct elf_backend_data *bed;
3018 asection *s;
3019 bfd_size_type newsize;
3020 bfd_byte *newcontents;
3021 Elf_Internal_Dyn dyn;
3022
3023 hash_table = elf_hash_table (info);
3024 if (! is_elf_hash_table (hash_table))
3025 return FALSE;
3026
3027 bed = get_elf_backend_data (hash_table->dynobj);
3028 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3029 BFD_ASSERT (s != NULL);
3030
3031 newsize = s->size + bed->s->sizeof_dyn;
3032 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3033 if (newcontents == NULL)
3034 return FALSE;
3035
3036 dyn.d_tag = tag;
3037 dyn.d_un.d_val = val;
3038 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3039
3040 s->size = newsize;
3041 s->contents = newcontents;
3042
3043 return TRUE;
3044}
3045
3046/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3047 otherwise just check whether one already exists. Returns -1 on error,
3048 1 if a DT_NEEDED tag already exists, and 0 on success. */
3049
3050static int
3051elf_add_dt_needed_tag (bfd *abfd,
3052 struct bfd_link_info *info,
3053 const char *soname,
3054 bfd_boolean do_it)
3055{
3056 struct elf_link_hash_table *hash_table;
3057 bfd_size_type strindex;
3058
3059 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3060 return -1;
3061
3062 hash_table = elf_hash_table (info);
3063 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3064 if (strindex == (bfd_size_type) -1)
3065 return -1;
3066
3067 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3068 {
3069 asection *sdyn;
3070 const struct elf_backend_data *bed;
3071 bfd_byte *extdyn;
3072
3073 bed = get_elf_backend_data (hash_table->dynobj);
3074 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3075 if (sdyn != NULL)
3076 for (extdyn = sdyn->contents;
3077 extdyn < sdyn->contents + sdyn->size;
3078 extdyn += bed->s->sizeof_dyn)
3079 {
3080 Elf_Internal_Dyn dyn;
3081
3082 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3083 if (dyn.d_tag == DT_NEEDED
3084 && dyn.d_un.d_val == strindex)
3085 {
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087 return 1;
3088 }
3089 }
3090 }
3091
3092 if (do_it)
3093 {
3094 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3095 return -1;
3096
3097 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3098 return -1;
3099 }
3100 else
3101 /* We were just checking for existence of the tag. */
3102 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3103
3104 return 0;
3105}
3106
3107static bfd_boolean
3108on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3109{
3110 for (; needed != NULL; needed = needed->next)
3111 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3112 && strcmp (soname, needed->name) == 0)
3113 return TRUE;
3114
3115 return FALSE;
3116}
3117
3118/* Sort symbol by value, section, and size. */
3119static int
3120elf_sort_symbol (const void *arg1, const void *arg2)
3121{
3122 const struct elf_link_hash_entry *h1;
3123 const struct elf_link_hash_entry *h2;
3124 bfd_signed_vma vdiff;
3125
3126 h1 = *(const struct elf_link_hash_entry **) arg1;
3127 h2 = *(const struct elf_link_hash_entry **) arg2;
3128 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3129 if (vdiff != 0)
3130 return vdiff > 0 ? 1 : -1;
3131 else
3132 {
3133 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3134 if (sdiff != 0)
3135 return sdiff > 0 ? 1 : -1;
3136 }
3137 vdiff = h1->size - h2->size;
3138 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3139}
3140
3141/* This function is used to adjust offsets into .dynstr for
3142 dynamic symbols. This is called via elf_link_hash_traverse. */
3143
3144static bfd_boolean
3145elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3146{
3147 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3148
3149 if (h->dynindx != -1)
3150 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3151 return TRUE;
3152}
3153
3154/* Assign string offsets in .dynstr, update all structures referencing
3155 them. */
3156
3157static bfd_boolean
3158elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3159{
3160 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3161 struct elf_link_local_dynamic_entry *entry;
3162 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3163 bfd *dynobj = hash_table->dynobj;
3164 asection *sdyn;
3165 bfd_size_type size;
3166 const struct elf_backend_data *bed;
3167 bfd_byte *extdyn;
3168
3169 _bfd_elf_strtab_finalize (dynstr);
3170 size = _bfd_elf_strtab_size (dynstr);
3171
3172 bed = get_elf_backend_data (dynobj);
3173 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3174 BFD_ASSERT (sdyn != NULL);
3175
3176 /* Update all .dynamic entries referencing .dynstr strings. */
3177 for (extdyn = sdyn->contents;
3178 extdyn < sdyn->contents + sdyn->size;
3179 extdyn += bed->s->sizeof_dyn)
3180 {
3181 Elf_Internal_Dyn dyn;
3182
3183 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3184 switch (dyn.d_tag)
3185 {
3186 case DT_STRSZ:
3187 dyn.d_un.d_val = size;
3188 break;
3189 case DT_NEEDED:
3190 case DT_SONAME:
3191 case DT_RPATH:
3192 case DT_RUNPATH:
3193 case DT_FILTER:
3194 case DT_AUXILIARY:
3195 case DT_AUDIT:
3196 case DT_DEPAUDIT:
3197 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3198 break;
3199 default:
3200 continue;
3201 }
3202 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3203 }
3204
3205 /* Now update local dynamic symbols. */
3206 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3207 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3208 entry->isym.st_name);
3209
3210 /* And the rest of dynamic symbols. */
3211 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3212
3213 /* Adjust version definitions. */
3214 if (elf_tdata (output_bfd)->cverdefs)
3215 {
3216 asection *s;
3217 bfd_byte *p;
3218 bfd_size_type i;
3219 Elf_Internal_Verdef def;
3220 Elf_Internal_Verdaux defaux;
3221
3222 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3223 p = s->contents;
3224 do
3225 {
3226 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3227 &def);
3228 p += sizeof (Elf_External_Verdef);
3229 if (def.vd_aux != sizeof (Elf_External_Verdef))
3230 continue;
3231 for (i = 0; i < def.vd_cnt; ++i)
3232 {
3233 _bfd_elf_swap_verdaux_in (output_bfd,
3234 (Elf_External_Verdaux *) p, &defaux);
3235 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3236 defaux.vda_name);
3237 _bfd_elf_swap_verdaux_out (output_bfd,
3238 &defaux, (Elf_External_Verdaux *) p);
3239 p += sizeof (Elf_External_Verdaux);
3240 }
3241 }
3242 while (def.vd_next);
3243 }
3244
3245 /* Adjust version references. */
3246 if (elf_tdata (output_bfd)->verref)
3247 {
3248 asection *s;
3249 bfd_byte *p;
3250 bfd_size_type i;
3251 Elf_Internal_Verneed need;
3252 Elf_Internal_Vernaux needaux;
3253
3254 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3255 p = s->contents;
3256 do
3257 {
3258 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3259 &need);
3260 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3261 _bfd_elf_swap_verneed_out (output_bfd, &need,
3262 (Elf_External_Verneed *) p);
3263 p += sizeof (Elf_External_Verneed);
3264 for (i = 0; i < need.vn_cnt; ++i)
3265 {
3266 _bfd_elf_swap_vernaux_in (output_bfd,
3267 (Elf_External_Vernaux *) p, &needaux);
3268 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3269 needaux.vna_name);
3270 _bfd_elf_swap_vernaux_out (output_bfd,
3271 &needaux,
3272 (Elf_External_Vernaux *) p);
3273 p += sizeof (Elf_External_Vernaux);
3274 }
3275 }
3276 while (need.vn_next);
3277 }
3278
3279 return TRUE;
3280}
3281\f
3282/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3283 The default is to only match when the INPUT and OUTPUT are exactly
3284 the same target. */
3285
3286bfd_boolean
3287_bfd_elf_default_relocs_compatible (const bfd_target *input,
3288 const bfd_target *output)
3289{
3290 return input == output;
3291}
3292
3293/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3294 This version is used when different targets for the same architecture
3295 are virtually identical. */
3296
3297bfd_boolean
3298_bfd_elf_relocs_compatible (const bfd_target *input,
3299 const bfd_target *output)
3300{
3301 const struct elf_backend_data *obed, *ibed;
3302
3303 if (input == output)
3304 return TRUE;
3305
3306 ibed = xvec_get_elf_backend_data (input);
3307 obed = xvec_get_elf_backend_data (output);
3308
3309 if (ibed->arch != obed->arch)
3310 return FALSE;
3311
3312 /* If both backends are using this function, deem them compatible. */
3313 return ibed->relocs_compatible == obed->relocs_compatible;
3314}
3315
3316/* Make a special call to the linker "notice" function to tell it that
3317 we are about to handle an as-needed lib, or have finished
3318 processing the lib. */
3319
3320bfd_boolean
3321_bfd_elf_notice_as_needed (bfd *ibfd,
3322 struct bfd_link_info *info,
3323 enum notice_asneeded_action act)
3324{
3325 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3326}
3327
3328/* Add symbols from an ELF object file to the linker hash table. */
3329
3330static bfd_boolean
3331elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3332{
3333 Elf_Internal_Ehdr *ehdr;
3334 Elf_Internal_Shdr *hdr;
3335 bfd_size_type symcount;
3336 bfd_size_type extsymcount;
3337 bfd_size_type extsymoff;
3338 struct elf_link_hash_entry **sym_hash;
3339 bfd_boolean dynamic;
3340 Elf_External_Versym *extversym = NULL;
3341 Elf_External_Versym *ever;
3342 struct elf_link_hash_entry *weaks;
3343 struct elf_link_hash_entry **nondeflt_vers = NULL;
3344 bfd_size_type nondeflt_vers_cnt = 0;
3345 Elf_Internal_Sym *isymbuf = NULL;
3346 Elf_Internal_Sym *isym;
3347 Elf_Internal_Sym *isymend;
3348 const struct elf_backend_data *bed;
3349 bfd_boolean add_needed;
3350 struct elf_link_hash_table *htab;
3351 bfd_size_type amt;
3352 void *alloc_mark = NULL;
3353 struct bfd_hash_entry **old_table = NULL;
3354 unsigned int old_size = 0;
3355 unsigned int old_count = 0;
3356 void *old_tab = NULL;
3357 void *old_ent;
3358 struct bfd_link_hash_entry *old_undefs = NULL;
3359 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3360 long old_dynsymcount = 0;
3361 bfd_size_type old_dynstr_size = 0;
3362 size_t tabsize = 0;
3363 asection *s;
3364 bfd_boolean just_syms;
3365
3366 htab = elf_hash_table (info);
3367 bed = get_elf_backend_data (abfd);
3368
3369 if ((abfd->flags & DYNAMIC) == 0)
3370 dynamic = FALSE;
3371 else
3372 {
3373 dynamic = TRUE;
3374
3375 /* You can't use -r against a dynamic object. Also, there's no
3376 hope of using a dynamic object which does not exactly match
3377 the format of the output file. */
3378 if (info->relocatable
3379 || !is_elf_hash_table (htab)
3380 || info->output_bfd->xvec != abfd->xvec)
3381 {
3382 if (info->relocatable)
3383 bfd_set_error (bfd_error_invalid_operation);
3384 else
3385 bfd_set_error (bfd_error_wrong_format);
3386 goto error_return;
3387 }
3388 }
3389
3390 ehdr = elf_elfheader (abfd);
3391 if (info->warn_alternate_em
3392 && bed->elf_machine_code != ehdr->e_machine
3393 && ((bed->elf_machine_alt1 != 0
3394 && ehdr->e_machine == bed->elf_machine_alt1)
3395 || (bed->elf_machine_alt2 != 0
3396 && ehdr->e_machine == bed->elf_machine_alt2)))
3397 info->callbacks->einfo
3398 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3399 ehdr->e_machine, abfd, bed->elf_machine_code);
3400
3401 /* As a GNU extension, any input sections which are named
3402 .gnu.warning.SYMBOL are treated as warning symbols for the given
3403 symbol. This differs from .gnu.warning sections, which generate
3404 warnings when they are included in an output file. */
3405 /* PR 12761: Also generate this warning when building shared libraries. */
3406 for (s = abfd->sections; s != NULL; s = s->next)
3407 {
3408 const char *name;
3409
3410 name = bfd_get_section_name (abfd, s);
3411 if (CONST_STRNEQ (name, ".gnu.warning."))
3412 {
3413 char *msg;
3414 bfd_size_type sz;
3415
3416 name += sizeof ".gnu.warning." - 1;
3417
3418 /* If this is a shared object, then look up the symbol
3419 in the hash table. If it is there, and it is already
3420 been defined, then we will not be using the entry
3421 from this shared object, so we don't need to warn.
3422 FIXME: If we see the definition in a regular object
3423 later on, we will warn, but we shouldn't. The only
3424 fix is to keep track of what warnings we are supposed
3425 to emit, and then handle them all at the end of the
3426 link. */
3427 if (dynamic)
3428 {
3429 struct elf_link_hash_entry *h;
3430
3431 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3432
3433 /* FIXME: What about bfd_link_hash_common? */
3434 if (h != NULL
3435 && (h->root.type == bfd_link_hash_defined
3436 || h->root.type == bfd_link_hash_defweak))
3437 continue;
3438 }
3439
3440 sz = s->size;
3441 msg = (char *) bfd_alloc (abfd, sz + 1);
3442 if (msg == NULL)
3443 goto error_return;
3444
3445 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3446 goto error_return;
3447
3448 msg[sz] = '\0';
3449
3450 if (! (_bfd_generic_link_add_one_symbol
3451 (info, abfd, name, BSF_WARNING, s, 0, msg,
3452 FALSE, bed->collect, NULL)))
3453 goto error_return;
3454
3455 if (!info->relocatable && info->executable)
3456 {
3457 /* Clobber the section size so that the warning does
3458 not get copied into the output file. */
3459 s->size = 0;
3460
3461 /* Also set SEC_EXCLUDE, so that symbols defined in
3462 the warning section don't get copied to the output. */
3463 s->flags |= SEC_EXCLUDE;
3464 }
3465 }
3466 }
3467
3468 just_syms = ((s = abfd->sections) != NULL
3469 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3470
3471 add_needed = TRUE;
3472 if (! dynamic)
3473 {
3474 /* If we are creating a shared library, create all the dynamic
3475 sections immediately. We need to attach them to something,
3476 so we attach them to this BFD, provided it is the right
3477 format and is not from ld --just-symbols. FIXME: If there
3478 are no input BFD's of the same format as the output, we can't
3479 make a shared library. */
3480 if (!just_syms
3481 && info->shared
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3485 {
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3487 goto error_return;
3488 }
3489 }
3490 else if (!is_elf_hash_table (htab))
3491 goto error_return;
3492 else
3493 {
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if (just_syms)
3502 abort ();
3503
3504 /* If this dynamic lib was specified on the command line with
3505 --as-needed in effect, then we don't want to add a DT_NEEDED
3506 tag unless the lib is actually used. Similary for libs brought
3507 in by another lib's DT_NEEDED. When --no-add-needed is used
3508 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3509 any dynamic library in DT_NEEDED tags in the dynamic lib at
3510 all. */
3511 add_needed = (elf_dyn_lib_class (abfd)
3512 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3513 | DYN_NO_NEEDED)) == 0;
3514
3515 s = bfd_get_section_by_name (abfd, ".dynamic");
3516 if (s != NULL)
3517 {
3518 bfd_byte *dynbuf;
3519 bfd_byte *extdyn;
3520 unsigned int elfsec;
3521 unsigned long shlink;
3522
3523 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3524 {
3525error_free_dyn:
3526 free (dynbuf);
3527 goto error_return;
3528 }
3529
3530 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3531 if (elfsec == SHN_BAD)
3532 goto error_free_dyn;
3533 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3534
3535 for (extdyn = dynbuf;
3536 extdyn < dynbuf + s->size;
3537 extdyn += bed->s->sizeof_dyn)
3538 {
3539 Elf_Internal_Dyn dyn;
3540
3541 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3542 if (dyn.d_tag == DT_SONAME)
3543 {
3544 unsigned int tagv = dyn.d_un.d_val;
3545 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 if (soname == NULL)
3547 goto error_free_dyn;
3548 }
3549 if (dyn.d_tag == DT_NEEDED)
3550 {
3551 struct bfd_link_needed_list *n, **pn;
3552 char *fnm, *anm;
3553 unsigned int tagv = dyn.d_un.d_val;
3554
3555 amt = sizeof (struct bfd_link_needed_list);
3556 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3557 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3558 if (n == NULL || fnm == NULL)
3559 goto error_free_dyn;
3560 amt = strlen (fnm) + 1;
3561 anm = (char *) bfd_alloc (abfd, amt);
3562 if (anm == NULL)
3563 goto error_free_dyn;
3564 memcpy (anm, fnm, amt);
3565 n->name = anm;
3566 n->by = abfd;
3567 n->next = NULL;
3568 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3569 ;
3570 *pn = n;
3571 }
3572 if (dyn.d_tag == DT_RUNPATH)
3573 {
3574 struct bfd_link_needed_list *n, **pn;
3575 char *fnm, *anm;
3576 unsigned int tagv = dyn.d_un.d_val;
3577
3578 amt = sizeof (struct bfd_link_needed_list);
3579 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3580 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3581 if (n == NULL || fnm == NULL)
3582 goto error_free_dyn;
3583 amt = strlen (fnm) + 1;
3584 anm = (char *) bfd_alloc (abfd, amt);
3585 if (anm == NULL)
3586 goto error_free_dyn;
3587 memcpy (anm, fnm, amt);
3588 n->name = anm;
3589 n->by = abfd;
3590 n->next = NULL;
3591 for (pn = & runpath;
3592 *pn != NULL;
3593 pn = &(*pn)->next)
3594 ;
3595 *pn = n;
3596 }
3597 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3598 if (!runpath && dyn.d_tag == DT_RPATH)
3599 {
3600 struct bfd_link_needed_list *n, **pn;
3601 char *fnm, *anm;
3602 unsigned int tagv = dyn.d_un.d_val;
3603
3604 amt = sizeof (struct bfd_link_needed_list);
3605 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3606 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3607 if (n == NULL || fnm == NULL)
3608 goto error_free_dyn;
3609 amt = strlen (fnm) + 1;
3610 anm = (char *) bfd_alloc (abfd, amt);
3611 if (anm == NULL)
3612 goto error_free_dyn;
3613 memcpy (anm, fnm, amt);
3614 n->name = anm;
3615 n->by = abfd;
3616 n->next = NULL;
3617 for (pn = & rpath;
3618 *pn != NULL;
3619 pn = &(*pn)->next)
3620 ;
3621 *pn = n;
3622 }
3623 if (dyn.d_tag == DT_AUDIT)
3624 {
3625 unsigned int tagv = dyn.d_un.d_val;
3626 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3627 }
3628 }
3629
3630 free (dynbuf);
3631 }
3632
3633 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3634 frees all more recently bfd_alloc'd blocks as well. */
3635 if (runpath)
3636 rpath = runpath;
3637
3638 if (rpath)
3639 {
3640 struct bfd_link_needed_list **pn;
3641 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3642 ;
3643 *pn = rpath;
3644 }
3645
3646 /* We do not want to include any of the sections in a dynamic
3647 object in the output file. We hack by simply clobbering the
3648 list of sections in the BFD. This could be handled more
3649 cleanly by, say, a new section flag; the existing
3650 SEC_NEVER_LOAD flag is not the one we want, because that one
3651 still implies that the section takes up space in the output
3652 file. */
3653 bfd_section_list_clear (abfd);
3654
3655 /* Find the name to use in a DT_NEEDED entry that refers to this
3656 object. If the object has a DT_SONAME entry, we use it.
3657 Otherwise, if the generic linker stuck something in
3658 elf_dt_name, we use that. Otherwise, we just use the file
3659 name. */
3660 if (soname == NULL || *soname == '\0')
3661 {
3662 soname = elf_dt_name (abfd);
3663 if (soname == NULL || *soname == '\0')
3664 soname = bfd_get_filename (abfd);
3665 }
3666
3667 /* Save the SONAME because sometimes the linker emulation code
3668 will need to know it. */
3669 elf_dt_name (abfd) = soname;
3670
3671 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3672 if (ret < 0)
3673 goto error_return;
3674
3675 /* If we have already included this dynamic object in the
3676 link, just ignore it. There is no reason to include a
3677 particular dynamic object more than once. */
3678 if (ret > 0)
3679 return TRUE;
3680
3681 /* Save the DT_AUDIT entry for the linker emulation code. */
3682 elf_dt_audit (abfd) = audit;
3683 }
3684
3685 /* If this is a dynamic object, we always link against the .dynsym
3686 symbol table, not the .symtab symbol table. The dynamic linker
3687 will only see the .dynsym symbol table, so there is no reason to
3688 look at .symtab for a dynamic object. */
3689
3690 if (! dynamic || elf_dynsymtab (abfd) == 0)
3691 hdr = &elf_tdata (abfd)->symtab_hdr;
3692 else
3693 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3694
3695 symcount = hdr->sh_size / bed->s->sizeof_sym;
3696
3697 /* The sh_info field of the symtab header tells us where the
3698 external symbols start. We don't care about the local symbols at
3699 this point. */
3700 if (elf_bad_symtab (abfd))
3701 {
3702 extsymcount = symcount;
3703 extsymoff = 0;
3704 }
3705 else
3706 {
3707 extsymcount = symcount - hdr->sh_info;
3708 extsymoff = hdr->sh_info;
3709 }
3710
3711 sym_hash = elf_sym_hashes (abfd);
3712 if (extsymcount != 0)
3713 {
3714 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3715 NULL, NULL, NULL);
3716 if (isymbuf == NULL)
3717 goto error_return;
3718
3719 if (sym_hash == NULL)
3720 {
3721 /* We store a pointer to the hash table entry for each
3722 external symbol. */
3723 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3724 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3725 if (sym_hash == NULL)
3726 goto error_free_sym;
3727 elf_sym_hashes (abfd) = sym_hash;
3728 }
3729 }
3730
3731 if (dynamic)
3732 {
3733 /* Read in any version definitions. */
3734 if (!_bfd_elf_slurp_version_tables (abfd,
3735 info->default_imported_symver))
3736 goto error_free_sym;
3737
3738 /* Read in the symbol versions, but don't bother to convert them
3739 to internal format. */
3740 if (elf_dynversym (abfd) != 0)
3741 {
3742 Elf_Internal_Shdr *versymhdr;
3743
3744 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3745 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3746 if (extversym == NULL)
3747 goto error_free_sym;
3748 amt = versymhdr->sh_size;
3749 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3750 || bfd_bread (extversym, amt, abfd) != amt)
3751 goto error_free_vers;
3752 }
3753 }
3754
3755 /* If we are loading an as-needed shared lib, save the symbol table
3756 state before we start adding symbols. If the lib turns out
3757 to be unneeded, restore the state. */
3758 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3759 {
3760 unsigned int i;
3761 size_t entsize;
3762
3763 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3764 {
3765 struct bfd_hash_entry *p;
3766 struct elf_link_hash_entry *h;
3767
3768 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3769 {
3770 h = (struct elf_link_hash_entry *) p;
3771 entsize += htab->root.table.entsize;
3772 if (h->root.type == bfd_link_hash_warning)
3773 entsize += htab->root.table.entsize;
3774 }
3775 }
3776
3777 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3778 old_tab = bfd_malloc (tabsize + entsize);
3779 if (old_tab == NULL)
3780 goto error_free_vers;
3781
3782 /* Remember the current objalloc pointer, so that all mem for
3783 symbols added can later be reclaimed. */
3784 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3785 if (alloc_mark == NULL)
3786 goto error_free_vers;
3787
3788 /* Make a special call to the linker "notice" function to
3789 tell it that we are about to handle an as-needed lib. */
3790 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3791 goto error_free_vers;
3792
3793 /* Clone the symbol table. Remember some pointers into the
3794 symbol table, and dynamic symbol count. */
3795 old_ent = (char *) old_tab + tabsize;
3796 memcpy (old_tab, htab->root.table.table, tabsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3803 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3804
3805 for (i = 0; i < htab->root.table.size; i++)
3806 {
3807 struct bfd_hash_entry *p;
3808 struct elf_link_hash_entry *h;
3809
3810 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3811 {
3812 memcpy (old_ent, p, htab->root.table.entsize);
3813 old_ent = (char *) old_ent + htab->root.table.entsize;
3814 h = (struct elf_link_hash_entry *) p;
3815 if (h->root.type == bfd_link_hash_warning)
3816 {
3817 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3818 old_ent = (char *) old_ent + htab->root.table.entsize;
3819 }
3820 }
3821 }
3822 }
3823
3824 weaks = NULL;
3825 ever = extversym != NULL ? extversym + extsymoff : NULL;
3826 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3827 isym < isymend;
3828 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3829 {
3830 int bind;
3831 bfd_vma value;
3832 asection *sec, *new_sec;
3833 flagword flags;
3834 const char *name;
3835 struct elf_link_hash_entry *h;
3836 struct elf_link_hash_entry *hi;
3837 bfd_boolean definition;
3838 bfd_boolean size_change_ok;
3839 bfd_boolean type_change_ok;
3840 bfd_boolean new_weakdef;
3841 bfd_boolean new_weak;
3842 bfd_boolean old_weak;
3843 bfd_boolean override;
3844 bfd_boolean common;
3845 unsigned int old_alignment;
3846 bfd *old_bfd;
3847
3848 override = FALSE;
3849
3850 flags = BSF_NO_FLAGS;
3851 sec = NULL;
3852 value = isym->st_value;
3853 common = bed->common_definition (isym);
3854
3855 bind = ELF_ST_BIND (isym->st_info);
3856 switch (bind)
3857 {
3858 case STB_LOCAL:
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3862 screws this up. */
3863 continue;
3864
3865 case STB_GLOBAL:
3866 if (isym->st_shndx != SHN_UNDEF && !common)
3867 flags = BSF_GLOBAL;
3868 break;
3869
3870 case STB_WEAK:
3871 flags = BSF_WEAK;
3872 break;
3873
3874 case STB_GNU_UNIQUE:
3875 flags = BSF_GNU_UNIQUE;
3876 break;
3877
3878 default:
3879 /* Leave it up to the processor backend. */
3880 break;
3881 }
3882
3883 if (isym->st_shndx == SHN_UNDEF)
3884 sec = bfd_und_section_ptr;
3885 else if (isym->st_shndx == SHN_ABS)
3886 sec = bfd_abs_section_ptr;
3887 else if (isym->st_shndx == SHN_COMMON)
3888 {
3889 sec = bfd_com_section_ptr;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value = isym->st_size;
3893 }
3894 else
3895 {
3896 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3897 if (sec == NULL)
3898 sec = bfd_abs_section_ptr;
3899 else if (discarded_section (sec))
3900 {
3901 /* Symbols from discarded section are undefined. We keep
3902 its visibility. */
3903 sec = bfd_und_section_ptr;
3904 isym->st_shndx = SHN_UNDEF;
3905 }
3906 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3907 value -= sec->vma;
3908 }
3909
3910 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 isym->st_name);
3912 if (name == NULL)
3913 goto error_free_vers;
3914
3915 if (isym->st_shndx == SHN_COMMON
3916 && (abfd->flags & BFD_PLUGIN) != 0)
3917 {
3918 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3919
3920 if (xc == NULL)
3921 {
3922 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3923 | SEC_EXCLUDE);
3924 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3925 if (xc == NULL)
3926 goto error_free_vers;
3927 }
3928 sec = xc;
3929 }
3930 else if (isym->st_shndx == SHN_COMMON
3931 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3932 && !info->relocatable)
3933 {
3934 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3935
3936 if (tcomm == NULL)
3937 {
3938 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3939 | SEC_LINKER_CREATED);
3940 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3941 if (tcomm == NULL)
3942 goto error_free_vers;
3943 }
3944 sec = tcomm;
3945 }
3946 else if (bed->elf_add_symbol_hook)
3947 {
3948 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3949 &sec, &value))
3950 goto error_free_vers;
3951
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3954 if (name == NULL)
3955 continue;
3956 }
3957
3958 /* Sanity check that all possibilities were handled. */
3959 if (sec == NULL)
3960 {
3961 bfd_set_error (bfd_error_bad_value);
3962 goto error_free_vers;
3963 }
3964
3965 /* Silently discard TLS symbols from --just-syms. There's
3966 no way to combine a static TLS block with a new TLS block
3967 for this executable. */
3968 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3969 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3970 continue;
3971
3972 if (bfd_is_und_section (sec)
3973 || bfd_is_com_section (sec))
3974 definition = FALSE;
3975 else
3976 definition = TRUE;
3977
3978 size_change_ok = FALSE;
3979 type_change_ok = bed->type_change_ok;
3980 old_weak = FALSE;
3981 old_alignment = 0;
3982 old_bfd = NULL;
3983 new_sec = sec;
3984
3985 if (is_elf_hash_table (htab))
3986 {
3987 Elf_Internal_Versym iver;
3988 unsigned int vernum = 0;
3989 bfd_boolean skip;
3990
3991 if (ever == NULL)
3992 {
3993 if (info->default_imported_symver)
3994 /* Use the default symbol version created earlier. */
3995 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3996 else
3997 iver.vs_vers = 0;
3998 }
3999 else
4000 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4001
4002 vernum = iver.vs_vers & VERSYM_VERSION;
4003
4004 /* If this is a hidden symbol, or if it is not version
4005 1, we append the version name to the symbol name.
4006 However, we do not modify a non-hidden absolute symbol
4007 if it is not a function, because it might be the version
4008 symbol itself. FIXME: What if it isn't? */
4009 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4010 || (vernum > 1
4011 && (!bfd_is_abs_section (sec)
4012 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4013 {
4014 const char *verstr;
4015 size_t namelen, verlen, newlen;
4016 char *newname, *p;
4017
4018 if (isym->st_shndx != SHN_UNDEF)
4019 {
4020 if (vernum > elf_tdata (abfd)->cverdefs)
4021 verstr = NULL;
4022 else if (vernum > 1)
4023 verstr =
4024 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4025 else
4026 verstr = "";
4027
4028 if (verstr == NULL)
4029 {
4030 (*_bfd_error_handler)
4031 (_("%B: %s: invalid version %u (max %d)"),
4032 abfd, name, vernum,
4033 elf_tdata (abfd)->cverdefs);
4034 bfd_set_error (bfd_error_bad_value);
4035 goto error_free_vers;
4036 }
4037 }
4038 else
4039 {
4040 /* We cannot simply test for the number of
4041 entries in the VERNEED section since the
4042 numbers for the needed versions do not start
4043 at 0. */
4044 Elf_Internal_Verneed *t;
4045
4046 verstr = NULL;
4047 for (t = elf_tdata (abfd)->verref;
4048 t != NULL;
4049 t = t->vn_nextref)
4050 {
4051 Elf_Internal_Vernaux *a;
4052
4053 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4054 {
4055 if (a->vna_other == vernum)
4056 {
4057 verstr = a->vna_nodename;
4058 break;
4059 }
4060 }
4061 if (a != NULL)
4062 break;
4063 }
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid needed version %d"),
4068 abfd, name, vernum);
4069 bfd_set_error (bfd_error_bad_value);
4070 goto error_free_vers;
4071 }
4072 }
4073
4074 namelen = strlen (name);
4075 verlen = strlen (verstr);
4076 newlen = namelen + verlen + 2;
4077 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4078 && isym->st_shndx != SHN_UNDEF)
4079 ++newlen;
4080
4081 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4082 if (newname == NULL)
4083 goto error_free_vers;
4084 memcpy (newname, name, namelen);
4085 p = newname + namelen;
4086 *p++ = ELF_VER_CHR;
4087 /* If this is a defined non-hidden version symbol,
4088 we add another @ to the name. This indicates the
4089 default version of the symbol. */
4090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4091 && isym->st_shndx != SHN_UNDEF)
4092 *p++ = ELF_VER_CHR;
4093 memcpy (p, verstr, verlen + 1);
4094
4095 name = newname;
4096 }
4097
4098 /* If this symbol has default visibility and the user has
4099 requested we not re-export it, then mark it as hidden. */
4100 if (definition
4101 && !dynamic
4102 && (abfd->no_export
4103 || (abfd->my_archive && abfd->my_archive->no_export))
4104 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4105 isym->st_other = (STV_HIDDEN
4106 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4107
4108 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4109 sym_hash, &old_bfd, &old_weak,
4110 &old_alignment, &skip, &override,
4111 &type_change_ok, &size_change_ok))
4112 goto error_free_vers;
4113
4114 if (skip)
4115 continue;
4116
4117 if (override)
4118 definition = FALSE;
4119
4120 h = *sym_hash;
4121 while (h->root.type == bfd_link_hash_indirect
4122 || h->root.type == bfd_link_hash_warning)
4123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4124
4125 if (elf_tdata (abfd)->verdef != NULL
4126 && vernum > 1
4127 && definition)
4128 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4129 }
4130
4131 if (! (_bfd_generic_link_add_one_symbol
4132 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4133 (struct bfd_link_hash_entry **) sym_hash)))
4134 goto error_free_vers;
4135
4136 h = *sym_hash;
4137 /* We need to make sure that indirect symbol dynamic flags are
4138 updated. */
4139 hi = h;
4140 while (h->root.type == bfd_link_hash_indirect
4141 || h->root.type == bfd_link_hash_warning)
4142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4143
4144 *sym_hash = h;
4145
4146 new_weak = (flags & BSF_WEAK) != 0;
4147 new_weakdef = FALSE;
4148 if (dynamic
4149 && definition
4150 && new_weak
4151 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4152 && is_elf_hash_table (htab)
4153 && h->u.weakdef == NULL)
4154 {
4155 /* Keep a list of all weak defined non function symbols from
4156 a dynamic object, using the weakdef field. Later in this
4157 function we will set the weakdef field to the correct
4158 value. We only put non-function symbols from dynamic
4159 objects on this list, because that happens to be the only
4160 time we need to know the normal symbol corresponding to a
4161 weak symbol, and the information is time consuming to
4162 figure out. If the weakdef field is not already NULL,
4163 then this symbol was already defined by some previous
4164 dynamic object, and we will be using that previous
4165 definition anyhow. */
4166
4167 h->u.weakdef = weaks;
4168 weaks = h;
4169 new_weakdef = TRUE;
4170 }
4171
4172 /* Set the alignment of a common symbol. */
4173 if ((common || bfd_is_com_section (sec))
4174 && h->root.type == bfd_link_hash_common)
4175 {
4176 unsigned int align;
4177
4178 if (common)
4179 align = bfd_log2 (isym->st_value);
4180 else
4181 {
4182 /* The new symbol is a common symbol in a shared object.
4183 We need to get the alignment from the section. */
4184 align = new_sec->alignment_power;
4185 }
4186 if (align > old_alignment)
4187 h->root.u.c.p->alignment_power = align;
4188 else
4189 h->root.u.c.p->alignment_power = old_alignment;
4190 }
4191
4192 if (is_elf_hash_table (htab))
4193 {
4194 /* Set a flag in the hash table entry indicating the type of
4195 reference or definition we just found. A dynamic symbol
4196 is one which is referenced or defined by both a regular
4197 object and a shared object. */
4198 bfd_boolean dynsym = FALSE;
4199
4200 /* Plugin symbols aren't normal. Don't set def_regular or
4201 ref_regular for them, or make them dynamic. */
4202 if ((abfd->flags & BFD_PLUGIN) != 0)
4203 ;
4204 else if (! dynamic)
4205 {
4206 if (! definition)
4207 {
4208 h->ref_regular = 1;
4209 if (bind != STB_WEAK)
4210 h->ref_regular_nonweak = 1;
4211 }
4212 else
4213 {
4214 h->def_regular = 1;
4215 if (h->def_dynamic)
4216 {
4217 h->def_dynamic = 0;
4218 h->ref_dynamic = 1;
4219 }
4220 }
4221
4222 /* If the indirect symbol has been forced local, don't
4223 make the real symbol dynamic. */
4224 if ((h == hi || !hi->forced_local)
4225 && (! info->executable
4226 || h->def_dynamic
4227 || h->ref_dynamic))
4228 dynsym = TRUE;
4229 }
4230 else
4231 {
4232 if (! definition)
4233 {
4234 h->ref_dynamic = 1;
4235 hi->ref_dynamic = 1;
4236 }
4237 else
4238 {
4239 h->def_dynamic = 1;
4240 hi->def_dynamic = 1;
4241 }
4242
4243 /* If the indirect symbol has been forced local, don't
4244 make the real symbol dynamic. */
4245 if ((h == hi || !hi->forced_local)
4246 && (h->def_regular
4247 || h->ref_regular
4248 || (h->u.weakdef != NULL
4249 && ! new_weakdef
4250 && h->u.weakdef->dynindx != -1)))
4251 dynsym = TRUE;
4252 }
4253
4254 /* Check to see if we need to add an indirect symbol for
4255 the default name. */
4256 if (definition
4257 || (!override && h->root.type == bfd_link_hash_common))
4258 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4259 sec, value, &old_bfd, &dynsym))
4260 goto error_free_vers;
4261
4262 /* Check the alignment when a common symbol is involved. This
4263 can change when a common symbol is overridden by a normal
4264 definition or a common symbol is ignored due to the old
4265 normal definition. We need to make sure the maximum
4266 alignment is maintained. */
4267 if ((old_alignment || common)
4268 && h->root.type != bfd_link_hash_common)
4269 {
4270 unsigned int common_align;
4271 unsigned int normal_align;
4272 unsigned int symbol_align;
4273 bfd *normal_bfd;
4274 bfd *common_bfd;
4275
4276 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4277 || h->root.type == bfd_link_hash_defweak);
4278
4279 symbol_align = ffs (h->root.u.def.value) - 1;
4280 if (h->root.u.def.section->owner != NULL
4281 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4282 {
4283 normal_align = h->root.u.def.section->alignment_power;
4284 if (normal_align > symbol_align)
4285 normal_align = symbol_align;
4286 }
4287 else
4288 normal_align = symbol_align;
4289
4290 if (old_alignment)
4291 {
4292 common_align = old_alignment;
4293 common_bfd = old_bfd;
4294 normal_bfd = abfd;
4295 }
4296 else
4297 {
4298 common_align = bfd_log2 (isym->st_value);
4299 common_bfd = abfd;
4300 normal_bfd = old_bfd;
4301 }
4302
4303 if (normal_align < common_align)
4304 {
4305 /* PR binutils/2735 */
4306 if (normal_bfd == NULL)
4307 (*_bfd_error_handler)
4308 (_("Warning: alignment %u of common symbol `%s' in %B is"
4309 " greater than the alignment (%u) of its section %A"),
4310 common_bfd, h->root.u.def.section,
4311 1 << common_align, name, 1 << normal_align);
4312 else
4313 (*_bfd_error_handler)
4314 (_("Warning: alignment %u of symbol `%s' in %B"
4315 " is smaller than %u in %B"),
4316 normal_bfd, common_bfd,
4317 1 << normal_align, name, 1 << common_align);
4318 }
4319 }
4320
4321 /* Remember the symbol size if it isn't undefined. */
4322 if (isym->st_size != 0
4323 && isym->st_shndx != SHN_UNDEF
4324 && (definition || h->size == 0))
4325 {
4326 if (h->size != 0
4327 && h->size != isym->st_size
4328 && ! size_change_ok)
4329 (*_bfd_error_handler)
4330 (_("Warning: size of symbol `%s' changed"
4331 " from %lu in %B to %lu in %B"),
4332 old_bfd, abfd,
4333 name, (unsigned long) h->size,
4334 (unsigned long) isym->st_size);
4335
4336 h->size = isym->st_size;
4337 }
4338
4339 /* If this is a common symbol, then we always want H->SIZE
4340 to be the size of the common symbol. The code just above
4341 won't fix the size if a common symbol becomes larger. We
4342 don't warn about a size change here, because that is
4343 covered by --warn-common. Allow changes between different
4344 function types. */
4345 if (h->root.type == bfd_link_hash_common)
4346 h->size = h->root.u.c.size;
4347
4348 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4349 && ((definition && !new_weak)
4350 || (old_weak && h->root.type == bfd_link_hash_common)
4351 || h->type == STT_NOTYPE))
4352 {
4353 unsigned int type = ELF_ST_TYPE (isym->st_info);
4354
4355 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4356 symbol. */
4357 if (type == STT_GNU_IFUNC
4358 && (abfd->flags & DYNAMIC) != 0)
4359 type = STT_FUNC;
4360
4361 if (h->type != type)
4362 {
4363 if (h->type != STT_NOTYPE && ! type_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: type of symbol `%s' changed"
4366 " from %d to %d in %B"),
4367 abfd, name, h->type, type);
4368
4369 h->type = type;
4370 }
4371 }
4372
4373 /* Merge st_other field. */
4374 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4375
4376 /* We don't want to make debug symbol dynamic. */
4377 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4378 dynsym = FALSE;
4379
4380 /* Nor should we make plugin symbols dynamic. */
4381 if ((abfd->flags & BFD_PLUGIN) != 0)
4382 dynsym = FALSE;
4383
4384 if (definition)
4385 {
4386 h->target_internal = isym->st_target_internal;
4387 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4388 }
4389
4390 if (definition && !dynamic)
4391 {
4392 char *p = strchr (name, ELF_VER_CHR);
4393 if (p != NULL && p[1] != ELF_VER_CHR)
4394 {
4395 /* Queue non-default versions so that .symver x, x@FOO
4396 aliases can be checked. */
4397 if (!nondeflt_vers)
4398 {
4399 amt = ((isymend - isym + 1)
4400 * sizeof (struct elf_link_hash_entry *));
4401 nondeflt_vers =
4402 (struct elf_link_hash_entry **) bfd_malloc (amt);
4403 if (!nondeflt_vers)
4404 goto error_free_vers;
4405 }
4406 nondeflt_vers[nondeflt_vers_cnt++] = h;
4407 }
4408 }
4409
4410 if (dynsym && h->dynindx == -1)
4411 {
4412 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4413 goto error_free_vers;
4414 if (h->u.weakdef != NULL
4415 && ! new_weakdef
4416 && h->u.weakdef->dynindx == -1)
4417 {
4418 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4419 goto error_free_vers;
4420 }
4421 }
4422 else if (dynsym && h->dynindx != -1)
4423 /* If the symbol already has a dynamic index, but
4424 visibility says it should not be visible, turn it into
4425 a local symbol. */
4426 switch (ELF_ST_VISIBILITY (h->other))
4427 {
4428 case STV_INTERNAL:
4429 case STV_HIDDEN:
4430 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4431 dynsym = FALSE;
4432 break;
4433 }
4434
4435 /* Don't add DT_NEEDED for references from the dummy bfd. */
4436 if (!add_needed
4437 && definition
4438 && ((dynsym
4439 && h->ref_regular_nonweak
4440 && (old_bfd == NULL
4441 || (old_bfd->flags & BFD_PLUGIN) == 0))
4442 || (h->ref_dynamic_nonweak
4443 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4444 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4445 {
4446 int ret;
4447 const char *soname = elf_dt_name (abfd);
4448
4449 info->callbacks->minfo ("%!", soname, old_bfd,
4450 h->root.root.string);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (old_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 old_bfd, name);
4463 bfd_set_error (bfd_error_missing_dso);
4464 goto error_free_vers;
4465 }
4466
4467 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4468 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4469
4470 add_needed = TRUE;
4471 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4472 if (ret < 0)
4473 goto error_free_vers;
4474
4475 BFD_ASSERT (ret == 0);
4476 }
4477 }
4478 }
4479
4480 if (extversym != NULL)
4481 {
4482 free (extversym);
4483 extversym = NULL;
4484 }
4485
4486 if (isymbuf != NULL)
4487 {
4488 free (isymbuf);
4489 isymbuf = NULL;
4490 }
4491
4492 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4493 {
4494 unsigned int i;
4495
4496 /* Restore the symbol table. */
4497 old_ent = (char *) old_tab + tabsize;
4498 memset (elf_sym_hashes (abfd), 0,
4499 extsymcount * sizeof (struct elf_link_hash_entry *));
4500 htab->root.table.table = old_table;
4501 htab->root.table.size = old_size;
4502 htab->root.table.count = old_count;
4503 memcpy (htab->root.table.table, old_tab, tabsize);
4504 htab->root.undefs = old_undefs;
4505 htab->root.undefs_tail = old_undefs_tail;
4506 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4507 for (i = 0; i < htab->root.table.size; i++)
4508 {
4509 struct bfd_hash_entry *p;
4510 struct elf_link_hash_entry *h;
4511 bfd_size_type size;
4512 unsigned int alignment_power;
4513
4514 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4515 {
4516 h = (struct elf_link_hash_entry *) p;
4517 if (h->root.type == bfd_link_hash_warning)
4518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4519 if (h->dynindx >= old_dynsymcount
4520 && h->dynstr_index < old_dynstr_size)
4521 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4522
4523 /* Preserve the maximum alignment and size for common
4524 symbols even if this dynamic lib isn't on DT_NEEDED
4525 since it can still be loaded at run time by another
4526 dynamic lib. */
4527 if (h->root.type == bfd_link_hash_common)
4528 {
4529 size = h->root.u.c.size;
4530 alignment_power = h->root.u.c.p->alignment_power;
4531 }
4532 else
4533 {
4534 size = 0;
4535 alignment_power = 0;
4536 }
4537 memcpy (p, old_ent, htab->root.table.entsize);
4538 old_ent = (char *) old_ent + htab->root.table.entsize;
4539 h = (struct elf_link_hash_entry *) p;
4540 if (h->root.type == bfd_link_hash_warning)
4541 {
4542 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4543 old_ent = (char *) old_ent + htab->root.table.entsize;
4544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4545 }
4546 if (h->root.type == bfd_link_hash_common)
4547 {
4548 if (size > h->root.u.c.size)
4549 h->root.u.c.size = size;
4550 if (alignment_power > h->root.u.c.p->alignment_power)
4551 h->root.u.c.p->alignment_power = alignment_power;
4552 }
4553 }
4554 }
4555
4556 /* Make a special call to the linker "notice" function to
4557 tell it that symbols added for crefs may need to be removed. */
4558 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4559 goto error_free_vers;
4560
4561 free (old_tab);
4562 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4563 alloc_mark);
4564 if (nondeflt_vers != NULL)
4565 free (nondeflt_vers);
4566 return TRUE;
4567 }
4568
4569 if (old_tab != NULL)
4570 {
4571 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4572 goto error_free_vers;
4573 free (old_tab);
4574 old_tab = NULL;
4575 }
4576
4577 /* Now that all the symbols from this input file are created, handle
4578 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4579 if (nondeflt_vers != NULL)
4580 {
4581 bfd_size_type cnt, symidx;
4582
4583 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4584 {
4585 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4586 char *shortname, *p;
4587
4588 p = strchr (h->root.root.string, ELF_VER_CHR);
4589 if (p == NULL
4590 || (h->root.type != bfd_link_hash_defined
4591 && h->root.type != bfd_link_hash_defweak))
4592 continue;
4593
4594 amt = p - h->root.root.string;
4595 shortname = (char *) bfd_malloc (amt + 1);
4596 if (!shortname)
4597 goto error_free_vers;
4598 memcpy (shortname, h->root.root.string, amt);
4599 shortname[amt] = '\0';
4600
4601 hi = (struct elf_link_hash_entry *)
4602 bfd_link_hash_lookup (&htab->root, shortname,
4603 FALSE, FALSE, FALSE);
4604 if (hi != NULL
4605 && hi->root.type == h->root.type
4606 && hi->root.u.def.value == h->root.u.def.value
4607 && hi->root.u.def.section == h->root.u.def.section)
4608 {
4609 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4610 hi->root.type = bfd_link_hash_indirect;
4611 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4612 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4613 sym_hash = elf_sym_hashes (abfd);
4614 if (sym_hash)
4615 for (symidx = 0; symidx < extsymcount; ++symidx)
4616 if (sym_hash[symidx] == hi)
4617 {
4618 sym_hash[symidx] = h;
4619 break;
4620 }
4621 }
4622 free (shortname);
4623 }
4624 free (nondeflt_vers);
4625 nondeflt_vers = NULL;
4626 }
4627
4628 /* Now set the weakdefs field correctly for all the weak defined
4629 symbols we found. The only way to do this is to search all the
4630 symbols. Since we only need the information for non functions in
4631 dynamic objects, that's the only time we actually put anything on
4632 the list WEAKS. We need this information so that if a regular
4633 object refers to a symbol defined weakly in a dynamic object, the
4634 real symbol in the dynamic object is also put in the dynamic
4635 symbols; we also must arrange for both symbols to point to the
4636 same memory location. We could handle the general case of symbol
4637 aliasing, but a general symbol alias can only be generated in
4638 assembler code, handling it correctly would be very time
4639 consuming, and other ELF linkers don't handle general aliasing
4640 either. */
4641 if (weaks != NULL)
4642 {
4643 struct elf_link_hash_entry **hpp;
4644 struct elf_link_hash_entry **hppend;
4645 struct elf_link_hash_entry **sorted_sym_hash;
4646 struct elf_link_hash_entry *h;
4647 size_t sym_count;
4648
4649 /* Since we have to search the whole symbol list for each weak
4650 defined symbol, search time for N weak defined symbols will be
4651 O(N^2). Binary search will cut it down to O(NlogN). */
4652 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4653 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4654 if (sorted_sym_hash == NULL)
4655 goto error_return;
4656 sym_hash = sorted_sym_hash;
4657 hpp = elf_sym_hashes (abfd);
4658 hppend = hpp + extsymcount;
4659 sym_count = 0;
4660 for (; hpp < hppend; hpp++)
4661 {
4662 h = *hpp;
4663 if (h != NULL
4664 && h->root.type == bfd_link_hash_defined
4665 && !bed->is_function_type (h->type))
4666 {
4667 *sym_hash = h;
4668 sym_hash++;
4669 sym_count++;
4670 }
4671 }
4672
4673 qsort (sorted_sym_hash, sym_count,
4674 sizeof (struct elf_link_hash_entry *),
4675 elf_sort_symbol);
4676
4677 while (weaks != NULL)
4678 {
4679 struct elf_link_hash_entry *hlook;
4680 asection *slook;
4681 bfd_vma vlook;
4682 size_t i, j, idx = 0;
4683
4684 hlook = weaks;
4685 weaks = hlook->u.weakdef;
4686 hlook->u.weakdef = NULL;
4687
4688 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4689 || hlook->root.type == bfd_link_hash_defweak
4690 || hlook->root.type == bfd_link_hash_common
4691 || hlook->root.type == bfd_link_hash_indirect);
4692 slook = hlook->root.u.def.section;
4693 vlook = hlook->root.u.def.value;
4694
4695 i = 0;
4696 j = sym_count;
4697 while (i != j)
4698 {
4699 bfd_signed_vma vdiff;
4700 idx = (i + j) / 2;
4701 h = sorted_sym_hash[idx];
4702 vdiff = vlook - h->root.u.def.value;
4703 if (vdiff < 0)
4704 j = idx;
4705 else if (vdiff > 0)
4706 i = idx + 1;
4707 else
4708 {
4709 long sdiff = slook->id - h->root.u.def.section->id;
4710 if (sdiff < 0)
4711 j = idx;
4712 else if (sdiff > 0)
4713 i = idx + 1;
4714 else
4715 break;
4716 }
4717 }
4718
4719 /* We didn't find a value/section match. */
4720 if (i == j)
4721 continue;
4722
4723 /* With multiple aliases, or when the weak symbol is already
4724 strongly defined, we have multiple matching symbols and
4725 the binary search above may land on any of them. Step
4726 one past the matching symbol(s). */
4727 while (++idx != j)
4728 {
4729 h = sorted_sym_hash[idx];
4730 if (h->root.u.def.section != slook
4731 || h->root.u.def.value != vlook)
4732 break;
4733 }
4734
4735 /* Now look back over the aliases. Since we sorted by size
4736 as well as value and section, we'll choose the one with
4737 the largest size. */
4738 while (idx-- != i)
4739 {
4740 h = sorted_sym_hash[idx];
4741
4742 /* Stop if value or section doesn't match. */
4743 if (h->root.u.def.section != slook
4744 || h->root.u.def.value != vlook)
4745 break;
4746 else if (h != hlook)
4747 {
4748 hlook->u.weakdef = h;
4749
4750 /* If the weak definition is in the list of dynamic
4751 symbols, make sure the real definition is put
4752 there as well. */
4753 if (hlook->dynindx != -1 && h->dynindx == -1)
4754 {
4755 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4756 {
4757 err_free_sym_hash:
4758 free (sorted_sym_hash);
4759 goto error_return;
4760 }
4761 }
4762
4763 /* If the real definition is in the list of dynamic
4764 symbols, make sure the weak definition is put
4765 there as well. If we don't do this, then the
4766 dynamic loader might not merge the entries for the
4767 real definition and the weak definition. */
4768 if (h->dynindx != -1 && hlook->dynindx == -1)
4769 {
4770 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4771 goto err_free_sym_hash;
4772 }
4773 break;
4774 }
4775 }
4776 }
4777
4778 free (sorted_sym_hash);
4779 }
4780
4781 if (bed->check_directives
4782 && !(*bed->check_directives) (abfd, info))
4783 return FALSE;
4784
4785 /* If this object is the same format as the output object, and it is
4786 not a shared library, then let the backend look through the
4787 relocs.
4788
4789 This is required to build global offset table entries and to
4790 arrange for dynamic relocs. It is not required for the
4791 particular common case of linking non PIC code, even when linking
4792 against shared libraries, but unfortunately there is no way of
4793 knowing whether an object file has been compiled PIC or not.
4794 Looking through the relocs is not particularly time consuming.
4795 The problem is that we must either (1) keep the relocs in memory,
4796 which causes the linker to require additional runtime memory or
4797 (2) read the relocs twice from the input file, which wastes time.
4798 This would be a good case for using mmap.
4799
4800 I have no idea how to handle linking PIC code into a file of a
4801 different format. It probably can't be done. */
4802 if (! dynamic
4803 && is_elf_hash_table (htab)
4804 && bed->check_relocs != NULL
4805 && elf_object_id (abfd) == elf_hash_table_id (htab)
4806 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4807 {
4808 asection *o;
4809
4810 for (o = abfd->sections; o != NULL; o = o->next)
4811 {
4812 Elf_Internal_Rela *internal_relocs;
4813 bfd_boolean ok;
4814
4815 if ((o->flags & SEC_RELOC) == 0
4816 || o->reloc_count == 0
4817 || ((info->strip == strip_all || info->strip == strip_debugger)
4818 && (o->flags & SEC_DEBUGGING) != 0)
4819 || bfd_is_abs_section (o->output_section))
4820 continue;
4821
4822 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4823 info->keep_memory);
4824 if (internal_relocs == NULL)
4825 goto error_return;
4826
4827 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4828
4829 if (elf_section_data (o)->relocs != internal_relocs)
4830 free (internal_relocs);
4831
4832 if (! ok)
4833 goto error_return;
4834 }
4835 }
4836
4837 /* If this is a non-traditional link, try to optimize the handling
4838 of the .stab/.stabstr sections. */
4839 if (! dynamic
4840 && ! info->traditional_format
4841 && is_elf_hash_table (htab)
4842 && (info->strip != strip_all && info->strip != strip_debugger))
4843 {
4844 asection *stabstr;
4845
4846 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4847 if (stabstr != NULL)
4848 {
4849 bfd_size_type string_offset = 0;
4850 asection *stab;
4851
4852 for (stab = abfd->sections; stab; stab = stab->next)
4853 if (CONST_STRNEQ (stab->name, ".stab")
4854 && (!stab->name[5] ||
4855 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4856 && (stab->flags & SEC_MERGE) == 0
4857 && !bfd_is_abs_section (stab->output_section))
4858 {
4859 struct bfd_elf_section_data *secdata;
4860
4861 secdata = elf_section_data (stab);
4862 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4863 stabstr, &secdata->sec_info,
4864 &string_offset))
4865 goto error_return;
4866 if (secdata->sec_info)
4867 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4868 }
4869 }
4870 }
4871
4872 if (is_elf_hash_table (htab) && add_needed)
4873 {
4874 /* Add this bfd to the loaded list. */
4875 struct elf_link_loaded_list *n;
4876
4877 n = (struct elf_link_loaded_list *)
4878 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4879 if (n == NULL)
4880 goto error_return;
4881 n->abfd = abfd;
4882 n->next = htab->loaded;
4883 htab->loaded = n;
4884 }
4885
4886 return TRUE;
4887
4888 error_free_vers:
4889 if (old_tab != NULL)
4890 free (old_tab);
4891 if (nondeflt_vers != NULL)
4892 free (nondeflt_vers);
4893 if (extversym != NULL)
4894 free (extversym);
4895 error_free_sym:
4896 if (isymbuf != NULL)
4897 free (isymbuf);
4898 error_return:
4899 return FALSE;
4900}
4901
4902/* Return the linker hash table entry of a symbol that might be
4903 satisfied by an archive symbol. Return -1 on error. */
4904
4905struct elf_link_hash_entry *
4906_bfd_elf_archive_symbol_lookup (bfd *abfd,
4907 struct bfd_link_info *info,
4908 const char *name)
4909{
4910 struct elf_link_hash_entry *h;
4911 char *p, *copy;
4912 size_t len, first;
4913
4914 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4915 if (h != NULL)
4916 return h;
4917
4918 /* If this is a default version (the name contains @@), look up the
4919 symbol again with only one `@' as well as without the version.
4920 The effect is that references to the symbol with and without the
4921 version will be matched by the default symbol in the archive. */
4922
4923 p = strchr (name, ELF_VER_CHR);
4924 if (p == NULL || p[1] != ELF_VER_CHR)
4925 return h;
4926
4927 /* First check with only one `@'. */
4928 len = strlen (name);
4929 copy = (char *) bfd_alloc (abfd, len);
4930 if (copy == NULL)
4931 return (struct elf_link_hash_entry *) 0 - 1;
4932
4933 first = p - name + 1;
4934 memcpy (copy, name, first);
4935 memcpy (copy + first, name + first + 1, len - first);
4936
4937 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4938 if (h == NULL)
4939 {
4940 /* We also need to check references to the symbol without the
4941 version. */
4942 copy[first - 1] = '\0';
4943 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4944 FALSE, FALSE, TRUE);
4945 }
4946
4947 bfd_release (abfd, copy);
4948 return h;
4949}
4950
4951/* Add symbols from an ELF archive file to the linker hash table. We
4952 don't use _bfd_generic_link_add_archive_symbols because we need to
4953 handle versioned symbols.
4954
4955 Fortunately, ELF archive handling is simpler than that done by
4956 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4957 oddities. In ELF, if we find a symbol in the archive map, and the
4958 symbol is currently undefined, we know that we must pull in that
4959 object file.
4960
4961 Unfortunately, we do have to make multiple passes over the symbol
4962 table until nothing further is resolved. */
4963
4964static bfd_boolean
4965elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4966{
4967 symindex c;
4968 unsigned char *included = NULL;
4969 carsym *symdefs;
4970 bfd_boolean loop;
4971 bfd_size_type amt;
4972 const struct elf_backend_data *bed;
4973 struct elf_link_hash_entry * (*archive_symbol_lookup)
4974 (bfd *, struct bfd_link_info *, const char *);
4975
4976 if (! bfd_has_map (abfd))
4977 {
4978 /* An empty archive is a special case. */
4979 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4980 return TRUE;
4981 bfd_set_error (bfd_error_no_armap);
4982 return FALSE;
4983 }
4984
4985 /* Keep track of all symbols we know to be already defined, and all
4986 files we know to be already included. This is to speed up the
4987 second and subsequent passes. */
4988 c = bfd_ardata (abfd)->symdef_count;
4989 if (c == 0)
4990 return TRUE;
4991 amt = c;
4992 amt *= sizeof (*included);
4993 included = (unsigned char *) bfd_zmalloc (amt);
4994 if (included == NULL)
4995 return FALSE;
4996
4997 symdefs = bfd_ardata (abfd)->symdefs;
4998 bed = get_elf_backend_data (abfd);
4999 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000
5001 do
5002 {
5003 file_ptr last;
5004 symindex i;
5005 carsym *symdef;
5006 carsym *symdefend;
5007
5008 loop = FALSE;
5009 last = -1;
5010
5011 symdef = symdefs;
5012 symdefend = symdef + c;
5013 for (i = 0; symdef < symdefend; symdef++, i++)
5014 {
5015 struct elf_link_hash_entry *h;
5016 bfd *element;
5017 struct bfd_link_hash_entry *undefs_tail;
5018 symindex mark;
5019
5020 if (included[i])
5021 continue;
5022 if (symdef->file_offset == last)
5023 {
5024 included[i] = TRUE;
5025 continue;
5026 }
5027
5028 h = archive_symbol_lookup (abfd, info, symdef->name);
5029 if (h == (struct elf_link_hash_entry *) 0 - 1)
5030 goto error_return;
5031
5032 if (h == NULL)
5033 continue;
5034
5035 if (h->root.type == bfd_link_hash_common)
5036 {
5037 /* We currently have a common symbol. The archive map contains
5038 a reference to this symbol, so we may want to include it. We
5039 only want to include it however, if this archive element
5040 contains a definition of the symbol, not just another common
5041 declaration of it.
5042
5043 Unfortunately some archivers (including GNU ar) will put
5044 declarations of common symbols into their archive maps, as
5045 well as real definitions, so we cannot just go by the archive
5046 map alone. Instead we must read in the element's symbol
5047 table and check that to see what kind of symbol definition
5048 this is. */
5049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5050 continue;
5051 }
5052 else if (h->root.type != bfd_link_hash_undefined)
5053 {
5054 if (h->root.type != bfd_link_hash_undefweak)
5055 /* Symbol must be defined. Don't check it again. */
5056 included[i] = TRUE;
5057 continue;
5058 }
5059
5060 /* We need to include this archive member. */
5061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5062 if (element == NULL)
5063 goto error_return;
5064
5065 if (! bfd_check_format (element, bfd_object))
5066 goto error_return;
5067
5068 undefs_tail = info->hash->undefs_tail;
5069
5070 if (!(*info->callbacks
5071 ->add_archive_element) (info, element, symdef->name, &element))
5072 goto error_return;
5073 if (!bfd_link_add_symbols (element, info))
5074 goto error_return;
5075
5076 /* If there are any new undefined symbols, we need to make
5077 another pass through the archive in order to see whether
5078 they can be defined. FIXME: This isn't perfect, because
5079 common symbols wind up on undefs_tail and because an
5080 undefined symbol which is defined later on in this pass
5081 does not require another pass. This isn't a bug, but it
5082 does make the code less efficient than it could be. */
5083 if (undefs_tail != info->hash->undefs_tail)
5084 loop = TRUE;
5085
5086 /* Look backward to mark all symbols from this object file
5087 which we have already seen in this pass. */
5088 mark = i;
5089 do
5090 {
5091 included[mark] = TRUE;
5092 if (mark == 0)
5093 break;
5094 --mark;
5095 }
5096 while (symdefs[mark].file_offset == symdef->file_offset);
5097
5098 /* We mark subsequent symbols from this object file as we go
5099 on through the loop. */
5100 last = symdef->file_offset;
5101 }
5102 }
5103 while (loop);
5104
5105 free (included);
5106
5107 return TRUE;
5108
5109 error_return:
5110 if (included != NULL)
5111 free (included);
5112 return FALSE;
5113}
5114
5115/* Given an ELF BFD, add symbols to the global hash table as
5116 appropriate. */
5117
5118bfd_boolean
5119bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5120{
5121 switch (bfd_get_format (abfd))
5122 {
5123 case bfd_object:
5124 return elf_link_add_object_symbols (abfd, info);
5125 case bfd_archive:
5126 return elf_link_add_archive_symbols (abfd, info);
5127 default:
5128 bfd_set_error (bfd_error_wrong_format);
5129 return FALSE;
5130 }
5131}
5132\f
5133struct hash_codes_info
5134{
5135 unsigned long *hashcodes;
5136 bfd_boolean error;
5137};
5138
5139/* This function will be called though elf_link_hash_traverse to store
5140 all hash value of the exported symbols in an array. */
5141
5142static bfd_boolean
5143elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5144{
5145 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5146 const char *name;
5147 char *p;
5148 unsigned long ha;
5149 char *alc = NULL;
5150
5151 /* Ignore indirect symbols. These are added by the versioning code. */
5152 if (h->dynindx == -1)
5153 return TRUE;
5154
5155 name = h->root.root.string;
5156 p = strchr (name, ELF_VER_CHR);
5157 if (p != NULL)
5158 {
5159 alc = (char *) bfd_malloc (p - name + 1);
5160 if (alc == NULL)
5161 {
5162 inf->error = TRUE;
5163 return FALSE;
5164 }
5165 memcpy (alc, name, p - name);
5166 alc[p - name] = '\0';
5167 name = alc;
5168 }
5169
5170 /* Compute the hash value. */
5171 ha = bfd_elf_hash (name);
5172
5173 /* Store the found hash value in the array given as the argument. */
5174 *(inf->hashcodes)++ = ha;
5175
5176 /* And store it in the struct so that we can put it in the hash table
5177 later. */
5178 h->u.elf_hash_value = ha;
5179
5180 if (alc != NULL)
5181 free (alc);
5182
5183 return TRUE;
5184}
5185
5186struct collect_gnu_hash_codes
5187{
5188 bfd *output_bfd;
5189 const struct elf_backend_data *bed;
5190 unsigned long int nsyms;
5191 unsigned long int maskbits;
5192 unsigned long int *hashcodes;
5193 unsigned long int *hashval;
5194 unsigned long int *indx;
5195 unsigned long int *counts;
5196 bfd_vma *bitmask;
5197 bfd_byte *contents;
5198 long int min_dynindx;
5199 unsigned long int bucketcount;
5200 unsigned long int symindx;
5201 long int local_indx;
5202 long int shift1, shift2;
5203 unsigned long int mask;
5204 bfd_boolean error;
5205};
5206
5207/* This function will be called though elf_link_hash_traverse to store
5208 all hash value of the exported symbols in an array. */
5209
5210static bfd_boolean
5211elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5212{
5213 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5214 const char *name;
5215 char *p;
5216 unsigned long ha;
5217 char *alc = NULL;
5218
5219 /* Ignore indirect symbols. These are added by the versioning code. */
5220 if (h->dynindx == -1)
5221 return TRUE;
5222
5223 /* Ignore also local symbols and undefined symbols. */
5224 if (! (*s->bed->elf_hash_symbol) (h))
5225 return TRUE;
5226
5227 name = h->root.root.string;
5228 p = strchr (name, ELF_VER_CHR);
5229 if (p != NULL)
5230 {
5231 alc = (char *) bfd_malloc (p - name + 1);
5232 if (alc == NULL)
5233 {
5234 s->error = TRUE;
5235 return FALSE;
5236 }
5237 memcpy (alc, name, p - name);
5238 alc[p - name] = '\0';
5239 name = alc;
5240 }
5241
5242 /* Compute the hash value. */
5243 ha = bfd_elf_gnu_hash (name);
5244
5245 /* Store the found hash value in the array for compute_bucket_count,
5246 and also for .dynsym reordering purposes. */
5247 s->hashcodes[s->nsyms] = ha;
5248 s->hashval[h->dynindx] = ha;
5249 ++s->nsyms;
5250 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5251 s->min_dynindx = h->dynindx;
5252
5253 if (alc != NULL)
5254 free (alc);
5255
5256 return TRUE;
5257}
5258
5259/* This function will be called though elf_link_hash_traverse to do
5260 final dynaminc symbol renumbering. */
5261
5262static bfd_boolean
5263elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5264{
5265 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5266 unsigned long int bucket;
5267 unsigned long int val;
5268
5269 /* Ignore indirect symbols. */
5270 if (h->dynindx == -1)
5271 return TRUE;
5272
5273 /* Ignore also local symbols and undefined symbols. */
5274 if (! (*s->bed->elf_hash_symbol) (h))
5275 {
5276 if (h->dynindx >= s->min_dynindx)
5277 h->dynindx = s->local_indx++;
5278 return TRUE;
5279 }
5280
5281 bucket = s->hashval[h->dynindx] % s->bucketcount;
5282 val = (s->hashval[h->dynindx] >> s->shift1)
5283 & ((s->maskbits >> s->shift1) - 1);
5284 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5285 s->bitmask[val]
5286 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5287 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5288 if (s->counts[bucket] == 1)
5289 /* Last element terminates the chain. */
5290 val |= 1;
5291 bfd_put_32 (s->output_bfd, val,
5292 s->contents + (s->indx[bucket] - s->symindx) * 4);
5293 --s->counts[bucket];
5294 h->dynindx = s->indx[bucket]++;
5295 return TRUE;
5296}
5297
5298/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5299
5300bfd_boolean
5301_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5302{
5303 return !(h->forced_local
5304 || h->root.type == bfd_link_hash_undefined
5305 || h->root.type == bfd_link_hash_undefweak
5306 || ((h->root.type == bfd_link_hash_defined
5307 || h->root.type == bfd_link_hash_defweak)
5308 && h->root.u.def.section->output_section == NULL));
5309}
5310
5311/* Array used to determine the number of hash table buckets to use
5312 based on the number of symbols there are. If there are fewer than
5313 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5314 fewer than 37 we use 17 buckets, and so forth. We never use more
5315 than 32771 buckets. */
5316
5317static const size_t elf_buckets[] =
5318{
5319 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5320 16411, 32771, 0
5321};
5322
5323/* Compute bucket count for hashing table. We do not use a static set
5324 of possible tables sizes anymore. Instead we determine for all
5325 possible reasonable sizes of the table the outcome (i.e., the
5326 number of collisions etc) and choose the best solution. The
5327 weighting functions are not too simple to allow the table to grow
5328 without bounds. Instead one of the weighting factors is the size.
5329 Therefore the result is always a good payoff between few collisions
5330 (= short chain lengths) and table size. */
5331static size_t
5332compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5333 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5334 unsigned long int nsyms,
5335 int gnu_hash)
5336{
5337 size_t best_size = 0;
5338 unsigned long int i;
5339
5340 /* We have a problem here. The following code to optimize the table
5341 size requires an integer type with more the 32 bits. If
5342 BFD_HOST_U_64_BIT is set we know about such a type. */
5343#ifdef BFD_HOST_U_64_BIT
5344 if (info->optimize)
5345 {
5346 size_t minsize;
5347 size_t maxsize;
5348 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5349 bfd *dynobj = elf_hash_table (info)->dynobj;
5350 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5351 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5352 unsigned long int *counts;
5353 bfd_size_type amt;
5354 unsigned int no_improvement_count = 0;
5355
5356 /* Possible optimization parameters: if we have NSYMS symbols we say
5357 that the hashing table must at least have NSYMS/4 and at most
5358 2*NSYMS buckets. */
5359 minsize = nsyms / 4;
5360 if (minsize == 0)
5361 minsize = 1;
5362 best_size = maxsize = nsyms * 2;
5363 if (gnu_hash)
5364 {
5365 if (minsize < 2)
5366 minsize = 2;
5367 if ((best_size & 31) == 0)
5368 ++best_size;
5369 }
5370
5371 /* Create array where we count the collisions in. We must use bfd_malloc
5372 since the size could be large. */
5373 amt = maxsize;
5374 amt *= sizeof (unsigned long int);
5375 counts = (unsigned long int *) bfd_malloc (amt);
5376 if (counts == NULL)
5377 return 0;
5378
5379 /* Compute the "optimal" size for the hash table. The criteria is a
5380 minimal chain length. The minor criteria is (of course) the size
5381 of the table. */
5382 for (i = minsize; i < maxsize; ++i)
5383 {
5384 /* Walk through the array of hashcodes and count the collisions. */
5385 BFD_HOST_U_64_BIT max;
5386 unsigned long int j;
5387 unsigned long int fact;
5388
5389 if (gnu_hash && (i & 31) == 0)
5390 continue;
5391
5392 memset (counts, '\0', i * sizeof (unsigned long int));
5393
5394 /* Determine how often each hash bucket is used. */
5395 for (j = 0; j < nsyms; ++j)
5396 ++counts[hashcodes[j] % i];
5397
5398 /* For the weight function we need some information about the
5399 pagesize on the target. This is information need not be 100%
5400 accurate. Since this information is not available (so far) we
5401 define it here to a reasonable default value. If it is crucial
5402 to have a better value some day simply define this value. */
5403# ifndef BFD_TARGET_PAGESIZE
5404# define BFD_TARGET_PAGESIZE (4096)
5405# endif
5406
5407 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5408 and the chains. */
5409 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5410
5411# if 1
5412 /* Variant 1: optimize for short chains. We add the squares
5413 of all the chain lengths (which favors many small chain
5414 over a few long chains). */
5415 for (j = 0; j < i; ++j)
5416 max += counts[j] * counts[j];
5417
5418 /* This adds penalties for the overall size of the table. */
5419 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5420 max *= fact * fact;
5421# else
5422 /* Variant 2: Optimize a lot more for small table. Here we
5423 also add squares of the size but we also add penalties for
5424 empty slots (the +1 term). */
5425 for (j = 0; j < i; ++j)
5426 max += (1 + counts[j]) * (1 + counts[j]);
5427
5428 /* The overall size of the table is considered, but not as
5429 strong as in variant 1, where it is squared. */
5430 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5431 max *= fact;
5432# endif
5433
5434 /* Compare with current best results. */
5435 if (max < best_chlen)
5436 {
5437 best_chlen = max;
5438 best_size = i;
5439 no_improvement_count = 0;
5440 }
5441 /* PR 11843: Avoid futile long searches for the best bucket size
5442 when there are a large number of symbols. */
5443 else if (++no_improvement_count == 100)
5444 break;
5445 }
5446
5447 free (counts);
5448 }
5449 else
5450#endif /* defined (BFD_HOST_U_64_BIT) */
5451 {
5452 /* This is the fallback solution if no 64bit type is available or if we
5453 are not supposed to spend much time on optimizations. We select the
5454 bucket count using a fixed set of numbers. */
5455 for (i = 0; elf_buckets[i] != 0; i++)
5456 {
5457 best_size = elf_buckets[i];
5458 if (nsyms < elf_buckets[i + 1])
5459 break;
5460 }
5461 if (gnu_hash && best_size < 2)
5462 best_size = 2;
5463 }
5464
5465 return best_size;
5466}
5467
5468/* Size any SHT_GROUP section for ld -r. */
5469
5470bfd_boolean
5471_bfd_elf_size_group_sections (struct bfd_link_info *info)
5472{
5473 bfd *ibfd;
5474
5475 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5476 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5477 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5478 return FALSE;
5479 return TRUE;
5480}
5481
5482/* Set a default stack segment size. The value in INFO wins. If it
5483 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5484 undefined it is initialized. */
5485
5486bfd_boolean
5487bfd_elf_stack_segment_size (bfd *output_bfd,
5488 struct bfd_link_info *info,
5489 const char *legacy_symbol,
5490 bfd_vma default_size)
5491{
5492 struct elf_link_hash_entry *h = NULL;
5493
5494 /* Look for legacy symbol. */
5495 if (legacy_symbol)
5496 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5497 FALSE, FALSE, FALSE);
5498 if (h && (h->root.type == bfd_link_hash_defined
5499 || h->root.type == bfd_link_hash_defweak)
5500 && h->def_regular
5501 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5502 {
5503 /* The symbol has no type if specified on the command line. */
5504 h->type = STT_OBJECT;
5505 if (info->stacksize)
5506 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5507 output_bfd, legacy_symbol);
5508 else if (h->root.u.def.section != bfd_abs_section_ptr)
5509 (*_bfd_error_handler) (_("%B: %s not absolute"),
5510 output_bfd, legacy_symbol);
5511 else
5512 info->stacksize = h->root.u.def.value;
5513 }
5514
5515 if (!info->stacksize)
5516 /* If the user didn't set a size, or explicitly inhibit the
5517 size, set it now. */
5518 info->stacksize = default_size;
5519
5520 /* Provide the legacy symbol, if it is referenced. */
5521 if (h && (h->root.type == bfd_link_hash_undefined
5522 || h->root.type == bfd_link_hash_undefweak))
5523 {
5524 struct bfd_link_hash_entry *bh = NULL;
5525
5526 if (!(_bfd_generic_link_add_one_symbol
5527 (info, output_bfd, legacy_symbol,
5528 BSF_GLOBAL, bfd_abs_section_ptr,
5529 info->stacksize >= 0 ? info->stacksize : 0,
5530 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5531 return FALSE;
5532
5533 h = (struct elf_link_hash_entry *) bh;
5534 h->def_regular = 1;
5535 h->type = STT_OBJECT;
5536 }
5537
5538 return TRUE;
5539}
5540
5541/* Set up the sizes and contents of the ELF dynamic sections. This is
5542 called by the ELF linker emulation before_allocation routine. We
5543 must set the sizes of the sections before the linker sets the
5544 addresses of the various sections. */
5545
5546bfd_boolean
5547bfd_elf_size_dynamic_sections (bfd *output_bfd,
5548 const char *soname,
5549 const char *rpath,
5550 const char *filter_shlib,
5551 const char *audit,
5552 const char *depaudit,
5553 const char * const *auxiliary_filters,
5554 struct bfd_link_info *info,
5555 asection **sinterpptr)
5556{
5557 bfd_size_type soname_indx;
5558 bfd *dynobj;
5559 const struct elf_backend_data *bed;
5560 struct elf_info_failed asvinfo;
5561
5562 *sinterpptr = NULL;
5563
5564 soname_indx = (bfd_size_type) -1;
5565
5566 if (!is_elf_hash_table (info->hash))
5567 return TRUE;
5568
5569 bed = get_elf_backend_data (output_bfd);
5570
5571 /* Any syms created from now on start with -1 in
5572 got.refcount/offset and plt.refcount/offset. */
5573 elf_hash_table (info)->init_got_refcount
5574 = elf_hash_table (info)->init_got_offset;
5575 elf_hash_table (info)->init_plt_refcount
5576 = elf_hash_table (info)->init_plt_offset;
5577
5578 if (info->relocatable
5579 && !_bfd_elf_size_group_sections (info))
5580 return FALSE;
5581
5582 /* The backend may have to create some sections regardless of whether
5583 we're dynamic or not. */
5584 if (bed->elf_backend_always_size_sections
5585 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5586 return FALSE;
5587
5588 /* Determine any GNU_STACK segment requirements, after the backend
5589 has had a chance to set a default segment size. */
5590 if (info->execstack)
5591 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5592 else if (info->noexecstack)
5593 elf_stack_flags (output_bfd) = PF_R | PF_W;
5594 else
5595 {
5596 bfd *inputobj;
5597 asection *notesec = NULL;
5598 int exec = 0;
5599
5600 for (inputobj = info->input_bfds;
5601 inputobj;
5602 inputobj = inputobj->link.next)
5603 {
5604 asection *s;
5605
5606 if (inputobj->flags
5607 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5608 continue;
5609 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5610 if (s)
5611 {
5612 if (s->flags & SEC_CODE)
5613 exec = PF_X;
5614 notesec = s;
5615 }
5616 else if (bed->default_execstack)
5617 exec = PF_X;
5618 }
5619 if (notesec || info->stacksize > 0)
5620 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5621 if (notesec && exec && info->relocatable
5622 && notesec->output_section != bfd_abs_section_ptr)
5623 notesec->output_section->flags |= SEC_CODE;
5624 }
5625
5626 dynobj = elf_hash_table (info)->dynobj;
5627
5628 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5629 {
5630 struct elf_info_failed eif;
5631 struct elf_link_hash_entry *h;
5632 asection *dynstr;
5633 struct bfd_elf_version_tree *t;
5634 struct bfd_elf_version_expr *d;
5635 asection *s;
5636 bfd_boolean all_defined;
5637
5638 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5639 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5640
5641 if (soname != NULL)
5642 {
5643 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5644 soname, TRUE);
5645 if (soname_indx == (bfd_size_type) -1
5646 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5647 return FALSE;
5648 }
5649
5650 if (info->symbolic)
5651 {
5652 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5653 return FALSE;
5654 info->flags |= DF_SYMBOLIC;
5655 }
5656
5657 if (rpath != NULL)
5658 {
5659 bfd_size_type indx;
5660 bfd_vma tag;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5663 TRUE);
5664 if (indx == (bfd_size_type) -1)
5665 return FALSE;
5666
5667 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5668 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5669 return FALSE;
5670 }
5671
5672 if (filter_shlib != NULL)
5673 {
5674 bfd_size_type indx;
5675
5676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5677 filter_shlib, TRUE);
5678 if (indx == (bfd_size_type) -1
5679 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5680 return FALSE;
5681 }
5682
5683 if (auxiliary_filters != NULL)
5684 {
5685 const char * const *p;
5686
5687 for (p = auxiliary_filters; *p != NULL; p++)
5688 {
5689 bfd_size_type indx;
5690
5691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5692 *p, TRUE);
5693 if (indx == (bfd_size_type) -1
5694 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5695 return FALSE;
5696 }
5697 }
5698
5699 if (audit != NULL)
5700 {
5701 bfd_size_type indx;
5702
5703 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5704 TRUE);
5705 if (indx == (bfd_size_type) -1
5706 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5707 return FALSE;
5708 }
5709
5710 if (depaudit != NULL)
5711 {
5712 bfd_size_type indx;
5713
5714 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5715 TRUE);
5716 if (indx == (bfd_size_type) -1
5717 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5718 return FALSE;
5719 }
5720
5721 eif.info = info;
5722 eif.failed = FALSE;
5723
5724 /* If we are supposed to export all symbols into the dynamic symbol
5725 table (this is not the normal case), then do so. */
5726 if (info->export_dynamic
5727 || (info->executable && info->dynamic))
5728 {
5729 elf_link_hash_traverse (elf_hash_table (info),
5730 _bfd_elf_export_symbol,
5731 &eif);
5732 if (eif.failed)
5733 return FALSE;
5734 }
5735
5736 /* Make all global versions with definition. */
5737 for (t = info->version_info; t != NULL; t = t->next)
5738 for (d = t->globals.list; d != NULL; d = d->next)
5739 if (!d->symver && d->literal)
5740 {
5741 const char *verstr, *name;
5742 size_t namelen, verlen, newlen;
5743 char *newname, *p, leading_char;
5744 struct elf_link_hash_entry *newh;
5745
5746 leading_char = bfd_get_symbol_leading_char (output_bfd);
5747 name = d->pattern;
5748 namelen = strlen (name) + (leading_char != '\0');
5749 verstr = t->name;
5750 verlen = strlen (verstr);
5751 newlen = namelen + verlen + 3;
5752
5753 newname = (char *) bfd_malloc (newlen);
5754 if (newname == NULL)
5755 return FALSE;
5756 newname[0] = leading_char;
5757 memcpy (newname + (leading_char != '\0'), name, namelen);
5758
5759 /* Check the hidden versioned definition. */
5760 p = newname + namelen;
5761 *p++ = ELF_VER_CHR;
5762 memcpy (p, verstr, verlen + 1);
5763 newh = elf_link_hash_lookup (elf_hash_table (info),
5764 newname, FALSE, FALSE,
5765 FALSE);
5766 if (newh == NULL
5767 || (newh->root.type != bfd_link_hash_defined
5768 && newh->root.type != bfd_link_hash_defweak))
5769 {
5770 /* Check the default versioned definition. */
5771 *p++ = ELF_VER_CHR;
5772 memcpy (p, verstr, verlen + 1);
5773 newh = elf_link_hash_lookup (elf_hash_table (info),
5774 newname, FALSE, FALSE,
5775 FALSE);
5776 }
5777 free (newname);
5778
5779 /* Mark this version if there is a definition and it is
5780 not defined in a shared object. */
5781 if (newh != NULL
5782 && !newh->def_dynamic
5783 && (newh->root.type == bfd_link_hash_defined
5784 || newh->root.type == bfd_link_hash_defweak))
5785 d->symver = 1;
5786 }
5787
5788 /* Attach all the symbols to their version information. */
5789 asvinfo.info = info;
5790 asvinfo.failed = FALSE;
5791
5792 elf_link_hash_traverse (elf_hash_table (info),
5793 _bfd_elf_link_assign_sym_version,
5794 &asvinfo);
5795 if (asvinfo.failed)
5796 return FALSE;
5797
5798 if (!info->allow_undefined_version)
5799 {
5800 /* Check if all global versions have a definition. */
5801 all_defined = TRUE;
5802 for (t = info->version_info; t != NULL; t = t->next)
5803 for (d = t->globals.list; d != NULL; d = d->next)
5804 if (d->literal && !d->symver && !d->script)
5805 {
5806 (*_bfd_error_handler)
5807 (_("%s: undefined version: %s"),
5808 d->pattern, t->name);
5809 all_defined = FALSE;
5810 }
5811
5812 if (!all_defined)
5813 {
5814 bfd_set_error (bfd_error_bad_value);
5815 return FALSE;
5816 }
5817 }
5818
5819 /* Find all symbols which were defined in a dynamic object and make
5820 the backend pick a reasonable value for them. */
5821 elf_link_hash_traverse (elf_hash_table (info),
5822 _bfd_elf_adjust_dynamic_symbol,
5823 &eif);
5824 if (eif.failed)
5825 return FALSE;
5826
5827 /* Add some entries to the .dynamic section. We fill in some of the
5828 values later, in bfd_elf_final_link, but we must add the entries
5829 now so that we know the final size of the .dynamic section. */
5830
5831 /* If there are initialization and/or finalization functions to
5832 call then add the corresponding DT_INIT/DT_FINI entries. */
5833 h = (info->init_function
5834 ? elf_link_hash_lookup (elf_hash_table (info),
5835 info->init_function, FALSE,
5836 FALSE, FALSE)
5837 : NULL);
5838 if (h != NULL
5839 && (h->ref_regular
5840 || h->def_regular))
5841 {
5842 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5843 return FALSE;
5844 }
5845 h = (info->fini_function
5846 ? elf_link_hash_lookup (elf_hash_table (info),
5847 info->fini_function, FALSE,
5848 FALSE, FALSE)
5849 : NULL);
5850 if (h != NULL
5851 && (h->ref_regular
5852 || h->def_regular))
5853 {
5854 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5855 return FALSE;
5856 }
5857
5858 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5859 if (s != NULL && s->linker_has_input)
5860 {
5861 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5862 if (! info->executable)
5863 {
5864 bfd *sub;
5865 asection *o;
5866
5867 for (sub = info->input_bfds; sub != NULL;
5868 sub = sub->link.next)
5869 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5870 for (o = sub->sections; o != NULL; o = o->next)
5871 if (elf_section_data (o)->this_hdr.sh_type
5872 == SHT_PREINIT_ARRAY)
5873 {
5874 (*_bfd_error_handler)
5875 (_("%B: .preinit_array section is not allowed in DSO"),
5876 sub);
5877 break;
5878 }
5879
5880 bfd_set_error (bfd_error_nonrepresentable_section);
5881 return FALSE;
5882 }
5883
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888 s = bfd_get_section_by_name (output_bfd, ".init_array");
5889 if (s != NULL && s->linker_has_input)
5890 {
5891 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5893 return FALSE;
5894 }
5895 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5896 if (s != NULL && s->linker_has_input)
5897 {
5898 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5899 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5900 return FALSE;
5901 }
5902
5903 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5904 /* If .dynstr is excluded from the link, we don't want any of
5905 these tags. Strictly, we should be checking each section
5906 individually; This quick check covers for the case where
5907 someone does a /DISCARD/ : { *(*) }. */
5908 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5909 {
5910 bfd_size_type strsize;
5911
5912 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5913 if ((info->emit_hash
5914 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5915 || (info->emit_gnu_hash
5916 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5917 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5918 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5919 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5920 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5921 bed->s->sizeof_sym))
5922 return FALSE;
5923 }
5924 }
5925
5926 /* The backend must work out the sizes of all the other dynamic
5927 sections. */
5928 if (dynobj != NULL
5929 && bed->elf_backend_size_dynamic_sections != NULL
5930 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5931 return FALSE;
5932
5933 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5934 return FALSE;
5935
5936 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5937 {
5938 unsigned long section_sym_count;
5939 struct bfd_elf_version_tree *verdefs;
5940 asection *s;
5941
5942 /* Set up the version definition section. */
5943 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5944 BFD_ASSERT (s != NULL);
5945
5946 /* We may have created additional version definitions if we are
5947 just linking a regular application. */
5948 verdefs = info->version_info;
5949
5950 /* Skip anonymous version tag. */
5951 if (verdefs != NULL && verdefs->vernum == 0)
5952 verdefs = verdefs->next;
5953
5954 if (verdefs == NULL && !info->create_default_symver)
5955 s->flags |= SEC_EXCLUDE;
5956 else
5957 {
5958 unsigned int cdefs;
5959 bfd_size_type size;
5960 struct bfd_elf_version_tree *t;
5961 bfd_byte *p;
5962 Elf_Internal_Verdef def;
5963 Elf_Internal_Verdaux defaux;
5964 struct bfd_link_hash_entry *bh;
5965 struct elf_link_hash_entry *h;
5966 const char *name;
5967
5968 cdefs = 0;
5969 size = 0;
5970
5971 /* Make space for the base version. */
5972 size += sizeof (Elf_External_Verdef);
5973 size += sizeof (Elf_External_Verdaux);
5974 ++cdefs;
5975
5976 /* Make space for the default version. */
5977 if (info->create_default_symver)
5978 {
5979 size += sizeof (Elf_External_Verdef);
5980 ++cdefs;
5981 }
5982
5983 for (t = verdefs; t != NULL; t = t->next)
5984 {
5985 struct bfd_elf_version_deps *n;
5986
5987 /* Don't emit base version twice. */
5988 if (t->vernum == 0)
5989 continue;
5990
5991 size += sizeof (Elf_External_Verdef);
5992 size += sizeof (Elf_External_Verdaux);
5993 ++cdefs;
5994
5995 for (n = t->deps; n != NULL; n = n->next)
5996 size += sizeof (Elf_External_Verdaux);
5997 }
5998
5999 s->size = size;
6000 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6001 if (s->contents == NULL && s->size != 0)
6002 return FALSE;
6003
6004 /* Fill in the version definition section. */
6005
6006 p = s->contents;
6007
6008 def.vd_version = VER_DEF_CURRENT;
6009 def.vd_flags = VER_FLG_BASE;
6010 def.vd_ndx = 1;
6011 def.vd_cnt = 1;
6012 if (info->create_default_symver)
6013 {
6014 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6015 def.vd_next = sizeof (Elf_External_Verdef);
6016 }
6017 else
6018 {
6019 def.vd_aux = sizeof (Elf_External_Verdef);
6020 def.vd_next = (sizeof (Elf_External_Verdef)
6021 + sizeof (Elf_External_Verdaux));
6022 }
6023
6024 if (soname_indx != (bfd_size_type) -1)
6025 {
6026 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6027 soname_indx);
6028 def.vd_hash = bfd_elf_hash (soname);
6029 defaux.vda_name = soname_indx;
6030 name = soname;
6031 }
6032 else
6033 {
6034 bfd_size_type indx;
6035
6036 name = lbasename (output_bfd->filename);
6037 def.vd_hash = bfd_elf_hash (name);
6038 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6039 name, FALSE);
6040 if (indx == (bfd_size_type) -1)
6041 return FALSE;
6042 defaux.vda_name = indx;
6043 }
6044 defaux.vda_next = 0;
6045
6046 _bfd_elf_swap_verdef_out (output_bfd, &def,
6047 (Elf_External_Verdef *) p);
6048 p += sizeof (Elf_External_Verdef);
6049 if (info->create_default_symver)
6050 {
6051 /* Add a symbol representing this version. */
6052 bh = NULL;
6053 if (! (_bfd_generic_link_add_one_symbol
6054 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6055 0, NULL, FALSE,
6056 get_elf_backend_data (dynobj)->collect, &bh)))
6057 return FALSE;
6058 h = (struct elf_link_hash_entry *) bh;
6059 h->non_elf = 0;
6060 h->def_regular = 1;
6061 h->type = STT_OBJECT;
6062 h->verinfo.vertree = NULL;
6063
6064 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6065 return FALSE;
6066
6067 /* Create a duplicate of the base version with the same
6068 aux block, but different flags. */
6069 def.vd_flags = 0;
6070 def.vd_ndx = 2;
6071 def.vd_aux = sizeof (Elf_External_Verdef);
6072 if (verdefs)
6073 def.vd_next = (sizeof (Elf_External_Verdef)
6074 + sizeof (Elf_External_Verdaux));
6075 else
6076 def.vd_next = 0;
6077 _bfd_elf_swap_verdef_out (output_bfd, &def,
6078 (Elf_External_Verdef *) p);
6079 p += sizeof (Elf_External_Verdef);
6080 }
6081 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6082 (Elf_External_Verdaux *) p);
6083 p += sizeof (Elf_External_Verdaux);
6084
6085 for (t = verdefs; t != NULL; t = t->next)
6086 {
6087 unsigned int cdeps;
6088 struct bfd_elf_version_deps *n;
6089
6090 /* Don't emit the base version twice. */
6091 if (t->vernum == 0)
6092 continue;
6093
6094 cdeps = 0;
6095 for (n = t->deps; n != NULL; n = n->next)
6096 ++cdeps;
6097
6098 /* Add a symbol representing this version. */
6099 bh = NULL;
6100 if (! (_bfd_generic_link_add_one_symbol
6101 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6102 0, NULL, FALSE,
6103 get_elf_backend_data (dynobj)->collect, &bh)))
6104 return FALSE;
6105 h = (struct elf_link_hash_entry *) bh;
6106 h->non_elf = 0;
6107 h->def_regular = 1;
6108 h->type = STT_OBJECT;
6109 h->verinfo.vertree = t;
6110
6111 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6112 return FALSE;
6113
6114 def.vd_version = VER_DEF_CURRENT;
6115 def.vd_flags = 0;
6116 if (t->globals.list == NULL
6117 && t->locals.list == NULL
6118 && ! t->used)
6119 def.vd_flags |= VER_FLG_WEAK;
6120 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6121 def.vd_cnt = cdeps + 1;
6122 def.vd_hash = bfd_elf_hash (t->name);
6123 def.vd_aux = sizeof (Elf_External_Verdef);
6124 def.vd_next = 0;
6125
6126 /* If a basever node is next, it *must* be the last node in
6127 the chain, otherwise Verdef construction breaks. */
6128 if (t->next != NULL && t->next->vernum == 0)
6129 BFD_ASSERT (t->next->next == NULL);
6130
6131 if (t->next != NULL && t->next->vernum != 0)
6132 def.vd_next = (sizeof (Elf_External_Verdef)
6133 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6134
6135 _bfd_elf_swap_verdef_out (output_bfd, &def,
6136 (Elf_External_Verdef *) p);
6137 p += sizeof (Elf_External_Verdef);
6138
6139 defaux.vda_name = h->dynstr_index;
6140 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6141 h->dynstr_index);
6142 defaux.vda_next = 0;
6143 if (t->deps != NULL)
6144 defaux.vda_next = sizeof (Elf_External_Verdaux);
6145 t->name_indx = defaux.vda_name;
6146
6147 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6148 (Elf_External_Verdaux *) p);
6149 p += sizeof (Elf_External_Verdaux);
6150
6151 for (n = t->deps; n != NULL; n = n->next)
6152 {
6153 if (n->version_needed == NULL)
6154 {
6155 /* This can happen if there was an error in the
6156 version script. */
6157 defaux.vda_name = 0;
6158 }
6159 else
6160 {
6161 defaux.vda_name = n->version_needed->name_indx;
6162 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6163 defaux.vda_name);
6164 }
6165 if (n->next == NULL)
6166 defaux.vda_next = 0;
6167 else
6168 defaux.vda_next = sizeof (Elf_External_Verdaux);
6169
6170 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6171 (Elf_External_Verdaux *) p);
6172 p += sizeof (Elf_External_Verdaux);
6173 }
6174 }
6175
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6177 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6178 return FALSE;
6179
6180 elf_tdata (output_bfd)->cverdefs = cdefs;
6181 }
6182
6183 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6184 {
6185 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6186 return FALSE;
6187 }
6188 else if (info->flags & DF_BIND_NOW)
6189 {
6190 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6191 return FALSE;
6192 }
6193
6194 if (info->flags_1)
6195 {
6196 if (info->executable)
6197 info->flags_1 &= ~ (DF_1_INITFIRST
6198 | DF_1_NODELETE
6199 | DF_1_NOOPEN);
6200 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6201 return FALSE;
6202 }
6203
6204 /* Work out the size of the version reference section. */
6205
6206 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6207 BFD_ASSERT (s != NULL);
6208 {
6209 struct elf_find_verdep_info sinfo;
6210
6211 sinfo.info = info;
6212 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6213 if (sinfo.vers == 0)
6214 sinfo.vers = 1;
6215 sinfo.failed = FALSE;
6216
6217 elf_link_hash_traverse (elf_hash_table (info),
6218 _bfd_elf_link_find_version_dependencies,
6219 &sinfo);
6220 if (sinfo.failed)
6221 return FALSE;
6222
6223 if (elf_tdata (output_bfd)->verref == NULL)
6224 s->flags |= SEC_EXCLUDE;
6225 else
6226 {
6227 Elf_Internal_Verneed *t;
6228 unsigned int size;
6229 unsigned int crefs;
6230 bfd_byte *p;
6231
6232 /* Build the version dependency section. */
6233 size = 0;
6234 crefs = 0;
6235 for (t = elf_tdata (output_bfd)->verref;
6236 t != NULL;
6237 t = t->vn_nextref)
6238 {
6239 Elf_Internal_Vernaux *a;
6240
6241 size += sizeof (Elf_External_Verneed);
6242 ++crefs;
6243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6244 size += sizeof (Elf_External_Vernaux);
6245 }
6246
6247 s->size = size;
6248 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6249 if (s->contents == NULL)
6250 return FALSE;
6251
6252 p = s->contents;
6253 for (t = elf_tdata (output_bfd)->verref;
6254 t != NULL;
6255 t = t->vn_nextref)
6256 {
6257 unsigned int caux;
6258 Elf_Internal_Vernaux *a;
6259 bfd_size_type indx;
6260
6261 caux = 0;
6262 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6263 ++caux;
6264
6265 t->vn_version = VER_NEED_CURRENT;
6266 t->vn_cnt = caux;
6267 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6268 elf_dt_name (t->vn_bfd) != NULL
6269 ? elf_dt_name (t->vn_bfd)
6270 : lbasename (t->vn_bfd->filename),
6271 FALSE);
6272 if (indx == (bfd_size_type) -1)
6273 return FALSE;
6274 t->vn_file = indx;
6275 t->vn_aux = sizeof (Elf_External_Verneed);
6276 if (t->vn_nextref == NULL)
6277 t->vn_next = 0;
6278 else
6279 t->vn_next = (sizeof (Elf_External_Verneed)
6280 + caux * sizeof (Elf_External_Vernaux));
6281
6282 _bfd_elf_swap_verneed_out (output_bfd, t,
6283 (Elf_External_Verneed *) p);
6284 p += sizeof (Elf_External_Verneed);
6285
6286 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6287 {
6288 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6289 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6290 a->vna_nodename, FALSE);
6291 if (indx == (bfd_size_type) -1)
6292 return FALSE;
6293 a->vna_name = indx;
6294 if (a->vna_nextptr == NULL)
6295 a->vna_next = 0;
6296 else
6297 a->vna_next = sizeof (Elf_External_Vernaux);
6298
6299 _bfd_elf_swap_vernaux_out (output_bfd, a,
6300 (Elf_External_Vernaux *) p);
6301 p += sizeof (Elf_External_Vernaux);
6302 }
6303 }
6304
6305 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6306 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6307 return FALSE;
6308
6309 elf_tdata (output_bfd)->cverrefs = crefs;
6310 }
6311 }
6312
6313 if ((elf_tdata (output_bfd)->cverrefs == 0
6314 && elf_tdata (output_bfd)->cverdefs == 0)
6315 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6316 &section_sym_count) == 0)
6317 {
6318 s = bfd_get_linker_section (dynobj, ".gnu.version");
6319 s->flags |= SEC_EXCLUDE;
6320 }
6321 }
6322 return TRUE;
6323}
6324
6325/* Find the first non-excluded output section. We'll use its
6326 section symbol for some emitted relocs. */
6327void
6328_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6329{
6330 asection *s;
6331
6332 for (s = output_bfd->sections; s != NULL; s = s->next)
6333 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6334 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6335 {
6336 elf_hash_table (info)->text_index_section = s;
6337 break;
6338 }
6339}
6340
6341/* Find two non-excluded output sections, one for code, one for data.
6342 We'll use their section symbols for some emitted relocs. */
6343void
6344_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6345{
6346 asection *s;
6347
6348 /* Data first, since setting text_index_section changes
6349 _bfd_elf_link_omit_section_dynsym. */
6350 for (s = output_bfd->sections; s != NULL; s = s->next)
6351 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6352 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6353 {
6354 elf_hash_table (info)->data_index_section = s;
6355 break;
6356 }
6357
6358 for (s = output_bfd->sections; s != NULL; s = s->next)
6359 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6360 == (SEC_ALLOC | SEC_READONLY))
6361 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6362 {
6363 elf_hash_table (info)->text_index_section = s;
6364 break;
6365 }
6366
6367 if (elf_hash_table (info)->text_index_section == NULL)
6368 elf_hash_table (info)->text_index_section
6369 = elf_hash_table (info)->data_index_section;
6370}
6371
6372bfd_boolean
6373bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6374{
6375 const struct elf_backend_data *bed;
6376
6377 if (!is_elf_hash_table (info->hash))
6378 return TRUE;
6379
6380 bed = get_elf_backend_data (output_bfd);
6381 (*bed->elf_backend_init_index_section) (output_bfd, info);
6382
6383 if (elf_hash_table (info)->dynamic_sections_created)
6384 {
6385 bfd *dynobj;
6386 asection *s;
6387 bfd_size_type dynsymcount;
6388 unsigned long section_sym_count;
6389 unsigned int dtagcount;
6390
6391 dynobj = elf_hash_table (info)->dynobj;
6392
6393 /* Assign dynsym indicies. In a shared library we generate a
6394 section symbol for each output section, which come first.
6395 Next come all of the back-end allocated local dynamic syms,
6396 followed by the rest of the global symbols. */
6397
6398 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6399 &section_sym_count);
6400
6401 /* Work out the size of the symbol version section. */
6402 s = bfd_get_linker_section (dynobj, ".gnu.version");
6403 BFD_ASSERT (s != NULL);
6404 if (dynsymcount != 0
6405 && (s->flags & SEC_EXCLUDE) == 0)
6406 {
6407 s->size = dynsymcount * sizeof (Elf_External_Versym);
6408 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6409 if (s->contents == NULL)
6410 return FALSE;
6411
6412 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6413 return FALSE;
6414 }
6415
6416 /* Set the size of the .dynsym and .hash sections. We counted
6417 the number of dynamic symbols in elf_link_add_object_symbols.
6418 We will build the contents of .dynsym and .hash when we build
6419 the final symbol table, because until then we do not know the
6420 correct value to give the symbols. We built the .dynstr
6421 section as we went along in elf_link_add_object_symbols. */
6422 s = bfd_get_linker_section (dynobj, ".dynsym");
6423 BFD_ASSERT (s != NULL);
6424 s->size = dynsymcount * bed->s->sizeof_sym;
6425
6426 if (dynsymcount != 0)
6427 {
6428 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6429 if (s->contents == NULL)
6430 return FALSE;
6431
6432 /* The first entry in .dynsym is a dummy symbol.
6433 Clear all the section syms, in case we don't output them all. */
6434 ++section_sym_count;
6435 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6436 }
6437
6438 elf_hash_table (info)->bucketcount = 0;
6439
6440 /* Compute the size of the hashing table. As a side effect this
6441 computes the hash values for all the names we export. */
6442 if (info->emit_hash)
6443 {
6444 unsigned long int *hashcodes;
6445 struct hash_codes_info hashinf;
6446 bfd_size_type amt;
6447 unsigned long int nsyms;
6448 size_t bucketcount;
6449 size_t hash_entry_size;
6450
6451 /* Compute the hash values for all exported symbols. At the same
6452 time store the values in an array so that we could use them for
6453 optimizations. */
6454 amt = dynsymcount * sizeof (unsigned long int);
6455 hashcodes = (unsigned long int *) bfd_malloc (amt);
6456 if (hashcodes == NULL)
6457 return FALSE;
6458 hashinf.hashcodes = hashcodes;
6459 hashinf.error = FALSE;
6460
6461 /* Put all hash values in HASHCODES. */
6462 elf_link_hash_traverse (elf_hash_table (info),
6463 elf_collect_hash_codes, &hashinf);
6464 if (hashinf.error)
6465 {
6466 free (hashcodes);
6467 return FALSE;
6468 }
6469
6470 nsyms = hashinf.hashcodes - hashcodes;
6471 bucketcount
6472 = compute_bucket_count (info, hashcodes, nsyms, 0);
6473 free (hashcodes);
6474
6475 if (bucketcount == 0)
6476 return FALSE;
6477
6478 elf_hash_table (info)->bucketcount = bucketcount;
6479
6480 s = bfd_get_linker_section (dynobj, ".hash");
6481 BFD_ASSERT (s != NULL);
6482 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6483 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6484 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6485 if (s->contents == NULL)
6486 return FALSE;
6487
6488 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6489 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6490 s->contents + hash_entry_size);
6491 }
6492
6493 if (info->emit_gnu_hash)
6494 {
6495 size_t i, cnt;
6496 unsigned char *contents;
6497 struct collect_gnu_hash_codes cinfo;
6498 bfd_size_type amt;
6499 size_t bucketcount;
6500
6501 memset (&cinfo, 0, sizeof (cinfo));
6502
6503 /* Compute the hash values for all exported symbols. At the same
6504 time store the values in an array so that we could use them for
6505 optimizations. */
6506 amt = dynsymcount * 2 * sizeof (unsigned long int);
6507 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6508 if (cinfo.hashcodes == NULL)
6509 return FALSE;
6510
6511 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6512 cinfo.min_dynindx = -1;
6513 cinfo.output_bfd = output_bfd;
6514 cinfo.bed = bed;
6515
6516 /* Put all hash values in HASHCODES. */
6517 elf_link_hash_traverse (elf_hash_table (info),
6518 elf_collect_gnu_hash_codes, &cinfo);
6519 if (cinfo.error)
6520 {
6521 free (cinfo.hashcodes);
6522 return FALSE;
6523 }
6524
6525 bucketcount
6526 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6527
6528 if (bucketcount == 0)
6529 {
6530 free (cinfo.hashcodes);
6531 return FALSE;
6532 }
6533
6534 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6535 BFD_ASSERT (s != NULL);
6536
6537 if (cinfo.nsyms == 0)
6538 {
6539 /* Empty .gnu.hash section is special. */
6540 BFD_ASSERT (cinfo.min_dynindx == -1);
6541 free (cinfo.hashcodes);
6542 s->size = 5 * 4 + bed->s->arch_size / 8;
6543 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6544 if (contents == NULL)
6545 return FALSE;
6546 s->contents = contents;
6547 /* 1 empty bucket. */
6548 bfd_put_32 (output_bfd, 1, contents);
6549 /* SYMIDX above the special symbol 0. */
6550 bfd_put_32 (output_bfd, 1, contents + 4);
6551 /* Just one word for bitmask. */
6552 bfd_put_32 (output_bfd, 1, contents + 8);
6553 /* Only hash fn bloom filter. */
6554 bfd_put_32 (output_bfd, 0, contents + 12);
6555 /* No hashes are valid - empty bitmask. */
6556 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6557 /* No hashes in the only bucket. */
6558 bfd_put_32 (output_bfd, 0,
6559 contents + 16 + bed->s->arch_size / 8);
6560 }
6561 else
6562 {
6563 unsigned long int maskwords, maskbitslog2, x;
6564 BFD_ASSERT (cinfo.min_dynindx != -1);
6565
6566 x = cinfo.nsyms;
6567 maskbitslog2 = 1;
6568 while ((x >>= 1) != 0)
6569 ++maskbitslog2;
6570 if (maskbitslog2 < 3)
6571 maskbitslog2 = 5;
6572 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6573 maskbitslog2 = maskbitslog2 + 3;
6574 else
6575 maskbitslog2 = maskbitslog2 + 2;
6576 if (bed->s->arch_size == 64)
6577 {
6578 if (maskbitslog2 == 5)
6579 maskbitslog2 = 6;
6580 cinfo.shift1 = 6;
6581 }
6582 else
6583 cinfo.shift1 = 5;
6584 cinfo.mask = (1 << cinfo.shift1) - 1;
6585 cinfo.shift2 = maskbitslog2;
6586 cinfo.maskbits = 1 << maskbitslog2;
6587 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6588 amt = bucketcount * sizeof (unsigned long int) * 2;
6589 amt += maskwords * sizeof (bfd_vma);
6590 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6591 if (cinfo.bitmask == NULL)
6592 {
6593 free (cinfo.hashcodes);
6594 return FALSE;
6595 }
6596
6597 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6598 cinfo.indx = cinfo.counts + bucketcount;
6599 cinfo.symindx = dynsymcount - cinfo.nsyms;
6600 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6601
6602 /* Determine how often each hash bucket is used. */
6603 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6604 for (i = 0; i < cinfo.nsyms; ++i)
6605 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6606
6607 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6608 if (cinfo.counts[i] != 0)
6609 {
6610 cinfo.indx[i] = cnt;
6611 cnt += cinfo.counts[i];
6612 }
6613 BFD_ASSERT (cnt == dynsymcount);
6614 cinfo.bucketcount = bucketcount;
6615 cinfo.local_indx = cinfo.min_dynindx;
6616
6617 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6618 s->size += cinfo.maskbits / 8;
6619 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6620 if (contents == NULL)
6621 {
6622 free (cinfo.bitmask);
6623 free (cinfo.hashcodes);
6624 return FALSE;
6625 }
6626
6627 s->contents = contents;
6628 bfd_put_32 (output_bfd, bucketcount, contents);
6629 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6630 bfd_put_32 (output_bfd, maskwords, contents + 8);
6631 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6632 contents += 16 + cinfo.maskbits / 8;
6633
6634 for (i = 0; i < bucketcount; ++i)
6635 {
6636 if (cinfo.counts[i] == 0)
6637 bfd_put_32 (output_bfd, 0, contents);
6638 else
6639 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6640 contents += 4;
6641 }
6642
6643 cinfo.contents = contents;
6644
6645 /* Renumber dynamic symbols, populate .gnu.hash section. */
6646 elf_link_hash_traverse (elf_hash_table (info),
6647 elf_renumber_gnu_hash_syms, &cinfo);
6648
6649 contents = s->contents + 16;
6650 for (i = 0; i < maskwords; ++i)
6651 {
6652 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6653 contents);
6654 contents += bed->s->arch_size / 8;
6655 }
6656
6657 free (cinfo.bitmask);
6658 free (cinfo.hashcodes);
6659 }
6660 }
6661
6662 s = bfd_get_linker_section (dynobj, ".dynstr");
6663 BFD_ASSERT (s != NULL);
6664
6665 elf_finalize_dynstr (output_bfd, info);
6666
6667 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6668
6669 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6670 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6671 return FALSE;
6672 }
6673
6674 return TRUE;
6675}
6676\f
6677/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6678
6679static void
6680merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6681 asection *sec)
6682{
6683 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6684 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6685}
6686
6687/* Finish SHF_MERGE section merging. */
6688
6689bfd_boolean
6690_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6691{
6692 bfd *ibfd;
6693 asection *sec;
6694
6695 if (!is_elf_hash_table (info->hash))
6696 return FALSE;
6697
6698 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6699 if ((ibfd->flags & DYNAMIC) == 0)
6700 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6701 if ((sec->flags & SEC_MERGE) != 0
6702 && !bfd_is_abs_section (sec->output_section))
6703 {
6704 struct bfd_elf_section_data *secdata;
6705
6706 secdata = elf_section_data (sec);
6707 if (! _bfd_add_merge_section (abfd,
6708 &elf_hash_table (info)->merge_info,
6709 sec, &secdata->sec_info))
6710 return FALSE;
6711 else if (secdata->sec_info)
6712 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6713 }
6714
6715 if (elf_hash_table (info)->merge_info != NULL)
6716 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6717 merge_sections_remove_hook);
6718 return TRUE;
6719}
6720
6721/* Create an entry in an ELF linker hash table. */
6722
6723struct bfd_hash_entry *
6724_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6725 struct bfd_hash_table *table,
6726 const char *string)
6727{
6728 /* Allocate the structure if it has not already been allocated by a
6729 subclass. */
6730 if (entry == NULL)
6731 {
6732 entry = (struct bfd_hash_entry *)
6733 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6734 if (entry == NULL)
6735 return entry;
6736 }
6737
6738 /* Call the allocation method of the superclass. */
6739 entry = _bfd_link_hash_newfunc (entry, table, string);
6740 if (entry != NULL)
6741 {
6742 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6743 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6744
6745 /* Set local fields. */
6746 ret->indx = -1;
6747 ret->dynindx = -1;
6748 ret->got = htab->init_got_refcount;
6749 ret->plt = htab->init_plt_refcount;
6750 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6751 - offsetof (struct elf_link_hash_entry, size)));
6752 /* Assume that we have been called by a non-ELF symbol reader.
6753 This flag is then reset by the code which reads an ELF input
6754 file. This ensures that a symbol created by a non-ELF symbol
6755 reader will have the flag set correctly. */
6756 ret->non_elf = 1;
6757 }
6758
6759 return entry;
6760}
6761
6762/* Copy data from an indirect symbol to its direct symbol, hiding the
6763 old indirect symbol. Also used for copying flags to a weakdef. */
6764
6765void
6766_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6767 struct elf_link_hash_entry *dir,
6768 struct elf_link_hash_entry *ind)
6769{
6770 struct elf_link_hash_table *htab;
6771
6772 /* Copy down any references that we may have already seen to the
6773 symbol which just became indirect. */
6774
6775 dir->ref_dynamic |= ind->ref_dynamic;
6776 dir->ref_regular |= ind->ref_regular;
6777 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6778 dir->non_got_ref |= ind->non_got_ref;
6779 dir->needs_plt |= ind->needs_plt;
6780 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6781
6782 if (ind->root.type != bfd_link_hash_indirect)
6783 return;
6784
6785 /* Copy over the global and procedure linkage table refcount entries.
6786 These may have been already set up by a check_relocs routine. */
6787 htab = elf_hash_table (info);
6788 if (ind->got.refcount > htab->init_got_refcount.refcount)
6789 {
6790 if (dir->got.refcount < 0)
6791 dir->got.refcount = 0;
6792 dir->got.refcount += ind->got.refcount;
6793 ind->got.refcount = htab->init_got_refcount.refcount;
6794 }
6795
6796 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6797 {
6798 if (dir->plt.refcount < 0)
6799 dir->plt.refcount = 0;
6800 dir->plt.refcount += ind->plt.refcount;
6801 ind->plt.refcount = htab->init_plt_refcount.refcount;
6802 }
6803
6804 if (ind->dynindx != -1)
6805 {
6806 if (dir->dynindx != -1)
6807 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6808 dir->dynindx = ind->dynindx;
6809 dir->dynstr_index = ind->dynstr_index;
6810 ind->dynindx = -1;
6811 ind->dynstr_index = 0;
6812 }
6813}
6814
6815void
6816_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6817 struct elf_link_hash_entry *h,
6818 bfd_boolean force_local)
6819{
6820 /* STT_GNU_IFUNC symbol must go through PLT. */
6821 if (h->type != STT_GNU_IFUNC)
6822 {
6823 h->plt = elf_hash_table (info)->init_plt_offset;
6824 h->needs_plt = 0;
6825 }
6826 if (force_local)
6827 {
6828 h->forced_local = 1;
6829 if (h->dynindx != -1)
6830 {
6831 h->dynindx = -1;
6832 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6833 h->dynstr_index);
6834 }
6835 }
6836}
6837
6838/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6839 caller. */
6840
6841bfd_boolean
6842_bfd_elf_link_hash_table_init
6843 (struct elf_link_hash_table *table,
6844 bfd *abfd,
6845 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6846 struct bfd_hash_table *,
6847 const char *),
6848 unsigned int entsize,
6849 enum elf_target_id target_id)
6850{
6851 bfd_boolean ret;
6852 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6853
6854 table->init_got_refcount.refcount = can_refcount - 1;
6855 table->init_plt_refcount.refcount = can_refcount - 1;
6856 table->init_got_offset.offset = -(bfd_vma) 1;
6857 table->init_plt_offset.offset = -(bfd_vma) 1;
6858 /* The first dynamic symbol is a dummy. */
6859 table->dynsymcount = 1;
6860
6861 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6862
6863 table->root.type = bfd_link_elf_hash_table;
6864 table->hash_table_id = target_id;
6865
6866 return ret;
6867}
6868
6869/* Create an ELF linker hash table. */
6870
6871struct bfd_link_hash_table *
6872_bfd_elf_link_hash_table_create (bfd *abfd)
6873{
6874 struct elf_link_hash_table *ret;
6875 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6876
6877 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6878 if (ret == NULL)
6879 return NULL;
6880
6881 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6882 sizeof (struct elf_link_hash_entry),
6883 GENERIC_ELF_DATA))
6884 {
6885 free (ret);
6886 return NULL;
6887 }
6888 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6889
6890 return &ret->root;
6891}
6892
6893/* Destroy an ELF linker hash table. */
6894
6895void
6896_bfd_elf_link_hash_table_free (bfd *obfd)
6897{
6898 struct elf_link_hash_table *htab;
6899
6900 htab = (struct elf_link_hash_table *) obfd->link.hash;
6901 if (htab->dynstr != NULL)
6902 _bfd_elf_strtab_free (htab->dynstr);
6903 _bfd_merge_sections_free (htab->merge_info);
6904 _bfd_generic_link_hash_table_free (obfd);
6905}
6906
6907/* This is a hook for the ELF emulation code in the generic linker to
6908 tell the backend linker what file name to use for the DT_NEEDED
6909 entry for a dynamic object. */
6910
6911void
6912bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6913{
6914 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6915 && bfd_get_format (abfd) == bfd_object)
6916 elf_dt_name (abfd) = name;
6917}
6918
6919int
6920bfd_elf_get_dyn_lib_class (bfd *abfd)
6921{
6922 int lib_class;
6923 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6924 && bfd_get_format (abfd) == bfd_object)
6925 lib_class = elf_dyn_lib_class (abfd);
6926 else
6927 lib_class = 0;
6928 return lib_class;
6929}
6930
6931void
6932bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6933{
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 elf_dyn_lib_class (abfd) = lib_class;
6937}
6938
6939/* Get the list of DT_NEEDED entries for a link. This is a hook for
6940 the linker ELF emulation code. */
6941
6942struct bfd_link_needed_list *
6943bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6944 struct bfd_link_info *info)
6945{
6946 if (! is_elf_hash_table (info->hash))
6947 return NULL;
6948 return elf_hash_table (info)->needed;
6949}
6950
6951/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6952 hook for the linker ELF emulation code. */
6953
6954struct bfd_link_needed_list *
6955bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6956 struct bfd_link_info *info)
6957{
6958 if (! is_elf_hash_table (info->hash))
6959 return NULL;
6960 return elf_hash_table (info)->runpath;
6961}
6962
6963/* Get the name actually used for a dynamic object for a link. This
6964 is the SONAME entry if there is one. Otherwise, it is the string
6965 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6966
6967const char *
6968bfd_elf_get_dt_soname (bfd *abfd)
6969{
6970 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6971 && bfd_get_format (abfd) == bfd_object)
6972 return elf_dt_name (abfd);
6973 return NULL;
6974}
6975
6976/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6977 the ELF linker emulation code. */
6978
6979bfd_boolean
6980bfd_elf_get_bfd_needed_list (bfd *abfd,
6981 struct bfd_link_needed_list **pneeded)
6982{
6983 asection *s;
6984 bfd_byte *dynbuf = NULL;
6985 unsigned int elfsec;
6986 unsigned long shlink;
6987 bfd_byte *extdyn, *extdynend;
6988 size_t extdynsize;
6989 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6990
6991 *pneeded = NULL;
6992
6993 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6994 || bfd_get_format (abfd) != bfd_object)
6995 return TRUE;
6996
6997 s = bfd_get_section_by_name (abfd, ".dynamic");
6998 if (s == NULL || s->size == 0)
6999 return TRUE;
7000
7001 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7002 goto error_return;
7003
7004 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7005 if (elfsec == SHN_BAD)
7006 goto error_return;
7007
7008 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7009
7010 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7011 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7012
7013 extdyn = dynbuf;
7014 extdynend = extdyn + s->size;
7015 for (; extdyn < extdynend; extdyn += extdynsize)
7016 {
7017 Elf_Internal_Dyn dyn;
7018
7019 (*swap_dyn_in) (abfd, extdyn, &dyn);
7020
7021 if (dyn.d_tag == DT_NULL)
7022 break;
7023
7024 if (dyn.d_tag == DT_NEEDED)
7025 {
7026 const char *string;
7027 struct bfd_link_needed_list *l;
7028 unsigned int tagv = dyn.d_un.d_val;
7029 bfd_size_type amt;
7030
7031 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7032 if (string == NULL)
7033 goto error_return;
7034
7035 amt = sizeof *l;
7036 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7037 if (l == NULL)
7038 goto error_return;
7039
7040 l->by = abfd;
7041 l->name = string;
7042 l->next = *pneeded;
7043 *pneeded = l;
7044 }
7045 }
7046
7047 free (dynbuf);
7048
7049 return TRUE;
7050
7051 error_return:
7052 if (dynbuf != NULL)
7053 free (dynbuf);
7054 return FALSE;
7055}
7056
7057struct elf_symbuf_symbol
7058{
7059 unsigned long st_name; /* Symbol name, index in string tbl */
7060 unsigned char st_info; /* Type and binding attributes */
7061 unsigned char st_other; /* Visibilty, and target specific */
7062};
7063
7064struct elf_symbuf_head
7065{
7066 struct elf_symbuf_symbol *ssym;
7067 bfd_size_type count;
7068 unsigned int st_shndx;
7069};
7070
7071struct elf_symbol
7072{
7073 union
7074 {
7075 Elf_Internal_Sym *isym;
7076 struct elf_symbuf_symbol *ssym;
7077 } u;
7078 const char *name;
7079};
7080
7081/* Sort references to symbols by ascending section number. */
7082
7083static int
7084elf_sort_elf_symbol (const void *arg1, const void *arg2)
7085{
7086 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7087 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7088
7089 return s1->st_shndx - s2->st_shndx;
7090}
7091
7092static int
7093elf_sym_name_compare (const void *arg1, const void *arg2)
7094{
7095 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7096 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7097 return strcmp (s1->name, s2->name);
7098}
7099
7100static struct elf_symbuf_head *
7101elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7102{
7103 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7104 struct elf_symbuf_symbol *ssym;
7105 struct elf_symbuf_head *ssymbuf, *ssymhead;
7106 bfd_size_type i, shndx_count, total_size;
7107
7108 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7109 if (indbuf == NULL)
7110 return NULL;
7111
7112 for (ind = indbuf, i = 0; i < symcount; i++)
7113 if (isymbuf[i].st_shndx != SHN_UNDEF)
7114 *ind++ = &isymbuf[i];
7115 indbufend = ind;
7116
7117 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7118 elf_sort_elf_symbol);
7119
7120 shndx_count = 0;
7121 if (indbufend > indbuf)
7122 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7123 if (ind[0]->st_shndx != ind[1]->st_shndx)
7124 shndx_count++;
7125
7126 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7127 + (indbufend - indbuf) * sizeof (*ssym));
7128 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7129 if (ssymbuf == NULL)
7130 {
7131 free (indbuf);
7132 return NULL;
7133 }
7134
7135 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7136 ssymbuf->ssym = NULL;
7137 ssymbuf->count = shndx_count;
7138 ssymbuf->st_shndx = 0;
7139 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7140 {
7141 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7142 {
7143 ssymhead++;
7144 ssymhead->ssym = ssym;
7145 ssymhead->count = 0;
7146 ssymhead->st_shndx = (*ind)->st_shndx;
7147 }
7148 ssym->st_name = (*ind)->st_name;
7149 ssym->st_info = (*ind)->st_info;
7150 ssym->st_other = (*ind)->st_other;
7151 ssymhead->count++;
7152 }
7153 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7154 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7155 == total_size));
7156
7157 free (indbuf);
7158 return ssymbuf;
7159}
7160
7161/* Check if 2 sections define the same set of local and global
7162 symbols. */
7163
7164static bfd_boolean
7165bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7166 struct bfd_link_info *info)
7167{
7168 bfd *bfd1, *bfd2;
7169 const struct elf_backend_data *bed1, *bed2;
7170 Elf_Internal_Shdr *hdr1, *hdr2;
7171 bfd_size_type symcount1, symcount2;
7172 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7173 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7174 Elf_Internal_Sym *isym, *isymend;
7175 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7176 bfd_size_type count1, count2, i;
7177 unsigned int shndx1, shndx2;
7178 bfd_boolean result;
7179
7180 bfd1 = sec1->owner;
7181 bfd2 = sec2->owner;
7182
7183 /* Both sections have to be in ELF. */
7184 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7185 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7186 return FALSE;
7187
7188 if (elf_section_type (sec1) != elf_section_type (sec2))
7189 return FALSE;
7190
7191 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7192 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7193 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7194 return FALSE;
7195
7196 bed1 = get_elf_backend_data (bfd1);
7197 bed2 = get_elf_backend_data (bfd2);
7198 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7199 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7200 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7201 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7202
7203 if (symcount1 == 0 || symcount2 == 0)
7204 return FALSE;
7205
7206 result = FALSE;
7207 isymbuf1 = NULL;
7208 isymbuf2 = NULL;
7209 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7210 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7211
7212 if (ssymbuf1 == NULL)
7213 {
7214 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7215 NULL, NULL, NULL);
7216 if (isymbuf1 == NULL)
7217 goto done;
7218
7219 if (!info->reduce_memory_overheads)
7220 elf_tdata (bfd1)->symbuf = ssymbuf1
7221 = elf_create_symbuf (symcount1, isymbuf1);
7222 }
7223
7224 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7225 {
7226 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7227 NULL, NULL, NULL);
7228 if (isymbuf2 == NULL)
7229 goto done;
7230
7231 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7232 elf_tdata (bfd2)->symbuf = ssymbuf2
7233 = elf_create_symbuf (symcount2, isymbuf2);
7234 }
7235
7236 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7237 {
7238 /* Optimized faster version. */
7239 bfd_size_type lo, hi, mid;
7240 struct elf_symbol *symp;
7241 struct elf_symbuf_symbol *ssym, *ssymend;
7242
7243 lo = 0;
7244 hi = ssymbuf1->count;
7245 ssymbuf1++;
7246 count1 = 0;
7247 while (lo < hi)
7248 {
7249 mid = (lo + hi) / 2;
7250 if (shndx1 < ssymbuf1[mid].st_shndx)
7251 hi = mid;
7252 else if (shndx1 > ssymbuf1[mid].st_shndx)
7253 lo = mid + 1;
7254 else
7255 {
7256 count1 = ssymbuf1[mid].count;
7257 ssymbuf1 += mid;
7258 break;
7259 }
7260 }
7261
7262 lo = 0;
7263 hi = ssymbuf2->count;
7264 ssymbuf2++;
7265 count2 = 0;
7266 while (lo < hi)
7267 {
7268 mid = (lo + hi) / 2;
7269 if (shndx2 < ssymbuf2[mid].st_shndx)
7270 hi = mid;
7271 else if (shndx2 > ssymbuf2[mid].st_shndx)
7272 lo = mid + 1;
7273 else
7274 {
7275 count2 = ssymbuf2[mid].count;
7276 ssymbuf2 += mid;
7277 break;
7278 }
7279 }
7280
7281 if (count1 == 0 || count2 == 0 || count1 != count2)
7282 goto done;
7283
7284 symtable1 = (struct elf_symbol *)
7285 bfd_malloc (count1 * sizeof (struct elf_symbol));
7286 symtable2 = (struct elf_symbol *)
7287 bfd_malloc (count2 * sizeof (struct elf_symbol));
7288 if (symtable1 == NULL || symtable2 == NULL)
7289 goto done;
7290
7291 symp = symtable1;
7292 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7293 ssym < ssymend; ssym++, symp++)
7294 {
7295 symp->u.ssym = ssym;
7296 symp->name = bfd_elf_string_from_elf_section (bfd1,
7297 hdr1->sh_link,
7298 ssym->st_name);
7299 }
7300
7301 symp = symtable2;
7302 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7303 ssym < ssymend; ssym++, symp++)
7304 {
7305 symp->u.ssym = ssym;
7306 symp->name = bfd_elf_string_from_elf_section (bfd2,
7307 hdr2->sh_link,
7308 ssym->st_name);
7309 }
7310
7311 /* Sort symbol by name. */
7312 qsort (symtable1, count1, sizeof (struct elf_symbol),
7313 elf_sym_name_compare);
7314 qsort (symtable2, count1, sizeof (struct elf_symbol),
7315 elf_sym_name_compare);
7316
7317 for (i = 0; i < count1; i++)
7318 /* Two symbols must have the same binding, type and name. */
7319 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7320 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7321 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7322 goto done;
7323
7324 result = TRUE;
7325 goto done;
7326 }
7327
7328 symtable1 = (struct elf_symbol *)
7329 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7330 symtable2 = (struct elf_symbol *)
7331 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7332 if (symtable1 == NULL || symtable2 == NULL)
7333 goto done;
7334
7335 /* Count definitions in the section. */
7336 count1 = 0;
7337 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7338 if (isym->st_shndx == shndx1)
7339 symtable1[count1++].u.isym = isym;
7340
7341 count2 = 0;
7342 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7343 if (isym->st_shndx == shndx2)
7344 symtable2[count2++].u.isym = isym;
7345
7346 if (count1 == 0 || count2 == 0 || count1 != count2)
7347 goto done;
7348
7349 for (i = 0; i < count1; i++)
7350 symtable1[i].name
7351 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7352 symtable1[i].u.isym->st_name);
7353
7354 for (i = 0; i < count2; i++)
7355 symtable2[i].name
7356 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7357 symtable2[i].u.isym->st_name);
7358
7359 /* Sort symbol by name. */
7360 qsort (symtable1, count1, sizeof (struct elf_symbol),
7361 elf_sym_name_compare);
7362 qsort (symtable2, count1, sizeof (struct elf_symbol),
7363 elf_sym_name_compare);
7364
7365 for (i = 0; i < count1; i++)
7366 /* Two symbols must have the same binding, type and name. */
7367 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7368 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7369 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7370 goto done;
7371
7372 result = TRUE;
7373
7374done:
7375 if (symtable1)
7376 free (symtable1);
7377 if (symtable2)
7378 free (symtable2);
7379 if (isymbuf1)
7380 free (isymbuf1);
7381 if (isymbuf2)
7382 free (isymbuf2);
7383
7384 return result;
7385}
7386
7387/* Return TRUE if 2 section types are compatible. */
7388
7389bfd_boolean
7390_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7391 bfd *bbfd, const asection *bsec)
7392{
7393 if (asec == NULL
7394 || bsec == NULL
7395 || abfd->xvec->flavour != bfd_target_elf_flavour
7396 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7397 return TRUE;
7398
7399 return elf_section_type (asec) == elf_section_type (bsec);
7400}
7401\f
7402/* Final phase of ELF linker. */
7403
7404/* A structure we use to avoid passing large numbers of arguments. */
7405
7406struct elf_final_link_info
7407{
7408 /* General link information. */
7409 struct bfd_link_info *info;
7410 /* Output BFD. */
7411 bfd *output_bfd;
7412 /* Symbol string table. */
7413 struct bfd_strtab_hash *symstrtab;
7414 /* .dynsym section. */
7415 asection *dynsym_sec;
7416 /* .hash section. */
7417 asection *hash_sec;
7418 /* symbol version section (.gnu.version). */
7419 asection *symver_sec;
7420 /* Buffer large enough to hold contents of any section. */
7421 bfd_byte *contents;
7422 /* Buffer large enough to hold external relocs of any section. */
7423 void *external_relocs;
7424 /* Buffer large enough to hold internal relocs of any section. */
7425 Elf_Internal_Rela *internal_relocs;
7426 /* Buffer large enough to hold external local symbols of any input
7427 BFD. */
7428 bfd_byte *external_syms;
7429 /* And a buffer for symbol section indices. */
7430 Elf_External_Sym_Shndx *locsym_shndx;
7431 /* Buffer large enough to hold internal local symbols of any input
7432 BFD. */
7433 Elf_Internal_Sym *internal_syms;
7434 /* Array large enough to hold a symbol index for each local symbol
7435 of any input BFD. */
7436 long *indices;
7437 /* Array large enough to hold a section pointer for each local
7438 symbol of any input BFD. */
7439 asection **sections;
7440 /* Buffer to hold swapped out symbols. */
7441 bfd_byte *symbuf;
7442 /* And one for symbol section indices. */
7443 Elf_External_Sym_Shndx *symshndxbuf;
7444 /* Number of swapped out symbols in buffer. */
7445 size_t symbuf_count;
7446 /* Number of symbols which fit in symbuf. */
7447 size_t symbuf_size;
7448 /* And same for symshndxbuf. */
7449 size_t shndxbuf_size;
7450 /* Number of STT_FILE syms seen. */
7451 size_t filesym_count;
7452};
7453
7454/* This struct is used to pass information to elf_link_output_extsym. */
7455
7456struct elf_outext_info
7457{
7458 bfd_boolean failed;
7459 bfd_boolean localsyms;
7460 bfd_boolean need_second_pass;
7461 bfd_boolean second_pass;
7462 bfd_boolean file_sym_done;
7463 struct elf_final_link_info *flinfo;
7464};
7465
7466
7467/* Support for evaluating a complex relocation.
7468
7469 Complex relocations are generalized, self-describing relocations. The
7470 implementation of them consists of two parts: complex symbols, and the
7471 relocations themselves.
7472
7473 The relocations are use a reserved elf-wide relocation type code (R_RELC
7474 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7475 information (start bit, end bit, word width, etc) into the addend. This
7476 information is extracted from CGEN-generated operand tables within gas.
7477
7478 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7479 internal) representing prefix-notation expressions, including but not
7480 limited to those sorts of expressions normally encoded as addends in the
7481 addend field. The symbol mangling format is:
7482
7483 <node> := <literal>
7484 | <unary-operator> ':' <node>
7485 | <binary-operator> ':' <node> ':' <node>
7486 ;
7487
7488 <literal> := 's' <digits=N> ':' <N character symbol name>
7489 | 'S' <digits=N> ':' <N character section name>
7490 | '#' <hexdigits>
7491 ;
7492
7493 <binary-operator> := as in C
7494 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7495
7496static void
7497set_symbol_value (bfd *bfd_with_globals,
7498 Elf_Internal_Sym *isymbuf,
7499 size_t locsymcount,
7500 size_t symidx,
7501 bfd_vma val)
7502{
7503 struct elf_link_hash_entry **sym_hashes;
7504 struct elf_link_hash_entry *h;
7505 size_t extsymoff = locsymcount;
7506
7507 if (symidx < locsymcount)
7508 {
7509 Elf_Internal_Sym *sym;
7510
7511 sym = isymbuf + symidx;
7512 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7513 {
7514 /* It is a local symbol: move it to the
7515 "absolute" section and give it a value. */
7516 sym->st_shndx = SHN_ABS;
7517 sym->st_value = val;
7518 return;
7519 }
7520 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7521 extsymoff = 0;
7522 }
7523
7524 /* It is a global symbol: set its link type
7525 to "defined" and give it a value. */
7526
7527 sym_hashes = elf_sym_hashes (bfd_with_globals);
7528 h = sym_hashes [symidx - extsymoff];
7529 while (h->root.type == bfd_link_hash_indirect
7530 || h->root.type == bfd_link_hash_warning)
7531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7532 h->root.type = bfd_link_hash_defined;
7533 h->root.u.def.value = val;
7534 h->root.u.def.section = bfd_abs_section_ptr;
7535}
7536
7537static bfd_boolean
7538resolve_symbol (const char *name,
7539 bfd *input_bfd,
7540 struct elf_final_link_info *flinfo,
7541 bfd_vma *result,
7542 Elf_Internal_Sym *isymbuf,
7543 size_t locsymcount)
7544{
7545 Elf_Internal_Sym *sym;
7546 struct bfd_link_hash_entry *global_entry;
7547 const char *candidate = NULL;
7548 Elf_Internal_Shdr *symtab_hdr;
7549 size_t i;
7550
7551 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7552
7553 for (i = 0; i < locsymcount; ++ i)
7554 {
7555 sym = isymbuf + i;
7556
7557 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7558 continue;
7559
7560 candidate = bfd_elf_string_from_elf_section (input_bfd,
7561 symtab_hdr->sh_link,
7562 sym->st_name);
7563#ifdef DEBUG
7564 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7565 name, candidate, (unsigned long) sym->st_value);
7566#endif
7567 if (candidate && strcmp (candidate, name) == 0)
7568 {
7569 asection *sec = flinfo->sections [i];
7570
7571 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7572 *result += sec->output_offset + sec->output_section->vma;
7573#ifdef DEBUG
7574 printf ("Found symbol with value %8.8lx\n",
7575 (unsigned long) *result);
7576#endif
7577 return TRUE;
7578 }
7579 }
7580
7581 /* Hmm, haven't found it yet. perhaps it is a global. */
7582 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7583 FALSE, FALSE, TRUE);
7584 if (!global_entry)
7585 return FALSE;
7586
7587 if (global_entry->type == bfd_link_hash_defined
7588 || global_entry->type == bfd_link_hash_defweak)
7589 {
7590 *result = (global_entry->u.def.value
7591 + global_entry->u.def.section->output_section->vma
7592 + global_entry->u.def.section->output_offset);
7593#ifdef DEBUG
7594 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7595 global_entry->root.string, (unsigned long) *result);
7596#endif
7597 return TRUE;
7598 }
7599
7600 return FALSE;
7601}
7602
7603static bfd_boolean
7604resolve_section (const char *name,
7605 asection *sections,
7606 bfd_vma *result)
7607{
7608 asection *curr;
7609 unsigned int len;
7610
7611 for (curr = sections; curr; curr = curr->next)
7612 if (strcmp (curr->name, name) == 0)
7613 {
7614 *result = curr->vma;
7615 return TRUE;
7616 }
7617
7618 /* Hmm. still haven't found it. try pseudo-section names. */
7619 for (curr = sections; curr; curr = curr->next)
7620 {
7621 len = strlen (curr->name);
7622 if (len > strlen (name))
7623 continue;
7624
7625 if (strncmp (curr->name, name, len) == 0)
7626 {
7627 if (strncmp (".end", name + len, 4) == 0)
7628 {
7629 *result = curr->vma + curr->size;
7630 return TRUE;
7631 }
7632
7633 /* Insert more pseudo-section names here, if you like. */
7634 }
7635 }
7636
7637 return FALSE;
7638}
7639
7640static void
7641undefined_reference (const char *reftype, const char *name)
7642{
7643 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7644 reftype, name);
7645}
7646
7647static bfd_boolean
7648eval_symbol (bfd_vma *result,
7649 const char **symp,
7650 bfd *input_bfd,
7651 struct elf_final_link_info *flinfo,
7652 bfd_vma dot,
7653 Elf_Internal_Sym *isymbuf,
7654 size_t locsymcount,
7655 int signed_p)
7656{
7657 size_t len;
7658 size_t symlen;
7659 bfd_vma a;
7660 bfd_vma b;
7661 char symbuf[4096];
7662 const char *sym = *symp;
7663 const char *symend;
7664 bfd_boolean symbol_is_section = FALSE;
7665
7666 len = strlen (sym);
7667 symend = sym + len;
7668
7669 if (len < 1 || len > sizeof (symbuf))
7670 {
7671 bfd_set_error (bfd_error_invalid_operation);
7672 return FALSE;
7673 }
7674
7675 switch (* sym)
7676 {
7677 case '.':
7678 *result = dot;
7679 *symp = sym + 1;
7680 return TRUE;
7681
7682 case '#':
7683 ++sym;
7684 *result = strtoul (sym, (char **) symp, 16);
7685 return TRUE;
7686
7687 case 'S':
7688 symbol_is_section = TRUE;
7689 case 's':
7690 ++sym;
7691 symlen = strtol (sym, (char **) symp, 10);
7692 sym = *symp + 1; /* Skip the trailing ':'. */
7693
7694 if (symend < sym || symlen + 1 > sizeof (symbuf))
7695 {
7696 bfd_set_error (bfd_error_invalid_operation);
7697 return FALSE;
7698 }
7699
7700 memcpy (symbuf, sym, symlen);
7701 symbuf[symlen] = '\0';
7702 *symp = sym + symlen;
7703
7704 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7705 the symbol as a section, or vice-versa. so we're pretty liberal in our
7706 interpretation here; section means "try section first", not "must be a
7707 section", and likewise with symbol. */
7708
7709 if (symbol_is_section)
7710 {
7711 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7712 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7713 isymbuf, locsymcount))
7714 {
7715 undefined_reference ("section", symbuf);
7716 return FALSE;
7717 }
7718 }
7719 else
7720 {
7721 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7722 isymbuf, locsymcount)
7723 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7724 result))
7725 {
7726 undefined_reference ("symbol", symbuf);
7727 return FALSE;
7728 }
7729 }
7730
7731 return TRUE;
7732
7733 /* All that remains are operators. */
7734
7735#define UNARY_OP(op) \
7736 if (strncmp (sym, #op, strlen (#op)) == 0) \
7737 { \
7738 sym += strlen (#op); \
7739 if (*sym == ':') \
7740 ++sym; \
7741 *symp = sym; \
7742 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7743 isymbuf, locsymcount, signed_p)) \
7744 return FALSE; \
7745 if (signed_p) \
7746 *result = op ((bfd_signed_vma) a); \
7747 else \
7748 *result = op a; \
7749 return TRUE; \
7750 }
7751
7752#define BINARY_OP(op) \
7753 if (strncmp (sym, #op, strlen (#op)) == 0) \
7754 { \
7755 sym += strlen (#op); \
7756 if (*sym == ':') \
7757 ++sym; \
7758 *symp = sym; \
7759 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7760 isymbuf, locsymcount, signed_p)) \
7761 return FALSE; \
7762 ++*symp; \
7763 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7764 isymbuf, locsymcount, signed_p)) \
7765 return FALSE; \
7766 if (signed_p) \
7767 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7768 else \
7769 *result = a op b; \
7770 return TRUE; \
7771 }
7772
7773 default:
7774 UNARY_OP (0-);
7775 BINARY_OP (<<);
7776 BINARY_OP (>>);
7777 BINARY_OP (==);
7778 BINARY_OP (!=);
7779 BINARY_OP (<=);
7780 BINARY_OP (>=);
7781 BINARY_OP (&&);
7782 BINARY_OP (||);
7783 UNARY_OP (~);
7784 UNARY_OP (!);
7785 BINARY_OP (*);
7786 BINARY_OP (/);
7787 BINARY_OP (%);
7788 BINARY_OP (^);
7789 BINARY_OP (|);
7790 BINARY_OP (&);
7791 BINARY_OP (+);
7792 BINARY_OP (-);
7793 BINARY_OP (<);
7794 BINARY_OP (>);
7795#undef UNARY_OP
7796#undef BINARY_OP
7797 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7798 bfd_set_error (bfd_error_invalid_operation);
7799 return FALSE;
7800 }
7801}
7802
7803static void
7804put_value (bfd_vma size,
7805 unsigned long chunksz,
7806 bfd *input_bfd,
7807 bfd_vma x,
7808 bfd_byte *location)
7809{
7810 location += (size - chunksz);
7811
7812 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7813 {
7814 switch (chunksz)
7815 {
7816 default:
7817 case 0:
7818 abort ();
7819 case 1:
7820 bfd_put_8 (input_bfd, x, location);
7821 break;
7822 case 2:
7823 bfd_put_16 (input_bfd, x, location);
7824 break;
7825 case 4:
7826 bfd_put_32 (input_bfd, x, location);
7827 break;
7828 case 8:
7829#ifdef BFD64
7830 bfd_put_64 (input_bfd, x, location);
7831#else
7832 abort ();
7833#endif
7834 break;
7835 }
7836 }
7837}
7838
7839static bfd_vma
7840get_value (bfd_vma size,
7841 unsigned long chunksz,
7842 bfd *input_bfd,
7843 bfd_byte *location)
7844{
7845 int shift;
7846 bfd_vma x = 0;
7847
7848 /* Sanity checks. */
7849 BFD_ASSERT (chunksz <= sizeof (x)
7850 && size >= chunksz
7851 && chunksz != 0
7852 && (size % chunksz) == 0
7853 && input_bfd != NULL
7854 && location != NULL);
7855
7856 if (chunksz == sizeof (x))
7857 {
7858 BFD_ASSERT (size == chunksz);
7859
7860 /* Make sure that we do not perform an undefined shift operation.
7861 We know that size == chunksz so there will only be one iteration
7862 of the loop below. */
7863 shift = 0;
7864 }
7865 else
7866 shift = 8 * chunksz;
7867
7868 for (; size; size -= chunksz, location += chunksz)
7869 {
7870 switch (chunksz)
7871 {
7872 case 1:
7873 x = (x << shift) | bfd_get_8 (input_bfd, location);
7874 break;
7875 case 2:
7876 x = (x << shift) | bfd_get_16 (input_bfd, location);
7877 break;
7878 case 4:
7879 x = (x << shift) | bfd_get_32 (input_bfd, location);
7880 break;
7881#ifdef BFD64
7882 case 8:
7883 x = (x << shift) | bfd_get_64 (input_bfd, location);
7884 break;
7885#endif
7886 default:
7887 abort ();
7888 }
7889 }
7890 return x;
7891}
7892
7893static void
7894decode_complex_addend (unsigned long *start, /* in bits */
7895 unsigned long *oplen, /* in bits */
7896 unsigned long *len, /* in bits */
7897 unsigned long *wordsz, /* in bytes */
7898 unsigned long *chunksz, /* in bytes */
7899 unsigned long *lsb0_p,
7900 unsigned long *signed_p,
7901 unsigned long *trunc_p,
7902 unsigned long encoded)
7903{
7904 * start = encoded & 0x3F;
7905 * len = (encoded >> 6) & 0x3F;
7906 * oplen = (encoded >> 12) & 0x3F;
7907 * wordsz = (encoded >> 18) & 0xF;
7908 * chunksz = (encoded >> 22) & 0xF;
7909 * lsb0_p = (encoded >> 27) & 1;
7910 * signed_p = (encoded >> 28) & 1;
7911 * trunc_p = (encoded >> 29) & 1;
7912}
7913
7914bfd_reloc_status_type
7915bfd_elf_perform_complex_relocation (bfd *input_bfd,
7916 asection *input_section ATTRIBUTE_UNUSED,
7917 bfd_byte *contents,
7918 Elf_Internal_Rela *rel,
7919 bfd_vma relocation)
7920{
7921 bfd_vma shift, x, mask;
7922 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7923 bfd_reloc_status_type r;
7924
7925 /* Perform this reloc, since it is complex.
7926 (this is not to say that it necessarily refers to a complex
7927 symbol; merely that it is a self-describing CGEN based reloc.
7928 i.e. the addend has the complete reloc information (bit start, end,
7929 word size, etc) encoded within it.). */
7930
7931 decode_complex_addend (&start, &oplen, &len, &wordsz,
7932 &chunksz, &lsb0_p, &signed_p,
7933 &trunc_p, rel->r_addend);
7934
7935 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7936
7937 if (lsb0_p)
7938 shift = (start + 1) - len;
7939 else
7940 shift = (8 * wordsz) - (start + len);
7941
7942 /* FIXME: octets_per_byte. */
7943 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7944
7945#ifdef DEBUG
7946 printf ("Doing complex reloc: "
7947 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7948 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7949 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7950 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7951 oplen, (unsigned long) x, (unsigned long) mask,
7952 (unsigned long) relocation);
7953#endif
7954
7955 r = bfd_reloc_ok;
7956 if (! trunc_p)
7957 /* Now do an overflow check. */
7958 r = bfd_check_overflow ((signed_p
7959 ? complain_overflow_signed
7960 : complain_overflow_unsigned),
7961 len, 0, (8 * wordsz),
7962 relocation);
7963
7964 /* Do the deed. */
7965 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7966
7967#ifdef DEBUG
7968 printf (" relocation: %8.8lx\n"
7969 " shifted mask: %8.8lx\n"
7970 " shifted/masked reloc: %8.8lx\n"
7971 " result: %8.8lx\n",
7972 (unsigned long) relocation, (unsigned long) (mask << shift),
7973 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7974#endif
7975 /* FIXME: octets_per_byte. */
7976 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7977 return r;
7978}
7979
7980/* qsort comparison functions sorting external relocs by r_offset. */
7981
7982static int
7983cmp_ext32l_r_offset (const void *p, const void *q)
7984{
7985 union aligned32
7986 {
7987 uint32_t v;
7988 unsigned char c[4];
7989 };
7990 const union aligned32 *a
7991 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7992 const union aligned32 *b
7993 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7994
7995 uint32_t aval = ( (uint32_t) a->c[0]
7996 | (uint32_t) a->c[1] << 8
7997 | (uint32_t) a->c[2] << 16
7998 | (uint32_t) a->c[3] << 24);
7999 uint32_t bval = ( (uint32_t) b->c[0]
8000 | (uint32_t) b->c[1] << 8
8001 | (uint32_t) b->c[2] << 16
8002 | (uint32_t) b->c[3] << 24);
8003 if (aval < bval)
8004 return -1;
8005 else if (aval > bval)
8006 return 1;
8007 return 0;
8008}
8009
8010static int
8011cmp_ext32b_r_offset (const void *p, const void *q)
8012{
8013 union aligned32
8014 {
8015 uint32_t v;
8016 unsigned char c[4];
8017 };
8018 const union aligned32 *a
8019 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8020 const union aligned32 *b
8021 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8022
8023 uint32_t aval = ( (uint32_t) a->c[0] << 24
8024 | (uint32_t) a->c[1] << 16
8025 | (uint32_t) a->c[2] << 8
8026 | (uint32_t) a->c[3]);
8027 uint32_t bval = ( (uint32_t) b->c[0] << 24
8028 | (uint32_t) b->c[1] << 16
8029 | (uint32_t) b->c[2] << 8
8030 | (uint32_t) b->c[3]);
8031 if (aval < bval)
8032 return -1;
8033 else if (aval > bval)
8034 return 1;
8035 return 0;
8036}
8037
8038#ifdef BFD_HOST_64_BIT
8039static int
8040cmp_ext64l_r_offset (const void *p, const void *q)
8041{
8042 union aligned64
8043 {
8044 uint64_t v;
8045 unsigned char c[8];
8046 };
8047 const union aligned64 *a
8048 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8049 const union aligned64 *b
8050 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8051
8052 uint64_t aval = ( (uint64_t) a->c[0]
8053 | (uint64_t) a->c[1] << 8
8054 | (uint64_t) a->c[2] << 16
8055 | (uint64_t) a->c[3] << 24
8056 | (uint64_t) a->c[4] << 32
8057 | (uint64_t) a->c[5] << 40
8058 | (uint64_t) a->c[6] << 48
8059 | (uint64_t) a->c[7] << 56);
8060 uint64_t bval = ( (uint64_t) b->c[0]
8061 | (uint64_t) b->c[1] << 8
8062 | (uint64_t) b->c[2] << 16
8063 | (uint64_t) b->c[3] << 24
8064 | (uint64_t) b->c[4] << 32
8065 | (uint64_t) b->c[5] << 40
8066 | (uint64_t) b->c[6] << 48
8067 | (uint64_t) b->c[7] << 56);
8068 if (aval < bval)
8069 return -1;
8070 else if (aval > bval)
8071 return 1;
8072 return 0;
8073}
8074
8075static int
8076cmp_ext64b_r_offset (const void *p, const void *q)
8077{
8078 union aligned64
8079 {
8080 uint64_t v;
8081 unsigned char c[8];
8082 };
8083 const union aligned64 *a
8084 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8085 const union aligned64 *b
8086 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8087
8088 uint64_t aval = ( (uint64_t) a->c[0] << 56
8089 | (uint64_t) a->c[1] << 48
8090 | (uint64_t) a->c[2] << 40
8091 | (uint64_t) a->c[3] << 32
8092 | (uint64_t) a->c[4] << 24
8093 | (uint64_t) a->c[5] << 16
8094 | (uint64_t) a->c[6] << 8
8095 | (uint64_t) a->c[7]);
8096 uint64_t bval = ( (uint64_t) b->c[0] << 56
8097 | (uint64_t) b->c[1] << 48
8098 | (uint64_t) b->c[2] << 40
8099 | (uint64_t) b->c[3] << 32
8100 | (uint64_t) b->c[4] << 24
8101 | (uint64_t) b->c[5] << 16
8102 | (uint64_t) b->c[6] << 8
8103 | (uint64_t) b->c[7]);
8104 if (aval < bval)
8105 return -1;
8106 else if (aval > bval)
8107 return 1;
8108 return 0;
8109}
8110#endif
8111
8112/* When performing a relocatable link, the input relocations are
8113 preserved. But, if they reference global symbols, the indices
8114 referenced must be updated. Update all the relocations found in
8115 RELDATA. */
8116
8117static void
8118elf_link_adjust_relocs (bfd *abfd,
8119 struct bfd_elf_section_reloc_data *reldata,
8120 bfd_boolean sort)
8121{
8122 unsigned int i;
8123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8124 bfd_byte *erela;
8125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8126 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8127 bfd_vma r_type_mask;
8128 int r_sym_shift;
8129 unsigned int count = reldata->count;
8130 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8131
8132 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8133 {
8134 swap_in = bed->s->swap_reloc_in;
8135 swap_out = bed->s->swap_reloc_out;
8136 }
8137 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8138 {
8139 swap_in = bed->s->swap_reloca_in;
8140 swap_out = bed->s->swap_reloca_out;
8141 }
8142 else
8143 abort ();
8144
8145 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8146 abort ();
8147
8148 if (bed->s->arch_size == 32)
8149 {
8150 r_type_mask = 0xff;
8151 r_sym_shift = 8;
8152 }
8153 else
8154 {
8155 r_type_mask = 0xffffffff;
8156 r_sym_shift = 32;
8157 }
8158
8159 erela = reldata->hdr->contents;
8160 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8161 {
8162 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8163 unsigned int j;
8164
8165 if (*rel_hash == NULL)
8166 continue;
8167
8168 BFD_ASSERT ((*rel_hash)->indx >= 0);
8169
8170 (*swap_in) (abfd, erela, irela);
8171 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8172 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8173 | (irela[j].r_info & r_type_mask));
8174 (*swap_out) (abfd, irela, erela);
8175 }
8176
8177 if (sort)
8178 {
8179 int (*compare) (const void *, const void *);
8180
8181 if (bed->s->arch_size == 32)
8182 {
8183 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8184 compare = cmp_ext32l_r_offset;
8185 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8186 compare = cmp_ext32b_r_offset;
8187 else
8188 abort ();
8189 }
8190 else
8191 {
8192#ifdef BFD_HOST_64_BIT
8193 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8194 compare = cmp_ext64l_r_offset;
8195 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8196 compare = cmp_ext64b_r_offset;
8197 else
8198#endif
8199 abort ();
8200 }
8201 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8202 free (reldata->hashes);
8203 reldata->hashes = NULL;
8204 }
8205}
8206
8207struct elf_link_sort_rela
8208{
8209 union {
8210 bfd_vma offset;
8211 bfd_vma sym_mask;
8212 } u;
8213 enum elf_reloc_type_class type;
8214 /* We use this as an array of size int_rels_per_ext_rel. */
8215 Elf_Internal_Rela rela[1];
8216};
8217
8218static int
8219elf_link_sort_cmp1 (const void *A, const void *B)
8220{
8221 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8222 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8223 int relativea, relativeb;
8224
8225 relativea = a->type == reloc_class_relative;
8226 relativeb = b->type == reloc_class_relative;
8227
8228 if (relativea < relativeb)
8229 return 1;
8230 if (relativea > relativeb)
8231 return -1;
8232 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8233 return -1;
8234 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8235 return 1;
8236 if (a->rela->r_offset < b->rela->r_offset)
8237 return -1;
8238 if (a->rela->r_offset > b->rela->r_offset)
8239 return 1;
8240 return 0;
8241}
8242
8243static int
8244elf_link_sort_cmp2 (const void *A, const void *B)
8245{
8246 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8247 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8248
8249 if (a->type < b->type)
8250 return -1;
8251 if (a->type > b->type)
8252 return 1;
8253 if (a->u.offset < b->u.offset)
8254 return -1;
8255 if (a->u.offset > b->u.offset)
8256 return 1;
8257 if (a->rela->r_offset < b->rela->r_offset)
8258 return -1;
8259 if (a->rela->r_offset > b->rela->r_offset)
8260 return 1;
8261 return 0;
8262}
8263
8264static size_t
8265elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8266{
8267 asection *dynamic_relocs;
8268 asection *rela_dyn;
8269 asection *rel_dyn;
8270 bfd_size_type count, size;
8271 size_t i, ret, sort_elt, ext_size;
8272 bfd_byte *sort, *s_non_relative, *p;
8273 struct elf_link_sort_rela *sq;
8274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8275 int i2e = bed->s->int_rels_per_ext_rel;
8276 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8277 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8278 struct bfd_link_order *lo;
8279 bfd_vma r_sym_mask;
8280 bfd_boolean use_rela;
8281
8282 /* Find a dynamic reloc section. */
8283 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8284 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8285 if (rela_dyn != NULL && rela_dyn->size > 0
8286 && rel_dyn != NULL && rel_dyn->size > 0)
8287 {
8288 bfd_boolean use_rela_initialised = FALSE;
8289
8290 /* This is just here to stop gcc from complaining.
8291 It's initialization checking code is not perfect. */
8292 use_rela = TRUE;
8293
8294 /* Both sections are present. Examine the sizes
8295 of the indirect sections to help us choose. */
8296 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8297 if (lo->type == bfd_indirect_link_order)
8298 {
8299 asection *o = lo->u.indirect.section;
8300
8301 if ((o->size % bed->s->sizeof_rela) == 0)
8302 {
8303 if ((o->size % bed->s->sizeof_rel) == 0)
8304 /* Section size is divisible by both rel and rela sizes.
8305 It is of no help to us. */
8306 ;
8307 else
8308 {
8309 /* Section size is only divisible by rela. */
8310 if (use_rela_initialised && (use_rela == FALSE))
8311 {
8312 _bfd_error_handler
8313 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8314 bfd_set_error (bfd_error_invalid_operation);
8315 return 0;
8316 }
8317 else
8318 {
8319 use_rela = TRUE;
8320 use_rela_initialised = TRUE;
8321 }
8322 }
8323 }
8324 else if ((o->size % bed->s->sizeof_rel) == 0)
8325 {
8326 /* Section size is only divisible by rel. */
8327 if (use_rela_initialised && (use_rela == TRUE))
8328 {
8329 _bfd_error_handler
8330 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8331 bfd_set_error (bfd_error_invalid_operation);
8332 return 0;
8333 }
8334 else
8335 {
8336 use_rela = FALSE;
8337 use_rela_initialised = TRUE;
8338 }
8339 }
8340 else
8341 {
8342 /* The section size is not divisible by either - something is wrong. */
8343 _bfd_error_handler
8344 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8345 bfd_set_error (bfd_error_invalid_operation);
8346 return 0;
8347 }
8348 }
8349
8350 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8351 if (lo->type == bfd_indirect_link_order)
8352 {
8353 asection *o = lo->u.indirect.section;
8354
8355 if ((o->size % bed->s->sizeof_rela) == 0)
8356 {
8357 if ((o->size % bed->s->sizeof_rel) == 0)
8358 /* Section size is divisible by both rel and rela sizes.
8359 It is of no help to us. */
8360 ;
8361 else
8362 {
8363 /* Section size is only divisible by rela. */
8364 if (use_rela_initialised && (use_rela == FALSE))
8365 {
8366 _bfd_error_handler
8367 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8368 bfd_set_error (bfd_error_invalid_operation);
8369 return 0;
8370 }
8371 else
8372 {
8373 use_rela = TRUE;
8374 use_rela_initialised = TRUE;
8375 }
8376 }
8377 }
8378 else if ((o->size % bed->s->sizeof_rel) == 0)
8379 {
8380 /* Section size is only divisible by rel. */
8381 if (use_rela_initialised && (use_rela == TRUE))
8382 {
8383 _bfd_error_handler
8384 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8385 bfd_set_error (bfd_error_invalid_operation);
8386 return 0;
8387 }
8388 else
8389 {
8390 use_rela = FALSE;
8391 use_rela_initialised = TRUE;
8392 }
8393 }
8394 else
8395 {
8396 /* The section size is not divisible by either - something is wrong. */
8397 _bfd_error_handler
8398 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8399 bfd_set_error (bfd_error_invalid_operation);
8400 return 0;
8401 }
8402 }
8403
8404 if (! use_rela_initialised)
8405 /* Make a guess. */
8406 use_rela = TRUE;
8407 }
8408 else if (rela_dyn != NULL && rela_dyn->size > 0)
8409 use_rela = TRUE;
8410 else if (rel_dyn != NULL && rel_dyn->size > 0)
8411 use_rela = FALSE;
8412 else
8413 return 0;
8414
8415 if (use_rela)
8416 {
8417 dynamic_relocs = rela_dyn;
8418 ext_size = bed->s->sizeof_rela;
8419 swap_in = bed->s->swap_reloca_in;
8420 swap_out = bed->s->swap_reloca_out;
8421 }
8422 else
8423 {
8424 dynamic_relocs = rel_dyn;
8425 ext_size = bed->s->sizeof_rel;
8426 swap_in = bed->s->swap_reloc_in;
8427 swap_out = bed->s->swap_reloc_out;
8428 }
8429
8430 size = 0;
8431 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8432 if (lo->type == bfd_indirect_link_order)
8433 size += lo->u.indirect.section->size;
8434
8435 if (size != dynamic_relocs->size)
8436 return 0;
8437
8438 sort_elt = (sizeof (struct elf_link_sort_rela)
8439 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8440
8441 count = dynamic_relocs->size / ext_size;
8442 if (count == 0)
8443 return 0;
8444 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8445
8446 if (sort == NULL)
8447 {
8448 (*info->callbacks->warning)
8449 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8450 return 0;
8451 }
8452
8453 if (bed->s->arch_size == 32)
8454 r_sym_mask = ~(bfd_vma) 0xff;
8455 else
8456 r_sym_mask = ~(bfd_vma) 0xffffffff;
8457
8458 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8459 if (lo->type == bfd_indirect_link_order)
8460 {
8461 bfd_byte *erel, *erelend;
8462 asection *o = lo->u.indirect.section;
8463
8464 if (o->contents == NULL && o->size != 0)
8465 {
8466 /* This is a reloc section that is being handled as a normal
8467 section. See bfd_section_from_shdr. We can't combine
8468 relocs in this case. */
8469 free (sort);
8470 return 0;
8471 }
8472 erel = o->contents;
8473 erelend = o->contents + o->size;
8474 /* FIXME: octets_per_byte. */
8475 p = sort + o->output_offset / ext_size * sort_elt;
8476
8477 while (erel < erelend)
8478 {
8479 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8480
8481 (*swap_in) (abfd, erel, s->rela);
8482 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8483 s->u.sym_mask = r_sym_mask;
8484 p += sort_elt;
8485 erel += ext_size;
8486 }
8487 }
8488
8489 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8490
8491 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8492 {
8493 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8494 if (s->type != reloc_class_relative)
8495 break;
8496 }
8497 ret = i;
8498 s_non_relative = p;
8499
8500 sq = (struct elf_link_sort_rela *) s_non_relative;
8501 for (; i < count; i++, p += sort_elt)
8502 {
8503 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8504 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8505 sq = sp;
8506 sp->u.offset = sq->rela->r_offset;
8507 }
8508
8509 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8510
8511 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8512 if (lo->type == bfd_indirect_link_order)
8513 {
8514 bfd_byte *erel, *erelend;
8515 asection *o = lo->u.indirect.section;
8516
8517 erel = o->contents;
8518 erelend = o->contents + o->size;
8519 /* FIXME: octets_per_byte. */
8520 p = sort + o->output_offset / ext_size * sort_elt;
8521 while (erel < erelend)
8522 {
8523 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8524 (*swap_out) (abfd, s->rela, erel);
8525 p += sort_elt;
8526 erel += ext_size;
8527 }
8528 }
8529
8530 free (sort);
8531 *psec = dynamic_relocs;
8532 return ret;
8533}
8534
8535/* Flush the output symbols to the file. */
8536
8537static bfd_boolean
8538elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8539 const struct elf_backend_data *bed)
8540{
8541 if (flinfo->symbuf_count > 0)
8542 {
8543 Elf_Internal_Shdr *hdr;
8544 file_ptr pos;
8545 bfd_size_type amt;
8546
8547 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8548 pos = hdr->sh_offset + hdr->sh_size;
8549 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8550 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8551 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8552 return FALSE;
8553
8554 hdr->sh_size += amt;
8555 flinfo->symbuf_count = 0;
8556 }
8557
8558 return TRUE;
8559}
8560
8561/* Add a symbol to the output symbol table. */
8562
8563static int
8564elf_link_output_sym (struct elf_final_link_info *flinfo,
8565 const char *name,
8566 Elf_Internal_Sym *elfsym,
8567 asection *input_sec,
8568 struct elf_link_hash_entry *h)
8569{
8570 bfd_byte *dest;
8571 Elf_External_Sym_Shndx *destshndx;
8572 int (*output_symbol_hook)
8573 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8574 struct elf_link_hash_entry *);
8575 const struct elf_backend_data *bed;
8576
8577 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8578
8579 bed = get_elf_backend_data (flinfo->output_bfd);
8580 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8581 if (output_symbol_hook != NULL)
8582 {
8583 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8584 if (ret != 1)
8585 return ret;
8586 }
8587
8588 if (name == NULL || *name == '\0')
8589 elfsym->st_name = 0;
8590 else if (input_sec->flags & SEC_EXCLUDE)
8591 elfsym->st_name = 0;
8592 else
8593 {
8594 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8595 name, TRUE, FALSE);
8596 if (elfsym->st_name == (unsigned long) -1)
8597 return 0;
8598 }
8599
8600 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8601 {
8602 if (! elf_link_flush_output_syms (flinfo, bed))
8603 return 0;
8604 }
8605
8606 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8607 destshndx = flinfo->symshndxbuf;
8608 if (destshndx != NULL)
8609 {
8610 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8611 {
8612 bfd_size_type amt;
8613
8614 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8615 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8616 amt * 2);
8617 if (destshndx == NULL)
8618 return 0;
8619 flinfo->symshndxbuf = destshndx;
8620 memset ((char *) destshndx + amt, 0, amt);
8621 flinfo->shndxbuf_size *= 2;
8622 }
8623 destshndx += bfd_get_symcount (flinfo->output_bfd);
8624 }
8625
8626 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8627 flinfo->symbuf_count += 1;
8628 bfd_get_symcount (flinfo->output_bfd) += 1;
8629
8630 return 1;
8631}
8632
8633/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8634
8635static bfd_boolean
8636check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8637{
8638 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8639 && sym->st_shndx < SHN_LORESERVE)
8640 {
8641 /* The gABI doesn't support dynamic symbols in output sections
8642 beyond 64k. */
8643 (*_bfd_error_handler)
8644 (_("%B: Too many sections: %d (>= %d)"),
8645 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8646 bfd_set_error (bfd_error_nonrepresentable_section);
8647 return FALSE;
8648 }
8649 return TRUE;
8650}
8651
8652/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8653 allowing an unsatisfied unversioned symbol in the DSO to match a
8654 versioned symbol that would normally require an explicit version.
8655 We also handle the case that a DSO references a hidden symbol
8656 which may be satisfied by a versioned symbol in another DSO. */
8657
8658static bfd_boolean
8659elf_link_check_versioned_symbol (struct bfd_link_info *info,
8660 const struct elf_backend_data *bed,
8661 struct elf_link_hash_entry *h)
8662{
8663 bfd *abfd;
8664 struct elf_link_loaded_list *loaded;
8665
8666 if (!is_elf_hash_table (info->hash))
8667 return FALSE;
8668
8669 /* Check indirect symbol. */
8670 while (h->root.type == bfd_link_hash_indirect)
8671 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8672
8673 switch (h->root.type)
8674 {
8675 default:
8676 abfd = NULL;
8677 break;
8678
8679 case bfd_link_hash_undefined:
8680 case bfd_link_hash_undefweak:
8681 abfd = h->root.u.undef.abfd;
8682 if ((abfd->flags & DYNAMIC) == 0
8683 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8684 return FALSE;
8685 break;
8686
8687 case bfd_link_hash_defined:
8688 case bfd_link_hash_defweak:
8689 abfd = h->root.u.def.section->owner;
8690 break;
8691
8692 case bfd_link_hash_common:
8693 abfd = h->root.u.c.p->section->owner;
8694 break;
8695 }
8696 BFD_ASSERT (abfd != NULL);
8697
8698 for (loaded = elf_hash_table (info)->loaded;
8699 loaded != NULL;
8700 loaded = loaded->next)
8701 {
8702 bfd *input;
8703 Elf_Internal_Shdr *hdr;
8704 bfd_size_type symcount;
8705 bfd_size_type extsymcount;
8706 bfd_size_type extsymoff;
8707 Elf_Internal_Shdr *versymhdr;
8708 Elf_Internal_Sym *isym;
8709 Elf_Internal_Sym *isymend;
8710 Elf_Internal_Sym *isymbuf;
8711 Elf_External_Versym *ever;
8712 Elf_External_Versym *extversym;
8713
8714 input = loaded->abfd;
8715
8716 /* We check each DSO for a possible hidden versioned definition. */
8717 if (input == abfd
8718 || (input->flags & DYNAMIC) == 0
8719 || elf_dynversym (input) == 0)
8720 continue;
8721
8722 hdr = &elf_tdata (input)->dynsymtab_hdr;
8723
8724 symcount = hdr->sh_size / bed->s->sizeof_sym;
8725 if (elf_bad_symtab (input))
8726 {
8727 extsymcount = symcount;
8728 extsymoff = 0;
8729 }
8730 else
8731 {
8732 extsymcount = symcount - hdr->sh_info;
8733 extsymoff = hdr->sh_info;
8734 }
8735
8736 if (extsymcount == 0)
8737 continue;
8738
8739 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8740 NULL, NULL, NULL);
8741 if (isymbuf == NULL)
8742 return FALSE;
8743
8744 /* Read in any version definitions. */
8745 versymhdr = &elf_tdata (input)->dynversym_hdr;
8746 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8747 if (extversym == NULL)
8748 goto error_ret;
8749
8750 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8751 || (bfd_bread (extversym, versymhdr->sh_size, input)
8752 != versymhdr->sh_size))
8753 {
8754 free (extversym);
8755 error_ret:
8756 free (isymbuf);
8757 return FALSE;
8758 }
8759
8760 ever = extversym + extsymoff;
8761 isymend = isymbuf + extsymcount;
8762 for (isym = isymbuf; isym < isymend; isym++, ever++)
8763 {
8764 const char *name;
8765 Elf_Internal_Versym iver;
8766 unsigned short version_index;
8767
8768 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8769 || isym->st_shndx == SHN_UNDEF)
8770 continue;
8771
8772 name = bfd_elf_string_from_elf_section (input,
8773 hdr->sh_link,
8774 isym->st_name);
8775 if (strcmp (name, h->root.root.string) != 0)
8776 continue;
8777
8778 _bfd_elf_swap_versym_in (input, ever, &iver);
8779
8780 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8781 && !(h->def_regular
8782 && h->forced_local))
8783 {
8784 /* If we have a non-hidden versioned sym, then it should
8785 have provided a definition for the undefined sym unless
8786 it is defined in a non-shared object and forced local.
8787 */
8788 abort ();
8789 }
8790
8791 version_index = iver.vs_vers & VERSYM_VERSION;
8792 if (version_index == 1 || version_index == 2)
8793 {
8794 /* This is the base or first version. We can use it. */
8795 free (extversym);
8796 free (isymbuf);
8797 return TRUE;
8798 }
8799 }
8800
8801 free (extversym);
8802 free (isymbuf);
8803 }
8804
8805 return FALSE;
8806}
8807
8808/* Add an external symbol to the symbol table. This is called from
8809 the hash table traversal routine. When generating a shared object,
8810 we go through the symbol table twice. The first time we output
8811 anything that might have been forced to local scope in a version
8812 script. The second time we output the symbols that are still
8813 global symbols. */
8814
8815static bfd_boolean
8816elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8817{
8818 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8819 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8820 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8821 bfd_boolean strip;
8822 Elf_Internal_Sym sym;
8823 asection *input_sec;
8824 const struct elf_backend_data *bed;
8825 long indx;
8826 int ret;
8827
8828 if (h->root.type == bfd_link_hash_warning)
8829 {
8830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8831 if (h->root.type == bfd_link_hash_new)
8832 return TRUE;
8833 }
8834
8835 /* Decide whether to output this symbol in this pass. */
8836 if (eoinfo->localsyms)
8837 {
8838 if (!h->forced_local)
8839 return TRUE;
8840 if (eoinfo->second_pass
8841 && !((h->root.type == bfd_link_hash_defined
8842 || h->root.type == bfd_link_hash_defweak)
8843 && h->root.u.def.section->output_section != NULL))
8844 return TRUE;
8845
8846 if (!eoinfo->file_sym_done
8847 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8848 : eoinfo->flinfo->filesym_count > 1))
8849 {
8850 /* Output a FILE symbol so that following locals are not associated
8851 with the wrong input file. */
8852 memset (&sym, 0, sizeof (sym));
8853 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8854 sym.st_shndx = SHN_ABS;
8855 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8856 bfd_und_section_ptr, NULL))
8857 return FALSE;
8858
8859 eoinfo->file_sym_done = TRUE;
8860 }
8861 }
8862 else
8863 {
8864 if (h->forced_local)
8865 return TRUE;
8866 }
8867
8868 bed = get_elf_backend_data (flinfo->output_bfd);
8869
8870 if (h->root.type == bfd_link_hash_undefined)
8871 {
8872 /* If we have an undefined symbol reference here then it must have
8873 come from a shared library that is being linked in. (Undefined
8874 references in regular files have already been handled unless
8875 they are in unreferenced sections which are removed by garbage
8876 collection). */
8877 bfd_boolean ignore_undef = FALSE;
8878
8879 /* Some symbols may be special in that the fact that they're
8880 undefined can be safely ignored - let backend determine that. */
8881 if (bed->elf_backend_ignore_undef_symbol)
8882 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8883
8884 /* If we are reporting errors for this situation then do so now. */
8885 if (!ignore_undef
8886 && h->ref_dynamic
8887 && (!h->ref_regular || flinfo->info->gc_sections)
8888 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8889 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8890 {
8891 if (!(flinfo->info->callbacks->undefined_symbol
8892 (flinfo->info, h->root.root.string,
8893 h->ref_regular ? NULL : h->root.u.undef.abfd,
8894 NULL, 0,
8895 (flinfo->info->unresolved_syms_in_shared_libs
8896 == RM_GENERATE_ERROR))))
8897 {
8898 bfd_set_error (bfd_error_bad_value);
8899 eoinfo->failed = TRUE;
8900 return FALSE;
8901 }
8902 }
8903 }
8904
8905 /* We should also warn if a forced local symbol is referenced from
8906 shared libraries. */
8907 if (!flinfo->info->relocatable
8908 && flinfo->info->executable
8909 && h->forced_local
8910 && h->ref_dynamic
8911 && h->def_regular
8912 && !h->dynamic_def
8913 && h->ref_dynamic_nonweak
8914 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8915 {
8916 bfd *def_bfd;
8917 const char *msg;
8918 struct elf_link_hash_entry *hi = h;
8919
8920 /* Check indirect symbol. */
8921 while (hi->root.type == bfd_link_hash_indirect)
8922 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8923
8924 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8925 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8926 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8927 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8928 else
8929 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8930 def_bfd = flinfo->output_bfd;
8931 if (hi->root.u.def.section != bfd_abs_section_ptr)
8932 def_bfd = hi->root.u.def.section->owner;
8933 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8934 h->root.root.string);
8935 bfd_set_error (bfd_error_bad_value);
8936 eoinfo->failed = TRUE;
8937 return FALSE;
8938 }
8939
8940 /* We don't want to output symbols that have never been mentioned by
8941 a regular file, or that we have been told to strip. However, if
8942 h->indx is set to -2, the symbol is used by a reloc and we must
8943 output it. */
8944 if (h->indx == -2)
8945 strip = FALSE;
8946 else if ((h->def_dynamic
8947 || h->ref_dynamic
8948 || h->root.type == bfd_link_hash_new)
8949 && !h->def_regular
8950 && !h->ref_regular)
8951 strip = TRUE;
8952 else if (flinfo->info->strip == strip_all)
8953 strip = TRUE;
8954 else if (flinfo->info->strip == strip_some
8955 && bfd_hash_lookup (flinfo->info->keep_hash,
8956 h->root.root.string, FALSE, FALSE) == NULL)
8957 strip = TRUE;
8958 else if ((h->root.type == bfd_link_hash_defined
8959 || h->root.type == bfd_link_hash_defweak)
8960 && ((flinfo->info->strip_discarded
8961 && discarded_section (h->root.u.def.section))
8962 || (h->root.u.def.section->owner != NULL
8963 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8964 strip = TRUE;
8965 else if ((h->root.type == bfd_link_hash_undefined
8966 || h->root.type == bfd_link_hash_undefweak)
8967 && h->root.u.undef.abfd != NULL
8968 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8969 strip = TRUE;
8970 else
8971 strip = FALSE;
8972
8973 /* If we're stripping it, and it's not a dynamic symbol, there's
8974 nothing else to do unless it is a forced local symbol or a
8975 STT_GNU_IFUNC symbol. */
8976 if (strip
8977 && h->dynindx == -1
8978 && h->type != STT_GNU_IFUNC
8979 && !h->forced_local)
8980 return TRUE;
8981
8982 sym.st_value = 0;
8983 sym.st_size = h->size;
8984 sym.st_other = h->other;
8985 if (h->forced_local)
8986 {
8987 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8988 /* Turn off visibility on local symbol. */
8989 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8990 }
8991 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8992 else if (h->unique_global && h->def_regular)
8993 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8994 else if (h->root.type == bfd_link_hash_undefweak
8995 || h->root.type == bfd_link_hash_defweak)
8996 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8997 else
8998 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8999 sym.st_target_internal = h->target_internal;
9000
9001 switch (h->root.type)
9002 {
9003 default:
9004 case bfd_link_hash_new:
9005 case bfd_link_hash_warning:
9006 abort ();
9007 return FALSE;
9008
9009 case bfd_link_hash_undefined:
9010 case bfd_link_hash_undefweak:
9011 input_sec = bfd_und_section_ptr;
9012 sym.st_shndx = SHN_UNDEF;
9013 break;
9014
9015 case bfd_link_hash_defined:
9016 case bfd_link_hash_defweak:
9017 {
9018 input_sec = h->root.u.def.section;
9019 if (input_sec->output_section != NULL)
9020 {
9021 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9022 {
9023 bfd_boolean second_pass_sym
9024 = (input_sec->owner == flinfo->output_bfd
9025 || input_sec->owner == NULL
9026 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9027 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9028
9029 eoinfo->need_second_pass |= second_pass_sym;
9030 if (eoinfo->second_pass != second_pass_sym)
9031 return TRUE;
9032 }
9033
9034 sym.st_shndx =
9035 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9036 input_sec->output_section);
9037 if (sym.st_shndx == SHN_BAD)
9038 {
9039 (*_bfd_error_handler)
9040 (_("%B: could not find output section %A for input section %A"),
9041 flinfo->output_bfd, input_sec->output_section, input_sec);
9042 bfd_set_error (bfd_error_nonrepresentable_section);
9043 eoinfo->failed = TRUE;
9044 return FALSE;
9045 }
9046
9047 /* ELF symbols in relocatable files are section relative,
9048 but in nonrelocatable files they are virtual
9049 addresses. */
9050 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9051 if (!flinfo->info->relocatable)
9052 {
9053 sym.st_value += input_sec->output_section->vma;
9054 if (h->type == STT_TLS)
9055 {
9056 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9057 if (tls_sec != NULL)
9058 sym.st_value -= tls_sec->vma;
9059 else
9060 {
9061 /* The TLS section may have been garbage collected. */
9062 BFD_ASSERT (flinfo->info->gc_sections
9063 && !input_sec->gc_mark);
9064 }
9065 }
9066 }
9067 }
9068 else
9069 {
9070 BFD_ASSERT (input_sec->owner == NULL
9071 || (input_sec->owner->flags & DYNAMIC) != 0);
9072 sym.st_shndx = SHN_UNDEF;
9073 input_sec = bfd_und_section_ptr;
9074 }
9075 }
9076 break;
9077
9078 case bfd_link_hash_common:
9079 input_sec = h->root.u.c.p->section;
9080 sym.st_shndx = bed->common_section_index (input_sec);
9081 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9082 break;
9083
9084 case bfd_link_hash_indirect:
9085 /* These symbols are created by symbol versioning. They point
9086 to the decorated version of the name. For example, if the
9087 symbol foo@@GNU_1.2 is the default, which should be used when
9088 foo is used with no version, then we add an indirect symbol
9089 foo which points to foo@@GNU_1.2. We ignore these symbols,
9090 since the indirected symbol is already in the hash table. */
9091 return TRUE;
9092 }
9093
9094 /* Give the processor backend a chance to tweak the symbol value,
9095 and also to finish up anything that needs to be done for this
9096 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9097 forced local syms when non-shared is due to a historical quirk.
9098 STT_GNU_IFUNC symbol must go through PLT. */
9099 if ((h->type == STT_GNU_IFUNC
9100 && h->def_regular
9101 && !flinfo->info->relocatable)
9102 || ((h->dynindx != -1
9103 || h->forced_local)
9104 && ((flinfo->info->shared
9105 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9106 || h->root.type != bfd_link_hash_undefweak))
9107 || !h->forced_local)
9108 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9109 {
9110 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9111 (flinfo->output_bfd, flinfo->info, h, &sym)))
9112 {
9113 eoinfo->failed = TRUE;
9114 return FALSE;
9115 }
9116 }
9117
9118 /* If we are marking the symbol as undefined, and there are no
9119 non-weak references to this symbol from a regular object, then
9120 mark the symbol as weak undefined; if there are non-weak
9121 references, mark the symbol as strong. We can't do this earlier,
9122 because it might not be marked as undefined until the
9123 finish_dynamic_symbol routine gets through with it. */
9124 if (sym.st_shndx == SHN_UNDEF
9125 && h->ref_regular
9126 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9127 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9128 {
9129 int bindtype;
9130 unsigned int type = ELF_ST_TYPE (sym.st_info);
9131
9132 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9133 if (type == STT_GNU_IFUNC)
9134 type = STT_FUNC;
9135
9136 if (h->ref_regular_nonweak)
9137 bindtype = STB_GLOBAL;
9138 else
9139 bindtype = STB_WEAK;
9140 sym.st_info = ELF_ST_INFO (bindtype, type);
9141 }
9142
9143 /* If this is a symbol defined in a dynamic library, don't use the
9144 symbol size from the dynamic library. Relinking an executable
9145 against a new library may introduce gratuitous changes in the
9146 executable's symbols if we keep the size. */
9147 if (sym.st_shndx == SHN_UNDEF
9148 && !h->def_regular
9149 && h->def_dynamic)
9150 sym.st_size = 0;
9151
9152 /* If a non-weak symbol with non-default visibility is not defined
9153 locally, it is a fatal error. */
9154 if (!flinfo->info->relocatable
9155 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9156 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9157 && h->root.type == bfd_link_hash_undefined
9158 && !h->def_regular)
9159 {
9160 const char *msg;
9161
9162 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9163 msg = _("%B: protected symbol `%s' isn't defined");
9164 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9165 msg = _("%B: internal symbol `%s' isn't defined");
9166 else
9167 msg = _("%B: hidden symbol `%s' isn't defined");
9168 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9169 bfd_set_error (bfd_error_bad_value);
9170 eoinfo->failed = TRUE;
9171 return FALSE;
9172 }
9173
9174 /* If this symbol should be put in the .dynsym section, then put it
9175 there now. We already know the symbol index. We also fill in
9176 the entry in the .hash section. */
9177 if (flinfo->dynsym_sec != NULL
9178 && h->dynindx != -1
9179 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9180 {
9181 bfd_byte *esym;
9182
9183 /* Since there is no version information in the dynamic string,
9184 if there is no version info in symbol version section, we will
9185 have a run-time problem. */
9186 if (h->verinfo.verdef == NULL)
9187 {
9188 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9189
9190 if (p && p [1] != '\0')
9191 {
9192 (*_bfd_error_handler)
9193 (_("%B: No symbol version section for versioned symbol `%s'"),
9194 flinfo->output_bfd, h->root.root.string);
9195 eoinfo->failed = TRUE;
9196 return FALSE;
9197 }
9198 }
9199
9200 sym.st_name = h->dynstr_index;
9201 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9202 if (!check_dynsym (flinfo->output_bfd, &sym))
9203 {
9204 eoinfo->failed = TRUE;
9205 return FALSE;
9206 }
9207 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9208
9209 if (flinfo->hash_sec != NULL)
9210 {
9211 size_t hash_entry_size;
9212 bfd_byte *bucketpos;
9213 bfd_vma chain;
9214 size_t bucketcount;
9215 size_t bucket;
9216
9217 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9218 bucket = h->u.elf_hash_value % bucketcount;
9219
9220 hash_entry_size
9221 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9222 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9223 + (bucket + 2) * hash_entry_size);
9224 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9225 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9226 bucketpos);
9227 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9228 ((bfd_byte *) flinfo->hash_sec->contents
9229 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9230 }
9231
9232 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9233 {
9234 Elf_Internal_Versym iversym;
9235 Elf_External_Versym *eversym;
9236
9237 if (!h->def_regular)
9238 {
9239 if (h->verinfo.verdef == NULL
9240 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9241 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9242 iversym.vs_vers = 0;
9243 else
9244 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9245 }
9246 else
9247 {
9248 if (h->verinfo.vertree == NULL)
9249 iversym.vs_vers = 1;
9250 else
9251 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9252 if (flinfo->info->create_default_symver)
9253 iversym.vs_vers++;
9254 }
9255
9256 if (h->hidden)
9257 iversym.vs_vers |= VERSYM_HIDDEN;
9258
9259 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9260 eversym += h->dynindx;
9261 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9262 }
9263 }
9264
9265 /* If we're stripping it, then it was just a dynamic symbol, and
9266 there's nothing else to do. */
9267 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9268 return TRUE;
9269
9270 indx = bfd_get_symcount (flinfo->output_bfd);
9271 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9272 if (ret == 0)
9273 {
9274 eoinfo->failed = TRUE;
9275 return FALSE;
9276 }
9277 else if (ret == 1)
9278 h->indx = indx;
9279 else if (h->indx == -2)
9280 abort();
9281
9282 return TRUE;
9283}
9284
9285/* Return TRUE if special handling is done for relocs in SEC against
9286 symbols defined in discarded sections. */
9287
9288static bfd_boolean
9289elf_section_ignore_discarded_relocs (asection *sec)
9290{
9291 const struct elf_backend_data *bed;
9292
9293 switch (sec->sec_info_type)
9294 {
9295 case SEC_INFO_TYPE_STABS:
9296 case SEC_INFO_TYPE_EH_FRAME:
9297 return TRUE;
9298 default:
9299 break;
9300 }
9301
9302 bed = get_elf_backend_data (sec->owner);
9303 if (bed->elf_backend_ignore_discarded_relocs != NULL
9304 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9305 return TRUE;
9306
9307 return FALSE;
9308}
9309
9310/* Return a mask saying how ld should treat relocations in SEC against
9311 symbols defined in discarded sections. If this function returns
9312 COMPLAIN set, ld will issue a warning message. If this function
9313 returns PRETEND set, and the discarded section was link-once and the
9314 same size as the kept link-once section, ld will pretend that the
9315 symbol was actually defined in the kept section. Otherwise ld will
9316 zero the reloc (at least that is the intent, but some cooperation by
9317 the target dependent code is needed, particularly for REL targets). */
9318
9319unsigned int
9320_bfd_elf_default_action_discarded (asection *sec)
9321{
9322 if (sec->flags & SEC_DEBUGGING)
9323 return PRETEND;
9324
9325 if (strcmp (".eh_frame", sec->name) == 0)
9326 return 0;
9327
9328 if (strcmp (".gcc_except_table", sec->name) == 0)
9329 return 0;
9330
9331 return COMPLAIN | PRETEND;
9332}
9333
9334/* Find a match between a section and a member of a section group. */
9335
9336static asection *
9337match_group_member (asection *sec, asection *group,
9338 struct bfd_link_info *info)
9339{
9340 asection *first = elf_next_in_group (group);
9341 asection *s = first;
9342
9343 while (s != NULL)
9344 {
9345 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9346 return s;
9347
9348 s = elf_next_in_group (s);
9349 if (s == first)
9350 break;
9351 }
9352
9353 return NULL;
9354}
9355
9356/* Check if the kept section of a discarded section SEC can be used
9357 to replace it. Return the replacement if it is OK. Otherwise return
9358 NULL. */
9359
9360asection *
9361_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9362{
9363 asection *kept;
9364
9365 kept = sec->kept_section;
9366 if (kept != NULL)
9367 {
9368 if ((kept->flags & SEC_GROUP) != 0)
9369 kept = match_group_member (sec, kept, info);
9370 if (kept != NULL
9371 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9372 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9373 kept = NULL;
9374 sec->kept_section = kept;
9375 }
9376 return kept;
9377}
9378
9379/* Link an input file into the linker output file. This function
9380 handles all the sections and relocations of the input file at once.
9381 This is so that we only have to read the local symbols once, and
9382 don't have to keep them in memory. */
9383
9384static bfd_boolean
9385elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9386{
9387 int (*relocate_section)
9388 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9389 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9390 bfd *output_bfd;
9391 Elf_Internal_Shdr *symtab_hdr;
9392 size_t locsymcount;
9393 size_t extsymoff;
9394 Elf_Internal_Sym *isymbuf;
9395 Elf_Internal_Sym *isym;
9396 Elf_Internal_Sym *isymend;
9397 long *pindex;
9398 asection **ppsection;
9399 asection *o;
9400 const struct elf_backend_data *bed;
9401 struct elf_link_hash_entry **sym_hashes;
9402 bfd_size_type address_size;
9403 bfd_vma r_type_mask;
9404 int r_sym_shift;
9405 bfd_boolean have_file_sym = FALSE;
9406
9407 output_bfd = flinfo->output_bfd;
9408 bed = get_elf_backend_data (output_bfd);
9409 relocate_section = bed->elf_backend_relocate_section;
9410
9411 /* If this is a dynamic object, we don't want to do anything here:
9412 we don't want the local symbols, and we don't want the section
9413 contents. */
9414 if ((input_bfd->flags & DYNAMIC) != 0)
9415 return TRUE;
9416
9417 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9418 if (elf_bad_symtab (input_bfd))
9419 {
9420 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9421 extsymoff = 0;
9422 }
9423 else
9424 {
9425 locsymcount = symtab_hdr->sh_info;
9426 extsymoff = symtab_hdr->sh_info;
9427 }
9428
9429 /* Read the local symbols. */
9430 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9431 if (isymbuf == NULL && locsymcount != 0)
9432 {
9433 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9434 flinfo->internal_syms,
9435 flinfo->external_syms,
9436 flinfo->locsym_shndx);
9437 if (isymbuf == NULL)
9438 return FALSE;
9439 }
9440
9441 /* Find local symbol sections and adjust values of symbols in
9442 SEC_MERGE sections. Write out those local symbols we know are
9443 going into the output file. */
9444 isymend = isymbuf + locsymcount;
9445 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9446 isym < isymend;
9447 isym++, pindex++, ppsection++)
9448 {
9449 asection *isec;
9450 const char *name;
9451 Elf_Internal_Sym osym;
9452 long indx;
9453 int ret;
9454
9455 *pindex = -1;
9456
9457 if (elf_bad_symtab (input_bfd))
9458 {
9459 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9460 {
9461 *ppsection = NULL;
9462 continue;
9463 }
9464 }
9465
9466 if (isym->st_shndx == SHN_UNDEF)
9467 isec = bfd_und_section_ptr;
9468 else if (isym->st_shndx == SHN_ABS)
9469 isec = bfd_abs_section_ptr;
9470 else if (isym->st_shndx == SHN_COMMON)
9471 isec = bfd_com_section_ptr;
9472 else
9473 {
9474 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9475 if (isec == NULL)
9476 {
9477 /* Don't attempt to output symbols with st_shnx in the
9478 reserved range other than SHN_ABS and SHN_COMMON. */
9479 *ppsection = NULL;
9480 continue;
9481 }
9482 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9483 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9484 isym->st_value =
9485 _bfd_merged_section_offset (output_bfd, &isec,
9486 elf_section_data (isec)->sec_info,
9487 isym->st_value);
9488 }
9489
9490 *ppsection = isec;
9491
9492 /* Don't output the first, undefined, symbol. */
9493 if (ppsection == flinfo->sections)
9494 continue;
9495
9496 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9497 {
9498 /* We never output section symbols. Instead, we use the
9499 section symbol of the corresponding section in the output
9500 file. */
9501 continue;
9502 }
9503
9504 /* If we are stripping all symbols, we don't want to output this
9505 one. */
9506 if (flinfo->info->strip == strip_all)
9507 continue;
9508
9509 /* If we are discarding all local symbols, we don't want to
9510 output this one. If we are generating a relocatable output
9511 file, then some of the local symbols may be required by
9512 relocs; we output them below as we discover that they are
9513 needed. */
9514 if (flinfo->info->discard == discard_all)
9515 continue;
9516
9517 /* If this symbol is defined in a section which we are
9518 discarding, we don't need to keep it. */
9519 if (isym->st_shndx != SHN_UNDEF
9520 && isym->st_shndx < SHN_LORESERVE
9521 && bfd_section_removed_from_list (output_bfd,
9522 isec->output_section))
9523 continue;
9524
9525 /* Get the name of the symbol. */
9526 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9527 isym->st_name);
9528 if (name == NULL)
9529 return FALSE;
9530
9531 /* See if we are discarding symbols with this name. */
9532 if ((flinfo->info->strip == strip_some
9533 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9534 == NULL))
9535 || (((flinfo->info->discard == discard_sec_merge
9536 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9537 || flinfo->info->discard == discard_l)
9538 && bfd_is_local_label_name (input_bfd, name)))
9539 continue;
9540
9541 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9542 {
9543 have_file_sym = TRUE;
9544 flinfo->filesym_count += 1;
9545 }
9546 if (!have_file_sym)
9547 {
9548 /* In the absence of debug info, bfd_find_nearest_line uses
9549 FILE symbols to determine the source file for local
9550 function symbols. Provide a FILE symbol here if input
9551 files lack such, so that their symbols won't be
9552 associated with a previous input file. It's not the
9553 source file, but the best we can do. */
9554 have_file_sym = TRUE;
9555 flinfo->filesym_count += 1;
9556 memset (&osym, 0, sizeof (osym));
9557 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9558 osym.st_shndx = SHN_ABS;
9559 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9560 bfd_abs_section_ptr, NULL))
9561 return FALSE;
9562 }
9563
9564 osym = *isym;
9565
9566 /* Adjust the section index for the output file. */
9567 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9568 isec->output_section);
9569 if (osym.st_shndx == SHN_BAD)
9570 return FALSE;
9571
9572 /* ELF symbols in relocatable files are section relative, but
9573 in executable files they are virtual addresses. Note that
9574 this code assumes that all ELF sections have an associated
9575 BFD section with a reasonable value for output_offset; below
9576 we assume that they also have a reasonable value for
9577 output_section. Any special sections must be set up to meet
9578 these requirements. */
9579 osym.st_value += isec->output_offset;
9580 if (!flinfo->info->relocatable)
9581 {
9582 osym.st_value += isec->output_section->vma;
9583 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9584 {
9585 /* STT_TLS symbols are relative to PT_TLS segment base. */
9586 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9587 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9588 }
9589 }
9590
9591 indx = bfd_get_symcount (output_bfd);
9592 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9593 if (ret == 0)
9594 return FALSE;
9595 else if (ret == 1)
9596 *pindex = indx;
9597 }
9598
9599 if (bed->s->arch_size == 32)
9600 {
9601 r_type_mask = 0xff;
9602 r_sym_shift = 8;
9603 address_size = 4;
9604 }
9605 else
9606 {
9607 r_type_mask = 0xffffffff;
9608 r_sym_shift = 32;
9609 address_size = 8;
9610 }
9611
9612 /* Relocate the contents of each section. */
9613 sym_hashes = elf_sym_hashes (input_bfd);
9614 for (o = input_bfd->sections; o != NULL; o = o->next)
9615 {
9616 bfd_byte *contents;
9617
9618 if (! o->linker_mark)
9619 {
9620 /* This section was omitted from the link. */
9621 continue;
9622 }
9623
9624 if (flinfo->info->relocatable
9625 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9626 {
9627 /* Deal with the group signature symbol. */
9628 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9629 unsigned long symndx = sec_data->this_hdr.sh_info;
9630 asection *osec = o->output_section;
9631
9632 if (symndx >= locsymcount
9633 || (elf_bad_symtab (input_bfd)
9634 && flinfo->sections[symndx] == NULL))
9635 {
9636 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9637 while (h->root.type == bfd_link_hash_indirect
9638 || h->root.type == bfd_link_hash_warning)
9639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9640 /* Arrange for symbol to be output. */
9641 h->indx = -2;
9642 elf_section_data (osec)->this_hdr.sh_info = -2;
9643 }
9644 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9645 {
9646 /* We'll use the output section target_index. */
9647 asection *sec = flinfo->sections[symndx]->output_section;
9648 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9649 }
9650 else
9651 {
9652 if (flinfo->indices[symndx] == -1)
9653 {
9654 /* Otherwise output the local symbol now. */
9655 Elf_Internal_Sym sym = isymbuf[symndx];
9656 asection *sec = flinfo->sections[symndx]->output_section;
9657 const char *name;
9658 long indx;
9659 int ret;
9660
9661 name = bfd_elf_string_from_elf_section (input_bfd,
9662 symtab_hdr->sh_link,
9663 sym.st_name);
9664 if (name == NULL)
9665 return FALSE;
9666
9667 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9668 sec);
9669 if (sym.st_shndx == SHN_BAD)
9670 return FALSE;
9671
9672 sym.st_value += o->output_offset;
9673
9674 indx = bfd_get_symcount (output_bfd);
9675 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9676 if (ret == 0)
9677 return FALSE;
9678 else if (ret == 1)
9679 flinfo->indices[symndx] = indx;
9680 else
9681 abort ();
9682 }
9683 elf_section_data (osec)->this_hdr.sh_info
9684 = flinfo->indices[symndx];
9685 }
9686 }
9687
9688 if ((o->flags & SEC_HAS_CONTENTS) == 0
9689 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9690 continue;
9691
9692 if ((o->flags & SEC_LINKER_CREATED) != 0)
9693 {
9694 /* Section was created by _bfd_elf_link_create_dynamic_sections
9695 or somesuch. */
9696 continue;
9697 }
9698
9699 /* Get the contents of the section. They have been cached by a
9700 relaxation routine. Note that o is a section in an input
9701 file, so the contents field will not have been set by any of
9702 the routines which work on output files. */
9703 if (elf_section_data (o)->this_hdr.contents != NULL)
9704 {
9705 contents = elf_section_data (o)->this_hdr.contents;
9706 if (bed->caches_rawsize
9707 && o->rawsize != 0
9708 && o->rawsize < o->size)
9709 {
9710 memcpy (flinfo->contents, contents, o->rawsize);
9711 contents = flinfo->contents;
9712 }
9713 }
9714 else
9715 {
9716 contents = flinfo->contents;
9717 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9718 return FALSE;
9719 }
9720
9721 if ((o->flags & SEC_RELOC) != 0)
9722 {
9723 Elf_Internal_Rela *internal_relocs;
9724 Elf_Internal_Rela *rel, *relend;
9725 int action_discarded;
9726 int ret;
9727
9728 /* Get the swapped relocs. */
9729 internal_relocs
9730 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9731 flinfo->internal_relocs, FALSE);
9732 if (internal_relocs == NULL
9733 && o->reloc_count > 0)
9734 return FALSE;
9735
9736 /* We need to reverse-copy input .ctors/.dtors sections if
9737 they are placed in .init_array/.finit_array for output. */
9738 if (o->size > address_size
9739 && ((strncmp (o->name, ".ctors", 6) == 0
9740 && strcmp (o->output_section->name,
9741 ".init_array") == 0)
9742 || (strncmp (o->name, ".dtors", 6) == 0
9743 && strcmp (o->output_section->name,
9744 ".fini_array") == 0))
9745 && (o->name[6] == 0 || o->name[6] == '.'))
9746 {
9747 if (o->size != o->reloc_count * address_size)
9748 {
9749 (*_bfd_error_handler)
9750 (_("error: %B: size of section %A is not "
9751 "multiple of address size"),
9752 input_bfd, o);
9753 bfd_set_error (bfd_error_on_input);
9754 return FALSE;
9755 }
9756 o->flags |= SEC_ELF_REVERSE_COPY;
9757 }
9758
9759 action_discarded = -1;
9760 if (!elf_section_ignore_discarded_relocs (o))
9761 action_discarded = (*bed->action_discarded) (o);
9762
9763 /* Run through the relocs evaluating complex reloc symbols and
9764 looking for relocs against symbols from discarded sections
9765 or section symbols from removed link-once sections.
9766 Complain about relocs against discarded sections. Zero
9767 relocs against removed link-once sections. */
9768
9769 rel = internal_relocs;
9770 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9771 for ( ; rel < relend; rel++)
9772 {
9773 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9774 unsigned int s_type;
9775 asection **ps, *sec;
9776 struct elf_link_hash_entry *h = NULL;
9777 const char *sym_name;
9778
9779 if (r_symndx == STN_UNDEF)
9780 continue;
9781
9782 if (r_symndx >= locsymcount
9783 || (elf_bad_symtab (input_bfd)
9784 && flinfo->sections[r_symndx] == NULL))
9785 {
9786 h = sym_hashes[r_symndx - extsymoff];
9787
9788 /* Badly formatted input files can contain relocs that
9789 reference non-existant symbols. Check here so that
9790 we do not seg fault. */
9791 if (h == NULL)
9792 {
9793 char buffer [32];
9794
9795 sprintf_vma (buffer, rel->r_info);
9796 (*_bfd_error_handler)
9797 (_("error: %B contains a reloc (0x%s) for section %A "
9798 "that references a non-existent global symbol"),
9799 input_bfd, o, buffer);
9800 bfd_set_error (bfd_error_bad_value);
9801 return FALSE;
9802 }
9803
9804 while (h->root.type == bfd_link_hash_indirect
9805 || h->root.type == bfd_link_hash_warning)
9806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9807
9808 s_type = h->type;
9809
9810 ps = NULL;
9811 if (h->root.type == bfd_link_hash_defined
9812 || h->root.type == bfd_link_hash_defweak)
9813 ps = &h->root.u.def.section;
9814
9815 sym_name = h->root.root.string;
9816 }
9817 else
9818 {
9819 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9820
9821 s_type = ELF_ST_TYPE (sym->st_info);
9822 ps = &flinfo->sections[r_symndx];
9823 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9824 sym, *ps);
9825 }
9826
9827 if ((s_type == STT_RELC || s_type == STT_SRELC)
9828 && !flinfo->info->relocatable)
9829 {
9830 bfd_vma val;
9831 bfd_vma dot = (rel->r_offset
9832 + o->output_offset + o->output_section->vma);
9833#ifdef DEBUG
9834 printf ("Encountered a complex symbol!");
9835 printf (" (input_bfd %s, section %s, reloc %ld\n",
9836 input_bfd->filename, o->name,
9837 (long) (rel - internal_relocs));
9838 printf (" symbol: idx %8.8lx, name %s\n",
9839 r_symndx, sym_name);
9840 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9841 (unsigned long) rel->r_info,
9842 (unsigned long) rel->r_offset);
9843#endif
9844 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9845 isymbuf, locsymcount, s_type == STT_SRELC))
9846 return FALSE;
9847
9848 /* Symbol evaluated OK. Update to absolute value. */
9849 set_symbol_value (input_bfd, isymbuf, locsymcount,
9850 r_symndx, val);
9851 continue;
9852 }
9853
9854 if (action_discarded != -1 && ps != NULL)
9855 {
9856 /* Complain if the definition comes from a
9857 discarded section. */
9858 if ((sec = *ps) != NULL && discarded_section (sec))
9859 {
9860 BFD_ASSERT (r_symndx != STN_UNDEF);
9861 if (action_discarded & COMPLAIN)
9862 (*flinfo->info->callbacks->einfo)
9863 (_("%X`%s' referenced in section `%A' of %B: "
9864 "defined in discarded section `%A' of %B\n"),
9865 sym_name, o, input_bfd, sec, sec->owner);
9866
9867 /* Try to do the best we can to support buggy old
9868 versions of gcc. Pretend that the symbol is
9869 really defined in the kept linkonce section.
9870 FIXME: This is quite broken. Modifying the
9871 symbol here means we will be changing all later
9872 uses of the symbol, not just in this section. */
9873 if (action_discarded & PRETEND)
9874 {
9875 asection *kept;
9876
9877 kept = _bfd_elf_check_kept_section (sec,
9878 flinfo->info);
9879 if (kept != NULL)
9880 {
9881 *ps = kept;
9882 continue;
9883 }
9884 }
9885 }
9886 }
9887 }
9888
9889 /* Relocate the section by invoking a back end routine.
9890
9891 The back end routine is responsible for adjusting the
9892 section contents as necessary, and (if using Rela relocs
9893 and generating a relocatable output file) adjusting the
9894 reloc addend as necessary.
9895
9896 The back end routine does not have to worry about setting
9897 the reloc address or the reloc symbol index.
9898
9899 The back end routine is given a pointer to the swapped in
9900 internal symbols, and can access the hash table entries
9901 for the external symbols via elf_sym_hashes (input_bfd).
9902
9903 When generating relocatable output, the back end routine
9904 must handle STB_LOCAL/STT_SECTION symbols specially. The
9905 output symbol is going to be a section symbol
9906 corresponding to the output section, which will require
9907 the addend to be adjusted. */
9908
9909 ret = (*relocate_section) (output_bfd, flinfo->info,
9910 input_bfd, o, contents,
9911 internal_relocs,
9912 isymbuf,
9913 flinfo->sections);
9914 if (!ret)
9915 return FALSE;
9916
9917 if (ret == 2
9918 || flinfo->info->relocatable
9919 || flinfo->info->emitrelocations)
9920 {
9921 Elf_Internal_Rela *irela;
9922 Elf_Internal_Rela *irelaend, *irelamid;
9923 bfd_vma last_offset;
9924 struct elf_link_hash_entry **rel_hash;
9925 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9926 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9927 unsigned int next_erel;
9928 bfd_boolean rela_normal;
9929 struct bfd_elf_section_data *esdi, *esdo;
9930
9931 esdi = elf_section_data (o);
9932 esdo = elf_section_data (o->output_section);
9933 rela_normal = FALSE;
9934
9935 /* Adjust the reloc addresses and symbol indices. */
9936
9937 irela = internal_relocs;
9938 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9939 rel_hash = esdo->rel.hashes + esdo->rel.count;
9940 /* We start processing the REL relocs, if any. When we reach
9941 IRELAMID in the loop, we switch to the RELA relocs. */
9942 irelamid = irela;
9943 if (esdi->rel.hdr != NULL)
9944 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9945 * bed->s->int_rels_per_ext_rel);
9946 rel_hash_list = rel_hash;
9947 rela_hash_list = NULL;
9948 last_offset = o->output_offset;
9949 if (!flinfo->info->relocatable)
9950 last_offset += o->output_section->vma;
9951 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9952 {
9953 unsigned long r_symndx;
9954 asection *sec;
9955 Elf_Internal_Sym sym;
9956
9957 if (next_erel == bed->s->int_rels_per_ext_rel)
9958 {
9959 rel_hash++;
9960 next_erel = 0;
9961 }
9962
9963 if (irela == irelamid)
9964 {
9965 rel_hash = esdo->rela.hashes + esdo->rela.count;
9966 rela_hash_list = rel_hash;
9967 rela_normal = bed->rela_normal;
9968 }
9969
9970 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9971 flinfo->info, o,
9972 irela->r_offset);
9973 if (irela->r_offset >= (bfd_vma) -2)
9974 {
9975 /* This is a reloc for a deleted entry or somesuch.
9976 Turn it into an R_*_NONE reloc, at the same
9977 offset as the last reloc. elf_eh_frame.c and
9978 bfd_elf_discard_info rely on reloc offsets
9979 being ordered. */
9980 irela->r_offset = last_offset;
9981 irela->r_info = 0;
9982 irela->r_addend = 0;
9983 continue;
9984 }
9985
9986 irela->r_offset += o->output_offset;
9987
9988 /* Relocs in an executable have to be virtual addresses. */
9989 if (!flinfo->info->relocatable)
9990 irela->r_offset += o->output_section->vma;
9991
9992 last_offset = irela->r_offset;
9993
9994 r_symndx = irela->r_info >> r_sym_shift;
9995 if (r_symndx == STN_UNDEF)
9996 continue;
9997
9998 if (r_symndx >= locsymcount
9999 || (elf_bad_symtab (input_bfd)
10000 && flinfo->sections[r_symndx] == NULL))
10001 {
10002 struct elf_link_hash_entry *rh;
10003 unsigned long indx;
10004
10005 /* This is a reloc against a global symbol. We
10006 have not yet output all the local symbols, so
10007 we do not know the symbol index of any global
10008 symbol. We set the rel_hash entry for this
10009 reloc to point to the global hash table entry
10010 for this symbol. The symbol index is then
10011 set at the end of bfd_elf_final_link. */
10012 indx = r_symndx - extsymoff;
10013 rh = elf_sym_hashes (input_bfd)[indx];
10014 while (rh->root.type == bfd_link_hash_indirect
10015 || rh->root.type == bfd_link_hash_warning)
10016 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10017
10018 /* Setting the index to -2 tells
10019 elf_link_output_extsym that this symbol is
10020 used by a reloc. */
10021 BFD_ASSERT (rh->indx < 0);
10022 rh->indx = -2;
10023
10024 *rel_hash = rh;
10025
10026 continue;
10027 }
10028
10029 /* This is a reloc against a local symbol. */
10030
10031 *rel_hash = NULL;
10032 sym = isymbuf[r_symndx];
10033 sec = flinfo->sections[r_symndx];
10034 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10035 {
10036 /* I suppose the backend ought to fill in the
10037 section of any STT_SECTION symbol against a
10038 processor specific section. */
10039 r_symndx = STN_UNDEF;
10040 if (bfd_is_abs_section (sec))
10041 ;
10042 else if (sec == NULL || sec->owner == NULL)
10043 {
10044 bfd_set_error (bfd_error_bad_value);
10045 return FALSE;
10046 }
10047 else
10048 {
10049 asection *osec = sec->output_section;
10050
10051 /* If we have discarded a section, the output
10052 section will be the absolute section. In
10053 case of discarded SEC_MERGE sections, use
10054 the kept section. relocate_section should
10055 have already handled discarded linkonce
10056 sections. */
10057 if (bfd_is_abs_section (osec)
10058 && sec->kept_section != NULL
10059 && sec->kept_section->output_section != NULL)
10060 {
10061 osec = sec->kept_section->output_section;
10062 irela->r_addend -= osec->vma;
10063 }
10064
10065 if (!bfd_is_abs_section (osec))
10066 {
10067 r_symndx = osec->target_index;
10068 if (r_symndx == STN_UNDEF)
10069 {
10070 irela->r_addend += osec->vma;
10071 osec = _bfd_nearby_section (output_bfd, osec,
10072 osec->vma);
10073 irela->r_addend -= osec->vma;
10074 r_symndx = osec->target_index;
10075 }
10076 }
10077 }
10078
10079 /* Adjust the addend according to where the
10080 section winds up in the output section. */
10081 if (rela_normal)
10082 irela->r_addend += sec->output_offset;
10083 }
10084 else
10085 {
10086 if (flinfo->indices[r_symndx] == -1)
10087 {
10088 unsigned long shlink;
10089 const char *name;
10090 asection *osec;
10091 long indx;
10092
10093 if (flinfo->info->strip == strip_all)
10094 {
10095 /* You can't do ld -r -s. */
10096 bfd_set_error (bfd_error_invalid_operation);
10097 return FALSE;
10098 }
10099
10100 /* This symbol was skipped earlier, but
10101 since it is needed by a reloc, we
10102 must output it now. */
10103 shlink = symtab_hdr->sh_link;
10104 name = (bfd_elf_string_from_elf_section
10105 (input_bfd, shlink, sym.st_name));
10106 if (name == NULL)
10107 return FALSE;
10108
10109 osec = sec->output_section;
10110 sym.st_shndx =
10111 _bfd_elf_section_from_bfd_section (output_bfd,
10112 osec);
10113 if (sym.st_shndx == SHN_BAD)
10114 return FALSE;
10115
10116 sym.st_value += sec->output_offset;
10117 if (!flinfo->info->relocatable)
10118 {
10119 sym.st_value += osec->vma;
10120 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10121 {
10122 /* STT_TLS symbols are relative to PT_TLS
10123 segment base. */
10124 BFD_ASSERT (elf_hash_table (flinfo->info)
10125 ->tls_sec != NULL);
10126 sym.st_value -= (elf_hash_table (flinfo->info)
10127 ->tls_sec->vma);
10128 }
10129 }
10130
10131 indx = bfd_get_symcount (output_bfd);
10132 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10133 NULL);
10134 if (ret == 0)
10135 return FALSE;
10136 else if (ret == 1)
10137 flinfo->indices[r_symndx] = indx;
10138 else
10139 abort ();
10140 }
10141
10142 r_symndx = flinfo->indices[r_symndx];
10143 }
10144
10145 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10146 | (irela->r_info & r_type_mask));
10147 }
10148
10149 /* Swap out the relocs. */
10150 input_rel_hdr = esdi->rel.hdr;
10151 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10152 {
10153 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10154 input_rel_hdr,
10155 internal_relocs,
10156 rel_hash_list))
10157 return FALSE;
10158 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10159 * bed->s->int_rels_per_ext_rel);
10160 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10161 }
10162
10163 input_rela_hdr = esdi->rela.hdr;
10164 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10165 {
10166 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10167 input_rela_hdr,
10168 internal_relocs,
10169 rela_hash_list))
10170 return FALSE;
10171 }
10172 }
10173 }
10174
10175 /* Write out the modified section contents. */
10176 if (bed->elf_backend_write_section
10177 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10178 contents))
10179 {
10180 /* Section written out. */
10181 }
10182 else switch (o->sec_info_type)
10183 {
10184 case SEC_INFO_TYPE_STABS:
10185 if (! (_bfd_write_section_stabs
10186 (output_bfd,
10187 &elf_hash_table (flinfo->info)->stab_info,
10188 o, &elf_section_data (o)->sec_info, contents)))
10189 return FALSE;
10190 break;
10191 case SEC_INFO_TYPE_MERGE:
10192 if (! _bfd_write_merged_section (output_bfd, o,
10193 elf_section_data (o)->sec_info))
10194 return FALSE;
10195 break;
10196 case SEC_INFO_TYPE_EH_FRAME:
10197 {
10198 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10199 o, contents))
10200 return FALSE;
10201 }
10202 break;
10203 default:
10204 {
10205 /* FIXME: octets_per_byte. */
10206 if (! (o->flags & SEC_EXCLUDE))
10207 {
10208 file_ptr offset = (file_ptr) o->output_offset;
10209 bfd_size_type todo = o->size;
10210 if ((o->flags & SEC_ELF_REVERSE_COPY))
10211 {
10212 /* Reverse-copy input section to output. */
10213 do
10214 {
10215 todo -= address_size;
10216 if (! bfd_set_section_contents (output_bfd,
10217 o->output_section,
10218 contents + todo,
10219 offset,
10220 address_size))
10221 return FALSE;
10222 if (todo == 0)
10223 break;
10224 offset += address_size;
10225 }
10226 while (1);
10227 }
10228 else if (! bfd_set_section_contents (output_bfd,
10229 o->output_section,
10230 contents,
10231 offset, todo))
10232 return FALSE;
10233 }
10234 }
10235 break;
10236 }
10237 }
10238
10239 return TRUE;
10240}
10241
10242/* Generate a reloc when linking an ELF file. This is a reloc
10243 requested by the linker, and does not come from any input file. This
10244 is used to build constructor and destructor tables when linking
10245 with -Ur. */
10246
10247static bfd_boolean
10248elf_reloc_link_order (bfd *output_bfd,
10249 struct bfd_link_info *info,
10250 asection *output_section,
10251 struct bfd_link_order *link_order)
10252{
10253 reloc_howto_type *howto;
10254 long indx;
10255 bfd_vma offset;
10256 bfd_vma addend;
10257 struct bfd_elf_section_reloc_data *reldata;
10258 struct elf_link_hash_entry **rel_hash_ptr;
10259 Elf_Internal_Shdr *rel_hdr;
10260 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10261 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10262 bfd_byte *erel;
10263 unsigned int i;
10264 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10265
10266 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10267 if (howto == NULL)
10268 {
10269 bfd_set_error (bfd_error_bad_value);
10270 return FALSE;
10271 }
10272
10273 addend = link_order->u.reloc.p->addend;
10274
10275 if (esdo->rel.hdr)
10276 reldata = &esdo->rel;
10277 else if (esdo->rela.hdr)
10278 reldata = &esdo->rela;
10279 else
10280 {
10281 reldata = NULL;
10282 BFD_ASSERT (0);
10283 }
10284
10285 /* Figure out the symbol index. */
10286 rel_hash_ptr = reldata->hashes + reldata->count;
10287 if (link_order->type == bfd_section_reloc_link_order)
10288 {
10289 indx = link_order->u.reloc.p->u.section->target_index;
10290 BFD_ASSERT (indx != 0);
10291 *rel_hash_ptr = NULL;
10292 }
10293 else
10294 {
10295 struct elf_link_hash_entry *h;
10296
10297 /* Treat a reloc against a defined symbol as though it were
10298 actually against the section. */
10299 h = ((struct elf_link_hash_entry *)
10300 bfd_wrapped_link_hash_lookup (output_bfd, info,
10301 link_order->u.reloc.p->u.name,
10302 FALSE, FALSE, TRUE));
10303 if (h != NULL
10304 && (h->root.type == bfd_link_hash_defined
10305 || h->root.type == bfd_link_hash_defweak))
10306 {
10307 asection *section;
10308
10309 section = h->root.u.def.section;
10310 indx = section->output_section->target_index;
10311 *rel_hash_ptr = NULL;
10312 /* It seems that we ought to add the symbol value to the
10313 addend here, but in practice it has already been added
10314 because it was passed to constructor_callback. */
10315 addend += section->output_section->vma + section->output_offset;
10316 }
10317 else if (h != NULL)
10318 {
10319 /* Setting the index to -2 tells elf_link_output_extsym that
10320 this symbol is used by a reloc. */
10321 h->indx = -2;
10322 *rel_hash_ptr = h;
10323 indx = 0;
10324 }
10325 else
10326 {
10327 if (! ((*info->callbacks->unattached_reloc)
10328 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10329 return FALSE;
10330 indx = 0;
10331 }
10332 }
10333
10334 /* If this is an inplace reloc, we must write the addend into the
10335 object file. */
10336 if (howto->partial_inplace && addend != 0)
10337 {
10338 bfd_size_type size;
10339 bfd_reloc_status_type rstat;
10340 bfd_byte *buf;
10341 bfd_boolean ok;
10342 const char *sym_name;
10343
10344 size = (bfd_size_type) bfd_get_reloc_size (howto);
10345 buf = (bfd_byte *) bfd_zmalloc (size);
10346 if (buf == NULL && size != 0)
10347 return FALSE;
10348 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10349 switch (rstat)
10350 {
10351 case bfd_reloc_ok:
10352 break;
10353
10354 default:
10355 case bfd_reloc_outofrange:
10356 abort ();
10357
10358 case bfd_reloc_overflow:
10359 if (link_order->type == bfd_section_reloc_link_order)
10360 sym_name = bfd_section_name (output_bfd,
10361 link_order->u.reloc.p->u.section);
10362 else
10363 sym_name = link_order->u.reloc.p->u.name;
10364 if (! ((*info->callbacks->reloc_overflow)
10365 (info, NULL, sym_name, howto->name, addend, NULL,
10366 NULL, (bfd_vma) 0)))
10367 {
10368 free (buf);
10369 return FALSE;
10370 }
10371 break;
10372 }
10373 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10374 link_order->offset, size);
10375 free (buf);
10376 if (! ok)
10377 return FALSE;
10378 }
10379
10380 /* The address of a reloc is relative to the section in a
10381 relocatable file, and is a virtual address in an executable
10382 file. */
10383 offset = link_order->offset;
10384 if (! info->relocatable)
10385 offset += output_section->vma;
10386
10387 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10388 {
10389 irel[i].r_offset = offset;
10390 irel[i].r_info = 0;
10391 irel[i].r_addend = 0;
10392 }
10393 if (bed->s->arch_size == 32)
10394 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10395 else
10396 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10397
10398 rel_hdr = reldata->hdr;
10399 erel = rel_hdr->contents;
10400 if (rel_hdr->sh_type == SHT_REL)
10401 {
10402 erel += reldata->count * bed->s->sizeof_rel;
10403 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10404 }
10405 else
10406 {
10407 irel[0].r_addend = addend;
10408 erel += reldata->count * bed->s->sizeof_rela;
10409 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10410 }
10411
10412 ++reldata->count;
10413
10414 return TRUE;
10415}
10416
10417
10418/* Get the output vma of the section pointed to by the sh_link field. */
10419
10420static bfd_vma
10421elf_get_linked_section_vma (struct bfd_link_order *p)
10422{
10423 Elf_Internal_Shdr **elf_shdrp;
10424 asection *s;
10425 int elfsec;
10426
10427 s = p->u.indirect.section;
10428 elf_shdrp = elf_elfsections (s->owner);
10429 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10430 elfsec = elf_shdrp[elfsec]->sh_link;
10431 /* PR 290:
10432 The Intel C compiler generates SHT_IA_64_UNWIND with
10433 SHF_LINK_ORDER. But it doesn't set the sh_link or
10434 sh_info fields. Hence we could get the situation
10435 where elfsec is 0. */
10436 if (elfsec == 0)
10437 {
10438 const struct elf_backend_data *bed
10439 = get_elf_backend_data (s->owner);
10440 if (bed->link_order_error_handler)
10441 bed->link_order_error_handler
10442 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10443 return 0;
10444 }
10445 else
10446 {
10447 s = elf_shdrp[elfsec]->bfd_section;
10448 return s->output_section->vma + s->output_offset;
10449 }
10450}
10451
10452
10453/* Compare two sections based on the locations of the sections they are
10454 linked to. Used by elf_fixup_link_order. */
10455
10456static int
10457compare_link_order (const void * a, const void * b)
10458{
10459 bfd_vma apos;
10460 bfd_vma bpos;
10461
10462 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10463 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10464 if (apos < bpos)
10465 return -1;
10466 return apos > bpos;
10467}
10468
10469
10470/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10471 order as their linked sections. Returns false if this could not be done
10472 because an output section includes both ordered and unordered
10473 sections. Ideally we'd do this in the linker proper. */
10474
10475static bfd_boolean
10476elf_fixup_link_order (bfd *abfd, asection *o)
10477{
10478 int seen_linkorder;
10479 int seen_other;
10480 int n;
10481 struct bfd_link_order *p;
10482 bfd *sub;
10483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10484 unsigned elfsec;
10485 struct bfd_link_order **sections;
10486 asection *s, *other_sec, *linkorder_sec;
10487 bfd_vma offset;
10488
10489 other_sec = NULL;
10490 linkorder_sec = NULL;
10491 seen_other = 0;
10492 seen_linkorder = 0;
10493 for (p = o->map_head.link_order; p != NULL; p = p->next)
10494 {
10495 if (p->type == bfd_indirect_link_order)
10496 {
10497 s = p->u.indirect.section;
10498 sub = s->owner;
10499 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10500 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10501 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10502 && elfsec < elf_numsections (sub)
10503 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10504 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10505 {
10506 seen_linkorder++;
10507 linkorder_sec = s;
10508 }
10509 else
10510 {
10511 seen_other++;
10512 other_sec = s;
10513 }
10514 }
10515 else
10516 seen_other++;
10517
10518 if (seen_other && seen_linkorder)
10519 {
10520 if (other_sec && linkorder_sec)
10521 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10522 o, linkorder_sec,
10523 linkorder_sec->owner, other_sec,
10524 other_sec->owner);
10525 else
10526 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10527 o);
10528 bfd_set_error (bfd_error_bad_value);
10529 return FALSE;
10530 }
10531 }
10532
10533 if (!seen_linkorder)
10534 return TRUE;
10535
10536 sections = (struct bfd_link_order **)
10537 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10538 if (sections == NULL)
10539 return FALSE;
10540 seen_linkorder = 0;
10541
10542 for (p = o->map_head.link_order; p != NULL; p = p->next)
10543 {
10544 sections[seen_linkorder++] = p;
10545 }
10546 /* Sort the input sections in the order of their linked section. */
10547 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10548 compare_link_order);
10549
10550 /* Change the offsets of the sections. */
10551 offset = 0;
10552 for (n = 0; n < seen_linkorder; n++)
10553 {
10554 s = sections[n]->u.indirect.section;
10555 offset &= ~(bfd_vma) 0 << s->alignment_power;
10556 s->output_offset = offset;
10557 sections[n]->offset = offset;
10558 /* FIXME: octets_per_byte. */
10559 offset += sections[n]->size;
10560 }
10561
10562 free (sections);
10563 return TRUE;
10564}
10565
10566static void
10567elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10568{
10569 asection *o;
10570
10571 if (flinfo->symstrtab != NULL)
10572 _bfd_stringtab_free (flinfo->symstrtab);
10573 if (flinfo->contents != NULL)
10574 free (flinfo->contents);
10575 if (flinfo->external_relocs != NULL)
10576 free (flinfo->external_relocs);
10577 if (flinfo->internal_relocs != NULL)
10578 free (flinfo->internal_relocs);
10579 if (flinfo->external_syms != NULL)
10580 free (flinfo->external_syms);
10581 if (flinfo->locsym_shndx != NULL)
10582 free (flinfo->locsym_shndx);
10583 if (flinfo->internal_syms != NULL)
10584 free (flinfo->internal_syms);
10585 if (flinfo->indices != NULL)
10586 free (flinfo->indices);
10587 if (flinfo->sections != NULL)
10588 free (flinfo->sections);
10589 if (flinfo->symbuf != NULL)
10590 free (flinfo->symbuf);
10591 if (flinfo->symshndxbuf != NULL)
10592 free (flinfo->symshndxbuf);
10593 for (o = obfd->sections; o != NULL; o = o->next)
10594 {
10595 struct bfd_elf_section_data *esdo = elf_section_data (o);
10596 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10597 free (esdo->rel.hashes);
10598 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10599 free (esdo->rela.hashes);
10600 }
10601}
10602
10603/* Do the final step of an ELF link. */
10604
10605bfd_boolean
10606bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10607{
10608 bfd_boolean dynamic;
10609 bfd_boolean emit_relocs;
10610 bfd *dynobj;
10611 struct elf_final_link_info flinfo;
10612 asection *o;
10613 struct bfd_link_order *p;
10614 bfd *sub;
10615 bfd_size_type max_contents_size;
10616 bfd_size_type max_external_reloc_size;
10617 bfd_size_type max_internal_reloc_count;
10618 bfd_size_type max_sym_count;
10619 bfd_size_type max_sym_shndx_count;
10620 Elf_Internal_Sym elfsym;
10621 unsigned int i;
10622 Elf_Internal_Shdr *symtab_hdr;
10623 Elf_Internal_Shdr *symtab_shndx_hdr;
10624 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10625 struct elf_outext_info eoinfo;
10626 bfd_boolean merged;
10627 size_t relativecount = 0;
10628 asection *reldyn = 0;
10629 bfd_size_type amt;
10630 asection *attr_section = NULL;
10631 bfd_vma attr_size = 0;
10632 const char *std_attrs_section;
10633
10634 if (! is_elf_hash_table (info->hash))
10635 return FALSE;
10636
10637 if (info->shared)
10638 abfd->flags |= DYNAMIC;
10639
10640 dynamic = elf_hash_table (info)->dynamic_sections_created;
10641 dynobj = elf_hash_table (info)->dynobj;
10642
10643 emit_relocs = (info->relocatable
10644 || info->emitrelocations);
10645
10646 flinfo.info = info;
10647 flinfo.output_bfd = abfd;
10648 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10649 if (flinfo.symstrtab == NULL)
10650 return FALSE;
10651
10652 if (! dynamic)
10653 {
10654 flinfo.dynsym_sec = NULL;
10655 flinfo.hash_sec = NULL;
10656 flinfo.symver_sec = NULL;
10657 }
10658 else
10659 {
10660 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10661 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10662 /* Note that dynsym_sec can be NULL (on VMS). */
10663 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10664 /* Note that it is OK if symver_sec is NULL. */
10665 }
10666
10667 flinfo.contents = NULL;
10668 flinfo.external_relocs = NULL;
10669 flinfo.internal_relocs = NULL;
10670 flinfo.external_syms = NULL;
10671 flinfo.locsym_shndx = NULL;
10672 flinfo.internal_syms = NULL;
10673 flinfo.indices = NULL;
10674 flinfo.sections = NULL;
10675 flinfo.symbuf = NULL;
10676 flinfo.symshndxbuf = NULL;
10677 flinfo.symbuf_count = 0;
10678 flinfo.shndxbuf_size = 0;
10679 flinfo.filesym_count = 0;
10680
10681 /* The object attributes have been merged. Remove the input
10682 sections from the link, and set the contents of the output
10683 secton. */
10684 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10685 for (o = abfd->sections; o != NULL; o = o->next)
10686 {
10687 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10688 || strcmp (o->name, ".gnu.attributes") == 0)
10689 {
10690 for (p = o->map_head.link_order; p != NULL; p = p->next)
10691 {
10692 asection *input_section;
10693
10694 if (p->type != bfd_indirect_link_order)
10695 continue;
10696 input_section = p->u.indirect.section;
10697 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10698 elf_link_input_bfd ignores this section. */
10699 input_section->flags &= ~SEC_HAS_CONTENTS;
10700 }
10701
10702 attr_size = bfd_elf_obj_attr_size (abfd);
10703 if (attr_size)
10704 {
10705 bfd_set_section_size (abfd, o, attr_size);
10706 attr_section = o;
10707 /* Skip this section later on. */
10708 o->map_head.link_order = NULL;
10709 }
10710 else
10711 o->flags |= SEC_EXCLUDE;
10712 }
10713 }
10714
10715 /* Count up the number of relocations we will output for each output
10716 section, so that we know the sizes of the reloc sections. We
10717 also figure out some maximum sizes. */
10718 max_contents_size = 0;
10719 max_external_reloc_size = 0;
10720 max_internal_reloc_count = 0;
10721 max_sym_count = 0;
10722 max_sym_shndx_count = 0;
10723 merged = FALSE;
10724 for (o = abfd->sections; o != NULL; o = o->next)
10725 {
10726 struct bfd_elf_section_data *esdo = elf_section_data (o);
10727 o->reloc_count = 0;
10728
10729 for (p = o->map_head.link_order; p != NULL; p = p->next)
10730 {
10731 unsigned int reloc_count = 0;
10732 struct bfd_elf_section_data *esdi = NULL;
10733
10734 if (p->type == bfd_section_reloc_link_order
10735 || p->type == bfd_symbol_reloc_link_order)
10736 reloc_count = 1;
10737 else if (p->type == bfd_indirect_link_order)
10738 {
10739 asection *sec;
10740
10741 sec = p->u.indirect.section;
10742 esdi = elf_section_data (sec);
10743
10744 /* Mark all sections which are to be included in the
10745 link. This will normally be every section. We need
10746 to do this so that we can identify any sections which
10747 the linker has decided to not include. */
10748 sec->linker_mark = TRUE;
10749
10750 if (sec->flags & SEC_MERGE)
10751 merged = TRUE;
10752
10753 if (esdo->this_hdr.sh_type == SHT_REL
10754 || esdo->this_hdr.sh_type == SHT_RELA)
10755 /* Some backends use reloc_count in relocation sections
10756 to count particular types of relocs. Of course,
10757 reloc sections themselves can't have relocations. */
10758 reloc_count = 0;
10759 else if (info->relocatable || info->emitrelocations)
10760 reloc_count = sec->reloc_count;
10761 else if (bed->elf_backend_count_relocs)
10762 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10763
10764 if (sec->rawsize > max_contents_size)
10765 max_contents_size = sec->rawsize;
10766 if (sec->size > max_contents_size)
10767 max_contents_size = sec->size;
10768
10769 /* We are interested in just local symbols, not all
10770 symbols. */
10771 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10772 && (sec->owner->flags & DYNAMIC) == 0)
10773 {
10774 size_t sym_count;
10775
10776 if (elf_bad_symtab (sec->owner))
10777 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10778 / bed->s->sizeof_sym);
10779 else
10780 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10781
10782 if (sym_count > max_sym_count)
10783 max_sym_count = sym_count;
10784
10785 if (sym_count > max_sym_shndx_count
10786 && elf_symtab_shndx (sec->owner) != 0)
10787 max_sym_shndx_count = sym_count;
10788
10789 if ((sec->flags & SEC_RELOC) != 0)
10790 {
10791 size_t ext_size = 0;
10792
10793 if (esdi->rel.hdr != NULL)
10794 ext_size = esdi->rel.hdr->sh_size;
10795 if (esdi->rela.hdr != NULL)
10796 ext_size += esdi->rela.hdr->sh_size;
10797
10798 if (ext_size > max_external_reloc_size)
10799 max_external_reloc_size = ext_size;
10800 if (sec->reloc_count > max_internal_reloc_count)
10801 max_internal_reloc_count = sec->reloc_count;
10802 }
10803 }
10804 }
10805
10806 if (reloc_count == 0)
10807 continue;
10808
10809 o->reloc_count += reloc_count;
10810
10811 if (p->type == bfd_indirect_link_order
10812 && (info->relocatable || info->emitrelocations))
10813 {
10814 if (esdi->rel.hdr)
10815 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10816 if (esdi->rela.hdr)
10817 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10818 }
10819 else
10820 {
10821 if (o->use_rela_p)
10822 esdo->rela.count += reloc_count;
10823 else
10824 esdo->rel.count += reloc_count;
10825 }
10826 }
10827
10828 if (o->reloc_count > 0)
10829 o->flags |= SEC_RELOC;
10830 else
10831 {
10832 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10833 set it (this is probably a bug) and if it is set
10834 assign_section_numbers will create a reloc section. */
10835 o->flags &=~ SEC_RELOC;
10836 }
10837
10838 /* If the SEC_ALLOC flag is not set, force the section VMA to
10839 zero. This is done in elf_fake_sections as well, but forcing
10840 the VMA to 0 here will ensure that relocs against these
10841 sections are handled correctly. */
10842 if ((o->flags & SEC_ALLOC) == 0
10843 && ! o->user_set_vma)
10844 o->vma = 0;
10845 }
10846
10847 if (! info->relocatable && merged)
10848 elf_link_hash_traverse (elf_hash_table (info),
10849 _bfd_elf_link_sec_merge_syms, abfd);
10850
10851 /* Figure out the file positions for everything but the symbol table
10852 and the relocs. We set symcount to force assign_section_numbers
10853 to create a symbol table. */
10854 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10855 BFD_ASSERT (! abfd->output_has_begun);
10856 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10857 goto error_return;
10858
10859 /* Set sizes, and assign file positions for reloc sections. */
10860 for (o = abfd->sections; o != NULL; o = o->next)
10861 {
10862 struct bfd_elf_section_data *esdo = elf_section_data (o);
10863 if ((o->flags & SEC_RELOC) != 0)
10864 {
10865 if (esdo->rel.hdr
10866 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10867 goto error_return;
10868
10869 if (esdo->rela.hdr
10870 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10871 goto error_return;
10872 }
10873
10874 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10875 to count upwards while actually outputting the relocations. */
10876 esdo->rel.count = 0;
10877 esdo->rela.count = 0;
10878 }
10879
10880 /* We have now assigned file positions for all the sections except
10881 .symtab, .strtab, and non-loaded reloc sections. We start the
10882 .symtab section at the current file position, and write directly
10883 to it. We build the .strtab section in memory. */
10884 bfd_get_symcount (abfd) = 0;
10885 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10886 /* sh_name is set in prep_headers. */
10887 symtab_hdr->sh_type = SHT_SYMTAB;
10888 /* sh_flags, sh_addr and sh_size all start off zero. */
10889 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10890 /* sh_link is set in assign_section_numbers. */
10891 /* sh_info is set below. */
10892 /* sh_offset is set just below. */
10893 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10894
10895 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10896 continuously seeking to the right position in the file. */
10897 if (! info->keep_memory || max_sym_count < 20)
10898 flinfo.symbuf_size = 20;
10899 else
10900 flinfo.symbuf_size = max_sym_count;
10901 amt = flinfo.symbuf_size;
10902 amt *= bed->s->sizeof_sym;
10903 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10904 if (flinfo.symbuf == NULL)
10905 goto error_return;
10906 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10907 {
10908 /* Wild guess at number of output symbols. realloc'd as needed. */
10909 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10910 flinfo.shndxbuf_size = amt;
10911 amt *= sizeof (Elf_External_Sym_Shndx);
10912 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10913 if (flinfo.symshndxbuf == NULL)
10914 goto error_return;
10915 }
10916
10917 if (info->strip != strip_all || emit_relocs)
10918 {
10919 file_ptr off = elf_next_file_pos (abfd);
10920
10921 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10922
10923 /* Note that at this point elf_next_file_pos (abfd) is
10924 incorrect. We do not yet know the size of the .symtab section.
10925 We correct next_file_pos below, after we do know the size. */
10926
10927 /* Start writing out the symbol table. The first symbol is always a
10928 dummy symbol. */
10929 elfsym.st_value = 0;
10930 elfsym.st_size = 0;
10931 elfsym.st_info = 0;
10932 elfsym.st_other = 0;
10933 elfsym.st_shndx = SHN_UNDEF;
10934 elfsym.st_target_internal = 0;
10935 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10936 NULL) != 1)
10937 goto error_return;
10938
10939 /* Output a symbol for each section. We output these even if we are
10940 discarding local symbols, since they are used for relocs. These
10941 symbols have no names. We store the index of each one in the
10942 index field of the section, so that we can find it again when
10943 outputting relocs. */
10944
10945 elfsym.st_size = 0;
10946 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10947 elfsym.st_other = 0;
10948 elfsym.st_value = 0;
10949 elfsym.st_target_internal = 0;
10950 for (i = 1; i < elf_numsections (abfd); i++)
10951 {
10952 o = bfd_section_from_elf_index (abfd, i);
10953 if (o != NULL)
10954 {
10955 o->target_index = bfd_get_symcount (abfd);
10956 elfsym.st_shndx = i;
10957 if (!info->relocatable)
10958 elfsym.st_value = o->vma;
10959 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10960 goto error_return;
10961 }
10962 }
10963 }
10964
10965 /* Allocate some memory to hold information read in from the input
10966 files. */
10967 if (max_contents_size != 0)
10968 {
10969 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10970 if (flinfo.contents == NULL)
10971 goto error_return;
10972 }
10973
10974 if (max_external_reloc_size != 0)
10975 {
10976 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10977 if (flinfo.external_relocs == NULL)
10978 goto error_return;
10979 }
10980
10981 if (max_internal_reloc_count != 0)
10982 {
10983 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10984 amt *= sizeof (Elf_Internal_Rela);
10985 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10986 if (flinfo.internal_relocs == NULL)
10987 goto error_return;
10988 }
10989
10990 if (max_sym_count != 0)
10991 {
10992 amt = max_sym_count * bed->s->sizeof_sym;
10993 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10994 if (flinfo.external_syms == NULL)
10995 goto error_return;
10996
10997 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10998 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10999 if (flinfo.internal_syms == NULL)
11000 goto error_return;
11001
11002 amt = max_sym_count * sizeof (long);
11003 flinfo.indices = (long int *) bfd_malloc (amt);
11004 if (flinfo.indices == NULL)
11005 goto error_return;
11006
11007 amt = max_sym_count * sizeof (asection *);
11008 flinfo.sections = (asection **) bfd_malloc (amt);
11009 if (flinfo.sections == NULL)
11010 goto error_return;
11011 }
11012
11013 if (max_sym_shndx_count != 0)
11014 {
11015 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11016 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11017 if (flinfo.locsym_shndx == NULL)
11018 goto error_return;
11019 }
11020
11021 if (elf_hash_table (info)->tls_sec)
11022 {
11023 bfd_vma base, end = 0;
11024 asection *sec;
11025
11026 for (sec = elf_hash_table (info)->tls_sec;
11027 sec && (sec->flags & SEC_THREAD_LOCAL);
11028 sec = sec->next)
11029 {
11030 bfd_size_type size = sec->size;
11031
11032 if (size == 0
11033 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11034 {
11035 struct bfd_link_order *ord = sec->map_tail.link_order;
11036
11037 if (ord != NULL)
11038 size = ord->offset + ord->size;
11039 }
11040 end = sec->vma + size;
11041 }
11042 base = elf_hash_table (info)->tls_sec->vma;
11043 /* Only align end of TLS section if static TLS doesn't have special
11044 alignment requirements. */
11045 if (bed->static_tls_alignment == 1)
11046 end = align_power (end,
11047 elf_hash_table (info)->tls_sec->alignment_power);
11048 elf_hash_table (info)->tls_size = end - base;
11049 }
11050
11051 /* Reorder SHF_LINK_ORDER sections. */
11052 for (o = abfd->sections; o != NULL; o = o->next)
11053 {
11054 if (!elf_fixup_link_order (abfd, o))
11055 return FALSE;
11056 }
11057
11058 /* Since ELF permits relocations to be against local symbols, we
11059 must have the local symbols available when we do the relocations.
11060 Since we would rather only read the local symbols once, and we
11061 would rather not keep them in memory, we handle all the
11062 relocations for a single input file at the same time.
11063
11064 Unfortunately, there is no way to know the total number of local
11065 symbols until we have seen all of them, and the local symbol
11066 indices precede the global symbol indices. This means that when
11067 we are generating relocatable output, and we see a reloc against
11068 a global symbol, we can not know the symbol index until we have
11069 finished examining all the local symbols to see which ones we are
11070 going to output. To deal with this, we keep the relocations in
11071 memory, and don't output them until the end of the link. This is
11072 an unfortunate waste of memory, but I don't see a good way around
11073 it. Fortunately, it only happens when performing a relocatable
11074 link, which is not the common case. FIXME: If keep_memory is set
11075 we could write the relocs out and then read them again; I don't
11076 know how bad the memory loss will be. */
11077
11078 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11079 sub->output_has_begun = FALSE;
11080 for (o = abfd->sections; o != NULL; o = o->next)
11081 {
11082 for (p = o->map_head.link_order; p != NULL; p = p->next)
11083 {
11084 if (p->type == bfd_indirect_link_order
11085 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11086 == bfd_target_elf_flavour)
11087 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11088 {
11089 if (! sub->output_has_begun)
11090 {
11091 if (! elf_link_input_bfd (&flinfo, sub))
11092 goto error_return;
11093 sub->output_has_begun = TRUE;
11094 }
11095 }
11096 else if (p->type == bfd_section_reloc_link_order
11097 || p->type == bfd_symbol_reloc_link_order)
11098 {
11099 if (! elf_reloc_link_order (abfd, info, o, p))
11100 goto error_return;
11101 }
11102 else
11103 {
11104 if (! _bfd_default_link_order (abfd, info, o, p))
11105 {
11106 if (p->type == bfd_indirect_link_order
11107 && (bfd_get_flavour (sub)
11108 == bfd_target_elf_flavour)
11109 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11110 != bed->s->elfclass))
11111 {
11112 const char *iclass, *oclass;
11113
11114 if (bed->s->elfclass == ELFCLASS64)
11115 {
11116 iclass = "ELFCLASS32";
11117 oclass = "ELFCLASS64";
11118 }
11119 else
11120 {
11121 iclass = "ELFCLASS64";
11122 oclass = "ELFCLASS32";
11123 }
11124
11125 bfd_set_error (bfd_error_wrong_format);
11126 (*_bfd_error_handler)
11127 (_("%B: file class %s incompatible with %s"),
11128 sub, iclass, oclass);
11129 }
11130
11131 goto error_return;
11132 }
11133 }
11134 }
11135 }
11136
11137 /* Free symbol buffer if needed. */
11138 if (!info->reduce_memory_overheads)
11139 {
11140 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11141 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11142 && elf_tdata (sub)->symbuf)
11143 {
11144 free (elf_tdata (sub)->symbuf);
11145 elf_tdata (sub)->symbuf = NULL;
11146 }
11147 }
11148
11149 /* Output any global symbols that got converted to local in a
11150 version script or due to symbol visibility. We do this in a
11151 separate step since ELF requires all local symbols to appear
11152 prior to any global symbols. FIXME: We should only do this if
11153 some global symbols were, in fact, converted to become local.
11154 FIXME: Will this work correctly with the Irix 5 linker? */
11155 eoinfo.failed = FALSE;
11156 eoinfo.flinfo = &flinfo;
11157 eoinfo.localsyms = TRUE;
11158 eoinfo.need_second_pass = FALSE;
11159 eoinfo.second_pass = FALSE;
11160 eoinfo.file_sym_done = FALSE;
11161 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11162 if (eoinfo.failed)
11163 return FALSE;
11164
11165 if (eoinfo.need_second_pass)
11166 {
11167 eoinfo.second_pass = TRUE;
11168 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11169 if (eoinfo.failed)
11170 return FALSE;
11171 }
11172
11173 /* If backend needs to output some local symbols not present in the hash
11174 table, do it now. */
11175 if (bed->elf_backend_output_arch_local_syms
11176 && (info->strip != strip_all || emit_relocs))
11177 {
11178 typedef int (*out_sym_func)
11179 (void *, const char *, Elf_Internal_Sym *, asection *,
11180 struct elf_link_hash_entry *);
11181
11182 if (! ((*bed->elf_backend_output_arch_local_syms)
11183 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11184 return FALSE;
11185 }
11186
11187 /* That wrote out all the local symbols. Finish up the symbol table
11188 with the global symbols. Even if we want to strip everything we
11189 can, we still need to deal with those global symbols that got
11190 converted to local in a version script. */
11191
11192 /* The sh_info field records the index of the first non local symbol. */
11193 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11194
11195 if (dynamic
11196 && flinfo.dynsym_sec != NULL
11197 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11198 {
11199 Elf_Internal_Sym sym;
11200 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11201 long last_local = 0;
11202
11203 /* Write out the section symbols for the output sections. */
11204 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11205 {
11206 asection *s;
11207
11208 sym.st_size = 0;
11209 sym.st_name = 0;
11210 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11211 sym.st_other = 0;
11212 sym.st_target_internal = 0;
11213
11214 for (s = abfd->sections; s != NULL; s = s->next)
11215 {
11216 int indx;
11217 bfd_byte *dest;
11218 long dynindx;
11219
11220 dynindx = elf_section_data (s)->dynindx;
11221 if (dynindx <= 0)
11222 continue;
11223 indx = elf_section_data (s)->this_idx;
11224 BFD_ASSERT (indx > 0);
11225 sym.st_shndx = indx;
11226 if (! check_dynsym (abfd, &sym))
11227 return FALSE;
11228 sym.st_value = s->vma;
11229 dest = dynsym + dynindx * bed->s->sizeof_sym;
11230 if (last_local < dynindx)
11231 last_local = dynindx;
11232 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11233 }
11234 }
11235
11236 /* Write out the local dynsyms. */
11237 if (elf_hash_table (info)->dynlocal)
11238 {
11239 struct elf_link_local_dynamic_entry *e;
11240 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11241 {
11242 asection *s;
11243 bfd_byte *dest;
11244
11245 /* Copy the internal symbol and turn off visibility.
11246 Note that we saved a word of storage and overwrote
11247 the original st_name with the dynstr_index. */
11248 sym = e->isym;
11249 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11250
11251 s = bfd_section_from_elf_index (e->input_bfd,
11252 e->isym.st_shndx);
11253 if (s != NULL)
11254 {
11255 sym.st_shndx =
11256 elf_section_data (s->output_section)->this_idx;
11257 if (! check_dynsym (abfd, &sym))
11258 return FALSE;
11259 sym.st_value = (s->output_section->vma
11260 + s->output_offset
11261 + e->isym.st_value);
11262 }
11263
11264 if (last_local < e->dynindx)
11265 last_local = e->dynindx;
11266
11267 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11268 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11269 }
11270 }
11271
11272 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11273 last_local + 1;
11274 }
11275
11276 /* We get the global symbols from the hash table. */
11277 eoinfo.failed = FALSE;
11278 eoinfo.localsyms = FALSE;
11279 eoinfo.flinfo = &flinfo;
11280 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11281 if (eoinfo.failed)
11282 return FALSE;
11283
11284 /* If backend needs to output some symbols not present in the hash
11285 table, do it now. */
11286 if (bed->elf_backend_output_arch_syms
11287 && (info->strip != strip_all || emit_relocs))
11288 {
11289 typedef int (*out_sym_func)
11290 (void *, const char *, Elf_Internal_Sym *, asection *,
11291 struct elf_link_hash_entry *);
11292
11293 if (! ((*bed->elf_backend_output_arch_syms)
11294 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11295 return FALSE;
11296 }
11297
11298 /* Flush all symbols to the file. */
11299 if (! elf_link_flush_output_syms (&flinfo, bed))
11300 return FALSE;
11301
11302 /* Now we know the size of the symtab section. */
11303 if (bfd_get_symcount (abfd) > 0)
11304 {
11305 /* Finish up and write out the symbol string table (.strtab)
11306 section. */
11307 Elf_Internal_Shdr *symstrtab_hdr;
11308 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11309
11310 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11311 if (symtab_shndx_hdr->sh_name != 0)
11312 {
11313 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11314 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11315 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11316 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11317 symtab_shndx_hdr->sh_size = amt;
11318
11319 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11320 off, TRUE);
11321
11322 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11323 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11324 return FALSE;
11325 }
11326
11327 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11328 /* sh_name was set in prep_headers. */
11329 symstrtab_hdr->sh_type = SHT_STRTAB;
11330 symstrtab_hdr->sh_flags = 0;
11331 symstrtab_hdr->sh_addr = 0;
11332 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11333 symstrtab_hdr->sh_entsize = 0;
11334 symstrtab_hdr->sh_link = 0;
11335 symstrtab_hdr->sh_info = 0;
11336 /* sh_offset is set just below. */
11337 symstrtab_hdr->sh_addralign = 1;
11338
11339 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11340 off, TRUE);
11341 elf_next_file_pos (abfd) = off;
11342
11343 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11344 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11345 return FALSE;
11346 }
11347
11348 /* Adjust the relocs to have the correct symbol indices. */
11349 for (o = abfd->sections; o != NULL; o = o->next)
11350 {
11351 struct bfd_elf_section_data *esdo = elf_section_data (o);
11352 bfd_boolean sort;
11353 if ((o->flags & SEC_RELOC) == 0)
11354 continue;
11355
11356 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11357 if (esdo->rel.hdr != NULL)
11358 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11359 if (esdo->rela.hdr != NULL)
11360 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11361
11362 /* Set the reloc_count field to 0 to prevent write_relocs from
11363 trying to swap the relocs out itself. */
11364 o->reloc_count = 0;
11365 }
11366
11367 if (dynamic && info->combreloc && dynobj != NULL)
11368 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11369
11370 /* If we are linking against a dynamic object, or generating a
11371 shared library, finish up the dynamic linking information. */
11372 if (dynamic)
11373 {
11374 bfd_byte *dyncon, *dynconend;
11375
11376 /* Fix up .dynamic entries. */
11377 o = bfd_get_linker_section (dynobj, ".dynamic");
11378 BFD_ASSERT (o != NULL);
11379
11380 dyncon = o->contents;
11381 dynconend = o->contents + o->size;
11382 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11383 {
11384 Elf_Internal_Dyn dyn;
11385 const char *name;
11386 unsigned int type;
11387
11388 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11389
11390 switch (dyn.d_tag)
11391 {
11392 default:
11393 continue;
11394 case DT_NULL:
11395 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11396 {
11397 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11398 {
11399 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11400 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11401 default: continue;
11402 }
11403 dyn.d_un.d_val = relativecount;
11404 relativecount = 0;
11405 break;
11406 }
11407 continue;
11408
11409 case DT_INIT:
11410 name = info->init_function;
11411 goto get_sym;
11412 case DT_FINI:
11413 name = info->fini_function;
11414 get_sym:
11415 {
11416 struct elf_link_hash_entry *h;
11417
11418 h = elf_link_hash_lookup (elf_hash_table (info), name,
11419 FALSE, FALSE, TRUE);
11420 if (h != NULL
11421 && (h->root.type == bfd_link_hash_defined
11422 || h->root.type == bfd_link_hash_defweak))
11423 {
11424 dyn.d_un.d_ptr = h->root.u.def.value;
11425 o = h->root.u.def.section;
11426 if (o->output_section != NULL)
11427 dyn.d_un.d_ptr += (o->output_section->vma
11428 + o->output_offset);
11429 else
11430 {
11431 /* The symbol is imported from another shared
11432 library and does not apply to this one. */
11433 dyn.d_un.d_ptr = 0;
11434 }
11435 break;
11436 }
11437 }
11438 continue;
11439
11440 case DT_PREINIT_ARRAYSZ:
11441 name = ".preinit_array";
11442 goto get_size;
11443 case DT_INIT_ARRAYSZ:
11444 name = ".init_array";
11445 goto get_size;
11446 case DT_FINI_ARRAYSZ:
11447 name = ".fini_array";
11448 get_size:
11449 o = bfd_get_section_by_name (abfd, name);
11450 if (o == NULL)
11451 {
11452 (*_bfd_error_handler)
11453 (_("%B: could not find output section %s"), abfd, name);
11454 goto error_return;
11455 }
11456 if (o->size == 0)
11457 (*_bfd_error_handler)
11458 (_("warning: %s section has zero size"), name);
11459 dyn.d_un.d_val = o->size;
11460 break;
11461
11462 case DT_PREINIT_ARRAY:
11463 name = ".preinit_array";
11464 goto get_vma;
11465 case DT_INIT_ARRAY:
11466 name = ".init_array";
11467 goto get_vma;
11468 case DT_FINI_ARRAY:
11469 name = ".fini_array";
11470 goto get_vma;
11471
11472 case DT_HASH:
11473 name = ".hash";
11474 goto get_vma;
11475 case DT_GNU_HASH:
11476 name = ".gnu.hash";
11477 goto get_vma;
11478 case DT_STRTAB:
11479 name = ".dynstr";
11480 goto get_vma;
11481 case DT_SYMTAB:
11482 name = ".dynsym";
11483 goto get_vma;
11484 case DT_VERDEF:
11485 name = ".gnu.version_d";
11486 goto get_vma;
11487 case DT_VERNEED:
11488 name = ".gnu.version_r";
11489 goto get_vma;
11490 case DT_VERSYM:
11491 name = ".gnu.version";
11492 get_vma:
11493 o = bfd_get_section_by_name (abfd, name);
11494 if (o == NULL)
11495 {
11496 (*_bfd_error_handler)
11497 (_("%B: could not find output section %s"), abfd, name);
11498 goto error_return;
11499 }
11500 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11501 {
11502 (*_bfd_error_handler)
11503 (_("warning: section '%s' is being made into a note"), name);
11504 bfd_set_error (bfd_error_nonrepresentable_section);
11505 goto error_return;
11506 }
11507 dyn.d_un.d_ptr = o->vma;
11508 break;
11509
11510 case DT_REL:
11511 case DT_RELA:
11512 case DT_RELSZ:
11513 case DT_RELASZ:
11514 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11515 type = SHT_REL;
11516 else
11517 type = SHT_RELA;
11518 dyn.d_un.d_val = 0;
11519 dyn.d_un.d_ptr = 0;
11520 for (i = 1; i < elf_numsections (abfd); i++)
11521 {
11522 Elf_Internal_Shdr *hdr;
11523
11524 hdr = elf_elfsections (abfd)[i];
11525 if (hdr->sh_type == type
11526 && (hdr->sh_flags & SHF_ALLOC) != 0)
11527 {
11528 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11529 dyn.d_un.d_val += hdr->sh_size;
11530 else
11531 {
11532 if (dyn.d_un.d_ptr == 0
11533 || hdr->sh_addr < dyn.d_un.d_ptr)
11534 dyn.d_un.d_ptr = hdr->sh_addr;
11535 }
11536 }
11537 }
11538 break;
11539 }
11540 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11541 }
11542 }
11543
11544 /* If we have created any dynamic sections, then output them. */
11545 if (dynobj != NULL)
11546 {
11547 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11548 goto error_return;
11549
11550 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11551 if (((info->warn_shared_textrel && info->shared)
11552 || info->error_textrel)
11553 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11554 {
11555 bfd_byte *dyncon, *dynconend;
11556
11557 dyncon = o->contents;
11558 dynconend = o->contents + o->size;
11559 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11560 {
11561 Elf_Internal_Dyn dyn;
11562
11563 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11564
11565 if (dyn.d_tag == DT_TEXTREL)
11566 {
11567 if (info->error_textrel)
11568 info->callbacks->einfo
11569 (_("%P%X: read-only segment has dynamic relocations.\n"));
11570 else
11571 info->callbacks->einfo
11572 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11573 break;
11574 }
11575 }
11576 }
11577
11578 for (o = dynobj->sections; o != NULL; o = o->next)
11579 {
11580 if ((o->flags & SEC_HAS_CONTENTS) == 0
11581 || o->size == 0
11582 || o->output_section == bfd_abs_section_ptr)
11583 continue;
11584 if ((o->flags & SEC_LINKER_CREATED) == 0)
11585 {
11586 /* At this point, we are only interested in sections
11587 created by _bfd_elf_link_create_dynamic_sections. */
11588 continue;
11589 }
11590 if (elf_hash_table (info)->stab_info.stabstr == o)
11591 continue;
11592 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11593 continue;
11594 if (strcmp (o->name, ".dynstr") != 0)
11595 {
11596 /* FIXME: octets_per_byte. */
11597 if (! bfd_set_section_contents (abfd, o->output_section,
11598 o->contents,
11599 (file_ptr) o->output_offset,
11600 o->size))
11601 goto error_return;
11602 }
11603 else
11604 {
11605 /* The contents of the .dynstr section are actually in a
11606 stringtab. */
11607 file_ptr off;
11608
11609 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11610 if (bfd_seek (abfd, off, SEEK_SET) != 0
11611 || ! _bfd_elf_strtab_emit (abfd,
11612 elf_hash_table (info)->dynstr))
11613 goto error_return;
11614 }
11615 }
11616 }
11617
11618 if (info->relocatable)
11619 {
11620 bfd_boolean failed = FALSE;
11621
11622 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11623 if (failed)
11624 goto error_return;
11625 }
11626
11627 /* If we have optimized stabs strings, output them. */
11628 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11629 {
11630 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11631 goto error_return;
11632 }
11633
11634 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11635 goto error_return;
11636
11637 elf_final_link_free (abfd, &flinfo);
11638
11639 elf_linker (abfd) = TRUE;
11640
11641 if (attr_section)
11642 {
11643 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11644 if (contents == NULL)
11645 return FALSE; /* Bail out and fail. */
11646 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11647 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11648 free (contents);
11649 }
11650
11651 return TRUE;
11652
11653 error_return:
11654 elf_final_link_free (abfd, &flinfo);
11655 return FALSE;
11656}
11657\f
11658/* Initialize COOKIE for input bfd ABFD. */
11659
11660static bfd_boolean
11661init_reloc_cookie (struct elf_reloc_cookie *cookie,
11662 struct bfd_link_info *info, bfd *abfd)
11663{
11664 Elf_Internal_Shdr *symtab_hdr;
11665 const struct elf_backend_data *bed;
11666
11667 bed = get_elf_backend_data (abfd);
11668 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11669
11670 cookie->abfd = abfd;
11671 cookie->sym_hashes = elf_sym_hashes (abfd);
11672 cookie->bad_symtab = elf_bad_symtab (abfd);
11673 if (cookie->bad_symtab)
11674 {
11675 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11676 cookie->extsymoff = 0;
11677 }
11678 else
11679 {
11680 cookie->locsymcount = symtab_hdr->sh_info;
11681 cookie->extsymoff = symtab_hdr->sh_info;
11682 }
11683
11684 if (bed->s->arch_size == 32)
11685 cookie->r_sym_shift = 8;
11686 else
11687 cookie->r_sym_shift = 32;
11688
11689 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11690 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11691 {
11692 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11693 cookie->locsymcount, 0,
11694 NULL, NULL, NULL);
11695 if (cookie->locsyms == NULL)
11696 {
11697 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11698 return FALSE;
11699 }
11700 if (info->keep_memory)
11701 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11702 }
11703 return TRUE;
11704}
11705
11706/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11707
11708static void
11709fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11710{
11711 Elf_Internal_Shdr *symtab_hdr;
11712
11713 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11714 if (cookie->locsyms != NULL
11715 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11716 free (cookie->locsyms);
11717}
11718
11719/* Initialize the relocation information in COOKIE for input section SEC
11720 of input bfd ABFD. */
11721
11722static bfd_boolean
11723init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11724 struct bfd_link_info *info, bfd *abfd,
11725 asection *sec)
11726{
11727 const struct elf_backend_data *bed;
11728
11729 if (sec->reloc_count == 0)
11730 {
11731 cookie->rels = NULL;
11732 cookie->relend = NULL;
11733 }
11734 else
11735 {
11736 bed = get_elf_backend_data (abfd);
11737
11738 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11739 info->keep_memory);
11740 if (cookie->rels == NULL)
11741 return FALSE;
11742 cookie->rel = cookie->rels;
11743 cookie->relend = (cookie->rels
11744 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11745 }
11746 cookie->rel = cookie->rels;
11747 return TRUE;
11748}
11749
11750/* Free the memory allocated by init_reloc_cookie_rels,
11751 if appropriate. */
11752
11753static void
11754fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11755 asection *sec)
11756{
11757 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11758 free (cookie->rels);
11759}
11760
11761/* Initialize the whole of COOKIE for input section SEC. */
11762
11763static bfd_boolean
11764init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11765 struct bfd_link_info *info,
11766 asection *sec)
11767{
11768 if (!init_reloc_cookie (cookie, info, sec->owner))
11769 goto error1;
11770 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11771 goto error2;
11772 return TRUE;
11773
11774 error2:
11775 fini_reloc_cookie (cookie, sec->owner);
11776 error1:
11777 return FALSE;
11778}
11779
11780/* Free the memory allocated by init_reloc_cookie_for_section,
11781 if appropriate. */
11782
11783static void
11784fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11785 asection *sec)
11786{
11787 fini_reloc_cookie_rels (cookie, sec);
11788 fini_reloc_cookie (cookie, sec->owner);
11789}
11790\f
11791/* Garbage collect unused sections. */
11792
11793/* Default gc_mark_hook. */
11794
11795asection *
11796_bfd_elf_gc_mark_hook (asection *sec,
11797 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11798 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11799 struct elf_link_hash_entry *h,
11800 Elf_Internal_Sym *sym)
11801{
11802 const char *sec_name;
11803
11804 if (h != NULL)
11805 {
11806 switch (h->root.type)
11807 {
11808 case bfd_link_hash_defined:
11809 case bfd_link_hash_defweak:
11810 return h->root.u.def.section;
11811
11812 case bfd_link_hash_common:
11813 return h->root.u.c.p->section;
11814
11815 case bfd_link_hash_undefined:
11816 case bfd_link_hash_undefweak:
11817 /* To work around a glibc bug, keep all XXX input sections
11818 when there is an as yet undefined reference to __start_XXX
11819 or __stop_XXX symbols. The linker will later define such
11820 symbols for orphan input sections that have a name
11821 representable as a C identifier. */
11822 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11823 sec_name = h->root.root.string + 8;
11824 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11825 sec_name = h->root.root.string + 7;
11826 else
11827 sec_name = NULL;
11828
11829 if (sec_name && *sec_name != '\0')
11830 {
11831 bfd *i;
11832
11833 for (i = info->input_bfds; i; i = i->link.next)
11834 {
11835 sec = bfd_get_section_by_name (i, sec_name);
11836 if (sec)
11837 sec->flags |= SEC_KEEP;
11838 }
11839 }
11840 break;
11841
11842 default:
11843 break;
11844 }
11845 }
11846 else
11847 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11848
11849 return NULL;
11850}
11851
11852/* COOKIE->rel describes a relocation against section SEC, which is
11853 a section we've decided to keep. Return the section that contains
11854 the relocation symbol, or NULL if no section contains it. */
11855
11856asection *
11857_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11858 elf_gc_mark_hook_fn gc_mark_hook,
11859 struct elf_reloc_cookie *cookie)
11860{
11861 unsigned long r_symndx;
11862 struct elf_link_hash_entry *h;
11863
11864 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11865 if (r_symndx == STN_UNDEF)
11866 return NULL;
11867
11868 if (r_symndx >= cookie->locsymcount
11869 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11870 {
11871 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11872 if (h == NULL)
11873 {
11874 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11875 sec->owner);
11876 return NULL;
11877 }
11878 while (h->root.type == bfd_link_hash_indirect
11879 || h->root.type == bfd_link_hash_warning)
11880 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11881 h->mark = 1;
11882 /* If this symbol is weak and there is a non-weak definition, we
11883 keep the non-weak definition because many backends put
11884 dynamic reloc info on the non-weak definition for code
11885 handling copy relocs. */
11886 if (h->u.weakdef != NULL)
11887 h->u.weakdef->mark = 1;
11888 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11889 }
11890
11891 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11892 &cookie->locsyms[r_symndx]);
11893}
11894
11895/* COOKIE->rel describes a relocation against section SEC, which is
11896 a section we've decided to keep. Mark the section that contains
11897 the relocation symbol. */
11898
11899bfd_boolean
11900_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11901 asection *sec,
11902 elf_gc_mark_hook_fn gc_mark_hook,
11903 struct elf_reloc_cookie *cookie)
11904{
11905 asection *rsec;
11906
11907 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11908 if (rsec && !rsec->gc_mark)
11909 {
11910 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11911 || (rsec->owner->flags & DYNAMIC) != 0)
11912 rsec->gc_mark = 1;
11913 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11914 return FALSE;
11915 }
11916 return TRUE;
11917}
11918
11919/* The mark phase of garbage collection. For a given section, mark
11920 it and any sections in this section's group, and all the sections
11921 which define symbols to which it refers. */
11922
11923bfd_boolean
11924_bfd_elf_gc_mark (struct bfd_link_info *info,
11925 asection *sec,
11926 elf_gc_mark_hook_fn gc_mark_hook)
11927{
11928 bfd_boolean ret;
11929 asection *group_sec, *eh_frame;
11930
11931 sec->gc_mark = 1;
11932
11933 /* Mark all the sections in the group. */
11934 group_sec = elf_section_data (sec)->next_in_group;
11935 if (group_sec && !group_sec->gc_mark)
11936 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11937 return FALSE;
11938
11939 /* Look through the section relocs. */
11940 ret = TRUE;
11941 eh_frame = elf_eh_frame_section (sec->owner);
11942 if ((sec->flags & SEC_RELOC) != 0
11943 && sec->reloc_count > 0
11944 && sec != eh_frame)
11945 {
11946 struct elf_reloc_cookie cookie;
11947
11948 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11949 ret = FALSE;
11950 else
11951 {
11952 for (; cookie.rel < cookie.relend; cookie.rel++)
11953 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11954 {
11955 ret = FALSE;
11956 break;
11957 }
11958 fini_reloc_cookie_for_section (&cookie, sec);
11959 }
11960 }
11961
11962 if (ret && eh_frame && elf_fde_list (sec))
11963 {
11964 struct elf_reloc_cookie cookie;
11965
11966 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11967 ret = FALSE;
11968 else
11969 {
11970 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11971 gc_mark_hook, &cookie))
11972 ret = FALSE;
11973 fini_reloc_cookie_for_section (&cookie, eh_frame);
11974 }
11975 }
11976
11977 return ret;
11978}
11979
11980/* Scan and mark sections in a special or debug section group. */
11981
11982static void
11983_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11984{
11985 /* Point to first section of section group. */
11986 asection *ssec;
11987 /* Used to iterate the section group. */
11988 asection *msec;
11989
11990 bfd_boolean is_special_grp = TRUE;
11991 bfd_boolean is_debug_grp = TRUE;
11992
11993 /* First scan to see if group contains any section other than debug
11994 and special section. */
11995 ssec = msec = elf_next_in_group (grp);
11996 do
11997 {
11998 if ((msec->flags & SEC_DEBUGGING) == 0)
11999 is_debug_grp = FALSE;
12000
12001 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12002 is_special_grp = FALSE;
12003
12004 msec = elf_next_in_group (msec);
12005 }
12006 while (msec != ssec);
12007
12008 /* If this is a pure debug section group or pure special section group,
12009 keep all sections in this group. */
12010 if (is_debug_grp || is_special_grp)
12011 {
12012 do
12013 {
12014 msec->gc_mark = 1;
12015 msec = elf_next_in_group (msec);
12016 }
12017 while (msec != ssec);
12018 }
12019}
12020
12021/* Keep debug and special sections. */
12022
12023bfd_boolean
12024_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12025 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12026{
12027 bfd *ibfd;
12028
12029 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12030 {
12031 asection *isec;
12032 bfd_boolean some_kept;
12033 bfd_boolean debug_frag_seen;
12034
12035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12036 continue;
12037
12038 /* Ensure all linker created sections are kept,
12039 see if any other section is already marked,
12040 and note if we have any fragmented debug sections. */
12041 debug_frag_seen = some_kept = FALSE;
12042 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12043 {
12044 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12045 isec->gc_mark = 1;
12046 else if (isec->gc_mark)
12047 some_kept = TRUE;
12048
12049 if (debug_frag_seen == FALSE
12050 && (isec->flags & SEC_DEBUGGING)
12051 && CONST_STRNEQ (isec->name, ".debug_line."))
12052 debug_frag_seen = TRUE;
12053 }
12054
12055 /* If no section in this file will be kept, then we can
12056 toss out the debug and special sections. */
12057 if (!some_kept)
12058 continue;
12059
12060 /* Keep debug and special sections like .comment when they are
12061 not part of a group. Also keep section groups that contain
12062 just debug sections or special sections. */
12063 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12064 {
12065 if ((isec->flags & SEC_GROUP) != 0)
12066 _bfd_elf_gc_mark_debug_special_section_group (isec);
12067 else if (((isec->flags & SEC_DEBUGGING) != 0
12068 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12069 && elf_next_in_group (isec) == NULL)
12070 isec->gc_mark = 1;
12071 }
12072
12073 if (! debug_frag_seen)
12074 continue;
12075
12076 /* Look for CODE sections which are going to be discarded,
12077 and find and discard any fragmented debug sections which
12078 are associated with that code section. */
12079 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12080 if ((isec->flags & SEC_CODE) != 0
12081 && isec->gc_mark == 0)
12082 {
12083 unsigned int ilen;
12084 asection *dsec;
12085
12086 ilen = strlen (isec->name);
12087
12088 /* Association is determined by the name of the debug section
12089 containing the name of the code section as a suffix. For
12090 example .debug_line.text.foo is a debug section associated
12091 with .text.foo. */
12092 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12093 {
12094 unsigned int dlen;
12095
12096 if (dsec->gc_mark == 0
12097 || (dsec->flags & SEC_DEBUGGING) == 0)
12098 continue;
12099
12100 dlen = strlen (dsec->name);
12101
12102 if (dlen > ilen
12103 && strncmp (dsec->name + (dlen - ilen),
12104 isec->name, ilen) == 0)
12105 {
12106 dsec->gc_mark = 0;
12107 break;
12108 }
12109 }
12110 }
12111 }
12112 return TRUE;
12113}
12114
12115/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12116
12117struct elf_gc_sweep_symbol_info
12118{
12119 struct bfd_link_info *info;
12120 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12121 bfd_boolean);
12122};
12123
12124static bfd_boolean
12125elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12126{
12127 if (!h->mark
12128 && (((h->root.type == bfd_link_hash_defined
12129 || h->root.type == bfd_link_hash_defweak)
12130 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12131 && h->root.u.def.section->gc_mark))
12132 || h->root.type == bfd_link_hash_undefined
12133 || h->root.type == bfd_link_hash_undefweak))
12134 {
12135 struct elf_gc_sweep_symbol_info *inf;
12136
12137 inf = (struct elf_gc_sweep_symbol_info *) data;
12138 (*inf->hide_symbol) (inf->info, h, TRUE);
12139 h->def_regular = 0;
12140 h->ref_regular = 0;
12141 h->ref_regular_nonweak = 0;
12142 }
12143
12144 return TRUE;
12145}
12146
12147/* The sweep phase of garbage collection. Remove all garbage sections. */
12148
12149typedef bfd_boolean (*gc_sweep_hook_fn)
12150 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12151
12152static bfd_boolean
12153elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12154{
12155 bfd *sub;
12156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12157 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12158 unsigned long section_sym_count;
12159 struct elf_gc_sweep_symbol_info sweep_info;
12160
12161 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12162 {
12163 asection *o;
12164
12165 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12166 continue;
12167
12168 for (o = sub->sections; o != NULL; o = o->next)
12169 {
12170 /* When any section in a section group is kept, we keep all
12171 sections in the section group. If the first member of
12172 the section group is excluded, we will also exclude the
12173 group section. */
12174 if (o->flags & SEC_GROUP)
12175 {
12176 asection *first = elf_next_in_group (o);
12177 o->gc_mark = first->gc_mark;
12178 }
12179
12180 if (o->gc_mark)
12181 continue;
12182
12183 /* Skip sweeping sections already excluded. */
12184 if (o->flags & SEC_EXCLUDE)
12185 continue;
12186
12187 /* Since this is early in the link process, it is simple
12188 to remove a section from the output. */
12189 o->flags |= SEC_EXCLUDE;
12190
12191 if (info->print_gc_sections && o->size != 0)
12192 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12193
12194 /* But we also have to update some of the relocation
12195 info we collected before. */
12196 if (gc_sweep_hook
12197 && (o->flags & SEC_RELOC) != 0
12198 && o->reloc_count != 0
12199 && !((info->strip == strip_all || info->strip == strip_debugger)
12200 && (o->flags & SEC_DEBUGGING) != 0)
12201 && !bfd_is_abs_section (o->output_section))
12202 {
12203 Elf_Internal_Rela *internal_relocs;
12204 bfd_boolean r;
12205
12206 internal_relocs
12207 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12208 info->keep_memory);
12209 if (internal_relocs == NULL)
12210 return FALSE;
12211
12212 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12213
12214 if (elf_section_data (o)->relocs != internal_relocs)
12215 free (internal_relocs);
12216
12217 if (!r)
12218 return FALSE;
12219 }
12220 }
12221 }
12222
12223 /* Remove the symbols that were in the swept sections from the dynamic
12224 symbol table. GCFIXME: Anyone know how to get them out of the
12225 static symbol table as well? */
12226 sweep_info.info = info;
12227 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12228 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12229 &sweep_info);
12230
12231 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12232 return TRUE;
12233}
12234
12235/* Propagate collected vtable information. This is called through
12236 elf_link_hash_traverse. */
12237
12238static bfd_boolean
12239elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12240{
12241 /* Those that are not vtables. */
12242 if (h->vtable == NULL || h->vtable->parent == NULL)
12243 return TRUE;
12244
12245 /* Those vtables that do not have parents, we cannot merge. */
12246 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12247 return TRUE;
12248
12249 /* If we've already been done, exit. */
12250 if (h->vtable->used && h->vtable->used[-1])
12251 return TRUE;
12252
12253 /* Make sure the parent's table is up to date. */
12254 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12255
12256 if (h->vtable->used == NULL)
12257 {
12258 /* None of this table's entries were referenced. Re-use the
12259 parent's table. */
12260 h->vtable->used = h->vtable->parent->vtable->used;
12261 h->vtable->size = h->vtable->parent->vtable->size;
12262 }
12263 else
12264 {
12265 size_t n;
12266 bfd_boolean *cu, *pu;
12267
12268 /* Or the parent's entries into ours. */
12269 cu = h->vtable->used;
12270 cu[-1] = TRUE;
12271 pu = h->vtable->parent->vtable->used;
12272 if (pu != NULL)
12273 {
12274 const struct elf_backend_data *bed;
12275 unsigned int log_file_align;
12276
12277 bed = get_elf_backend_data (h->root.u.def.section->owner);
12278 log_file_align = bed->s->log_file_align;
12279 n = h->vtable->parent->vtable->size >> log_file_align;
12280 while (n--)
12281 {
12282 if (*pu)
12283 *cu = TRUE;
12284 pu++;
12285 cu++;
12286 }
12287 }
12288 }
12289
12290 return TRUE;
12291}
12292
12293static bfd_boolean
12294elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12295{
12296 asection *sec;
12297 bfd_vma hstart, hend;
12298 Elf_Internal_Rela *relstart, *relend, *rel;
12299 const struct elf_backend_data *bed;
12300 unsigned int log_file_align;
12301
12302 /* Take care of both those symbols that do not describe vtables as
12303 well as those that are not loaded. */
12304 if (h->vtable == NULL || h->vtable->parent == NULL)
12305 return TRUE;
12306
12307 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12308 || h->root.type == bfd_link_hash_defweak);
12309
12310 sec = h->root.u.def.section;
12311 hstart = h->root.u.def.value;
12312 hend = hstart + h->size;
12313
12314 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12315 if (!relstart)
12316 return *(bfd_boolean *) okp = FALSE;
12317 bed = get_elf_backend_data (sec->owner);
12318 log_file_align = bed->s->log_file_align;
12319
12320 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12321
12322 for (rel = relstart; rel < relend; ++rel)
12323 if (rel->r_offset >= hstart && rel->r_offset < hend)
12324 {
12325 /* If the entry is in use, do nothing. */
12326 if (h->vtable->used
12327 && (rel->r_offset - hstart) < h->vtable->size)
12328 {
12329 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12330 if (h->vtable->used[entry])
12331 continue;
12332 }
12333 /* Otherwise, kill it. */
12334 rel->r_offset = rel->r_info = rel->r_addend = 0;
12335 }
12336
12337 return TRUE;
12338}
12339
12340/* Mark sections containing dynamically referenced symbols. When
12341 building shared libraries, we must assume that any visible symbol is
12342 referenced. */
12343
12344bfd_boolean
12345bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12346{
12347 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12348 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12349
12350 if ((h->root.type == bfd_link_hash_defined
12351 || h->root.type == bfd_link_hash_defweak)
12352 && (h->ref_dynamic
12353 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12354 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12355 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12356 && (!info->executable
12357 || info->export_dynamic
12358 || (h->dynamic
12359 && d != NULL
12360 && (*d->match) (&d->head, NULL, h->root.root.string)))
12361 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12362 || !bfd_hide_sym_by_version (info->version_info,
12363 h->root.root.string)))))
12364 h->root.u.def.section->flags |= SEC_KEEP;
12365
12366 return TRUE;
12367}
12368
12369/* Keep all sections containing symbols undefined on the command-line,
12370 and the section containing the entry symbol. */
12371
12372void
12373_bfd_elf_gc_keep (struct bfd_link_info *info)
12374{
12375 struct bfd_sym_chain *sym;
12376
12377 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12378 {
12379 struct elf_link_hash_entry *h;
12380
12381 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12382 FALSE, FALSE, FALSE);
12383
12384 if (h != NULL
12385 && (h->root.type == bfd_link_hash_defined
12386 || h->root.type == bfd_link_hash_defweak)
12387 && !bfd_is_abs_section (h->root.u.def.section))
12388 h->root.u.def.section->flags |= SEC_KEEP;
12389 }
12390}
12391
12392/* Do mark and sweep of unused sections. */
12393
12394bfd_boolean
12395bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12396{
12397 bfd_boolean ok = TRUE;
12398 bfd *sub;
12399 elf_gc_mark_hook_fn gc_mark_hook;
12400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12401 struct elf_link_hash_table *htab;
12402
12403 if (!bed->can_gc_sections
12404 || !is_elf_hash_table (info->hash))
12405 {
12406 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12407 return TRUE;
12408 }
12409
12410 bed->gc_keep (info);
12411 htab = elf_hash_table (info);
12412
12413 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12414 at the .eh_frame section if we can mark the FDEs individually. */
12415 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12416 {
12417 asection *sec;
12418 struct elf_reloc_cookie cookie;
12419
12420 sec = bfd_get_section_by_name (sub, ".eh_frame");
12421 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12422 {
12423 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12424 if (elf_section_data (sec)->sec_info
12425 && (sec->flags & SEC_LINKER_CREATED) == 0)
12426 elf_eh_frame_section (sub) = sec;
12427 fini_reloc_cookie_for_section (&cookie, sec);
12428 sec = bfd_get_next_section_by_name (sec);
12429 }
12430 }
12431
12432 /* Apply transitive closure to the vtable entry usage info. */
12433 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12434 if (!ok)
12435 return FALSE;
12436
12437 /* Kill the vtable relocations that were not used. */
12438 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12439 if (!ok)
12440 return FALSE;
12441
12442 /* Mark dynamically referenced symbols. */
12443 if (htab->dynamic_sections_created)
12444 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12445
12446 /* Grovel through relocs to find out who stays ... */
12447 gc_mark_hook = bed->gc_mark_hook;
12448 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12449 {
12450 asection *o;
12451
12452 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12453 continue;
12454
12455 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12456 Also treat note sections as a root, if the section is not part
12457 of a group. */
12458 for (o = sub->sections; o != NULL; o = o->next)
12459 if (!o->gc_mark
12460 && (o->flags & SEC_EXCLUDE) == 0
12461 && ((o->flags & SEC_KEEP) != 0
12462 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12463 && elf_next_in_group (o) == NULL )))
12464 {
12465 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12466 return FALSE;
12467 }
12468 }
12469
12470 /* Allow the backend to mark additional target specific sections. */
12471 bed->gc_mark_extra_sections (info, gc_mark_hook);
12472
12473 /* ... and mark SEC_EXCLUDE for those that go. */
12474 return elf_gc_sweep (abfd, info);
12475}
12476\f
12477/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12478
12479bfd_boolean
12480bfd_elf_gc_record_vtinherit (bfd *abfd,
12481 asection *sec,
12482 struct elf_link_hash_entry *h,
12483 bfd_vma offset)
12484{
12485 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12486 struct elf_link_hash_entry **search, *child;
12487 bfd_size_type extsymcount;
12488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12489
12490 /* The sh_info field of the symtab header tells us where the
12491 external symbols start. We don't care about the local symbols at
12492 this point. */
12493 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12494 if (!elf_bad_symtab (abfd))
12495 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12496
12497 sym_hashes = elf_sym_hashes (abfd);
12498 sym_hashes_end = sym_hashes + extsymcount;
12499
12500 /* Hunt down the child symbol, which is in this section at the same
12501 offset as the relocation. */
12502 for (search = sym_hashes; search != sym_hashes_end; ++search)
12503 {
12504 if ((child = *search) != NULL
12505 && (child->root.type == bfd_link_hash_defined
12506 || child->root.type == bfd_link_hash_defweak)
12507 && child->root.u.def.section == sec
12508 && child->root.u.def.value == offset)
12509 goto win;
12510 }
12511
12512 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12513 abfd, sec, (unsigned long) offset);
12514 bfd_set_error (bfd_error_invalid_operation);
12515 return FALSE;
12516
12517 win:
12518 if (!child->vtable)
12519 {
12520 child->vtable = (struct elf_link_virtual_table_entry *)
12521 bfd_zalloc (abfd, sizeof (*child->vtable));
12522 if (!child->vtable)
12523 return FALSE;
12524 }
12525 if (!h)
12526 {
12527 /* This *should* only be the absolute section. It could potentially
12528 be that someone has defined a non-global vtable though, which
12529 would be bad. It isn't worth paging in the local symbols to be
12530 sure though; that case should simply be handled by the assembler. */
12531
12532 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12533 }
12534 else
12535 child->vtable->parent = h;
12536
12537 return TRUE;
12538}
12539
12540/* Called from check_relocs to record the existence of a VTENTRY reloc. */
12541
12542bfd_boolean
12543bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12544 asection *sec ATTRIBUTE_UNUSED,
12545 struct elf_link_hash_entry *h,
12546 bfd_vma addend)
12547{
12548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12549 unsigned int log_file_align = bed->s->log_file_align;
12550
12551 if (!h->vtable)
12552 {
12553 h->vtable = (struct elf_link_virtual_table_entry *)
12554 bfd_zalloc (abfd, sizeof (*h->vtable));
12555 if (!h->vtable)
12556 return FALSE;
12557 }
12558
12559 if (addend >= h->vtable->size)
12560 {
12561 size_t size, bytes, file_align;
12562 bfd_boolean *ptr = h->vtable->used;
12563
12564 /* While the symbol is undefined, we have to be prepared to handle
12565 a zero size. */
12566 file_align = 1 << log_file_align;
12567 if (h->root.type == bfd_link_hash_undefined)
12568 size = addend + file_align;
12569 else
12570 {
12571 size = h->size;
12572 if (addend >= size)
12573 {
12574 /* Oops! We've got a reference past the defined end of
12575 the table. This is probably a bug -- shall we warn? */
12576 size = addend + file_align;
12577 }
12578 }
12579 size = (size + file_align - 1) & -file_align;
12580
12581 /* Allocate one extra entry for use as a "done" flag for the
12582 consolidation pass. */
12583 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12584
12585 if (ptr)
12586 {
12587 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12588
12589 if (ptr != NULL)
12590 {
12591 size_t oldbytes;
12592
12593 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12594 * sizeof (bfd_boolean));
12595 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12596 }
12597 }
12598 else
12599 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12600
12601 if (ptr == NULL)
12602 return FALSE;
12603
12604 /* And arrange for that done flag to be at index -1. */
12605 h->vtable->used = ptr + 1;
12606 h->vtable->size = size;
12607 }
12608
12609 h->vtable->used[addend >> log_file_align] = TRUE;
12610
12611 return TRUE;
12612}
12613
12614/* Map an ELF section header flag to its corresponding string. */
12615typedef struct
12616{
12617 char *flag_name;
12618 flagword flag_value;
12619} elf_flags_to_name_table;
12620
12621static elf_flags_to_name_table elf_flags_to_names [] =
12622{
12623 { "SHF_WRITE", SHF_WRITE },
12624 { "SHF_ALLOC", SHF_ALLOC },
12625 { "SHF_EXECINSTR", SHF_EXECINSTR },
12626 { "SHF_MERGE", SHF_MERGE },
12627 { "SHF_STRINGS", SHF_STRINGS },
12628 { "SHF_INFO_LINK", SHF_INFO_LINK},
12629 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12630 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12631 { "SHF_GROUP", SHF_GROUP },
12632 { "SHF_TLS", SHF_TLS },
12633 { "SHF_MASKOS", SHF_MASKOS },
12634 { "SHF_EXCLUDE", SHF_EXCLUDE },
12635};
12636
12637/* Returns TRUE if the section is to be included, otherwise FALSE. */
12638bfd_boolean
12639bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12640 struct flag_info *flaginfo,
12641 asection *section)
12642{
12643 const bfd_vma sh_flags = elf_section_flags (section);
12644
12645 if (!flaginfo->flags_initialized)
12646 {
12647 bfd *obfd = info->output_bfd;
12648 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12649 struct flag_info_list *tf = flaginfo->flag_list;
12650 int with_hex = 0;
12651 int without_hex = 0;
12652
12653 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12654 {
12655 unsigned i;
12656 flagword (*lookup) (char *);
12657
12658 lookup = bed->elf_backend_lookup_section_flags_hook;
12659 if (lookup != NULL)
12660 {
12661 flagword hexval = (*lookup) ((char *) tf->name);
12662
12663 if (hexval != 0)
12664 {
12665 if (tf->with == with_flags)
12666 with_hex |= hexval;
12667 else if (tf->with == without_flags)
12668 without_hex |= hexval;
12669 tf->valid = TRUE;
12670 continue;
12671 }
12672 }
12673 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12674 {
12675 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12676 {
12677 if (tf->with == with_flags)
12678 with_hex |= elf_flags_to_names[i].flag_value;
12679 else if (tf->with == without_flags)
12680 without_hex |= elf_flags_to_names[i].flag_value;
12681 tf->valid = TRUE;
12682 break;
12683 }
12684 }
12685 if (!tf->valid)
12686 {
12687 info->callbacks->einfo
12688 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12689 return FALSE;
12690 }
12691 }
12692 flaginfo->flags_initialized = TRUE;
12693 flaginfo->only_with_flags |= with_hex;
12694 flaginfo->not_with_flags |= without_hex;
12695 }
12696
12697 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12698 return FALSE;
12699
12700 if ((flaginfo->not_with_flags & sh_flags) != 0)
12701 return FALSE;
12702
12703 return TRUE;
12704}
12705
12706struct alloc_got_off_arg {
12707 bfd_vma gotoff;
12708 struct bfd_link_info *info;
12709};
12710
12711/* We need a special top-level link routine to convert got reference counts
12712 to real got offsets. */
12713
12714static bfd_boolean
12715elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12716{
12717 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12718 bfd *obfd = gofarg->info->output_bfd;
12719 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12720
12721 if (h->got.refcount > 0)
12722 {
12723 h->got.offset = gofarg->gotoff;
12724 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12725 }
12726 else
12727 h->got.offset = (bfd_vma) -1;
12728
12729 return TRUE;
12730}
12731
12732/* And an accompanying bit to work out final got entry offsets once
12733 we're done. Should be called from final_link. */
12734
12735bfd_boolean
12736bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12737 struct bfd_link_info *info)
12738{
12739 bfd *i;
12740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12741 bfd_vma gotoff;
12742 struct alloc_got_off_arg gofarg;
12743
12744 BFD_ASSERT (abfd == info->output_bfd);
12745
12746 if (! is_elf_hash_table (info->hash))
12747 return FALSE;
12748
12749 /* The GOT offset is relative to the .got section, but the GOT header is
12750 put into the .got.plt section, if the backend uses it. */
12751 if (bed->want_got_plt)
12752 gotoff = 0;
12753 else
12754 gotoff = bed->got_header_size;
12755
12756 /* Do the local .got entries first. */
12757 for (i = info->input_bfds; i; i = i->link.next)
12758 {
12759 bfd_signed_vma *local_got;
12760 bfd_size_type j, locsymcount;
12761 Elf_Internal_Shdr *symtab_hdr;
12762
12763 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12764 continue;
12765
12766 local_got = elf_local_got_refcounts (i);
12767 if (!local_got)
12768 continue;
12769
12770 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12771 if (elf_bad_symtab (i))
12772 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12773 else
12774 locsymcount = symtab_hdr->sh_info;
12775
12776 for (j = 0; j < locsymcount; ++j)
12777 {
12778 if (local_got[j] > 0)
12779 {
12780 local_got[j] = gotoff;
12781 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12782 }
12783 else
12784 local_got[j] = (bfd_vma) -1;
12785 }
12786 }
12787
12788 /* Then the global .got entries. .plt refcounts are handled by
12789 adjust_dynamic_symbol */
12790 gofarg.gotoff = gotoff;
12791 gofarg.info = info;
12792 elf_link_hash_traverse (elf_hash_table (info),
12793 elf_gc_allocate_got_offsets,
12794 &gofarg);
12795 return TRUE;
12796}
12797
12798/* Many folk need no more in the way of final link than this, once
12799 got entry reference counting is enabled. */
12800
12801bfd_boolean
12802bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12803{
12804 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12805 return FALSE;
12806
12807 /* Invoke the regular ELF backend linker to do all the work. */
12808 return bfd_elf_final_link (abfd, info);
12809}
12810
12811bfd_boolean
12812bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12813{
12814 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12815
12816 if (rcookie->bad_symtab)
12817 rcookie->rel = rcookie->rels;
12818
12819 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12820 {
12821 unsigned long r_symndx;
12822
12823 if (! rcookie->bad_symtab)
12824 if (rcookie->rel->r_offset > offset)
12825 return FALSE;
12826 if (rcookie->rel->r_offset != offset)
12827 continue;
12828
12829 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12830 if (r_symndx == STN_UNDEF)
12831 return TRUE;
12832
12833 if (r_symndx >= rcookie->locsymcount
12834 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12835 {
12836 struct elf_link_hash_entry *h;
12837
12838 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12839
12840 while (h->root.type == bfd_link_hash_indirect
12841 || h->root.type == bfd_link_hash_warning)
12842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12843
12844 if ((h->root.type == bfd_link_hash_defined
12845 || h->root.type == bfd_link_hash_defweak)
12846 && (h->root.u.def.section->owner != rcookie->abfd
12847 || h->root.u.def.section->kept_section != NULL
12848 || discarded_section (h->root.u.def.section)))
12849 return TRUE;
12850 }
12851 else
12852 {
12853 /* It's not a relocation against a global symbol,
12854 but it could be a relocation against a local
12855 symbol for a discarded section. */
12856 asection *isec;
12857 Elf_Internal_Sym *isym;
12858
12859 /* Need to: get the symbol; get the section. */
12860 isym = &rcookie->locsyms[r_symndx];
12861 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12862 if (isec != NULL
12863 && (isec->kept_section != NULL
12864 || discarded_section (isec)))
12865 return TRUE;
12866 }
12867 return FALSE;
12868 }
12869 return FALSE;
12870}
12871
12872/* Discard unneeded references to discarded sections.
12873 Returns -1 on error, 1 if any section's size was changed, 0 if
12874 nothing changed. This function assumes that the relocations are in
12875 sorted order, which is true for all known assemblers. */
12876
12877int
12878bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12879{
12880 struct elf_reloc_cookie cookie;
12881 asection *o;
12882 bfd *abfd;
12883 int changed = 0;
12884
12885 if (info->traditional_format
12886 || !is_elf_hash_table (info->hash))
12887 return 0;
12888
12889 o = bfd_get_section_by_name (output_bfd, ".stab");
12890 if (o != NULL)
12891 {
12892 asection *i;
12893
12894 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12895 {
12896 if (i->size == 0
12897 || i->reloc_count == 0
12898 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12899 continue;
12900
12901 abfd = i->owner;
12902 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12903 continue;
12904
12905 if (!init_reloc_cookie_for_section (&cookie, info, i))
12906 return -1;
12907
12908 if (_bfd_discard_section_stabs (abfd, i,
12909 elf_section_data (i)->sec_info,
12910 bfd_elf_reloc_symbol_deleted_p,
12911 &cookie))
12912 changed = 1;
12913
12914 fini_reloc_cookie_for_section (&cookie, i);
12915 }
12916 }
12917
12918 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12919 if (o != NULL)
12920 {
12921 asection *i;
12922
12923 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12924 {
12925 if (i->size == 0)
12926 continue;
12927
12928 abfd = i->owner;
12929 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12930 continue;
12931
12932 if (!init_reloc_cookie_for_section (&cookie, info, i))
12933 return -1;
12934
12935 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12936 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12937 bfd_elf_reloc_symbol_deleted_p,
12938 &cookie))
12939 changed = 1;
12940
12941 fini_reloc_cookie_for_section (&cookie, i);
12942 }
12943 }
12944
12945 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12946 {
12947 const struct elf_backend_data *bed;
12948
12949 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12950 continue;
12951
12952 bed = get_elf_backend_data (abfd);
12953
12954 if (bed->elf_backend_discard_info != NULL)
12955 {
12956 if (!init_reloc_cookie (&cookie, info, abfd))
12957 return -1;
12958
12959 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12960 changed = 1;
12961
12962 fini_reloc_cookie (&cookie, abfd);
12963 }
12964 }
12965
12966 if (info->eh_frame_hdr
12967 && !info->relocatable
12968 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12969 changed = 1;
12970
12971 return changed;
12972}
12973
12974bfd_boolean
12975_bfd_elf_section_already_linked (bfd *abfd,
12976 asection *sec,
12977 struct bfd_link_info *info)
12978{
12979 flagword flags;
12980 const char *name, *key;
12981 struct bfd_section_already_linked *l;
12982 struct bfd_section_already_linked_hash_entry *already_linked_list;
12983
12984 if (sec->output_section == bfd_abs_section_ptr)
12985 return FALSE;
12986
12987 flags = sec->flags;
12988
12989 /* Return if it isn't a linkonce section. A comdat group section
12990 also has SEC_LINK_ONCE set. */
12991 if ((flags & SEC_LINK_ONCE) == 0)
12992 return FALSE;
12993
12994 /* Don't put group member sections on our list of already linked
12995 sections. They are handled as a group via their group section. */
12996 if (elf_sec_group (sec) != NULL)
12997 return FALSE;
12998
12999 /* For a SHT_GROUP section, use the group signature as the key. */
13000 name = sec->name;
13001 if ((flags & SEC_GROUP) != 0
13002 && elf_next_in_group (sec) != NULL
13003 && elf_group_name (elf_next_in_group (sec)) != NULL)
13004 key = elf_group_name (elf_next_in_group (sec));
13005 else
13006 {
13007 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13008 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13009 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13010 key++;
13011 else
13012 /* Must be a user linkonce section that doesn't follow gcc's
13013 naming convention. In this case we won't be matching
13014 single member groups. */
13015 key = name;
13016 }
13017
13018 already_linked_list = bfd_section_already_linked_table_lookup (key);
13019
13020 for (l = already_linked_list->entry; l != NULL; l = l->next)
13021 {
13022 /* We may have 2 different types of sections on the list: group
13023 sections with a signature of <key> (<key> is some string),
13024 and linkonce sections named .gnu.linkonce.<type>.<key>.
13025 Match like sections. LTO plugin sections are an exception.
13026 They are always named .gnu.linkonce.t.<key> and match either
13027 type of section. */
13028 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13029 && ((flags & SEC_GROUP) != 0
13030 || strcmp (name, l->sec->name) == 0))
13031 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13032 {
13033 /* The section has already been linked. See if we should
13034 issue a warning. */
13035 if (!_bfd_handle_already_linked (sec, l, info))
13036 return FALSE;
13037
13038 if (flags & SEC_GROUP)
13039 {
13040 asection *first = elf_next_in_group (sec);
13041 asection *s = first;
13042
13043 while (s != NULL)
13044 {
13045 s->output_section = bfd_abs_section_ptr;
13046 /* Record which group discards it. */
13047 s->kept_section = l->sec;
13048 s = elf_next_in_group (s);
13049 /* These lists are circular. */
13050 if (s == first)
13051 break;
13052 }
13053 }
13054
13055 return TRUE;
13056 }
13057 }
13058
13059 /* A single member comdat group section may be discarded by a
13060 linkonce section and vice versa. */
13061 if ((flags & SEC_GROUP) != 0)
13062 {
13063 asection *first = elf_next_in_group (sec);
13064
13065 if (first != NULL && elf_next_in_group (first) == first)
13066 /* Check this single member group against linkonce sections. */
13067 for (l = already_linked_list->entry; l != NULL; l = l->next)
13068 if ((l->sec->flags & SEC_GROUP) == 0
13069 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13070 {
13071 first->output_section = bfd_abs_section_ptr;
13072 first->kept_section = l->sec;
13073 sec->output_section = bfd_abs_section_ptr;
13074 break;
13075 }
13076 }
13077 else
13078 /* Check this linkonce section against single member groups. */
13079 for (l = already_linked_list->entry; l != NULL; l = l->next)
13080 if (l->sec->flags & SEC_GROUP)
13081 {
13082 asection *first = elf_next_in_group (l->sec);
13083
13084 if (first != NULL
13085 && elf_next_in_group (first) == first
13086 && bfd_elf_match_symbols_in_sections (first, sec, info))
13087 {
13088 sec->output_section = bfd_abs_section_ptr;
13089 sec->kept_section = first;
13090 break;
13091 }
13092 }
13093
13094 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13095 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13096 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13097 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13098 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13099 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13100 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13101 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13102 The reverse order cannot happen as there is never a bfd with only the
13103 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13104 matter as here were are looking only for cross-bfd sections. */
13105
13106 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13107 for (l = already_linked_list->entry; l != NULL; l = l->next)
13108 if ((l->sec->flags & SEC_GROUP) == 0
13109 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13110 {
13111 if (abfd != l->sec->owner)
13112 sec->output_section = bfd_abs_section_ptr;
13113 break;
13114 }
13115
13116 /* This is the first section with this name. Record it. */
13117 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13118 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13119 return sec->output_section == bfd_abs_section_ptr;
13120}
13121
13122bfd_boolean
13123_bfd_elf_common_definition (Elf_Internal_Sym *sym)
13124{
13125 return sym->st_shndx == SHN_COMMON;
13126}
13127
13128unsigned int
13129_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13130{
13131 return SHN_COMMON;
13132}
13133
13134asection *
13135_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13136{
13137 return bfd_com_section_ptr;
13138}
13139
13140bfd_vma
13141_bfd_elf_default_got_elt_size (bfd *abfd,
13142 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13143 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13144 bfd *ibfd ATTRIBUTE_UNUSED,
13145 unsigned long symndx ATTRIBUTE_UNUSED)
13146{
13147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13148 return bed->s->arch_size / 8;
13149}
13150
13151/* Routines to support the creation of dynamic relocs. */
13152
13153/* Returns the name of the dynamic reloc section associated with SEC. */
13154
13155static const char *
13156get_dynamic_reloc_section_name (bfd * abfd,
13157 asection * sec,
13158 bfd_boolean is_rela)
13159{
13160 char *name;
13161 const char *old_name = bfd_get_section_name (NULL, sec);
13162 const char *prefix = is_rela ? ".rela" : ".rel";
13163
13164 if (old_name == NULL)
13165 return NULL;
13166
13167 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13168 sprintf (name, "%s%s", prefix, old_name);
13169
13170 return name;
13171}
13172
13173/* Returns the dynamic reloc section associated with SEC.
13174 If necessary compute the name of the dynamic reloc section based
13175 on SEC's name (looked up in ABFD's string table) and the setting
13176 of IS_RELA. */
13177
13178asection *
13179_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13180 asection * sec,
13181 bfd_boolean is_rela)
13182{
13183 asection * reloc_sec = elf_section_data (sec)->sreloc;
13184
13185 if (reloc_sec == NULL)
13186 {
13187 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13188
13189 if (name != NULL)
13190 {
13191 reloc_sec = bfd_get_linker_section (abfd, name);
13192
13193 if (reloc_sec != NULL)
13194 elf_section_data (sec)->sreloc = reloc_sec;
13195 }
13196 }
13197
13198 return reloc_sec;
13199}
13200
13201/* Returns the dynamic reloc section associated with SEC. If the
13202 section does not exist it is created and attached to the DYNOBJ
13203 bfd and stored in the SRELOC field of SEC's elf_section_data
13204 structure.
13205
13206 ALIGNMENT is the alignment for the newly created section and
13207 IS_RELA defines whether the name should be .rela.<SEC's name>
13208 or .rel.<SEC's name>. The section name is looked up in the
13209 string table associated with ABFD. */
13210
13211asection *
13212_bfd_elf_make_dynamic_reloc_section (asection * sec,
13213 bfd * dynobj,
13214 unsigned int alignment,
13215 bfd * abfd,
13216 bfd_boolean is_rela)
13217{
13218 asection * reloc_sec = elf_section_data (sec)->sreloc;
13219
13220 if (reloc_sec == NULL)
13221 {
13222 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13223
13224 if (name == NULL)
13225 return NULL;
13226
13227 reloc_sec = bfd_get_linker_section (dynobj, name);
13228
13229 if (reloc_sec == NULL)
13230 {
13231 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13232 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13233 if ((sec->flags & SEC_ALLOC) != 0)
13234 flags |= SEC_ALLOC | SEC_LOAD;
13235
13236 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13237 if (reloc_sec != NULL)
13238 {
13239 /* _bfd_elf_get_sec_type_attr chooses a section type by
13240 name. Override as it may be wrong, eg. for a user
13241 section named "auto" we'll get ".relauto" which is
13242 seen to be a .rela section. */
13243 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13244 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13245 reloc_sec = NULL;
13246 }
13247 }
13248
13249 elf_section_data (sec)->sreloc = reloc_sec;
13250 }
13251
13252 return reloc_sec;
13253}
13254
13255/* Copy the ELF symbol type and other attributes for a linker script
13256 assignment from HSRC to HDEST. Generally this should be treated as
13257 if we found a strong non-dynamic definition for HDEST (except that
13258 ld ignores multiple definition errors). */
13259void
13260_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13261 struct bfd_link_hash_entry *hdest,
13262 struct bfd_link_hash_entry *hsrc)
13263{
13264 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13265 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13266 Elf_Internal_Sym isym;
13267
13268 ehdest->type = ehsrc->type;
13269 ehdest->target_internal = ehsrc->target_internal;
13270
13271 isym.st_other = ehsrc->other;
13272 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13273}
13274
13275/* Append a RELA relocation REL to section S in BFD. */
13276
13277void
13278elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13279{
13280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13281 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13282 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13283 bed->s->swap_reloca_out (abfd, rel, loc);
13284}
13285
13286/* Append a REL relocation REL to section S in BFD. */
13287
13288void
13289elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13290{
13291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13292 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13293 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13294 bed->s->swap_reloc_out (abfd, rel, loc);
13295}
This page took 0.069408 seconds and 4 git commands to generate.